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BOUNDARY SLOPES OF PUNCTURED TORI IN 3-MANIFOLDS

C. McA. GORDON

Abstract. Let M be an irreducible 3-manifold with a torus boundary com-
ponent T , and suppose that r, s are the boundary slopes on T of essential
punctured tori in M , with their boundaries on T . We show that the intersec-
tion number ∆(r, s) of r and s is at most 8. Moreover, apart from exactly four
explicit manifolds M , which contain pairs of essential punctured tori realizing
∆(r, s) = 8, 8, 7 and 6 respectively, we have ∆(r, s) ≤ 5. It follows immedi-
ately that if M is atoroidal, while the manifolds M(r),M(s) obtained by r-
and s-Dehn filling on M are toroidal, then ∆(r, s) ≤ 8, and ∆(r, s) ≤ 5 unless
M is one of the four examples mentioned above.

Let H0 be the class of 3-manifolds M such that M is irreducible, atoroidal,
and not a Seifert fibre space. By considering spheres, disks and annuli in
addition to tori, we prove the following. Suppose that M ∈ H0, where ∂M
has a torus component T , and ∂M − T 6= ∅. Let r, s be slopes on T such that
M(r),M(s) /∈ H0. Then ∆(r, s) ≤ 5. The exterior of the Whitehead sister
link shows that this bound is best possible.

1. Introduction

Let M be a 3-manifold and T a torus component of ∂M . (Throughout, all 3-
manifolds will always be assumed to be compact, connected, and orientable.) With
no real loss of generality, we shall assume that M is irreducible. Recall that the
slope of an essential unoriented simple closed curve on T is its isotopy class, and
that if r and s are two slopes on T then ∆(r, s) denotes their minimal geometric
intersection number.

Let (F, ∂F ) ⊂ (M,∂M) be an essential surface with ∂F ∩ T 6= ∅. Then all the
components of ∂F ∩ T have the same slope on T , the boundary slope of F on T .
Consideration of such surfaces naturally arises in the context of Dehn filling. More
precisely, if r is a slope on T , let M(r) be the manifold obtained from M by r-Dehn
filling, that is, by attaching a solid torus V to M along T so that r bounds a disk
in V . If M(r) contains an essential surface S, then either S can be moved off V
into M , or there is an essential surface F in M with boundary slope r on T such

that F̂ , the surface obtained from F by capping off the components of ∂F ∩T with
disks, is homeomorphic to S. In this paper we shall be mainly concerned with the

case where F̂ is a torus; let T (M,T ) denote the set of boundary slopes on T of
such punctured tori F in M .

Interesting examples are provided by some of the manifolds obtained by Dehn
surgery on one component of the Whitehead link. Let W be the exterior of the
Whitehead link and let T0 be a boundary component of W . Choosing a standard
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meridian-longitude basis µ, λ for H1(T0), we may parametrize the slopes on T0 by
Q ∪ {1/0} in the usual way, by associating r with p/q if [r] = pµ + qλ ∈ H1(T0),
and write W (r) = W (p/q).

Then [Ho] for M = W (2), W (−5/2), W (−5), and W (1), intM is hyperbolic
(so M is irreducible and contains no essential torus), whilst there exist slopes r, s
on ∂M with ∆(r, s) = 6, 7, 8, and 8 respectively such that M(r) and M(s) each
contains an essential torus. Hence r, s ∈ T (M,∂M). Our main result asserts that
these examples are extremal.

Theorem 1.1. Let M be an irreducible 3-manifold and T a torus component of
∂M . If r, s ∈ T (M,T ) then either

(1) ∆(r, s) ≤ 5; or
(2) ∆(r, s) = 6 and M is homeomorphic to W (2); or
(3) ∆(r, s) = 7 and M is homeomorphic to W (−5/2); or
(4) ∆(r, s) = 8 and M is homeomorphic to either W (1) or W (−5).

We remark that W (1) is homeomorphic to the exterior of the figure eight knot,
and volW (1) = volW (−5), volW (−5/2), volW (2) are respectively the lowest,
second lowest, and third lowest known volumes of hyperbolic 3-manifolds with a
single cusp. Also, in each case there are exactly two slopes r, s with the stated
property.

Theorem 1.1 has an obvious corollary about the creation of essential tori by
Dehn filling. It is natural to consider also how other surfaces of non-negative euler

characteristic might arise, that is, the cases where F̂ is a sphere, disk or annulus.
For instance, let us consider tori and spheres. As an example here, let M be
the exterior of the trefoil knot. Then (parametrizing slopes on ∂M by meridian-
longitude coordinates) M(0) is a torus bundle over the circle, and M(6) is the
connected sum of the lens spaces L(2, 1) and L(3, 1). We then have the following
result. Let A denote the class of irreducible 3-manifolds that contain no essential
tori.

Theorem 1.2. Suppose that M ∈ A and that ∂M has a torus component T . Let
r, s be slopes on T such that M(r),M(s) /∈ A. Then either one of conclusions (1)–
(4) of Theorem 1.1 holds, or ∆(r, s) = 6 and M is homeomorphic to the exterior
of the trefoil knot.

Using Thurston’s uniformization theorem for Haken manifolds [T], we obtain a
bound on the degeneration of hyperbolic structures under Dehn filling, at least in
the case where the resulting manifold has non-empty boundary. To best state the
result, let H denote the class of 3-manifolds M such that intM has a complete
hyperbolic structure, and let H0 be the set of elements of H that are not Seifert
fibre spaces. Thus H0 = H−{S1×D2, T 2× I}. Thurston has shown [T] that if M
is a 3-manifold with non-empty boundary, then M ∈ H0 if and only if M ∈ A and
is not a Seifert fibre space. By considering annuli and disks in addition to spheres
and tori, we obtain the following theorem.

Theorem 1.3. Suppose that M ∈ H0, where ∂M has a torus component T and
at least one other component. Let r, s be slopes on T such that M(r),M(s) /∈ H0.
Then ∆(r, s) ≤ 5.

Theorem 1.3 applies in particular to hyperbolic links in S3 with at least two
components. In fact, there is an example of a two-component link in S3 which
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shows that the bound of 5 in Theorem 1.3 (and Theorems 1.1 and 1.2) cannot be
improved. This is the Whitehead sister link illustrated in [BFLW, Figure 3]; one
component is unknotted and the other is a trefoil. Its exterior M has a hyperbolic
structure with the same volume as the exterior of the Whitehead link. For each of
the two boundary components T of M , there are slopes r, s on T with ∆(r, s) = 5
such that M(r) and M(s) contain essential tori [Ho].

In the case of Dehn filling on a hyperbolic manifold M with a single boundary
component, one conjectures of course that if M ∈ H0 and M(r),M(s) /∈ H0,
then ∆(r, s) ≤ 8. In general, our topological methods give no information on this
beyond Theorem 1.2. (Recall that it is a special case of Thurston’s geometrization
conjecture that if M ∈ A and π1(M) is infinite, then either M ∈ H or M belongs
to a certain small class of Seifert fibre spaces.) Using Thurston’s uniformization
theorem for closed Haken manifolds, however, we get a result in the following special
case.

Theorem 1.4. Suppose that M ∈ H and that ∂M is a torus. Suppose that intM
contains a closed incompressible surface S such that there is no incompressible
annulus in M joining S to ∂M . Let r, s be slopes on ∂M such that M(r),M(s) /∈ H.
Then ∆(r, s) ≤ 5.

We now give a brief description of the organization of the paper.
As in [GLi], which considers boundary slopes of punctured spheres, a special

role in our arguments is played by those pairs (M,T ) that are cabled (see Section 2
for the definition). More specifically, we prove Theorem 1.1 in two parts, in the
following propositions.

Proposition 1.5. If (M,T ) is not cabled and r, s ∈ T (M,T ), then the conclusion
of Theorem 1.1 holds.

Proposition 1.6. If (M,T ) is cabled and r, s ∈ T (M,T ), then ∆(r, s) ≤ 4.

We remark that the bound of 4 in Proposition 1.6 is also sharp (see Section 13).
The main part, Proposition 1.5, is proved by analysing in detail the possible

patterns of intersection of two punctured tori in M .
In Section 2 we prove some general lemmas about intersections of essential sur-

faces, whilst Section 3 contains the results we need about graphs in surfaces. The
“generic” case of Proposition 1.5 is done in Section 4; the argument here is based
on [GLi]. The completion of the proof of Proposition 1.5 occupies Sections 5–11.
After some preparatory lemmas in Section 5, Sections 6–10 treat the various cases
that remain after the results of Section 4. The conclusion is that if (M,T ) is not
cabled and (Fα, ∂Fα) ⊂ (M,T ) is an essential punctured torus with boundary slope
rα, α = 1, 2, such that ∆ = ∆(r1, r2) ≥ 6, then (after isotoping the surfaces so as
to minimize their intersection) the only possibilities for (F1, F2;F1 ∩ F2) are: one
with ∆ = 6, an infinite family with ∆ = 6, one with ∆ = 7, and two with ∆ = 8.
In Section 11 we show that for the infinite family with ∆ = 6, one of the surfaces
Fα must actually be inessential, whilst in each of the other four cases the triple
(M ;F1, F2) is uniquely determined. These must therefore correspond to the four
examples listed in Theorem 1.1.

In Section 12 we consider other pairs of essential surfaces Fα in M such that

F̂α has non-negative euler characteristic, α = 1, 2, and show, modulo cabling (or,
in some cases, modulo the existence of essential annuli in M), that ∆(r1, r2) ≤ 5.
In general this bound is not best possible, and in some cases stronger results are
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known, but as it is sufficient for Theorems 1.2, 1.3, and 1.4 we do not discuss the
matter further. (For some recent results on these questions see [Wu1], [GLu], [BZ1],
[BZ2], [H] and [HM].)

In Section 13 we consider the case where (M,T ) is cabled, proving Proposition 1.6
and analogs for other surfaces of non-negative euler characteristic. The argument
here makes use of the classification of essential planar surfaces in cable spaces given
in [GLi]. We remark that for many applications, for example to Theorems 1.2, 1.3,
and 1.4, consideration of cabled manifolds is not really necessary, as such a manifold
either contains an essential torus or is a very special Seifert fibre space. However,
expressed in terms of boundary slopes, the ultimate results apply (in most cases)
equally well to cabled manifolds, so we carry out an analysis of the cabled case that
is sufficient to give, for tori, Theorem 1.1, and for other surfaces of non-negative
euler characteristic, the results stated in Section 14, Theorems 14.2, 14.3 and 14.5.

Finally, also in Section 14, we prove Theorems 1.2, 1.3, and 1.4.
I should like to thank Craig Hodgson for his help in telling me about the examples

W (−5), W (−5/2), W (2), and the Whitehead sister. The information given above
about them and their toral boundary slopes was obtained by him using Jeffrey
Weeks’ Dehn surgery computer program “snappea.” The manifold W (−5) is also
discussed at length in Weeks’ thesis [We].

2. Intersections of essential surfaces

By a surface we shall mean a compact, connected, orientable 2-manifold, and
we shall say that a surface in a 3-manifold is essential if it is properly embedded
and either (i) incompressible, not parallel to a subsurface of the boundary of the
3-manifold, and not a 2-sphere, or (ii) a 2-sphere that does not bound a 3-ball.

Now let M be an irreducible 3-manifold (one that does not contain an essential
2-sphere), and let T be a torus component of ∂M . We assume that T is incom-
pressible. (If not, M is a solid torus.) Let Fα, α = 1, 2, be an essential surface in
M such that ∂Fα ∩ T has nα > 0 components. These all have slope rα, say, on T .
Let ∆ = ∆(r1, r2). By standard arguments, we may isotope F1, say, so that F1 and
F2 intersect transversely in a finite disjoint union of circles and properly embedded
arcs, where each circle is essential in Fα and no arc with both its endpoints on T is
parallel in Fα to a subarc of ∂Fα, α = 1, 2, and each component of ∂F1 ∩ T meets
each component of ∂F2 ∩ T in ∆ points.

If A is an arc component of F1 ∩F2 with some endpoint on T , then, considering
A as it lies in Fα, we label that endpoint with the (number of the) corresponding
component of ∂Fβ ∩ T . (Here and throughout the paper we use the convention of
[L] that {α, β} = {1, 2}.) Thus around each component of ∂Fα∩T we see the labels
1, 2, . . . , nβ in cyclic order, this sequence being repeated ∆ times. If we orient Fα,
then this induces an orientation on each component a of ∂Fα ∩ T , and we assign
a sign ± to a according to the direction of this orientation as a lies on T . We
adopt the convention that if the sign of a is +, then the labels 1, 2, . . . , nβ appear
in anticlockwise order around a, and if the sign is −, then they appear in clockwise
order. This kind of labeling was first used in [L].

An arc component of F1∩F2 with both endpoints on T will be called an internal
arc of F1 ∩ F2. The orientability of M then gives us the parity rule: if A is an
internal arc of F1 ∩ F2 on Fα, then the components of ∂Fα ∩ T joined by A have
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Figure 1

the same (resp. opposite) sign if and only if the labels at the endpoints of A have
opposite (resp. the same) sign.

Let Kp,q ⊂ intS1×D2 be a (p, q)-curve, q ≥ 2, that is, a simple closed curve on
the boundary of a concentric solid torus that winds around p times meridionally
and q times longitudinally. The exterior of Kp,q, S

1×D2 − intN(Kp,q), is called a
(p, q)-cable space, and a pair (M,T ) is said to be cabled if M contains a (p, q)-cable
space C with C ∩ ∂M = T . It is easy to see that if p ≡ ±p′ (mod q) then the
corresponding cable spaces are homeomorphic.

Lemma 2.1. Suppose that F1∩F2 contains a pair of internal arcs that are parallel
in both F1 and F2. Then (M,T ) is (1, 2)-cabled.

Proof. Let D1 and D2 be disks (rectangles) that realize the parallelism of arcs A
and A′, in F1 and F2 respectively. By taking innermost such disks we may suppose
that D1 ∩ D2 = A ∪ A′. Let the arcs join components a1, b1 of ∂F1 and a2, b2 of
∂F2. Then a1 and b1 (say) are of opposite sign, whilst a2 and b2 are of the same
sign. (See Figure 1, where the arrows indicate coherent directions on T .) A priori
there are two possibilities for the way in which D1 and D2 are identified along A
and A′, illustrated by the arrows on A and A′ in Figures 2(a) and (b).

In fact, case (a) is impossible. To see this, let P,Q,R, S be the points, and
α1, β1, α2, β2 the arcs, indicated in Figure 2(a). Note that P,Q ∈ a1 ∩ a2, and
R,S ∈ b1 ∩ b2. Then

|α1 ∩ b2| = |β1 ∩ a2| = k1 ≥ 1 , and

|α2 ∩ b1| = |β2 ∩ a1| = k2 ≥ 1 .

Now consider the disjoint simple closed curves α = α1 ∪ α2 and β = β1 ∪ β2 on
T . Orient each pair a1, b1 and a2, b2 coherently on T as in Figure 1; this orients
α1, α2, β1, β2. Now give α the orientation induced by α1 (which is equal to that
induced by −α2), and β the orientation induced by β1 (which is equal to that
induced by β2). Then (with some convention) we have the following algebraic
intersection numbers:

α · a1 = α · b1 = (−α2) · b1 = −k2 ,

β · a1 = β2 · a1 = k2 .
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On the other hand, if a2 6= b2, then

α · a2 = α · b2 = α1 · b2 = k1 ,

β · a2 = β1 · a2 = k1 .

This contradicts the fact that α and β are disjoint.
Similarly, if a2 = b2, then k1 ≥ 2, and we have

α · a2 = k1 − 1 ,

β · a2 = k1 − 1 .

This is again a contradiction.
In case (b), D1 ∪D2 is a Möbius band B with (B, ∂B) ⊂ (M,T ), from which it

easily follows that (M,T ) is (1, 2)-cabled. (See [GLi, Proposition 1.3, case (1)].)
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Suppose that Fα contains a family A of nβ mutually parallel internal arcs of
F1 ∩ F2, joining boundary components a and b (possibly equal) of Fα. Let Ai be
the arc with label i at one end of A , i = 1, 2, . . . , nβ. Then Ai has label π(i) at
the other end, for some permutation π of {1, 2, . . . , nβ}. Observe that π is of the
form

π(i) ≡ εi+ p (mod nβ) ,

where ε = ±1 according as a and b are of opposite sign or of the same sign. The
family A determines π up to inversion.

If ε = +1, then any orbit of π contains exactly nβ/(nβ , p) elements, all of the
same sign. If ε = −1, then any orbit of π contains exactly 2 elements, of opposite
sign (hence nβ is even). In particular, the following lemma is immediate.

