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Abstract

On the interval [0, 1] we consider the nth order linear differential equation, the

coefficient of the highest derivative of which is equivalent to the power function tµ

when t → 0. The main aim of the paper is to pose “generalized” Cauchy conditions for

the given equation at the point of singularity t = 0, which would be correct for any

µ > 0.
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1 Introduction

Let us consider the following nth order linear differential equation:

n∑

i=0

ai(t)y
(i)(t) = f (t), t ∈ [0, 1], (1)

where the coefficients ai(·), i = 0, 1, . . . ,n, and the right-hand side f (·) are continuous func-

tions on [0, 1]. Moreover, an(t) > 0 when t ∈ (0, 1] and an(t) is equivalent to t
µ when t → 0,

i.e., equation (1) has a singularity at the point t = 0 of order µ. It is known that if 0 < µ < 1,

then all solutions of equation (1) belong to Cn[0, 1]. Hence, in this case we can pose the

same boundary conditions for (1) as for a nonsingular equation. In particular, at the point

of singularity the following Cauchy conditions can be posed:

y(i)(0) = 0, i = 0, 1, . . . ,n – 1.

In the case µ ≥ 1, there are, in general, no finite limits limt→0 y
(i)(t) for all i = 0, 1, . . . ,n–1.

Therefore, the Cauchy conditions have no meaning. The main aim of the paper is to pose

“generalized” Cauchy conditions for (1) at t = 0, which would be correct for any µ > 0.

The problem will be solved in the following way. Let γi < 1, i = 0, 1, . . . ,n – 1, be an arbi-

trary set of n real numbers and γn = 1. Suppose that the set of numbers α = (α0,α1, . . . ,αn)
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is such that

αi = γi–1 – γi + 1, i = 1, 2, . . . ,n, (2)

and α0 is calculated from the equality

µ = γ0 + α0 + n – 1.

That gives

n∑

i=0

αi = µ, γi = αn +

n–1∑

k=i+1

(αk – 1) < 1, i = 0, 1, . . . ,n – 2, and γn–1 = αn < 1. (3)

Using this set of numbers α for y(t) ∈ Cn(0, 1], we construct the following operations:

D0
αy(t) = tα0y(t),

Di
αy(t) = tαi

d

dt
tαi–1

d

dt
· · · tα1

d

dt
tα0y(t), i = 1, 2, . . . ,n.

We call this differential operation (or operator) Di
α the multiweighted derivative of the

function y of order i, i = 0, 1, . . . ,n. At the point of singularity t = 0 of equation (1) we pose

the boundary conditions

Di
αy(0) = 0, i = 0, 1, . . . ,n – 1, (4)

where each Di
αy(0) = 0, i = 0, 1, . . . ,n – 1, is understood in the sense of the existence of the

finite limit limt→0D
i
αy(t) = Di

αy(0). Conditions (4) are the required “generalized” Cauchy

conditions, and in the paper we prove that problem (1) and (4) with (3) has a unique solu-

tion.

Let us note that the operator Dn
α gives the basis for a space W n

p,α =W n
p,α(I) of functions

y : I →R with the finite semi-norm

‖y‖Wn
p,α (I)

=
∥∥Dn

αy
∥∥
p
,

where 1 < p < ∞, I = (0, 1) or I = (1,∞).

The idea to study function spaces with the purpose to apply them to different problems

concerning differential equations appeared in works by Sobolev in the thirties. From this

time the theory of Sobolev spaces has been developed to be a very powerful instrument

for solving boundary value problems of differential equations. Moreover, such concept

as a “weight function” was introduced to take care of different problems connected to

singularities. Correspondingly, Kudryavtsev presented a fairly complete theory of one-

dimensional Sobolev spaces with power weights (see, e.g., [8–15] and the references given

there). He considered a space Lnp,γ = Lnp,γ (I) of functions y : I →R, which on the interval I

have nth order derivative with the finite semi-norm

‖y‖Lnp,γ =
∥∥tγ y(n)

