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Abstract. We consider the problem of boundary stabilization of a 1-D (one-dimensional) wave
equation with an internal spatially varying antidamping term. This term puts all the eigenvalues of
the open-loop system in the right half of the complex plane. We design a feedback law based on the
backstepping method and prove exponential stability of the closed-loop system with a desired decay
rate. For plants with constant parameters the control gains are found in closed form. Our design also
produces a new Lyapunov function for the classical wave equation with passive boundary damping.
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1. Introduction. The asymptotic stability and stabilization by feedback of wave
equations in bounded domains are topics which have been widely studied over the
past 30 years. The wave equation being conservative, the main idea is to add some
dissipation by means of boundary (see, e.g., [3], [11]) or distributed (see, e.g., [5])
damping terms. If the dissipation is large enough, then one expects that the energy
of the system is uniformly decreasing. Thus, one expects the solutions to converge
polynomially or exponentially to zero. In order to deal with this kind of problem,
several tools have been applied. Among them are spectral methods [15], [9], the
LQR (linear-quadratic regulator) approach [12], the multiplier technique [7], [13], the
microlocal analysis [1], Lyapunov functionals [20], and the Gramian approach [8], [21].

In this paper we are concerned with the stabilization problem of a 1-D (one-
dimensional) wave equation with an internal destabilizing term. Because of this term,
the system is antistable in the sense that the eigenvalues of the open-loop system can
all be in the right half of the complex plane, which produces an exponential growth
of the norm of the solutions.

The objective in this paper is to design a boundary control law to stabilize the
system. We consider a wave equation on a unit interval as its spatial domain and as-
sume the availability of a Dirichlet actuator at the right end point of the unit interval.
We assume that the string is pinned (homogeneous Dirichlet boundary condition) at
the left end point. Our approach is based on the backstepping method which uses
a Volterra transformation to map an unstable system into a stable “target” PDE
(partial differential equation). This method allows us to achieve an arbitrarily large
exponential decay rate for the closed-loop system.

In the framework of infinite-dimensional systems, the backstepping method has
been mainly used for parabolic and first-order hyperbolic equations [14], [17], [18].
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Recently, in [10] the authors have extended the method in order to deal with second-
order hyperbolic systems. In that paper, they deal with an unstable wave equation.
The instability comes from a boundary term of antistiffness type which generates a
finite number of eigenvalues for the open-loop system in the right half of the complex
plane. A more challenging problem has been dealt with in [19], where an infinite
number of unstable eigenvalues is generated by the boundary antistable term.

To eliminate internal antidamping and add an arbitrary amount of positive damp-
ing and stiffness, we develop a novel backstepping transformation. This transforma-
tion has a 2×2 structure and is invertible, and the kernels of its four Volterra operators
are generated from two coupled second-order hyperbolic PDEs in Goursat form. For
plants with constant coefficients, these PDEs can be solved explicitly, resulting in
closed-form control gains.

Our design also produces a new Lyapunov function for the classical undamped
wave equation with passive boundary damping. This Lyapunov function is “perfect”
in the sense that it gives a decay rate that is exactly equal to the one determined by
eigenvalues.

The paper is organized as follows. In section 2 we formulate the problem and
state the main result. In section 3 we introduce the transformation and the bound-
ary feedback which transform the plant into the “target” system. In section 4,
we show that this target PDE is exponentially stable. In section 5, we prove ex-
ponential stability of the closed-loop system. In section 6 several explicit control
designs are presented. Possible extensions of our approach are discussed in sec-
tion 7.

2. Statement of the problem and main result. Consider the wave equation

(2.1)






utt(x, t) = uxx(x, t) + 2λ(x)ut(x, t) + α(x)ux(x, t) + β(x)u(x, t),

u(0, t) = 0, u(1, t) = U(t),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

where for each time t ≥ 0, U(t) ∈ R is the input and the functions u(t, ·), ut(t, ·) :
[0, 1] → R form the state of the system. The functions u0, u1 are the initial conditions
and the functions λ,α,β are coefficients whose regularity will be defined later. The
open-loop plant (i.e., with U(t) = 0) may be unstable depending on the function
λ. For instance, for positive λ(x) and β(x) = α(x) = 0, all the eigenvalues of the
system are located in the right half of the complex plane. Our objective is to design
a feedback law which stabilizes (2.1) at the origin.

Without loss of generality, we set α(x) ≡ 0. Indeed, if α is not identically zero,
the following rescaling of the state variable,

v(x, t) = e
1
2

∫ x
0 α(τ)dτu(x, t),

would transform the original wave equation into another one that does not have the
first-order spatial derivative term.

Note that for constant λ, one can eliminate the antidamping term by introducing
the new variable v(x, t) = e−λtu(x, t). Then one designs the controller for the v-
system that achieves a decay rate larger than λ. However, this idea does not work for
spatially varying λ(x).
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The main idea of this paper is to use the transformation

(2.2) w(x, t) = h(x)u(x, t)−
∫ x

0
k(x, y)u(y, t)dy −

∫ x

0
s(x, y)ut(y, t)dy

and the feedback

(2.3) U(t) =
1

h(1)

{∫ 1

0
k(1, y)u(y, t)dy +

∫ 1

0
s(1, y)ut(y, t)dy

}
,

where the function h = h(x) and kernels k = k(x, y) and s = s(x, y) are appropriately
chosen, to convert the original system (2.1) into the following:

(2.4)






wtt(x, t) = wxx(x, t)− 2d(x)wt(x, t) − c(x)w(x, t),

w(0, t) = 0, w(1, t) = 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x),

with appropriate functions d = d(x) and c = c(x) so that this new system is expo-
nentially stable. The functions d and c can always be chosen to provide any desired
decay rate.

Then, we use exponential stability of (2.4) and the invertibility of the transfor-
mation (2.2) to obtain stability of the closed-loop system (2.1), (2.3).