Lemma 2.2. Suppose that Fα contains nβ mutually parallel internal arcs of F1∩F2

such that the corresponding permutation has only one orbit. Then either

(1) ∂Fβ has exactly two components, of opposite sign; or
(2) all components of ∂Fβ are of the same sign.

Let θ be an orbit of π. The arcs Ai, i ∈ θ, define a circle Cθ(A) in F̂β in the
obvious way. The following lemma is essentially proved in [GLi, Section 5].

Lemma 2.3. Suppose that Fα contains a family A of nβ mutually parallel internal
arcs of F1∩F2, such that for some orbit θ of the corresponding permutation, Cθ(A)

bounds a disk in F̂β. Then (M,T ) is cabled.

Our next goal is to prove Lemma 2.5, which gives necessary conditions for a pair
of internal arcs in Fβ to be parallel in Fα. This will be used repeatedly in Sections 6
through 9 to rule out certain configurations of arcs in F1 ∩ F2.

Orient all the components of ∂Fα ∩ T coherently on T , α = 1, 2. If P and Q
are two (distinct) points in some component a of ∂Fα ∩ T , let (PQ)α denote the
arc in a that goes from P to Q with respect to our chosen orientation of a. (See
Figure 3.)
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Suppose now that P,Q ∈ a ∩ ∂Fβ . Then we define

τα(P,Q) = |(PQ)α ∩ ∂Fβ | − 1.

In other words, τα(P,Q) is (the number of labels on the arc (PQ)α) −1. Note that
reversing the orientation of a sends τα(P,Q) to τα(Q,P ) = ∆nβ − τα(P,Q).

Lemma 2.4. Let a, b be components of ∂Fα ∩ T and x, y components of ∂Fβ ∩ T .

(i) Suppose that P,Q ∈ a ∩ x and R,S ∈ b ∩ y. If τα(P,Q) = τα(R,S) then
τβ(P,Q) = τβ(R,S).

(ii) Suppose that P ∈ a ∩ x, Q ∈ a ∩ y, R ∈ b ∩ x, and S ∈ b ∩ y. If
τα(P,Q) = τα(R,S) then τβ(P,R) = τβ(Q,S).

Proof. (i) The situation is shown in Figure 4. (Note that we allow the possibilities
a = b, x = y.) Since τα(P,Q) = τα(R,S), there is a homeomorphism of (T ; ∂F1∩T ,
∂F2 ∩ T ) taking P to R and Q to S. Hence τβ(P,Q) = τβ(R,S).

(ii) This situation is shown in Figure 5. Again, since τβ(P,Q) = τα(R,S) there
is a homeomorphism of (T ; ∂F1 ∩ T , ∂F2 ∩ T ) taking P to R and Q to S. Hence
τβ(P,R) = τβ(Q,S).

We apply Lemma 2.4 to the situation where P,Q,R and S are the endpoints of
two parallel arcs in Fα. It is sometimes convenient to express the result in terms
of the following variant of τα. Namely, instead of orienting the components of
∂Fα ∩T coherently on T , give them the orientation induced by some orientation of
Fα, and then define δα in exactly the same way as τα. Thus δα(P,Q) = τα(P,Q)
or τα(Q,P ), depending on the sign of the component a of ∂Fα ∩ T containing P
and Q.

Lemma 2.5. Let A and B be internal arcs of F1 ∩F2 that are parallel in Fα, with
endpoints P,R and Q,S respectively, labeled so that the boundary of the rectangle
in Fα that realizes the parallelism is PQSR (see Figure 6). Let x, y be components
of ∂Fβ ∩ T .
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(i) Suppose that P,Q ∈ x and R,S ∈ y (see Figure 7(i)). Then δβ(P,Q) =
δβ(R,S).

(ii) Suppose that P, S ∈ x, Q,R ∈ y (see Figure 7(ii)), and that x and y are
of opposite sign. Then δβ(P, S) = δβ(R,Q).

(iii) Suppose that P,R ∈ x and Q,S ∈ y (see Figure 7(iii)). Then τβ(P,R) =
τβ(Q,S).

Proof. Let a and b be the components of ∂Fα ∩T containing P and R respectively.
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(i) First suppose that a and b are of the same sign. Then τα(P,Q) = τα(S,R).
Therefore, by Lemma 2.4(i), τβ(P,Q) = τβ(S,R). Since x and y are of opposite
sign, this implies that δβ(P,Q) = δβ(R,S).

If a and b are of opposite sign, then τα(P,Q) = τα(R,S), and hence τβ(P,Q) =
τβ(R,S). Since x and y are now of the same sign, we get δβ(P,Q) = δβ(R,S) as
before.

(ii) Since x and y are of opposite sign, a and b are of the same sign. Therefore
τα(P,Q) = τα(S,R), and hence, by Lemma 2.4(ii), τβ(P, S) = τβ(Q,R), giving
δβ(P, S) = δβ(R,Q).

(iii) Here, since both endpoints of A lie on the same component of ∂Fβ ∩T (and
similarly for B), a and b are necessarily of opposite sign. Therefore τα(P,Q) =
τα(R,S). By Lemma 2.4(ii), this implies that τβ(P,R) = τβ(Q,S).

In practice, it is convenient to express Lemma 2.5 as follows. Let A be an internal
arc of F1 ∩ F2 in Fβ , whose endpoints have label a at boundary component x and
label b at boundary component y. If x 6= y, then we can use Ax to unambiguously
denote the endpoint of A at x. Similarly, if a 6= b, then we can use A(a) to
unambiguously denote the endpoint of A with label a. (Note that we can’t have
both x = y and a = b, by the parity rule.)

Lemma 2.5 asserts that if A and B are internal arcs of F1 ∩ F2 in Fβ that are
parallel in Fα then:

in case (ii), and case (i) when x 6= y, δβ(Ax, Bx) = δβ(Ay , By);
in case (i) when a 6= b, δβ(A(a), B(a)) = δβ(A(b), B(b));
in case (iii) (where necessarily a 6= b), τβ(A(a), A(b)) = τβ(B(a), B(b)).

We conclude this section with an observation about the points of intersection of
∂F1 and ∂F2 on T which will be useful in the sequel.

Let aα be a component of ∂Fα∩T , α = 1, 2. Parametrize a1 as R/Z in such a way
that the points of a1∩a2 are {i/∆ : i = 1, 2, . . . ,∆}. Then a2 may be parametrized
as R/Z so that the points of a1 ∩ a2 have (a1, a2)-coordinates {(i/∆, di/∆) : i =
1, 2, . . . ,∆} for some integer d = d12 coprime to ∆. By re-orienting a2 if necessary
we may assume that 1 ≤ d ≤ ∆/2. Note that d21 ≡ ±d−1

12 (mod ∆).
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3. Graphs in surfaces

Given surfaces F1, F2 in M as described in Section 2, it is convenient to regard

the arcs of F1 ∩ F2 as defining a graph Γα in F̂α, α = 1, 2. Thus we regard the

disks C`(F̂α−Fα) as the “fat” vertices of Γα, and the arcs of F1 ∩F2 with at least
one endpoint on T as the edges of Γα. We call an edge of Γα corresponding to an
internal arc an internal edge, and an edge corresponding to an arc with exactly one

endpoint on T (and the other on ∂F̂α) a boundary edge. Since no internal arc of
F1 ∩ F2 is boundary-parallel in Fα, no face of Γα is a disk with one side.

In the rest of the paper we shall use the topological and graph-theoretic termi-
nologies interchangeably, for instance sometimes referring to arcs of F1 ∩ F2 in Fα
and boundary components of Fα, and sometimes to edges and vertices of Γα.

The next two lemmas are about graphs in tori. The first is a special case of [GLi,
Lemma 6.2].

Lemma 3.1. Let Γ be a graph in a torus such that no face of Γ is a disk with one
side. Suppose that, for some positive integer n, the valency of each vertex of Γ is
greater than 6n. Then Γ has n+ 1 mutually parallel edges.

If Γ is a graph in a surface F as described above, then the reduced graph of Γ is
the graph Γ in F obtained by amalgamating each set of mutually parallel edges of
Γ to a single edge.

Lemma 3.2. Let Γ be a graph in a torus such that no face of Γ is a disk with one
side, and such that, for some positive integer n, each vertex of Γ has valency 6n.
Suppose that Γ does not contain n+1 mutually parallel edges. Then each parallelism
class of edges of Γ has n members, and each face of the reduced graph of Γ is a disk
with 3 sides.

Proof. Let Γ be the reduced graph of Γ, and let V and E be the number of vertices
and edges of Γ.

Each vertex of Γ has valency≥ (6n/n) = 6. Therefore 2E ≥ 6V , giving V ≤ E/3.
Let F be the number of disk faces of Γ. Then, since each disk face of Γ has at

least 3 sides, 2E ≥ 3F , giving F ≤ 2E/3.
Finally, we have

V − E +
∑
χ(f) = χ(torus) = 0 ,

where
∑

χ(f) is summed over all faces f of Γ.
Hence

0 = V − E +
∑
χ(f) ≤ V − E + F ≤ E

3
− E +

2E

3
= 0 .

It follows that the above inequalities are all equalities. Thus each vertex of Γ
has valency 6, each face of Γ is a disk, and 2E = 3F .

We shall need the following lemma in Section 12.

Lemma 3.3. Let Γ be a graph in an annulus such that no face of Γ is a disk with
one side, and such that, for some positive integer n, each vertex of Γ has valency at
least 6n. Then Γ has either n + 1 mutually parallel internal edges or 2n mutually
parallel boundary edges.
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Proof. Let Γ be the reduced graph of Γ, and let V,E, and F be the number of
vertices, edges, and disk faces of Γ. Let Σ =

∑
χ(f), summed over all faces of Γ.

Suppose, for a contradiction, that Γ has neither n + 1 parallel internal edges nor
2n parallel boundary edges.

First suppose that Γ has no boundary edges. The valency of each vertex of Γ
is at least (6n/n) = 6. Hence 2E ≥ 6V , giving V ≤ E/3. Also, 2E ≥ 3F , giving
F ≤ 2E/3. Since Γ has a non-disk face (containing a boundary component of the
annulus), we have Σ < F . Therefore

0 = χ(annulus) = V − E + Σ < V − E + F ≤ E
(1
3
− 1 +

2

3

)
= 0 ,

a contradiction.
Now suppose that Γ has a least one boundary edge. For each vertex v of Γ, let

α(v) (resp. β(v)) be the number of incidences of internal (resp. boundary) edges
at v, and let ᾱ(v), β̄(v) be the corresponding quantities for Γ. By hypothesis,
α(v) + β(v) ≥ 6n, for all v. Also by hypothesis, ᾱ(v) ≥ α(v)/n and β̄(v) ≥
β(v)/(2n− 1), for all v. Since

∑
β(v) 6= 0 (the sum being taken over all vertices of

Γ), we have ∑
β̄(v) ≥

∑
β(v)

2n− 1
>

∑
β(v)

2n
.

Hence

2E =
∑
ᾱ(v) + 2

∑
β̄(v) >

∑
α(v) +

∑
β(v)

n
≥ 6nV

n
= 6V .

Thus V > E/3. Also, 2E ≥ 3F , giving F ≤ 2E/3. Therefore

0 = V − E + Σ ≤ V − E + F < E
(1
3
− 1 +

2

3

)
= 0 ,

another contradiction.

4. Intersections of punctured tori; the generic case

From now on, through Section 11, we will assume that F̂1 and F̂2 are tori, and
that ∆ = ∆(r1, r2) ≥ 6.

The following lemma is an immediate consequence of Lemma 3.1.

Lemma 4.1. If ∆ > 6 then Fα contains nβ + 1 mutually parallel arcs of F1 ∩ F2.

This motivates the following definitions. We say that Fα is excellent if it contains
nβ + 1 mutually parallel arcs of F1 ∩ F2 such that the corresponding permutation
has more than one orbit. We say that Fα is good if it contains nβ + 1 mutually
parallel arcs of F1 ∩ F2 but the corresponding permutation has only one orbit. We
say that Fα is bad if it does not contain nβ + 1 mutually parallel arcs of F1 ∩ F2.

The generic situation is taken care of by the following lemma.

Lemma 4.2. If Fα is excellent then (M,T ) is cabled.

Proof. Without loss of generality we may assume that the labels at one end of
the parallel family of arcs are 1, 2, . . . , nβ, 1. Let the arcs be A1, A2, . . . , Anβ , B1,
where the subscript indicates the label at that end. (See Figure 8.)

The set of arcsA = {A1, A2, . . . , Anβ} determines a permutation π. Let θ be the
orbit of π containing 1. By hypothesis there exists another orbit ϕ. By Lemma 2.3

we may assume that the circles Cθ(A) and Cϕ(A) are essential in the torus F̂β .
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1
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.
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1

n
β

2

1

Figure 8

1

Cϕ(A) Cθ(A)

π(1)

1

Figure 9

They are therefore parallel in F̂β . Now consider the arc B1. Since it is disjoint
from Cϕ(A), either it is parallel to A1 in Fβ , or, letting B be the set of parallel

arcs {A2, . . . , Anβ , B1}, we have that Cθ(B) bounds a disk in F̂β . (See Figure 9.)
The result then follows from Lemmas 2.1 and 2.3 respectively.

We will additionally assume from now on (through Section 11) that (M,T ) is
not cabled. Then, after Lemmas 4.1 and 4.2, exactly one of the following must
hold:

(I) F1 and F2 are good;
(II) ∆ = 6, F1 (say) is good and F2 is bad;

(III) ∆ = 6, F1 and F2 are bad.

It is convenient to organize the rest of the proof along rather different lines,
however, bearing in mind Lemma 2.2. Specifically, we consider the following cases:
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(A) n1 = n2 = 2, and the two boundary components of Fα have opposite sign,
α = 1, 2.

(B) n1 = 2, the two boundary components of F1 have opposite sign, and all
boundary components of F2 have the same sign.

Case (B) is subdivided into four subcases as follows:

(B)(1) n2 = 1,
(B)(2) n2 = 2,
(B)(3) n2 = 3,
(B)(4) n2 ≥ 4.

(C) ∆ = 6, n1 ≥ 3, n2 = 2, the two boundary components of F2 have opposite
sign, and F2 is bad.

(D) ∆ = 6, n1 ≥ 3, all boundary components of F2 have the same sign, and
F2 is bad.

(D) is subdivided into three subcases:

(D)(1) n2 = 1,
(D)(2) n2 = 2,
(D)(3) n2 ≥ 3.

(E) ∆ = 6, F1 and F2 bad.

By Lemma 2.2, if (I) holds then we’re in either case (A) or (B), and if (II) holds
then we’re in either case (A) or (B) or (C) or (D).

It will turn out that the possibilities for (F1, F2;F1 ∩ F2) in each of these cases
are as follows:

Case (A): one example with ∆ = 6 and two examples with ∆ = 8;
Case (B)(1): one example, with ∆ = 7.
The combinatorics allow one example in Case (B)(1) with ∆ = 6, and an infinite

family of examples in Case (D)(1) with ∆ = 6, but these will be shown to be
topologically degenerate in Section 11.

All other cases are impossible.
Perhaps surprisingly, the hardest case to deal with appears to be (B), especially

cases (B)(3) and (B)(4).

5. The non-generic case; preparatory lemmas

In Lemmas 5.1 and 5.2 we explicitly identify the reduced graph Γα in the cases
where Fα has one or two boundary components. Next, in Lemma 5.3, we establish
some additional properties of the graph Γα in the case where F1 and F2 each have
two boundary components. These will be needed in Sections 6 and 7. Finally,
we note some properties of the graph Γβ in the case where Γα contains nβ parallel
edges such that the corresponding permutation has only one orbit. These are stated
in Lemma 5.4. This, and Corollary 5.5, will be used in Sections 7 and 9.

Throughout, we regard two graphs in a surface as equivalent if there is a home-
omorphism of the surface taking one to the other.

Lemma 5.1. If Fα has a single boundary component, then the reduced graph Γα is
a subgraph of the graph illustrated in Figure 10.

Proof. This follows immediately from the fact that the edges of Γα are non-parallel

essential loops in F̂α.
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Figure 10

Figure 11

Lemma 5.2. If Fα has exactly two boundary components, then the reduced graph
Γα is a subgraph of the graph illustrated in Figure 11.

Proof. Let the vertices of Γα be a and b. Since a and b have the same valency, the
number of loops at a is equal to the number of loops at b.

If this number is non-zero, there is exactly one loop at each vertex in Γα. Cutting

F̂α along one of these loops (at b, say) gives an annulus, as illustrated in Figure 12.
Then Γα must be a subgraph of the graph illustrated in Figure 13, as desired.
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b

b

a

Figure 12

b

b

a

Figure 13

If Γα has no loops, but two non-parallel edges, then cutting F̂α along these two
edges gives an annulus as illustrated in Figure 14. Then clearly Γα is a subgraph of
either the graph illustrated in Figure 15(i) or the graph illustrated in Figure 15(ii).
But these both correspond to Figure 11 (with the loops removed).