∥∥
p
.
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For the interval I = (0, 1) it was shown that if γ > n – 1
p
, then the function y, in general,

does not have finite limit value when t → 0. Thus, the introduction of an additional func-

tion as “weight” does not always solve singularity problems. This argumentation served

as a motivation for constructing the operator Dn
α and defining the space W n

p,α with n + 1

weights. The theory of the function space W n
p,α generalizes the previous theory of the

function space Lnp,γ . In the series of works (see, e.g., [1–6]) there were considered similar

problems for the W n
p,α as those considered by Kudryavtsev for the space Lnp,γ . The results

for the spaceW n
p,α cover such singularities that cannot be handled by one weight, but can

be handled with many weights, and they give the basis for the main result of the present

paper. More precisely, in the paper [5] it was shown that the properties of the space W n
p,α

are dependent on the values γi, i = 0, 1, . . . ,n – 1, in accordance with which we have the

following three cases of the degeneration of the weight functions tαi , i = 1, 2, . . . ,n:

1. γmax = max0≤i≤n–1 γi < 1 – 1
p
(weak degeneration);

2. γmin = min0≤i≤n–1 γi > 1 – 1
p
(strong degeneration);

3. γmin < 1 – 1
p
< γmax (mixed degeneration).

Then in the paper [6] it was proved that, for any function y ∈ W n
p,α , the condition

γmax < 1– 1
p
(weak degeneration) is necessary and sufficient for the existence of limit values

limt→0D
i
αy(t) =Di

αy(0) for all 0 ≤ i ≤ n – 1. If we resolve the equalities in (3) with respect

to αi, i = 1, 2, . . . ,n, we get the equalities in (2). Moreover, by the assumption the values

γi, i = 0, 1, . . . ,n – 1, satisfy the condition γi < 1. Thus, we have a weak degeneration of the

weight functions tαi , i = 1, 2, . . . ,n, which guarantees the existence of characteristics at the

singular point t = 0.

The paper is organized as follows: In Sect. 2 we collect all the required notations, def-

initions, and statements; in Sect. 3 we state and prove our main result concerning the

existence of a unique solution of problem (1) and (4).

2 Preliminaries

Let us introduce the following family of functions Kk(x, t), k = 0, 1, . . . ,n, assuming that

Kn(x, t)≡ 1, Kn–1(x, t) =
∫ t

x
s–αn–1 ds, Kn–2(x, t) =

∫ t

x
y–αn–2

∫ y

x
s–αn–1 dsdy and, in general,

Kk(x, t) =

∫ t

x

t
–αk+1
k+1

∫ tk+1

x

t
–αk+2
k+2 · · ·

∫ tn–2

x

t
–αn–1
n–1 dtn–1 dtn–2 · · ·dtk+1, k = 0, 1, . . . ,n – 1,

for t > x. Moreover, we assume that Kk(x, t) = 0, k = 0, 1, . . . ,n – 1, for t ≤ x.

Let n–1≥ k ≥ 0. If in the integrals of Kk(x, t) we successively change the variables tn–1 =

xτn–1, tn–2 = xτn–2, . . . , tk+1 = xτk+1, we get

x–αnKk(x, t) = x–γkKk

(
1,

t

x

)

and

x–αnKk(x, t)≥ x–γkKk(1, 2) for 0 < x ≤
t

2
, (5)

i.e., the function x–αnKk(x, t) has a singularity at zero of order x–γk for 0 < γk < 1.
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Let n – 1 ≥ k ≥ 0, i = k,k + 1, . . . ,n – 1. Changing the order of integration and using (3),

for t > 0, we get

∫ t

0

s–αnKk(s, t)ds

=

∫ t

0

s–αn

∫ t

s

t
–αk+1
k+1

∫ tk+1

s

t
–αk+2
k+2 · · ·

∫ tn–2

s

t
–αn–1
n–1 dtn–1 dtn–2 · · ·dtk+1 ds

=

∫ t

0

t
–αk+1
k+1

∫ tk+1

0

t
–αk+2
k+2 · · ·

∫ tn–2

0

t
–αn–1
n–1

∫ tn–1

0

s–αn dsdtn–1 · · ·dtk+2 dtk+1

=
1

1 – γn–1

∫ t

0

t
–αk+1
k+1

∫ tk+1

0

t
–αk+2
k+2 · · ·

∫ tn–2

0

t
–γn–2
n–1 dtn–1 · · ·dtk+2 dtk+1

=
1

(1 – γn–1)(1 – γn–2)

∫ t

0

t
–αk+1
k+1

∫ tk+1

0

t
–αk+2
k+2 · · ·

∫ tn–3

0

t
–γn–3
n–2 dtn–2 · · ·dtk+2 dtk+1

= · · · =
1

∏n–1
i=k+1(1 – γi)

∫ t

0

t
–γk
k+1 dtk+1 = dkt

1–γk , (6)

where dk =
1∏n–1

i=k (1–γi)
.