Introducing the space H1
L(0, 1) defined by

H1
L(0, 1) := {w ∈ H1(0, 1) ; w(0) = 0}

and endowed with the H1-norm, and the domain

T := {(x, y) ∈ R2; 0 ≤ x ≤ 1, 0 ≤ y ≤ x},

we can state our main result.
Theorem 2.1. Let λ ∈ C2([0, 1]) and α,β ∈ C0([0, 1]). There exist functions

h ∈ C2([0, 1]) and k, s ∈ C2(T ) such that for any (u0, u1) ∈ H1
L(0, 1) × L2(0, 1)

satisfying the compatibility condition

u0(1) =
1

h(1)

{∫ 1

0
k(1, y)u0(y)dy +

∫ 1

0
s(1, y)u1(y)dy

}
,

there exists a unique solution of the closed-loop system (2.1), (2.3) in the space
C([0,∞);H1

L(0, 1)) ∩ C1([0,∞);L2(0, 1)). Moreover, for any ω > 0, there exists a
positive constant C independent of the initial data such that the solutions satisfy

(2.5) ‖(u(·, t), ut(·, t))‖H1(0,1)×L2(0,1) ≤ Ce−ωt‖(u0, u1)‖H1(0,1)×L2(0,1).

3. Control design. In this section we derive the equations for the functions
h(x), k(x, y), and s(x, y) and show that they have a unique twice continuously differ-
entiable solution.
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3.1. Derivation of the equations satisfied by the kernels. Using the trans-
formation (2.2) and equation (2.1) with α = 0, we get

wtt − wxx + 2d(x)wt + c(x)w

=

∫ x

0
u(y)

[
kxx − kyy − (c(x) + β(y))k − 2(λ(y) + d(x))syy

− 2(λ(y)β(y) + λ′′(y) + d(x)β(y))s − 4λ′(y)sy
]
dy

+

∫ x

0
ut(y)

[
sxx − syy − 2(λ(y) + d(x))k

−
(
4λ2(y) + 4d(x)λ(y) + c(x) + β(y)

)
s
]
dy

+ s(x, 0)utx(0) + u(x)
[
2
d

dx
k(x, x) + 2

(
λ(x) + d(x)

)
sy(x, x)

+ 2λ′(x)s(x, x) +
(
c(x) + β(x)

)
h(x)− h′′(x)

]

+ ux(0)
[
k(x, 0) + 2

(
λ(0) + d(x)

)
s(x, 0)

]

+ ut(x)
[
2
d

dx
s(x, x) + 2

(
λ(x) + d(x)

)
h(x)

]

− ux(x)
[
2
(
λ(x) + d(x)

)
s(x, x) + 2h′(x)

]
.

In order to satisfy (2.4), we choose k = k(x, y) and s = s(x, y) as solutions of

kxx(x, y)− kyy(x, y) = 2
(
λ(y) + d(x)

)
syy(x, y) +

(
c(x) + β(y)

)
k(x, y)(3.1)

+ 2
(
λ(y)β(y) + λ′′(y) + d(x)β(y)

)
s(x, y)

+ 4λ′(y)sy(x, y),

2k′(x, x) = − 2
(
λ(x) + d(x)

)
sy(x, x) − 2λ′(x)s(x, x)(3.2)

−
(
c(x) + β(x)

)
h(x) + h′′(x),

k(x, 0) = 0(3.3)

and

sxx(x, y)− syy(x, y) = 2
(
λ(y) + d(x)

)
k(x, y)(3.4)

+
(
4λ2(y) + 4d(x)λ(y) + c(x) + β(y)

)
s(x, y),

s′(x, x) = −
(
λ(x) + d(x)

)
h(x),(3.5)

(λ(x) + d(x))s(x, x) = − h′(x),(3.6)

s(x, 0) = 0.(3.7)

Dividing (3.6) by (3.5), we get h′(x)h(x) = s(x, x)s′(x, x), or, integrating, h(x)2 =
s(x, x)2 + A. Let us choose h(0) = 1 so that when all the coefficients of the original
and target systems are the same, we have the identity w(x, t) = u(x, t). From (3.7)
we have s(0, 0) = 0, which gives A = 1. Using (3.6), we obtain

h′(x)√
h(x)2 − 1

= λ(x) + d(x),

which gives

(3.8) h(x) = cosh

(∫ x

0
a(τ)dτ

)
,
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where a = a(x) is defined by

(3.9) a(x) := λ(x) + d(x).

Thus, we can write

s(x, x) = −h′(x)

a(x)
= − sinh

(∫ x

0
a(τ)dτ

)
.

Our next goal is to find k(x, x) explicitly. Let us denote f(x) = sy(x, x). Inte-
grating (3.2) and using (3.3), we obtain

(3.10) 2k(x, x) = h′(x) +

∫ x

0

[
−2a(τ)f(τ) + 2

λ′(τ)h′(τ)

a(τ)
− (β(τ) + c(τ))h(τ)

]
dτ .

We see that we have to find f(x) in order to get k(x, x). From (3.5) we get

sx(x, x) = −a(x)h(x) − f(x).

Using (3.5), (3.9), and the previous equation, we get

sxx(x, x) − syy(x, x) = [sx(x, x)− sy(x, x)]
′ = [−a(x)h(x) − 2f(x)]′ ,

which shows that f is the solution of the integrodifferential equation

(3.11)





2f ′(x) − 2a(x)

∫ x

0
a(τ)f(τ)dτ = L(x),

f(0) = −a(0),

where L = L(x) is defined by

(3.12) L(x) := (4λ(x)a(x) − 2a2(x) + c(x) + β(x)) sinh

(∫ x

0
a(τ) dτ

)
− a′(x)h(x)

− 2a(x)

∫ x

0

λ′(τ)h′(τ)

a(τ)
dτ + a(x)

∫ x

0
(β(τ) + c(τ))h(τ) dτ .

