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Abstract. We study optimal boundary control problems for the two-dimensional Navier–Stokes
equations in an unbounded domain. Control is effected through the Dirichlet boundary condition
and is sought in a subset of the trace space of velocity fields with minimal regularity satisfying the
energy estimates. An objective of interest is the drag functional. We first establish three important
results for inhomogeneous boundary value problems for the Navier–Stokes equations; namely, we
identify the trace space for the velocity fields possessing finite energy, we prove the existence of a
solution for the Navier–Stokes equations with boundary data belonging to the trace space, and we
identify the space in which the stress vector (along the boundary) of admissible solutions is well
defined. Then, we prove the existence of an optimal solution over the control set. Finally, we justify
the use of Lagrange multiplier principles, derive an optimality system of equations in the weak sense
from which optimal states and controls may be determined, and prove that the optimality system
of equations satisfies in appropriate senses a system of partial differential equations with boundary
values.
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1. Introduction. Optimal control problems for fluid flows have been a subject
of interest to experimenters and designers since at least the time of Prandtl. In
more recent times, they have also become of substantial interest to mathematicians
and computational scientists. For the steady state Navier–Stokes system, complete
and systematic mathematical and numerical analyses of optimal control problems
of different types (e.g., having Dirichlet, Neumann, and distributed controls and also
finite-dimensional controls) were given in [15, 16, 17, 18]. Mathematical treatments of
optimal control problems for the time-dependent Navier–Stokes system were given in
[2], [6, 7, 8, 9, 10, 11, 12, 13], [20], and [24, 25, 26, 27]. In [6], free convection problems
with boundary heat flux controls were considered; the existence of optimal solutions
was proved and necessary conditions that characterize optimal controls and states
were derived. In [11, 12, 13], the existence of optimal distributed controls was shown,
an optimality system of equations was derived, and the question of the uniqueness
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of optimal solutions was resolved. Distributed controls were also considered in [20].
Various optimal control problems involving both distributed and boundary controls
were considered in [2], although detailed proofs were provided only for the case of
distributed controls. In [7, 8, 9, 10] and [24, 25, 26, 27] extensive studies of optimal
control problems were given for Dirichlet controls in a special case, namely, when the
control is of the separation-of-variable type.

In this paper we consider general Dirichlet controls for the time-dependent, two-
dimensional Navier–Stokes system in the exterior of a bounded domain. Our eventual
goal is to derive an optimality system from which optimal controls and states may be
determined. A feature of the Dirichlet boundary control problem is as follows: one
can derive an optimality system only in spaces of sufficiently smooth functions for
which the nonlinear terms of the Navier–Stokes system are subordinate to the linear
terms. (In the case of distributed control the situation is different; see [13].) In the
two-dimensional case, the space of minimal smoothness possessing this property is
the space of functions with “finite energy.” Therefore, we first identify the space of
boundary values which allows us to obtain finite energy solutions for the Navier–Stokes
equations. Then, we prove the existence of an optimal solution in the finite energy
space. Note that it would be easier to prove the solvability of an optimal control
problem in a certain space of nonsmooth functions, but such a result is useless for the
derivation of an optimality system. Finally, we use Lagrange multiplier techniques
to derive a boundary value problem that the optimal states and control must satisfy.
This boundary value problem is called the optimality system. We rigorously justify the
boundary conditions for this system by means of techniques for elliptic boundary value
problems in spaces of distributions and a theory, given below, about stress regularity
for solutions of the Navier–Stokes equations with nonhomogeneous Dirichlet boundary
conditions. In contrast to parabolic boundary value problems, it is here necessary to
fulfill the compatibility conditions for boundary and initial values even in the case of
nonsmooth solutions.

2. Formulation of the problem.

2.1. Derivation of the cost functional. We will formally derive the drag func-
tional for flows surrounding a finite body. We consider the motion of an incompressible
fluid in an unbounded domain that is described by the system

(2.1) ρ∂tv − µ∆v + ρv · ∇v +∇p = 0 and ∇ · v = 0 in (0, T )× Ω ,

(2.2) v|t=0 = v0 for x ∈ Ω , v|∂Ω = g for t ∈ (0, T ) ,

and

(2.3) v→ v∞ as |x| → ∞ .

Here, ∂t = ∂/∂t, Ω is the region exterior to a bounded body B ⊂ R2, and ∂Ω is
its boundary. For simplicity we assume ∂Ω is of class C∞ and is a connected closed
curve without self-intersections. Also, the density ρ is a constant and v∞ is a constant
vector; the exact nature of the behavior at infinity will be discussed later. Later on
we will add a condition on p so that, for given v0, g, and v∞, the problem (2.1)–(2.3)
has a unique solution. When g = 0, (2.1)–(2.3) is the problem of a fluid moving
around the body B with uniform velocity v∞ at infinity.

Denote by ∂Ωε a smooth closed curve in a neighborhood of ∂Ω, surrounding ∂Ω
and lying inside Ω; Ωε is the part of Ω bounded by ∂Ωε and containing the point at



854 A. V. FURSIKOV, M. D. GUNZBURGER, AND L. S. HOU

infinity. Let T = −pI + 2µD be the stress tensor; here, D = D(v) = 1
2 (∇v +∇vT ) is

the rate of deformation tensor for the flow. Then, for x ∈ ∂Ωε, (T n)(t,x) is the force
at a point x on ∂Ωε which acts on the fluid in Ωε at the time t; here, n denotes the
unit normal to the curve ∂Ωε which is outer with respect to Ωε. Thus,∫ T

0
dt

∫
∂Ωε

(v − v∞) · (T n) ds

is the work needed to overcome the drag exerted on the “body” Bε = R2\Ωε over the
time interval (0, T ). After passing to the limit as ε → 0, we obtain the work needed
to overcome the drag exerted on the given body B = R2\Ω:

W =
∫ T

0
dt

∫
∂Ω

(v − v∞) · (T n) ds .

Using the definitions of T and D, and taking into account that v∞ is a constant
vector, we have that

W =
∫ T

0
dt

∫
∂Ω

(v − v∞) · {−pn + µ(∇v +∇vT )n} ds

=
∫ T

0
dt

∫
∂Ω

(v − v∞) ·
{
−pn + µ

(
∇(v − v∞) +∇(v − v∞)T

)
n
}
ds .

Upon setting w = v − v∞,

(2.4) W =
∫ T

0

∫
∂Ω

w · {−pn + 2µD(w)n} ds dt .

Let ΩR = Ω ∩ {x ∈ R2 : |x| < R} and ΓR = ∂ΩR \ ∂Ω for sufficiently large R such
that the circle of radius R centered at the origin contains Ω. Using Green’s formula
we obtain

(2.5)

∫
ΩR

w ·
(
∇ · D(w)

)
dx

=
∫
∂Ω

w · D(w)n ds+
∫

ΓR
w · D(w)n ds−

∫
ΩR
D(w) : ∇w dx ,

where ∂j = ∂/∂xj ; i.e., ∂j denotes the partial derivative with respect to the jth
coordinate, ∇ · S for a two-tensor S = {Sij} is defined as the vector (∂jS1j , ∂jS2j)T ,
and the colon notation denotes the scalar product operation on two two-tensors; i.e.,
for two-tensors T = {Tij} and S = {Sij}, T : S = TijSij . Also, we have employed
the convention that repeated indices imply summation. From (2.1) we have that
w = v − v∞ satisfies ∇ ·w = 0 so that (2.5) and the identity

2∇ · D(w) = ∆w +∇(∇ ·w)

yield∫
∂Ω

w · D(w)n ds =
1
2

∫
ΩR

w ·∆w dx +
∫

ΩR
D(w) : ∇w dx−

∫
ΓR

w · D(w)n ds .

The symmetry of the tensor D(w) yields∫
ΩR
D(w) : ∇w dx =

∫
ΩR
D(w) : D(w) dx
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so that∫
∂Ω

w · D(w)n ds =
1
2

∫
ΩR

w ·∆w dx +
∫

ΩR
D(w) : D(w) dx−

∫
ΓR

w · D(w)n ds .

Since D(w) = D(v), the substitution of the last equation into (2.4) yields

W =
∫ T

0

∫
ΩR

w · (µ∆w −∇p) dx dt+ 2µ
∫ T

0

∫
ΩR
D(v) : D(v) dx dt

− 2µ
∫ T

0

∫
ΓR

w · D(w)n ds dt+
∫ T

0

∫
ΓR
pw · n ds dt

so that by taking the limit R→∞ we obtain

(2.6) W =
∫ T

0

∫
Ω

w · (µ∆w −∇p) dx dt+ 2µ
∫ T

0

∫
Ω
D(v) : D(v) dx dt .

From (2.1) we have that w = v − v∞ satisfies

ρ∂tw − µ∆w + ρv · ∇w +∇p = 0 .

Combining (2.6) and the last equation yields

(2.7)

W = 2µ
∫ T

0
dt

∫
Ω
D(v) : D(v) dx +

ρ

2

∫ T

0
dt

∫
Ω
∂t|w|2 dx

+ ρ

∫ T

0
dt

∫
Ω

(v · ∇w) ·w dx

= 2µ
∫ T

0
dt

∫
Ω
D(v) : D(v) dx +

ρ

2

∫ T

0
dt

∫
∂Ω
|w|2v · n ds

+
ρ

2

∫
Ω
|w(T,x)|2 dx− ρ

2

∫
Ω
|w(0,x)|2 dx .

The integral ρ2
∫

Ω |w(t,x)|2 dx is the (finite) kinetic energy of the difference flow w =
v − v∞. (Note that the kinetic energy of the flow ρ

2

∫
Ω |v(t,x)|2 dx = ∞.) We can

rewrite (2.7) as the energy equality

ρ

2

∫
Ω
|w(0,x)|2 dx +

∫ T

0
dt

∫
∂Ω

w · T n ds

=
ρ

2

∫
Ω
|w(T,x)|2 dx + 2µ

∫ T

0
dt

∫
Ω
D(v) : D(v) dx +

ρ

2

∫ T

0
dt

∫
∂Ω
|w|2v · n ds .

This relation may be interpreted as follows: the initial kinetic energy of the difference
flow plus the work due to drag is equal to the final, i.e., at t = T , value of the
kinetic energy of the difference flow plus the energy dissipated due to friction plus the
work done by the boundary control. Whenever the control is absent, i.e., whenever
v|∂Ω = g = 0, the third integral on the right-hand side of the last equation vanishes.
Since the initial kinetic energy of the difference flow is given, it is quite natural to
take the right-hand side of the last equation as the cost functional (for convenience,
we introduce a factor of one-half):

(2.8)
J (w) =

ρ

4

∫
Ω
|w(T,x)|2 dx + µ

∫ T

0
dt

∫
Ω
D(v) : D(v) dx

+
ρ

4

∫ T

0
dt

∫
∂Ω
|w|2v · n ds .
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2.2. Constraints on the control. For both physical and mathematical reasons,
the size of the control should be constrained. Physically, one cannot realize controls
of arbitrary size. Moreover, the cost of effecting control should be accounted for in the
optimization process; e.g., one would not usually want to reduce the drag by a small
amount if the cost of doing so is prohibitive. Limits on the size of the control are also
needed in order to obtain a mathematically meaningful problem, e.g., to guarantee
the existence of an optimal solution in a certain function class. Of course, the physical
and mathematical needs for limiting the size of the control are not unrelated.

It is simpler to explain the ideas concerning constraining the size of the control
in the steady state context in which we have the governing system

(2.9) −µ∆v + ρv · ∇v +∇p = 0 and ∇ · v = 0 in Ω ,

(2.10) v|∂Ω = g , and v→ v∞ as |x| → ∞

and the cost functional

(2.11) Js(v) =
∫
∂Ω

w · T n ds = µ

∫
Ω
D(v) : D(v) dx +

ρ

4

∫
∂Ω
|w|2v · n ds ,

where w = v − v∞, as noted previously. In all physically interesting situations one
would want to minimize the drag functional (2.11). If there are no constraints on
the control, i.e., on v along the boundary ∂Ω, then it is easy to find a trivial control
such that Js(v) = 0. Indeed, if we take v|∂Ω = v∞, then the solution of (2.9)–(2.10)
is given by v(x) = v∞ and ∇p = 0, and then, clearly, Js(v) = Js(v∞) = 0. This
implies that Js(v) can possibly be negative, thereby the object occupying the region
B is being propelled rather than being dragged, exactly the opposite of what we want
to study. Thus, constraining the control is not only natural from the physical point of
view of conserving resources, but is necessary for the minimization problem to model
properly the desired physical objectives. (Note that in the time-dependent case, we
cannot choose v = v∞ due to the initial condition of (2.2); however, we still want to
limit the size of the control for the same reasons as in the steady state case.)

There are two common ways of constraining the control. The first one is to impose
an explicit bound on the control. In the steady state case, we can impose

(2.12)
∫
∂Ω
|v|k ds ≤M for some k ≥ 3

or

(2.13) |v(x)| ≤M ∀x ∈ ∂Ω ,

where M is a prescribed positive constant. The constraint (2.12) allows the control
to concentrate on small portions of the boundary and is therefore more useful in
providing information about the locations where the control is most effective. Such
information will be helpful in the study of “local controls,” i.e., the application of
control at a number of chosen locations on the boundary. (We will study local control
problems elsewhere.) For this reason we will not pursue constraints of the type (2.13)
any further in this paper. The second way of constraining the control is to add some
norm of the control to the cost functional; e.g., instead of (2.11), we consider the
functional

(2.14) µ

∫
Ω
D(v) : D(v) dx +

ρ

4

∫
∂Ω
|w|2v · n ds+ ρN

∫
∂Ω
|v|k ds
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for some k ≥ 3 and N > 0. If k = 3, we will need N > 1
4 . In both ways of

constraining the control, one can use different norms to measure the control. The
physical problem does not tell us which norm to use, although desirable physical
properties, e.g., having no sharp peaks in the control along the boundary, should
influence the choice. The choice of norm is also influenced by the need to establish
the well-posedness of the problem, e.g., the existence of an optimal solution in some
function class, the regularity of the optimal solution, etc. For example, the constraints
on the value of k are motivated by the need to have the cost of control, i.e., the last
term in (2.14), dominate (in an appropriate sense that will be made clear later in this
paper) the second term.

