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ABSTRACT

The notion of sentinels with given sensitivity was introduced by J.-L. Lions
in [10] in order to identify parameters in a problem of pollution ruled by a
semilinear parabolic equation. He proves that the existence of such sentinels is
reduced to the solution of exact controllability problem with constraints on the
state. Reconsidering this notion of sentinels in a more general framework, we
prove the existence of the new sentinels by solving a boundary null-controllability
problem with constraint on the control. Our results use a Carleman inequality
which is adapted to the constraint.

Key words: heat equation, optimal control, controllability, Carleman inequalities, sen-
tinels.
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Introduction

In the models of boundary pollution problem, initial data are not completely known.
Boundary conditions also are either unknown or known only on one part of the bound-
ary, the other part being for example inaccessible to measurements. Let us formulate
the problem more precisely. Let N,M € N\ {0} and © be a bounded open subset
of RN with boundary I' of class C2. For a time T > 0, we set @ = Q x (0,7),
¥ =Tx(0,T7), and X9 = T'g x (0,T), where I'y is a non empty open subset of I".
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We consider the system modeling a problem of pollution [10]:

W _Ay+fly)=0 in Q

Y= £+ Zi‘il A& on X, (1)
0 on X \ E(],
y(0) = 4% + 79° in Q,

where:
e y represents the concentration of the pollutant.
e f is a given real function of class C!, globally Lipschitz.

e The boundary condition is unknown on a part ¥ of the boundary and represents
here a pollution with a structure of the form & + Zij\il)\ifi. In this structure,

the functions &€ and {&}M, are known whereas the reals {\;}}1, are unknown.

e The initial condition is unknown and its structure is of the form 3° 4+ 7¢° where
the function y° is known and the term 74° is unknown.

We set
Hg/Q(I‘O) ={pe H3?*(y) such that p =0 on the boundary of I' },
H(Zo)={p€ H! (0,7, Hg/z(Fo)) such that p(z,0) =0 on Iy }
and we assume that:

e % and 9" belong to H}(2), £ and &; belong to H(Xo). Notice that if we write xx,
the characteristic function of the set X, this implies that & - x5, and &; - x5,
are elements of H(X) where

H(E) ={pe H'(0,T, H3/2(F)) such that p(z,0)=0onT }. (2)

e The functions

& Xro, 1<i< M, are linearly independent. (3)

e The real 7 is small enough and [|7°| g () < 1.

e The function f verifies (in order to simplify)
f(0) = 0. (4)

For model (1), we are interested in identifying the parameters \; without any attempt
at computing 74°. To identify these parameters, we use the theory of sentinel in a
general framework. First of all, let us recall that the usual theory of sentinels lies on
three considerations:
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e A state equation represented here by (1) and where the solution y =
y(x,t,\,7) = y(A,7) depends on two families of parameters A = {Ay,---, Ap}
and 7.

e An observation mg which is a measure of the flux of the concentration of the
pollutant taken on a non-empty open subset O of I' \ I'y called observatory.

e A function S called “sentinel,” defined for hg € L*(O x (0,T)) by

T
SO\ 7) = /0 /O (h0+w)% do dt (5)

where v is the unit exterior normal to T, % is the derivative of y with respect
to the normal v and w, the control function. Moreover, the control w is to be
found of minimal norm in L?(O x (0,7T)) such that functions S satisfy

— S is stationary to the first order with respect to missing terms 7¢°:

aS R

— S is sensitive to the first order with respect to pollution terms \;&;:

g(o,m:ci, 1<i<M, (7)

where ¢;, 1 < i < M, are given constants not all identically zero.

Using the adjoint problem, J.-L. Lions in [10] shows that the existence of these sen-
tinels is reduced to solution of exact controllability problem with constraints on the
state, but he only proved results of approximate controllability. These types of ap-
proximate controllability problems with constraints on the state were also the subject
of many numerical resolutions. It is in this context, for instance that J. P. Kern-
evez et al. use these sentinels in [1, 7] to identify parameters of pollution in a river.
O. Bodart apply them in [2] to identify an unknown boundary.

Remark. To estimate the parameter \;, one proceeds as follows:
Assume that the solution of (1) when A = 0 and 7 = 0 is known. Then, one has
the following information:

M

a8
)\ —_ ~ )\17 y .
S(\.7) = 5(0,0) Zj 7 (0:0)
Therefore, fixing ¢ € {1,..., M} and choosing
;Sj(o,())zo for j#£i and gi(o, 50) =¢,
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one obtains the following estimate of the parameter \;:

N~ (S, 7) — 5(0,0)).