From (3.11) we obtain the following second order ODE (ordinary differential equation)
for f(x):

(3.13)

{
2a(x)f ′′(x)− 2a′(x)f ′(x)− 2a3(x)f(x) = L′(x)a(x) − L(x)a′(x),
f(0) = −a(0), f ′(0) = −a′(0)/2 .

The solution of (3.13) is

(3.14) f(x) = −a(0) cosh

(∫ x

0
a(τ) dτ

)
+

1

2

∫ x

0
L(y) cosh

(∫ x

y
a(τ) dτ

)
dy.

Using (3.14), (3.12), and (3.10), after tedious but straightforward calculations we
obtain

k(x, x) = m(x) :=
h′(x)

2a(x)
(2λ(x) + a(x) + a(0))(3.15)

+
h(x)

2

∫ x

0
(d2(y)− λ2(y)− β(y)− c(y)) dy.
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Let us define ρi = ρi(x, y) with i = 1, . . . , 5 by

ρ1(x, y) = 2(λ(y) + d(x)), ρ2(x, y) = c(x) + β(y), ρ4(x, y) = 4λ′(y),

ρ3(x, y) = 2(λ(y)β(y)+λ′′(y)+d(x)β(y)), ρ5(x, y) = 4λ2(y)+4d(x)λ(y)+c(x)+β(y);

then one gets the following equations for the kernel functions:

(3.16)






kxx(x, y)− kyy(x, y) = ρ1(x, y)syy(x, y) + ρ2(x, y)k(x, y)
+ρ3(x, y)s(x, y) + ρ4(x, y)sy(x, y),

k(x, x) = m(x),
k(x, 0) = 0,

(3.17)






sxx(x, y)− syy(x, y) = ρ1(x, y)k(x, y) + ρ5(x, y)s(x, y),

s(x, x) = − sinh

(∫ x

0
a(τ)dτ

)
,

s(x, 0) = 0.

3.2. Existence of the kernel functions. To prove the existence of solutions
of (3.16), (3.17), we perform the following change of variable:

ξ = x+ y, η = x− y.

Let us define the functions G = G(ξ, η) and Gs = Gs(ξ, η) by

G(ξ, η) = k

(
ξ + η

2
,
ξ − η

2

)
, Gs(ξ, η) = s

(
ξ + η

2
,
ξ − η

2

)

and denote

g1(ξ) := m(ξ/2), g2(ξ) := − sinh

(∫ ξ/2

0
a(τ)dτ

)
,

bi(ξ, η) := ρi

(
ξ + η

2
,
ξ − η

2

)
∀i = 1, . . . , 4.

From (3.16) and (3.17), one obtains the PDEs

(3.18)






Gξη = b1(Gs
ξξ − 2Gs

ξη +Gs
ηη) + b2G+ b3Gs + b4(Gs

ξ −Gs
η),

G(ξ, 0) = g1(ξ),
G(ξ, ξ) = 0

and

(3.19)






Gs
ξη = b1G+ b5Gs,

Gs(ξ, 0) = g2(ξ),
Gs(ξ, ξ) = 0.
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Integrating (3.18), first with respect to η between 0 and η, and then with respect to
ξ between η and ξ, one gets

G(ξ, η) = g1(ξ)− g1(η) +
1

4

∫ ξ

η

∫ η

0
b2(τ, s)G(τ, s)dsdτ(3.20)

+
1

4

∫ ξ

η

∫ η

0
b1(τ, s)

(
Gs

ξξ(τ, s)− 2Gs
ξη(τ, s) +Gs

ηη(τ, s)
)
dsdτ

+
1

4

∫ ξ

η

∫ η

0

(
b3(τ, s)G

s(τ, s) + b4(τ, s)(G
s
ξ(τ, s)−Gs

η(τ, s))
)
dsdτ .

In the same way, we integrate (3.19), first with respect to η between 0 and η, and
then with respect to ξ between η and ξ. One gets

(3.21) Gs(ξ, η) = g2(ξ)− g2(η) +
1

4

∫ ξ

η

∫ η

0
(b1(τ, s)G(τ, s) + b5(τ, s)G

s(τ, s)) dsdτ.

We use next a classical iterative method in order to prove that the coupled equa-
tions (3.20) and (3.21) have a unique solution. Let us define the functions G0 and
Gs,0 as

G0(ξ, η) = g1(ξ)− g1(η) , Gs,0(ξ, η) = g2(ξ)− g2(η)

and set up the following recursion for n = 0, 1, 2, . . . :

Gn+1(ξ, η) =
1

4

∫ ξ

η

∫ η

0
b2(τ, s)G

n(τ, s)dsdτ

+
1

4

∫ ξ

η

∫ η

0
b1(τ, s)

(
Gs,n

ξξ (τ, s)− 2Gs,n
ξη (τ, s) +Gs,n

ηη (τ, s)
)
dsdτ

+
1

4

∫ ξ

η

∫ η

0

(
b3(τ, s)G

s,n(τ, s) + b4(τ, s)(G
s,n
ξ (τ, s)−Gs,n

η (τ, s))
)
dsdτ,

Gs,n+1(ξ, η) =
1

4

∫ ξ

η

∫ η

0
(b1(τ, s)G

n(τ, s) + b5(τ, s)G
s,n(τ, s)) dsdτ.

By defining M := max{2‖g′1‖L∞(0,1), 2‖g′2‖L∞(0,1), ‖g′′2‖L∞(0,1)}, we obtain

|G0(ξ, η)| = |g1(ξ)− g1(η)| ≤ ‖g′1‖L∞(0,1)|ξ − η| ≤ 2‖g′1‖L∞(0,1) ≤ M,

|Gs,0(ξ, η)| = |g2(ξ)− g2(η)| ≤ ‖g′2‖L∞(0,1)|ξ − η| ≤ 2‖g′2‖L∞(0,1) ≤ M,

|Gs,0
ξ (ξ, η)| = |g′2(ξ)| ≤ ‖g′2‖L∞(0,1) ≤ M,

|Gs,0
η (ξ, η)| = |g′2(η)| ≤ ‖g′2‖L∞(0,1) ≤ M,

|Gs,0
ηξ (ξ, η)| = 0 ,

|Gs,0
ξξ (ξ, η)| = |g′′2 (ξ)| ≤ ‖g′′2‖L∞(0,1) ≤ M,

|Gs,0
ηη (ξ, η)| = |g′′2 (η)| ≤ ‖g′′2‖L∞(0,1) ≤ M.