Our interest in this paper is in the time-dependent problem, and we now discuss
how we can choose a convenient norm for measuring the control. Our starting point
is the requirement that solutions of the Navier–Stokes system have energy estimates
that will be needed later in this paper in studying the optimal control problems, and
particularly in the derivation of the optimality system of equations. The minimum
level of smoothness for the velocity field v at which the energy estimates are valid is v−
v∞ ∈ L2

(
0, T ; H1(Ω)

)
and ∂tv ∈ L2

(
0, T ; H−1(Ω)

)
. Note that these inclusions imply

a certain behavior at infinity. (The Sobolev space notation used here is established
in section 3.1.) The boundary control should belong to a subset of the trace space on
∂Ω of the space for the vector field v. The norm on the trace space will be shown to
be

‖v · n‖L2(0,T ;H1/2(∂Ω)) + ‖v · n‖H3/4(0,T ;H−1(∂Ω))

+ ‖v · τ‖L2(0,T ;H1/2(∂Ω)) + ‖v · τ‖H1/4(0,T ;L2(∂Ω)) ,

where τ denotes the counterclockwise unit tangent vector to ∂Ω. Naturally, the
control should be measured in a norm that is not weaker than the norm for the
desired trace space. For computational convenience, we will strengthen the fractional
time derivative to the first derivative ∂t in the functional. Also, the particular form
of the functional (2.8), i.e., the term

∫ T
0

∫
ΩD(v) : D(v) dxdt, implies that in order for

v to belong to the desired trace space, it is sufficient to use the norm∫ T

0

∫
∂Ω
|∂tv|2 ds dt

for the controls. Also, as in (2.12), we have to include the constraints connected with
the term

∫ T
0

∫
∂Ω |v|

k ds dt for some k ≥ 3.
Hence, the two approaches of constraining the control in the time-dependent case

can now be described as follows. The first approach, i.e., imposing an explicit bound
on the control, requires that, for some constant M > 0,

(2.15)
∫ T

0

∫
∂Ω
|v|k ds dt+

∫ T

0

∫
∂Ω
|∂tv|2 ds dt ≤M ,

where k ≥ 3. The second approach, i.e., adding a norm of the control to the functional,
uses the functional
(2.16)

JN (v) = µ

∫ T

0

∫
Ω
D(v) : D(v) dxdt+

ρ

4

∫ T

0

∫
∂Ω
|w|2v · n ds dt

+
ρ

4

∫
Ω
|w(T,x)|2 dx + ρN

(∫ T

0

∫
∂Ω
|v|k ds dt+

∫ T

0

∫
∂Ω
|∂tv|2 ds dt

)
,

where w = v − v∞, k ≥ 3, and N > 0 (N > 1
4 if k = 3).
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3. Precise statement of extremal problems. We will use the standard nota-
tions for the Lebesgue function space Lr(Ω) and the Sobolev spaces Wm,r(Ω), Hm(Ω),
W l,s(∂Ω), and H l(∂Ω) for real numbers r, m, l, s, where m, l are the smooth-
ness indices and r, s are the integrability indices. Also, Hm(Ω) = Wm,2(Ω) and
H l(∂Ω) = W l,2(∂Ω). For m ≥ 0, we introduce the subspaces of the Sobolev spaces
Wm,r(Ω):

Wm,r
0 (Ω) = the closure of C∞0 (Ω) in Wm,r(Ω)

and the dual spaces

W−m,r(Ω) =
(
Wm,r′

0 (Ω)
)∗
, where

1
r

+
1
r′

= 1, 1 < r, r′ <∞ .

Also, Hm
0 (Ω) = Wm,2

0 (Ω) and H−m(Ω) = W−m,2(Ω). The vector counterparts of
these spaces are denoted by Lr(Ω), Wm,r(Ω), Hm(Ω), Wl,s(∂Ω), Hl(∂Ω), Wm,r

0 (Ω),
and Hm

0 (Ω). For details, see [1] and [14]. We will also use the solenoidal spaces

Vm(Ω) =
{

u ∈ Hm(Ω) : ∇ · u = 0,
∫
∂Ω

u · n ds = 0
}

for m ≥ 0

and

Vm
0 (Ω) = the closure of C∞0 (Ω) ∩V0(Ω) in the Hm(Ω)-norm for m ≥ 0 ,

where when m = 0,
∫
∂Ω u · n ds is understood as the H−1/2(∂Ω)–H1/2(∂Ω) duality

pairing between the function (u · n) ∈ H−1/2(∂Ω) and the constant scalar function
1 ∈ H1/2(∂Ω). Note that in the definition of Vm(Ω) (Ω being unbounded), the
condition

∫
∂Ω u · n ds = 0 does not follow from div u = 0 unless some additional

assumptions are made on u at ∞. Note also that for simplicity, we have assumed ∂Ω
is a connected curve; otherwise, we need to require

∫
Γi

u ·n ds = 0 on each connected
component Γi of ∂Ω. Identifying

(
V0(Ω)

)∗ with V0(Ω) we introduce the dual spaces

V−m(Ω) = [Vm
0 (Ω)]∗ for m ≥ 1 .

The norms on Vm(Ω) and Vm
0 (Ω) are chosen to be that of Hm(Ω). We also introduce

the temporal-spatial function space, defined on Q = R × Ω,

H(s)(Q) = {f ∈ L2(R;Hs(Ω)
)

: ∂tf ∈ L2(R;Hs−2(Ω)
)
}

with norm

‖f‖2H(s)(Q) = ‖f‖2L2(R;Hs(Ω)) + ‖∂tf‖2L2(R;Hs−2(Ω)) ,

and the corresponding solenoidal function space

V(s)(Q) = {v ∈ L2(R; Vs(Ω)
)

: ∂tv ∈ L2(R; Vs−2(Ω)
)
}

with norm

‖v‖2V(s)(Q) = ‖v‖2L2(R;Vs(Ω)) + ‖∂tv‖2L2(R;Vs−2(Ω)) .

Analogously, we may define the function spaces H(s)(QT ) and V(s)(QT ) defined on
QT = (0, T )× Ω.
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With the help of the spaces defined above, we may define the solution for the
Navier–Stokes equations (2.1)–(2.3). We first quote a useful lemma.

LEMMA 3.1. The space V(1)(QT ) is continuously imbedded into C
(
[0, T ]; V0(Ω)

)
.

Proof. Solving in QT the equations ∂F (t, x)/∂x2 = u1, ∂F (t, x)/∂x1 = −u2, and∫
Ω F (t, x)dx = 0 almost everywhere (a.e.) t ∈ (0, T ) for an arbitrary u = (u1, u2) ∈
V(1)(QT ), we reduce the proof of the lemma to a proof of the continuity of the em-
bedding H(2)(QT ) ⊂ C([0, T ];H1(Ω)). The last assertion is proved in [4] or [21]. (For
an alternate proof, see [5] or [28].)

Below, for the sake of simplicity, we set the constant density ρ = 1 or, more
precisely, we introduce nondimensionalized variables so that now µ is the inverse of
the Reynolds number.

DEFINITION 3.2. v is said to be a solution of (2.1)–(2.3) if v = w + v∞, where
w ∈ V(1)(QT ) satisfies

(3.1)
〈∂tw(t), z〉+ 2µ

∫
Ω
D(w(t)) : D(z) dx +

∫
Ω

(
w(t) · ∇

)
w(t) · z dx

+
∫

Ω

(
v∞ · ∇

)
w(t) · z dx = 0 ∀ z ∈ V1

0(Ω), a.e. t ∈ (0, T ) ,

(3.2) w = b ≡ g − v∞ in L2
(
0, T ; H1/2(∂Ω)

)
,

and

w|t=0 = w0 ≡ v0 − v∞ in V0(Ω) .

Note that the initial condition in Definition 3.2 makes sense because of Lemma 3.1.
Here and elsewhere in this paper, 〈·, ·〉 denotes the duality pairing between a Banach
space and its dual space; the underlying Banach space may vary depending on the
context. In particular, 〈·, ·〉 in (3.1) denotes the duality pairing between V−1(Ω) and
V1

0(Ω). Also, note that we have used the identity

2
∫

Ω
D(w) : D(z) dx =

∫
Ω
∇w : ∇z dx ∀w ∈ V1(Ω), z ∈ H1

0(Ω) .

The extremal problems we study involve the objective of drag minimization.
Based on the two ways of constraining the control, we have the two functionals (2.8)
or (2.16) so that we state two extremal problems. It is more convenient to use the
variable w = v − v∞. Also, we will simply use w|∂Ω to denote the Dirichlet control
and, thus, we will not introduce a separate notation to denote the control variable and
the boundary condition (3.2) will not be explicitly imposed as a constraint. Extremal
solutions are sought in the space

Y =

{
w ∈ V(1)(QT ) : (∂tw)|∂Ω ∈ L2(0, T ; L2(∂Ω)

)
,

∫
∂Ω
∂tw · n ds = 0 , w|∂Ω ∈ Lk

(
(0, T )× ∂Ω

) }
equipped with the norm

‖w‖Y = ‖w‖V(1)(QT ) + ‖∂tw‖L2(0,T ;L2(∂Ω)) + ‖w‖Lk((0,T )×∂Ω) ,

where k ≥ 3 and n is the outward normal on ∂Ω.
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We also introduce the space

W = {w ∈ V0(Ω) : (w · n)|∂Ω ∈ H1/4(∂Ω) ∩ L1+k/2(∂Ω)} .

Since the trace γn,∂Ω(w) ≡ (w · n)|∂Ω is well defined and belongs to H−1/2(∂Ω) (see
[28]), the definition of W makes sense. Note that the restriction operator

γ0 : Y →W

defined by γ0w = w|t=0 is continuous. Indeed, we denote

Yδ =

{
w ∈ L2(0, T ; H1/2(∂Ω)

)
∩ Lk

(
(0, T )× ∂Ω

)
:

∂tw ∈ L2((0, T )× ∂Ω
)
,

∫
∂Ω
∂tw ds ds = 0

}
.

Then, since the trace operators γn,∂Ω : Y → Yδ and γ0 : Yδ → H1/4(∂Ω)∩L1+k/2(∂Ω)
are continuous, the restriction γ0w for an arbitrary w ∈ Y possesses the property

γn,∂Ω(γ0w) = γ0(γn,∂Ωw) ∈ H1/4(∂Ω) ∩ L1+k/2(∂Ω) .

This proves that the imbedding γ0Y ⊂ W is continuous. We intend to look for
an extremal solution in the space Y . Thus, we are compelled to replace the initial
condition in Definition 3.2 by

(3.3) w|t=0 = w0 ≡ v0 − v∞ ∈W.

Problem I. Suppose that w0 ≡ v0 − v∞ ∈ W. Seek a w ∈ Y such that the
functional

(3.4)

JN (w) = µ

∫ T

0

∫
Ω
D(w) : D(w) dxdt

+
1
4

∫ T

0

∫
∂Ω
|w|2(w + v∞) · n ds dt+

1
4

∫
Ω
|w(T,x)|2 dx

+N

∫ T

0

∫
∂Ω

(
|w + v∞|k + |∂tw|2

)
ds dt

is minimized subject to the constraints (3.1) and (3.3), where k ≥ 3 and N > 0 with
N > 1

4 if k = 3.
Problem II. Suppose that w0 ≡ v0 − v∞ ∈ W. Seek a w ∈ Y such that the

functional

(3.5)
J (w) = µ

∫ T

0

∫
Ω
D(w) : D(w) dxdt+

1
4

∫ T

0

∫
∂Ω
|w|2(w + v∞) · n ds dt

+
1
4

∫
Ω
|w(T,x)|2 dx

is minimized subject to the constraints (3.1), (3.3), and

(3.6)
∫ T

0

∫
∂Ω

(
|w + v∞|k + |∂tw|2

)
ds dt ≤M ,

where k ≥ 3 and M > 0.
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Note that Lemma 3.1 ensures that the functionals (3.4) and (3.5) are well defined
on Y . We now give definitions for an admissible element and for a solution of Problem
I or II.

DEFINITION 3.3. An element w ∈ Y is called admissible if it satisfies (3.1) and
(3.3) in the case of Problem I and satisfies (3.1), (3.3), and (3.6) in the case of Problem
II. The set of admissible elements is denoted by Vad.

DEFINITION 3.4. An element ŵ ∈ Vad is called a solution of Problem I if

JN (ŵ) = inf
w∈Vad

JN (w) ,

where JN is defined by (3.4). An element ŵ ∈ Vad is called a solution of Problem II
if

J (ŵ) = inf
w∈Vad

J (w) ,

where J is defined by (3.5).

4. An extension theorem, solutions of the Navier–Stokes equations,
and the stress vector on the boundary. Our aim is to prove the existence of
optimal solutions for Problems I and II and to obtain optimality systems of partial
differential equations that optimal solutions must satisfy. To this end, we first prove
three results that are of considerable interest in their own right in the study of Dirichlet
boundary value problems for the Navier–Stokes equations.

The first result (section 4.1) is the identification of the trace space of V(1)(QT ) =
L2
(
0, T ; V1(Ω)

)
∩H1

(
0, T ; V−1(Ω)

)
, i.e., the collection of velocity boundary data that

can be extended into functions belonging to V(1)(QT ). The second result (section 4.2)
is the existence of a solution of the Navier–Stokes equations with boundary values in
these trace spaces along with a priori estimates for the solution. The third result
(section 4.3) is the identification of the space in which the trace of the stress vector
(on the boundary) of admissible solutions is well defined.

4.1. An extension theorem for boundary data. We prove some results con-
cerning the extension of functions from the lateral surface of the time-space cylinder
to the entire cylinder, i.e., from (0, T )× ∂Ω to (0, T )× Ω.

We set Q = R×Ω (the infinite time-space cylinder) and S = R×∂Ω (the lateral
surface of the infinite time-space cylinder). The problem we want to consider is to
describe the space of vector fields defined on S which can be extended to solenoidal
vector fields defined on Q which belong to the space V(1)(Q), where we recall, from
section 3, the definition

(4.1) V(s)(Q) = {v ∈ L2(R; V(s)(Ω)
)

: ∂tv ∈ L2(R; V(s−2)(Ω)
)
} .

Alternatively, the task here is to characterize the trace space of V(1)(Q). We will see
that it is necessary to examine the normal trace and tangential trace separately, as
they belong to different function spaces.

We denote by τ = (τ1, τ2)T and n = (n1, n2)T the unit counterclockwise tangent
and outward normal vectors, respectively, along ∂Ω. We have the following relations:

τ1 = n2 and τ2 = −n1 .

Given a boundary vector field

(4.2) b(t,x) = bn(t,x)n(x) + bτ (t,x)τ (x) a.e. (t,x) ∈ S
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satisfying

(4.3)
∫
∂Ω

b · n ds = 0 a.e. t ∈ R ,

where bn = b·n and bτ = b·τ , we seek a solenoidal extension u = (u1, u2)T ∈ V(1)(Q)
of the form (see [19])

(4.4) u1 = ∂2F and u2 = −∂1F ,

where F is the streamfunction for u and ∂iF = ∂F/∂xi. In other words, given a
boundary vector field b satisfying (4.3), we seek an F such that

(4.5) bn = −(∇F · τ )|S ≡ −∂τF |S

and

(4.6) bτ = (∇F · n)|S ≡ ∂nF |S .

Note that the assumption (4.3) is necessary since we are seeking a solenoidal extension
of the boundary data b.

With the assumption (4.3), the relation (4.5) is equivalent to

(4.7) F |S = h ≡ −
∫ x

x0

bn(t,x(s)) ds ,

where the line integral is taken along ∂Ω in the counterclockwise direction starting
from a fixed point x0 ∈ ∂Ω. Thus, for each given pair (bτ , h) defined on S, we want
to construct an F ∈ H(2)(Q) satisfying (4.6) and (4.7), where

H(s)(R ×Θ) = {u ∈ L2(R;Hs(Θ)
)

: ∂tu ∈ L2(R;Hs−2(Θ)
)
} .

Here s ∈ R, Θ is any spatial domain, and the norm on H(s)(R ×Θ) is defined by

‖F‖2H(s)(R×Θ) = ‖F‖2L2(R;Hs(Θ)) + ‖∂tF‖2L2(R;Hs−2(Θ)) ∀F ∈ H(s)(R ×Θ) .

We now prove that such an extension F exists provided that the boundary data
(bτ , h) belongs to an appropriate function space.

PROPOSITION 4.1. A pair of functions (bτ , h) defined on S possess an extension
F ∈ H(2)(Q) satisfying (4.6), (4.7),

(4.8)
‖F‖2H(2)(Q) ≤ C

{
‖bτ‖2L2(R;H1/2(∂Ω)) + ‖bτ‖2H1/4(R;L2(∂Ω))

+ ‖h‖2L2(R;H3/2(∂Ω)) + ‖h‖2H3/4(R;L2(∂Ω))

}
,

and

(4.9) F vanishes outside a neighborhood of S = R × ∂Ω ,

where C is a constant independent of bτ , h, and F , if and only if

(4.10) bτ ∈ L2(R;H1/2(∂Ω)
)
∩H1/4(R;L2(∂Ω)

)
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and

(4.11) h ∈ L2(R;H3/2(∂Ω)
)
∩H3/4(R;L2(∂Ω)

)
.

