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1. INTRODUCTION

Passively mode-locked lasers are used to generate ultra-short,

high-energy, and stable optical pulses. Compactness, stability,

and cost are among the major concerns for practical design of

these lasers. The stability of these systems as system param-

eters vary must be determined to optimize the system and its

components.

Despite the vast quantity of both experimental and theoreti-

cal work that has been published on passively mode-locked

laser systems [1–3], little theoretical work has been done to

investigate the stability of these systems over a broad param-

eter range. Typical theoretical studies solve the evolution

equations starting from noise or some other initial conditions

and allow the solution to evolve until it either settles down to a

stationary or periodically stationary state or fails to settle

down after a long evolution time [4–6]. This approach can

be ambiguous, since it is often not clear how long it is neces-

sary to wait for a pulse to settle down, and the computation

time required to evolve to a steady state approaches infinity in

principle when the system parameters approach a stability

boundary.

Here we describe a different approach that is based on

dynamical systems theory [7,8]. A mode-locked pulse is a sta-

tionary or periodically stationary solution of a nonlinear

dynamical system and can also be viewed as an equilibrium

of that system. In this paper we refer to the mode-locked pulse

solutions of the equations that we will be studying as equilib-

rium solutions. If any possible perturbation grows exponen-

tially, then the system is linearly unstable. The stability can

be determined by solving a linear eigenvalue problem

[9,10]. Once a mode-locked solution (an equilibrium) has been

found for a single set of parameters using the evolution

equations, we can rapidly trace the equilibrium solution as

the system parameters vary by solving a root-finding problem

to obtain the equilibrium solution without solving the evolu-

tion equations. In parallel, we determine the solution’s stabil-

ity as the system parameters vary. Once a stability boundary is

encountered, we can then track its location in the parameter

space. This approach allows us to rapidly determine the exist-

ence and stability of pulses over a broad parameter range.

In this work, we apply this dynamical approach to the old-

est and most widely used model equation of a passively mode-

locked laser system. This model equation was originally

proposed by Haus [11], and we refer to it as the Haus

mode-locking equation (HME), which may be written as
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where u�t; z� is the complex field envelope, t is the retarded

time, z is the propagation distance, ϕ is the phase rotation per

unit length, l is the loss coefficient, g�juj� is the saturated gain,

β00 is the group velocity dispersion coefficient, γ is the Kerr

coefficient, and ωg is the gain bandwidth. The value of ϕ

has no effect on the pulse evolution except to induce on over-

all phase rotation. It is common to set it to zero, but it physi-

cally corresponds to the rate of change of the carrier envelope

offset. It is mathematically convenient for us to let it be arbi-

trary for now. If the relaxation of the laser medium is much

slower than the pulse repetition rate, the saturated gain is well

approximated by

g�juj� � g0∕�1� Pav�juj�∕Psat�; (2)

where g0 is the unsaturated gain, Pav�juj� is the average power

in the laser cavity, and Psat is the saturation power of the am-

plifier. We may write Pav�juj� �
R TR∕2
−TR∕2

ju�t; z�j2dt∕TR, where

TR is the round-trip time. The function f sa�juj� represents

the model of fast saturable absorption. In the HME, we have

f sa�juj� � δjuj2, where δ is the fast saturable absorption

constant.
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The HME predicts only a narrow stability range for δ that is

inconsistent with what has been observed experimentally

[12]. Motivated by this observation—and in an effort to more

accurately model the laser physics—other models of the fast

saturable absorption have been introduced. A common

approach is to add a quintic term, and f sa�juj� becomes

f sa�juj� � δjuj2 − σjuj4; (3)

where σ > 0 is the coefficient of the quintic term [4,5,13,14],

which relaxes the stability constaints posed on the term δ and

enables us to find more stable pulse solutions in a broader

range of the parameter space. We refer to the mode-locking

equation that is formulated in Eqs. (1)–(3) as the cubic–quintic

mode-locking equation (CQME). The CQME is not a quantita-

tively accurate model of any real passively mode-locked laser

system of which we are aware. However, it is simple, and it

contains the essential elements that any model of a passively

mode-locked laser system must have to ensure the existence

of stable pulse solutions. Hence, it has been widely used to

obtain qualitative insights into the behavior of many lasers,

and is thus a useful model upon which to test our algorithms.

At the end of this paper, we briefly discuss how the algorithms

must be modified to be applied to more specialized and

realistic models.

When dynamical systems go unstable as a parameter

varies, the instability mechanisms are referred to in the non-

linear dynamics literature as bifurcations [7,8]. The bifurca-

tions that can occur in our system with the parameters that

we are using are saddle-node bifurcations, which occur when

the mode-locked pulse amplitude becomes unstable, and

Hopf bifurcations, which occur when continuous waves be-

come unstable. In our system, the spectrum of eigenvalues

has a discrete component, referred to as the discrete spec-

trum and a continuous component, referred to as the

continuous or essential spectrum [15,16]. It is possible in

our system for discrete eigenvalues to emerge from the

continuous spectrum. These bifurcations are called edge

bifurcations [15].

In this paper, we will determine the stability region of the

CQME in the parameter space �σ; δ�, which are the parameters

of the fast saturable absorption, keeping other parameters

fixed. We operate in the anomalous dispersion regime, in

which β00 < 0. In Section 2, we review the properties of the

bifurcations that appear in our study (saddle-node, Hopf,

and edge). In Section 3, we describe the equilibrium solutions

to the CQME, derive the eigenvalue equation that governs the

stability of these solutions, and present the eigenvalue spec-

trum in a typical stable case. In Section 4 we present the com-

putational techniques that we use to find the equilibrium

solutions as the system parameters vary, determine their sta-

bility, and find the stability boundary locations. In Section 5

we present our results. Finally, Section 6 contains the

conclusions.

2. REVIEW OF RELEVANT DYNAMICAL
THEORY

It has been known since the late 19th century that solving the

evolution equations is not an effective approach for determin-

ing the stability of a nonlinear dynamical system, particularly

as the system parameters vary [17]. Instead, it is better to

use geometric or dynamical methods in which one first

determines stationary or periodically stationary solutions

of the dynamical system, referred to as equilibria, and one

then linearizes the equation about these equilibria to find

their linear stability. This basic approach then becomes the

starting point for addressing more complex issues, such

as the nonlinear stability of the system and the onset of

chaos; however, these issues are not addressed in this

paper.

As noted in Section 1, these powerful dynamical methods

have been systematically exploited in many areas of science

and engineering—including fluids and plasmas [18,19] and, in

recent years, biological systems [7,8]. However, these meth-

ods have not been systematically applied to mode-locked

lasers. To our knowledge, they have only been applied in

special cases where analytical solutions are known for the

equilibria [15,20].

The basic approach that we will use is to first find an equi-

librium solution for one set of parameters using the evolution

equations. We can then determine the equilibrium solution as

parameters vary by solving a root-finding problem, which is

far more computationally efficient than is solving the evolu-

tion equations, especially when the point of operation in

parameter space approaches the stability boundary. Addition-

ally, solving the root-finding problem allows us to find equilib-

ria regardless of their stability. We vary parameters until we

encounter a stability boundary, and we then move along the

boundary—tracking or mapping its location. The stability is

determined by calculating the eigenvalues of the linearized

evolution equations. When any of the eigenvalues has a pos-

itive real part, then the equilibrium is unstable. At a stability

boundary in the problem that we are considering in this paper,

one or more eigenvalues whose real parts are negative

become pure imaginary. At that point, one of two things

can happen as the parameters vary further. First, the equilib-

rium can continue to exist, but some of the eigenvalues of the

linearized evolution equation become positive. In this case,

the equilibrium is unstable. Alternatively, the equilibrium

can cease to exist. In either case, this behavior is referred

to in the mathematics literature as a bifurcation [7,8].

In the problem that we will be addressing in this paper, we

will encounter two types of bifurcations when our system be-

comes unstable. The first type is a saddle-node bifurcation.

This type of bifurcation can be illustrated with the first-order

ordinary differential equation (ODE)

dx

dt
� −r � x2; (4)

where both x and r are real. When r > 0, this equation has two

equilibrium solutions, x ≡ x0 � �r1∕2. The equilibrium x0 �
r1∕2 is unstable, while the equilibrium x0 � −r1∕2 is stable.

When r � 0, the two equilibria coincide, and, in a sense, “an-

nihilate” each other [7], so that when r < 0, there is no longer

an equilibrium. In this case, the eigenvalue of the linearized

equation for the stable equilibrium is real and negative. The

system becomes unstable at the point that the eigenvalue

becomes equal to zero.

The second type of bifurcation is a Hopf bifurcation. In this

case, two eigenvalues that are complex conjugates simultane-

ously cross the imaginary axis. This type of bifurcation can be

illustrated with the second-order equation
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_x � μx − ωy� α�x2 � y2�x; (5a)

_y � ωx� μy� β�x2 � y2�y; (5b)

where μ, ω, α, and β are all parameters of the system. This

system has an equilibrium at �x; y� � �0; 0� for any parameter

values. The linearized equation has the eigenvalues

λ � μ� iω. When the parameter μ change from negative to

positive—unlike the case of saddle-node bifurcation where

the equilibrium disappears when the bifurcation occurs—

the equilibrium continues to exist, but becomes unstable.

There is a third type of bifurcation that we will encounter in

this paper. Equation (4) is a partial differential equation on the

infinite line, i.e., the retarded time t extends from −∞ to ∞.

The corresponding linearized equation will have both a dis-

crete and continuous spectrum. It is possible, as parameters

vary, for new discrete eigenvalues to appear. This sort of

bifurcation is called an edge bifurcation in the mathematics

literature [21]. A relatively simple, linear illustration of this

behavior is the well-known three-slab waveguide as the index

of refraction of the intermediate slab varies. This waveguide

may be described by the equation [22]

d2u

dx2
� �k2

0
Δn2

− λ2�u � 0; (6)

where k0 is the wavenumber of the light, Δn2 is the difference

between the squared indices of refraction of the central and

the two outside slabs, and λ is the eigenvalue. When Δn2 < 0,

then there is no discrete spectrum. Only a continuous spec-

trum exists with purely imaginary eigenvalues, λ. By contrast,

when Δn2 > 0, there is at least one discrete eigenvalue that is

purely real. This eigenvalue bifurcates out of the continuous

spectrum, starting at the point where Δn2 � 0.