Lemma1 Let γn–1 < 1.Then, for y ∈ Cn(0, 1] satisfying the condition sup0≤t≤1 |Dn
αy(t)| < ∞,

there exists Dn–1
α y(0) and the estimate

tγn–1–1
∣∣Dn–1

α y(t) –Dn–1
α y(0)

∣∣ ≤ dn–1 sup
0≤t≤1

∣∣Dn
αy(t)

∣∣ (7)

holds.

Proof. Indeed, by assumption it follows that the function t–αnDn
αy(t) is absolutely

summable on the interval (0, 1]. Therefore, by Newton–Leibniz formula for 0 < t ≤ 1,

we have

∫ t

0

s–αnDn
αy(s)ds = lim

ε→0

∫ t

ε

d

ds
Dn–1

α y(s)ds

=Dn–1
α y(t) – lim

ε→0
Dn–1

α y(ε) =Dn–1
α y(t) –Dn–1

α y(0). (8)

Since αn = γn–1 and γn–1 < 1, from (8) we get

∣∣Dn–1
α y(t) –Dn–1

α y(0)
∣∣ ≤ sup

0≤t≤1

∣∣Dn
αy(t)

∣∣
∫ t

0

s–αn ds = sup
0≤t≤1

∣∣Dn
αy(t)

∣∣ ·
t1–γn–1

1 – γn–1
.

The last gives (7). The proof of Lemma 1 is complete.

Lemma 2 Let n – 1 ≥ k ≥ 0 and γi < 1 for i = k,k + 1, . . . ,n – 1. Let a function y ∈ Cn(0, 1]

satisfy the conditions: sup0≤t≤1 |Dn
αy(t)| < ∞ and Di

αy(0) = 0, i = k + 1, . . . ,n – 1. Then there

exist Dk
αy(0) and

tγk–1
∣∣Dk

αy(t) –Dk
αy(0)

∣∣ ≤ dk sup
0≤t≤1

∣∣Dn
αy(t)

∣∣, (9)

Dk
αy(t) =Dk

αy(0) +

∫ t

0

Kk(s, t)s
–αnDn

αy(s)ds. (10)
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Proof. Since sup0≤t≤1 |Dn
αy(t)| < ∞ and γi < 1, i = k,k + 1, . . . ,n – 1, from (6) we have that

the function Ki(s, t)s
–αnDn

αy(s) is absolutely summable on (0, t). Therefore, there exists

∫ t

0

Ki(s, t)s
–αnDn

αy(s)ds

=

∫ t

0

t
–αi+1
i+1

∫ ti+1

0

t
–αi+2
i+2 · · ·

∫ tn–2

0

t
–αn–1
n–1

∫ tn–1

0

t–αn
n Dn

αy(tn)dtn dtn–1 · · ·dti+1 (11)

for all i = k,k + 1, . . . ,n – 1.

Since Dn–1
α y(0) = 0, from (8) we have

Dn–1
α y(t) =

∫ t

0

t–αn
n Dn

αy(tn)dtn, t ∈ (0, 1].

The last, together with (11) for i = n – 2, gives

Dn–2
α y(t) –Dn–2

α y(0) =

∫ t

0

t
–αn–1
n–1

∫ tn–1

0

t–αn
n Dn

αy(tn)dtn dtn–1.

By the condition Dn–2
α y(0) = 0, hence

Dn–2
α y(t) =

∫ t

0

t
–αn–1
n–1

∫ tn–1

0

t–αn
n Dn

αy(tn)dtn dtn–1.

If we continue this process, using the fact that Di
αy(0) = 0, i = k + 1, . . . ,n – 1, and the

finiteness of (11), we get

Dk+1
α y(t) =

∫ t

0

t
–αk+2
k+2

∫ tk+2

0

t
–αk+3
k+3 · · ·

∫ tn–1

0

t–αn
n Dn

αy(tn)dtn dtn–1 · · ·dtk+2.

That gives

Dk
αy(t) –Dk

αy(0) =

∫ t

0

t
–αk+1
k+1

∫ tk+1

0

t
–αk+2
k+2 · · ·

∫ tn–1

0

t–αn
n Dn

αy(tn)dtn dtn–1 · · ·dtk+1

=

∫ t

0

Kk(s, t)s
–αnDn

αy(s)ds, (12)

i.e., there exists Dk
αy(0) and (10) holds. From (6) and (12) we have

∣∣Dk
αy(t) –Dk

αy(0)
∣∣ ≤ sup

0≤t≤1

∣∣Dn
αy(t)

∣∣
∫ t

0

Kk(s, t)s
–αn ds·

=
1

∏n–1
i=k (1 – γi)

t1–γk sup
0≤t≤1

∣∣Dn
αy(t)

∣∣.