Proof. Given bτ and h satisfying (4.10)–(4.11), we construct an extension F
satisfying (4.6)–(4.9); the converse result is easily proved as well. ∂Ω being of class
C∞, we may choose a neighborhood U of ∂Ω and a coordinate system (x′1, x

′
2)T such

that U =
{
x = (x′1, x

′
2)T : (x′1, 0)T ∈ ∂Ω, x′2 ∈ [0, ε]

}
for some ε > 0. The space

H(2)(R × U) can be rewritten in the form

H(2)(R × U)

=
{
F (x′2, t, x

′
1) ∈ L2(0, ε;L2(R;H2(∂Ω))

)
∩ L2(0, ε;H1(R;L2(∂Ω))

)
:

∂x′2x′2F ∈ L
2(0, ε;L2(R;L2(∂Ω))

)}
.

By virtue of a trace theorem of [21], we have that the mappings γ0 : F 7→ F |x′2=0 and
γ1 : F 7→ ∂x′2F |x′2=0 are well defined on H(2)(R × U); furthermore, the mapping

F 7→ (γ0F, γ1F ) :

H(2)(R × U)→
[
L2(R;H2(∂Ω)

)
∩H1(R;L2(∂Ω)

)
, L2(R;L2(∂Ω)

)]
3/4

×
[
L2(R;H2(∂Ω)

)
∩H1(R;L2(∂Ω)

)
, L2(R;L2(∂Ω)

)]
1/4

is continuous and surjective. Here we have used the intermediate spaces [X ,Y]α,
α ∈ [0, 1], of the Hilbert spaces X and Y as defined in [21]. Using the definition of
these intermediate spaces (see [21]), we obtain[

L2(R;H2(∂Ω)
)
∩H1(R;L2(∂Ω)

)
, L2(R;L2(∂Ω)

)]
3/4

= L2(R;H3/2(∂Ω)
)
∩H3/4(R;L2(∂Ω)

)
and [

L2(R;H2(∂Ω)
)
∩H1(R;L2(∂Ω)

)
, L2(R;L2(∂Ω)

)]
1/4

= L2(R;H1/2(∂Ω)
)
∩H1/4(R;L2(∂Ω)

)
.

Hence the mapping F 7→(γ0F, γ1F ) is continuous and surjective from H(2)(R×U)
to
[
L2
(
R;H3/2(∂Ω)

)
∩H3/4

(
R;L2(∂Ω)

)]
×
[
L2
(
R; H1/2(∂Ω)

)
∩H1/4

(
R; L2(∂Ω)

)]
.

Finally, we may choose another neighborhood Ũ of (0, ε)× ∂Ω such that the closure
of U is contained in Ũ . Well-known extension results allow us to extend continuously
the space H(2)(R × U) into the space

{
F ∈ H(2)(R × Ω) : F vanishes outside Ũ

}
.

We are now in a position to prove the main extension result. We denote the finite
time-space cylinder by QT = (0, T )× Ω and its lateral surface by ST = (0, T )× ∂Ω.

THEOREM 4.2. Assume that bn and bτ satisfy

(4.12)
∫
∂Ω
bn ds = 0 a.e. t ∈ [0, T ] ,

(4.13) bn ∈ L2(0, T ;H1/2(∂Ω)
)
∩H3/4(0, T ;H−1(∂Ω)

)
,
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and

(4.14) bτ ∈ L2(0, T ;H1/2(∂Ω)
)
∩H1/4(0, T ;L2(∂Ω)

)
.

Then, there exists a u ∈ V(1)(QT ) satisfying

(4.15) u|ST = b ≡ bnn + bττ

and the estimate

(4.16)
‖u‖2V(1)(QT ) ≤ C

{
‖bn‖2L2(0,T ;H1/2(∂Ω)) + ‖bn‖2H3/4(0,T ;H−1(∂Ω))

+ ‖bτ‖2L2(0,T ;H1/2(∂Ω)) + ‖bτ‖2H1/4(0,T ;L2(∂Ω))

}
,

where C is a constant independent of bn and bτ , and such that u vanishes outside a
neighborhood of (0, T )× ∂Ω.

Proof. By definition, the space Hr
(
0, T ;Hs(∂Ω)

)
with fractional indices r and

s is the restriction to (0, T ) × ∂Ω of Hr
(
R;Hs(∂Ω)

)
. Thus, we may extend the

data in time; i.e., there exists a b̃n ∈ L2
(
R;H1/2(∂Ω)

)
∩ H3/4

(
R;H−1(∂Ω)

)
and

b̃τ ∈ L2
(
R;H1/2(∂Ω)

)
∩H1/4

(
R;L2(∂Ω)

)
such that

b̃n = bn and b̃τ = bτ on (0, T )× ∂Ω ,

‖b̃n‖2L2(R;H1/2(∂Ω)) + ‖b̃n‖2H3/4(R;H−1(∂Ω))

≤ C
{
‖bn‖2L2(0,T ;H1/2(∂Ω)) + ‖bn‖2H3/4(0,T ;H−1(∂Ω))

}
and

‖b̃τ‖2L2(R;H1/2(∂Ω)) + ‖b̃τ‖2H1/4(R;L2(∂Ω))

≤ C
{
‖bτ‖2L2(0,T ;H1/2(∂Ω)) + ‖bτ‖2H1/4(0,T ;L2(∂Ω))

}
.

Furthermore, we may assume, without loss of generality, that∫
∂Ω
b̃n ds = 0 a.e. t ∈ R .

Indeed, we can reset ˜̃bn = b̃n − (
∫
∂Ω b̃n ds

/∫
∂Ω ds), if necessary. We define

h̃(t,x) = −
∫ x

x0

b̃n(t,x(s)) ds ∀x ∈ ∂Ω ,

where the line integral on the right-hand side is taken counterclockwise along ∂Ω,
starting from a given point x0 ∈ ∂Ω. Evidently, h̃ ∈ L2

(
R;H3/2(∂Ω)

)
∩

H3/4
(
R;L2(∂Ω)

)
. Then, Proposition 4.1 implies that there exists an F ∈ H(2)(Q)

which vanishes outside a neighborhood of R × ∂Ω such that

F |S = h̃ and ∂nF |S = b̃τ .

By setting

u = curlF =
(
∂2F
−∂1F

)
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we see that

u ∈ V(1)(Q) ,

(u · n)|S = curlF · n|S = −∇F · τ = −∂τF = −∂τ h̃ = b̃n ,

and

(u · τ )|S = curlF · τ |S = ∇F · n = ∂nF = b̃τ .

Hence, u|ST = b̃ ≡ b̃nn+ b̃ττ ; i.e., u satisfies (4.15). The estimate (4.16) follows from
Proposition 4.1.

REMARK. We see from the proofs of Proposition 4.1 and Theorem 4.2 that the re-
striction operator u 7→ (u·n)|∂Ω is continuous from V(1)(QT ) toH3/4

(
0, T ;H−1(∂Ω)

)
∩

L2
(
0, T ;H1/2(∂Ω)

)
. Also, the trace operator bn 7→ bn|t=0 is continuous from the space

H3/4
(
0, T ;H−1(∂Ω)

)
∩L2

(
0, T ;H1/2(∂Ω)

)
to H−1/2(∂Ω) (see [21]). Hence, the com-

position of these two operators, i.e., the operator u 7→ [(u · n)|∂Ω]|t=0, is continuous
from V(1)(QT ) to H−1/2(∂Ω). On the other hand, the composition of the operators
u 7→ u|t=0 and u|t=0 7→ (u|t=0 ·n)|∂Ω is continuous from V(1)(QT ) to H−1/2(∂Ω) (see
Lemma 3.1 and [28]). Hence, using the denseness of C∞(QT )∩V(1)(QT ) in V(1)(QT )
we obtain the following compatibility condition for the extension u of Theorem 4.2:

(u|t=0 · n)
∣∣
∂Ω =

(
(u · n)|∂Ω

)∣∣
t=0 ∀u ∈ V(1)(QT ) .

4.2. Estimates for the solutions of the Navier–Stokes equations with
nonhomogeneous Dirichlet boundary data. We now consider the boundary
value problem for the Navier–Stokes equation in the form introduced in Definition
3.2. The boundary data b is assumed to satisfy the compatibility condition (4.12).
Our goal here is, with the help of the extension theorem of section 4.1, to establish
the existence of a solution for (3.1)–(3.3) and derive estimates for the solutions in the
space of critical smoothness in terms of the data w0 and b.

Let bn and bτ be the normal and tangential components of the boundary value
b. We assume that bn and bτ satisfy (4.12)–(4.14) and that

(4.17) w0 ∈ V0(Ω) .

We also assume the compatibility condition

(4.18) (w0 · n)
∣∣
∂Ω = bn

∣∣
t=0

(see the remark at the end of section 4.1). We express the solution w of (3.1)–(3.3)
in the form

w = u + η ,

where u ∈ V(1)(QT ) is the vector field constructed in Theorem 4.2 satisfying (4.15)
and (4.16). Note that the fact that u ∈ V(1)(Q) implies that u|t=0 ∈ L2(Ω); see
Lemma 3.1. Substituting w = u + η into (3.1)–(3.3), we obtain for η

(4.19)
〈∂tη(t), z〉+ µ

∫
Ω
∇η(t) : ∇z dx +

∫
Ω

(
(η(t) + u(t) + v∞) · ∇

)
η(t) · z dx

+
∫

Ω

(
η(t) · ∇

)
u(t) · z dx = 〈f(t), z〉 ∀ z ∈ V1

0(Ω), a.e. t ∈ (0, T ) ,
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(4.20) η|ST = 0 in L2
(
0, T ; H1/2(∂Ω)

)
,

and

(4.21) η|t=0 = η0 ≡ w0 − u|t=0 in V0
0(Ω) ,

where

(4.22) 〈f(t), z〉 = −µ
∫

Ω
∇u(t) : ∇z dx− 〈∂tu(t), z〉 −

∫
Ω

[(u(t) + v∞) · ∇]u(t) · z dx .

LEMMA 4.3. Assume that the hypotheses of Theorem 4.2 hold. Let u be the vector
field constructed in Theorem 4.2. Assume also that the compatibility condition (4.18)
holds. Then, there exists a unique solution η ∈ V(1)(QT ) of system (4.19)–(4.21).
Moreover, η satisfies the estimate

‖∂tη‖2L2(0,T ;V−1(Ω)) + ‖η‖2L∞(0,T ;V0(Ω)) + ‖η‖2L2(0,T ;V1(Ω))

≤ A
(
‖f‖L2(0,T ;V−1(Ω)) , ‖u‖V(1)(QT ) , ‖η0‖V0(Ω) , |v∞|

)
,

where A(·, ·, ·, ·) is a continuous positive function defined on R × R × R × R and
A(λ1, λ2, λ3, |v∞|)→ 0 as λ = (λ1, λ2, λ3)→ (0, 0, 0).

Proof. The existence and uniqueness of the solution η ∈ V(1)(QT ) for (4.19)–
(4.21) can be proved in exactly the same way as that for the two-dimensional Navier–
Stokes equations with homogeneous boundary conditions in exterior domains; see,
e.g., [19] or [28]. We only need to prove the estimate. (Note that η0 ∈ V0

0(Ω).)
Letting z = η(t, ·) in (4.19) yields

1
2
∂t‖η(t, ·)‖2L2(Ω) + µ‖∇η(t, ·)‖2L2(Ω) = 〈f(t, ·),η(t, ·)〉 −

∫
Ω

(η · ∇)u · η dx

≤ 1
µ
‖f(t, ·)‖2V−1(Ω) +

µ

4

(
‖∇η(t, ·)‖2L2(Ω) + ‖η(t, ·)‖2L2(Ω)

)
+ ‖∇u(t, ·)‖L2(Ω) ‖η(t, ·)‖2L4(Ω) .

Applying to the last term the Ladyzhenskaya inequality (see [19, Lemma 1])

‖η‖2L4(Ω) ≤
√

2 ‖η‖L2(Ω) ‖∇η‖L2(Ω) ∀ η ∈ H1(Ω)

and then integrating with respect to t, we obtain

‖η(t, ·)‖2L2(Ω) + µ

∫ t

0
‖∇η(t, ·)‖2L2(Ω) dt ≤ ‖η0‖2L2(Ω)

+
2
µ

∫ t

0
‖f(τ, ·)‖2V−1(Ω) dτ +

∫ t

0

(µ
2

+
4
µ
‖∇u(τ, ·)‖2L2(Ω)

)
‖η(τ, ·)‖2L2(Ω) dτ .

Then, the Gronwall inequality yields the estimate

‖η‖2L∞(0,T ;L2(Ω)) + ‖η‖2L2(0,T ;H1(Ω))

≤ A1
(
‖f‖L2(0,T ;V−1(Ω)) , ‖u‖L2(0,T ;H1(Ω)) , ‖η0‖L2(Ω)

)
,

where A1(·, ·, ·) is a continuous positive function defined on R × R × R. Evidently,
this last estimate implies

(4.23)
‖η‖2L∞(0,T ;V0(Ω)) + ‖η‖2L2(0,T ;V1(Ω))

≤ A1
(
‖f‖L2(0,T ;V−1(Ω)) , ‖u‖V(1)(QT ) , ‖η0‖V0(Ω)

)
.
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Now, taking the supremum of (4.19) with respect to z ∈ V1
0(Ω) with ‖z‖V1

0(Ω) = 1
and again applying the Ladyzhenskaya inequality we obtain

‖∂tη(t, ·)‖V−1(Ω) ≤ µ‖η(t, ·)‖H1(Ω) + C‖η(t, ·)‖H1(Ω) ‖η(t, ·)‖L2(Ω)

+ C‖u(t, ·)‖1/2H1(Ω) ‖u(t, ·)‖1/2L2(Ω) ‖η(t, ·)‖1/2H1(Ω) ‖η(t, ·)‖1/2L2(Ω)

+ C|v∞|‖η(t, ·)‖L2(Ω) + ‖f(t, ·)‖V−1(Ω)

so that

‖∂tη(t, ·)‖2L2(0,T ;V−1(Ω))

≤ C‖η(t, ·)‖2L2(0,T ;H1(Ω)) + C‖η(t, ·)‖2L∞(0,T ;L2(Ω)) ‖η(t, ·)‖2L2(0,T ;H1(Ω))

+ C ‖u(t, ·)‖L∞(0,T ;L2(Ω)) ‖η(t, ·)‖L∞(0,T ;L2(Ω))

· ‖u(t, ·)‖L2(0,T ;H1(Ω)) ‖η(t, ·)‖L2(0,T ;H1(Ω))

+ C|v∞|2 ‖η(t, ·)‖2L2(0,T ;L2(Ω)) + C‖f(t, ·)‖2L2(0,T ;V−1(Ω)) .

Hence, using (4.23) and Lemma 3.1, we obtain the desired estimate.
Lemma 4.3 and Theorem 4.2 lead to the following result.
THEOREM 4.4. Let b and w0 satisfy (4.12)–(4.14) and (4.17)–(4.18). Then, there

exists a unique solution w ∈ V(1)(QT ) for the problem (3.1)–(3.3). Moreover, the
solution satisfies the estimate

(4.24)

‖w‖2V(1)(QT )

≤ B
(
‖w0‖L2(Ω) , ‖bn‖L2(0,T ;H1/2(∂Ω)) + ‖bn‖H3/4(0,T ;H−1(∂Ω)) ,

‖bτ‖L2(0,T ;H1/2(∂Ω)) + ‖bτ‖H1/4(0,T ;L2(∂Ω)) , |v∞|
)
,

where B(·, ·, ·, ·) is a continuous positive function defined on R × R × R × R.
Proof. Let u ∈ V(1)(QT ) be the extension of the data b into QT constructed in

Theorem 4.2 and let η be the solution of (4.19)–(4.21) with f defined by (4.22). The
existence and uniqueness of such an η is guaranteed by Lemma 4.3. Set w = u + η;
then w is clearly the unique solution of (3.1)–(3.3). Thus, it only remains to prove
the estimate (4.24).