Let us now suppose that for some n ∈ N we have

(3.22)






|Gn(ξ, η)| ≤ MKn (ξ+η)n

n! , |Gs,n(ξ, η)| ≤ MKn (ξ+η)n

n! ,
1.5pt|Gs,n

ξ (ξ, η)| ≤ MKn (ξ+η)n

n! , |Gs,n
η (ξ, η)| ≤ MKn (ξ+η)n

n! ,
1.5pt|Gs,n

ξξ (ξ, η)| ≤ MKn (ξ+η)n−1

(n−1)! , |Gs,n
ξη (ξ, η)| ≤ MKn (ξ+η)n−1

(n−1)! ,
1.5pt|Gs,n

ηη (ξ, η)| ≤ MKn (ξ+η)n−1

(n−1)! .
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From (3.20) and (3.21) we obtain

|Gs,n+1(ξ, η)| ≤ 1

4
‖b1‖L∞

∫ ξ

η

∫ η

0
|Gn(τ, s)|dsdτ +

1

4
‖b5‖L∞

∫ ξ

η

∫ η

0
|Gs,n(τ, s)|dsdτ

≤
(
‖b1‖L∞ + ‖b5‖L∞

4

)
MKn

n!

∫ ξ

η

∫ η

0
(τ + s)ndsdτ

≤
(
‖b1‖L∞ + ‖b5‖L∞

4

)
MKn

(n+ 1)!

∫ ξ

η
((τ + η)n+1 − τn+1)dτ

≤
(
‖b1‖L∞ + ‖b5‖L∞

4

)
MKn

(n+ 1)!
|ξ − η|(ξ + η)n+1

≤
(
‖b1‖L∞ + ‖b5‖L∞

2

)
MKn

(n+ 1)!
(ξ + η)n+1

and

|Gn+1(ξ, η)| ≤ ‖b2‖L∞

4

∫ ξ

η

∫ η

0
|Gn(τ, s)|dsdτ +

‖b3‖L∞

4

∫ ξ

η

∫ η

0
|Gs,n(τ, s)|dsdτ

+
‖b1‖L∞

4

∫ ξ

η

∫ η

0
|Gs,n

ξξ (ξ, s)|+ 2|Gs,n
ηξ (η, s)||Gs,n

ηη (ξ, s)|dsdτ

+
‖b4‖L∞

4

∫ ξ

η

∫ η

0
|Gs,n

ξ (ξ, s)|+ |Gs,n
η (η, s)|dsdτ

≤
(
‖b2‖L∞ + ‖b3‖L∞ + 2‖b4‖L∞

4

)
MKn

n!

∫ ξ

η

∫ η

0
(τ + s)ndsdτ

+ ‖b1‖L∞
MKn

(n− 1)!

∫ ξ

η

∫ η

0
(τ + s)(n−1)dsdτ

≤
(
‖b2‖L∞ + ‖b3‖L∞ + 2‖b4‖L∞ + 4‖b1‖L∞

2

)
MKn

(n+ 1)!
(ξ + η)n+1 .

In a very similar way, we obtain

∣∣Gs,n+1
ξ (ξ, η)

∣∣ ≤
(
‖b1‖L∞ + ‖b5‖L∞

4

)
MKn (ξ + η)n+1

(n+ 1)!
,

∣∣Gs,n+1
η (ξ, η)

∣∣ ≤
(
‖b1‖L∞ + ‖b5‖L∞

4

)
MKn (ξ + η)n+1

(n+ 1)!
,

∣∣Gs,n+1
ξη (ξ, η)

∣∣ ≤
(
‖b1‖L∞ + ‖b5‖L∞

4

)
MKn (ξ + η)n

n!
,

∣∣Gs,n+1
ξξ (ξ, η)

∣∣ ≤
(
‖b1‖L∞ + ‖b5‖L∞ + ‖b1ξ‖L∞ + ‖b5ξ‖L∞

4

)
MKn (ξ + η)n

n!
,

and

∣∣Gs,n+1
ηη (ξ, η)

∣∣ ≤
(
‖b1‖L∞ + ‖b5‖L∞ + ‖b1η‖L∞ + ‖b5η‖L∞

4

)
MKn (ξ + η)n

n!
.
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Thus, by induction we have proved that (3.22) holds with a constant K given, for
instance, by

K =
1

2
max

{
‖b1‖C1 + ‖b5‖C1 , 4‖b1‖L∞ + ‖b2‖L∞ + ‖b3‖L∞ + 2‖b4‖L∞

}
.

Once the estimates (3.22) are proved, it follows that the solutions of (3.20) and
(3.21) are given by the series

(3.23) Gs(ξ, η) =
∞∑

n=0

Gs,n(ξ, η), G(ξ, η) =
∞∑

n=0

Gn(ξ, η),

which define two continuous functions. To see that these functions are indeed more
regular, we use the equations which they satisfy. From (3.21), we see that Gs belongs
to C2 if b1 and b5 are continuous. Then, from (3.20), we see that if bi with i = 1, . . . , 4
are continuous functions, then G belongs to C2. Thus, we obtain the following result
asserting the existence of the kernel functions k and s.

Theorem 3.1. Let λ ∈ C2([0, 1]), β ∈ C0([0, 1]), and d, c ∈ C0([0, 1]). Then
(3.16) and (3.17) have a unique solution k, s ∈ C2(T ).