Ci

Remark. J. L. Lions refers to the function S as a sentinel with given sensitivity c;.
In (7), the ¢; are chosen according to the importance which is conferred to the com-
ponent &; of the pollution.

Remark. Notice that for the J. L. Lions’s sentinels defined by (5)—(7), the observatory
O C (I'\ T) is also the support of the control function w.

In this paper, we consider the general framework where the support of the control
function w may be different from the observatory O. More precisely, for any non-
empty open subset v of I' \ 'y where v may be different from O, we look for a
function S = S(A, 7) solution of the following problem:

Given hg € L*(O x (0,T)), find w € L*(y x (0,T)) such that

(i) the function S defined by

T 8y T 0y
= = T % _
S\, 7) /O /Oho ay(A,T)d dt+/0 lw 6V(A,T) drdt. (8)

satisfies the conditions (6) and (7);

(ii) The control w is of minimal norm in L?(y x (0,T)) among “the
admissible controls,” i.e.,

|w| 2 (yx(0,7)) = lrﬂneigw\m(wx(oi)) (9)
where
E={weL*(yx(0,T)), suchthat (w,S(w)) satisfies (6)~(8) }.

Under the above hypotheses on f and the data, one can prove as in [3] that there
exists @ > 0 such that when

M
T+ [Nl <a
i=1
problem (1) admits a unique solution y = y(\, 7) in
H>Y(Q) = L*(0,T; H*()) N H'(0,T; L*(Q)).
Moreover, if we denote by I C R a neighborhood of 0, the applications

T—y(A, 1) and N r—y(\7T) (1<i<M)
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are in C*(I; L*(0,T; H2(2))). In fact, if we denote by yo = y(0,0) € H*!(Q) the so-
lution of (1) when A = 0 and 7 = 0, and if we write the derivatives of y at (0,0) with
respect to 7 and \; as

0
Yr = Ey(/\7 T)|7'207>\'i:0

and

0
Yn, = N y()\, T)|r:0,>\i:07

the functions y, and y,, are respectively solutions of

0y .
ayt — Ay + f'(yo)y- =0 in Q,
Yy =0 on X, (10)
pe(0) = " inQ
and
oY, .
g; — Ay, + f'(yo)yr, =0 in Q,
Ya, = Eixs, on Y, (11)

yx, (0) =0 in Q,

where f/(yo) denotes the derivative of f at point yo. Since f is a real C! and globally
Lipschitz function, we have

ao = f'(yo) € L™(Q). (12)

Consequently, §° and & being respectively in H} () and H(X), we deduce that
problems (10) and (11) have respectively a unique solution y, and yy, in H*1(Q).

Remark. Since y € L?(0,T; H?()), we have % € L*(0,T; H/2(T")) ¢ L*(®). Thus,
ho and w being respectively in L?(O x (0,7)) and in L?(y x (0,T)), relation (8) is
well defined. Moreover, y, and y,, belong to L?*(0,T; H?(2)). This means that %Llj
and % belong to L?(0,T; H/?(T)) ¢ L*(X). Thus, conditions (6) and (7) are
well defined.

Let x~ be the characteristic function of the set v. We set

ay}q 8y>\M
Y:Span( 5y X1 g, X (13)
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the vector subspace of L2(yx (0, 7)) generated by the M functions %X'w 1<i< M,
which will be proved to be independent (see Lemma 1.2 in subsection 1.1) and we
denote by Y+ the orthogonal of Y in L?(y x (0,T)). Let also

1
Yy=-Y
"~

be the vector subspace of L?(y x (0,T)) generated by the M functions %Bg:i X

1 < i < M, where 0 is the positive function precisely defined later on by (26).
Clearly, these functions will also be independent.
We consider the following controllability problem:

Given hy € L*(O x (0,7)), wo € Y, and ay € L*>(Q), find
v € L%(y x (0,T)) such that

veY?t, (14)

and if q = q(z,t,v) € L?(Q) is solution of

0
78—;]—Aq+a0q:0 in Q,
q = hoxo + (wo —v)xy on%, (15)
q(T)=0 in Q,
q satisfies
q(z,0,v) =0 in Q. (16)

Remark. Let us notice that if v exists, the set
E={veY! suchthat (v,q=q(z,t0)) satisfies (15), (16) }

is a non-empty, closed, and convex set in L?(y x (0,7')). Therefore there exists v € £
of minimal norm.