From (4.22) and the fact (see Theorem 4.2) that u has bounded support, we have
that

(4.25)
‖f(t, ·)‖V−1(Ω) ≤ µ‖u(t, ·)‖H1(Ω) + ‖∂tu(t, ·)‖V−1(Ω)

+ ‖u(t, ·)‖L2(Ω)‖u(t, ·)‖H1(Ω) + |v∞| ‖u(t, ·)‖H1(Ω) .

Also, from (4.21), we have that

(4.26) ‖η0‖L2(Ω) ≤ ‖w0‖L2(Ω) + ‖u(0, ·)‖L2(Ω) .

Hence, (4.24) follows from Theorem 4.2, Lemmas 3.1 and 4.3, (4.25), and (4.26).

REMARK. We stress that the normal and tangential components of the boundary
condition for the Navier–Stokes equations have different smoothness. This is a feature
that is not exhibited in boundary value problems for general second-order parabolic
systems.
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4.3. The stress vector (on the boundary) of admissible solutions. We
now show that the stress vector on the boundary

(
−pI+µ(∇w+(∇w)T )

)
·n|(0,T )×∂Ω,

where w ∈ Y is an admissible solution in the sense of Definition 3.3 and p is an
associated pressure field, is well defined in a certain function space. This result will
be needed in section 6.4 in order to derive the optimality system in the form of a
boundary value problem for a system of partial differential equations. Note that the
requirement w ∈ Vad is stronger than w ∈ V(1)(QT ) merely being a solution of (3.1)
and (3.3). (We will actually show that each of (pn)|(0,T )×∂Ω, (∇w · n)|(0,T )×∂Ω, and
((∇w)T · n)|(0,T )×∂Ω is well defined.)

Let w ∈ Y be an admissible element; then w satisfies (3.1) and (3.3). From the
definition of Y we see that w|(0,T )×∂Ω is well defined and

w|(0,T )×∂Ω ∈ H1(0, T ; L2(∂Ω)
)
∩ L2(0, T ; H1/2(∂Ω)

)
∩ Lk

(
(0, T )× ∂Ω

)
.

By de Rham’s lemma (see [14] and [28]), there exists a p ∈ L2
(
0, T ;L2

loc(Ω)
)

such
that ∇p ∈ L2

(
0, T ; H−1(Ω)

)
and

(4.27) ∂tw − µ∆w + [(w + v∞) · ∇]w +∇p = 0

in the sense of distributions on QT . To study the normal stress on ∂Ω, the behavior of
w and p at infinity is irrelevant and we can restrict our attention to a bounded domain
whose boundary contains ∂Ω. To this end, we let Θ ⊂ Ω be a bounded domain with
C∞ boundary ∂Θ such that ∂Θ ∩ ∂Ω = ∂Ω. We denote by γ the restriction operator
on ∂Θ. Let F be a streamfunction of w which can constructed as in section 4.1,
satisfying on Θ

(4.28) w1 = ∂2F and w2 = −∂1F .

Since w ∈ Y (QΘ) ⊂ V(1)(QΘ), where QΘ = (0, T )×Θ, we have F ∈ H(2)(QΘ). The
restriction of (4.27) and the divergence-free condition for w on QΘ yields

(4.29) ∂tw − µ∆w + [(w + v∞) · ∇]w +∇p = 0

and

(4.30) div w = 0 ,

where the derivatives are understood in the sense of distributions in QΘ. Applying
the curl operator to (4.29) and taking into account (4.28) we obtain

(4.31) ∂t∆F − µ∆2F = G ,

where

(4.32) G = −curl {[(w + v∞) · ∇]w} = −(w1 + v∞,1)∆w2 + (w2 + v∞,2)∆w1 .

LEMMA 4.5. Assume w ∈ Y is a solution of (3.1) and G is defined by (4.32).
Then, G ∈ L1

(
0, T ;W−1,α(Θ)

)
for every α ∈ (1, 2).

Proof. Let α′ and β be defined by

1
α′

+
1
α

= 1 and
1
β

+
1
α′

=
1
2
.
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Let φ ∈W 1,α′
0 (Θ) be given. By integration by parts and Hölder’s inequality, we have

that a.e. t ∈ (0, T ),

(4.33)

∣∣∣ ∫
Θ

(w1 + v∞,1)∆w2φdx
∣∣∣

=
∣∣∣ ∫

Θ

(
φ∇w1 · ∇w2 + (w1 + v∞,1)∇w2 · ∇φ

)
dx
∣∣∣

≤ ‖∇w1‖L2(Θ) ‖∇w2‖L2(Θ) ‖φ‖L∞(Θ)

+ ‖w1 + v∞,1‖Lβ(Θ) ‖∇w2‖L2(Θ) ‖∇φ‖Lα′ (Θ) .

Since α′ ∈ (2,∞) and β ∈ (2,∞), Sobolev imbedding theorems imply

‖φ‖L∞(Θ) ≤ C ‖φ‖W 1,α′ (Θ) and ‖w1 + v∞,1‖Lβ(Θ) ≤ C ‖w1 + v∞,1‖H1(Θ)

so that, from (4.33),

‖(w1 + v∞,1)∆w2‖L1(0,T ;W−1,α(Θ)) ≤ C
(
‖w‖2V(1)(QΘ) + |v∞|2

)
.

Similarly, we can show

‖(w2 + v∞,2)∆w1‖L1(0,T ;W−1,α(Θ)) ≤ C
(
‖w‖2V(1)(QΘ) + |v∞|2

)
.

It follows from the last two inequalities and (4.32) that G ∈ L1
(
0, T ;W−1,α(Θ)

)
.

Since F ∈ H(2)(QΘ), we have ∆F ∈ L2
(
0, T ;L2(Θ)

)
. From (4.31), (4.32), and

Lemma 4.5, we see that

∆(∂tF − µ∆F ) ∈ L1(0, T ;W−1,α(Θ)
)
.

We now introduce the space

Xα =
{
f ∈ L2(Θ) : ∆f ∈W−1,α(Θ)

}
equipped with the norm

‖f‖Xα = ‖f‖L2(Θ) + ‖∆f‖W−1,α(Θ) ∀ f ∈ Xα .

It is easy to verify that Xα is a Banach space. We will establish a trace theorem for
Xα. To this end, we first prove two lemmas.

LEMMA 4.6. Every bounded linear functional L on Xα has the representation

(4.34) Lf = (f, φ) + 〈∆f, ψ〉 ∀ f ∈ Xα ,

where φ ∈ L2(Θ), ψ ∈ W 1,α′
0 (Θ), (·, ·) denotes the L2(Θ)-inner product, and 〈·, ·〉

denotes the duality pairing between W−1,α(Θ) and W 1,α′
0 (Θ).

Proof. In L2(Θ) × W−1,α(Θ), we consider the subspace Π =
{

(f,∆f) : f ∈
Xα

}
. Clearly, Π is closed under the Cartesian norm for L2(Θ) ×W−1,α(Θ) and the

mapping π : f 7→ (f,∆f) establishes an isomorphism between Xα and Π. Let an
arbitrary bounded linear functional L on Xα be given. Then, there exists a unique
functional K on Π such that Lf = K(f,∆f). Using the Hahn–Banach theorem we
can extend the functional K defined on Π into a functional K̃ defined on the entire
space L2(Θ)×W−1,α(Θ) with the functional norm preserved, i.e., with ‖K̃‖ = ‖K‖.
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Since L2(Θ) ×W−1,α(Θ) is reflexive, there exist φ ∈ L2(Θ) and ψ ∈ W 1,α′
0 (Θ) such

that

K̃(f, g) = (f, φ) + 〈g, ψ〉 ∀ (f, g) ∈ L2(Θ)×W−1,α(Θ) ,

so that on the subspace Π,

K(f,∆f) = (f, φ) + 〈∆f, ψ〉 ∀ (f,∆f) ∈ Π .

The last relation is equivalent to (4.34).
LEMMA 4.7. C∞(Θ) is dense in Xα.
Proof. We need only show that if a bounded linear functional L on Xα satisfies

Lf = 0 for all f ∈ C∞(Θ), then L = 0. We assume that L is a bounded linear
functional on Xα satisfying Lf = 0 for all f ∈ C∞(Θ). By Lemma 4.6, there exist
φ ∈ L2(Θ) and ψ ∈W 1,α′

0 (Θ) such that

Lf = (f, φ) + 〈∆f, ψ〉 = 0 ∀ f ∈ C∞(Θ) .

This implies that, in the sense of distributions,

∆ψ = −φ .

As ψ ∈ W 1,α′
0 (Θ) and φ ∈ L2(Θ), we deduce from elliptic regularity that ψ ∈

W 1,α′
0 (Θ) ∩H2(Θ) and ∆ψ = −φ in L2(Θ), which in turn implies ∂nψ ∈ H1/2(∂Ω).

For each f ∈ C∞(Θ), we are justified in using integration by parts to obtain

0 = (f, φ) + 〈∆f, ψ〉 = (f, φ) + (∆f, ψ)
= (f, φ) + (f,∆ψ)− 〈∂nψ, f〉
= (f, φ) + (f,−φ)− 〈∂nψ, f〉 = −〈∂nψ, f〉

so that ∂nψ
∣∣
∂Ω = 0 and ψ ∈ H2

0 (Θ). Using the denseness of C∞0 (Θ) in H2
0 (Θ) we

may choose a sequence {ψn} ⊂ C∞0 (Θ) such that ψn → ψ in H2(Θ). Then, for each
f ∈ Xα we have

(f, φ) + 〈∆f, ψ〉 = (f, φ) + lim
n→∞

〈∆f, ψn〉

= (f, φ) + lim
n→∞

(f,∆ψn) = (f, φ) + (f,∆ψ) = (f, φ) + (f,−φ) = 0;

i.e., we have shown that

Lf = 0 ∀ f ∈ Xα .

Hence, L = 0.
In the sequel, we will make use of Besov spaces Bs,q(∂Θ), where s is the smooth-

ness index and q is the integrability index. For the definition of Besov spaces, see [4]
and [29], where the Besov spaces Bs,q(∂Θ) are denoted by Bsq,q(∂Θ). One can also
consult [1] for the definition of Besov spaces and the relations between Besov spaces
and Sobolev spaces. One important feature of Besov spaces is that they coincide with
the traces of Sobolev spaces. In particular, we have the following precise result: if we
denote by γ the mapping γf = f |∂Θ for functions defined in Θ, then the mapping

(4.35) (γ, γ∂n) : W 2,α′(Θ)→ B2−1/α′,α′(∂Θ)×B1−1/α′,α′(∂Θ)

is continuous and establishes an epimorphism; see [4] and [29].
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PROPOSITION 4.8. Assume that 1 < α < 2. Then, the operator γ, defined on
C∞(Θ) by γf = f |∂Θ, can be extended continuously into the trace operator

(4.36) γ ∈ L
(
Xα;B−1/α,α(∂Θ)

)
.

Proof. By (4.35), we can choose a continuous linear operator

(4.37) K : B1−1/α′,α′(∂Θ)→W 2,α′(Θ)

such that

(4.38) γKφ = 0 and γ∂nKφ = φ ∀φ ∈ B1−1/α′,α′(∂Θ) .

Let f ∈ Xα. We define a linear functional Z on B1−1/α′,α′(∂Θ) by

Zφ = ZK(φ) = (f,∆Kφ)− 〈∆f,Kφ〉 ∀φ ∈ B1−1/α′,α′(∂Θ) .

We claim that Z does not depend on the choice of K. Indeed, let K1 and K2 be two
continuous linear operators satisfying (4.37)–(4.38). Then, by (4.38),

γ(K1 −K2)φ = 0 and γ∂n(K1 −K2)φ = 0 ∀φ ∈ B1−1/α′,α′(∂Θ)

so that if f ∈ C∞(Θ), then integration by parts yields

ZK1(φ)− ZK2(φ) = (f,∆(K1 −K2)φ)− 〈∆f, (K1 −K2)φ〉 = 0 .

By virtue of Lemma 4.7, this equality is true for an arbitrary f ∈ Xα. Hence, we
have shown that ZK1 = ZK2 , i.e., that the operator Z is well defined. Evidently, ZK
is bounded on B1−1/α′,α′(∂Θ). Hence, by the Riesz theorem, there exists an element
Rf ∈ B−1/α,α(∂Θ) such that

(Rf, φ) = Z(φ) = (f,∆Kφ)− 〈∆f,Kφ〉 ∀φ ∈ B1−1/α′,α′(∂Θ) ,

where R is the Riesz map. If f ∈ C∞(Θ), then using Green’s formula in the last
equation we obtain Rf = γf . By virtue of Lemma 4.7 and the boundedness of the
operator in (4.37), we can extend the operator γ continuously into the mapping of
(4.36).

We introduce the set

Υ = {w ∈ Y : w satisfies (3.1)}

equipped with the topology generated by the norm of Y .
THEOREM 4.9. Let w ∈ Y be a solution of (3.1) and F ∈ H(2)(QΘ) be defined

by (4.28). Let G ∈ L1
(
0, T ;W−1,α(Θ)

)
, α ∈ (1, 2), be defined by (4.32). Then,

γ
(
∇w · n

)
∈ L1

(
0, T ; B−1/α,α(∂Θ)

)
and γ

(
(∇w)T · n

)
∈ L1

(
0, T ; B−1/α,α(∂Θ)

)
.

Moreover, the mappings w 7→ γ(∇w ·n) and w 7→ γ
(
(∇w)T ·n

)
are continuous from

the topological space Υ to L1
(
0, T ; B−1/α,α(∂Θ)

)
.

Proof. From the assumptions on F and G, we easily deduce that ∂tF − µ∆F ∈
L2
(
0, T ;L2(Θ)

)
and ∆(∂tF − µ∆F ) ∈ L1

(
0, T ;W−1,α(Θ)

)
. Hence, Proposition 4.8

implies that for almost every t ∈ (0, T ), the restriction γ
(
∂tF (t, ·)−µ∆F (t, ·)

)
is well

defined and

(4.39) γ(∂tF − µ∆F ) ∈ L1(0, T ;B−1/α,α(∂Θ)
)
,
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where 1 < α < 2. Since F ∈ H(2)(QΘ), we have that ∇∂tF ∈ H1
(
Θ;H−1(0, T )

)
.

Therefore, the restriction F 7→ γ(∂t∇F ) on (0, T ) × ∂Θ is well defined on the space
H1/2

(
∂Θ;H−1(0, T )

)
. Moreover, the fact that w = (∂2F,−∂1F ) ∈ Y implies γ∂t∇F ∈

L2
(
(0, T )× ∂Θ

)
. Hence

(4.40) γ∂t∂nF ∈ L2((0, T )× ∂Θ
)

and γ∂t∂τF ∈ L2((0, T )× ∂Θ
)
.

Relation (4.40) implies that

(4.41) γ∂tF ∈ L2(0, T ;H1(∂Θ)
)
.

By (4.39) and (4.41), we have that

(4.42) γ∆F ∈ L1(0, T ;B−1/α,α(∂Θ)
)

for 1 < α < 2. Since

(4.43) F ∈ H(2)(QΘ) ⊂ L2(0, T ;H2(Θ)
)
,

we see that

(4.44) γF ∈ L2(0, T ;H3/2(∂Θ)
)
, γ∂τF ∈ L2(0, T ;H1/2(∂Θ)

)
and

(4.45) γ∂nF ∈ L2(0, T ;H1/2(∂Θ)
)
.

We claim that

(4.46) γ∂nτF ∈ L2(0, T ;H−1/2(∂Θ)
)

and γ∂ττF ∈ L2(0, T ;H−1/2(∂Θ)
)
.

