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Abstract. This article presents regularity results that admit a weak formulation for
degenerate von Karman boundary value problems modeling the deformation of clamped
plates that lose stiffness in one direction. These boundary value problems are derived in
the companion article, A Derivation of Degenerate von Karman Equations for Strongly
Anisotropic Plates, by the author. The equations are a fourth-order elliptic-parabolic
system of weakly coupled nonlinear equations. The article includes the weak formulation
and a brief description of the appropriate existence results for the formulation.

1. Introduction. In this article we establish regularity results that admit a weak
formulation for degenerate von Karman boundary value problems that model the de-
formation of clamped plates that lose stiffness in one direction. These boundary value
problems are derived in a companion article [23]. The equations are a fourth-order
elliptic-parabolic system of weakly coupled nonlinear equations.

Regularity results for elliptic-parabolic equations are well-known, for instance, the
work of Olemik in [17], and the well-known papers by Kohn and Nirenberg [14] and [15].
Elliptic-parabolic systems have been treated carefully by Cosner [6], Bertiger and Cosner
[3], Philips and Sarason [19], and Tartakoff [26]. Fourth and higher-order equations have
been examined by Weinacht in [28], [29] and elsewhere, Esposito [7], [8], Canfora [5],
Benevento, Bruno and Castellano [2], and the author [20], [21], and [22]. Ivanov treated
second-order quasi-linear elliptic-parabolic equations; his work is assembled in [13], while
nonlinear fourth-order equations with similar degeneracy have been treated by Warnecke
in [27]. One notable aspect of the present work is that it presents regularity estimates
in the neighborhood of an intersection between the characteristic and noncharacteristic
boundaries. These are the first such estimates for the fourth-order case of which the
author is aware, as other regularity results for elliptic-parabolic problems employ the
restriction that the characteristic and noncharacteristic portions of the boundary do not
intersect. Lin and Tso have obtained results in the second-order case in [16].
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Although the present work does not present existence results, the techniques employed
by Berger and Fife in [1] and [4] seem to be appropriate to the present problem; the
difficulty in applying the standard tools of pseudomonotone operator theory (as presented
by Zeidler in [30], for instance) lies in the bounded domain of the operator in the weak
formulation presented in the conclusion of this paper, Sec. 4.

In an effort to alleviate the tedium of some of the estimates that follow, this formulation
omits some coefficients included in the derivation found in [23], but the results obtained
here apply to the more general model with only straightforward modifications.

2. Notation and statement of results. The boundary value problem under con-
sideration is

Uyyyy "I- UXxyy [^, ^] f U1 £"2 CI R. , ("0

w wXxxx ~1~ ̂yyyy 2?fxxyy — (^x^yy)x in (2)

with boundary conditions:

u = 0 on dfl, (3)

~=0 on E*,
on

— ~-wx—Tny + ph2, and —wy—Tnx + phi on <917. (4)
(lb (Xo

The bilinear form in Eq. (1) is defined by

[li, w\ -= (WyyUx^x "1" (^xy^x^y ~ {^xy^y^x- (5)

We use S* to refer to that part of the boundary dQ. on which the unit normal is not
parallel to the x-axis. The vector n = (nx,ny) is the unit outer normal to the boundary,
and d/ds refers to the tangential directional derivative in the counter-clockwise direction.
The quantities r and p are parameters convenient for stating our results.