3.3. Transforming the plant into the “target” system. Let us define the
map

Π : H1
L(0, 1)× L2(0, 1) −→ H1

L(0, 1)× L2(0, 1),
(q1, q2) ,−→ Π(q1, q2) = (z1, z2),

where z1, z2 are defined by

z1(x) := h(x)q1(x) −
∫ x

0
k(x, y)q1(y)dy −

∫ x

0
s(x, y)q2(y)dy,

z2(x) := sy(x, x)q1(x)− s(x, x)q′1(x) + h(x)q2(x)

−
∫ x

0

[
λ(y)s(x, y) + k(x, y)

]
q2(y)dy −

∫ x

0

[
β(y)s(x, y) + syy(x, y)

]
q1(y)dy.

This linear map is continuous, and hence there exists a positive constant D1 such that

(3.24) ‖Π(q1, q2)‖H1(0,1)×L2(0,1) ≤ D1‖(q1, q2)‖H1(0,1)×L2(0,1).

The importance of Π is that it maps solutions (q(t), qt(t)) of

qtt(x, t) = qxx(x, t) + 2λ(x)qt(x, t) + β(x)q(x, t),

q(0, t) = 0, q(1, t) =
1

h(1)

{∫ 1

0
k(1, y)q(y, t)dy +

∫ 1

0
s(1, y)qt(y, t)dy

}

into solutions (z(t), zt(t)) := Π(q(t), qt(t)) of

ztt(x, t) = zxx(x, t)− 2d(x)zt(x, t)− c(x)z(x, t),

z(0, t) = z(1, t) = 0.

The map Π, converting the original unstable system into the target system, is invert-
ible. Indeed, to obtain the kernel functions k̂ = k̂(x, y) and ŝ = ŝ(x, y) defining Π−1,
we simply replace the functions d(x) by −λ(x) and λ(x) by −d(x) in the previous
analysis for the kernels k = k(x, y) and s = s(x, y). Thus, we get a map

Π−1 : H1
L(0, 1)× L2(0, 1) −→ H1

L(0, 1)× L2(0, 1)

and a positive constant D2 such that

(3.25) ‖Π−1(z1, z2)‖H1(0,1)×L2(0,1) ≤ D2‖(z1, z2)‖H1(0,1)×L2(0,1).
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4. Stability of the target system. Recall that the target system is

(4.1)






wtt(x, t) = wxx(x, t)− 2d(x)wt(x, t) − c(x)w(x, t),
w(0, t) = 0, w(1, t) = 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x),

with d = d(x) and c = c(x) two continuous functions that can be chosen arbitrarily
(as long as exponential stability is maintained). The exponential stability of (4.1)
has been studied by Cox and Zuazua in [5] in the case c = 0 and by Shubov in
[16] in the general case, considering even a nonconstant diffusive coefficient. Their
approach is spectral: they prove that the eigenfunctions of the underlying nonself-
adjoint operator form a Riesz basis of the space and that the best exponential decay
rate is exactly given by supk∈N -(σk), where the set {σk}k∈N is the set of eigenvalues
of the stationary operator and -(z) stands for the real part of a complex number z.
The result in [5] is the following.

Theorem 4.1 (Cox and Zuazua [5]). There exist two positive constant C,ω such
that for any (w0, w1) ∈ H1

0 (0, 1)× L2(0, 1), the solution of (4.1) satisfies

(4.2) ‖(w(·, t), wt(·, t))‖H1(0,1)×L2(0,1) ≤ Ce−ωt‖(w0, w1)‖H1(0,1)×L2(0,1) ∀t > 0.

In this paper, the functions d and c are part of the design of the feedback law,
and hence we are able to consider (4.1) with constant coefficients. In this case, for
any ω > 0, we can find the parameters d and c so that (4.2) holds.

For the sake of completeness, we give a proof of (4.2) here. First, we study the
constant coefficient case, where we can choose the parameters d and c so that the
exponential decay rate ω is as large as desired. Then, in the nonconstant case, we
apply the Lyapunov approach to quickly get the stability result. In this case, we do
not get an arbitrarily large decay rate.

Remark 4.2. In [6] and [2] the exponential stability of (4.1) is proved in the
case of an indefinite damping term, i.e., with a damping taking positive and negative
values. It is done under a spectral hypothesis involving the damping and the spectral
elements of the underlying operator. This hypothesis implies that the damping is
“more positive than negative.”

4.1. Constant coefficient case. Let us first consider the case where the design
functions d and c are positive constants. It is well known that if we take d > 0 and
c = 0, then the system is exponentially stable, but an arbitrary decay rate cannot be
achieved due to overdamping. As can be seen below in the formula for the eigenvalues,
the maximal decay rate in this case is π even for large values of the parameter d. That
is the reason why we also consider a nonzero parameter c.

In order to apply a spectral approach, let us define the operator A : D(A) ⊂
H1

0 (0, 1)× L2(0, 1) → H1
0 (0, 1)× L2(0, 1) as follows:

D(A) := H2(0, 1) ∩H1
0 (0, 1)×H1

0 (0, 1),

A(v1, v2) = (v2, v
′′
1 − 2dv2 − cv1).

By defining v := wt, we write system (4.1) as

{
d
dt(w(t), v(t)) = A(w(t), u(t)),

(w(0), v(0)) = (w0, w1) .
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The eigenvalues of the operator A are given by

σ−k = −d−
√
d2 − c− k2π2, σk = −d+

√
d2 − c− k2π2 ∀k ∈ N ,

with the corresponding complex-valued eigenfunctions

ϕ−k =
√
2




1

σ−k
sin(kπx)

sin(kπx)



 , ϕk =
√
2




1

σk
sin(kπx)

sin(kπx)



 ∀k ∈ N .