The problem (14)—(16) is a null boundary controllability problem with constraint
on the control. When Y+ = L2(y x (0,T)), this problem becomes a null boundary
controllability problem without constraint on the control. This problem has been
studied by many authors.

In the linear case, D. Russell in [15] has proved that exact controllability for
the wave equation implies exact controllability for the heat equation. Inspired by
this work of D. Russell, G. Lebeau and L. Robbiano in [8] solved the problem of null
boundary controllability in the case ag = 0 using observability inequalities deriving
from Carleman inequalities. At the same time, O. Y. Imanuvilov and A. Fursikov
in [5] obtained the same result for more general operators including variable coeffi-
cients and nonzero potentials using more directly global Carleman inequalities for the
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evolution operator. They could extend their method to the case of some nonlinear
heat equations where they prove that the problem of null boundary controllability
holds for sufficiently small initial data. We can also mention results in this direction
by Y. J. Lin Guo and W. Littman in [9].

0. Nakoulima gives in [14] a result of null controllability for the heat equation with
constraint on a distributed control. His results is based on an observability inequality
adapted to the constraint.

In this paper we solve the null boundary controllability problem with constraint
on the control (14)—(16). This allows us to prove the existence of the sentinel for
given sensitivity (6)—(9). More precisely, we have the following results:

Theorem A. Let Q be a bounded open subset of RY with boundary T' of class C?,
Ty a non-empty open subset of T', O and v two non-empty open subsets of T'\T'g. Let
also f be real function of class C', globally Lipschitz verifying (4). Then the existence
of the sentinel (6)—(9) holds if and only if the null boundary controllability problem
with constraint on the control (14)—(16) has a solution.

The proof of the boundary null-controllability problem with constraint on the
control (14)—(16) lies on the existence of a function # and a Carleman inequality
adapted to the constraint (see subsection 2.1) for which we have the following result:

Theorem B. Assume that the hypotheses of Theorem A are satisfied. Then there
exists a positive real weight function 6 (a precise definition of 0 will be given later on)
such that, for any function hg € L?(Ox (0,T)) with Ohg € L*(O x (0,T)), there exists
a unique control © € L*(yx (0,T)) such that (0, q) with ¢ = q(d) is solution of the null
boundary controllability problem with constraint on the control (14)—(16) and provides
a control W = wox~ — U of the sentinel problem satisfying (9).

Moreover, the control w s given by

= Plun) + (1= P) (5o, )

where P is the orthogonal projection operator from L*(y x (0,T)) into Y, wg € Yy
depends on ho and ¢;, i € {1,..., M}, and will be precisely determined in (22), and
p satisfies
o5
8—':—Aﬁ+a0ﬁ:0 in Q,
p=0 onX.

The paper is organized as follows: Section 1 is devoted to the equivalence between
the sentinel problem and the controllability problem with constraint on the control.
In this section we give the proof of Theorem A, the formulation of the sentinel and the
estimate on the parameter )\;. In section 2, we study the null-controllability problem
with constraint on the control (14)—(16) and prove Theorem B.
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1. Equivalence between the sentinel problem and the control-
lability problem with constraint on the control

1.1. Proof of Theorem A

To obtain the boundary null-controllability problem (14)—(16), we interpret (6) and (7).
In view of (8), the stationary condition (6) and respectively the sensitivity condi-
tions (7) hold if and only if

T T
ayv’ 3y¢ ~0 1
h dl’ dt ——dl'dt = Hy(Q 1
/0 /O 0 v +/0 [yw ov 0 vy © 0( ) ( 7)

d
T T
/ / ho Y, dT dt +/ /w Y dl dt = ¢;, 1<i< M. (18)
o Jo = Ov o Jy v

Therefore, in order to transform equation (17), we introduce the classical adjoint
state. More precisely, we consider the following linear problem
Jq

—E—Aq—l—aoqzo in Q,

al

q = hoxo +wx, onk, (19)

q(T)=0 in €.

Since hoxo + wx~ € L?(X), one can prove using transposition method that problem
(19) admits a unique solution ¢ in L*(Q) N C([0,7], H'(2)). Moreover we have

%9 ¢ H1(0,T; H=3/2()) (see [12)).