If Γ is a graph in a torus such that Γ is a subgraph of the graph illustrated in Fig-
ure 10, then Γ is determined by the triple (β1, β2, β3) of non-negative integers that
records the number of edges in each parallelism class, as shown in Figure 16. We
say Γ ∼= H(β1, β2, β3). Note that H(β1, β2, β3) is invariant under any permutation
of the β’s.
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a

a

b

b

Figure 14

Figure 15

Similarly, if Γ is a subgraph of the graph in Figure 11, then Γ is determined by
a quintuple (α0, α1, α2, α3, α4) of non-negative integers, as shown in Figure 17. In
this case we say Γ ∼= G(α0, α1, α2, α3, α4). We abbreviate G(0, α1, α2, α3, α4) to
G(α1, α2, α3, α4). Note that

G(α0, α1, α2, α3, α4) ∼= G(α0, α3, α4, α1, α2) ∼= G(α0, α4, α3, α2, α1)

∼= G(α0, α2, α1, α4, α3).
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β1

β3

Figure 16

α1
α2

α0

α3 α4

α0

Figure 17

In addition, G(α1, α2, α3, α4) ∼= G(α2, α3, α4, α1).
For the next lemma, assume that n1 = n2 = 2. Thus Γ1

∼= G(α0, α1, α2, α3, α4),
and similarly for Γ2.

A parallel family of edges of Γ1 corresponds to either loops in Γ2, or edges in
Γ2 with distinct endpoints. Define εi to be 0 or 1 according as the parallel family
labelled by αi is of the first or second kind, i = 0, 1, 2, 3, 4. Note that ε0 = 1.

Lemma 5.3. Suppose that n1 = n2 = 2. Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY SLOPES OF PUNCTURED TORI IN 3-MANIFOLDS 1731
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(i) if εi = 0 then αi ≤ 2;
(ii) if εi = 1 then αi ≤ 4;
(iii) αi + εi ≡ αj + εj (mod 2), i, j = 1, 2, 3, 4.

Proof. (i) and (ii) follow respectively from the facts that Γ2 has at most 2 parallelism
classes of loops, and at most 4 parallelism classes of edges with distinct endpoints,
together with Lemma 2.1.

To prove (iii), first consider the parallelism classes of edges of Γ1 corresponding
to i = 2 and 3. The way the endpoints of the corresponding arcs lie on the two
boundary components of F1 is illustrated in Figure 18. Let the boundary com-
ponents of F2 be x and y. Since the labels x, y alternate around the boundary
components of F1, the fact that α2 +ε2 ≡ α3 +ε3 (mod 2) easily follows by inspec-
tion. (E.g., Figure 18 explicitly illustrates the case α2 ≡ 0 (mod 2), ε2 = 0, α3 = 1
(mod 2), ε1 = 1, when α0 is even.) Similarly α4 + ε4 ≡ α1 + ε1 (mod 2).

The arrangement of the parallelism classes of edges corresponding to i = 1 and
2 corresponds to Figure 18 with α0 = 0. Hence we get α1 + ε1 ≡ α2 + ε2 (mod 2).
Similarly α3 + ε3 ≡ α4 + ε4 (mod 2).

Let Γ be a graph in a torus and let x, y be vertices of Γ. Then ν(x, y) will denote
the number of edges in the reduced graph Γ that join x and y.

Lemma 5.4. Suppose that Γα contains nβ parallel edges such that the correspond-
ing permutation π has only one orbit. Then

(i) ν(x, π(x)) ≤ 5 for all vertices x of Γβ;
(ii) if ν(x, π(x)) ≥ 3, then ν(y, π(y)) = 1 for y 6= x, π(x) or π−1(x).

Proof. Cutting the torus F̂β along the edges of Γβ corresponding to the nβ parallel
edges in Γα gives an annulus N , by Lemma 2.3 (see Figure 19).

(i) We consider how any additional edges of Γβ that join x and π(x) can lie in
N . Such an edge either has both endpoints on the same component of ∂N (type I),
or joins the two components of ∂N (type II). There are at most two edges of type I
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x

x

π(x)
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Figure 20

(one for each component of ∂N); see Figure 20. Also there are at most two of
type II; see Figures 21(i) and 21(ii) for the only two possibilities, up to symmetry.
Hence ν(x, π(x)) ≤ 5.

(ii) Note that since the assertion is vacuously true if nβ ≤ 3, we may assume

nβ ≥ 4. Suppose ν(x, π(x)) ≥ 3. Then we have two edges of Γβ joining x and π(x)
in the annulus N , as described in (i). Up to symmetry, the only possibilities for
such a pair of edges are illustrated in Figures 20, 21 and 22. In each case it is clear
that if {y, π(y)} ∩ {x, π(x)} = ∅ then ν(y, π(y)) = 1.

Corollary 5.5. Suppose that nβ ≥ 4. Then the number of edges in any parallelism
class in Γα is at most 2nβ.

Proof. Suppose that Γα contains 2nβ + 1 mutually parallel edges. Without loss of
generality, assume that the labels at one end of the parallelism class are 1, 2, . . . , nβ,
1, 2, . . . , nβ, 1. By Lemma 4.2 the corresponding permutation π has only one orbit.
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By Lemma 2.1, ν(x, π(x)) ≥ 2 for all vertices x of Γβ, and ν(1, π(1)) ≥ 3. But since
nβ ≥ 4, there exists x such that x 6= 1, π(1), or π−1(1). We thus get a contradiction
to Lemma 5.4(ii).

6. Case (A)

In this section we treat the case where n1 = n2 = 2, and the two boundary
components of Fα have opposite sign, α = 1, 2. Call the boundary components of
Fα (equivalently, the vertices of Γα) + and −, α = 1, 2.

By Lemma 5.2, Γ1
∼= G(α0, α1, α2, α3, α4), and Γ2

∼= G(β0, β1, β2, β3, β4).

Lemma 6.1. (i) 2α0 +

4∑
i=1

αi = 2β0 +

4∑
i=1

βi = 2∆ ;
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(ii) 2α0 =

4∑
i=1

βi, 2β0 =

4∑
i=1

αi ;

(iii) α0, β0 ≤ 4 ;
(iv) αi, βi ≤ 2, i = 1, 2, 3, 4 .
(v) αi ≡ αj (mod 2), i, j = 1, 2, 3, 4, and similarly for the β’s.

Proof. (i) follows by considering the total number of edges of Γα.
By the parity rule, loops in Γα correspond precisely to edges in Γβ with distinct

endpoints. This gives (ii).
(iii) and (iv) follow from Lemma 5.3, (i) and (ii).
(v) follows from Lemma 5.3 (iii), since here εi = 0, i = 1, 2, 3, 4.

Corollary 6.2. Either α0 ≥ ∆/2 or β0 ≥ ∆/2.

Proof. Lemma 6.1, (i) and (ii).

Corollary 6.3. ∆ ≤ 8.

Proof. Corollary 6.2 and Lemma 6.1 (iii).

Lemma 6.4. (i) If ∆ = 8 then Γ1
∼= Γ2

∼= G(4, 2, 2, 2, 2).
(ii) ∆ = 7 is impossible.
(iii) If ∆ = 6 then Γ1 (say) ∼= G(4, 2, 0, 0, 2) and Γ2

∼= G(2, 2, 2, 2, 2).

Proof. (i) By Corollary 6.2 and Lemma 6.1 (iii), α0 (say) = 4. Hence by Lemma 6.1,
(i) and (iv), α1 = α2 = α3 = α4 = 2. Lemma 6.1 (ii) (and (iv)) now gives the same
conclusion for the β’s.

(ii) By Corollary 6.2 and Lemma 6.1 (iii), α0 (say) = 4. Hence β0 = 3 (by
Lemma 6.1, (i) and (ii)), and so (by Lemma 6.1 (iv)) Γ2

∼= G(3, 2, 2, 2, 2).
Let A,B,C,D be the edges of Γ2 indicated in Figure 23. These are the 4 loops

at the vertex + (say) in Γ1, and hence they are all parallel in Γ1. But this is
impossible by Lemma 2.5. More precisely, if X is an edge of Γ2 joining vertices +
and −, let X+, X− denote the endpoints of X at + and − respectively. If two such
edges X,Y are parallel in Γ1, then by either (i) or (ii) of Lemma 2.5 we must have
δ2(X

+, Y +) = δ2(X
−, Y −). One readily verifies that the only pairs of edges among

A,B,C, and D permitted to be parallel in Γ1 by this condition are A,B and C,D.
For example, for suitable choice of orientation of F2, we have δ2(A

+, C+) = 8, while
δ2(A

−, C−) = 6.
(iii) By Corollary 6.2 and Lemma 6.1 (iii), α0 (say) = 3 or 4. We consider these

two cases separately.
Case 1. α0 = 3. By Lemma 6.1, (i), (iv), and (v), Γ1

∼= G(3, 2, 2, 2, 0). Let
A,B,C be the edges of Γ1 indicated in Figure 24. These are loops at the vertex +
(say) in Γ2, and hence are parallel in Γ2. But as in (ii) above, it is easy to check
that C cannot be parallel to A or B in Γ2 by Lemma 2.5(i) or (ii).

Case 2. α0 = 4. By Lemma 6.1, (i), (ii), (iv) and (v), Γ1
∼= G(4, 2, 0, 0, 2),

G(4, 2, 2, 0, 0), or G(4, 1, 1, 1, 1). We shall show that the last two possibilities cannot
occur.

First note that by Lemma 6.1, (i) and (ii), Γ2
∼= G(2, 2, 2, 2, 2). Let A1, A2, . . . ,

A6 be the edges of Γ2 with label + at vertex + of Γ2, numbered cyclically around
that vertex in such a way that A1 and A4 are loops (see Figure 25). Since d = d12 =
d21 = 1 (see Section 2), these edges appear in the same order around vertex + of Γ1.
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Since A1, A4 join distinct vertices of Γ1, this implies that α1 + α2 6= 0 6= α3 + α4.
This rules out the possibility that Γ1

∼= G(4, 2, 2, 0, 0).
To rule out the possibility Γ1

∼= G(4, 1, 1, 1, 1), consider the loops in Γ1. The
loops at vertex + correspond to the edges A2, A3, A5, A6 of Γ2. Note that each of
these edges is parallel to another edge of Γ2 that corresponds to a loop in Γ1 at
vertex −. Let X be the loop in Γ1 at vertex + shown in Figure 26. Let X(±) be the
endpoint of X with label ±. Then (for suitable choice of orientation of boundary
component + of F1) we see that τ1(X(+), X(−)) = 3. Let Y be the edge of Γ2
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that is parallel to X in Γ2. Then Y is a loop in Γ1 at vertex −. But, recalling that
boundary components + and − of F1 are of opposite sign, it is easy to verify that
no such loop has τ1(Y (+), Y (−)) = 3. This contradicts Lemma 2.5(iii).

The possibilities allowed by Lemma 6.4 do in fact occur. We describe the iden-
tification between the edges of Γ1 and Γ2 in these cases.

First consider the case given in Lemma 6.4(iii), with ∆ = 6. Let A1, A2, . . . , A6

be the edges of Γ2 with label + at vertex + of Γ2, as in Figure 25. Since here
d = 1, these edges appear in the same order around vertex + of Γ1. Recalling that
loops in Γα correspond to edges with distinct endpoints in Γβ , we see that the edges
A1, A2, . . . , A6 must appear around vertex + of Γ1 as shown in Figure 27. It is
easy to check that this determines the identification between all the edges of Γ1 and
Γ2, and gives rise to the identification pattern P (6) shown in Figures 28(i) and (ii).
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(In these figures the edges A1, A2, A3, A4, A5, A6 have been relabeled W,C,A, Y,B,
and D respectively.)

In the case ∆ = 8 (Lemma 6.4(i)), let A1, A2, . . . , A8 be the edges of Γ2 with
label + at vertex + of Γ2, numbered cyclically in such a way that A3, A4, A7, and
A8 are loops (see Figure 29). There are now two possibilities for d = d21, namely
d = 1 and d = 3, giving rise to the two arrangements of A1, A2, . . . , A8 around
vertex + of Γ1 shown in Figures 30(i) and (ii). Again, it is straightforward to check
that each case leads to a unique possibility for the identification between the edges
of Γ1 and Γ2. The corresponding identification patterns P (8)1 and P (8)2 are shown
in Figures 31 and 32; the graph Γ2 in both cases is shown in Figure 31, while the
graphs Γ1 for P (8)1 and P (8)2 are shown in Figures 32(i) and (ii) respectively. (In
these figures, A1, A2, . . . , A8 have been relabeled S,U,D,B,W, Y,A,C.)

We have thus shown that in Case (A), the only possibilities for F1, F2 are given
by the identification patterns P (6), P (8)1 and P (8)2.

7. Case (B)

In this section we treat the case where n1 = 2, the two boundary components of
F1 have opposite sign, and all the boundary components of F2 have the same sign.
Call the boundary components of F1 (the vertices of Γ1) + and −. Since all the
boundary components of F2 have the same sign, the parity rule implies that there
are no loops in Γ1. Hence Γ1

∼= G(α1, α2, α3, α4).
We distinguish the four cases n2 = 1, n2 = 2, n2 = 3, and n2 ≥ 4.

Case (1). n2 = 1. Here Γ2
∼= H(β1, β2, β3). Note that

4∑
i=1

αi =
3∑

i=1

βi = ∆ .
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Lemma 7.1. (i) βi ≤ 4, i = 1, 2, 3;
(ii) β1 ≡ β2 ≡ β3 (mod 2) .

Proof. (i) follows from the fact that there are at most 4 parallelism classes of edges
in Γ1, together with Lemma 2.1.

Since the labels at the endpoints of a loop in any parallelism class are distinct,
we see that βi 6= 0 implies that βj + βk is even ({i, j, k} = {1, 2, 3}). Since at most
one βi is zero by (i), this proves (ii).

The only possibilities for Γ2 allowed by Lemma 7.1 with ∆ ≥ 6 are the following,
where d = d21:
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∆ = 12 , H(4, 4, 4) , d = 1 or 5 .
∆ = 10 , H(4, 4, 2) , d = 1 or 3 .
∆ = 9 , H(3, 3, 3) , d = 1, 2 or 4 .
∆ = 8 , H(4, 4, 0) or H(4, 2, 2) , d = 1 or 3 .
∆ = 7 , H(3, 3, 1) , d = 1, 2, or 3 .
∆ = 6 , H(4, 2, 0) or H(2, 2, 2) , d = 1 .

Consider the case ∆ = 12. Let the edges of Γ2 be A1, A2, . . . , A12, numbered
around the vertex of Γ2 according to the position of the end with label +. See
Figure 33. These edges occur around the vertex + of Γ1 in the order A1, A1+d,
A1+2d,. . . . Here, d = 1 or 5.

First suppose that d = 1. Then (interpreting subscripts modulo 12) no consecu-
tive pair Ai, Ai+1 can be parallel in Γ1, either because they are parallel in Γ2 (and
by Lemma 2.1), or because their endpoints violate Lemma 2.5(i) (or, equivalently
here, Lemma 2.5(iii)). But this contradicts the form of Γ1. Similarly, in the case
d = 5, we see that no pair Ai, Ai+5 can be parallel in Γ1.

The other cases are handled in the same way, by examining the arrangement of
the edges A1, . . . , A∆ around the vertex of Γ2. For instance, in the case ∆ = 10,
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d = 3, we see using Lemma 2.5(i) that the only pairs Ai, Ai+3 that can be parallel
in Γ1 are A1 and A4, A10 and A3, A6 and A9, and A5 and A8. See Figure 34. Since
Γ1 has at most 4 parallelism classes of edges, this is a contradiction.

One readily checks that the only possibilities not ruled out by this means are
∆ = 7, d = 2, and ∆ = 6, Γ2

∼= H(2, 2, 2). These do in fact occur, with Γ1
∼=

G(2, 1, 2, 2) and G(3, 0, 0, 3) respectively. The (unique) corresponding identification
patterns of the edges of Γ1 and Γ2, P (7) and P (6)2, are shown in Figures 35 and
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36 respectively. We shall see later, however, in Section 11, that the case P (6)2 is
topologically degenerate.

Case (2). n2 = 2. Here Γ2
∼= G(β0, β1, β2, β3, β4). Call the boundary compo-

nents of F2 (the vertices of Γ2) x and y.

Lemma 7.2. ∆ ≤ 5.