3. THE EQUILIBRIUM SOLUTION AND ITS
STABILITY

In this paper, we will find the stability boundary in the �σ; δ�
plane while keeping other system parameters fixed. The first

step in determining the stability boundaries as system param-

eters �σ; δ� vary is to seek a stationary pulse solution of the

CQME �u0�t�;ϕ0� in the form of

u�t; z� � u0�t�; (7)

so that u�t; z� is independent of z. We note that ϕ � ϕ0 is not

arbitrary in this equilibrium solution, but must be found in par-

allel with u0�t�. The equilibrium solution u0�t� is an equilib-

rium (or fixed point) of the dynamical system that exists

only for a special value of ϕ0. Analytical solutions of the

CQME exist in certain parameter regimes. However, the

known exact analytical solutions are of limited use because

they exist only for limited combinations of the coefficients

of the CQME [5,12], and they are unstable when β00 < 0.

We provide more detail on these analytical solutions in

Appendix A. Recently, an interesting class of approximate sol-

utions that are called highly chirped solitons has been re-

ported [23–27]. However, in this paper we do not consider

such solutions since our study focuses on the anomalous

dispersion regime, while the reported approximate analytical

solutions are found in the normal dispersion regime. In

general, we are able to find stable numerical solutions in re-

gions where the known analytical solutions do not exist, and it

is this more general case in which we are interested.

To determine the linear stability of the system once

�u0�t�;ϕ0� has been found for a given set of parameters, we

linearize Eq. (1) and obtain
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where Δu�t; z� � u�t; z� − u0�t� is a small perturbation of

u0�t�, and hu0;Δui �
R TR∕2
−TR∕2

u	
0
Δudt. By taking Δu�t; z� �

exp�λz�Δu�t�, where λ is a constant, we obtain an eigenvalue

problem:

λΔu � ∂

∂z
Δu; (9)

where λ is an eigenvalue and Δu is the eigenmode correspond-

ing to λ. The linear stability of the equilibrium solution can be

determined by the distribution of all eigenvalues on the com-

plex plane, as discussed in Section 2. A dynamical system that

is linearly unstable can in principle be nonlinearly stable be-

cause the system evolves rapidly to a nearby equilibrium or

limit cycle [7,8]. However, it is usually found in practice that

linear stability is a prerequisite for stable behavior. In this

paper, we are concerned only with linear stability, and we will

refer to linearly stable and unstable systems simply as “stable”

and “unstable.”

In order to illustrate the behavior when a stable equilibrium

exists for which no analytical solution is known, we consider

the parameter set that is shown in Table 1. Except for σ and δ,

all parameters will be held fixed with these values throughout

this paper. In Fig. 1, we set �σ; δ� � �0.002; 0.035�, and we

show the evolution of an initial pulse u�t � 0; z� �
0.2 exp�−�t∕5�2�. In Fig. 2, we show the final equilibrium sol-

ution u0�t�, where the phase at t � 0 is set equal to zero, and

we find ϕ0 � 1.856. There is a non-zero chirp, which we

indicate using false color. We will describe in more detail

the computational procedure that we use to find this solution

in the next section.

In Fig. 3, we show the linearized eigenvalue spectrum. The

spectrum includes two branches that are symmetric about the

real axis and four real discrete eigenvalues that correspond

physically to perturbations of the equilibrium solutions cen-

tral time (λt), central phase (λϕ), amplitude (λa), and central

frequency (λf ) [28,29]. The real parts of all the eigenvalues are

Table 1. Normalized Values of Parameters

Parameter Value Parameter Value

g0 0.4 TRPsat 1

l 0.2 ωg

������

10
p

∕2

γ 4 β00 −2
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negative except for λt and λϕ, which equal 0. These eigenval-

ues must equal zero because the CQME, as well as its lineari-

zation, Eq. (8), are invariant with respect to time and phase

shifts. One consequence is that these eigenvalues must remain

strictly zero as the system parameters vary and so cannot lead

to instability. Another consequence is that the equilibria are

only neutrally stable. In particular, noise perturbations will

lead to random, unconstrained fluctuations in the central time

and phase of the mode-locked pulses. One of the great

advances in mode-locked laser technology in the past 15 years

has been the development of electronic feedback systems that

can lock the central time and central phase of the mode-

locked pulse to an external reference [30]. From a mathemati-

cal perspective, these feedback systems break the invariance

of the CQME, leading to coupled systems of equations, de-

scribing the coupled optical–electronic systems, which when

linearized about their equilibrium solutions have eigenvalues

whose real parts are all strictly negative [31]. A detailed dis-

cussion of this behavior is outside the scope of this paper.

The eigenvalue spectrum in Fig. 3 is qualitatively the same

as the spectrum that appears in soliton perturbation theory, in

which the equilibria are soliton solutions of the nonlinear

Schrödinger equation [28,29]. In that case, there are also

two complex conjugate branches of the continuous spectrum

and four discrete eigenvalues. We have found that this behav-

ior is generic in the �σ; δ� plane, with the other parameters

given in Table 1, until δ becomes relatively large, at which

point edge bifurcations appear. The parameters in Table 1

correspond to the anomalous dispersion regime; so, it is

not surprising that the eigenvalue spectrum should corre-

spond closely to the soliton spectrum. In preliminary studies,

we have found that the spectrum changes significantly when

the average dispersion becomes normal.

4. DESCRIPTION OF THE ALGORITHMS

We now describe in detail the boundary tracking algorithms

that we use to determine the stability boundaries in the �σ; δ�
plane. This algorithm is really a collection of algorithms that

carry out the following tasks:

1. Solution of the evolution equations. We must solve the

evolution equations to find a stable equilibrium (mode-locked)

solution for at least one set of parameters, as described in

Section 2. This stable equilibrium is then the starting point

for the remainder of the algorithm. We also solve the evolution

equations on occasion to check our results and determine the

evolution of unstable solutions. To solve the evolution equa-

tions, we use a variant of the split-step method that we have

described elsewhere [32]. We have verified that this approach

is both robust and computationally efficient.

2. Track the equilibrium solution as parameters vary.

At equilibrium, we have ∂u∕∂z � 0 in Eq. (1), and we find that

Eq. (1) becomes

�

−iϕ0 −
l

2
� g�ju0j�

2
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2ω2
g
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−

iβ00

2
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��iγ � δ�ju0j2 − σju0j4
�

u0 � 0; (10)

where �u0�t�;ϕ0� denotes the equilibrium solution, and g�ju0j�
is given by Eq. (2). The equilibrium solution is subject to the

boundary condition u0�t� → 0 as t → �∞. In our computation,

this boundary condition is essentially equivalent to a Dirichlet

boundary condition or a periodic boundary condition because

we use a time window such that u0�t� ≈ 0 at the edge of

the time window. The setup of such a time window will be

described in detail in Section 4.A. The determination of

�u0�t�;ϕ0� is essentially a nonlinear root-finding problem.

Starting from an already-determined solution �u0�t; σ1; δ1�;
ϕ0�σ1; δ1��, we can determine a nearby solution �u0�t; σ2; δ2�;
ϕ0�σ2; δ2�� using a variant of Newton’s method, and continue

to find solutions along a path in the �σ; δ� plane. We discuss

this algorithm in Section 4.A.

3. Tracking the stability boundaries of the continuous

waves. We determine the stability of each equilibrium solution

by solving the linearized eigenvalue equations, Eqs. (8) and

(9). The approach is different for the discrete spectrum

and the continuous spectrum. The continuous spectrum

Fig. 2. Equilibrium solution u0�t� for the case �σ; δ� � �0.002; 0.035�.
The false color indicates the phase of the pulse in radians.

Fig. 1. When σ � 0.002 and δ � 0.035, starting with an initial pulse
u�t � 0; z� � 0.2 exp�−�t∕5�2�, the system evolves to a final equilib-
rium solution u0�t�.

Fig. 3. Spectrum of the eigenvalue problem of Eqs. (8) and (9) at the
stable equilibrium solution of the CQME when �σ; δ� � �0.002; 0.035�.
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corresponds to modes with an infinite extent. The eigenmodes

outside the limited time window in which the equilibrium

pulse exists will be complex exponentials, and the pulse will

affect the eigenvalue only through its effect on g�juj�. We take

advantage of that to find the continuous spectrum. When the

continuous spectrum touches the imaginary axis, a Hopf bifur-

cation occurs, and the equilibrium becomes unstable. We vary

both σ and δ along paths that are parallel to the stability boun-

dary, where these paths exist in both the stable and the

unstable regions, and then we interpolate to find the boun-

dary. We describe these algorithms in Section 4.B.1.

4. Tracking the stability boundaries of the discrete ei-

genmodes. The discrete spectrum corresponds to eigenmodes

that have a limited extent in the time domain, so we can ac-

curately determine the eigenmodes and the eigenvalues using

a limited time window. We typically find a stability boundary

by varying δ with a fixed value of σ until we encounter a value

at which λa becomes zero or the root-finding procedure fails to

converge to a pulse solution. When λa becomes zero, a saddle-

node bifurcation occurs, and the equilibrium disappears. We

then vary both δ and σ along three paths that run parallel to the

stability boundary and use three points to extrapolate to

the boundary values. We describe these algorithms in

Section 4.B.2.

5. Find the edge bifurcations and track the correspond-

ing stability boundary. We have found that when δ becomes

sufficiently large (δ ≈ 9.5), then an edge bifurcation occurs,

and two new complex conjugate discrete eigenvalues appear.