The function w can be decomposed into three components: w = ^ (x2 + y2) + pw° + w,
where w° solves A2w° = 0 in fl with boundary conditions

-^L = h2, d^ = hl onan, (6)
as as

and w solves A2u> = —{uxuyy)x with homogeneous boundary conditions. We will refer
to pw° + w as w. Using this decomposition, we can rewrite Eq. (1) as

D[u} — [u,w] := A(uyy — tu) — [u,u>] — f in fi. (7)

This defines the elliptic-parabolic operator /)[•], which depends upon r.
We use standard notation: LP(A) is the Banach space of Lebesgue p-integrable func-

tions over the set A C R2, with norm || ■ The Hilbert space L2(ft) has norm || • ||.
The symbol W^k'p\A) refers to the Banach space of functions that, together with their
weak partial derivatives up to order k, are Lebesgue p-integrable on A; the norm will be
denoted || • \\k,P\A- If the domain is omitted it is understood to be Q. The space Wq':'p> (A)
is the closure of Co°(A) in W^k'p\A). For an introduction to these spaces, see [10].
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Fig. 1. An acceptable domain for the regularity results on u

To derive a weak formulation of Eq. (7) with boundary conditions (3) for fixed w,
define the Hilbert space H by completing CfJ°(Q) under

(u,v)H . I tLxy^xy 'U'yy'^yydA /
Jn Jn

Vu ■ Vi> dA.

Notice that if we integrate the operators in Eq. (7) against a function v £ H over ft,
integration by parts yields

/ A (Uyy—TU)vdA= / UyyUyy + UXyVXy + TVU ■ dA =: B(u,v),
Jn Jn

- / [u,w]vdA= / Wyyuxvx + Wxxuyvy— wxy(uxVy+ UyVx)dA=: c(-w,u,v)
Jn Jn

and these forms define a weak formulation of Eqs. (3) and (7):

Bw(u,v) := B(u,v) + c(w,u,v) = / fvdA. (8)
Jn

We call a u in TL satisfying Eq. (8) for any v in H and fixed w and r an 7Y-weak solution
of the homogeneous Dirichlet boundary value problem for Eq. (7) for w and t.

Put the following assumptions on the boundary of fl. The portion denoted where
ny is zero, consists of two line segments. The complement of X' in dfl, £*, is composed of
two C3 curves that intersect the line segments that comprise £' with bounded derivatives
up to to order three. The regularity estimates apply so long as at points where E'
intersects £* the interior angle is right or acute. Figure 1 illustrates an acceptable
geometry for the domain.

Finally, the Hilbert space in which the regularity result places the solution u:

7~L € 7~L | Uxx , Uxxy , Uxyy , *Ujyyy L (^) }.
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This paper proves the following result, and outlines its utility:

Theorem. Assume / belongs to L2(fl), w belongs to and 0 satisfies the
conditions outlined above. When r is sufficiently large and p, ||w||4 4, and ||/|| are
sufficiently small, the boundary value problem Eq. (8) has a unique 7Y-weak solution u
that belongs to H.

3. Regularity of solutions to the degenerate equation. The inner product de-
fined on H has positive definite quadratic form on TL by the Poincare-Friedrichs inequality
since Ji is a subspace of

In order to obtain estimates on u near the curved portion of the boundary, £*, we
perform a local change of coordinates. The boundary arc S* is the graph of y = E(x),
with ^S(x) =: a(x). We define £ = x and r) = y — T,(x). In the new variables the
bilinear form defined by Eq. (8) has a representation

v) = I A.Urj'qV'q^ -f- (jiu^V^ -f- + ^£^£77
Jn

+ t(u£V£ + Au71vv + a (u^vv + uvv^))

+ wvriu^v^ + + a'w7))wr)ur? — W£V(u£vv + uvV() dA,

where the coefficient A = 1 + a2 is always at least 1. In the course of the proof we use
the operator and bilinear form expressed in these coordinates:

= AU-q^^rj H~ (TU^'qfj'q + r/7) All^jj

\li, It?] — (7 {w^U-q .

The first two lemmas give estimates on tangential derivatives of u near the boundary,
and all derivatives in the interior of 0.