Remark 1.1. In fact, we have % € H'(X) where H(X) is defined in (2). In order
to show this, we can take T > T, extend hy and w by zero on (7,T’) and take
q(T") = 0 so that ¢ = 0 on (7,T"). Now if £ € H(X), we can extend it smoothly
on (T,T") so that £(T") = 0. Therefore £ € H&(O,T’;H?’/Q(F); and the duality
(%, ) H-1(0,1HH-3/2(1)), H2 (0,17;15/2(r)) Makes perfect sense with 5L =0 on (T,T").

Now, multiplying both sides of the differential equation in (19) by y, solution
of (10) and integrating by parts in Q, we get for all §° € H}(Q) that

T T
y- 0y, ~0
/0 /Ohogdfdﬁfo Aw%dfdt=—<q(0>,y Jp—

where (-,-)x x+ represents now and in the sequel, the duality bracket between the
space X and X'.
Thus, condition (6) (or (17)) holds if and only if

q(0) =0 in Q. (20)
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Then, multiplying both sides of the differential equation in (19) by y,, solution of (11)
and integrating by parts in Q, we have

8q ~ T 8y)\,. /T/ 8y)\,. .
a3 - ho “22L4r dt LdDdt, 1<i< M.
<8v’€XFO>H'(z),H(z> /0 /o "o ", L ow '

Thus, condition (7) (or (18)) is equivalent to

99 . .
9 ¢ —¢, 1<i<M. 21
<8z/’ & XFO>H’(E),H(E) ¢ ! (21)

The above considerations show that the existence of the sentinel of given sensitiv-
ity (6)—(9) is reduced to the solution of the following null controllability problem:

Given hg € L2(Ox (0,T)) and ag € L>=(Q), find the control w of minimal
norm in L?(y x (0,T)) such that the pair (w,q) is solution of (19)—(21).

This new problem is a null-controllability problem with constraints (21) on the state q.
Actually, let us show that the insensitivity conditions (7) (or the contraints (21))
on the state ¢ are equivalent to constraint on the control.

Lemma 1.2. Assume that (3) holds. Then th%functions ‘9gy Xy, 1 <@ < M, are
linearly independent. Moreover the functions % g;i X+, 1 <4 < M, are also linearly

independent.

Proof. Let a; € R, 1 <i < M be such that Zﬁﬁxi%)ﬁ = 0. Then, in view of (11),
k="M ays, is such that

ok
a5 — Ak + f'(yo)k =0 in Q,
M
b= adas, o,
1=1
%:O on vy x (0,7),
k(0)=0 in Q.

As v ¢ '\ Ty, we have k = 0 and % = 0 on v x (0,7). Thanks to the unique
continuation property ([13,16]), this implies £ = 0 in @ . Therefore, we deduce that
Z{Vilaié =0on Iy x (0,T). Hence, assumption (3) allows to conclude that a; = 0
for 1 <i< M.

The second assertion of the lemma follows immediately. O]

T Oy, _
( / / 194> Oy, dth)
o J,0 Ov Ov i
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is symmetric positive definite and, therefore, there exists a unique wy € Yy such that

T
Ci_/ / ho
0o Jo

Consequently, combining (18) with (22), we observe that condition (7) (or the con-
traints (21)) holds if and only if

T
O0i ar gy — / / wo P qrar, 1 <i< M. (22)
v o Jy v

w—woz—veYl,

where Y is given by (13). Replacing w by —v + wp in the second expression of
(19), we obtain the second one in (15). Therefore, the sentinel problem (6)—(9)
holds if and only if null boundary controllability problem with constraint on the
control (14)—(16) has a solution. O

Remark 1.3. The function wy is such that wg € L%(yx (0, T)). The choice of wq in Yy
will be necessary for the construction of the optimal control for the null boundary
controllability problem (14)—(16) in section 2.

Remark 1.4. If € is the set of admissible controls v € L?(yx (0,T)) such that (14)—(16)
is satisfied, then £ is a closed convex subset of L?(y x (0,T)). Since wg — & is also
a closed convex subset of L?(y x (0,T)), we can obtain w to be of minimal norm
in L?(y x (0,T)) by minimizing the norm of wy — v when v € £. Then the pair
(v, q(v)) satisfying (14)—(16) necessarily provides a control w satisfying (9).