Proof. Note that
∑4

i=1 αi = 2∆. Also, since n1 = n2 = 2, Lemma 5.3 applies. In
particular, αi ≤ 4, i = 1, 2, 3, 4. Hence ∆ ≤ 8. It remains to consider the cases
∆ = 8, ∆ = 7, and ∆ = 6.

∆ = 8 is impossible. Here
∑4

i=1 αi = 16. Hence, by Lemma 5.3, αi = 4
and εi = 1, i = 1, 2, 3, 4. In particular, there are no loops in Γ2. Therefore
Γ1

∼= Γ2
∼= G(4, 4, 4, 4).

The arrangement of the endpoints of the edges of Γ1 at the vertices + and − is
as shown in Figure 37. Let the edges with label x at vertex + be A1, A2, . . . , A8 as
indicated. In Γ2, these are the edges with label + at x and label − at y. Around
the vertex x, they appear in the order A1, A1+dA1+2d, . . . , where d = d12. Here the
two possibilities for d are 1 and 3.

Consider first the case d = 1. Then no pair Ai, Ai+1 (subscripts understood
modulo 8) can be parallel in Γ2, either because they are parallel in Γ1, or because
their endpoints at the vertices + and − of Γ1 violate Lemma 2.5(i). This is a
contradiction. Similarly, if d = 3, one easily checks that no pair Ai, Ai+3 can be
parallel in Γ2 because of Lemma 2.5(i).

∆ = 7 is impossible. Here
∑4

i=1 αi = 14. From Lemma 5.3 it easily follows that
Γ1

∼= G(4, 4, 4, 2), and εi = 1, i = 1, 2, 3, 4. Hence there are no loops in Γ2, so
Γ2

∼= G(β1, β2, β3, β4), say.
By Lemma 2.1, the edges in any parallelism class in Γ1 must belong to distinct

parallelism classes in Γ2. Therefore (β1, β2, β3, β4) is some permutation of (4, 4, 3, 3).
But this contradicts Lemma 5.3.

∆ = 6 is impossible. Here
∑4

i=1 αi = 12. It is straightforward to check that
the only possibilities for Γ1 allowed by Lemma 5.3 are: G(4, 4, 4, 0), G(4, 4, 2, 2),
G(4, 2, 4, 2), and G(3, 3, 3, 3). Since all εi’s are 1 in all cases, there are no loops in
Γ2. So Γ2

∼= G(β1, β2, β3, β4).
Let A1, A2, . . . , A6 be the edges of Γ1 with label x at vertex +, numbered in

order around that vertex. Since here d = 1, these edges appear in the same order
around vertex x of Γ2. We consider the four possibilities listed above for Γ1.

Suppose Γ1
∼= G(4, 4, 4, 0). See Figure 38. We then see that no consecutive pair

Ai, Ai+1 can be parallel in Γ2, either because they are parallel in Γ1 or because of
Lemma 2.5(i). This contradicts the form of Γ2.

Suppose Γ1
∼= G(4, 4, 2, 2). See Figure 39. Here, the only consecutive pair

Ai, Ai+1 that is permitted to be parallel in Γ2 by the two restrictions used above
is A5, A6. But this would lead to too many parallelism classes on Γ2.

In the other two cases, G(4, 2, 4, 2) and G(3, 3, 3, 3), we argue similarly and easily
conclude that no pair Ai, Ai+1 can be parallel in Γ2.

We now consider the case n2 ≥ 3. Let P1, P2, P3, P4 be the parallelism classes
of edges in Γ1, where Pi has size αi. Let P+

i , P
−
i denote the set of labels at the

end of Pi at vertex +, − respectively. If an edge in Pi has label x at vertex +,
then it has label πi(x) ≡ x + pi (mod n2) at − for some pi. Thus we have a
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well-defined permutation πi of {1, 2, . . . , n2}, even if αi < n2 (but provided that
αi 6= 0), i = 1, 2, 3, 4.

Note that since
∑

αi = ∆n2 ≥ 6n2, some αi ≥ n2 + 1, and hence the corre-
sponding πi has only one orbit, by Lemma 4.2.
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Lemma 7.3. The permutations πi, i = 1, 2, 3, 4, are not all equal.

Proof. Suppose πi = π, i = 1, 2, 3, 4. Then for any vertex x of Γ2, there are ∆ edges
in Γ1 with label x at vertex + and label π(x) at vertex −. Since ν(x, π(x)) ≤ 5
by Lemma 5.4(i), some pair of these edges must be parallel in Γ2. This then gives
rise to an edge in Γ1 with label x at − and label π(x) at + (see Figure 40). But
this implies that π2 is the identity, and hence n2 = 2 (since π has only one orbit),
a contradiction.

We now distinguish the two cases n2 = 3 and n2 ≥ 4.

Case (3). n2 = 3. In the first two lemmas we use the convention that {x, y, z} =
{1, 2, 3}, the vertices of Γ2.

Lemma 7.4. (i) If Γ2 contains a loop at x, then ν(y, z) ≤ 2;
(ii) If ν(x, y) ≥ 4, then ν(x, z) ≤ 2.

Proof. (i) Cutting the torus F̂2 along a loop at x gives an annulus containing y and
z in its interior. The result is now clear.

(ii) If ν(x, y) ≥ 2, cutting F̂2 along two edges of Γ2 joining x and y gives an
annulus with z in its interior. If there are two additional edges in Γ2 joining x and
y, then they must be as shown in Figure 41(i), (ii) or (iii). The fact that ν(x, z) ≤ 2
now follows by inspection.

Lemma 7.5. Suppose that ν(x, y) = ν(x, z) = 3. Let Y1, Y2, Y3 and Z1, Z2, Z3

be the edges of Γ2 joining x to y and z respectively. Then (for suitable choice of
subscripts) around the vertex x these edges appear in the order Y1, Z1, Y2, Z2, Y3, Z3.

Proof. Consider three consecutive parallel edges of Γ1 in some family of at least

four parallel edges. Cutting the torus F̂2 along the corresponding edges of Γ2 gives
an annulus N .

Since ν(x, y) = ν(x, z) = 3 by hypothesis, there are additional edges Y, Y ′ and
Z,Z ′ of Γ2 joining x to y and z respectively. Such an edge is of either type I or
type II (see the proof of Lemma 5.4).

If both Y and Y ′ are of type I, then ν(x, z) = 1 (see Figure 42).
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If Y is of type I and Y ′ of type II, then we must have the situation shown in
Figure 43.

If both Y and Y ′ are of type II, then we must have the situation shown in either
Figure 44(i) or Figure 44(ii).

The result follows by inspection.

Let σ denote the permutation (123). Then πi = σ, σ−1, or id.

Lemma 7.6. (i) If πi = id then αi ≤ 3.
(ii) αi ≤ 9, i = 1, 2, 3, 4.

Proof. (i) follows from Lemma 4.2.
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(ii) Suppose πi 6= id but αi > 9. Then for some x, y we have ν(x, y) ≥ 4 and
ν(x, z) ≥ 3 (and ν(y, z) ≥ 3), by Lemma 2.1. This contradicts Lemma 7.4(ii).

As a preliminary restriction on the possibilities for (α1, α2, α3, α4) we consider
the residue classes of the αi’s modulo 3. Without loss of generality, we assume that
1 is the first label in P+

1 as we go round the vertex + anticlockwise.

Lemma 7.7. The only possibilities (up to cyclic permutation and reversal) for
(α1, α2, α3, α4) and the corresponding permutations (π1, π2, π3, π4) are:

(a) (α1, α2, α3, α4) ≡ (1, 2, 0, 0) (mod 3), (π1, π2, π3, π4) = (σ, σ, σ−1, σ−1);
(b) (α1, α2, α3, α4) ≡ (1, 1, 2, 2) (mod 3), (π1, π2, π3, π4) = (σ, σ−1, σ−1, σ);
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Figure 44

(c) (α1, α2, α3, α4) ≡ (1, 0, 2, 0) (mod 3), (π1, π2, π3, π4) = (σ, id, σ, σ−1).

Proof. Since
∑

αi = 3∆, the only possibilities for (α1, α2, α3, α4) modulo 3 are:
(0,0,0,0), (1,1,1,0), (2,2,2,0), (1,2,0,0), (1,0,2,0), (1,1,2,2) and (1,2,1,2). We examine
each of these in turn. Note also that

∑
αi ≥ 18.

(0,0,0,0). Here π1 = π2 = π3 = π4, contradicting Lemma 7.3.

(1,1,1,0). Going around the vertex − clockwise, the first label in P−
2 is either 1,

2, or 3. This gives three possibilities for the labeling at − modulo 3, illustrated in
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Figure 45 (1), (2), and (3) (α4 may be 0). (Here, and subsequently, we make the
convention that the vertex + is at the top.)

(1) By Lemma 7.6(i), α3 = 1. Also ν(1, 2) ≤ 2 by Lemma 7.4(i). Therefore, by
Lemma 2.1, there are at most two edges in Pi with label 1 at one endpoint and
label 2 at the other, i = 1, 2, 4. Thus α1, α2 ≤ 6 and α4 ≤ 7. By considering
the residues of α1, α2, and α4 modulo 3 this gives α1, α2 ≤ 4 and α4 ≤ 6. Hence∑

αi ≤ 4 + 4 + 1 + 7 = 15, a contradiction.
(2) Here α2 = 1 by Lemma 7.6(i), and ν(1, 3) ≤ 2 by Lemma 7.4(i). Therefore

α1, α3 ≤ 6 (and hence ≤ 4). Also α4 ≤ 3 by Lemma 7.6(i). Hence
∑

αi ≤ 12, a
contradiction.

(3) This case is isomorphic to case (1) above.
(2,2,2,0). Again we have three possible labelings modulo 3 at the vertex −,

illustrated in Figure 46 (1), (2) and (3).
(1) Here α3 = 2, and ν(1, 3) ≤ 2, ν(1, 2) ≤ 2. Hence α1, α2 ≤ 5 and α4 ≤ 6.

Since
∑

αi ≥ 18, the only possibility is (α1, α2, α3, α4) = (5, 5, 2, 6). Let A,B,C
be the edges of Γ1 shown in Figure 47. By Lemma 2.1, A and B are not parallel
in Γ2, and hence, since ν(1, 3) ≤ 2, C must be parallel in Γ2 to either A or B. But
this is impossible by Lemma 2.5(i).
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(2) This case in isomorphic to (1).
(3) Here α3 = 2. Hence α1, α3 ≤ 6, and so ≤ 5. Also α4 ≤ 3. Therefore∑
αi ≤ 15, a contradiction.
(1,2,0,0). The three possible labelings modulo 3 at the vertex − are illustrated

in Figure 48 (1), (2), and (3).
(1) Here α3 and α4 are either 0 or 3. If both are 0, then α1 +α2 ≥ 18, and hence

α1 or α2 > 9, contradicting Lemma 7.6(ii). If either α3 or α4 is 3, then ν(x, y) ≤ 2
for all x, y, giving α1 ≤ 4 and α2 ≤ 5. Hence

∑
αi ≤ 15.

(2) Here α1 = 1 and α2 = 2, and ν(x, y) ≤ 2 for all x, y. Hence α3, α4 ≤ 6.
Therefore

∑
αi ≤ 15.

(3) is possibility (a) of the lemma.
(1,0,2,0). The three possible labelings modulo 3 at the vertex − are illustrated

in Figure 49 (1), (2), and (3).
(1) Here α1 = 1, α3 = 2, and hence α2, α4 ≤ 6, giving

∑
αi ≤ 15.

(2) This is possibility (c) of the lemma.
(3) is isomorphic to (2).
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(1,1,2,2). The three possible labelings at − are illustrated in Figure 50 (1), (2),

and (3).
(1) is possibility (b) of the lemma.
(2) and (3) are ruled out by arguments similar to those given above.
(1,2,1,2). Here π1 = π2 = π3 = π4, contradicting Lemma 7.3.

We now proceed to rule out the possibilities left after Lemma 7.7. Since α1 ≤ 9
by Lemma 7.6(ii), there are only a finite number of cases to consider.

Lemma 7.8. Case (a) of Lemma 7.7 is impossible.

Proof. Since αi ≤ 9, we have that α1 = 1, 4, or 7, α2 = 2, 5, or 8, and α3, α4 =
0, 3, 6, or 9.

As an example, suppose that (α1, α2, α3, α4) = (∗, ∗, 6, 9). Then the edges of Γ1

in P3 ∪P4 are as in Figure 51. Since P4 contains three edges with label 1 at + and
3 at −, ν(1, 3) ≥ 3 by Lemma 2.1. Now let A,B,C be the three edges in P4 with
label 2 at + and 1 at −, and let X be one of the edges in P3 with label 2 at + and 1
at −. Let A± denote the endpoints of A at ±, and similarly for B,C, and X . One
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readily checks that δ1(X
+, Y +) 6= δ1(X

−, Y −) for Y = A,B, or C, and hence X
is not parallel in Γ2 to either A,B, or C, by Lemma 2.5(i). Since A,B and C are
pairwise non-parallel in Γ2 by Lemma 2.1, we get ν(1, 2) ≥ 4. But this contradicts
Lemma 7.4(ii).

The case (∗, ∗, 9, 6) is ruled out in exactly the same way, and a similar argument
rules out (7, 8, ∗, ∗).

Now consider the case (∗, 8, 9, ∗), illustrated in Figure 52. Again, considering P3

shows that ν(x, y) ≥ 3 for all x, y, by Lemma 2.1. Let A,B,C be the edges in P3

with label 1 at + and 3 at −, and let X be one of the edges in P2 with label 3 at
+ and 1 at −. One readily verifies, this time using Lemma 2.5(ii), that X is not
parallel in Γ2 to either A,B, or C. Hence ν(1, 3) ≥ 4, contradicting Lemma 7.4(ii)
as before.

Similar arguments rule out the cases (∗, 2, 9, ∗), (∗, 8, 3, ∗), and (4, ∗, ∗, 9).
Next consider the case (∗, 5, 6, ∗), shown in Figure 53. By considering the four

edges in P2 ∪P3 with label 2 at one end and 3 at the other, and using Lemmas 2.1
and 2.5(iii), we see that ν(2, 3) ≥ 4. Similarly, ν(3, 1) ≥ 4. But this contradicts
Lemma 7.4(ii).

A similar argument rules out (7, ∗, ∗, 6).
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Since α3 ≡ 0 (mod 3), the argument used to rule out (∗, 8, 9, ∗) applies essentially
verbatim to rule out (∗, 8, ∗, 9); one just replaces P3 by P4. In the same way, the
arguments in the next five cases also rule out, respectively, (∗, 2, ∗, 9), (∗, 8, ∗, 3),
(4, ∗, 9, ∗), (∗, 5, ∗, 6), and (7, ∗, 6, ∗),

To eliminate some more possibilities, we use a different line of argument. Since Γ1

has at most four parallelism classes of edges, the number of edges in any parallelism
class in Γ2 is at most four, by Lemma 2.1. Hence if two parallel edges in Γ2 have
label + (say) at a vertex x, then their endpoints at x are adjacent among all
edge endpoints with label + at x. Therefore the endpoints at the vertex + of
the corresponding edges in Γ1, which have label x, are “d apart” among all edge
endpoints with label x at + (where d = d21), i.e., are separated by d − 1 such
endpoints.

To see how this may be used, consider the case (4, 8, ∗, ∗), illustrated in Figure 54.
Since P2 contains three edges with endpoint labels 1 and 3, ν(1, 3) ≥ 3. Therefore
ν(2, 3) ≤ 3 by Lemma 7.4(ii). Let A,B,C be the edges in P2 with label 2 at + and 3
at −. (We adopt the convention that if we label edges in a given Pi alphabetically,
then the alphabetic ordering agrees with the anticlockwise ordering around the
vertex +; see edges A and B in Figure 47.) Let X be the edge in P1 with label
2 at + and 3 at −. Since ν(2, 3) ≤ 3, X must be parallel in Γ2 to either A,B, or
C. By Lemma 2.5(i), Xmust be parallel to B. Therefore d = 2, and hence ∆ is
odd. This rules out (4, 8, 6, 0) (= (4, 8, 0, 6)), and (4,8,6,6), which have ∆ = 6 and
8 respectively.

Similarly, one shows that for (7, 5, ∗, ∗), (∗, ∗, 6, 6), (∗, ∗, 9, 3), and (∗, ∗, 3, 9), we
must have d = 2, and hence ∆ odd. This rules out (1,5,9,3), (1,5,3,9), (4,2,6,6),
(7,5,3,3), (7,5,3,9), (7,5,9,3), and (7,5,9,9).