Lemma 1. Assume u £ W(4,2\£l) fl H satisfies the conditions (3), w € W^3'4'(f2) and
there are functions (f>,tp, and x belonging to Co°(R2) with support that intersects dfl
only on a portion of £* where a change of variables like that discussed above can be
constructed. Assume further that tp > c > 0 on supp^ and x > c on supp-0- Define
f(u,w) '■= D[u] — [u, u>]. Then there are constants C and K depending upon the value c,
the area of £1, the norm ||w||3,4;r2, the maximum values of a and <fi and their derivatives
to order two, and if) and its first derivatives, with K depending on r and C independent
of r such that

||<K,J2 + Hu^yf + rUVu^W2 < C{\\xD2u\\2 + \\xf{u,u,)\\2) + K\\xVu\\2. (9)€
An outline of the proof of this lemma can be found in the appendix 5. Lemmas of

this type are frequently used in regularity results for degenerate elliptic equations, and
similar lemmas together with their proofs can be found in [7], [14], [18], [20], [21], and
[26]. The following lemma can be proved in a similar fashion.

Lemma 2. Assume u and w are as in the previous lemma and and x are as above
except that their supports intersect dfl, if at all, then only on £'. Then there are
constants C and K depending upon the value c, the area of Q, the norm ||w||3,4;fi, and
the maximum values of 4> and its derivatives to order two and ip and its first derivatives,
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with K depending on r and C independent of r such that the inequality (9)y holds.
Further, if supp(/> has no intersection with dfl, then (9)^ holds as well, with constants
having the dependencies given above.

By inequality (9)y we mean (9)^ with y substituted for £.
Normal derivatives at the boundary must be estimated next. We will need the follow-

ing trivial lemma, which is derived essentially the same way as the prior estimates.

Lemma 3. Assume u, w, and f(u,w) are as in Lemma 1, and (t>,ip, and \ have the rela-
tionship described in Lemma 1 with support intersecting any portion of dfl. Then there
are constants C and K depending upon the value c, the area of fi, the norm
the maximum values of a and its first derivative, cp and its derivatives to order three,
and ip and its first derivatives with K depending on r and C independent of r such that
the following inequality holds:

||^VU„||2 + t||<£VU||2 <C(\\xVu\\2 + \\xfM\\2) + K\\xu\\2. (10)

The proof of this lemma depends upon the coercivity of the characteristic form of
the operator D[u\ in local coordinates. If the maximum value of |er| is a > 0, then the
minimum eigenvalue for the quadratic form (1 + a2)rf + 2a^r] + £2 is bounded below by

2-a{\/q2+4-a) > Q

If we call this bound A, then the bilinear form associated with D[u] satisfies the following
coercivity inequality

B(u,u) = Au2v + 2auivuvri + u^r) + t(u2 + Au2 + 2au^uv) > AdVu,,!2 + t|Vu|2),

and this is all that is needed to obtain the result. Details are in the appendix.
We next turn to estimates of higher-order normal derivatives near £', where the op-

erator is not coercive in the normal direction.

Lemma 4. Assume we have two functions u e W^A,2\^l)r\H and w £ W^3'4)(f2). Assume
further that the function <j> £ Cqc(R2) has support that intersects £', with cf)x = 0 there,
and possibly a contiguous component of £*, in which case 0 is a monotonic function
of y on £'. If ip and x are Co°(R2) functions related to <j> as in the previous lemmas
and a change of variables can be constructed on suppx, then there exist constants C
and K depending upon a and its first and second derivatives, and its derivatives to
order three, V and its first derivatives, and ||iw||3,4;f2, with K depending on r and C
independent of r such that the following inequality holds:

||^XJ2 + ll-H^II2 + rII^Vw£||2 < C\\xD2u\\2 + K(\\xVu\\2 + II2). (11)
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AProof. Multiplying the identity f(u>w) = D[u\ — [w,w] by (<f> uf)^ and integrating by
parts over Q gives

/ 0 f(u,u>)£u£ dA = / (yAUrjr^^cj) (</> U{){r;

+ (CTU«r,)j(</>2W{)r,7, + + r(w^(</>2u^)? + (ylu,, ((/>2m? ),,

+ (^)«(02"€)»? + (^v)6(4>2u6)() + (wwm?)?((/>2u?)? (12)

- (w?r?w?)?(<A2u€)?7 - {wivuv)((<p2us)i + ((w^ + a'wrl)uri)i(4>2ui)ridA

+
Jan

Note that the boundary integral can be expressed as an area integral that can be rewritten
as

- / {{Auvv + cru47))(02u?)w + KAu,, + (TUf)
Jo.