1.2. Formulation of the sentinel with given sensitivity and identification of
parameter \;

Assume that Theorem B holds. Then if we replace in (8) w with

B
W = P(wo) + (I — P)a—ixv,

the function S defined by

S(A T)—/T/h 9% (\,z)dr di
) — 0 o 081/ )

[ (P s a2 ) 2oy ara

is such that (w,S) verifies (6)—(9). Therefore proceeding as in the remark in page
167, we deduce that

1 T 3y0
Aiwci{/o /Oho(mo—ay>dl“dt}

+;{/0Tl(P(wo)+(I—P)(3;fjxw> (mo— %‘?)drdt}v
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where myg is a measure of the flux of the concentration of the pollutant taken on the
observatory O U~ and yq is solution of (1) when A =0 and 7 = 0.

2. Study of the boundary null-controllability problem with con-
straint on the control

In this section, we prove existence of the solution of the boundary null controllability
problem (14)—(16) and of course uniqueness if we want the control to be of minimal
norm among admissible controls. The main tool we use is an observability inequal-
ity adapted to the constraint (14) which itself will be a consequence of an adapted
Carleman inequality.

2.1. An adapted Carleman inequality

Let us consider an auxiliary function 1 € C?(Q) which satisfies the following condi-
tions:

U(zx) >0 VreQ,
VU >a>0 Ve,
U(z)=0 onTl\~, (23)
ov
v

Such a function 1 exists according to A. Fursikov and O. Yu. Imanuvilov [5].
For (z,t) € Q, we define for any positive parameter value A the following weight
functions:

() <0 VzeT\n.

e)\(m\\ll\oo+‘ll(:r))

)= ——
QAT oo _ A (m| U] oo+ (x))

(24)

— e

HT — )

n(x,t) = (25)
with m > 1. Weight functions of this kind were first introduced by O. Yu. Imanuvilov.
Since ¢ does not vanish in Q, for all s > 0 and A > 0, we set

R e [
. o

and we adopt the following notations:

0
LzafA‘FaOI,
.9
L :7a*A+(ZOI, (27)

V={peC®@Q), p=0onx},
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where ag € L*(Q) is defined by (12). Then, using the notations given by (27), we
have the following inequality:

Proposition 2.1 (Adapted Carleman inequality). Assume that (3) holds. Let Y be
the real vector subspace of L*(y x (0,T)) of finite dimension defined in (13) and P
be the orthogonal projection operator from L*(y x (0,T)) into Y. Let also 0 be the
function defined by (26). Then, there exist numbers Ag = Ao(2,7v,a0) > 1, s =
s0(Q,7v,a0,T) > 1, C = C(Q,7,a0) > 0 such that, for fized X\ > \o and s > sg and

forany peV,
T 1 8p2 T T op  p 2
— < 2 _— — .
/0 /r92 5 dthC[/O /Q|Lp\ dxdt+/0 /Wpau o dl“dt} (28)

To prove Proposition 2.1, we need some preliminary results.

Proposition 2.2 (Boundary Carleman inequality). Let W, ¢ and n be the functions
defined respectively by (23)—(25). Then, there exist numbers Ao = Ao(Q,7v,a9) > 1,
s0 = s0(Q,7y,a0,T) > 1, Co = Co(R,7,a0) >0, and C, = C1(,7,a9) > 0 such that,
for any A > Ao, for any s > sg, and for any p € V, the following estimate holds:

T ap?
e—23n< s —1(
/O /Q (50) 7\ | 3

2

af [ ()
r'\vy ov v
—2s 2 —2s 8[’2

<y e~ **M Lp|* dx dt + se”“Mp|—

0o Ja o Jy ov

Proof. See [4,6]. O

+ Ap|2) + 5020 |Vp|* + s A1 |p|2> dx dt

dr' dt

dar dt} . (29)

As a consequence of Proposition 2.2, we have this other inequality:

Proposition 2.3. Let 6 be defined as in (26). Then, there exist numbers
Ao = Ao(Q,7,a0) > 1, so = s0(€v,a0,T) > 1, Co = Co(Q,7,a0) > 0, and
Cy = C1(Q,7,a0) > 0 such that, for fited X > N\g and s > so and for any p € V,

2
/ /92( +|Ap2+Vp|2+|p|2> d:vdt+C0/ /92 alp/ dr dt
< U /|Lp|2dxdt+ Op dth] (30)
0 Q 0

Proof. As ¥ belongs to C*(Q) and @e 2" is bounded, it is immediate that § is also

bounded in Q. Consequently, adding the term fOT f,y 8@6_2877‘ Hap| dr dt to each
side of (29), then using the property of ¥ given by the fourth condltlon in (23) and
the fact that s > 1 and A > 1, we deduce (30). O
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Lemma 2.4. Assume that (3) holds. Let Y be defined by (13). Then any function p
such that

0 ,
8—':—Ap—|—a0p:0 in Q,
p=0 onX, (31)
Ip
— Y
ov 'ye

is identically zero.