The only cases left are (1,5,9,9), (7,5,0,9), and (1,8,6,6).
Consider (1,5,9,9). The argument just given (applied to P3 and P4) shows that

for (∗, ∗, 9, 9) we must have d = 3. Now let A,B,C be the edges in P3 with label 2
at + and label 1 at −, and let X,Y be the edges in P1, P2 respectively with label
1 at + and label 2 at −. See Figure 55. Since ν(1, 2) ≤ 3, X must be parallel in
Γ2 to A,B, or C, and similarly for Y . Using Lemma 2.5(ii), we see that X and Y
must be parallel to B, and hence to each other. But this implies d = 1.

Finally, the cases (7,5,0,9) and (1,8,6,6) will be eliminated using Lemma 7.5.
Consider (7,5,0,9). Let A,B,C be the edges in P4 with label 1 at + and 3 at −.

Let X,Y and U, V be the edges in P1 and P2 respectively with label 3 at + and 1
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1 2 3 1 2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1 2 3 1 2

Figure 54

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2

Figure 55

at − (see Figure 57). Using Lemmas 2.1 and 2.5(ii), and the fact that ν(1, 3) ≤ 3,
we see that these seven edges fall into exactly the following parallelism classes in
Γ2 : {A}, {B,X,U}, {C, Y, V }. Since X is parallel to U , we have d = 2. Hence
A and C are adjacent at vertex 1 among edges of Γ2 with label + at 1. The two
parallelism classes {A} and {C, Y, V } then give rise to two edges of Γ2 that join 1
to 3 and are adjacent at 1. Since ν(1, 3) = ν(1, 2) = 3, this contradicts Lemma 7.5.

(1,8,6,6) can be handled similarly, by considering the three edges in P2 with
label 3 at +, 1 at −, and the four edges in P3 ∪ P4 with label 1 at +, 3 at −. See
Figure 56.

Lemma 7.9. Case (b) of Lemma 7.7 is impossible.

Proof. Here α1, α2 = 1, 4, or 7, and α3, α4 = 2, 5, or 8.
Exactly as in the proof of the previous lemma, (∗, 7, 8, ∗), (7, ∗, ∗, 8), (∗, ∗, 5, 8),

and (∗, ∗, 8, 5) are impossible, and in a similar way one rules out (4, 7, ∗, ∗) and
(7, 4, ∗, ∗).
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1 32 1 32 1 32 1 32 1 32 1 3 1 2 32

3 21 3 21 3 21 3 21 3 21 3 2 3 1 21

Figure 56

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2

Figure 57

Also, (∗, 7, ∗, 8) is ruled out by considering the three edges A,B,C in P4 with
label 2 at + and 3 at −, and an edge X in P2 with label 3 at + and 2 at −. See
Figure 58. One checks that by Lemmas 2.1 and 2.5(ii), X,A,B,C are pairwise
non-parallel in Γ2, contradicting ν(2, 3) ≤ 3. Similarly, (7, ∗, 8, ∗) is impossible.

Again as in the proof of the previous lemma, in the cases (∗, 7, 5, ∗), (7, ∗, ∗, 5),
(∗, 4, 8, ∗), and (4, ∗, ∗, 8) we must have d = 2, and so ∆ is odd.

It is straightforward to check that the only cases left after these exclusions are
(1,1,8,8), (4,4,5,5), (1,4,8,8), (7,7,2,2), and (7,7,5,2).

First consider (1,1,8,8). Let A,B,C be the edges in P3 with label 3 at + and
2 at −, and X,Y, Z the edges in P4 with label 2 at + and 3 at − (see Figure 59).
By arguments that are by now familiar, these edges fall into the parallelism classes
{A,X}, {B, Y }, and {C,Z} in Γ2. Here ∆ = 6, and so d = 1. Therefore A and
B, and B and C, are adjacent at vertex 3 of Γ2 among edges with label + at 3.
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1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 31 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 31 2 3

. . .

. . . . . .

. . .

Figure 58

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Figure 59

Similarly X and Y , and Y and Z, are adjacent at 3 among edges with label − at
3. Thus {A,X}, {B, Y }, and {C,Z} give rise to three edges in Γ2 joining vertices
3 and 2 that are adjacent at 3. This contradicts Lemma 7.5.

The case (1,4,8,8) is handled similarly, using the fact that here d = 2. Specifically,
if A,B,C,X, Y, Z are the edges described above, then A and C, and X and Z, are
adjacent at vertex 3 among edges with label + (resp. −) at 3. Therefore {A,X}
and {C,Z} give rise to edges in Γ2 joining 3 to 2 that are adjacent at 3, again
contradicting Lemma 7.5.

The remaining cases, (4,4,5,5), (7,7,2,2), and (7,7,5,2), are ruled out by argu-
ments analogous to those just given, using Lemma 7.5. Note that d = 1 in the first
two cases and d = 2 in the third. We omit the details.

Lemma 7.10. Case (c) of Lemma 7.7 is impossible.

Proof. Here α2 = 0 or 3.
If α2 = 3 then ν(x, y) ≤ 2 for all x, y, and therefore α1 ≤ 4, α3 ≤ 5 and α4 ≤ 6.

Hence (α1, α2, α3, α4) = (4, 3, 5, 6). But (∗, ∗, 5, 6) was ruled out in the proof of
Lemma 7.8.
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1 αi αi+1

Pi+1

pi

Pi

pi+1

αi+αi+1

Figure 60

So suppose α2 = 0. The cases (7, 0, 8, ∗), (∗, 0, 8, 9), (∗, 0, 5, 6), (∗, 0, 2, 9), and
(4, 0, ∗, 9) were ruled out in the proof of Lemma 7.8. Since α1 = 1, 4, or 7, α3 = 2, 5
or 8, and α4 = 3, 6, or 9, it is easy to check that this leaves only (4,0,8,6) and
(7,0,5,9). But these were also ruled out in the proof of Lemma 7.8.

Case (4). n2 ≥ 4. Write n2 = n.

Lemma 7.11. αi ≤ 2n, i = 1, 2, 3, 4.

Proof. This follows from Corollary 5.5.

Corollary 7.12. ∆ ≤ 7.

Proof.
∑

αi = ∆n, and hence ∆ ≤ 8 by Lemma 7.11. Also, if ∆ = 8 then αi = 2n,
i = 1, 2, 3, 4, and therefore π1 = π2 = π3 = π4, contradicting Lemma 7.3.

Our next goal is to prove Lemma 7.15. First we prove the following (essentially
weaker) lemma, which will help us to eliminate certain small cases in Lemma 7.15.

Lemma 7.13. If αi + αj > 3n then πi = π±1
j .

Proof. None of the edges in Pi are parallel in Γ2 by Lemma 2.1, and similarly for
Pj . Hence if πi 6= π±1

j , the edges in Pi and Pj define a subgraph Λ of Γ2 with n

vertices, E = αi+αj pairwise non-parallel edges, and F faces, say. Since χ(F̂2) = 0
we have F = E − n, and since each face of Λ has at least three sides we have
2E ≥ 3F . Hence E ≤ 3n.

The following lemma will also be used to eliminate some of the small cases in
Lemma 7.15.

Lemma 7.14. (i) πi = πi+1 if and only if αi + αi+1 ≡ 0 (mod n)
(ii) πi = πi+2 if and only if (αi + αi+1) + (αi+1 + αi+2) ≡ 0 (mod n).

Proof. Recall that πi(x) ≡ x+ pi (mod n), for some pi, 1 ≤ i ≤ 4. From Figure 60
we see that pi+1 ≡ pi − (αi + αi+1) (mod n). The result follows.

Lemma 7.15. If αi, αj ≥ n+ 1 then πi = π±1
j .
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Proof. First we show that we may assume that some αi ≥ n + 5. For if not, then
∆n =

∑
αi ≤ 4(n+ 4), giving (∆ − 4)n ≤ 16. Therefore either ∆ = 8 and n = 4,

or ∆ = 7 and n = 4 or 5, or ∆ = 6 and n = 4, 5, 6, 7 or 8. Now if n = 4 or 6,
there is up to sign only one possible permutation with a single orbit, so the lemma
is trivially true in this case.

First consider the case ∆ = 7, n = 5. Assuming that each αi ≤ n + 4 = 9,
the only possibility for (α1, α2, α3, α4) (up to cyclic permutation) is (9,9,9,8). The
result now follows from Lemma 7.13.

If ∆ = 6, n = 8, and each αi ≤ n+4 = 12, then (α1, α2, α3, α4) = (12, 12, 12, 12).
Hence π1 = π2 = π3 = π4 by Lemma 7.14(i).

If ∆ = 6, n = 7, and each αi ≤ n + 4 = 11, then the only possibilities
for (α1, α2, α3, α4) (up to cyclic permutation) are (11,11,11,9), (11,11,10,10) and
(11,10,11,10). In the first case, π1 = π±1

2 = π±1
3 by Lemma 7.13. Hence either

π1 = π2, or π2 = π3, or π1 = π3. But this contradicts Lemma 7.14. In the second
case, π1 = π±1

2 by Lemma 7.13, and by Lemma 7.14(i), π2 = π3 and π1 = π4

(and in fact π1 = π−1
2 ). Finally, in the case (11,10,11,10) π1 = π2 = π3 = π4 by

Lemma 7.14(i).
Finally, if ∆ = 6, n = 5, then (α1, α2, α3, α4) must be some permutation of

(9,9,9,3), (9,9,8,4), (9,9,7,5), (9,9,6,6), (9,8,8,5), (9,8,7,6), (9,7,7,7), (8,8,8,6) or
(8,8,7,7). In all cases except (9,9,6,6), (9,8,7,6), (8,8,8,6) and (8,8,7,7), the de-
sired conclusion follows immediately from Lemma 7.13. In these remaining cases,
Lemmas 7.13 and 7.14 give either the desired conclusion or a contradiction. For
example, if (α1, α2, α3, α4) = (9, 7, 8, 6) then by Lemma 7.14(i) we have π1 = π4,
π2 = π3, and by Lemma 7.13, π1 = π±1

2 . On the other hand, for the case (9,8,6,7),

Lemmas 7.13 and 7.14(i) imply that π1 = π−1
2 , π1 = π−1

4 , hence π2 = π4. But this
is impossible by Lemma 7.14(ii). The other cases follow similarly.

We suppose, then, that we have n+ 5 parallel edges of Γ1, say A1, A2, . . . , An,
B1, B2, B3, B4, B5, in anticlockwise order around vertex +, with associated permu-

tation π. Let N be the annulus obtained by cutting F̂2 along A1, A2, . . . , An in
Γ2. We will use ` to denote the vertex π`(1) of Γ2. As mentioned above, we may
assume that n ≥ 5.

Suppose αi ≥ n+ 1. We shall show that πi = π±1. So assume not. Then (since
π has only one orbit by Lemma 4.2) πi = πm where m 6= ±1. Then Pi contains
edges X and Y , each of which has (without loss of generality) label 0 at vertex +
and label m at vertex −.

The essentially different possible arrangements of X and Y in N are shown in
Figure 61(a)–(f). The cases where X and Y are both of type I (as defined in the
proof of Lemma 5.4) are shown in (a), (b), and (c); when both are of type II in (d)
and (e), and when one is of type I and the other of type II, in (f).

First we dispose of case (a) by noting that it clearly precludes the existence of
the edge in Pi with label 1 at + and m+ 1 at −.

Now consider the edges B1, . . . , B5. The edge Bj joins vertices kj , kj +1 of Γ2,

for some kj , and of course Bj is not parallel to Aj in Γ2 by Lemma 2.1, 1 ≤ j ≤ 5.
Note that if B1 (say) is of type I, then firstly, there is at most one other Bj of

type I (with its endpoints on the other component of ∂N), and secondly, any Bj

of type II must share an endpoint with B1. It follows easily that Bj is of type II,
1 ≤ j ≤ 5.
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Figure 62

Let the boundary components of N be ∂0N and ∂1N , illustrated in the figures
as the outer and inner boundary components, respectively. Let (k, ` ) denote the
pair of vertices k on ∂0N and ` on ∂1N . Thus the pair of endpoints of Bj is either
(kj ,kj +1) or (kj +1,kj). It is straightforward to check that in each of the cases

(b), (c), (d) or (e) there can be at most four such edges disjoint from X and Y . For
instance, in case (b) the possible endpoint pairs are (n− 1,0), (0,1), (m,m− 1),
and (m+ 1,m). The other three cases are similar.

Finally, consider case (f). Let Z be the edge in Pi with label n− 1 at vertex +
and lable m− 1 at vertex −. As it lies in N , Z is either of type I or type II; the
two possibilities are illustrated in Figures 62(i) and (ii) respectively. It is now easy
to check that in each case there are at most four possible disjoint edges, disjoint
from X , Y and Z, with endpoints of the form (k,k + 1) or (k + 1,k).

In the sequel, π will denote the permutation πi associated with some Pi with
αi ≥ n+ 1.

Lemma 7.16. ν(x, π(x)) = 2 for all vertices x of Γ2.

Proof. First note that we may suppose that αi ≤ n for at most one value of i.
For suppose α1, α2 ≤ n (say). Then α3 + α4 ≥ (∆ − 2)n. Since α3 + α4 ≤ 4n
by Lemma 7.11, this is a contradiction unless α1 = α2 = n, α3 = α4 = 2n (and
∆ = 6). But this implies that π1 = π2 = π3 = π4, contradicting Lemma 7.3.

So we may suppose that α1, α2, α3,≥ n + 1. Hence πi = π±1, i = 1, 2, 3, by
Lemma 7.15.

If α4 ≥ n + 1, then π4 = π±1 also. Since not all the πi’s can be equal, by
Lemma 7.3, we have (without loss of generality) that either π1 = π2 = π−1

3 = π−1
4 ,

or π1 = π2 = π3 = π−1
4 . In the first case, we may again suppose without loss of

generality that α1 +α2 ≥ 3n, and thus every vertex x of Γ2 appears twice in either
P+

1 or P+
2 . (Here P+

i denotes the labels at the endpoints at vertex + of the edges
in Pi.) Therefore ν(x, π(x)) ≥ 2 by Lemma 2.1. Hence ν(x, π(x)) = 2 for all x, by
Lemma 5.4(ii). In the second case, since α1 + α2 + α3 ≥ 4n by Lemma 7.11, every
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vertex x of Γ2 appears twice in either P+
1 , P+

2 or P+
3 . Therefore ν(x, π(x)) = 2 for

all x, as before.
Now suppose α4 ≤ n. Since πi = π±1, i = 1, 2, 3, we may suppose without loss

of generality that π1 = π2 = π. Since α3 ≤ 2n by Lemma 7.11, α1 + α2 ≥ 3n.
Therefore ν(x, π(x)) = 2 for all vertices x of Γ2, as above.

Lemma 7.17. If ∆ = 7 then no three permutations πi are equal.

Proof. Suppose that π1 = π2 = π3 = π. Since α4 ≤ 2n, we have α1 +α2 +α3 ≥ 5n.
Therefore, for all vertices x of Γ2, there are at least five edges in Γ1 with label x at
+ and label π(x) at −. Since ν(x, π(x)) = 2 by Lemma 7.16, some three of these
edges must belong to the same parallelism class in Γ2. Since these edges all have
label + at x in Γ2, this parallelism class would then contain at least five edges,
contradicting (by Lemma 2.1) the fact that Γ1 has only four parallelism classes of
edges.

Lemma 7.18. ∆ = 7 is impossible.

Proof. First note that we may assume that αi ≥ n+ 1, i = 1, 2, 3, 4. For if α1 = n
(say), then (by Lemma 7.11) we must have α2 = α3 = α4 = 2n. This implies that
π1 = π2 = π3 = π4, contradicting Lemma 7.3.

By Lemma 7.15 we therefore have πi = π±1, i = 1, 2, 3, 4. By Lemma 7.17,
two of these are π and two are π−1. Let x be a vertex of Γ2. Then, without loss
of generality, at vertex + of Γ1 the label x appears exactly twice in each of the
parallelism classes of edges with permutation π−1, exactly twice in one of the par-
allelism classes with permutation π, and exactly once in the remaining parallelism
class with permutation π.

Consider the corresponding edges in Γ2, i.e., those with label + at vertex x.
Note that in Γ2, any edge incident to x joins x to either π(x) or π−1(x), and, by
Lemma 7.16, ν(x, π(x)) = ν(x, π−1(x)) = 2. Hence, by Lemma 2.1, of the edges
with label + at x, exactly two belong to each of the parallelism classes joining x to
π−1(x), exactly two belong to one of the parallelism classes joining x to π(x), and
exactly one to the other such parallelism class. Let these last three edges be A, B
and C respectively. Then around vertex x these edges appear as in Figure 63(i),
(ii) or (iii).

A similar argument applied to the edges of Γ2 with label − at vertex π(x) shows
that the edges A, B and C appear at vertex π(x) as in Figure 64(i), (ii) or (iii).
(These possibilities are independent of the possible arrangements at vertex x.)