These eigenvalues then cross over the imaginary axis, and the

corresponding equilibrium becomes unstable via a Hopf bifur-

cation. As δ continue to increase, a whole series of edge bi-

furcations take place. The exact location of the first edge

bifurcation and the Hopf bifurcations in �σ; δ� are difficult

to calculate since the eigenmodes have a temporal extent that

is much broader than the equilibrium pulses when the Hopf

bifurcation takes place. If the linearized equation was an

ODE, we could solve the problem in a time window of limited

extent using shooting methods, but that is not possible be-

cause the linearized equation is an integro-differential

equation that is non-local in time. We instead formulate the

problem as an overdetermined boundary value problem with

exponentially decaying solutions as t → �∞ and we search

for the values of �σ; δ� at which a solution exists. We describe

these algorithms in Section 4.B.3.

A. Solving for the Equilibrium Solution
For a given set of parameters �σ; δ�, we find the equilibrium

solution �u0�t; σ1; δ1�;ϕ0�σ1; δ1�� by solving the nonlinear

root-finding problem given by Eq. (10) and the gain saturation

equation, Eq. (2). However, the dependence of the saturated

gain g on the unknown function u0�t� leads to a Jacobian that

is a dense matrix, which we must avoid for computational

efficiency. Hence, we rewrite Eq. (2) as

g − g0∕�1� Pav�ju0j�∕Psat� � 0; (11)

where g is treated as an unknown variable.

We define a time window with a duration T in which the

pulse solution differs significantly from zero. We form a vector

of time points after discretization, t � �t1; t2;…; tj;…; tN �T ,
where t1 � −T∕2, tj � t1 � �j − 1�δt, j � 1; 2;…; N , and

δt � T∕N . The function u�z; t� is represented by a column

vector u of length N , where uj�z� is the computational

approximation of u�z; t � tj�. As is usual in computational

studies, we vary T and N as the parameters vary to be certain

that both are sufficiently large to have no discernible effect on

the computational results. An extended discussion of this is-

sue is provided in Appendix B. We typically set N � 512 and

set T somewhere between 40τ and 60τ, where τ is the duration

of the equilibrium pulse, which is obtained using [33]

τ2 �
R T∕2
−T∕2 �t − t0�2ju0�t�j2dt

R T∕2
−T∕2 ju0�t�j2dt

; (12)

where t0 is the geometric center of the pulse:

t0 �
R T∕2
−T∕2 tju0�t�j2dt
R T∕2
−T∕2 ju0�t�j2dt

: (13)

To obtain an explicit Jacobian for the system that is com-

posed of Eqs. (10) and (11), another computational difficulty

is that juj is not differentiable since the complex conjugates

explicitly appear. To resolve this issue, we form an extended

system by splitting the system into its real and imaginary

parts. We let u0�t� � v�t� � iw�t� and u0;j � vj � iwj , where

v�t� and w�t� are the real and the imaginary components of

u0�t�, and vj�z�, wj�z�, and u0;j are the corresponding discre-

tizations. When discretized, we can combine Eqs. (8) and (11)

and formulate the following root-finding problem:

�g − l�v� g∕�2ω2
g�vtt � 2ϕw� β00wtt � p � 0;

−2ϕv − β00vtt � �g − l�w� g∕�2ω2
g�wtt � q � 0;

g�P0 � ‖v� iw‖2� − g0P0 � 0; (14)

where vtt, and wtt are vectors that represent the second-order

differentiation in t of v and w, respectively, and P0 �
TRPsat∕�δt�. Provided that T and N are set to be large enough,

the vectors vtt and wtt can be evaluated using the fast Fourier

transform (FFT) since u0�t� is a smooth function. We define

the zero vector 0, whose components are all 0 s, and we define

the vector norm ‖x‖, so that ‖x‖ �
���������

xHx
p

, where xH is the

complex conjugate transpose of x. We define the vector p

and q, whose jth components are given by

pj�v;w� � 2�δvj − γwj��v2j �w2
j � − 2σvj

�

v2j �w2
j

�

2
;

qj�v;w� � 2�γvj � δwj��v2j �w2
j � − 2σwj

�

v2j �w2
j

�

2
:

The unknowns of the ODE system of Eq. (14) are a composite

vector �v;w; g;ϕ�T , and the Jacobian is

2

4

�g∕�2ω2
g��D2

t � Pv β00D2
t � Pw v� vtt∕ω

2
g w

Qv − β00D2
t �g∕�2ω2

g��D2
t �Qw w� wtt∕ω

2
g −v

2gvT 2gwT P0 � ‖u‖2 0

3

5;

where D2
t is the second-order finite difference matrix. Taking

both accuracy and computation efficiency into consideration,

we use a seven-point central finite-difference scheme as well

as periodic boundary conditions, so that
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D2
t �

1

�δt�2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

c0 c1 c2 c3 0 
 
 
 0 c3 c2 c1
c1 c0 c1 c2 c3 0 
 
 
 0 c3 c2
c2 c1 c0 c1 c2 c3 0 
 
 
 0 c3
c3 c2 c1 c0 c1 c2 c3 0 
 
 
 0

0 c3 c2 c1 c0 c1 c2 c3 0 ..
.

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.
0

0 
 
 
 0 c3 c2 c1 c0 c1 c2 c3
c3 0 
 
 
 0 c3 c2 c1 c0 c1 c2
c2 c3 0 
 
 
 0 c3 c2 c1 c0 c1
c1 c2 c3 0 
 
 
 0 c3 c2 c1 c0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

(15)

where c0 � −49∕18, c1 � 1.5, c2 � −0.15, and c3 � 1∕90. The

matrices Pv, Pw, Qv, and Qw are diagonal matrices whose

components are dependent on ϕ, v, and w in the following

way:

Pv;jj�ϕ; v;w� � �g − l� − 4γvjwj � 6δv2j � 2δw2
j

− 10σv4j − 2σw4
j − 12σv2jw

2
j ;

Pw;jj�ϕ; v;w� � 2ϕ − 2γv2j − 6γw2
j � 4δvjwj

− 8σv3jwj − 8σvjw
3
j ;

Qv;jj�ϕ; v;w� � −2ϕ� 2γw2
j � 6γv2j � 4δvjwj

− 8σvjw
3
j − 8σv3jwj;

Qw;jj�ϕ; v;w� � �g − l� � 4γvjwj � 6δw2
j � 2δv2j

− 10σw4
j − 2σv4j − 12σv2jw

2
j : (16)

This Jacobian is a non-square matrix with a dimension of

�2N � 2� × �2N � 1�; therefore, we cannot solve the system

of Eq. (14) using the standard Newton’s method and must

instead solve it in a least-square sense. We have found that

the Levenberg–Marquart method works well [34].

To track the equilibrium efficiently over a broad range of

parameters, the initial guess for �u0�t; σ2; δ2�;ϕ0�σ2; δ2�� of

the root-finding problem is set to be an equilibrium solution

�u0�t; σ1; δ1�;ϕ0�σ1; δ1�� that has been found previously at the

point �σ1; δ1�, where �σ2; δ2� is close to the point �σ1; δ1� in

the parameter space, as noted in the description of task 2

in Section 4.

B. Boundary Tracking Algorithms
The stability of the pulse solution is determined by the ODE in

Eq. (8). In our computations, we continue to split the system

into two components, as the complex conjugate operations

explicitly appear. We define Δu, Δv, and Δw as the perturba-

tions of the equilibrium solution u0 and its real and imaginary

parts, v0 andw0, respectively. Using the same discretization as

in Section 4.A, we linearize Eq. (9) to obtain the linear eigen-

value problem

λ

�

Δv

Δw

�

� d

dz

�

Δv

Δw

�

≈ J

�

Δv

Δw

�

: (17)

Note that in Eq. (17), the vectors Δv and Δw are not neces-

sarily real since we do not split λ into its real part and imagi-

nary part, so that the eigenmodes Δv and Δw are possibly

complex functions. In Eq. (17), the quantity J is the Jacobian

of the ODE system of Eq. (8),

J � 1

2

�

J11 J12

J21 J22

�

; (18)

and the blocks of J are given by

J11 � Pv �
g

2ω2
g

D2
t −G0

f �v0; v0�; (19a)

J12 � Pw � β00D2
t −G0

f �v0;w0�; (19b)

J21 � Qv − β00D2
t −G0

f �w0; v0�; (19c)

J22 � Qw � g

2ω2
g

D2
t −G0

f �w0;w0�; (19d)

where G0
f is the derivative of the function g�x; y� with respect

to x or y:

G0
f �x; y� �

2g2

g0NP0

�

I� D2
t

2ω2
g

�

�xyT �: (20)

In Eqs. (19) and (20), the variables Pv, Pw, Qv, Qw, and G0
f

are all evaluated at the equilibrium: ϕ � ϕ0, v � v0, and

w � w0. Similarly, we evaluate g as

g � g0

1� �vT
0
v0 � wT

0
w0�∕�NPsat�

: (21)

The eigenvalue spectrum for the case σ � 0.002; δ � 0.035

is shown in Fig. 3. For this case, to accurately track the loca-

tion of the discrete eigenvalues, the operator D2
t should be

formulated spectrally [35]. There are cases where edge bifur-

cations occur and discrete modes emerge from the continuous

spectra. We will need a different approach to accurately find

those eigenvalues. More details will be discussed in the

following subsections.

1. Continuous Spectrum
The modes of the continuous spectrum represent perturba-

tions that do not vanish as t →∞. There are two branches

of the continuous spectrum, as seen in Fig. 3, and they add

ripples to the equilibrium solution [36]. The tips of these

two branches of eigenvalues will hit the imaginary axis when

there is not enough amplitude-dependent loss to suppress the

continuous waves, as illustrated in Fig. 4. The continuous

waves then grow. This type of instability is called an essential

singularity [15,16]. An essential instability of the CQME

occurs, for example, when �σ; δ� � �0.002; 0.005�. We can

Fig. 4. Illustration of the variation of eigenvalues distribution where
the continuous spectrum is unstable.
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observe this instability in Fig. 5, where an initial pulse does not

evolve to any steady state, and its envelope continually

fluctuates and exhibits a chaotic-appearing behavior. The

unstable equilibrium solution, which we show in Fig. 6, was

obtained using the procedure that is described in Section 4.A.