Proof. For any p verifying (31), there exists a; € R, 1 < ¢ < M, such that

M Oy, M . .
% = i1 gzl ony. Weset z = p— > " oy, Then in view of (11), we

have

0z .
E—Az—i—aozzo in Q,

M
z= E a;§ixs, on
=1

0z

%:0 on v x (0,7).
As v Cc T\ Ty, we have
0
z=0 and a—jzo on v x(0,7).

Therefore, thanks to the unique continuation property (see [13,16]), we have z = 0
in Q. Consequently, we deduce on the one hand that p = Zij\ilaiyxi and on the other
hand that Zf\ilaié = 0 on ¥y. Hence, it follows from assumption (3) that a; = 0
for 1 <i< M. Thus, p=0in Q. O

Proof of Proposition 2.1. The proof uses a well known compactness-uniqueness argu-
ment and inequality (30). We argue by contradiction. We suppose that for any n € N
there exists p, € V such that

r 1
/ /|Lpn|2dac dt < =, (32)
o Ja n
T 2
Opn  Opn 1
P— — — dlrdt < —
/0 /7‘ ov oy ~n (33)
and
T 2
1 |0pn
—|—=1 dl'dt = 1. 4
/0 /Fez 0\ ar (34)

Now let us prove that (32)—(34) yield a contradiction. We do it in three steps.
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e Step 1. We have

INE
0 792

2
dl' dt
T 1 2 T 1
§2/ /f dth+2/ /f
0 702 0 702

Since the function 75 is bounded in Q, using (33) and (34), we conclude that there
exists a constant C' independent of n such that

T
1], 9pn

[

0 ~ 9 81/

Therefore, Y being a finite dimensional vector subspace of L%(y x (0,T)), we deduce
that

Opn
P

poom _ 9on

2
ED ED dr' dt.

dpn
ov

2
dlr dt < C.

9pn
‘P'O <C. (35)
W r2(x01)
Consequently, using (33) and (35), we get
Ipn
L <c. (36)
W 1 L2(vx(01)

o Step 2. Let us define L*(§,X) = {¢ € L*(X), [y #zl¢[*dX < oco}. Then
L*(X) C L*(3,X) and the canonical injection is continuous. Thus, according to (32)
and (36), we deduce from (30) that p,, Vp,, Ap, are bounded in L*(§,Q) and
% is bounded in L?(3,%). Let us then take a subsequence still denoted by (py,)
such that .
(pn) — p weakly in LQ(E, Q).
If we refer to (24) and (25) and the definition of % given by (26), we can see that
(pn) is bounded in L*(]3,T — B[; H*(2)), V3 > 0. Then, we have in particular, for
every 3 > 0,

pn —p  weakly in L*(]3,T — B[xQ),

apn — @ 3 2
ey £y weakly in L=(]8,T — B[xT).

This implies that

pn — p  weakly in D'(Q),

3,% N @ . /
ey ey weakly in D'(X).
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Therefore, we get from (32) and (36) that

Lpn — Lp=0 strongly in L*(Q), (37)
o 'y weakly in L*(y x (0,7)). (38)

And, since P is a compact operator, we deduce from (38) that

P% — P% strongly in L%(y x (0,7)). (39)
From (33), we also have
%Pyn - %ﬂyn Xy — 0 strongly in L*(y x (0,7)). (40)

Thus, combining (39) with (40), we obtain

0 0
%X’v — Pa—i strongly in L*(y x (0,7)). (41)
Thanks to the uniqueness of the limit in L?(y x (0, 7T')), the convergence relations (38)
and (41) imply P% = %Xv- This means that %Xv € Y. In short, we have proved
that p verifies