To prove this claim, we proceed as follows. We multiply F by a cut-off function
with support in a neighborhood of ∂Θ. We assume without loss of generality that
Θ coincides with the half-plane R2

+ = {(x1, x2) : x2 ≥ 0} and ∂Θ coincides with
{(x1, x2) : x2 = 0}. We set F1 = ∂τF and F2 = ∂ττF . From (4.43), we easily deduce
that

(4.47) F2 ∈ L2((0, T )× R2
+
)
, ∂ττF2 ∈ L2((0, T )× R+;H−2(R)

)
and

(4.48) ∆F2 = ∂ττ (∂nn + ∂ττ )F ∈ L2((0, T )× R+;H−2(R)
)
.

These in turn imply

(4.49) ∂nnF2 = ∆F2 − ∂ττF2 ∈ L2((0, T )× R+;H−2(R)
)
.

Relations (4.47)–(4.49) and the trace theorem [21, Chapter 5, section 3] yield the
second relation in our claim (4.46). We can similarly prove the first relation in (4.46).

By denoting the unit normal vector by n = (n1, n2) and the unit tangential vector
by τ = (n2,−n1), we obtain that

(4.50) ∂1F = n1∂nF + n2∂τF, ∂2F = n2∂nF − n1∂τF,
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and

(4.51) ∆F = ∂nnF + ∂ττF + ρ1∂nF + ρ2∂τF ,

where ρ1 and ρ2 are smooth functions. Expressing ∂nnF by ∆F , ∂ττF , ∂nF , and ∂τF
in (4.51) and taking into account (4.42), (4.44)–(4.46), and the imbedding

L2(0, T ;H−1/2(∂Θ)
)
⊂ L1(0, T ;B−1/α,α(∂Θ)

)
, 1 < α < 2 ,

we deduce that ∂nnF possesses a trace on ∂Θ and that the trace satisfies

(4.52) γ∂nnF ∈ L1(0, T ;B−1/α,α(∂Θ)
)
.

Equations (4.28) and (4.50) yield

∇w1 · n = n2∂nnF − n1∂nτF + β1∂nF + β2∂τF

and

∇w2 · n = −n1∂nnF − n2∂nτF + δ1∂nF + δ2∂τF ,

where β1, β2, δ1, and δ2 are smooth functions. These two relations give us the
expression for ∇w · n in terms of ∂nnF , ∂nτF , ∂nF , and ∂τF . Similarly, we obtain
the expression for (∇w)T · n in terms of ∂nnF , ∂nτF , ∂nF , and ∂τF :

(∂1w) · n = −n2∂ττF − n1∂nτF + b1∂nF + b2∂τF

and

(∂2w) · n = n1∂ττF − n2∂nτF + d1∂nF + d2∂τF ,

where b1, b2, d1, and d2 are smooth functions. These relations together with (4.44)–
(4.46) and (4.52) imply the assertions of the theorem.

Now we prove a trace result for the pressure field p that satisfies (4.27).
THEOREM 4.10. Assume w satisfies the hypotheses of Theorem 4.9 and let p be a

scalar field such that p ∈ L2
(
0, T ;L2

loc(Ω)
)
, ∇p ∈ L2

(
0, T ; H−1(Ω)

)
, and (4.27) holds.

Then p ∈ L1
(
0, T ;Xα(Θ)

)
and the restriction mapping γ : p 7→ (pn)

∣∣
∂Ω belongs to

L
(
L1
(
0, T ;Xα(Θ)

)
, L1
(
0, T ; B−1/α,α(∂Ω)

))
, where 1 < α < 2.

Proof. Taking the divergence of (4.27) and using the divergence-free condition
(4.30) for w, we obtain

(4.53) ∆p = E,

where E = −2[(∂1w1)2 + (∂1w2)(∂2w1)]. Let α′ be the reciprocal conjugate of α, i.e.,
(1/α) + (1/α′) = 1. Since α′ > 2, the imbedding W 1,α′(Θ) ↪→ C(Θ) is continuous so
that ∫ T

0

∫
Θ
E(t,x)φ(x) dx dt ≤ 2

∫ T

0
‖w‖2V1(Θ) dt ‖φ‖C(Θ)

≤ C ‖w‖2L2(0,T ;V1(Θ)) ‖φ‖W 1,α′ (Θ) ∀φ ∈W 1,α′(Θ) .

Hence ∆p ∈ L1
(
0, T ;W−1,α(Θ)

)
. Also, p ∈ L2

(
0, T ;L2(Θ)

)
. Hence we conclude

that p ∈ L1
(
0, T ;Xα

)
so that the desired result about the trace of p follows from

Proposition 4.8 and the fact that ∂Ω is of class C∞.
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Combining Theorems 4.9 and 4.10, we obtain the following result for the stress
vector on the boundary corresponding to admissible solutions.

COROLLARY 4.11. Assume that w and p satisfy the hypotheses of Theorems 4.9
and 4.10. Then, the stress vector

(
−pn+µ(∇w+(∇w)T

)
·n)|(0,T )×∂Ω on the boundary

belongs to L1
(
0, T ; B−1/α,α(∂Ω)

)
.

5. The existence of an optimal solution. In this section we prove the exis-
tence of an optimal solution for both Problem I and Problem II. We first establish a
useful lemma.

LEMMA 5.1. Let R > 0 be a constant such that ∂Ω ⊂
{
x : |x| < R

}
and define

ΩR = Ω ∩
{
x : |x| < R

}
. Then there exists a positive constant C depending only on

R such that

‖u‖H1(ΩR) ≤ C
(∫

ΩR
|D(u)|2 dx +

∫
∂Ω
|u|2 ds

)
∀u ∈ H1(ΩR).

Proof. Assume the lemma is false; then we may choose a sequence {un} ⊂ H1(ΩR)
such that ‖un‖H1(ΩR) = 1 and

1 > n
(∫

ΩR
|D(un)|2 dx +

∫
∂Ω
|un|2 ds

)
so that

(5.1)
∫

ΩR
|D(un)|2 dx→ 0 and

∫
∂Ω
|un|2 ds→ 0 as n→∞;

i.e., D(un)→ O in L2(ΩR) (where O is the zero tensor) and un → u in L2(∂Ω). The
fact that ‖un‖H1(ΩR) = 1 implies that there exists a subsequence (still denoted by
{un}) such that as n→∞,

(5.2) un ⇀ u in H1(ΩR) , un → u in L2(ΩR), and un → u in L2(∂Ω)

for some u ∈ H1(ΩR), which in turn implies D(un) ⇀ D(u) in L2(ΩR). Hence we
have D(u) = O in L2(ΩR) and u = 0 in L2(∂Ω), i.e., D(u) ≡ O in ΩR and u ≡ 0 on
∂Ω. Hence u is a rigid-body motion which can be expressed in the form u = a+b×x
for all x ∈ ΩR, where a and b are constant vectors (see [22] or [23]). u being a linear
function and u ≡ 0 on ∂Ω easily leads us to a = 0 and b = 0, i.e., u ≡ 0 in ΩR. On
the other hand, we deduce from (5.1) and (5.2) that D(un) → D(u) in L2(ΩR) and
un → u in L2(ΩR). Then, using Korn’s second inequality (see, e.g., [22, p. 31]),∫

ΩR

(
|D(z)|2 + |z|2

)
dx ≥ C‖z‖2H1(ΩR) ∀ z ∈ H1(ΩR) ,

we conclude un → u in H1(ΩR) so that ‖u‖H1(ΩR) = limn→∞ ‖un‖H1(ΩR) = 1, i.e.,
u 6= 0. This gives a contradiction. Hence the lemma is proved.

As a consequence of Lemma 5.1, we obtain the following.
COROLLARY 5.2. There exists a constant C > 0 depending only on Ω such that

‖u‖H1/2(∂Ω) ≤ C
(∫

Ω
|D(u)|2 dx +

∫
∂Ω
|u|2 ds

)
∀u ∈ H1(Ω).

Proof. We fix an R > 0 such that ∂Ω ⊂ {x : |x| < R} (R is determined, albeit
not uniquely, by Ω). Then by Lemma 5.1 and the trace theorem for H1(ΩR), there
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exists a constant C > 0 (depending only on R and Ω) such that

‖u‖H1/2(∂Ω) ≤ C
(∫

ΩR
|D(u)|2 dx +

∫
∂Ω
|u|2 ds

)
∀u ∈ H1(ΩR).

Thus the desired estimate follows from the last inequality and the fact that
ΩR ⊂ Ω.

THEOREM 5.3. There exists a solution w ∈ Y for Problem I; there exists a
solution w ∈ Y for Problem II.

Proof. The proofs for Problem I and Problem II are essentially the same, and
we will only consider Problem I. Theorem 4.4 guarantees that the admissible set Vad
is nonempty; indeed, we choose a boundary data in C∞

(
[0, T ] × ∂Ω

)
, and then by

Theorem 4.4, there exists a solution in V(1)(QT ) for the Navier–Stokes equations
satisfying this chosen smooth boundary data. This solution clearly belongs to Vad;
i.e., Vad; is nonempty. It is easy to verify that JN (·) is bounded from below in Y .
Thus, we may choose a sequence {wn} ⊂ Vad such that

lim
n→∞

JN (wn) = inf
w∈Vad

JN (w) ,

(5.3)
〈∂twn, z〉+ µ

∫
Ω
∇wn : ∇z dx +

∫
Ω

(
[wn + v∞] · ∇

)
wn · z dx

= 0 ∀ z ∈ V1
0(Ω), a.e. t ∈ (0, T ) ,

and

wn|t=0 = w0 in V0(Ω) .

Using (3.4) and the conditions on k and N given in the definition of Problem I, we
obtain that

(5.4) µ

∫ T

0

∫
Ω
D(wn) : D(wn) dxdt+

∫ T

0

∫
∂Ω

(
|∂twn|2 + |wn|k

)
ds dt ≤ C .

The last inequality and Corollary 5.2 imply that

(5.5) ‖wn‖Lk((0,T )×∂Ω) + ‖wn‖H1(0,T ;L2(∂Ω)) + ‖wn‖L2(0,T ;H1/2(∂Ω)) ≤ C .

Thus, the estimate of Theorem 4.4 with (5.5) gives us the bound

‖∂twn‖L2(0,T ;V−1(Ω)) + ‖wn‖L2(0,T ;V1(Ω)) ≤ C,

which allows us to choose a weakly convergent subsequence

(5.6) wn ⇀ ŵ in L2(0, T ; V1(Ω)
)

and

(5.7) ∂twn ⇀ ∂tŵ in L2(0, T ; V−1(Ω)
)

for some ŵ ∈ V(1)(QT ). For each R > 0 we let BR = {x ∈ R2 : |x| < R}. Since the
space

V(1)
R (Ω ∩BR) ≡

{
u ∈ L2(0, T ; V1(Ω ∩BR)

)
: ∂tu ∈ L2(0, T ; V−1(Ω ∩BR)

)}



876 A. V. FURSIKOV, M. D. GUNZBURGER, AND L. S. HOU

equipped with the norm ‖u‖2
V(1)
R

(Ω∩BR)
= ‖u‖2L2(0,T ;V1(Ω∩BR))+‖∂tu‖2L2(0,T ;V−1(Ω∩BR))

is compactly imbedded into L2
(
(0, T )× (Ω∩BR)

)
, we may use (5.6) and (5.7) to con-

clude that

(5.8) wn → ŵ in L2((0, T )× (Ω ∩BR)
)
.

For each arbitrarily given z ∈ C∞0 (Ω) ∩V1
0(Ω), relations (5.6)–(5.8) allow us to pass

to the limit in (5.3) to deduce that

〈∂tŵ(t), z〉+ µ

∫
Ω
∇ŵ(t) : ∇z dx +

∫
Ω

(
[ŵ(t) + v∞] · ∇

)
ŵ(t) · z dx

= 0 a.e. t ∈ (0, T ) .

Then, using the denseness of C∞0 (Ω) ∩V1
0(Ω) in V1

0(Ω), we obtain

(5.9)
〈∂tŵ(t), z〉+ µ

∫
Ω
∇ŵ(t) : ∇z dx +

∫
Ω

(
[ŵ(t) + v∞] · ∇

)
ŵ(t) · z dx

= 0 ∀ z ∈ V1
0(Ω), a.e. t ∈ (0, T );

i.e., ŵ satisfies the weak form of the Navier–Stokes equations.
Relations (5.6) and trace theorems imply

wn ⇀ ŵ in L2(0, T ; H1/2(∂Ω)
)

so that

wn ⇀ ŵ in L2((0, T )× ∂Ω
)
.

The estimate (5.5) implies

wn ⇀ h in Lk
(
(0, T )× ∂Ω

)
∩H1(0, T ; L2(∂Ω)

)
∩ L2(0, T ; H1/2(∂Ω)

)
for some h ∈ Lk

(
(0, T ) × ∂Ω

)
∩ H1

(
0, T ; L2(∂Ω)

)
∩ L2

(
0, T ; H1/2(∂Ω)

)
. Hence we

deduce that h = ŵ on (0, T )× ∂Ω so that

(5.10) wn ⇀ ŵ in Lk
(
(0, T )× ∂Ω

)
∩H1(0, T ; L2(∂Ω)

)
∩ L2(0, T ; H1/2(∂Ω)

)
.

Thus, we have shown that ŵ ∈ Y . The continuous imbedding of V(1)(QT ) into
C
(
[0, T ]; V0

)
(see Lemma 3.1) yields that for each τ ∈ [0, T ], the trace operator

w 7→ w|t=τ is bounded from V(1)(QT ) into V0(Ω). Hence, using the weak convergence
wn ⇀ ŵ in V(1)(QT ) and the fact that bounded linear operators preserve weak
convergence we obtain

w0 = wn|t=0 ⇀ ŵ|t=0 in V0(Ω)

and

wn|t=T ⇀ ŵ|t=T in V0(Ω) .

Now, we pass to the limit in the functional JN . We first examine the term∫ T
0

∫
∂Ω |w|

2w · n ds dt in the functional. By the compact imbedding result (see [1])

Lk
(
(0, T )× ∂Ω

)
∩H1(0, T ; L2(∂Ω)

)
∩ L2(0, T ; H1/2(∂Ω)

)
↪→ H1/2((0, T )× ∂Ω

)
↪→↪→ L3((0, T )× ∂Ω

)
,
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we obtain from (5.10) that

wn|∂Ω → ŵ|∂Ω in L3((0, T )× ∂Ω
)

so that

lim
n→∞

∫ T

0

∫
∂Ω
|wn|2wn · n ds dt =

∫ T

0

∫
∂Ω
|ŵ|2ŵ · n ds dt .

All the remaining terms in the functional JN are sequentially weakly lower semi-
continuous; thus, using the weak convergence results obtained earlier, we have that

JN (ŵ) ≤ lim inf
n→∞

JN (wn) .

Hence, we have shown that ŵ ∈ Y is indeed a solution to Problem I.
REMARK. The proof of Theorem 5.2 for Problem II can proceed first by substi-

tuting w = wn into (3.5) and (3.6) to obtain the estimate (5.4) and then passing to
the limit as n→∞.

REMARK. Since the optimal solution is sought in the space Y whose boundary
values are more regular than the trace of V(1)(QT ), we expect the optimal solution to
be more regular than merely in V(1)(QT ).

REMARK. The result also holds for many other cost functionals such as the L2-
norm of the vorticity functional used in [2] or the velocity matching functional

K(w) =
1
2

∫ T

0

∫
Ω
|w −w0|2 dxdt+

1
2

∫ T

0

∫
∂Ω

(
|∂tw|2 + |w|2 + |∇sw|2

)
ds dt ,

where ∇s denotes the surface gradient on ∂Ω. Using similar arguments we may, for
example, conclude that there exists a ŵ ∈ Vad such that K(ŵ) = infw∈Vad K(w) .

6. The optimality system. Having proved that an optimal solution w exists,
we now use Lagrange multiplier principles to characterize the optimal solution; i.e., we
obtain an optimality system of partial differential equations that the optimal solution
w and Lagrange multipliers must satisfy. This optimality system can serve as the
basis for computing approximations to optimal solutions numerically.