The spectrum of Eq. (17) at this equilibrium is shown in Fig. 7,

where one can see that the continuous spectrum extends into

the right half of the complex plane.

Since the modes of the continuous spectrum extend to

t � �∞, their eigenvalues are most easily determined by

studying the modes in that limit, so that u0�t�→ 0. The

Jacobian of Eq. (8), if evaluated in the frequency domain,

becomes

J � 1

2

�

g − l − gω2∕�2ω2
g� ϕ − β00ω2

−ϕ� β00ω2 g − l − gω2∕�2ω2
g�

�

; (22)

and the eigenvalues of Eq. (8) are given by

λ� � 1

2

�

g − l − g
ω2

2ω2
g

� i�ϕ − βω2�
�

; (23)

where ω is the frequency. The stability criterion is that the ei-

genvalues with the largest real parts, λk and λ	k , corresponding
to ω � 0 in Eq. (23), should have a negative real part. We then

find the stability condition is

Re λk �
g − l

2
< 0: (24)

We can determine the stability of radiation modes without

finding the eigenvalues of the Jacobian computationally, be-

cause the saturated gain g can be explicitly calculated once

the equilibrium solution is found. The spectrum of the system

of Eq. (8) is shown in Fig. 7, where the continuous spectrum is

found using Eq. (23).

While the computational solution of Eq. (17) will also yield

an estimate of the eigenvalues of the continuous spectrum, we

have found that the finite time window leads to inaccurate es-

timates even when the window is as large as 100 times the

pulse duration. As a consequence, it is not computationally

feasible to determine the eigenvalues of the continuous spec-

trum using this numerical approach. The approach that we are

using effectively assumes that we have a single pulse in an

infinite time window, which is appropriate if the round-trip

time TR is sufficiently large compared to the pulse duration

τ. In passively mode-locked fiber lasers with a single pulse

in the cavity, this ratio is 105 or larger and this assumption

is reasonable. However, this assumption becomes invalid

for mode-locked lasers with high repetition rates or microre-

sonators. A more detailed discussion of this issue may be

found in Appendix B.

We implement the boundary tracking algorithm in this case

by first varying the cubic coefficient δ, while the quintic coef-

ficient σ remains fixed (σ � σk), and determining the variation

of the λk. Eventually, we encounter a case p1 � �σ1; δ1� in

which we cross the stability boundary, as shown schemati-

cally in Fig. 8(a), indicating that the corresponding equilib-

rium solution has become unstable via a Hopf bifurcation.

We may then use two nearby stable points, here denoted

by p2 � �σk; δ2� and p3 � �σk; δ3�, to find the boundary using

quadratic interpolation. At a nearby value of σ (σk�1), we once

again find one unstable and two stable points and again inter-

polate to find the stability boundary. From these two points on

the stability boundary, we obtain an estimate for the slope of

the boundary dδ∕dσ, which allows us to predict where the

Fig. 5. When σ � 0.002 and δ � 0.005, starting with an initial pulse
u�t � 0; z� � 0.2 exp�−�t∕5�2�, the system never reaches a steady state
(equilibrium).

Fig. 6. Equilibrium solution u0�t� for the case �σ; δ� � �0.002; 0.005�.
False color indicates the phase of the pulse in radians.

Fig. 7. Eigenvalue spectrum corresponding to the equilibrium
solution of the CQME when �σ; δ� � �0.002; 0.005�.

Fig. 8. Boundary tracking algorithm for radiation modes: (a) finding
the stability boundary for the case when σ � σk, and (b) tracking the
stability boundary from σ � σk to σ � σk�1.
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three points surrounding the boundary will be when σ � σk�2.

We quadratically interpolate to find the boundary at σ � σk�1,

we correct these predictions, and we obtain a new prediction

for the slope. In this way, we accurately and rapidly map out

the entire boundary. In this paper, the spacing between the δ

values for extrapolation is about 0.001, and we change σ by

0.002 when tracking this stability boundary. These choices

yield a good balance between accuracy and efficiency.

2. Discrete Spectrum
As noted previously, the discrete spectrum consists of four

eigenvalues until δ becomes quite large. Two of them, which

correspond to time and phase translations (λt and λϕ), are nec-

essarily equal to zero. One of them, which corresponds to a

frequency shift (λω), is always negative; the corresponding ei-

genmode never goes unstable because of our assumption of a

parabolic gain profile. By contrast, the eigenmode that corre-

sponds to a change in the pulse amplitude and energy does go

unstable when the nonlinear gain becomes too large to be

overcome by the lossy terms in Eq. (1). When that occurs,

the corresponding eigenvalue (λa) crosses through zero, as

shown schematically in Fig. 9. This instability has been de-

scribed in detail for the HME [15], in which case the solution

quickly grows, as shown in Fig. 10, and eventually “blows up.”

This instability has been referred to as the exploding soliton

instability in the mode-locked laser literature, and the instabil-

ity limit is derived in [15] and occurs at δ � 0.0348. In the

CQME, the quintic loss term that equals −σjuj4u saturates

the nonlinear growth, so that the CQME is expected to have

an enlarged stability region in the �σ; δ� parameter space. That

is indeed the case. We find that as long as σ > 0, there is a

stable solution until δ ≈ 9.5, almost a factor of 280 greater than

the HME’s stability limit, indicating that the behavior is

qualitatively, not just quantitatively, changed by the addition

of the quintic term. It is possible to demonstrate that an equi-

librium solution exists for arbitrary small, positive values of σ

at values of δ, such as δ � 6, that are far larger than the sta-

bility limit of the HME. We will publish this result separately.

The amplitude eigenmode becomes unstable via a saddle-

node bifurcation so that the equilibrium ceases to exist when,

given a fixed value of σ, the value of δ changes beyond the

value at which λa � 0. As a consequence, we must modify

the boundary tracking algorithm that we used to find the

stability boundary for the continuous spectrum. Instead of

using quadratic interpolation, we use quadratic extrapolation,

following three trajectories in the stable region, as shown

schematically in Fig. 11. Otherwise, the algorithm is the same.

A typical spacing between the δ values that we use in our

extrapolation is about 0.0001, and we typically change σ by

0.0004 when tracking the boundary. We adjust the spacings

of both δ and σ as system parameters vary in order to balance

the convergence rate of the root-finding procedure and the

computational efficiency.

Another point worth noting is that one should use a spectral

differentiation scheme for D2
t in the Jacobian of Eq. (19) when

computing λa and the other eigenvalues that correspond to the

eigenmodes that are well confined in the time window T [9].

Otherwise, the computation of these eigenvalues is either in-

accurate or inefficient. With this choice, the operator D2
t

becomes a dense and symmetric Toeplitz matrix [37]:

D2
t �

4π2

T2

2

6

6

6

6

6

6

6

6

6

6

4

d0 d1 d2 
 
 
 dN−2 dN−1

d1 d0 d1
. .
.

dN−2

d2 d1
. .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

d1 d2

dN−2
. .
.

d1 d0 d1
dN−1 dN−2 
 
 
 d2 d1 d0

3

7

7

7

7

7

7

7

7

7

7

5

; (25)

where the entries are

d0 � −�N2 � 2�∕12; dk � �−1�k−1 csc2�kπ∕N�∕2; k
� 1;…; N − 1: (26)

We use the MATLAB routine eig to find the eigenvalues,

including λa. Since we are interested only in λa, we could in

principle greatly increase the efficiency of finding λa by using

an iterative scheme in which only this eigenvalue is computed.

However, the computational time that is required to find λa is

in any case small compared to the computational time that is

Fig. 9. When a saddle-node bifurcation due to the amplitude eigen-
mode occurs, the amplitude eigenvalue λa approaches 0.

Fig. 10. When σ � 0 and δ � 0.035, the peak of the initial pulse u�t �
0; z� � 0.2 exp�−�t∕5�2� grows exponentially as the pulse evolves.

Fig. 11. Boundary tracking algorithm for the amplitude eigenmode:
(a) finding the stability boundary for the case σ � σk and (b) tracking
the stability boundary from σ � σk to σ � σk�1.
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required to find the equilibrium solution. So we did not

implement this improvement.

3. Appearance of New Discrete Modes
As we shall discuss in more detail in Section 5, the stability

boundaries of the continuous modes and the discrete modes

are found in the range 0.01 < δ < 0.05 and 0 < σ < 0.01. When

δ ≈ 9.5, we find that a pair of new discrete eigenvalues, λe and

λ	e , emerge via an edge bifurcation from the continuous spec-

trum. Here, we will use λe to denote the new discrete eigen-

value whose imaginary part is positive and λ	e to denote its

complex conjugate. With a small additional increase in δ,

Δδ ≈ 0.001, the corresponding eigenmodes become unstable

via a Hopf bifurcation. We show this process schematically

in Fig. 12. As δ increases, further edge bifurcations occur,

so that more discrete eigenmodes appear and then go unstable

via Hopf bifurcations.

As δ continues to increase, so do the real parts of λe and λ	e
for the first pair of eigenmodes that become unstable, and

these corresponding eigenmodes become increasingly nar-

row. In Figs. 13(a) and 14 we show a comparison of both

the equilibrium pulse solutions and the corresponding eigenm-

odes for λe, respectively, when �σ; δ� � �0.003; 9.509� and

�σ; δ� � �0.003; 13�. In the first case the eigenmode is stable,

while in the second case it is unstable. We note that both

Δv and Δw are even and complex in contrast to the original

four discrete eigenmodes for which the eigenmodes corre-

sponding to λt and λω are odd and real, while those corre-

sponding to λϕ and λa are even and real. When δ � 9.509,

which is shortly after the edge bifurcation has occurred,

the decay as jtj increases is barely visible. By contrast, the

decay is clearly visible when δ � 13.