Lp=0 in Q,
p=0 oni,
dp
— Y.
3VX7€

Thanks to Lemma 2.4, p is identically zero. Thus, % =0on~vx(0,7T) and (41) be-
comes 5
% — 0 strongly in L*(y x (0,7)). (42)
e Step 8. Since (p,) € V, applying Carleman inequality (30) to p,, then, passing
to the limit on n, it results from (37) and (42) that %% — 0 strongly in L?(X).
Therefore, the contradiction occurs with (34). O

2.2. Solution of the boundary null-controllability problem with constraints
on the control

The proof of Theorem B can be obtained in different ways, all of them using the
adapted Carleman estimate which has been proved in the previous section. Here
we choose to present a proof which uses a penalization argument and which will be
divided in three steps.
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e Step 1. For every € > 0 let us consider the following optimal control problem.
Let wo be defined by (22). If v € Y+ let ¢ be solution of (15). We know that
q € C([0,T]; H1(Q)) and we can define the functional

1 1
Je(v) = §|w0 — 0[Za( oy + £|Q(O)|§{—1(Q)

with “‘0@1*1(9) = (—A)‘H(p)Hé(Q),Hﬂ(Q) where (—A)~ 1y = 1 satisfies —Ay) = ¢
inQ,¢Y=0o0nT.

The optimal control problem is then to find v. € Y+ such that

Je(ve) = Urél)l/nL Je(v). (43)

As Yt is closed and convex (it is a linear subspace), it is classical to show that there
exists a unique solution v, to (43) (see for example [11]). If we write ¢. the solution
to (15) corresponding to v, using an adjoint state p., the triple (ge, pe, ve) is solution
of the following first order optimality system

L*q¢. =0 in Q,
¢e = hoxo +woXxy —vexy on X, (44)
q(T) =0 in Q,
Lp. =0 in Q,
Pe = 0 on E, (45)
p-(0) = (-2) " (12:(0) = ©
c )
0 0
Ve = (wox,y — %X’Y) — P(woxv — %X'v) eyt (46)

e Step 2. We will here obtain estimates independent of € on the control v, and on
the state and adjoint state g. and p-..

In view of the value of v, given in (46), in order to obtain bounds for v. it is
enough to obtain bounds for (%’:f X~ — P%p; X~)-

Let us multiply the state equation (44) by p.. We obtain

T
dp
<p€(0)7qE(O)>Hé(Q),H—1(Q)+/ /QEais dl'dt =0
o Jr v

and therefore

1 2 g dpe T Jpe
—|4e -1 — Ve ) (= I dt T =0,
OB+ [ =g avas [ [ oS ara=o
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so that

1 5 T ) T ap
~[g-(0) |- +/ /w — | drdt+/ /h € dr dt
c |H () 0 Pyl 0 o o an
T
Ope -
_/0 [y(wO_UE)P(wOXV - EX’Y) dI'dt = 0.

As v, € Y1, this gives

T
< (v2) //|Pw0xv|2df‘dt // 8’)5 )dth
0 V
e
// dr dt — //ho X, T dt.
0

Ipe
Wo — Vg :PUJOXW"'(I_P)(;/ X“/)

As we have on v x (0,7

we have

T T T 9p. 9
/ /|w0 — v 2dDdt :/ /|Pw0xw|2d1“dt+/ /‘(I—P)(—XV)} dr dt
0 0% 0 0% 0 0% ov

and we obtain

1 2 g dpe 2
g|QE(O)|H*1(Q)+/O L‘(I_P)(ay Xv)‘ drdt
’ dpe
= wo(I — P X~)dl dt
[t =P

T T
dpe / / Ipe
— — X~ dl'dt — ho——x~ dI' dt.
/o /Wwo&/xy o Jo anxv
This implies

1 9 1 T aps 2
SO+ g [ /|<I—P>( L)
T T 1/2
< 2/ /|w0|2drdt+ (/ /02|w0\2drdt+/ /92h02drdt)
0 Jy
(] [#l%

dl dt

Ipe

1/2
dth) . (47)
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Now, if we apply the adapted Carleman inequality (28) to p., we obtain

T 1 2 T
[ Ll wase [
0 r 0 ¥

From (47), the hypothesis on hg and the choice of wq € Yy, we see that

1 T 0pe
o+ [ [0 =P (G )

T T T
gc(/ /\wO\QdthJr/ /02\w0|2d1“dt+/ /62|h0|2drdt).
0 ~y 0 Jy 0 o
This implies