Now in Γ1, C is parallel to either A or B. On the other hand, from Figures 63 and
64 we see that if A(+) denotes the endpoint of A with label +, etc., then (with suit-
able choice of orientation) we have δ2(A(+), C(+)) = 4, 8 or 12, δ2(A(−), C(−)) =
10, 6 or 2, and δ2(B(+), C(+)) = 2, 6 or 10, δ2(B(−), C(−)) = 12, 8 or 4. This
contradicts Lemma 2.5(i).

Lemma 7.19. ∆ = 6 is impossible.

Proof. First note that at most one αi is ≤ n. For if α1, α2 ≤ n (say), then α3+α4 ≥
4n, and therefore, by Lemma 7.11, α1 = α2 = n, and α3 = α4 = 2n. But this
implies that π1 = π2 = π3 = π4, contradicting Lemma 7.3.

So suppose α1, α2, α3 ≥ n + 1. Then πi = π±1, i = 1, 2, 3. Note that α4 > 0,
for if not then we would have α1 = α2 = α3 = 2n, contradicting (the proof of)
Lemma 7.3. Also (by re-choosing α4 if necessary) we may assume that α4 < 2n.
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Figure 63
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x x x x x x

Figure 65

x x x x x x

Figure 66

Let x be a label that appears exactly once in P+
4 . Then x appears exactly once

in one of P+
1 , P+

2 , P+
3 , and exactly twice in the two others. The three possible

arrangements are shown in Figures 65, 66 and 67. In particular, there are at least
three edges in P1 ∪P2 ∪P3 with label x at + and (say) π(x) at −. By Lemma 7.16,
two of these, say A and B, are parallel in Γ2. Since the number of edges in any
parallelism class in Γ2 is at most four, A and B are adjacent around x among the
edges of Γ2 with label + at x. Since d = 1, A and B are adjacent at + among those
edges in Γ1 with label x at +. But examination of Figures 65, 66 and 67 shows that
any such adjacent pair of edges violates either Lemma 2.1 or Lemma 2.5(i).

We have thus shown that in Case (B), the only possibilities for F1, F2 are given
by the identification patterns P (7) and P (6)2.

8. Case (C)

In this section we treat the case where ∆ = 6, n1 ≥ 3, n2 = 2, the two boundary
components of F2 are of opposite sign, and F2 is bad.

It follows from Lemma 3.2 that the arcs of F1 ∩ F2 in F2 come in parallelism
classes of size n1. Thus Γ2

∼= G(n1, n1, n1, n1, n1). Call the boundary components
of F2 (vertices of Γ2) + and −. The n1 loops at vertex + in Γ2 define a permutation
π of {1, 2, . . . , n1} with orbits of size 2 (thus n1 is even). Since n1 ≥ 3, there are at
least two such orbits. This gives edges in Γ1 as shown in Figure 68. Write n1 = 2n.
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x x x x x x

Figure 67

i+

i–

(i+1)+

(i+1)–

i

Figure 68

The four parallelism classes of edges in Γ2 that run from + to − all define the
same permutation ρ; that is, if an edge has label i at vertex +, then it has label
ρ(i) at vertex −. Note that the elements in any orbit of ρ all have the same sign,

and that the corresponding cycle must be essential in F̂1 by Lemma 2.3.
Let the orbits of π be {i+, i−}, i = 1, 2, . . . , n. The corresponding edges of Γ1

decompose F̂1 into annuli N1, N2, . . . , Nn, numbered so that ∂Ni contains the four
vertices i±, (i + 1)± of Γ1 (see Figure 68). The only vertices of the same sign
accessible from i+ are (i ± 1)+ and i+. Hence either

(1) ρ is the identity, or
(2) ρ(i+) = (i+1)+, say, and ρ(i−) = (i+ε)−, where ε = ±1, so ρ has exactly

two orbits {i+ : i = 1, 2, . . . , n} and {i− : i = 1, 2, . . . , n}.
In case (1), consider one of the corresponding loops in Γ1, at vertex i+, say. This

must lie in either Ni or Ni−1, and there cannot be such loops in both Ni and Ni−1,
as this would prohibit the existence of a loop at i−. Hence if we let A1, A2, . . . , A6
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1+

2+

2–

1–

Figure 69

be the edges of Γ1 with label +, say, at the vertex i+, then they may be numbered
consecutively around i+ in such a way that A1 and A6 join i+ to i− = π(i+), and
A2, A3, A4, and A5 join i+ to i+ = ρ(i+). Since d = d12 = 1, these edges appear
in the same order around vertex + in Γ2. Thus, there, A1 and A6 are loops at +
while A2, A3, A4, and A5 join vertices + and −. But this contradicts the form of
Γ2.

In case (2), we distinguish the two subcases (a) n1 ≥ 6, and (b) n1 = 4.
First consider (a). Here, any edge of Γ1 joining vertices i+ and ρ(i+) = (i+ 1)+

must lie in the annulus Ni. Hence there is at most one such edge, as otherwise
there could be no edge joining i− and (i+ 1)−. The four edges of Γ2 with label i+
at + and ρ(i+) at − are therefore all parallel in Γ1. But this implies the existence
of an edge in Γ1 with label − at i+ and label + at ρ(i+). Considering this edge in
Γ2 shows that ρ2 is the identity, contradicting our assumption that n1 ≥ 6.

Finally, consider subcase (b). Let X1, X2 be two edges of Γ1 joining vertices 1+

and 2+ that come from some parallelism class in Γ2 with corresponding permutation
ρ. If these both lie in N1, say (see Figure 69), then the corresponding edges joining
1− and 2− must lie in N2, and hence X1, X2 are the only edges of Γ1 joining 1+

and 2+. Thus the arrangement of the edges A1, A2, . . . , A6 in Γ1 with label + at
vertex 1+ around that vertex is as described in case (1) above, giving the same
contradiction.

If X1, X2 lie in N1, N2 respectively, then Γ1 is as shown in Figure 70. Choose the
numbering of the labels around vertex + of Γ2 so that each parallelism class of edges
has labels 1,2,3,4 there, in anticlockwise order. Then we must have ρ(i) ≡ i + 2
(mod 4), and so the labels in any parallelism class at vertex − are (in clockwise
order) 3,4,1,2. Now let A be one of the loops at vertex + in Γ2 with endpoint
labels 1 and 4, and let X,Y be the two loops at vertex − with endpoint labels
1 and 4. See Figure 71. Then, since there are exactly two parallelism classes
of edges in Γ1 joining vertices 1 and 4, A must be parallel in Γ1 to either X or
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Y . But if A(i) denotes the endpoint of A in Γ2 with label i, and similarly for
X and Y , then we have (for suitable choice of orientation) τ2(A(1), A(4)) = 15,
τ2(X(1), X(4)) = τ2(Y (1), Y (4)) = 11. This contradicts Lemma 2.5(iii).

We have thus shown that Case (C) cannot occur.

9. Case (D)

In this section we treat the case where ∆ = 6, n1 ≥ 3, all the boundary compo-
nents of F2 have the same sign, and F2 is bad.

It follows from Lemma 3.2 that the edges of Γ2 come in parallelism classes of
size n1. Each such parallelism class defines a permutation ρ with orbits of size 2.
Thus n1 is even and the number of orbits of ρ is n1/2 ≥ 2. The parallelism class
gives rise to edges in the reduced graph Γ1 as shown in Figure 68. It is then easy
to see that Γ1 is a subgraph of either the graph illustrated in Figure 72, or, when
n1 = 4, the graph illustrated in Figure 73. In particular, there are at most two
permutations ρ.

We distinguish the three cases n2 = 1, n2 = 2, and n2 ≥ 3.

Case (1). n2 = 1. Here Γ2
∼= H(n1, n1, n1), and there is only one permutation

ρ. Thus Γ1 is as shown in Figure 68. Since d = 1, this determines the identification

between the edges of Γ1 and Γ2 (modulo permutation of the orbits of ρ on F̂1),
namely that given by the identification pattern P (6)2n (where n1 = 2n), n ≥ 2,
shown in Figure 74. Although this case is combinatorially possible, we shall see in
Section 11 that it is actually topologically degenerate.

Case (2). n2 = 2. Here Γ2
∼= G(n1, n1, n1, n1, n1). Let the vertices of Γ2 be

x and y. Without loss of generality, suppose that the labels at the ends of any
parallelism class of edges at the vertex x are, in order, 1, 2, . . . , n1. Let the labels
at the vertex y be m,m+1, . . . ,m−1. Then the permutations defined by the loops
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at x, the loops at y, and the edges joining x and y, respectively, are

ρ1 : i 7→ 1− i,

ρ2 : i 7→ 2m− 1− i,

ρ3 : i 7→ m− i .

By the remarks at the beginning of the section, at least two of these permutations
must coincide.
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First suppose that all three permutations are equal, that is, m = 1. A loop in Γ2

gives rise to an edge in Γ1 joining vertices i and 1−i, say, with equal labels at its two
endpoints. But this implies (see Figure 68) that every edge in Γ1 has equal labels
at its endpoints, i.e., that Γ2 consists entirely of loops. This is a contradiction.

If exactly two permutations coincide, then it is easy to see that they must be
ρ1 and ρ2, and m = (n1/2) + 1. Let X be one of the loops in Γ2 based at x with
endpoint labels 1 and n1, and let Y1, Y2 be the loops based at y with endpoint labels
1 and n1 (see Figure 75). Since there are only two parallelism classes of edges in Γ1

joining vertices 1 and n1, X must be parallel in Γ1 to either Y1 or Y2. But this is
impossible by Lemma 2.5(iii), since, if X(i) denotes the endpoint of X in Γ2 with
label i, and similarly for Y1 and Y2, then τ2(X(1), X(n1)) = 4n1 − 1 (say), while
τ2(Yj(1), Yj(n1)) = 3n1 − 1, j = 1, 2.

Case (3). n2 ≥ 3. First suppose that there is only one permutation ρ. Then the
edges in Γ1 joining any vertex a to ρ(a) fall into two parallelism classes, each of size
3n2. If n2 ≥ 4, this contradicts Corollary 5.5. In any case, each of the parallelism
classes defines a permutation π of {1, 2, . . . , n2} which by Lemma 4.2 has only one
orbit. Let A1, A2, A3, B1, B2, B3 be the edges with label x at some vertex a, and
label π(x) at ρ(a), for some x, numbered cyclically around a in such a way that the
Ai’s belong to one parallelism class and the Bi’s to the other. Since d = 1, these
edges appear in the same order around the vertex x in Γ2. Since ν(x, π(x)) ≤ 5 by
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Lemma 5.4(i), some consecutive pair must be parallel in Γ2. But this is impossible
by Lemmas 2.1 and 2.5(i).

Finally, suppose that there are two permutations ρ, say ρ1 and ρ2. First note
that since the valency of each vertex a in Γ1 is 4, some parallelism class of edges
in Γ1 joining a to ρ1(a), say, has at least n2 + 1 members. By Lemma 4.2, the
corresponding permutation π has only one orbit. Let the first n2 of these edges be
A1, A2, . . . , An2 , where (without loss of generality) Ai has label i at a and label
π(i) at ρ1(a).

For any vertex of Γ2, the labels at the end of each parallelism class of edges
incident at that vertex are, in order, m,m + 1, . . . ,m − 1 for some m. We may
suppose that at vertex 1, say, m = 1. If m = 1 for all vertices of Γ2, then we get
only one permutation ρ, contrary to hypothesis. Since the edges A1, A2, . . . , An2 ,
as they lie in Γ2, have label a at vertex i and label ρ1(a) at π(i) for all i, we see
that, at the vertex πk(1), m = 1 if k is even and m = m0 if k is odd, where m0 6= 1
is independent of k. In particular it follows that n2 is even, and hence ≥ 4.

Since this argument applies to any parallelism class of edges in Γ1 with at least
n2 + 1 members, it also follows that there can be no such parallelism class joining
vertices a and ρ2(a). Hence if the two parallelism classes joining a to ρi(a) each
have αi members, i = 1, 2, then α2 ≤ n2. Also, 2α1 + 2α2 = 6n2. Hence, α2 < n2

implies α1 > 2n2, contradicting Corollary 5.5. We must therefore have α1 = 2n2,
α2 = n2. It follows that any edge in Γ1 joining a and ρ1(a) has label i at a and
label π(i) at ρ1(a), say. But from the form of Γ2 the edges in Γ1 joining a and
ρ1(a) come in pairs, one with label i at a and label π(i) at ρ1(a) and the other with
label π(i) at a and label i at ρ1(a). This implies that π2 is the identity, and hence
n2 = 2, contrary to hypothesis.

We have thus shown that in Case (D), the only possibilities for F1, F2 are given
by the identification patterns of the form P (6)2n, n ≥ 2.

10. Case (E)

In this section we treat the case where ∆ = 6 and F1 and F2 are bad.
By Lemma 3.2, the edges of Γα come in parallel families of size nβ . Also, since

(again by Lemma 3.2) Γα has a face that is a disk with three sides, there is a
family of nβ parallel edges in Γα joining boundary components of the same sign.
The orbits of the corresponding permutation each contain two vertices of Γβ , of
opposite sign. There are thus three cases:

(1) n1 = n2 = 2 ;
(2) n1 = 2, n2 ≥ 4 ;
(3) n1, n2 ≥ 4 .

(1) is treated under Case (A), and (2) under Case (C), so it remains to con-
sider (3).

By Lemma 2.3, a family of nβ parallel edges in Γα joining vertices of the same
sign gives a set of edges in Γβ as shown in Figure 68. Now consider a family of nβ
parallel edges in Γα joining vertices of opposite sign. As in Section 8 (Case (C)), the
corresponding permutation either is the identity or has exactly two orbits. Again
arguing as in Section 8, we see that the number of edges of Γβ joining vertices of
the same sign is nβ . Since the edges of Γβ come in parallel families of size nα, this
shows that the number of edges in Γβ joining vertices of the same sign is n1n2.
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But the total number of edges is
6n1n2

2
= 3n1n2. Therefore, by the parity rule,

either Γ1 or Γ2 has at least 3n1n2
2 edges joining vertices of the same sign. This

contradiction shows that case (3) cannot occur.
Hence Case (E) is impossible.

11. Final topological arguments

We have shown that if ∆ ≥ 6 and (M,T ) is not cabled, then, up to homeo-
morphism, the only possibilities for (F1, F2;F1 ∩ F2) are those described by the
identification patterns P (6), P (6)2n, P (7), P (8)1, and P (8)2, illustrated in Figures
28, 74, 35, 31, and 32. (Note that since in all cases the complementary regions on
at least one of the surfaces are all disks, we may assume by a standard innermost
circle argument that there are no circles of intersection.) In each of these cases, let
X = F1 ∪ F2 ∪ T , and let N(X) be an abstract regular neighborhood of X relT .

First we show that the family P (6)2n is topologically degenerate.

Lemma 11.1. For P (6)2n, n ≥ 1, F1 is compressible in N(X).

Proof. Let D0 be a disk on T of the form shown in Figure 76, containing ∂F1∩∂F2.
We use D0 as “base-point” for computations in π1(X). We choose D0 so that the
arc u on boundary component 1 of F1 which does not lie in D0 appears on F1 as
shown in Figure 77. Then the arc v on boundary component 2n shown in Figure
76 appears on F1 as in Figure 77 (see Figure 74(ii)).

Let a, b, c, d, e, f be the elements of π1(X) represented by the arcs A,B,C,D,E,
F , with the orientations indicated. Then, from the two 3-sided faces on F2 (see
Figure 74(ii)) we get the relations

ace = 1, bdf = 1 ,

and from the two bigons on F1 bounded by the arcs A,B and E,F respectively, we
get the relations

a = b, e = f .

Therefore c = d. But the curve γ shown in Figure 77 is essential on F1 and
represents cd−1 in π1(X). Hence the map π1(F1) → π1(X) is not injective.

Let ∂0N(X) denote ∂N(X)− T .

Lemma 11.2. For P (6), P (7), P (8)1, and P (8)2, every component of ∂0N(X) is
a 2-sphere.

Note that χ(∂0N(X)) = χ(∂N(X)) = 2χ(N(X)) = 2χ(X). We prove Lemma
11.2 by computing that in all four cases the number of components of ∂0N(X) is
χ(X); hence each must be a 2-sphere. We compute χ(X) easily as follows.

Lemma 11.3. χ(X) =
∆n1n2

2
− n1 − n2.

Proof. First note that

χ(F1 ∪ F2) = χ(F1) + χ(F2)− χ(F1 ∩ F2)

= −n1 − n2 −
∆n1n2

2
.
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Also, T ∩ (F1 ∪ F2) = ∂F1 ∪ ∂F2, and χ(∂F1 ∪ ∂F2) = −∆n1n2. Therefore

χ(X) = χ(T ) + χ(F1 ∪ F2)− χ
(
T ∩ (F1 ∪ F2)

)
=

∆n1n2

2
− n1 − n2 .