For any d > 0, we choose the parameter c such that d2 − c < π2. Thus for
any k ∈ Z, -(σk) = −d. As the parameter d can be chosen arbitrarily, we ob-
tain the exponential decay to zero with any prescribed decay rate. Indeed, since
the functions {

√
2 sin(kπx)}k∈N form a basis of the space L2(0, 1) and the func-

tions {
√
2

kπ sin(kπx)}k∈N form a basis of the spaces H1
0 (0, 1), we can write for any

w0 ∈ H1
0 (0, 1) and w1 ∈ L2(0, 1),

w0(x) =
∑

k∈N
wk

0

√
2 sin(kπx)

kπ
, w1(x) =

∑

k∈N
wk

1

√
2 sin(kπx),

with {wk
0}k∈N, {wk

1}k∈N ⊂ R such that

‖w0‖H1(0,1) =

(
∑

k∈N
|wk

0 |2
)1/2

, ‖w1‖L2(0,1) =

(
∑

k∈N
|wk

1 |2
)1/2

.

By using these spectral elements, it is not difficult to see that the solution of (4.1)
can be written as

w(x, t) =
∑

k∈N
e−dt

{
wk

0 cos(αkt) +

(
wk

1 +
dwk

0

kπ

)
sin(αkt)

} √
2

kπ
sin(kπx)

with αk =
√
k2π2 + c, and therefore one gets (4.2) with ω = d.

4.2. General case. Even though one can always choose c and d as constants and
achieve any prescribed decay rate, in some cases, it may be desirable to choose these
parameters to be spatially varying, for example, to improve performance. Therefore,
we do not limit ourselves to the constant parameter case and give here the stability
proof for general c(x) > 0, d(x) > 0.

Given w0 ∈ H1
0 (0, 1) and w1 ∈ L2(0, 1), we consider w ∈ C([0,+∞);H1

0 (0, 1)) ∩
C1([0,+∞);L2(0, 1)) the solution of the target system (4.1). Along the trajectory
defined by this solution, we define the Lyapunov function

V (t) =
1

2

∫ 1

0

(
|wx|2 + |wt|2

)
dx+ δ

∫ 1

0
wwtdx +

1

2

∫ 1

0
c(x)|w|2dx,

where δ is a positive real number. The parameter δ has to satisfy the inequalities

δ < 1 , κ+ δ < c(x) , κ+ 2δ < 2d(x) ∀x ∈ [0, 1],

where κ is a positive real number.
The following two lemmas are easily proved by direct calculation.
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Lemma 4.3. The function V is nonincreasing. Moreover, we have

V̇ (t) ≤ −2δV (t).

Lemma 4.4. The function V is positive. Moreover, we have

V (t) ≥ min
{1− δ

2
,
κ

2

}
‖(w,wt)‖2H1(0,1)×L2(0,1).

From Lemma 4.3, we obtain that V (t) ≤ V (0)e−2δt, and from Lemma 4.4 we
obtain the exponential decay of the H1 × L2-norm in Theorem 4.1 with ω = δ and

C =
max{δ + 1, δ + ‖c‖L∞}

min{1− δ,κ} .

5. Closed-loop system. From the previous analysis, it is easy to see the fol-
lowing:

• If u0 ∈ H1
L(0, 1) and u1 ∈ L2(0, 1) satisfy the compatibility condition

u0(1) =
1

cosh
(∫ 1

0 a(τ)dτ
)
{∫ 1

0
k(1, y)u0(y)dy +

∫ 1

0
s(1, y)u1(y)dy

}
,

then (w0, w1) := Π(u0, u1) belongs to H1
0 (0, 1) × L2(0, 1). Furthermore, we

have (see (3.24))

‖(w0, w1)‖H1(0,1)×L2(0,1) ≤ D1‖(u0, u1)‖H1(0,1)×L2(0,1).

• For (w0, w1) ∈ H1
0 (0, 1) × L2(0, 1) we have that w ∈ C([0,∞);H1

0 (0, 1)) ∩
C1([0,∞);L2(0, 1)), the unique solution of (4.1), satisfies (see Theorem 4.1)

‖(w(·, t), wt(·, t))‖H1(0,1)×L2(0,1) ≤ Ce−ωt‖(w0, w1)‖H1(0,1)×L2(0,1) ∀t > 0.

• By defining for any t > 0, (u(t), ut(t)) := Π−1(w(t), wt(t)), we get the solution
of the closed-loop system

utt(x, t) = uxx(x, t) + 2λ(x)ut(x, t) + β(x)u(x, t),

u(0, t) = 0, u(1, t) =

∫ 1
0 k(1, y)u(y, t)dy +

∫ 1
0 s(1, y)ut(y, t)dy

cosh
(∫ 1

0 a(τ)dτ
) ,

u(0, x) = u0(x), ut(0, x) = u1(x).

Moreover, we have (see (3.25))

‖(u, ut)‖H1(0,1)×L2(0,1) ≤ D2‖(w,wt)‖H1(0,1)×L2(0,1).

Thus, we obtain the exponential decay to zero of the solutions of the closed-loop
system (2.1), (2.3), which ends the proof of Theorem 2.1.

6. Closed-form controllers. In this section we present several explicit control
designs.
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6.1. Undamped wave equation. Let λ ≡ 0, β ≡ 0 in (2.1):

(6.1)






utt(x, t) = uxx(x, t),
u(0, t) = 0,
u(1, t) = U(t) .

This wave equation has all of its eigenvalues on the imaginary axis. Let us move all
of them to the left in the complex plane by the same distance, parallel to the real axis
(in other words, only real parts of the eigenvalues are changed). This corresponds to
selecting the “critically damped” target system, a special case of (2.4) with c = d2:

(6.2)






wtt(x, t) = wxx(x, t) − 2dwt(x, t) − d2w(x, t),
w(0, t) = 0,
w(1, t) = 0.

All of the eigenvalues of the above system lie on the vertical line -{σk} = −d, which
is easy to see by using the transformation w = e−dtv and showing that v satisfies the
undamped wave equation.