Accurately finding the eigenmodes and eigenvalues that

appear right after the edge bifurcation is a difficult computa-

tional problem. On one hand, the analytical approach that we

used to obtain the continuous spectrum is no longer appli-

cable. On the other hand, as discussed in more detail in

Appendix B, very large computational windows are needed

to obtain accurate results—too large to be feasible. If the lin-

ear eigenvalue problem could be formulated as a differential

equation, then we could use shooting methods. However, that

is also not possible in this case because of the gain depend-

ence on the pulse energy, so that the linear equation is an in-

tegro-differential equation that is non-local in time. We avoid

these difficulties by formulating the eigenvalue problem as an

overdetermined set of linear equations L�λe;Δu�t�; σ; δ� � 0,

where we demand that the solution is exponentially decaying

as t → �∞. Given a pair �σ; δ� and a choice of λe that matches

these boundary conditions, the equation L � 0 will not, in

general, have a solution. However, if we have a good initial

guess for �λe;Δu�t��, we can find this pair iteratively using a

root-finding procedure. We use the secant method, so that

we do not need to provide the Jacobian of L � 0.

Explicitly, we first combine Eqs. (8) and (9) to obtain

�

iβ00

2
−

g

4ω2
g

�

∂2Δu

∂t2
�
�

−λ−iϕ0�
g− l

2
�2�iγ�δ�ju0j2−3σju0j4

�

Δu

−

g2

g0TRPsat

Re�hu0;Δui�
�

1� 1

2ω2
g

d2

dt2

�

u0

���iγ�δ�u2
0
−2σju0j2u2

0
�Δu	; (27)

as well as the conjugate equation for Δu	, where g � g�ju0j�.
Since u0�t�→ 0 as t → �∞, we find that Eq. (27) becomes, in

this limit,

�

iβ00

2
−

g

4ω2
g

�

∂2Δu

∂t2
�

�

−λ − iϕ0 �
g − l

2

�

Δu; (28)

which has a solution Δu�z; t� � C exp�ηt� iλz�, where

η2 � g − l − 2�λ� iϕ0�
iβ00 − g∕�2ω2

g�
: (29)

This equation is coupled to a similar equation for Δu	. When a

discrete eigenmode exists and λ � λe, we can find a solution

for which Re�η� > 0 as t → −∞ and Re�η� < 0 as t → �∞. To

find this solution computationally, we first obtain Δv and Δw

using the same splitting of Δu that we used in Eq. (17). The

decay rate of Δv and Δw as t → �∞ should equal that of Δu.

Fig. 12. Illustration of the emergence and destablization of the cor-
responding eigenmodes of new discrete eigenvalues as δ grows: from
(a) an edge bifurcation to (b) a Hopf bifurcation.

Fig. 13. (a) Amplitudes of the equilibrium pulse solutions when
δ � 9.509 and δ � 13, while the quintic coefficient σ � 0.003 for both.
We use T � 0.842 and T � 0.845, respectively, in a computation. The
pulse amplitudes are shown in both logarithmic and linear coordi-
nates. The amplitudes decay exponentially on the wings as jtj in-
creases. (b) According to the pulse amplitude, we split the
computational window into three regions: Rp, where the pulse ampli-
tude is significant, as well as Rl and Rr , where u0�t� ≈ 0.
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We now split our computational window into three regions, as

illustrated in Figs. 13(b) and 15. In the regions denoted Rl and

Rr at the left and right edges of the time window, we assume

that u0�t� is negligible. We have found that ju0�t�j < 10−6 is

sufficient in practice. In the region Rl we have

Δv � cv1 exp�η1t� � cv2 exp�η2t�; (30a)

Δw � cw1 exp�η1t� � cw2 exp�η2t�; (30b)

where

η1�λ� �
�

−

g − l − 2�λ� iϕ0�
g∕�2ω2

g� − iβ00

�

1∕2

; (31)

as well as

η2�λ� �
�

−

g − l − 2�λ − iϕ0�
g∕�2ω2

g� � iβ00

�

1∕2

; (32)

and we choose the square roots, so that Re�η1;2� > 0 and the

solution decays as t → −∞. We similarly choose solutions for

Δv and Δw in Rr that decay as t → �∞. We will only keep

elements in the discretized formulation in the region that is

labeled Rp in Fig. 15. At the boundaries that are labeled tk
and tN�1−k in Fig. 15, we use the boundary conditions that

the solutions are exponentially decaying in accordance with

Eq. (30).

When discretized, Eq. (27) becomes

�

D2
tΔv

D2
tΔw

�

� C−1�A� S�
�

Δv

Δw

�

; (33)

where D2
t is a second-order difference operator. We use a

seven-point difference. The matrices A and C are block-wise

diagonal and may be written

C �
�

g∕�2ω2
g�I β00I

β00I −g∕�2ω2
g�I

�

;

A �
�

−Pv � 2λI −Pw

Qv Qw − 2λI

�

; (34)

in which g, Pv, Pw,Qv, andQw are evaluated at the equilibrium

pulse solution as in Eq. (19), and S is a dense matrix:

S �
�

G0
f �v0; v0� G0

f �v0;w0�
−G0

f �w0; v0� −G0
f �w0;w0�

�

; (35)

where G0
f is defined following Eq. (20). Note that in Eqs. (33)–

(35) and all following equations in this section, the size of

the square matrices D2
t , I, Pv, Pw, Qv, and Qw is K × K , and

the length of the vectors v0, w0, Δv, and Δv is K , where

K � �N − 2k�—not N anymore—as illustrated in Fig. 15, since

we consider only the elements of the matrices/vectors that are

numbered between k and N � 1 − k. We obtain, from Eq. (33),

M

�

Δv

Δw

�

� 0; (36)

where the matrix M is

M � C−1�A� S� −
�

D2
t 0

0 D2
t

�

; (37)

which is dependent on λ through A, and also throughD2
t , as we

will explain later.

Equation (36) may be written as an eigenvalue problem:

M

�

Δv

Δw

�

� m

�

Δv

Δw

�

; (38)

where m is an eigenvalue of M. For Eq. (38), the matrix M is

dependent on the value of λ, so thatm is a function of λ,m�λ�.
According to Eq. (36), the eigenvalue of interest is the one that

yieldsm�λ� � 0, which is true only if λ � λe. Therefore, we can

treat this eigenvalue problem as a root-finding problem:

�an eigenvalue ofM� � m�λ� � 0; (39)

where the root is λ � λe.

Fig. 14. When σ � 0.003, the shapes of the eigenmodes correspond-
ing to λe: (a) when δ � 9.509 and λe � −0.40� 1.05 × 104i, and
(b) when δ � 13 and λe � �0.31� 1.33� × 104i.

Fig. 15. Illustration of setting t.
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Thus far, we have formulated a root-finding problem based

on our previous eigenvalue problem of Eq. (9), and we intend

to search for an eigenvalue λ that makes m�λ� � 0. We note

that the dependence of m on λ through A is linear, so that it

appears as though Eq. (39) could be solved using the MATLAB

routine eig or another linear eigenvalue solution routine.

However, we must take the boundary conditions into consid-

eration. The eigenmodes must decay as t → �∞, which af-

fects our formulation of the matrix D2
t as we will describe

shortly. Our formulation of D2
t leads to a nonlinear depend-

ence of m on λ. Therefore, we use the MATLAB routine

fsolve to solve this nonlinear root-finding problem itera-

tively. In each iteration, we find the eigenvalues of M that

are close to 0 using the routine eigs.

Before closing this section, we describe our reformulation

of D2
t at the boundary of the time window Rp: we cannot use

Eq. (15) to build D2
t because the periodic boundary conditions

that we have been using when finding u0�t� do not apply since

Δu�t� ≠ 0 at t ≈ �T∕2, as shown in Fig. 14. Here, we construct

D2
t using the boundary conditions of Eq. (30).

Using the seven-point central difference as in Section 4.A,

we approximate the second-order differentiation of, for

example, Δv to t, as

�D2
tΔv�l �

1

�δt�2
�c0Δvl � c1�Δvl−1 � Δvl�1�

� c2�Δvl−2 � Δvl�2� � c3�Δvl−3 � Δvl�3��; (40)

where 1 ≤ l ≤ K . We note that the values of Δvn, where

n ∈ f−2;−1; 0; K � 1; K � 2; K � 3g, are unknown, but are

needed to evaluate �D2
tΔv�l for l ∈ f1; 2; 3; K − 2; K − 1; Kg.

We recall that the eigenmodes can be characterized by

Eq. (30) in the region where u0�t� ≈ 0, which enables us to

formulate Δvn in terms of Δvl and to construct D2
t .

We now give an example. We use sub-indices to enumerate

the iterations when solving for m�λ�. Suppose we are at iter-

ation s, where s > 1. We can derive η1;s and η2;s from λs using

Eqs. (31) and (32). Assume we intend to evaluate ��D2
t �sΔv�1

only from Δv1, Δv2, and Δv3. Using Eq. (30a), we have

Δv1 � cv1 exp�η1;st1� � cv2 exp�η2;st1�;
Δv2 � cv1 exp�η1;st2� � cv2 exp�η2;st2�: (41)

We can determine cv1 and cv2 in terms of Δv1;s−1 and Δv2;s−1
as

�

cv1
cv2

�

�
�

eη1;st1 eη2;st1

eη1;st2 eη2;st2

�

−1
�

Δv1;s
Δv2;s

�

: (42)

Nowwe write vn; n � −2;−1; 0 as a combination ofΔv1;s−1 and

Δv2;s−1 using Eq. (30a). For example, Δv0 can be written as

Δv0 �
	

exp�η1;st0� exp�η2;st0�



�

cv1
cv2

�

; (43)

which, combining with Eq. (42), leads to

Δv0;s � p1Δv1;s−1 � p2Δv2;s−1; (44)

where p1 � �exp�η1;st0 � η2;st2� − exp�η2;st0 � η1;st2��∕y, and

p2 � �− exp�η1;st0 � η2;st1� � exp�η2;st0 � η1;st1��∕y, in which

y � exp�η1;st1 � η2;st2� − exp�η2;st1 � η1;st2�. Likewise, we

can write Δv
−1 and Δv

−2 as

Δv
−1;s � p3Δv1;s−1 � p4Δv2;s−1;

Δv
−2;s � p5Δv1;s−1 � p6Δv2;s−1; (45)

where p3, p4, p5, and p6 can be determined in a similar fashion

as in Eqs. (43) and (44). Nowwe are able to write ��D2
t �sΔv�1 by

combining Eqs. (40), (44), and (45) to obtain

��D2
t �sΔv�1 �

1

�δt�2
��c0 � c1p1 � c2p3 � c3p5�Δv1;s

� �c1 � c1p2 � c2p4 � c3p6�Δv2;s
� c2Δv3;s � c3Δv4;s�: (46)

Then we can put the coefficients Δv1;s, Δv2;s, Δv3;s, and Δv4;s
in row 1 of �D2

t �s. Rows 2 and 3 of �D2
t �s can be obtained in a

similar fashion, and rows K , K − 1, and K − 2 can be found

from rows 1, 2, and 3, respectively, due to the even symmetry.