- w^Ut: + + a'wv)uT1\((j) u()v - 4> f(u,w)Ui}( dA

using the degenerate equation just given and integration by parts. Applying integration
by parts repeatedly to Eq. (12) with the area integral replacing the boundary integral
yields

I /(u,*o)(0 ui)i dA
Jn

= / (p2[Au2vv + 2crui(vuiriri+uliri + T(Aulv + 2auiSuill+u2i)\dA + C (13)
Jn

+ / 4><,2ulv+Tul){(f)(-a(t>v)dri,

where (by application of the Holder and arithmetic-geometric mean inequalities) the
quantity C can be bounded

\C\ <Ci\\XD2u\\+ XiUxVull2
with C\ depending upon a and its first and second derivatives, 4> and its derivatives to
order three, and its first derivatives, and ||if||3,4;n) and Ki depending on all these and
t as well. Note that if supp0 does not include £*, then the boundary integral in Eq.
(13) vanishes, since by hypothesis q^ = 0, and a = 0 when the change of coordinates is
trivial: y — rj. In the case that supp</> includes a portion of E*, the boundary integral
is positive, since < 0 by our hypothesis on the domain (stated in Sec. 2), and the
hypotheses of this lemma on <j). From this the inequality (11) follows. □

In order to obtain an estimate on uvrirl near E* we apply the following lemma. It
provides an estimate on the r] derivative of a function in a neighborhood U of E* under
the following assumptions. Assume U is a domain in the (£,7y)-plane whose boundary
intersects <9fI on a connected portion of E* and possibly on a contiguous connected
portion of E'. Assume that the intersection of the boundary of U with Q, denoted 7,
is a convex C3 curve that is normal to dfl where they meet. If U intersects E', then
denote by U the union of U with its reflection about E' (including the portion of E').
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V

Fig. 2. Geometry of the region used in the proof of Lemma 5

Otherwise, take U to be U. The union of U with its reflection about the £-axis will be
denoted Ue. We will choose 7 so that dUe is C3.

Lemma 5. Suppose U and 7 are as described above, and for some v € W^'2^(f2) with
v = 0 on E' in the sense of trace, the inequality

I VZrqrjdA < P\\4l,2;U (14)

holds for any z € Co°(Ue) with z = z^ = 0 on E*, with P independent of 2. Then, on
any open set U' with U' C U that has 7' = dU' fl satisfying the conditions on 7, the
following estimate holds:

IM2;£/'<c(p + iM + |M|) (15)
for some constant C depending only on U and U'.

Proof. For convenience, we assume that r/ increases moving from E* into U, and if U
includes a corner point, then it is the origin of the coordinate system, and £ increases
moving from E' into U. The geometry of the region is shown in Figure 2. Since 7'
satisfies the conditions on 7, U' can be extended to a region with C3 boundary in the
same way U is; call this set U'e. Any function v defined in U can be extended into all of
Ue in such a way that continuity of the derivatives controlled by the Tt norm is preserved,
and |M|i,2;t/e < C|M|i,2;[/-

To see this, extend v into U (if necessary) by defining

v{£, rj) = -3u(-£, rj) + 4t>(-f/2,77) if (4,77) e U and £ < 0.

This extension assures that formally

v\(=0+ = u|4=0- and v?|€=0+ = ^|f=0-,

and that ||f|[x 2.q < c||v||i;2;c/-
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Extend v from U to Ue in the same way, taking v(£, r/) = —3w(£, —rj) + 4u(£, —ry/2) if
(£, rj) G U and r] < 0; so a comparable statement about continuity of derivatives at 77 = 0
and boundedness of the W^1-2) norm can be made. To make the following equations
more readable we use the assignments Ai = —3 and A2 = 4.