The PDEs (3.16) and (3.17) become

(6.3)






kxx(x, y) = kyy(x, y) + 2dsyy(x, y),
k(x, 0) = 0,
k(x, x) = d sinh(dx)

and

(6.4)






sxx(x, y) = syy(x, y) + 2dk(x, y),
s(x, 0) = 0,
s(x, x) = − sinh (dx) .

The form of the boundary conditions in the above PDEs suggests

(6.5) k(x, y) = d sinh(dy), s(x, y) = − sinh(dy)

as a guess for a solution. Substituting these functions into the PDEs (6.3), (6.4) we
confirm that (6.5) is indeed a (unique) solution.

The transformation (2.2) can now be written as

(6.6) w(x, t) = cosh(dx)u(x, t) +

∫ x

0
sinh(dy)(ut(y, t)− du(y, t)) dy

and the controller is

(6.7) U(t) = −
∫ 1

0

sinh(dy)

cosh(d)
(ut(y, t)− du(y, t)) dy .

Note that the gain of this controller is bounded by a linear function of d.
Thanks to the gain of the transformation (6.6) being only a function of y, we can

write (6.6) in an algebraic form

(6.8)

[
wt + dw

wx

]
=

[
cosh(dx) sinh(dx)
sinh(dx) cosh(dx)

] [
ut

ux

]
.
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The inverse transformation is

(6.9)

[
ut

ux

]
=

[
cosh(dx) − sinh(dx)
− sinh(dx) cosh(dx)

] [
wt + dw

wx

]
,

or, in the integral form,

(6.10) u(x, t) = cosh(dx)w(x, t) −
∫ x

0
sinh(dy)(wt(y, t) + 2dw(y, t)) dy.

6.2. “Perfect” Lyapunov function for passively damped wave equation.
Consider the plant

(6.11)






utt(x, t) = uxx(x, t),
u(0, t) = 0,
ux(1, t) = U(t) .

It is well known that a so-called passive damper U(t) = −c1ut(1, t), c1 > 0, c1 0= 1,
exponentially stabilizes this system. Let us see what the backstepping design gives
for this plant. We use the transformation (6.6) and the following target system:

(6.12)






wtt(x, t) = wxx(x, t) − 2dwt(x, t) − d2w(x, t),
w(0, t) = 0,
wx(1, t) = 0 .

From (6.8) it is easy to see that the controller is

(6.13) U(t) = − tanh(d)ut(1, t),

so we recover the classical passive damper with c1 = tanh(d). This is not surprising,
because our design moves eigenvalues to the left parallel to the real axis (since (6.12)
is critically damped) and that is also exactly what a passive damper is known to do.
To put it another way, we found the similarity transformation (6.6) between the plant
with boundary damping and the plant with internal damping (critically damped). The
benefit of that similarity transformation is that for system (6.12) it is much easier to
come up with the Lyapunov function that shows arbitrary decay rate. In fact, the
simple Lyapunov function

(6.14) V =
1

2

∫ 1

0
(wt + dw)2 dx+

1

2

∫ 1

0
w2

x dx

gives

(6.15) V̇ = −2dV,

which is the exact decay rate given by the eigenvalues (hence one can call this Lya-
punov function “perfect” in some sense).

Using the transformation (6.8), we rewrite the above Lyapunov function in the
original variables. After simple calculations one gets

(6.16) V =
1

2

∫ 1

0
cosh(2dx)(u2

t + u2
x) dx+

∫ 1

0
sinh(2dx)utux dx,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4028 A. SMYSHLYAEV, E. CERPA, AND M. KRSTIC

or, in another form,

(6.17) V =
1

4

∫ 1

0
e 2dx(ut + ux)

2 dx+
1

4

∫ 1

0
e−2dx(ut − ux)

2 dx.

To the best of our knowledge, such a Lyapunov function (which shows the precise de-
cay rate given by eigenvalues) does not exist in the previous literature on this classical
problem. In the form (6.17) our Lyapunov function resembles the one in [4] for the
first-order hyperbolic equations. However, the control design in [4] is different (passive
dampers on both ends for two transport PDEs interconnected through boundaries)
and the best decay rate is not shown.

Given that c1 = tanh(d) < 1 for all d > 0, it may appear that the design above
recovers a passive damper only for 0 < c1 < 1, while it is known that c1 > 1 also works.
However, simply modifying the boundary condition of the target system (6.12) at x =
1 to the dynamic boundary condition wt(1, t) + dw(1, t) = 0 (which shifts eigenvalues
vertically by π/2), and using the transformation (6.8), we get U(t) = − coth(d)ut(1, t),
c1 = coth(d) > 1. The Lyapunov functions (6.14), (6.16), (6.17) with d = coth−1(c1)
give V̇ = −2dV .

6.3. Assignment of arbitrary damping and stiffness for critically anti-
damped wave equation. Consider the plant

(6.18)






utt(x, t) = uxx(x, t) + 2λut(x, t) − λ2u(x, t),
u(0, t) = 0,
u(1, t) = U(t) .

All eigenvalues of this plant lie on the vertical line -{σk} = λ. We assign arbitrary
damping and stiffness using a two-step design.

Step 1. Transform the plant into the critically damped system (6.2). This cor-
responds to moving all eigenvalues to the left by (λ + d). The PDEs for k and s
are

(6.19)






kxx(x, y) = kyy(x, y) + 2(λ+ d)syy(x, y) + (d2 − λ2)k − 2λ2(λ + d)s,
k(x, 0) = 0,
k(x, x) = (2λ+ d) sinh((d+ λ)x)

and

(6.20)






sxx(x, y) = syy(x, y) + 2(λ+ d)k(x, y) + (3λ2 + 4λd+ d2)s,
s(x, 0) = 0,
s(x, x) = − sinh ((λ+ d)x) .