Thus, we get (9). The proof of Lemma 2 is complete.

Corollary 1 Let n– 1≥ k ≥ 0. Suppose that the conditions of Lemma 2 hold and Dk
αy(0) =

0. Then

Di
αy(t) =

∫ t

0

Ki(s, t)s
–αnDn

αy(s)ds (13)
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and

sup
0≤t≤1

tγi–1
∣∣Di

αy(t)
∣∣ ≤ di sup

0≤t≤1

∣∣Dn
αy(t)

∣∣ (14)

for i = k,k + 1, . . . ,n – 1.

Lemma 3 Let y : I →R be such that y ∈ Cn(0, 1]. Then

y(k)(t) =

k∑

i=0

bk,it
γi–γ0–α0–kDi

αy(t), k = 0, 1, . . . ,n, (15)

where bk,k = 1, k = 0, 1, . . . ,n, and coefficients bk,i, i = 1, 2, . . . ,k – 1, k = 1, 2, . . .n, and bk,0,

k = 1, 2, . . .n, are defined by the recurrent formulas:

bk,i = bk–1,i–1 + bk–1,i
(
γi – γ0 – α0 – (k – 1)

)
and bk,0 = –bk–1,0(α0 + k – 1).

Proof. For k = 0, we have

y(t) = t–α0D0
αy(t) = b0,0t

γ0–γ0–α0–0D0
αy(t),

where b0,0 = 1.

For k = 1, we have

D1
αy(t) = tα1

(
α0t

–1D0
αy(t) + tα0y′(t)

)
.

That, using α1 = γ0 – γ1 + 1, gives

y′(t) = –α0t
–α0–1D0

αy(t) + t–α0–α1D1
αy(t)

= b1,0t
γ0–γ0–α0–1D0

αy(t) + b1,1t
γ1–γ0–α0–1D1

αy(t),

where b1,0 = –b0,0(α0 + 1 – 1) and b1,1 = 1.

Now, we assume that

y(k–1)(t) =

k–1∑

i=0

bk–1,it
γi–γ0–α0–(k–1)Di

αy(t)

is true. Then, using (2), we get

y(k)(t) =

k–1∑

i=0

bk–1,it
γi–γ0–α0–(k–1)–αi+1Di+1

α y(t)

+

k–1∑

i=0

bk–1,i
(
γi – γ0 – α0 – (k – 1)

)
tγi–γ0–α0–kDi

αy(t)

= bk–1,k–1t
γk–1–γ0–α0–(k–1)–αkDk

αy(t)

+

k–1∑

i=1

bk–1,i–1t
γi–1–γ0–α0–(k–1)–αiDi

αy(t)
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+

k–1∑

i=1

bk–1,i
(
γi – γ0 – α0 – (k – 1)

)
tγi–γ0–α0–kDi

αy(t)

+ bk–1,0
(
γ0 – γ0 – α0 – (k – 1)

)
tγ0–γ0–α0–kD0

αy(t)

= –bk–1,0(α0 + k – 1)tγ0–γ0–α0–kD0
αy(t)

+

k–1∑

i=1

(bk–1,i–1 + bk–1,i
(
γi – γ0 – α0 – (k – 1)

)
tγi–γ0–α0–kDi

αy(t)

+ bk–1,k–1t
γk–γ0–α0–kDk

αy(t).

The last implies (15). The proof of Lemma 3 is complete.

3 Main result

Theorem 1 Let (3) hold. Let the coefficients ai(t), i = 0, 1, . . . ,n, of equation (1) be contin-

uous functions on (0, 1] and satisfy the conditions

c1t
µ ≤ an(t) ≤ c2t

µ, µ > 0, t ∈ (0, 1], (16)

ai(t) = o
(
tµ–n+i

)
, i = 0, 1, . . . ,n – 1, for t → 0, (17)

where the constants c1 > 0 and c2 > 0 do not depend on t ∈ (0, 1]. Then, for any µ > 0 and

for any function f (·) continuous on [0, 1], there exists a unique solution of problem (1) and

(4), and the following estimate

n∑

k=0

sup
0≤t≤1

tµ–n+k
∣∣y(k)(t)

∣∣ ≤ c max
0≤t≤1

∣∣f (t)
∣∣ (18)

holds, where c > 0 does not depend on f .