6.1. Abstract Lagrange multiplier principles. We consider an abstract min-
imization problem. Let X1 and X2 be two Banach spaces. Let f : X1 → R and
gj : X1 → R be functionals and F : X1 → X2 be a mapping. We seek a w ∈ X1 such
that

(6.1) f(w) = inf
u∈Wad

f(u) ,

where

Wad =
{
u ∈ X1 : F (u) = 0, and gj(u) ≤ 0 for j = 1, . . . ,m

}
.

The Lagrange functional for the minimization problem (6.1) is defined by

L(w,λ, q) = λ0f(w) + 〈F (w), q〉+
m∑
i=1

λjgj(w)
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for all w ∈ X1, λ = (λ0, λ1, . . . , λm)T ∈ Rm+1, and q ∈ X∗2 . We quote a standard
abstract Lagrange principle in the following particular form (see [3]).

THEOREM 6.1. Let w be a solution of (6.1). Assume that the mappings f , gj, and
F are continuously differentiable and that the image of the operator F ′(w) : X1 → X2
is closed. Then there exists a q ∈ X∗2 and a λ = (λ0, λ1, . . . , λm)T ∈ Rm+1 such that
the pair (q,λ) 6= (0,0),

(6.2) 〈Lw(w,λ, q), h〉 = 0 ∀h ∈ X1 ,

(6.3) λj ≥ 0, j = 0, 1, . . . ,m , and λjgj(w) = 0, j = 1, . . . ,m ,

where Lw(·, ·, ·) denotes the Fréchet derivative of L with respect to the first argument.
Furthermore, if F ′(w) : X1 → X2 is an epimorphism and the constraints gi(w) ≤ 0
are absent in problem (6.1), then λ0 6= 0 and λ0 can be taken as 1.

6.2. The weak form of an optimality system. Now we apply the abstract
Lagrange principle to Problem I and Problem II to obtain an optimality system of
equations for each case. We first examine Problem I. We first derive the adjoint
equation, in the weak form, for the optimal control problem.

THEOREM 6.2. Assume w ∈ V(1)(QT ) is a solution for Problem I. Then there
exists a q ∈ V(1)(QT ) ∩ L2

(
0, T ; V1

0(Ω)
)

such that

(6.4)

2µ
∫ T

0

∫
Ω
D(w) : D(h) dxdt+ 2µ

∫ T

0

∫
Ω
D(h) : D(q) dxdt

+
∫ T

0

∫
Ω

{
(h · ∇)w + (w · ∇)h + (v∞ · ∇)h

}
· q dxdt

+
∫ T

0
〈∂th(t, ·) , q(t, ·)〉 dt

+N
(∫ T

0

∫
∂Ω

2∂tw · ∂th ds dt+ k

∫ T

0

∫
∂Ω
|w + v∞|k−2(w + v∞) · h ds dt

)
+

1
2

∫ T

0

∫
∂Ω

{
(w + v∞) · n(w · h) +

1
2

(h · n)|w|2
}
ds dt

+
1
2

∫
Ω

w(T,x) · h(T,x) dx = 0 ∀h ∈ Y0,

where Y0 ≡ {y ∈ Y : y|t=0 = 0}.
Proof. We use the Lagrange multiplier principle (Theorem 6.1) to prove the

desired result. We set X1 = Y0 and X2 = L2
(
0, T ; V−1(Ω)

)
. We define the mappings

f : X1 → R and F : X1 → X2 as follows:

f(y) = JN (w + y)

and

F (y) = ∂t(w + y)− µP∆(w + y) + P
[(

(w + y + v∞) · ∇
)
(w + y)

]
,

where P : H−1(Ω) → V−1(Ω) is the projection operator. Constraints gi ≤ 0 are
absent in Problem I. Then y = 0 is the solution of the corresponding extremal problem
and F ′(0) : X1 → X2 is defined by

〈F ′(0),y〉 = ∂ty − µP∆y + P
[
(y · ∇)w +

(
(w + v∞) · ∇

)
y
]
.
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To show that F ′(0) is an epimorphism, we first observe that this operator is continu-
ous. Next we need to show that for each f ∈ L2

(
0, T ; V−1(Ω)

)
the system

(6.5)

〈∂ty(t), z〉+ µ

∫
Ω
∇y(t) : ∇z dx +

∫
Ω

(
(w(t) + v∞) · ∇

)
y(t) · z dx

+
∫

Ω

(
y(t) · ∇

)
w(t) · z dx =

∫
Ω

f(t) · z dx ∀ z ∈ V1
0(Ω), a.e. t ∈ (0, T ) ,

and

(6.6) y|t=0 = 0 in V0(Ω)

has a solution y ∈ Y0. We supplement this system with the boundary condition

(6.7) y|(0,T )×∂Ω = 0 .

Using the techniques in the proof of Theorem 4.4 we see that (6.5)–(6.7) indeed has
a (unique) solution y ∈ V(1)(QT ). (The situation now is even simpler, as the system
(6.5)–(6.7) is linear.) Clearly, y ∈ Y0. Hence, we have verified all the assumptions
in Theorem 6.1 and we conclude that there exists a q ∈ X∗2 = L2

(
0, T ; V1

0(Ω)
)

such
that

(6.8)
〈
Ly
(
y,q

)
,h
〉
|y=0 = 0 ∀h ∈ Y0 ,

where the Lagrange functional for Problem I is defined by

(6.9)

L
(
y,q

)
= µ

∫ T

0

∫
Ω
|D(w + y)|2 dxdt+

1
4

∫
Ω
|w(T,x) + y(T,x)|2 dx

+
1
4

∫ T

0

∫
∂Ω

(w + y + v∞) · n|w + y|2 ds dt

+
∫ T

0

∫
Ω
∂t(w + y) · q dxdt+ 2µ

∫ T

0

∫
Ω
D(w + y) : D(q) dxdt

+
∫ T

0

∫
Ω

{
[(w + y) · ∇](w + y) + (v∞ · ∇)(w + y)

}
· q dxdt

+N
(∫ T

0

∫
∂Ω
|∂tw + ∂ty|2 ds dt+

∫ T

0

∫
∂Ω
|w + y + v∞|k ds dt

)
for all y ∈ X1 and q ∈ X∗2 = L2

(
0, T ; V1

0(Ω)
)
. (Note that we have chosen λ0 = 1

in the definition (6.9); this is justified by Theorem 6.1 and the fact that F ′(0) is
an epimorphism.) Substituting (6.9) into (6.8) we obtain (6.4). By varying h in
E =

{
v ∈ C∞0

(
(0, T ) × Ω

)
: div v = 0

}
⊂ Y0, we obtain in the sense of distributions

defined on solenoidal vector fields:

(6.10) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q = µ∆w in E ′ ,

or equivalently,

−∂tq = µ∆q− q · (∇w)T + (w · ∇)q + (v∞ · ∇)q + µ∆w in E ′ .

From the fact that w ∈ V(1)(QT ) and q ∈ L2
(
0, T ; V1

0(Ω)
)
, we easily deduce ∂tq ∈

L2
(
0, T ; V−1(Ω)

)
. Hence, we have proved q ∈ V(1)(QT ).
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6.3. Green’s formulae. To interpret the weak optimality system (6.4) as a
system of partial differential equations with boundary conditions, we will need some
Green’s formulae for the optimal solution w, the Lagrange multiplier q, and their
associated pressure fields p and r, respectively.

We note that if q is a solution of (6.4) or (6.10), then by De Rham’s lemma (see
[14] and [28]), there exists an r̃ ∈ L2

(
0, T ;L2

loc(Ω)
)

such that ∇r̃ ∈ L2
(
0, T ; H−1(Ω)

)
and

(6.11) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q +∇r̃ = µ∆w

in the sense of distributions. Through the change of variable r = r̃ + p, where p
satisfies (4.27), we see that r ∈ L2

(
0, T ;L2

loc(Ω)
)
, ∇r ∈ L2

(
0, T ; H−1(Ω)

)
, and

(6.12) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q +∇r = µ∆w −∇p

in the sense of distributions. We now prove the trace theorems for
(
(∇q)+(∇q)T

)
·n

and r as was done for
(
(∇w) + (∇w)T

)
· n and p in section 4.3; we will also derive

some Green’s formulae that are useful in interpreting the weak optimality system as
a boundary value problem for a system of partial differential equations.

LEMMA 6.3. Assume w is a solution for Problem I and let q ∈ V(1)(QT ) ∩
L2
(
0, T ; V1

0(Ω)
)

be a solution of (6.4). Let r ∈ L2
(
0, T ;L2

loc(Ω)
)

satisfy (6.12) and
∇r ∈ L2

(
0, T ; H−1(Ω)

)
. Then

(6.13) γ
[
(∇q)·n

]
∈ L1(0, T ; B−1/α,α(∂Ω)

)
, γ
[
(∇q)T ·n

]
∈ L1(0, T ; B−1/α,α(∂Ω)

)
,

(6.14) γ(rn) ∈ L1(0, T ; B−1/α,α(∂Ω)
)
,

and therefore

(6.15) γ
[(
−rI + (∇q) + (∇q)T

)
· n ∈ L1(0, T ; B−1/α,α(∂Ω)

)]
,

where 1 < α < 2.
Proof. As in section 4.3, we introduce the bounded subdomain Θ ⊂ Ω such that

∂Ω ⊂ ∂Θ. We introduce on Θ the streamfunction E for q = (q1, q2) such that

q1 = ∂2E and q2 = −∂1E .

Then, by applying the curl operator to (6.11), we obtain that

(6.16) ∆(∂tE + µE + µ∆F ) = G1,

where F is the streamfunction for w introduced in (4.28) and

G1 = 2(∂1w1)(∂2q1 +∂1q2)+2(∂2q2)(∂1w2 +∂2w1)+(w1 +v∞,1)∆q2−(w2 +v∞,2)∆q1 .

Also, the fact that q|ST = 0 allows us to choose E to satisfy E|ST = 0. Analogous to
the proof of Lemma 4.5, we obtain

(6.17) G1 ∈ L1(0, T ;W−1,α(Θ)
)
, 1 < α < 2 .

Since q ∈ V(1)(QT ) we have E ∈ H(2)(QT ). Thus, (6.16) and (6.17) yield

∂tE + µ∆E + µ∆F ∈ L1(0, T ;Xα), 1 < α < 2 .
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By virtue of Proposition 4.8 we obtain

(6.18) γ(∂tE + µ∆E + µ∆F ) ∈ L1(0, T ;B−1/α,α(∂Ω)
)
.

The fact that E|ST = 0 implies γ∂tE|ST = 0. Recall from (4.42) that γ∆F ∈
L1
(
0, T ;B−1/α,α(∂Ω)

)
so that from (6.18),

γ∆E ∈ L1(0, T ;B−1/α,α(∂Ω)
)
, 1 < α < 2 .

Repeating the arguments in the proof of Theorem 4.9 we obtain (6.13). To prove the
trace result for r, we proceed in the same way as in the proof of Theorem 4.10 for p.
Taking the divergence of (6.12) we obtain

−∆r = G2 + ∆p,

where

G2 = ∂1q2(∂1w2 − ∂2w1) + ∂2q1(∂2w1 − ∂1w2) + q1∆w1 + q2∆w2 .

Analogous to the proof of Lemma 4.5 we have

G2 ∈ L1(0, T ;W−1,α(Θ)
)
, 1 < α < 2 .

Hence, the last three relations and the fact that r ∈ L2
(
0, T ;L2(Θ)

)
and ∆p ∈

L1
(
0, T ;W−1,α(Θ)

)
yield

r ∈ L1(0, T ;Xα

)
,

so that from Proposition 4.8, γr ∈ L1
(
0, T ;B−1/α,α(∂Ω)

)
for 1 < α < 2; i.e., (6.14)

holds. Finally, (6.15) follows trivially from (6.13)–(6.14).
We now establish some Green’s formulae.
LEMMA 6.4. Let r ∈ Xα(Θ), 1 < α < 2. Then the distribution ∇r can be extended

continuously into the functional defined by

(6.19) 〈∇r,h〉 = 〈rn,h〉∂Ω −
∫

Θ
r div h dx

for every h ∈ C∞(Θ) which vanishes near (0, T ) × (∂Θ \ ∂Ω). Here 〈∇r, ·〉 denotes
the defined functional and 〈·, ·〉∂Ω denotes the duality pairing between B1/α,α′(∂Θ) and
B−1/α,α(∂Θ).

Proof. By Lemma 4.7 we may choose a sequence {rn} ⊂ C∞(Θ) such that rn → r
in Xα. Formula (6.19) holds for r = rn by the classical Stokes theorem. Since the
right side of (6.19) with r = rn converges as n → ∞ to the same expression with r,
formula (6.19) defines the desired functional for r ∈ Xα(Θ).

REMARK. On C∞(Θ), the definition of the operator ∇ found in Lemma 6.4 coin-
cides with the classical definition.

LEMMA 6.5. Let w ∈ Y be a solution of (3.1)–(3.3). Then there exists a sequence
of solutions of (3.1), {w(k)} ⊂ Y ∩ L∞

(
0, T ; V2(Θ)

)
, such that w(k) → w in Y .

Proof. Let U ⊂ Θ be a (bounded) neighborhood of ∂Ω such that the extension
u of the boundary data b constructed in Theorem 4.2 has support in U and we can
choose a coordinate system (x1, x2)T such that U = {(x1, x2)T ∈ R2 : 0 < x2 < d}
and ∂Ω = {(x1, x2)T ∈ R2 : x2 = 0}. We consider the sequence {u(k)} defined by

(6.20) u(k)(t,x) ≡
∫ T

0

∫
U

k3φ
(
k(t− s), k(x1 − y1), k(x2 − y2)

)
u(s, y1, y2) dy1 dy2 ds ,
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where φ ∈ C∞0 (R3),
∫
R3 φdt dx = 1, and suppφ ∈ {(t, x1, x2)T ∈ R3 : −1 < t <

1,−1 < x1 < 1,−1 < x2 < 0}. Evidently, each u(k) ∈ C∞
(
(0, T )×Θ

)
and

(6.21) ‖u− u(k)‖V(1)(QT ) → 0 as k →∞ .

We set

b(k) = u(k)|(0,T )×∂Ω .

We choose a sequence {w(k)
0 } ⊂ V2(Ω) such that

(6.22) w(k)
0 → w0 in V0(Ω)

and each w(k)
0 satisfies the compatibility condition

(w(k)
0 · n)|∂Ω = (b(k)

0 · n)|t=0 .

Moreover, we choose w(k)
0 such that w(k)

0 −u(k)|t=0 ∈ V1
0(Ω). We then consider (3.1)

with the boundary and initial conditions

(6.23) w|(0,T )×∂Ω = b(k) and w|t=0 = w(k)
0 .

Let b(k)
n and b

(k)
τ be the normal and tangential components of b(k), respectively:

b(k) = b(k)
n n + b(k)

τ τ .