Notice that for a function v defined in this way, for any 4> G C^°(Ue), it follows that

[ (pv dA = [
Jue Ju

4>vdA= I (p*vdA,
Jue

where

2 2/2 \

<{>*(£, V) = ^,V) + + ^2k\k {(pi^-k^ + ^jXj^i-j^-kri) .
j=1 fc=i \ j=1 /

If we consider a test function of the form (j) — then <j>* = (ipVr])* = zrm, where

z(t,v) = + + Y1 t + I •
j=1 k=1 \ 1=1 )

Note that z and zv are zero on £*. Further, since rp G Co°(C/e), z is in Co°(Ue). Thus
the bound (14) holds for the test function 2. From (ipnv)* = zvv ^ follows that

/ vij)rm dA
Ju*

< P\\z\\im <CiPMiAu*

Integrating by parts gives

/,
vip^dA < HV'II X,2;C/e j

which we can combine with the preceding equation to get

LvAip dA < C2(P+ ||t>C||)||V||l,2;t/«- (16)

Here we have used that II2;c/e < cll^dl-
(1 2)Now, define h as the unique solution to Ah = v in U'e belonging to Wj ' (U'e). We

know by classical results that h G W^'2\Ue) (see for instance [9] or [12]). So, h defined
on U' can be continuously extended to a function belonging to W^'2\lJe) (see [24]). In
particular h satisfies ||ft||i,2;t/e < c||/i||ii2;[/'e- Integrating by parts and applying Eq. (16)
we have for any tp G Co°(Ue),

I AhvAip dA < C2{P + ||^£ || ) || ̂ 771| l,2;£/e < C2(-P + II^IDUV'lb, 2;Ue-

(2 o\
If we consider a sequence of ip's that approach hv in Wq ' (Ue), then the inequality
becomes

\\Ahv\\lue <c2(P + H«€||)IKI|2,2;y.
Now we can apply Garding's inequality for the biharmonic operator (see [9], e.g.) to get

IIII2,2;t/e ^ Cz[{P + ||^£ ||) || ̂ 77 II2,2;t/e + ||hv ||\.Ve\,
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and since Wh^u* < ||^||i,2;t/= and \\hv\\2-U' < ||^||2,2;c/«, we have

\\hri\\2,2;Ue ^ C3(P + ||V£|| + ||/l||l,2;C/e)-

Finally, we can use ||v^||2;(7' ^ 11^-77||2,2;C/e? and (by the continuous extension of h)
||fr|]i,2;[/e < c||w|| to arrive at the desired estimate (15). □

Lemma 6. Suppose u £ W(4'2'(f2) fl Ti, w e W^3,4)(f2), and (f>,V'i>'02,'03> and x are
C^°(R2) functions with ipi > c on supp </>, ipi+i > c on suppi/'i, X ^ c on SUPP^3> and
for i = 1,3 the intsupp^i n fi suitable U's, as described before Lemma 5. Then there
are constants C and K so that

II<KW||2 < C(||^2«H2 + Hf(u,w)\\2) + A'(||xV«||2 + ||xul|2)- (17)

Proof. Suppose z is a Cg (int supp -02) function with z = zv = 0 on E*. We know

A^ll^rjrjZqrfdA = Bw(<j)U, z) - C
n

where C includes all the bilinear forms except the term appearing on the left. By our
assumption on z we may perform integration by parts and bounding to show

|C| < {Ci(||^2U«J + \\lp2U(vv\\ + \\lp2D2u\\) + Ki(\\-lp2Vu\\ + ||^2W||)}||V2||,

where C\ depends upon the constant c, the maximum value of a and its derivative, and
the maximum values of (j) and its derivatives up to order three and V'i, and K\ depends
upon these, the norm ||u;||3,4;n, the maximum values of ipi's first derivatives, and the
parameter r. Similarly we can show