Proof. If we substitute (15) in (1), then we have

n∑

k=0

(
n∑

i=k

ai(t)bi,kt
γk–γ0–α0–i

)
Dk

αy(t) = f (t).

By introducing the notations ãk(t) =
∑n

i=k ai(t)bi,kt
γk–γ0–α0–i, k = 0, 1, . . . ,n, we get

n∑

k=0

ãk(t)D
k
αy(t) = f (t). (19)

From conditions (16) and (17) we have

c1 ≤ ãn(t) ≤ c2, t ∈ (0, 1], (20)

ãk(t) = o
(
tγk–1

)
, k = 0, 1, . . . ,n – 1, for t → 0. (21)

By condition (3) we have that γi < 1, i = 0, 1, . . . ,n – 1, therefore (14) and (13) are valid for

k = 0.
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Let z(t) = ãn(t)D
n
αy(t), then from (4), (13), and (19) we obtain

z(t) +

∫ t

0

n–1∑

k=0

ãk(t)Kk(s, t)s
–αn ã–1n (s)z(s)ds = f (t). (22)

Now, we prove that integral equation (22) has a unique solution continuous on [0, 1], for

which the estimate

max
0≤t≤1

∣∣z(t)
∣∣ ≤ c̄ max

0≤t≤1

∣∣f (t)
∣∣ (23)

holds, where c > 0 does not depend on f .

Despite the fact that integral equation (22) has the form of a Volterra equation, (5) im-

plies that the kernel of the integral operator in (22) is unbounded if, for some 0 ≤ k ≤ n–1,

we have 0 < γk < 1. Therefore, we cannot apply the regular theory of Volterra integral equa-

tions in the space of continuous functions (see, e.g., [16]). Hence, let us first solve equation

(22) on some interval [0, δ], 0 < δ < 1, using the method of contraction mapping (see, e.g.,

[7]).

By (21) there exists 1 > δ > 0 such that

c–11 sup
0≤t≤δ

n–1∑

k=0

1
∏n–1

i=k (1 – γi)

∣∣̃ak(t)
∣∣t1–γk = q < 1. (24)

In C[0, δ] we consider the integral operator

Kz(t) =

n–1∑

k=0

ãk(t)

∫ t

0

Kk(s, t)s
–αn ã–1n (s)z(s)ds, t ∈ [0, δ].

Due to (6), (21), and (24) we have

sup
0≤t≤δ

∣∣Kz(t)
∣∣ ≤ sup

0≤t≤δ

n–1∑

k=0

∣∣̃ak(t)
∣∣
∫ t

0

Kk(s, t)s
–αn

∣∣̃an(s)
∣∣–1∣∣z(s)

∣∣ds

≤ sup
0≤t≤δ

c–11

n–1∑

k=0

∣∣̃ak(t)
∣∣ sup
0≤t≤δ

∣∣z(t)
∣∣
∫ t

0

Kk(s, t)s
–αn ds

= c–11 sup
0≤t≤δ

n–1∑

k=0

1
∏n–1

i=k (1 – γi)

∣∣̃ak(t)
∣∣t1–γk sup

0≤t≤δ

∣∣z(t)
∣∣ = q sup

0≤t≤δ

∣∣z(t)
∣∣.

Therefore,K is a contraction operator inC[0, δ]. Applying themethod of contractionmap-

ping to integral equation (22) ([7], pp. 88–89), we have that equation (22) has a unique

solution z̄0 ∈ C[0, δ]; in addition, max0≤t≤δ |z̄0(t)| ≤ c̄0 max0≤t≤1 |f (t)|. The successive ap-

proximations z0, z1, . . . , zn, . . . to this solution are of the form

zn(t) +

∫ t

0

n–1∑

k=0

ãk(t)Kk(s, t)s
–αn ã–1n (s)zn–1(s)ds = f (t),

where any function from C[0, δ] can be chosen as the first approximation z0(t).



Kalybay Boundary Value Problems        (2020) 2020:110 Page 9 of 11

Thus, we have found the solution z̄0 ∈ C[0, δ] of equation (22) on the interval [0, δ]. From

equation (22) we have

z̄0(δ) = f (δ) –

n–1∑

k=0

ãk(δ)

∫ δ

0

Kk(s, δ)s
–αn ã–1n (s)z̄0(s)ds.