Thus for P (6), χ(X) = 8; for P (7), χ(X) = 4; and for P (8)1 and P (8)2, χ(X) =
12.

We count the components of ∂0N(X) as follows. The arcs F1∩F2 decompose the
surfaces F1, F2 into faces. Each of F1 and F2 is locally 2-sided in N(X), so ∂0N(X)
contains two copies f+, f− of each such face f . The number of components of
the union of these f±’s is equal to the number of components of ∂0N(X) (which is
obtained from this union by adding the 2-cells into which T is divided by ∂F1∪∂F2).

Lemma 11.4. For P (6), P (7), P (8)1, and P (8)2, the number of components of
∂0N(X) is equal to χ(X).

Proof. We do P (8)1 and P (7) as examples, leaving the other similar verifications
to the reader. The case of P (7) is a little different from the others inasmuch as
here one of the surfaces (F2) does not separate N(X).
P (8)1. Shade the faces in F1 and F2 alternately black and white as shown in

Figure 78. (For convenience, we shall think of the surface shown in Figure 78(i)
as F1, and that shown in Figure 78(ii) as F2. This differs from the notation of
the last paragraph of Section 6.) Then the components of ∂0N(X) fall into four
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classes, defined in the obvious way: black/black, black/white, white/black, and
white/white. The components in each of these classes are the unions of the following
sets of faces, where we use subscripts to indicate which surface the given face lies
in:

black/black : AB1 , BG2 , GH1 , HA2 ;
CD1 , DE2 , EF1 , FC2 ;
WX1 , XV2 , V U1 , UW2 ;
Y Z1 , ZT2 , TS1 , SY2 .

black/white: AB1 , BET2 , EF1 , TS1 , FAS2 ;
CD1 , DWG2 ,WX1 , GH1 , XHC2 ;
UV1 , V Z2 , ZY1 , Y U2 .

white/black : WU2 , UTH1 , TZ2 , HA2 , ZWA1 ;
Y S2 , SV D1 , V X2 , DE2 , XY E1 ;
CF2 , FG1 , GB2 , BC1 .

white/white: BC1 , CHX2 , HUT1 , XEY1 , UY2 , TBE2 ;
FG1 , GDW2 , DSV1 ,WZA1 , SAF2 , V Z2 .

This gives a total of 12, as claimed.
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P (7). Since F1 does separate N(X), we can shade the faces on F2 alternately

black and white as shown in Figure 79. Although F2 does not separate N(X), it
is of course locally 2-sided. We designate the two sides + and −, and if f is a
face on F2 then we denote by f± the push-off of f in the appropriate direction.
Then (referring also to Figure 35(i)) the components of ∂0N(X) are the unions of
the following sets of faces, where we first list those involving black faces of F2, and
second those involving white faces of F2:

black : AB+
2 , BF1 , FE

−
2 , EA1 ;

CDG+
2 , GDEB1 , CG1 , DGC

−
2 , EF+

2 , BA−2 , FCDA1 .
white: BC+

2 , CG1 , GF
−
2 , FB1 ;

DEA+
2 , EBGD1 , AE1 , EAD

−
2 , BC−

2 , FG+
2 , ADCF1 .

This gives a total of four components, as claimed.

Proof of Proposition 1.5. Suppose that (M,T ) is not cabled, and let (Fα, ∂Fα) ⊂
(M,T ) be an essential punctured torus with boundary slope rα, α = 1, 2, such that
∆(r1, r2) ≥ 6. After the work in the previous sections we know that (F1, F2;F1∩F2)
has to be given by one of the four identification patterns P (6), P (7), P (8)1, or P (8)2.
Let N be a regular neighborhood of F1 ∪ F2 ∪ T in M . Then N is homeomorphic
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to the appropriate N(X) described above. By Lemma 11.2, ∂N − T consists of
2-spheres. Since M is irreducible, M = N ∪ 3-balls. Hence (M ;F1, F2) is uniquely
determined, up to homeomorphism, in each of the four cases. It follows that these
must correspond to the examples described in Section 1, with M = W (2), W (−5/2),
W (1), and W (−5).

Remark. The identification patterns P (8)1 and P (8)2 are distinguishable by the fact
that for P (8)1, d = 1, whilst for P (8)2, d = 3. Also, with suitable parametrizations,
the slopes r, s ∈ T (M,∂M) with ∆(r, s) = 8 are 4,−4 for M = W (1), and 1

2 ,−
3
2

for M = W (−5). Hence the punctured tori in W (1) correspond to P (8)1, and those
in W (−5), to P (8)2.

12. Other surfaces with non-negative euler characteristic

We have now proved Proposition 1.5. Before discussing the case when (M,T ) is
cabled, we consider other surfaces of non-negative euler characteristic, for applica-
tions to Theorems 1.2, 1.3, and 1.4. In this section we shall prove certain analogs
of Proposition 1.5 in these cases.

Let S(M,T ), D(M,T ), A(M,T ) denote the set of boundary slopes on T of

essential surface F in M , with F ∩ T 6= ∅, such that F̂ is homeomorphic to S2, D2,
or the annulus A2, respectively.

Proposition 12.1. If r ∈ S(M,T ) and s ∈ T (M,T ) then either ∆(r, s) ≤ 5 or
(M,T ) is cabled.

Proof. This follows from [GLi, Proposition 6.1].

For M hyperbolic with ∂M = T , this has recently been improved to ∆(r, s) ≤ 4
by Boyer and Zhang [BZ2], and subsequently to ∆(r, s) ≤ 3 by Oh [O] and by Wu
[Wu2].

Proposition 12.2. If r ∈ S(M,T ) ∪ T (M,T ) and s ∈ D(M,T ) ∪ A(M,T ), then
either ∆(r, s) ≤ 5 or (M,T ) is cabled.

Proof. Let Fα be an essential surface in M , such that Fα ∩ T 6= ∅, with boundary

slope rα on T , α = 1, 2, and such that F̂1
∼= S2 or T 2 and F̂2

∼= D2 or A2. By

considering the arcs of F1 ∩ F2 we get graphs Γα ⊂ F̂α, α = 1, 2. If F̂1
∼= S2, then

we can formally add a handle to F̂1 and regard Γ1 as a graph in T 2. Similarly, if

F̂2
∼= D2, we can remove a small open disk from F̂2 and regard Γ2 as a graph in

A2. So without loss of generality we assume that Γ1 ⊂ T 2 and Γ2 ⊂ A2.
Suppose that ∆ = ∆(r1, r2) ≥ 6. By Lemmas 3.1 and 3.2, either Γ1 has n2 + 1

parallel edges, or ∆ = 6 and each parallelism class of edges in Γ1 has exactly n2

members.
In the first case, adopting the notation used in the proof of Lemma 4.2, either

Cθ(A) or Cθ(B) bounds a disk in the annulus F̂2, or A1 and B1 are parallel on F2.
By Lemmas 2.1 and 2.3, we conclude that (M,T ) is cabled.

In the second case, by identifying the two boundary components of F̂2
∼= A2, we

can regard both Γ1 and Γ2 as graphs in T 2. Now the arguments of Sections 4–11
show that, unless (M,T ) is cabled, the only possibility for the pair Γ1,Γ2 is given
by the pattern P (6) illustrated in Figure 28. But neither graph there is contained
in an annulus.

Proposition 12.3. If r, s ∈ D(M,T ) ∪ A(M,T ), then either

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY SLOPES OF PUNCTURED TORI IN 3-MANIFOLDS 1781

Figure 80

(1) ∆(r, s) ≤ 5; or
(2) (M,T ) is cabled; or
(3) M contains an essential annulus having exactly one boundary component

on T , with slope r0 where ∆(r0, r) = ∆(r0, s) = 1; or
(4) M is homeomorphic to T × I.

Proof. Let F1, F2 be essential surfaces in M as above such that F̂α ∼= D2 or A2,
α = 1, 2. The arcs of F1 ∩ F2 with at least one endpoint on T give graphs Γ1,Γ2

in F̂1, F̂2 respectively. As in the proof of Proposition 12.2, we may assume that F̂1

and F̂2 are annuli.
Suppose that ∆ = ∆(r1, r2) ≥ 6. Then by Lemma 3.3, Γ1 has either n2 + 1

parallel internal edges or 2n2 parallel boundary edges.
In the first case we conclude that (M,T ) is cabled exactly as in the proof of

Proposition 12.2.
In the second case, let A1, . . . , An2 , B1, . . . , Bn2 be the corresponding parallel

arcs of F1 ∩ F2 on F1, numbered in order so that (without loss of generality) Ai

and Bi each has label i at its endpoint on ∂F1 ∩ T , 1 ≤ i ≤ n2. If, for some i,

both Ai and Bi go to the same boundary component of the annulus F̂2, then we
get either conclusion (3) or conclusion (4), as in [CGLS, Lemmas 2.5.4 and 2.5.5].
So we may suppose that in Γ2, from each vertex there are boundary edges going to

both boundary components of F̂2. Thus the reduced graph Γ2 is a subgraph of a
graph of the form illustrated in Figure 80.

If Γ2 has n1 + 1 parallel internal edges, then we conclude as before that (M,T )
is cabled. Also, if Γ2 has 2n1 + 1 parallel boundary edges, then two of these must
correspond to edges in Γ1 joining some vertex to the same boundary component of

F̂1, so again we get conclusion (3) or (4) as in [CGLS, Lemmas 2.5.4 and 2.5.5]. It
follows that Γ2 is as illustrated in Figure 80, ∆ = 6, each parallelism class of internal
edges of Γ2 has exactly n1 members, and each parallelism class of boundary edges
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has exactly 2n1 members. Since the argument is symmetrical, the corresponding
statement also holds for Γ1.

Now let a be a component of ∂F1 ∩ T , and let A1, A2, . . . , A6 be the arcs of
F1 ∩F2 with label x at a, numbered cyclically around a so that A1, A2, A4, and A5

are boundary edges and A3, A6 are internal edges (see Figure 81). On F2, A1 and

A2 must go to distinct boundary components of F̂2 (otherwise we get conclusion
(3) or (4) by [CGLS, Lemma 2.5.4]), and similarly for A4 and A5. But since d = 1,
A1, A2, . . . , A6 occur in the same cyclic order around x in F2. This is clearly a
contradiction.

13. Cabled manifolds

Let (M,T ) be cabled, so M = M ′ ∪ C, where C is a (p, q)-cable space, ∂C =
T q T ′, and M ′ ∩ C = T ′. Let F be an essential surface in M , isotoped so as to
minimize the number of components of F ∩ T ′. Then F ∩ C and F ′ = F ∩M ′

are essential in C and M ′ respectively. Now suppose that F ∩ T 6= ∅ and that
F ∩ C is planar. The essential planar surfaces in a cable space are described in
[GLi, Lemma 3.1]. In particular, adopting the terminology of that lemma, there
are four possibilities for F ∩ C:

an annulus of type (1);
a number of annuli of type (3), possibly together with some annuli of
type (2);
a number of parallel copies of a surface of type (4);
a number of parallel copies of a surface of type (5).

We shall say that F is of type (1), (3), (4), or (5) respectively.
Throughout this section, we refer the reader to [GLi, Lemma 3.1] for the descrip-

tions of the boundary slopes of planar surfaces in cable spaces.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY SLOPES OF PUNCTURED TORI IN 3-MANIFOLDS 1783

Lemma 13.1. Let rα, r
′
α be the inner and outer boundary slopes of a planar surface

of type (4) in a (p, q)-cable space, α = 1, 2, with r1 6= r2.

(i) There exists a slope r0 on T such that ∆(r0, rα) = 1, α = 1, 2.
(ii) There exists a slope r′0 on T ′ such that ∆(r′0, r′α) = 1, α = 1, 2, if and only

if q = 2 and ∆(r1, r2) = 1.

Proof. (i) With respect to the standard cable space coordinates,

rα = (1 + kαpq)/kα,

α = 1, 2, for some integers k1, k2. Then r0 = pq (the slope of an ordinary fibre in
the Seifert fibre space structure) satisfies ∆(r0, rα) = 1, α = 1, 2.

(ii) With respect to the standard cable space coordinates, r′α = (1+kαpq)/kαq
2.

Suppose r′0 = x/y satisfies ∆(r′0, r
′
α) = 1, α = 1, 2. Then

(1 + kαpq)y − kαq
2x = ±1 ,

that is

y + kαq(py − qx) = ±1 , α = 1, 2 .

Subtracting, we obtain

(k1 − k2)q(py − qx) = 0 or ± 2 .

The first case gives py − qx = 0, and (hence) y = ±1, contradicting the fact that
(p, q) = 1. The second case gives q = 2 and |k1−k2| = ∆(r1, r2) = 1. Conversely, if
q = 2 and |k1−k2| = 1 then one easily verifies that an r′0 with the desired property
exists.

Let F1, F2 be essential surfaces in M as above with boundary slopes r1, r2 on T ,
and let ∆ = ∆(r1, r2). The following lemma is an immediate consequence of the
description of the boundary slopes in [GLi, Lemma 3.1].

Lemma 13.2. Let M,F1, F2 be as above.

(a) If Fα is of type (1) or (3), α = 1, 2, then r1 = r2.
(b) If F1 is of type (1) or (3) and F2 is of type (4), then ∆ = 1.
(c) If F1 is of type (1) or (3) and F2 is of type (5), then ∆ = q.
(d) If F1 is of type (4) and F2 is of type (5), then (∆, q) = 1.

In the next two lemmas, F1 and F2 are essential surfaces in M = M ′ ∪ C, with
boundary slopes r1, r2 on T and r′1, r

′
2 on T ′. We assume r1 6= r2 and write ∆ =

∆(r1, r2), ∆′ = ∆(r′1, r
′
2). We also assume that (M ′, T ′) is cabled, the corresponding

cable space being C ′.
The calculation in the proof of Lemma 13.1(ii) is very similar to that given in

[GLi, p.137], where it is used to prove the next lemma.

Lemma 13.3. Let M,F1, F2 be as above. If (M ′, T ′) is cabled and F1, F2, F
′
1, F

′
2

are of type (4), then q = 2 and ∆ = 1.

Proof. This follows from Lemma 13.1.

Lemma 13.4. Let M,F1, F2 be as above, where F1 and F2 are of type (4). Suppose
that (M ′, T ′) is (1, 2)-cabled.

(a) If F ′
1 is of type (4) and F ′

2 is of type (5), then ∆ = 1.
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(b) If F ′
1 and F ′

2 are of type (5), then either q = 2 and the identification of C
and C ′ along T ′ preserves the fibres of the Seifert fibrations of C and C′,
or ∆ ≤ 2.

Proof. With respect to the standard cable coordinates on C, r′α = (1+kαpq)/kαq
2,

α = 1, 2.
The identification of the outer boundary of C with the inner boundary of C′ is

given by a matrix [ x y
z w ] ∈ GL(2,Z).

(a) With respect to the standard cable coordinates on C′,

r′1 = (1 + 2k)/k ,

r′2 = (2 + 2m)/m ,

for some integers k and m.
Applying the identification matrix to the C-coordinates of r′1 and r′2 gives the

four equations

x(1 + k1pq) + yk1q
2 = ε1(1 + 2k),(i)

z(1 + k1pq) + wk1q
2 = ε1k,(ii)

x(1 + k2pq) + yk2q
2 = ε2(2 + 2m),(iii)

z(1 + k2pq) + wk2q
2 = ε2m,(iv)

where εα = ±1, α = 1, 2. Taking ((i)–2(ii))–((iii)–2(iv)), we get

(k1 − k2)q
(
p(x− 2z) + q(y − 2w)

)
= ε1 − 2ε2 = −1 or ± 3 .

Therefore |k1 − k2| = ∆ = 1 (and q = 3).
(b) With respect to the standard cable coordinates on C′,

r′α = (2 + 2mα)/mα , α = 1, 2 ,

for some integer m1,m2.
Hence, as in (a) above, we get two equations

x(1 + kαpq) + ykαq
2 = εα(2 + 2mα),(i)α

z(1 + kαpq) + wkαq
2 = εαmα,(ii)α

for each α = 1, 2. Subtracting (i)2 from (i)1 and (ii)2 from (ii)1 gives

(k1 − k2)q(xp+ yq) = 2
(
(ε1 − ε2) + (ε1m1 − ε2m2)

)
,(v)

(k1 − k2)q(zp+ wq) = ε1m1 − ε2m2.(vi)

If ε1 = ε2, then these equations show that

xp+ yq = 2(zp+ wq) .