Clearly, b(k)
n , b(k)

τ , and w(k)
0 satisfy conditions (4.12)–(4.14) and (4.18) of Theorem

4.4. Hence, by Theorem 4.4, there exists a solution w(k) ∈ Y for (3.1) and (6.23). We
now show that w(k) → w in Y . We obviously have

(w(k) −w)|(0,T )×∂Ω = b(k) − b→ 0

in H1
(
0, T ; L2(∂Ω)

)
∩ L2

(
0, T ; H1/2(∂Ω)

)
∩ Lk

(
(0, T ) × ∂Ω

)
. Thus we only need to

show w(k) → w in V(1)(QT ). We rewrite w −w(k) in the form

(6.24) w −w(k) = (u− u(k)) + η(k),

where η(k) satisfies (4.20), (4.21) with η(k)
0 = (w0 −w(k)

0 ) − (u − u(k))|t=0, and the
following analog of (4.19):

〈∂tη(k)(t), z〉+ µ

∫
Ω
∇η(k)(t) : ∇z dx +

∫
Ω

(η(k)(t) · ∇)w(t) · z dx

+
∫

Ω

(
(w(k)(t) + v∞) · ∇

)
η(k)(t) · z dx = 〈f (k)(t), z〉 ∀ z ∈ V1(Ω), a.e. t ∈ (0, T ),

where f (k) is defined by the following analog of (4.22):

〈f (k)(t), z〉 = −µ
∫

Ω
∇(u(t)− u(k)(t)) : ∇z dx− 〈∂t(u(t)− u(k)(t)), z〉

−
∫

Ω

(
(u(t)− u(k)(t)) · ∇

)
w(t) · z dx

−
∫

Ω

(
(w(k)(t) + v∞) · ∇

)
(u(t)− u(k)(t)) · z dx.
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We can estimate η(k) and f (k) as in the proof of Lemma 4.3 and (4.25) to obtain

‖η(k)‖V(1)(QT )

≤ A
(
‖f (k)‖L2(0,T ;V−1(Ω)), ‖u− u(k)‖V(1)(QT ), ‖η

(k)
0 ‖V0(Ω), ‖w‖V(1)(QT ), |v∞|

)
and

‖f (k)‖L2(0,T ;V−1(Ω)) ≤ C
(
‖u− u(k)‖V(1)(QT ) + ‖u− u(k)‖V(1)(QT ) ‖w‖V(1)(QT )

+ ‖u− u(k)‖V(1)(QT )
(
‖w(k)‖V(1)(QT ) + |v∞|

))
,

where A(·) is a continuous positive function on R5 and A(λ1, λ2, λ3, λ4, λ5) → 0 as
(λ1, λ2, λ3) → (0, 0, 0) for fixed λ4, λ5. Taking into account (6.21)–(6.22) and the
boundedness of ‖w(k)‖V(1)(QT ) (which follows from Theorem 4.4), we obtain

(6.25) ‖η(k)‖V(1)(QT ) → 0 as k →∞ .

Relations (6.21) and (6.25) imply the convergence w(k) → w in V(1)(QT ). Finally, we
prove that w(k) ∈ L∞

(
0, T ; V2(Θ)

)
. To this end, we write w(k) in the form

(6.26) w(k) = u(k) + ξ(k) .

Then ξ(k) is the solution of problem (4.19)–(4.21) with u replaced by u(k) and f
defined by (4.22), wherein f is replaced by f (k) and u is replaced by u(k). Note that
by (6.20) the inclusion u(k) ∈ C∞(Θ) holds. By (4.22) we have

(6.27) f (k) = P
(
µ∆u(k) − ∂tu(k) + [(u(k) + v∞) · ∇]u(k)

)
,

where P is the orthogonal projection from L2(Θ) onto V0
0(Θ). Since u(k) ∈ C∞(Θ),

we have f (k) ∈ L∞
(
0, T ; V0

0(Θ)
)
, ∂tf (k) ∈ L2

(
0, T ; V̂−1(Θ)

)
, and f (k)|t=0 ∈ V0

0(Θ),
where V̂−1 is the completion of V0

0 under the norm sup‖φ‖V1
0
=1

∫
Θ f · φdx. By (6.26)

and by properties of (w(k)−u(k))|t=0 we have that ξ(k)|t=0 ∈ V2(Ω)∩V1
0(Ω). Hence,

by a result in [28, pp. 299–302], we have ξ(k) ∈ L∞
(
0, T ; V2(Θ)

)
so that w(k) ∈

L∞
(
0, T ; V2(Θ)

)
.

We may prove a similar result for the solution q for the adjoint equation (6.12).
We consider the boundary value problem

(6.28) −∂tq(k)−µ∆q(k) +q(k) · (∇w(k))T − [(w(k) +v∞) ·∇]q(k) +∇r̃(k) = µ∆w(k),

(6.29) div q(k) = 0,

and

(6.30) q(k)|t=T = q(k)
0 ∈ V0

0(Θ), q(k)|(0,T )×∂Ω = 0 .

The existence and uniqueness of the solution q(k) ∈ V(1)(QT ) for (6.28)–(6.30) can be
shown by the standard techniques (see [19], [28]).

LEMMA 6.6. Let q ∈ V(1)(QT )∩L2
(
0, T ; V1

0(Ω)
)

and r̃ ∈ L2
(
0, T ;L2

loc(Ω)
)

be the
solution of (6.11), w(k) be the solution of (3.1) and (6.22), and q(k) be the solution
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of (6.28)–(6.30), where q(k)
0 ∈ V1

0(Ω) and ‖q(k)
0 − q(T, ·)‖V0

0(Ω) → 0 as k →∞. Then
for every k, q(k) ∈ L2

(
0, T ; V2(Θ)

)
and ‖q(k) − q‖V(1)(QT ) → 0 as k →∞.

Proof. By Lemma 6.5, ‖w(k) − w‖V(1)(QT ) → 0 as k → ∞. Subtracting (6.11)
from (6.28) and doing estimation as in Lemma 4.3 we obtain

‖q(k) − q‖V(1)(QT ) → 0 as k →∞ .

By Lemma 6.5, w(k) ∈ V(1)(QT )∩L∞
(
0, T ; V2(Θ)

)
. Also, q(k) ∈ V(1)(QT ). Thus we

have that

g ≡ µ∆w(k) − q(k) · (∇w(k))T − [(w(k) + v∞) · ∇]q(k) ∈ L2((0, T )×Θ
)
.

We rewrite (6.28) in the form

−∂tq(k) − µ∆q(k) +∇r̃(k) = g .

Applying to this last equation the regularity result for the Stokes equations (see [19])
we obtain q(k) ∈ L2

(
0, T ; V2(Θ)

)
.

LEMMA 6.7. Let w ∈ Y be a solution of problem (3.1)–(3.3) and q ∈ V(1)(QT ) ∩
L2
(
0, T ; V1

0(Ω)
)

be a solution of the adjoint equation (6.11). Then the distribution ∆w
defined on C∞0 (Ω) ∩V0(Ω) can be extended continuously into a functional defined by

(6.31)
∫

Θ
∆w · h dx =

∫
∂Ω

(
(∇w) + (∇w)T

)
n · h ds− 2

∫
Θ
D(w) : D(h) dx

for every h ∈ C∞(Θ) which vanishes near (0, T ) × (∂Θ \ ∂Ω). Furthermore, the
time-dependent version of (6.31) also holds; i.e.,

(6.32)

∫ T

0

∫
Θ

∆w · h dx dt

=
∫ T

0

∫
∂Ω

(
(∇w) + (∇w)T

)
n · h ds dt− 2

∫ T

0

∫
Θ
D(w) : D(h) dx dt

for every h ∈ C∞((0, T )×Θ) which vanishes near (0, T )×(∂Θ\∂Ω). Formulae (6.31)
and (6.32) also hold if w is replaced by q.

Proof. If w = w(k) ∈ L∞
(
0, T ; V2(Θ)

)
, (6.32) is the well-known Green’s formula

(see (2.5) and the ensuing formulae). We substitute into (6.32) the solution w(k) for
the problem (3.1) and (6.23) as constructed in Lemma 6.5. By this lemma we have
w(k) → w in V(1)(QT ), and therefore,∫ T

0

∫
Θ
D(w(k)) : D(h) dx dt→

∫ T

0

∫
Θ
D(w) : D(h) dx dt

as k → ∞. Theorem 4.9 yields that the operator w 7→ γ
(
(∇w) + (∇w)T

)
n is con-

tinuous from the set {w ∈ Y : w satisfies (3.1)} to the space L1
(
0, T ; B−1/α,α(∂Ω)

)
,

1 < α < 2. Hence,∫ T

0

∫
∂Ω

(
(∇w(k)) + (∇w(k))T

)
n · h ds dt→

∫ T

0

∫
∂Ω

(
(∇w) + (∇w)T

)
n · h ds dt

as k → ∞. Substituting w = w(k) into (6.32) and passing to the limit as k → ∞ in
the right-hand side of this formula we obtain the desired extension of the distribution
∆w which is defined by (6.32). The steady state formula (6.31) can be similarly
proved. The case of the distribution ∆q can be proved analogously.
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6.4. The optimality system in the form of a boundary value problem
for a system of partial differential equations. We now interpret the optimal-
ity system (3.1), (3.3), and (6.4) as a system of partial differential equations with
boundary conditions on the entire boundary of the cylinder QT = (0, T )× Ω.

We first recall from section 3 that

V0(Ω) = {v ∈ L2(Ω) : div v = 0}

and

V0
0(Ω) = the closure of C∞0 (Ω) ∩V0(Ω) in the L2(Ω)-norm .

We have the well-known Weyl decomposition (see [14] and [19])

L2(Ω) = V0
0(Ω)⊕

(
∇H1(Ω)

)
,

where ∇H1(Ω) = {∇g : g ∈ H1(Ω)}. We claim that

V0(Ω) = V0
0(Ω)⊕

(
∇Hπ

)
,

where ∇Hπ = {∇g : g ∈ H1(Ω), ∆g = 0}. Indeed, since for each w ∈ V0(Ω) we have
w = wσ +∇wπ from the Weyl decomposition with wσ ∈ V0

0(Ω) and wπ ∈ H1(Ω), we
obtain by taking the divergence of w that ∆wπ = div w − div wσ = 0.

We are now prepared to interpret the optimality system in the weak form as a sys-
tem of partial differential equations with boundary conditions on the entire boundary
of the cylinder QT = (0, T )× Ω.

THEOREM 6.8. Assume w ∈ Y is a solution for Problem I and q ∈ V(1)(QT )
is as defined in Theorem 6.2. Then there exist a p ∈ L2

(
0, T ;L2

loc(Ω)
)

and an r ∈
L2
(
0, T ;L2

loc(Ω)
)

such that the quadruplet (w, p,q, r) satisfies the partial differential
equations (in the sense of distributions)

(6.33) ∂tw − µ∆w + ((w + v∞) · ∇)w +∇p = 0 in (0, T )× Ω ,

(6.34) ∇ ·w = 0 in (0, T )× Ω ,

(6.35) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q +∇r = µ∆w −∇p ,

and

(6.36) ∇ · q = 0 in (0, T )× Ω ,

the initial and terminal conditions

(6.37) w(0, ·) = w0(·) in V0(Ω) ,

and

(6.38) q(T, ·) +
1
2
wσ(T, ·) = 0 in V0

0(Ω),

and the (lateral) boundary condition

(6.39) q|ST = 0 ,
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where wσ(T, ·) is the projection of w(T, ·) onto V0
0(Ω). Moreover,

(6.40) ∂tt(γw) ∈ L1(0, T ; B−1/α,α(∂Ω)
)
,

(6.41) γ
[(

(∇w) + (∇w)T
)
· n
]
∈ L1(0, T ; B−1/α,α(∂Ω)

)
,

(6.42) γp ∈ L1(0, T ;B−1/α,α(∂Ω)
)
,

∫
∂Ω
p ds = 0,

(6.43) γ
[(

(∇q) + (∇q)T
)
· n
]
∈ L1(0, T ; B−1/α,α(∂Ω)

)
,

and

(6.44) γr ∈ L1(0, T ;B−1/α,α(∂Ω)
)
,

∫
∂Ω
r ds = 0,

where 1 < α < 2 and the following boundary conditions hold:

(6.45) 2N∂2
tt(γw)−A(w)− T (w, p)n− T (q, r)n = η(t)n,

where

(6.46) T (w, p) = −pI + 2µD(w) and T (q, r) = −rI + 2µD(q) ,

(6.47) A(w) = γ
(
kN |w + v∞|k−2(w + v∞) +

1
2
(
(w + v∞) · n

)
w +

|w|2
4

n
)

and

(6.48) η(t) = −
∫
∂Ω
A(w) · n ds

/∫
∂Ω

ds .

Furthermore, the following compatibility conditions hold:

(6.49)
[
(γw) · n

]∣∣
t=0 = (γw0) · n ,

(6.50) (∂tγw) · τ |t=T = 0 and
(

1
2
γwπ + 2N∂tγw · n

)
|t=T = 0 ,

where τ is the unit tangential along ∂Ω and wπ(t, ·) is the primitive function of the
projection of w(t, ·) onto ∇Hπ determined by the condition

(6.51)
∫
∂Ω
wπ(t, ·) ds = 0 .

Proof. w ∈ V(1)(QT ) as a solution of Problem I satisfies (3.1) and (6.37). By the
De Rham lemma, or recall from (4.27), there exists a p ∈ L2

(
0, T ;L2

loc(Ω)
)

such that
(6.33) holds. Relation (6.49) follows from the inclusion w ∈ Y and the remark at the
end of section 4.1. For the Lagrange multiplier q ∈ V(1)(QT )∩L2

(
0, T ; V1

0
)

we recall
from (6.12) that there exists an r ∈ L2

(
0, T ;L2

loc(Ω)
)

such that (6.35) holds. (6.34)
and (6.36) simply follow from the fact that w ∈ V(1)(QT ) and q ∈ V(1)(QT ); (6.39)
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follows from the fact that q ∈ L2
(
0, T ; V1

0(Ω)
)
. From Theorem 4.10 and Lemma

6.3 we see that the traces of p and r live in the space L1
(
0, T ;B−1/α,α(∂Ω)

)
for

1 < α < 2. Also, note that in (6.33) and (6.35), we can add an arbitrary constant
to p and r so that, in particular, we can choose p and r satisfying

∫
∂Ω p ds = 0 and∫

∂Ω r ds = 0, respectively, where the integrals are understood as the duality pairings
〈p, 1〉 and 〈r, 1〉, respectively. This eliminates the arbitrary constant from p and r
and also will facilitate some later discussion. Hence (6.42) and (6.44) are verified.
Relations (6.41)–(6.44) follow from Theorems 4.9 and 4.10 and Lemma 6.3.

We now examine (6.45). By taking h ∈ C∞ in (6.4) with div h = 0, h|t=0 = 0,
h|t=T = 0 and integrating by parts (which is justified by Lemma 6.7), we obtain

(6.52)

∫ T

0

∫
Ω

(
− ∂tq− µ∆q + q · (∇w)T − [(w + v∞) · ∇]q− µ∆w

)
· h dxdt

+
∫ T

0

∫
∂Ω

(
2N∂tw · ∂th +

(
A(w) + 2µD(w)n + 2µD(q)n

)
· h
)
ds dt = 0 ,

where A(w) is defined by (6.47). Also, the integrals are understood as duality pairings
if necessary. Equations (6.35) and (6.52) yield

(6.53)
−
∫ T

0

∫
Ω

(∇r +∇p) · h dxdt

+
∫ T

0

∫
∂Ω

(
2N∂tw · ∂th +

(
A(w) + 2µD(w)n + 2µD(q)n

)
· h
)
ds dt = 0 .

Using Lemma 6.4 and the last equation, we obtain

(6.54)
∫ T

0

∫
∂Ω

(
2N∂tw · ∂th +

(
A(w) + T (p,w)n + T (r,q)n

)
· h
)
ds dt = 0 ,

where T is the stress tensor defined by (6.46). Since 1 < α < 2, we have the
continuous imbeddings B1/α,α′(∂Ω) ↪→ L∞(∂Ω), where α′ = α/(α − 1) so that
L1(∂Ω) ↪→ B−1/α,α(∂Ω). Hence,

γ
(

2kN |w+v∞|k−2(w+v∞)+
1
2
(
(w+v∞)·n

)
w+
|w|2

4
n
)
∈ L1(∂Ω) ↪→ B−1/α,α(∂Ω) .

Using Theorems 4.9 and 4.10, Lemma 6.3, and the last relation, we see that

(6.55) A(w) + T (p,w)n + T (r,q)n ∈ L1(0, T ; B−1/α,α(∂Ω)
)
.