\Bw(<pu, z) - Bw(u, <f>z)\ < {C2||V'2-D2w|| + ^(ll^VitH + ||^2w||)}|kl|i,2;n,
where C2 and K2 have the same dependencies as C\ and Ki, respectively. Applying the
identity

I A((j>u)vr)znridA — I zf(u^w)dA -1- Bw(c])u, z) Bw{u, (fiz^j C,
Jn Ju

it follows that

I{A^u)^^, Zr)rj)\ < {£7(||V>2Wf{f)|| ~t~ IIV^^jjjj || + 11^2-0 u||)
+ i^dl^VwII + ||^2W||) + ||^/(„,w)||}||^||l,2;n-

Notice that this inequality has the form of the condition in Lemma 5; so its application
using int supp ^3 as U and int supp tpi as U' yields

\\<f>uvvv\\2 < C(\\ip2u^J2 + ||^2uew||2 + H^-D2"!!2 + Hf(u,w)\\2)

+ K(\\4>2Vu\\2 + ||^2«||2)-

Eliminate the third-order derivatives on the right side by applying the estimate (9) if U
does not include a corner point, and estimate (11) if it does, using ip2 as 4> and tp^ as if;
to arrive at (17). This proves the lemma. □

Remark. In the last step of the proof just completed we used the identities d/d£ =
d/dx + ad/dy and d/dt] = d/dy to obtain

K^l ^ max{l, |cr|}(l^x^^y| -l- |^^yy|) and = u^yy.
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We will use this bound and the "inverse",

K|| < max{l, |cr|}(|^| + K|),

to obtain the principal result, stated in Sec. 2:
Proof of theorem. First we show existence of the unique solution to the boundary

value problem (8) in 7i. Since w belongs to the space the Sobolev embedding
theorem implies that the coefficients wxx,wxy, and wyy are continuous on fl, with max-
imum values bounded by a multiple of ||u;||3,4;n (see [12], for instance). Thus for any w
from a collection with uniformly bounded norm in W^3,4'(f2), given sufficiently large r
(depending on the bound), the bilinear form Bw(u,v) is both bounded and coercive on
7i. Since the right-hand side of Eq. (8) is clearly a continuous linear functional on Tt,
the Lax-Milgram lemma implies existence of a unique in u = uw € H that solves (8) for
every v G H under the mentioned conditions on w and r.

The proof of regularity consists of two parts. Using the estimates derived in the
lemmas, we can establish the fundamental relation for any u € W^5'2)^) fl H and
satisfying the boundary conditions (3): if r is sufficiently large then the basic estimate

\\u\\^<K(\\u\\2n + \\f{UtW)f) (18)
holds. Accepting this for the moment, we can show the completion of the proof. The
solution u for the specified / can be the strong limit in 7i for a sequence of uk for which
the estimate Eq. (18) holds. Thus the corresponding f(uk w) fk must converge weakly
to / in L2(f2) since

(fk,v) = Bw{uk,v) —► Bw(u,v) = (f,v) for all v G H,

and H is dense in L2(f2). As the norms of a weakly convergent sequence we know that
||/fc|| must be uniformly bounded. Thus taking the limit of

||u%<tf(||u*||?< + ||/fc||2)

we have

\\u\\^ < K\\u\\zh + P

with P — fC(liminf ||/fc||)2 < oo. This is sufficient to show that u is in 7i.
In order to prove the basic estimate (18), we impose a pair of partitions of unity on

the domain fl, {Xi}^Lii and {<Az}^Li- The partitions must be chosen so that supp<^>; C
int supp xt, and each pair 0; and xi satisfies one of the conditions:

1) suppx; C f2.
2) supp <j>i intersects dfl only on one component of E* and satisfies the conditions on

the set U in Lemma 5.
3) supp ipi intersects dfl only on one component of In this case (pi must satisfy

the conditions of Lemma 4.
4) supp <pi contains a corner point, and satisfies the conditions on the set U in Lemma

5. In this case <pi must satisfy the conditions of Lemma 4.
The construction of a <f> partition "inside" the x partition is outlined in [20].