Once �D2
t �s is constructed, we can constructMs using Eq. (37),

and evaluate its eigenvalue that is closest to 0 and the corre-

sponding eigenvector. These results can then be used to

construct �D2
t �s�1.

The algorithm for finding the new discrete eigenvalues via a

nonlinear root-find problem is summarized in the following

pseudo-code:

Algorithm 1

Find the equilibrium solution u0�t�;
Define Rp;

Initialize tol, λ, Δv, and Δw;

s←1;

λs←λ, Δvs←Δv, and Δws←Δw;

While jλsj > tol do

Form As, Ss, and Cs using Eqs. (34) and (35);

Obtain η1;s and η2;s using Eqs. (31) and (32);

Form �D2
t �s using Δvs, Δws, and the approach that is described by

Eqs. (40)–(46);

Form Ms using Eq. (37);

λs←min jeigs�Ms�j;
�Δvs;Δws�T← the eigenvector corresponding to λs;

end while

in which tol is the tolerance, i.e., how much λs deviates

from 0. The nonlinear root-finding problem is solved using

a fixed-point method in the pseudo-code. In practice, we

use the MATLAB routine fsolve to handle the nonlinear

root-finding problem in order to obtain faster convergence

than is the case when we use the fixed-point method.

The algorithm to track the stability boundary due to edge

bifurcations is similar to the one that is illustrated in Fig. 8(a).

We obtain λe�δ� when the iteration converges to m�λ� � 0; we

track the variation of Re�λe� as δ varies, and we use second-

order polynomial interpolation to find the zero of Re�λe�δ��,
since we are still able to find the equilibrium pulse solution

even if it is unstable. Then we track the stability boundary

as σ varies in the same way that is illustrated in Fig. 8(b).

5. RESULTS

When σ � 0, the CQME becomes the HME. The equilibrium

pulse solution that is given in Eq. (A3) can be obtained
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analytically, and the stability range is δ ∈ �0.01; 0.0348� [15].
The radiation modes become unstable when δ < 0.01 because

the nonlinear saturable absorption is too small to stabilize the

pulse. The amplitude eigenmode becomes unstable because

excessive nonlinear gain causes the pulse solution to blow

up, as shown in Fig. 9(b). The boundary tracking algorithm

is started from this known case of the HME, and we then

gradually increases σ.

Figure 16 shows the stability regions of the CQME in the

parameter space �σ; δ�. In general, we have found that the sta-

bility regions are characterized by three curves C1, C2, and C3

in the parameter range that we studied. The blue-hatched re-

gion, which is marked f2lg, represents the stability region of

the solution that is a continuation of the known pulse solution

of the HME. We call this solution “the low-amplitude solution.”

The δ axis corresponds to the HME solution. Stability region

f2lg has the upper bound curve C3 and the lower bound curve

C1. The continuous modes become unstable below C1, and

this region is labeled f1g in Fig. 16. Another pulse solution

is stable in the red-hatched region labeled f2hg in Fig. 16.

We call this solution “the high-amplitude solution.” Region

f2hg has the lower bound curve C2, at which the amplitude

eigenmode becomes unstable. These lower and the higher am-

plitude solutions coexist in a triangular-shaped region (la-

beled f3g), in which the energy of the higher amplitude

solution is always greater than that of the low-amplitude sol-

ution, as in the example shown in Fig. 17. The two solutions

merge together into a single stable solution in a continuous

fashion in region f2h∕lg, which is colored green. In region

f1g, which is unhatched, the lower-amplitude solution

becomes unstable due to the continuum modes.

The instability mechanisms of the lower amplitude solution

is similar to that of the HME. Below C1 the saturable absorp-

tion is too weak to prevent the continuum modes from grow-

ing. Meanwhile, the interplay between the cubic and the

quintic terms in the fast saturable absorption greatly affects

the stability at the boundary of region f3g. The saddle-node

bifurcation appears because the quintic term, −σjuj4u, which

is lossy, is not able to provide sufficient loss to offset the non-

linear gain that is introduced by the cubic term, δjuj2u. We see

from Fig. 16 that the low-amplitude solution becomes unstable

when δ increases and reaches C3, at which the nonlinear gain

from the cubic term becomes too large to be compensated by

the quintic term. This mechanism resembles the instability

mechanism of the HME. However, the high-amplitude solution

becomes unstable when δ decreases and reaches C2. The en-

ergy of both solutions grows as δ increases, and the energy of

the high-amplitude solution is greater than that of the low-

amplitude solution in region f3g, so that the former experien-

ces more loss from −σjuj4u than does the latter, which

explains why the high-amplitude solution is stable while the

low-amplitude solution is unstable on C2. As δ decreases,

the energy of the high-amplitude solution becomes smaller,

and so is the nonlinear loss induced by the quintic term. Then

the high-amplitude solution eventually becomes unstable as δ

keeps decreasing and reaches C2 because the nonlinear loss

from the quintic term becomes too small to be able to offset

the nonlinear gain from the cubic term.

The amplitude instability occurs for the high-amplitude sol-

ution on C2, while it occurs for the low-amplitude solution on

C3. Figure 18 shows the variation of the amplitude eigenvalue

λa for both solutions near C2 and C3 for different values of σ.

As δ increases, for the case σ � 0.005 and σ � 0.006, the

eigenvalue λa of the low-amplitude solution grows and

eventually approaches 0. However, the eigenvalue λa of the

Fig. 16. Stability regions of the CQME. The stability boundaries are
marked by three curves, C1, C2, and C3.

Fig. 17. The two coexisting equilibrium pulse solutions for the case
σ � 0.006; δ � 0.0413.

Fig. 18. Variation of the amplitude eigenvalues of the two equilib-
rium solutions, the low-amplitude solution ul

0
�t� and the high-

amplitude solution uh
0
�t�, near curves C2 and C3 as in Fig. 16. For

the case σ � 0.007, we have one single equilibrium solution.
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high-amplitude solution grows and approaches 0 as δ de-

creases. For both solutions, we find that δ at the instability

threshold when σ � 0.006 is greater than that when

σ � 0.005. However, the separation between the stability

boundaries of these two solutions decreases when σ increases

and becomes zero at σ � 0.068, as shown in Fig. 16, at which

point the two solutions merge into a single stable solution. In

Fig. 18 we see that when σ � 0.007, the eigenvalue λa first in-

creases as δ, but then starts to decrease before it reaches 0.

For any position in region f3g, there are two equilibrium

solutions. Which equilibrium solution ultimately appears de-

pends on the specific initial condition. An example is shown

in Fig. 19, which corresponds to �σ; δ� � �0.006; 0.0413� in re-

gion f3g. The CQME evolves to the low-amplitude solution,

which has lower energy than the high-amplitude solution, if

we start from an initial pulse 0.8uh
0
�t�, where uh

0
�t� is the

high-amplitude solution, as shown in Fig. 19(a). On the con-

trary, if we start from an initial pulse of higher energy,

0.9uh
0
�t�, the CQME evolves to the high-amplitude solution

as shown in Fig. 19(b).

The high-amplitude solution remains stable for a very large

range of both σ and δ. The lower bound of the stability region

is shown by curve C2 as in Fig. 16, and is bounded on the left

by the δ axis. As we will discuss in detail elsewhere, a self-

similar solution of the CQME always exists when σ > 0 until

δ ≈ 9.51, which is larger than the boundary for the low-

amplitude solution and, hence, for the HME to become unsta-

ble by almost a factor of 280. The upper bound of the stability

region of the high-amplitude solution is the onset of edge

bifurcation, followed shortly thereafter as δ increases by a

Hopf bifurcation of the new discrete modes.

We show this stability boundary in Fig. 20, and we see that

the boundary for δ increases slightly as σ increases. When this

system becomes unstable, the solution develops a shelf-like

envelope, as shown in Fig. 21 for the parameter set

(σ � 0.003; δ � 13). We do not show the stability boundary

for σ < 7 × 10−3 because the equilibrium pulse shape changes

rapidly as δ and σ vary, and tracking the boundary becomes

computationally time consuming. Indeed, the parameter set at

this relatively large value of δ is sufficiently extreme that it

seems unlikely that they correspond to any physical laser sys-

tem. We present these results here because they illustrate the

power of the algorithms that we have developed. The scenario

that we have described here in which new discrete modes ap-

pear via an edge bifurcation and then become unstable via a

Hopf bifurcation appear in practice, for example, when relax-

ation oscillations appear and then become unstable [38].

6. CONCLUSION

We have developed boundary-tracking algorithms that allow

us to rapidly and accurately find the stability boundaries in a

passively mode-locked laser system as the system parameters

vary. We have applied this approach to determining the stabil-

ity boundaries for the cubic–quintic mode-locking equations

as the parameters that govern the staturable absorption, σ

and δ, are allowed to vary. This model is one of the most com-

monly used models for passively mode-locked lasers and in-

cludes the even more commonly used Haus mode-locking

equation as a special limit corresponding to σ � 0.