Since (xp+ yq, zp+ wq) = 1, this implies that

zp+ wq = ε , xp+ yq = 2ε , where ε = ±1 ;

in other words, [
x y
z w

] [
p
q

]
=

[
2ε
ε

]
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY SLOPES OF PUNCTURED TORI IN 3-MANIFOLDS 1785

Since the slopes on T ′ of the fibres of C and C ′ are p/q and 2/1 respectively, this
shows that the identification of the outer boundary of C with the inner boundary
of C ′ is fibre-preserving. Also, equation (vi) now gives

|k1 − k2|q = |m1 −m2| .

But |k1 − k2|q2 = ∆′ = 2|m1 −m2|. Therefore q = 2.
If ε1 = −ε2, then (v)-2(vi) gives an equation of the form

(k1 − k2)qX = ±4 .

Hence ∆ = |k1 − k2| ≤ 2.

Lemma 13.5. Let M be a Seifert fibre space with orbit surface a disk and two
exceptional fibres of multiplicities q1, q2. Then M contains exactly two essential
surfaces, one a vertical annulus and the other horizontal, with boundary slopes r0
and r1, say. Moreover if r1 ∈ S(M,∂M) then ∆(r0, r1) = 1, and if r1 ∈ T (M,∂M)
then {q1, q2,∆(r0, r1)} = {3, 3, 3}, {2, 4, 4}, or {2, 3, 6}.

If q1 = 2 and q2 = 3 then M is homeomorphic to the exterior of the trefoil knot, so
the following corollary is immediate. It will be used in the proof of Proposition 13.7.

Corollary 13.6. Let M be as in Lemma 13.5, and suppose r, s ∈ S(M,∂M) ∪
T (M,∂M). Then either ∆(r, s) ≤ 4, or M is homeomorphic to the exterior of the
trefoil knot, r (say) ∈ S(M,∂M), s ∈ T (M,∂M), and ∆(r, s) = 6.

Proof of Lemma 13.5. Note that M = M ′ ∪ C, where C is a (p1, q1)-cable space
and M ′ is a solid torus. Let F be an essential surface in M , isotoped so as to
intersect M ′ minimally. Then F ∩ C is an essential surface in C, and is therefore
either a vertical annulus or horizontal. In the second case the boundary slope of
F ∩ C on ∂M ′ must be that of a meridian disk of M ′. It then follows from [GLi,
proof of Lemma 3.1] that F ∩C, and hence F , is uniquely determined.

If r ∈ S(M,∂M), then ∆(r0, r) = 1 by [GLi, Proposition 1.4].
If r ∈ T (M,∂M), and F is the punctured torus in M with boundary slope

r, then F̂ is a horizontal torus in M(r). Note that M(r) is a Seifert fibre space
with orbit surface S2 and (at most) 3 exceptional fibres of multiplicities q1, q2, and

q3 = ∆(r0, r) ≥ 1. Hence F̂ is a k-fold covering of S2 branched over 3 points

x1, x2, x3 with branching indices q1, q2, q3. Let bi be the number of lifts of xi in F̂ ,
i = 1, 2, 3. Then k = biqi, i = 1, 2, 3. Also,

0 = χ(F̂ ) = kχ
(
S2 − {x1, x2, x3}

)
+ b1 + b2 + b3

= −k + b1 + b2 + b3

= k

(
1

q1
+

1

q2
+

1

q3
− 1

)
.

Therefore
1

q1
+

1

q2
+

1

q3
= 1, giving the three euclidean triples listed.

Let B+(M,T ) denote the set of boundary slopes on T of essential surfaces F in

M with χ(F̂ ) ≥ 0, that is, B+(M,T ) = S(M,T ) ∪ T (M,T ) ∪ D(M,T ) ∪ A(M,T ).

Proposition 13.7. Suppose that (M,T ) is cabled and that ∂M is incompressible.
If r, s ∈ B+(M,T ), then either

(1) ∆(r, s) ≤ 4; or
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(2) M is homeomorphic to the exterior of the trefoil knot, r (say) ∈ S(M,T ),
s ∈ T (M,T ), and ∆(r, s) = 6; or

(3) M is a cable space, and r, s ∈ D(M,T ) ∪ A(M,T ); or
(4) M is a Seifert fibre space with orbit surface an annulus and two exceptional

fibres of multiplicity 2, and r, s ∈ A(M,T ).

Before proving this proposition, we observe the following corollary, in which we
drop the assumption that ∂M is incompressible. Note that Proposition 1.6 is an
immediate consequence.

Corollary 13.8. If (M,T ) is cabled and r, s ∈ B+(M,T ) then either conclusion
(1) or (2) of Proposition 13.7 holds, or r, s ∈ D(M,T ) ∪A(M,T ) and M contains
an essential annulus with exactly one boundary component on T .

Proof. If ∂M is incompressible, then the corollary follows immediately from Propo-
sition 13.7.

If ∂M is compressible, let W be a maximal compression body for ∂M −T in M ,
and let M0 = M −W . If F is an essential surface in M (such that ∂F ∩ T 6= ∅),
isotoped so as to minimize the number of components of F ∩ ∂M0, then F ∩M0

and F ∩W are essential. Hence each component of F ∩W is an annulus with one
boundary component on ∂M0 and the other on ∂M . If r, s ∈ B+(M,T ) we can
therefore apply Proposition 13.7 to the corresponding surfaces F ∩M0 in M0. If
conclusion (1) or (2) holds for M0, then it holds for M . If conclusion (3) or (4) holds
for M0, then there is an essential annulus in M0 with one boundary component on
T and the other, γ, say, on ∂M0 − T . Since there is an annulus in W with one
boundary on ∂M and the other equal to γ, we get an annulus in M as described.

Proof of Proposition 13.7. Let F1, F2 be essential surfaces in M = M ′∪C as above,

such that F̂α ∼= S2, T 2, D2, or A2, α = 1, 2. Let rα be the boundary slope of Fα
on T , and r′α the boundary slope of F ′

α = Fα ∩M ′ on T ′ (if F ′
α 6= ∅), α = 1, 2.

Let ∆ = ∆(r1, r2) and ∆′ = ∆(r′1, r
′
2). We suppose r1 6= r2, therefore r′1 6= r′2 (see

[GLi, proof of Lemma 3.1]).

If F̂1
∼= F̂2

∼= S2, then ∆ = 1 by [GLi, Proposition 1.4], so we need not consider
this case.

First note that if some component of Fα ∩ C is a punctured torus, then some
component of F ′

α is a disk, and hence M ′ is a solid torus. Therefore M is a Seifert
fibre space over the disk with two exceptional fibres, and the result follows from
Corollary 13.6. We may therefore assume that all components of F1∩C and F2∩C
are planar.

If Fα is of type (5), then, by considering the euler characteristics of Fα, Fα ∩C,
and F ′

α, we easily conclude the following:

(i) the case F̂α ∼= D2 is impossible;

(ii) if F̂α ∼= S2, then Fα is a disk, contradicting the incompressibility of T ;

(iii) if F̂α ∼= T 2 or A2, then q = 2 and F ′
α consists of annuli.

In case (iii), suppose that F̂α ∼= A2. Then some component Eα, say, of F ′
α has

exactly one boundary component on T ′. If F̂β ∼= T 2 and F ′
β 6= ∅, then by consid-

ering Eα ∩ F ′
β we see that F ′

β is boundary-compressible, and hence compressible, a

contradiction. If F̂β ∼= A2, then F ′
β has a component Eβ with exactly one boundary

component on T ′. By hypothesis, the annuli E1 and E2 have distinct boundary
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slopes on T ′, and hence it easily follows, using the irreducibility of M and the in-
compressibility of ∂M , that M ′ ∼= T ′ × I (compare [CGLS, Lemma 2.5.3]). Thus
M is a cable space. It now readily follows that we must have either conclusion (3)
or conclusion (1).

After Lemma 13.2(a), (b), and (c), then, we may assume that we are in one of

the following three cases, and that if Fα is of type (5) then F̂α ∼= T 2:

I. F1 and F2 of type (4);
II. Fα of type (4) and Fβ of type (5);

III. F1 and F2 of type (5).

First we dispose of Case III. Here q = 2, F ′
1 and F ′

2 consist of annuli with their
boundaries on T ′, and ∆ = 4∆′. By [GLi, p.139], ∆′ = 1, and hence ∆ = 4.

To treat Cases I and II, we proceed by induction on the cable length of (M,T ),
which is defined in the obvious way as follows: if (M,T ) is not cabled it has cable
length 0, and if (M,T ) is a cabling of (M ′, T ′) then cable length (M,T ) = cable
length (M ′, T ′) + 1.

Let us consider Case II. Here q = 2, F ′
β consists of annuli with their boundaries

on T ′, and ∆′ = ∆. Let E be a component of F ′
β and consider E ∩ F ′

α. If

2∆′ > 6 then some pair of arcs of intersection must be parallel on F ′
α. (If F̂ ′

α
∼=

T 2, this follows from Lemma 3.1. The case F̂ ′
α
∼= S2 also follows formally from

that lemma by adding a handle. Similarly, the cases F̂ ′
α
∼= A2 or D2 follow by

embedding A2 or D2 in T 2, where, in the case of A2, the embedding is chosen to be
essential.) Since all arcs of intersection are necessarily parallel on E, we conclude
from Lemma 2.1 that either ∆ = ∆′ ≤ 3 or (M ′, T ′) is cabled. In the second case
we may assume by induction, since r′β ∈ S(M ′, T ′), that either ∆′ ≤ 4 or ∆′ = 6.

But by Lemma 13.2(d), ∆ is odd. Hence ∆ ≤ 3.
Finally we consider Case I. Here ∆′ = q2∆. By Propositions 1.5, 12.1, 12.2, and

12.3, either

(i) ∆′ ≤ 8; or
(ii) (M ′, T ′) is cabled; or
(iii) there exists a slope r′0 on T ′ such that ∆(r′0, r

′
α) = 1, α = 1, 2; or

(iv) M ′ is homeomorphic to T ′ × I.

In case (i), we get ∆ ≤ 2.
In case (iii), we get ∆ = 1 by Lemma 13.1(ii).
In case (iv), M is a cable space and we get conclusion (3).
In case (ii), we assume by induction that Proposition 13.7 holds for (M ′, T ′).

Thus either ∆′ ≤ 6 (in which case ∆ = 1), or conclusion (3) or (4) holds for
(M ′, T ′).

First suppose that conclusion (3) holds. Then M = C ∪ C′, where C′ is a
(p′, q′)-cable space, say, and r′1, r

′
2 ∈ D(C ′, T ′)∪A(C ′, T ′). We consider the various

possibilities for F ′
1 and F ′

2, which must be of type (3), (4), or (5). Recall that if F ′
α

is of type (5) then q′ = 2.
If F ′

α is of type (3), then ∆′ ≤ 2 by Lemma 13.2 (b) and (c), a contradiction.
If F ′

1 and F ′
2 are of type (4), then ∆ = 1 by Lemma 13.3.

If F ′
α is of type (4) and F ′

β is of type (5), then ∆ = 1 by Lemma 13.4(a).

If F ′
1 and F ′

2 are of type (5), then, by Lemma 13.4(b), either ∆ ≤ 2 or conclusion
(4) of Proposition 13.7 holds.
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Finally, if conclusion (4) holds for (M ′, T ′), then note that (by induction) we
may assume that this case only arises when F ′

1 and F ′
2 are both of type (4). But

then ∆ = 1 by Lemma 13.3.

An example where (M,T ) is cabled and has r, s ∈ T (M,T ) with ∆(r, s) = 4 is
the following. Let M ′ be the Seifert fibre space over the disk with two exceptional
fibres of multiplicity 2. Equivalently, M ′ is the exterior of the (1,2)-cable of a core of
S1×S2. Then M ′ contains two essential annuli (one vertical, the other horizontal)
with boundary slopes r′1, r′2 such that ∆(r′1, r′2) = 1. (In fact, M ′ is the only example
of a manifold that contains two essential annuli with distinct boundary slopes; see
[GLi, pp.138–139].) Now if we let (M,∂M) be the (1,2)-cabling of (M ′, ∂M ′), it is
easy to construct essential punctured tori F1, F2 in M , of type (5), with boundary
slopes r1, r2 such that ∆(r1, r2) = 4.

14. Final proofs

First we combine the results of Sections 12 and 13 on B+(M,T ).
For spheres, we recall the following, which is proved in [GLu], and also [BZ1].

Theorem 14.1. If r, s ∈ S(M,T ) then ∆(r, s) ≤ 1.

Actually, the bound ∆(r, s) ≤ 4, obtained in [GLi, Theorem 1.1], would suffice
for our present purposes.

For tori, we have Theorem 1.1, which follows from Propositions 1.5 and 1.6.
The former was proved in Sections 4–11, whilst the latter is a consequence of
Corollary 13.8.

The next three theorems follow from Propositions 12.1, 12.2, and 12.3 respec-
tively, together with Corollary 13.8.

Theorem 14.2. If r ∈ S(M,T ) and s ∈ T (M,T ), then either ∆(r, s) ≤ 5, or
∆(r, s) = 6 and M is homeomorphic to the exterior of the trefoil knot.

Theorem 14.3. If r ∈ S(M,T ) ∪ T (M,T ) and s ∈ D(M,T ) ∪ A(M,T ), then
∆(r, s) ≤ 5.

Theorem 14.4. If r, s ∈ D(M,T )∪A(M,T ) then either ∆(r, s) ≤ 5 or M contains
an essential annulus with exactly one boundary component on T .

In fact, if r, s ∈ D(M,T ), then the bound of 5 in Theorem 14.4 can be replaced
by 1 [Wu1].

It is clear that other improvements can be made to Theorems 14.2, 14.3, and
14.4, but we shall not pursue this here. Some results on ∆(r, s) for r, s ∈ A(M,T )
are given in [H], and for r ∈ D(M,T ), s ∈ A(M,T ) in [HM].

Note that the examples listed in Theorems 1.1 and 14.2 with ∆(r, s) > 5 all have
∂M = T . Hence, combining Theorems 1.1, 14.1, 14.2, 14.3, and 14.4, we have the
following.

Corollary 14.5. Suppose that ∂M 6= T . If r, s ∈ B+(M,T ), then either ∆(r, s) ≤
5, or M contains an essential annulus with exactly one boundary component on T .

We now give the proofs of Theorems 1.2, 1.3, and 1.4 stated in the Introduction.

Proof of Theorem 1.2. Suppose that M ∈ A, but M(r) /∈ A. Then M(r) may
contain an essential sphere, in which case it is easy to show that r ∈ S(M,T ). If
M(r) is irreducible then it must contain an essential torus, from which it easily
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follows (using the fact that M(r) is irreducible, however) that r ∈ T (M,T ). Thus
if M(r),M(s) /∈ A, we must have r, s ∈ S(M,T ) ∪ T (M,T ). The result is now a
consequence of Theorems 1.1, 14.1, and 14.2.

Proof of Theorem 1.3. Suppose that M ∈ H0, where ∂M 6= T , and M(r) /∈ H0.
Since ∂M(r) 6= ∅, it follows from [T] that either M(r) /∈ A (in which case r ∈
S(M,T ) ∪ T (M,T )), or M(r) is Seifert fibred.

Suppose that M(r) is Seifert fibred. Then M(r) is irreducible and contains
either an essential disk (and is homeomorphic to S1 ×D2) or an essential annulus.
Therefore r ∈ D(M,T ) ∪A(M,T ). Also, since here ∂M(r) and hence ∂M consists
of tori, if M contained an essential annulus it would either contain an essential torus
or be Seifert fibred, contradicting our hypothesis that M ∈ H0. Therefore M(r)
Seifert fibred implies that r ∈ D(M,T )∪A(M,T ) and that M does not contain an
essential annulus.

The result now follows directly from Corollary 14.5.

Proof of Theorem 1.4. Let M0 be the component of M cut along S that contains
T = ∂M . Note that M0 is irreducible. Consider the pair (M0, T ), and let r be a
slope on T . Since M ∈ A, standard arguments show that if r /∈ B+(M0, T ) then
S is incompressible in M(r) and M(r) ∈ A. It then follows from [T] that M(r) is
either hyperbolic or Seifert fibred.

Suppose that M(r) is Seifert fibred. Then S is an incompressible horizontal
surface in M(r), so M(r) cut along S, that is, M0(r), is homeomorphic to S × I.
Choose a set of simple closed curves in S such that S cut along these curves is a disk,
and consider the corresponding annuli in S × I. By considering the intersection of
the solid torus V in M0(r) = M0 ∪ V with these annuli, standard arguments show
that r ∈ A(M0, T ).

Hence r /∈ B+(M0, T ) implies M(r) ∈ H. The result now follows from Corol-
lary 14.5.
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