Let us now solve equation (22) on the interval [δ, 1] with the condition

z(δ) = z̄0(δ). (25)

On [δ, 1] we present equation (22) in the form

z(t) +

n–1∑

k=0

ãk(t)

(∫ δ

0

Kk(s, t)s
–αn ã–1n (s)z(s)ds +

∫ t

δ

Kk(s, t)s
–αn ã–1n (s)z(s)ds

)

= f (t).

Since z = z̄0 on the interval [0, δ], we have

z(t) +

n–1∑

k=0

ãk(t)

∫ t

δ

Kk(s, t)s
–αn ã–1n (s)z(s)ds

= f (t) –

n–1∑

k=0

ãk(t)

∫ δ

0

Kk(s, t)s
–αn ã–1n (s)z̄0(s)ds. (26)

It means that the kernel of the integral operator K is continuous on the bounded set δ ≤

s ≤ t ≤ 1. Hence, equation (22) is a regular Volterra integral equation on the interval [δ, 1].

Therefore, it has a unique continuous solution z̄1 on the interval [δ, 1] (see, e.g., [16]), for

which the estimate maxδ≤t≤1 |z̄1(t)| ≤ c̄1 max0≤t≤1 |f (t)| holds.

From (26) we have

z̄1(δ) = f (δ) –

n–1∑

k=0

ãk(δ)

∫ δ

0

Kk(s, δ)s
–αn ã–1n (s)z̄0(s)ds.

The last gives that z̄0(δ) = z̄1(δ), i.e., (25) holds. Hence, the function

z(t) =

⎧
⎨
⎩
z̄0(t), 0≤ t ≤ δ,

z̄1(t), δ ≤ t ≤ 1,

belongs to C[0, 1] and it is a unique solution of (22). From the estimates for z̄0 and z̄1, we

get (23) with c̄ = max{c̄0, c̄1}.

Thus, problem (1) and (4) is reduced to the problem

⎧
⎨
⎩
Dn

αy(t) = ã–1n (t)z(t),

Di
αy(0) = 0, i = 0, 1, . . . ,n – 1,

(27)

with condition (3), where z ∈ C[0, 1] is a unique solution of (22).
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Since z ∈ C[0, 1], the function ã–1n (t) = (an(t)t
–µ)–1 is continuous on (0, 1] and by (20)

we have that 1
c2

≤ ã–1n (t) ≤ 1
c1
, t ∈ (0, 1]. Then from (27) we get Dn

αy(t) ∈ C(0, 1] and

sup0≤t≤1 |Dn
αy(t)| < ∞. Moreover, by condition (3) we have γi < 1, i = 0, 1, . . . ,n – 1. Then,

on the basis of Lemmas 1 and 2 and from (13) and (14), we get

Di
αy(t) =

∫ t

0

Ki(s, t)s
–αnDn

αy(s)ds

=

∫ t

0

Ki(s, t)s
–αn ã–1n (s)z(s)ds, i = 0, 1, . . . ,n – 1, (28)

and the estimate

sup
0≤t≤1

tγi–1
∣∣Di

αy(t)
∣∣ ≤ di sup

0≤t≤1

∣∣Dn
αy(t)

∣∣ ≤
di

c1
max
0≤t≤1

∣∣z(t)
∣∣, i = 0, 1, . . . ,n. (29)

From (29) the uniqueness of problem (27) follows.

From (23) and (29) we obtain

sup
0≤t≤1

tγi–1
∣∣Di

αy(t)
∣∣ ≤

c̄di

c1
max
0≤t≤1

∣∣f (t)
∣∣, i = 0, 1, . . . ,n. (30)

Since µ = γ0 + α0 + n – 1, from (15) we have

tµ–n+ky(k)(t) =

k∑

i=0

bk,it
γi–1Di

αy(t), k = 0, 1, . . . ,n.

The last, together with (30), gives the estimate

sup
0≤t≤1

∣∣tµ–n+ky(k)(t)
∣∣ ≤ c̃ max

0≤t≤1

∣∣f (t)
∣∣, k = 0, 1, . . . ,n,

where c̃ > 0 depends on c̄, c1, di and bk,i, k, i = 0, 1, . . . ,n, and does not depend on f . The

last implies the validity of (18). The proof of Theorem 1 is complete.

Remark 1 Under the conditions of Theorem 1 problem (1) and (4) is solvable for any set

α0, α1, . . . , αn satisfying condition (3).
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