We have found a rich dynamical structure in which, de-

pending on the parameter, no stable solutions exist, one stable

solution exists, or two stable solutions exist. The spectrum of

the mode-locked or equilibrium solutions includes both con-

tinuous and discrete components. The continuous component

Fig. 19. Evolution of CQME for the case �σ; δ� � �0.006; 0.0413�. We
start from different initial conditions: (a) 0.8uh

0
�t� and (b) 0.9uh

0
�t�,

where uh
0
�t� is the high-amplitude solution. In the first case, the

low-amplitude solution emerges. In the second case, the high-
amplitude solution emerges.

Fig. 20. Stability boundary of the high-amplitude solution due to the
edge bifurcation as illustrated in Fig. 12.

Fig. 21. The pulse evolves to a shelf-like envelope when the
eigenmode corresponding to λe becomes unstable.
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can become unstable via a Hopf bifurcation and the discrete

mode that corresponds to an amplitude change can become

unstable via a saddle-node bifurcation. Additionally, we have

found that in some extreme parameter ranges, new discrete

modes appear in the spectrum, which then become unstable

via a Hopf bifurcation.

In future work, we intend to apply these algorithms to in-

creasingly realistic and specialized models of passively mode-

locked laser systems. So, we will close with a brief discussion

of how the algorithms that we have presented here must be

modified to be applied correctly to realistic systems. First—

and simplest—are the laser systems in which the CQME is a

useful model, but that operate with net zero or normal

dispersion. We expect that the methods described in this

paper will work equally well in this case. Preliminary work

suggests that as we cross from the anomalous to the normal

dispersion regime, new discrete modes bifurcate out of the

continuous spectrum.

In some solid-state lasers, the gain recovery time is short

enough to lead to relaxation oscillations. In this case, the par-

tial differential equations that describe the evolution of the

light envelope in the cavity must be supplemented by ordinary

differential equations that describe the evolution of the gain

[38]. Similarly, modern-day comb lasers include electronic

feedback systems that once again lead to equations in which

ordinary differential equations are coupled to the partial dif-

ferential equations that describe the evolution of the light

envelope [39]. In both cases, new degrees of freedom are in-

troduced that lead to new discrete modes, but the basic

algorithms do not have to be changed.

Somewhat more difficult is dealing with large pulse varia-

tions in one round trip in the laser cavity. In this case, the equi-

librium is only periodically stationary rather than stationary.

Models for analyzing the stability of periodically stationary

systems have been developed since the 19th century [7].

In this case, we must calculate the transfer matrix that de-

scribe the signals evolution in one round trip. Its equilibrium

solutions correspond to the mode-locked pulses, and—

after linearization about a solution—its eigenvalues

determine the mode-locked pulse’s stability. Computational

approaches for generating this transfer matrix have been

discussed by Holzlöhner et al. [40], as well as Deconinck

and Kutz [9].

As a final issue, we may discuss extending this approach to

three or more parameters. In a three-parameter space, the sta-

bility boundary will become a two-dimensional surface, and

tracing the boundary would require a two-dimensional search.

On a desktop computer, tracing the stability boundary for the

amplitude eigenmode requires a few hours (about four hours

in our case) in two parameter dimensions due to the rapid

changes of the equilibrium solution at the boundary. By con-

trast, tracing the other the stability boundaries typically re-

quires less than an hour on a desktop computer, and we

have therefore paid little attention to computational optimiza-

tion. We use standard MATLAB routines and, when finding the

discrete eigenmodes, we use MATLAB’s eig routine, which

generates all the matrix eigenvalues, although we typically

need only the amplitude eigenvalue and eigenmode. Clearly,

much can be done in the future to speed up the computations,

and the speedup will be needed for higher dimensional

parameter studies.

APPENDIX A: ON ANALYTICAL
SOLUTIONS OF THE CQME

In this section, we will discuss analytical solutions of the

CQME and their relationship to the solutions that we have

found computationally in the main text. We will find that

the analytical solutions have a special and complicated rela-

tion among the parameters, so that a global search for the sta-

bility boundaries in which two or more parameters are

allowed to vary while all the others are held constant is

not possible. We will also find that the chirp parameter β must

be positive in order for the solution to be stable, which is not

the case for the computational solutions that we found.

The CQME is also referred as the complex Ginzburg–Lan-

dau equation (CGLE) when the saturated gain in Eq. (2) is re-

placed by a constant gain gc:

∂u

∂z
� gcu�

�

1

ω
−

iβ00

2

�

∂2t u� �δ� iγ�juj2u − σjuj4u; (A1)

where gc is a constant gain, δ; γ and δ > 0, and β00 < 0. Com-

paring to Eq. (1), we make the following correspondence:

gc↔
1

2
�g�juj� − l�; 1

ω
↔

g�juj�
2ω2

g

: (A2)

An analytical equilibrium pulse solution of this equation has

been be found to exist in certain parameter regimes

[5,12,14,28] that may be written

u0�t; z� �
�������������������������������

A

B� cosh�t∕τ�

s

× exp

�

−

iβ

2
ln

�

B� cosh
t

τ

�

� iϕ0z

�

; (A3)

where A;B; β, and τ can be written in terms of the coefficients

in Eq. (A1). We may choose A > 0 to avoid the ambiguity of

the sign of the square root. With this choice, we find

B� cosh�t∕τ� > 0, which implies B > −1.

We define

a�t� � �B� cosh�t∕τ��−1∕2; (A4)

and substitute a�t� into Eq. (A1). Equating the coefficients of a

of the same power, we obtain the following three equations:

gc − iϕ� 1

4τ2

�

1

ω
−

iβ00

2

�

�1 − β2 � 2iβ� � 0; (A5a)

�δ� iγ�A −

1

2τ2

�

1

ω
−

iβ00

2

�

�2 − β2 � 3iβ�B � 0; (A5b)

1

4τ2

�

1

ω
−

iβ00

2

�

�3 − β2 � 4iβ��B2
− 1� − σA2 � 0: (A5c)

By splitting Eq. (A5) into real and imaginary parts, we obtain

4gcωτ
2 � 1 − β2 � β00ωβ � 0; (A6a)
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8ϕ0τ
2ω − 4β� β00ω�1 − β2� � 0; (A6b)

2�β2 − 2�B − 3β00ωβB� 4δAτ2ω � 0; (A6c)

−6βB� β00ωB�2 − β2� � 4γAτ2ω � 0; (A6d)

�B2
− 1��3 − β2 � 2β00βω� − 4σA2τ2ω � 0; (A6e)

�B2
− 1��8β� β00ω�β2 − 3�� � 0: (A6f)

Equation (A6f) implies that there are two cases: B2 ≠ 1 and

B2 � 1. If B2 � 1, then Eq. (A6e) implies that the system has a

solution when σ � 0. This solution corresponds to a mode-

locking equation that only has a cubic nonlinearity [28] and

whose known analytical solutions are chirped hyperbolic

secant pulses [28]. These solutions exist only when a special

relation among the coefficients of Eq. (A1) holds.

We now consider the case B ≠ 1 in the parameter regime

β00 < 0. We introduce an intermediate variable Δ as in [12]:

Δ �
��������������������������

3β002ω2 � 16

q

: (A7)

Then, using Eq. (A6f) we can write the exponential chirp β as

β� � 4� Δ

β00ω
: (A8)

We next write all the pulse parameters in terms of β and the

coefficients in Eq. (A1). From Eqs. (A6a) and (A8) we obtain

τ �

��������������������������������������������

−

β00�β2 � 1��β2 � 3�
32gcβ

s

: (A9)

From Eqs. (A6d), (A8), and (A9) we obtain

A � −

2βgcB

γ�β2 � 3�
; (A10)

and from Eqs. (A6e) and (A10) we obtain

B2 � γ2�β2 � 3��β2 � 9�
γ2�β2 � 3��β2 � 9� � 4σgcβ

2
: (A11)

In theory, we can rewrite A by combining Eqs. (A10) and

(A11) directly. If we do not put any limit on the coefficients of

Eq. (A1), the sign of B can be either positive or negative,

which leads to two different expressions for A and, hence,

two branches of solutions [5]. We do not further elabo-

rate them.

We now take a close look at this analytical solution. From

Eqs. (A6c) and (A6d), we obtain

2�β2 − 2� − 3β00ωβ

δ
� β00ω�2 − β2� − 6β

γ
: (A12)

Meanwhile, from Eq. (A6f), we obtain

ω � 8β

β00�3 − β2�
: (A13)

Combining Eq. (A12) and (A13), we finally obtain

δ

γ
� β2 � 6

β
: (A14)

So, we conclude that for this solution to exist, it is required

that β > 0 and

β � 4 − Δ

β00ω
: (A15)

From Eqs. (A14) and (A15), we have

δ

γ
� 32� 9β002ω2

− 8
��������������������������

16� 3β002ω2
p

β003ω3
: (A16)

Hence, the coefficients of CGLE must have a special relation

for this analytical solution to exist. However, for cases where

Eq. (A16) is not satisfied, such as in the CQME, one can still

find equilibrium solutions computationally, which implies the

existence of more general solutions, for which no analytical

solutions are known.

If we require β > 0, we must have gc > 0 from Eq. (A9)

since β00 < 0, which indicates that this solution is unstable

to modes of the continuous spectrum according to the inequal-

ities in Eqs. (24) and (A2). However, we have found that this

statement is not true for the numerical solutions that we have

found in the text. Therefore, we can conclude that numerical

techniques are needed to study the stability of Eq. (1) and

more complex models.