As in section 6.1, based on the boundary conditions we make the following guess:

(6.21) k(x, y) = (2λ+ d) sinh((λ + d)y), s(x, y) = − sinh((λ + d)y) .

One can then verify that this pair of functions is indeed a solution of the PDEs (6.19),
(6.20).

Step 2. Adjust the stiffness coefficient to the desired level. We use the transfor-
mation

(6.22) w̄(x, t) = w(x, t) −
∫ x

0
p(x, y)w(y, t) dy
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to convert (6.2) into the system

(6.23)






w̄tt(x, t) = w̄xx(x, t)− 2dw̄t(x, t) − cw̄(x, t),
w̄(0, t) = 0,
w̄(1, t) = 0.

One can show that p(x, y) satisfies

(6.24)






pxx(x, y) = pyy(x, y) + (c− d2)p(x, y),
p(x, 0) = 0,
p(x, x) = − 1

2 (c− d2)x.

The solution to this PDE is [17]

(6.25) p(x, y) = −(c− d2)y
I1

(√
(c− d2)(x2 − y2)

)

√
(c− d2)(x2 − y2)

,

where I1 is the modified Bessel function of order one.
To find the total transformation from u to w̄, we combine the transformations

(2.2) with (6.22):

w̄(x, t) =

[
cosh((λ + d)x)u(x, t) −

∫ x

0
k(x, y)u(y, t) dy −

∫ x

0
s(x, y)ut(y, t) dy

]

−
∫ x

0
p(x, y) cosh((λ + d)y)u(y, t) dy

+

∫ x

0
p(x, y)

[∫ y

0
k(y, ξ)u(t, ξ) dξ +

∫ y

0
s(y, ξ)ut(t, ξ) dξ

]
dy

= cosh((λ + d)x)u(x, t)

−
∫ x

0

[
k(x, y) + p(x, y) cosh((λ+ d)y)−

∫ x

y
p(x, ξ)k(ξ, y) dξ

]
u(y, t) dy

−
∫ x

0

[
s(x, y)−

∫ x

y
p(x, ξ)s(ξ, y) dξ

]
ut(y, t) dy

= cosh((λ + d)x)u(x, t) −
∫ x

0
k̄(x, y)u(y, t) dy −

∫ x

0
s̄(x, y)ut(y, t) dy .

Using the expressions (6.21), (6.24) for the gains k, s, and p, we obtain

s̄(x, y) = −I0
(√

(c− d2)(x2 − y2)
)
sinh((λ + d)y) ,

k̄(x, y) = (2λ+ d)I0
(√

(c− d2)(x2 − y2)
)
sinh((λ + d)y)

− (c− d2)y
I1

(√
(c− d2)(x2 − y2)

)

√
(c− d2)(x2 − y2)

cosh((λ+ d)y).

The feedback law is

U(t) =

∫ 1

0

sinh((λ+ d)y)

cosh(λ+ d)
I0

(√
(c− d2)(1 − y2)

)
[(2λ+ d)u(y, t)− ut(y, t)] dy

−
∫ 1

0
(c− d2)y

cosh((λ + d)y)

cosh(λ+ d)

I1
(√

(c− d2)(1 − y2)
)

√
(c− d2)(1− y2)

u(y, t) dy.
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6.4. Plant with “pure” antidamping. For the plant

utt(x, t) = uxx(x, t) + 2λut(x, t)

the two-step approach described above gives the following gains for controller (2.3):

s(x, y) = sinh((λ + d)y) + λyr(x, y),

k(x, y) = −λy cosh((λ+ d)x)
I1(λ

√
x2 − y2)√

x2 − y2
− (2λ+ d) [sinh((λ+ d)y) + λyr(x, y)],

where

r(x, y) =

∫ x

y
sinh((λ + d)ξ)

I1(λ
√

ξ2 − y2)√
ξ2 − y2

dξ.

7. Extensions. The control design presented in this paper allows several straight-
forward extensions.

7.1. Neumann actuation. To extend the design to the plants with Neumann
actuation we modify one of the boundary conditions of the target system (2.4) from
w(1, t) = 0 to wx(1, t) = 0. Using the exact same transformation (2.2) then gives the
following feedback:

ux(1, t) =
1

h(1)

[
(−h′(1) + k(1, 1))u(1, t) + s(1, 1)ut(1, t)

+

∫ 1

0
kx(1, y)u(y, t) dy +

∫ 1

0
sx(1, y)ut(y, t) dy

]
.(7.1)

7.2. Robin boundary condition at the uncontrolled end. For plants with
the boundary condition ux(0, t) = −qu(0, t) instead of the Dirichlet u(1, t) = 0 the
transformation (2.2) leads to the PDEs (3.16), (3.17) with boundary conditions mod-
ified as follows:

(7.2) k(x, x) = m(x) + q, ky(x, 0) = −qk(x, 0), sy(x, 0) = −qs(x, 0),

and the same boundary condition for s(x, x). Using the method of successive approx-
imations with very slight modifications compared to section 3.2, one proves existence
and uniqueness of the solution of the control gain PDEs.

7.3. In-domain boundary and integral terms. The transformation (2.2)
also works for the following class of plants:

(7.3) utt = uxx+2λ(x)ut+β(x)u+g1(x)u(0, t)+g2(x)ux(0, t)+

∫ x

0
f(x, y)u(y, t) dy,

which may appear as a part of the design for more complex systems. The extra terms
here are strict-feedback and therefore do not pose any difficulties for the backstepping
design.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILIZATION OF AN ANTIDAMPED WAVE EQUATION 4031

7.4. Observers and output feedback. In the designs in previous sections we
assumed the measurements of u and ut across the domain. Using the ideas presented in
[18], it is possible to design dual observers which require only boundary measurements
of u and ut, either on the same or on the opposite boundary with actuation. These
observers can then be combined with the backstepping controllers using the certainty
equivalence principle.
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