Since h and ∂tw are solenoidal (from the definition of the spaces V(1)(QT ) and Y ),
we have ∫

∂Ω
h · n ds = 0 and

∫
∂Ω
∂tw · n ds = 0 .

Thus, from (6.54)–(6.55), we deduce (6.40) and

(6.56)
∫ T

0

∫
∂Ω

(
2N∂ttw −A(w)− T (p,w)n− T (r,q)n

)
· h ds dt = 0 .

Hence, (6.45) follows from (6.55) and (6.56) with η(t) defined by

(6.57) η(t) =
∫
∂Ω

n ·
(

2N∂ttw −A(w)− T (p,w)n− T (r,q)n
)
ds

/∫
∂Ω

ds .
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Note that for every φ(t) ∈ C∞0 (0, T ),∫ T

0

∫
∂Ω
∂ttw · n ds φ(t) dt =

∫ T

0

∫
∂Ω

w · n ds ∂ttφ(t) dt = 0

as
∫
∂Ω w · n ds = 0 for every divergence-free function w. Thus, for almost all t ∈

(0, T ),

(6.58)
∫
∂Ω
∂ttw · n ds = 0 .

Taking into account (6.42) we obtain for each φ(t) ∈ C∞0 (0, T ),

(6.59)

∫ T

0

∫
∂Ω

n · T (p,w)n ds φ(t) dt

=
∫ T

0

∫
∂Ω

(
n · µ

(
(∇w) + (∇w)T

)
n− p

)
ds φ(t) dt

=
∫ T

0

∫
∂Ω

(
n · µ

(
(∇w) + (∇w)T

)
n
)
ds φ(t) dt .

Let ε > 0 be given. For each s ∈ ∂Ω, we consider the normal ñ(s) to ∂Ω which is
directed into Ω. We choose the point K(ε, s) along ñ(s) such that the distance between
K(ε, s) and ∂Ω equals ε. If ε is sufficiently small, then the set {K(ε, s) : s ∈ ∂Ω} is a
C∞-manifold which we denote by ∂Ωε. Since w ∈ V0(Ω),∫

∂Ω
w · ñ ds = 0 and

∫
∂Ωε

w · ñε ds = 0,

where ñε is the outward normal to ∂Ωε. Hence,

(6.60)

∫ T

0

∫
∂Ω

(
n ·
(
(∇w) + (∇w)T

)
n
)
ds φ(t) dt

= 2
∫ T

0

∫
∂Ω
∂nw · n ds φ(t) dt

= lim
ε→0

1
ε

∫ T

0

(∫
∂Ω

w · n ds−
∫
∂Ωε

w · ñε ds
)
φ(t) dt = 0 .

Thus, (6.59) and (6.60) yield

(6.61)
∫
∂Ω

n · T (p,w)n ds = 0 for almost every t ∈ (0, T ) .

Similarly, we have

(6.62)
∫
∂Ω

n · T (r,q)n ds = 0 for almost every t ∈ (0, T ) .

From relations (6.58) and (6.61)–(6.62) we conclude that the function η(t) defined in
(6.57) equals the function defined in (6.48).
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Now we choose h ∈ C∞(QT ) in (6.4) with div h = 0 and h|t=0 = 0. Integration
by parts (which again is justified by Lemmas 6.4 and 6.7) yields

(6.63)

∫ T

0

∫
Ω

(
− ∂tq− µ∆q + q · (∇w)T − [(w + v∞)·]q− µ∆w

)
· h dxdt

+
∫ T

0

∫
∂Ω

(
− 2N∂ttw · h +

(
A(w) + 2µD(w)n + 2µD(q)n

)
· h
)
ds dt

+
∫

Ω

[
q(T,x) +

1
2
w(T,x)

]
· h(T,x) dx +

∫
∂Ω

2N∂tw(T,x) · h(T,x) ds = 0 .

Note that (6.53) and (6.56) hold for the present h so that using (6.35), (6.53), (6.56),
and (6.63), we are led to

(6.64)
∫

Ω

[
q(T,x) +

1
2
w(T,x)

]
· h(T,x) dx +

∫
∂Ω

2N∂tw(T,x) · h(T,x) ds = 0 .

Using the fact that q(T, ·) ∈ V0
0(Ω) and w(T, ·) ∈ V0(Ω) we obtain (6.38). Substi-

tuting (6.38) into (6.64) we obtain by integration by parts that∫
∂Ω

(1
2
wπ(T,x)n(x) · h(T,x) + 2N∂tw(T,x) · h(T,x)

)
ds = 0,

which implies (6.50) with (6.51).

6.5. The case of Problem II. We derive now the optimality system for Prob-
lem II.

THEOREM 6.9. Assume that v0 ≡ w0 + v∞ ∈ V1
0(Ω) and w ∈ Y is a solution

of Problem II. Then there exists a triplet (q, r, λ) ∈ V(1)(QT ) × L2
loc(QT ) × R+ and

p ∈ L2
loc(QT ) such that (q, r, λ) 6= (0, 0, 0) and the collection (w,q, p, r, λ) satisfies

(6.33)–(6.44) and the boundary conditions

(6.65) 2λ∂2
ttγw − Ã(w)− T (w, p)n− T (q, r)n = η̃(t)n,

where T (w, p) and T (q, r) are defined by (6.46),

(6.66) Ã(w) = γ
(
kλ|w + v∞|k−2(w + v∞) +

1
2
(
(w + v∞) · n

)
w +

|w|2
4

n
)
,

and

(6.67) η̃(t) = −
∫
∂Ω
Ã(w) · n ds

/∫
∂Ω

ds .

Moreover, the following compatibility conditions hold:

(6.68) (γw) · n|t=0 = (γw0) · n ,

(6.69) λ
[
(∂tγw) · τ

]∣∣
t=T = 0 , and

(1
2
γwπ + 2λ∂tγw · n

)∣∣∣
t=T

= 0 ,

where τ is the unit tangential along ∂Ω and wπ(t, ·) is the primitive function of the
projection of w(t, ·) onto ∇Hπ determined by the condition (6.51). Furthermore, the
conditions of nonnegativeness and complementary slackness are valid; i.e.,

(6.70) λ ≥ 0
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and

(6.71) λ
(∫ T

0

∫
∂Ω

(
|w + v∞|k + |∂tw|2

)
ds dt−M

)
= 0 .

Proof. Let w ∈ Y be a solution of Problem II. We fit Problem II into the
framework of Theorem 6.1. We set X1 = Y0 and X2 = L2

(
0, T ; V−1(Ω)

)
. The

Lagrange functional for Problem II is defined by

(6.72)

L
(
y,q

)
= λ0

(
µ

∫ T

0

∫
Ω
|D(w + y)|2 dxdt+

1
4

∫
Ω
|w(T,x) + y(T,x)|2 dx

+
1
4

∫ T

0

∫
∂Ω
|w + y|2(w + y + v∞) · n ds dt

)
+ λ

∫ T

0

∫
∂Ω

(
|w + y + v∞|k + |∂tw + ∂ty|2 −M

)
ds dt

+
∫ T

0

∫
Ω

(∂tw + ∂ty) · q dxdt+ 2µ
∫ T

0

∫
Ω
D(w + y) : D(q) dxdt

+
∫ T

0

∫
Ω

{
[(w + y) · ∇](w + y) + (v∞ · ∇)(w + y)

}
· q dxdt

for all y ∈ X1 and q ∈ X∗2 = L2
(
0, T ; V1

0(Ω)
)
. Note that (6.72) differs from (6.9)

in that λ0 has to be included in the Lagrangian functional and λ0 can be zero. We
define the functionals

f(y) = J (w + y)

and

g1(y) =
∫ T

0

∫
∂Ω

(∣∣w + y + v∞|k + |∂tw + ∂ty|2
)
ds dt−M ;

see (3.5)–(3.6). We define the mapping F : X1 → X2 as in the proof of Theorem 6.2.
Analogous to the proof of Theorem 6.2, we can verify that F ′(0) is an epimorphism,
and therefore the image of F ′(0) is closed. Hence, we have verified all the assumptions
in Theorem 6.1 and we conclude that there exist a q ∈ X∗2 = L2

(
0, T ; V1

0(Ω)
)

and a
(λ0, λ) ∈ R2 such that (q, λ0, λ) 6= (0, 0, 0),

(6.73)
〈
Ly(y,q),h

〉∣∣∣
y=0

= 0 ∀h ∈ Y ,

(6.74) λ0 ≥ 0 , λ ≥ 0 ,

and

(6.75) λ
(∫ T

0

∫
∂Ω

(
|∂tw|2 + |w + v∞|k

)
ds dt−M

)
= 0 .

As in Theorems 6.2 and 6.8, we derive from (6.73) relations (6.33)–(6.34), (6.36)–
(6.37), (6.39)–(6.44),

(6.76) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q +∇r = λ0(µ∆w −∇p)
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and

(6.77) q(T, ·) +
λ0

2
wσ(T, ·) = 0 in V0

0(Ω) ,

where wσ(T, ·) is the projection of w(T, ·) onto V0
0(Ω). Moreover, we derive the

following boundary condition:

(6.78) 2λ∂2
ttγw − Ã(w)− T (w, p)n− T (q, r)n = η̃(t)n ,

where

Ã(w) = γ
{
kλ|w + v∞|k−2(w + v∞) + λ0

(1
2
(
(w + v∞) · n

)
w +

|w|2
4

n
)}

and

η̃(t) = −
∫
∂Ω
Ã(w) · n ds

/∫
∂Ω

ds .

Furthermore, the following compatibility conditions hold:[
(γw) · n

]∣∣
t=0 = (γw0) · n ,

(6.79)
(1

2
λ0γwπ + 2λ∂tγw · n

)
|t=T = 0 , (λ∂tγw) · τ |t=T = 0 ,

where wπ is the primitive for the projection ∇wσ of w onto ∇Hπ determined by
(6.51).

To complete the proof, it remains to show that λ0 6= 0 so that we can choose
λ0 = 1. Assume λ0 = 0. Then (6.76), (6.77), (6.36), and (6.39) yield q ≡ 0 by
standard techniques of energy estimates and the Gronwall inequality. Also, equation
(6.76) and the condition

∫
∂Ω r ds = 0 imply r = 0. We note that λ 6= 0 because

(q, λ0, λ, r) = (0, 0, λ, 0) 6= (0, 0, 0, 0). By (6.70), λ > 0. Then, by virtue of (6.71), w
is also a solution of the following modified minimization problem: seek a w ∈ Y such
that the functional (3.5) is minimized subject to the equality constraints (3.1), (3.3),
and

(6.80)
∫ T

0

∫
∂Ω

(|w + v∞|k + |∂tw|2) ds dt = M .

We now show that this minimization problem satisfies the conditions of Theorem 6.1.
Indeed, we set X1 = Y0 and X2 = L2

(
0, T ; V−1(Ω)

)
× R. We define the mapping f

by f(y) = J (w + y), where J is the functional (3.5) and define

F̃ (y) =
(
∂t(w + y)− µP∆(w + y) + P

[(
(w + y + v∞) · ∇

)
(w + y)

]∫ T
0

∫
∂Ω(|w + y + v∞|k + |∂tw + ∂ty|2) ds dt−M

)
,

where P : H−1(Ω)→ V−1(Ω) is the orthogonal projection. Then F̃ ′(0) : X1 → X2 is
defined by

〈F̃ ′(0),y〉 =
(

∂ty − µP∆y + P (y · ∇)w + P
(
(w + v∞) · ∇

)
y∫ T

0

∫
∂Ω(k|w + v∞|k−2(w + v∞) · y + 2∂tw · ∂ty) ds dt

)
.
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To show that F̃ ′(0) is an epimorphism, we first observe that this operator is con-
tinuous. Next we need to show that for each f ∈ L2

(
0, T ; V−1(Ω)

)
and ζ ∈ R, the

system

(6.81)
〈∂ty(t), z〉+ µ

∫
Ω
∇y(t) : ∇z dx +

∫
Ω

(
(w(t) + v∞) · ∇

)
y(t) · z dx

+
∫

Ω

(
y(t) · ∇

)
w(t) · z dx =

∫
Ω

f(t) · z dx ∀ z ∈ V1
0(Ω), a.e. t ∈ (0, T ) ,

(6.82) y|t=0 = 0 in V0(Ω),

and

(6.83)
∫ T

0

∫
∂Ω

(
k|w + v∞|k−2(w + v∞) · y + 2∂tw · ∂ty

)
ds dt = ζ

has a solution y ∈ Y0.
To this end we first look for a y ∈ γST Y0 satisfying (6.83). (γST Y0 is the space

of functions belonging to Y0 restricted to ST .) It suffices to show that there exists a
y ∈ γST Y0 for which the left side of (6.83) is not zero, for then we can obtain (6.83) by
multiplying y by a suitable constant. Suppose that for every y ∈ γST Y0 the equality∫ T

0

∫
∂Ω

(
k|w + v∞|k−2(w + v∞) · y + 2∂t(w + v∞) · ∂ty

)
ds dt = 0

holds. This equality and (6.79) with λ0 = 0 imply that w + v∞ satisfies the relations

(6.84) −2∂tt(w + v∞) + k|w + v∞|k−2(w + v∞) = 0 on (0, T )× ∂Ω

and

(6.85) ∂t(w + v∞)
∣∣
t=T = 0 on ∂Ω .

Note also that

(6.86) (w + v∞)
∣∣
t=0,x∈∂Ω = v0

∣∣
∂Ω ≡ 0 .

We multiply (6.84) by ∂t
(
w + v∞

)
and obtain

−∂t|∂t(w + v∞)|2 + ∂t|w + v∞|k = 0 on (0, T )× ∂Ω ,

which together with (6.85) implies

−|∂t(w + v∞)|2 + |w + v∞|k = |w(T, ·) + v∞|k on (0, T )× ∂Ω .

This equality taken at t = 0 yields

−
∣∣∂t(w(0,x) + v∞

)∣∣2 = |w(T,x) + v∞|k on ∂Ω ,

which implies∣∣∂t(w(0,x) + v∞
)∣∣2 = 0 and |w(T,x) + v∞|k = 0 on ∂Ω ,
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or we rewrite the last relation as

(6.87) w(T,x) + v∞ = 0 on (0, T )× ∂Ω .

We deduce from the differential equation (6.84) and boundary conditions (6.85) and
(6.87) that (w + v∞) = 0 on (0, T ) × ∂Ω. This contradicts (6.80). Therefore, there
exists a z ∈ γST Y0 satisfying (6.83), where y is replaced by z.

We supplement the system (6.81)–(6.82) with the boundary condition

(6.88) y|(0,T )×∂Ω = z .

Using the techniques in the proof of Theorem 4.4 we see that (6.81)–(6.82) and (6.88)
indeed has a (unique) solution y ∈ V(1)(QT ) (the situation now is even simpler, as
the system (6.81)–(6.82) is linear). Note that substituting z from (6.88) into (6.83)
in place of y makes (6.83) valid. Clearly, y ∈ Y0. Hence we have proved that F̃ ′(0)
is an epimorphism, so that we have verified all the assumptions in Theorem 6.1. By
virtue of Theorem 6.1, every Lagrange multiplier triplet (q̃, λ̃0, λ̃) such that (6.73)
holds where L is defined by (6.72) satisfies λ̃0 6= 0; in particular, (q, λ0, λ) is such a
triplet, and therefore λ0 6= 0. This contradicts the assumption λ0 = 0. Hence λ0 6= 0.

REMARK. Note that, since we have not employed a separate variable for the
control, the boundary condition (3.2) does not appear in the optimality systems of
sections 6.3–6.5. In fact, in order to satisfy (3.2) one merely has to choose, once w is
determined from the above optimality system, a control g such that g = w|∂Ω + v∞
for t ∈ (0, T ).

REMARK. The complexity of the optimality systems makes it nontrivial to study
the regularity of solutions for these systems. The regularity of solutions will be studied
elsewhere.
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