APPENDIX B: NUMERICAL EVALUATION
OF THE CONTINUOUS EIGENVALUES

The computational requirement that T ≪ TR poses no diffi-

culty for discrete modes except immediately after an edge

bifurcation, since these modes rapidly tend to zero away from

the mode-locked pulse. However, it does pose a problem for

the modes of the continuous spectrum. We dealt with this

problem in the main text by using the same infinite-line

approximation that is used in analytical studies of the CQME

that is described in Section 4.B.1. This approach allows us to

determine the stability of the continuous spectrum by study-

ing the dispersion relation away from the mode-locked pulse.

We could in principle use an approach analogous to the

approach that we used to study edge bifurcations, where

we would assume that beyond a limited time window the

mode undergoes sinusoidal oscillations that repeat with a

period TR. However, this approach would be computationally

inefficient. It is thus reasonable to ask on one hand how large

TR must be for the eigenvalues of the discrete radiation modes

that we found in a time window of duration T to converge to

the continuous spectrum. They must converge for T ≪ TR in

order for our approach to be legitimate. On the other hand, it

is also reasonable to ask whether it is really necessary to use

different algorithms to compute the stability of modes of the

continuous spectrum and the discrete modes, or whether it is

possible to simply use the spectrum of the radiation modes

that are calculated using a limited time window.
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In Fig. 22, we show how the maximum of the real part of the

entire continuous spectrum, which is obtained by solving the

eigenvalue problem that is described in Section 4.B.2, changes

as the duration of the time window T varies. We have set δ �
0.1 and σ � 0.003 in this plot, but we have verified that the

results are typical in the range shown in Fig. 16. The discrete

radiation spectrum has two branches, which has been previ-

ously observed in computational solutions of the HME [9]. We

see that max�Re�λ�� only converges slowly to the continuum

value, and is positive until T > 90τ, even though the true value

is negative. We note that, if one simply solved the evolution

equations, starting from computational noise with a window

∼10τ, as is often done in practice, one would observe unstable

behavior and incorrectly predict that the laser system is

unstable.

Convergence to the maximum of the real part of the infinite-

line continuous spectrum is slow as τ → 0 and appears to be

nonanalytic in 1∕T . The reason is that the most unstable (or

least stable) mode keeps changing as T increases. We find

that, with a time window that is 2000 times the pulse duration,

the least stable eigenvalue differs from the infinite-line value

by about 10%. This result has important consequences for

modeling high-repetition-rate lasers (∼10 GHz) or microreso-

nators, where an infinite line model is often used in analytical

studies, but is almost certainly invalid when making

predictions of the systems’ stability.

ACKNOWLEDGMENTS

This research was supported in its final stage by the DARPA

PULSE program via AMRDEC.

REFERENCES
1. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum

Electron. 6, 1173–1185 (2000).
2. M. E. Fermann, “Ultrafast fiber oscillators,” in Ultrafast Lasers:

Technology and Applications, M. E. Fermann, A. Galvanauskas,
and G. Sucha, eds. (Marcel Dekker, 2002), Chap. 3.

3. F. Kärtner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. Fujimoto,
and E. Ippen, “Few-cycle pulses directly from a laser,” in Few-
Cycle Laser Pulse Generation and Its Applications, F. Kärtner,
ed., Topics in Applied Physics (Springer, 2004), pp. 73–136.

4. J. Soto-Crespo, N. N. Akhmediev, and K. S. Chiang, “Simultane-
ous existence of a multiplicity of stable and unstable solitons in
dissipative systems,” Phys. Lett. A 291, 115–123 (2001).

5. J. M. Soto-Crespo, N. N. Akhmediev, and V. V. Afanasjev, “Sta-
bility of the pulselike solutions of the quintic complex Ginzburg–
Landau equation,” J. Opt. Soc. Am. B 13, 1439–1449 (1996).

6. N. N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to
ultra-short record high-energy pulses out of laser oscillators,”
Phys. Lett. A 372, 3124–3128 (2008).

7. S. Strogatz,Nonlinear Dynamics and Chaos: With Applications
to Physics, Biology, Chemistry and Engineering, Studies in
Nonlinearity Series (Perseus, 1994).

8. M. Hirsch, S. Smale, and R. Devaney, Differential Equations,
Dynamical Systems, and an Introduction to Chaos (Academic,
2004).

9. B. Deconinck and J. N. Kutz, “Computing spectra of linear op-
erators using the Floquet–Fourier–Hill method,” J. Comput.
Phys. 219, 296–321 (2006).

10. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Stability of passively
mode-locked fiber lasers with fast saturable absorption,” Opt.
Lett. 19, 198–200 (1994).

11. H. A. Haus, “Theory of mode locking with a fast saturable
absorber,” J. Appl. Phys. 46, 3049–3058 (1975).

12. W. H. Renninger, A. Chong, and F. Wise, “Dissipative solitons in
normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814
(2008).

13. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629–678
(2006).

14. M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, L. Bossalini, and
F. Fontana, “Role of dispersion in pulse emission from a sliding-
frequency fiber laser,” J. Opt. Soc. Am. B 12, 938–944
(1995).

15. T. Kapitula, J. N. Kutz, and B. Sandstede, “Stability of pulses in
the master mode-locking equation,” J. Opt. Soc. Am. B 19,
740–746 (2002).

16. T. Kapitula, J. N. Kutz, and B. Sandstede, “The Evans function
for nonlocal equations,” Indiana Univ. Math. J. 53, 1095–1126
(2004).

17. H. Poincaré, Les méthodes nouvelles de la mécanique céleste

(Gauthier-Villars et fils, 1899).

18. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields,
2nd ed., Course of Theoretical Physics (Pergamon, 1962) [Trans-
lated from Russian].

19. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed.,
Course of Theoretical Physics (Butterworth-Heinemann,
1987), Chap. 3 [translated from Russian].

20. F. X. Kärtner, I. Jung, and U. Keller, “Soliton mode-locking with
saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2,
540–556 (1996).

21. T. Kapitula and B. Sandstede, “Edge bifurcations for near inte-
grable systems via Evans function techniques,” SIAM J. Math.
Anal. 33, 1117–1143 (2002).

22. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab
waveguide revisited,” Adv. Opt. Photon. 1, 58–106 (2009).

23. E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary
pulses in the normal dispersion region: new solutions of the
cubic-quintic complex Ginzburg–Landau equation,” J. Exp.
Theor. Phys. 82, 467–471 (2005).

24. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski,
“Chirped-pulse oscillators: theory and experiment,” Appl. Phys.
B 83, 503–510 (2006).

25. V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a
unified standpoint,” Phys. Rev. A 79, 043829 (2009).

26. V. L. Kalashnikov, “Chirped dissipative solitons of the complex
cubic-quintic nonlinear Ginzburg-Landau equation,” Phys. Rev.
E 80, 046606 (2009).

27. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov,
M. P. Fedoruk, and S. A. Babin, “Highly chirped dissipative
solitons as a one-parameter family of stable solutions of the
cubic–quintic Ginzburg–Landau equation,” J. Opt. Soc. Am. B
28, 2314–2319 (2011).

28. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE
J. Quantum Electron. 29, 983–996 (1993).

29. D. J. Kaup, “Perturbation theory for solitons in optical fibers,”
Phys. Rev. A 42, 5689–5694 (1990).

30. S. A. Diddams, “The evolving optical frequency comb [Invited],”
J. Opt. Soc. Am. B 27, B51–B62 (2010).

Fig. 22. The maximum of the real part of the spectrum calculated
numerically using periodic boundary conditions deviates from that
of the spectrum derived on the infinite time axis using Eq. (23).
The duration of the equilibrium pulse τ ≈ 0.204 is calculated using
Eq. (12), and λm � �g − l� iϕ�∕2 is the maximum of the continuous
spectrum according to Eq. (23) when ω � 0.

Wang et al. Vol. 31, No. 11 / November 2014 / J. Opt. Soc. Am. B 2929



31. J. K. Wahlstrand, J. T. Willits, C. R. Menyuk, and S. T. Cundiff,
“The quantum-limited comb lineshape of a mode-locked laser:
fundamental limits on frequency uncertainty,” Opt. Express
16, 18624–18630 (2008).

32. S. Wang, A. Docherty, B. S. Marks, and C. R. Menyuk, “Compari-
son of numerical methods for modeling laser mode locking
with saturable gain,” J. Opt. Soc. Am. B 30, 3064–3074
(2013).

33. R. Paschotta, “Noise of mode-locked lasers (part I): numerical
model,” Appl. Phys. B 79, 153–162 (2004).

34. J. Nocedal and S. Wright, Numerical Optimization, Springer
Series in Operations Research and Financial Engineering
(Springer, 2006).

35. E. Ding and J. N. Kutz, “Operating regimes, split-step modeling,
and the Haus master mode-locking model,” J. Opt. Soc. Am. B
26, 2290–2300 (2009).

36. B. Sandstede and A. Scheel, “Essential instability of pulses and
bifurcations to modulated travelling waves,” Proc. Roy. Soc.
Edinburgh Sect. A 129, 1263–1290 (1999).

37. J. A. C. Weideman and S. C. Reddy, “A MATLAB differentia-
tion matrix suite,” ACM Trans. Math. Softw. 26, 465–519 (2000).

38. C. R. Menyuk, J. K. Wahlstrand, J. Willits, R. P. Smith, T. R.
Schibli, and S. T. Cundiff, “Pulse dynamics in mode-locked
lasers: relaxation oscillations and frequency pulling,” Opt. Ex-
press 15, 6677–6689 (2007).

39. M. Shtaif, C. R. Menyuk, M. L. Dennis, and M. C. Gross, “Carrier-
envelope phase locking of multi-pulse lasers with an intra-cavity
Mach-Zehnder interferometer,” Opt. Express 19, 23202–23214
(2011).

40. R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, “A
covariance matrix method to compute bit error rates in a highly
nonlinear dispersion-managed soliton system,” IEEE Photon.
Technol. Lett. 15, 688–690 (2003).

2930 J. Opt. Soc. Am. B / Vol. 31, No. 11 / November 2014 Wang et al.


	XML ID ack1