- (%)

Ipe
ov Xy

2
dr dt. (48)

dpe
9 (I —P)

2
dar dt

L2(yx(0,T))

T T 1/2
gc(/ /62|w0\2d1“dt+/ /92h02drdt) , (49a)
0 ¥ 0 o]

T T 1/2
oy <O( [ [Pl avacs [7 ] PP avar) L o)
0 0% 0 O

T T 1/2
1¢-(0) | r-1(0) gcﬁ(/ /92|w0\2drdt+/ /92h02drdt) . (49¢)
0 v 0 O

where C' > 0 is independent of e. Then, the properties of the heat equation (44)
allow us to conclude that

T T 1/2
1ge) 220 gc(/ /92|w0|2drdt+/ /92|h0|2drdt) . (50)
0 v 0 O

From (49a) and (48), we see that

T T 1/2
<c(/ /92\w0\2drdt+/ /92|h02dfdt>
L2(%) 0 Jy o Jo

and using again (49a) and the fact that ; is bounded, we obtain

T T 1/2
gc(/ /92|w0|2drdt+/ /92h02drdt>
L2(yx(0,T7)) 0 ~y 0 o)

Therefore, Y being a finite dimensional vector subspace of L2(y x (0,T)), we deduce

that
T T 1/2
<C</ /92|w0\2d1“dt+/ /02|h02drdt> .
L2(yx(0,T)) 0 Jy 0 JoO

1 9pe
0 ov

1 _0pe
-P
‘ 6 ov

dpe
ov

i
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Therefore, from (49a) we obtain

T T 1/2
gc(/ /02\w0|2drdt+/ /92|h0|2dth> . (51)
L2(yx(0,1)) 0 Jy o Jo

Using Proposition 2.3 we then have

[ (%
o Jo 02 \| ot

Ope
v

2
AR+ V0. 4 |pd?) ot

T T
gc(/ /92|w0|2drdt+/ /02|h0|2drdt> (52)
0 o 0 o

o Step 3. In view of (49), (50), and (52), we can extract subsequences of (v.), (¢z),
and p. (still called (v.), (¢g-), and p.) such that

Ve — weakly in  L%(y x (0,7)), (53)

v X
g- — @ weakly in  L%(Q),

1
Pe — P weakly in L2<5, Q).

Therefore, o € Y+, L*q. — L*G weakly in D’(Q) and, in view of the first equality
in (44), we have

L'§=0 in Q.
Thus, § € L*(Q) and L*G € L?*(Q). Consequently, we can give a sense to the traces ¢

on ¥ and % on ¥ respectively in H=(0,7, H='/*(I")) and in H=(0,T, H=3/%(T"))
on the one hand, and to ¢(7') and G(0) in H~1(£2) on the other hand. Now, it can be
shown that

¢:(0) — §(0) in D'(Q)

but from (49c) we know that
q-(0) — 0 in H~*(Q) strongly,
so that
(0) = 0.

Therefore it is clear that (v,q) verifies (14)—(16) and there exists a solution to the
boundary null-controllability problem. Moreover, it is clear from (45) that p satisfies

Lp=0 in O,
p=0 on 3.
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Notice that p may not have an initial value at time 0. Nevertheless because of (51)
we see that ~
dpe N dp

—_— 1 2
ey £y weakly in  L*(y x (0,7))

and therefore

. ap
v=(I—-P) <w0X7 — afj)ﬁ).

As there exists a solution to the boundary null-controllability problem, it has already
been noticed that we can find a unique ¢ € € (admissible control) such that (wo—9) is
of minimal norm in L?(yx (0,T)). If we denote by G the corresponding solution of (15),
we have §(0) =0 and, as 0 € &,

1 N .
§|w0 — 0[F2 iy (0 < Je(ve) < Je(8) = §|w0 — 8[%2(yx(0.1))

and
~12 1 ~12
51wo = VL2 (yx(0,7) = 51Wo = VL2 (4 0,1y)-

But because of (53),

ool 2 1 12
llgélf§|w0 = VelT2(yx(0,1)) = §|w0 = 0[22(yx(0,1))-

Therefore we have

<
I
(w3

and
Ve — strongly in  L?(y x (0,T)).

Writing p = p we have
. dp
0= (I—-P) (WOXW — 61p/X7>'

This finishes the proof of Theorem B. ]
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