For a 4>i from a pair satisfying condition 1), we have by Lemma 2, estimate (9)x that

tUiuxx\\2 < C(\\xiD2uf + IIxif(u,w)\\2) + KWxiVuW2.
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Under condition 2), by Lemma 1, estimate (9)$ holds, and by Lemma 3, estimate (17)
holds, and applying the bound in the Remark preceding this proof we have

tUiUxx\\- < C\\xiD2u\f + K{\\xiVu\\2 + ||x;«||2 + \\Xif(u,w)f)-

Under either condition 3) or condition 4), by Lemma 3, estimate (17) holds, and by
Lemma 4, estimate (11) holds, and we get the bound given for condition 2). Recall that
in each of these bounds the constant C is independent of r, so, for r > C we have, under
each condition

\\4>IUXX\\'2 < K(\\xiuXy\\2 + WxiUyyf + ||XiVw||2 + ||x/w||2 + \\xif(u,w)\\2)-

Summing over I we have

IxdA < K{\\ufH + \\f(u,w)\\2).
1 = 1

Now since YliLi 4>f > l <^)2 = this inequality implies that Hu^H2 < K{\\u\$i +
\\f(u,w) ||2)> from which it follows that

\\D2uf<K(\\u\\2H + \\f{u!w)\\2) (19)

as well.
The same technique yields estimates on the third-order derivatives with even less work.

Under condition 1), by Lemma 2, estimates (9)^ and (9)y hold, and we have

WfaUvyy II + ll^/^xj/yll + || (t>luxxy || ^ K{^X.\D wll ~MIXi^ull + IIXi/(-u,u>) || )•
Under condition 2), by Lemma 1, estimate (9)^ holds, and by Lemma 6, estimate (17)
holds, yielding

HiUyyyf + \\<t>iuxyv\\2 + 11<t>iuxxy\\2 < K (\\xiD2 u\\2 + 11XzVw112 + ||xiu||2 + \\xif(u,w)\\2)-
Under condition 3), by Lemma 2, estimate (9)^ holds, and by Lemma 4, estimate (11)
holds, giving the bound given for condition 1). Under condition 4), by Lemma 4, esti-
mate (11) holds, and by Lemma 6, estimate (17) holds, and we get the bound given for
condition 2). Summing these bounds over I, and applying the definition of ||u||*h and
(19) we have

/Jq

N

$(uyyy + u%y + ulxy)dA < K(\\u\\n + IIf(u,w)\\2)-
i=i

Prom here we may proceed as above to arrive at bounds on the norms of the third
derivatives, and then the basic estimate (18) follows easily, noting that

llull?J = IMIw + lluyyyll + llwa:yyll luicxy|| + H^xzll • D
Remark. The boundary conditions (6) satisfied by w° are equivalent up to affine

transformation to Dirichlet boundary conditions under the physically motivated condi-
tions on the boundary data:

/ hads = 0 for a — 1, 2, and / (h\y — h,2x) ds = 0.
J d£l J dQ.
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Since tu's second derivatives are the lowest order appearing in (7), we may assume that
w° is a biharmonic function satisfying Dirichlet conditions on d£l.

The existence of a unique (2, 2)-weak solution to the homogeneous Dirichlet problem
for Eq. (2), denoted w, for any u € TL follows from the Lax-Milgram lemma. The (2, 2)-
weak solution to this problem will belong to W<4,p)(f2) for any 1 < p < 2 provided that
u is in H, and Q is a rectangle. This follows immediately from Theorem (7.3.2.1) in [11],
since u eTL implies that the inhomogeneous term in Eq. (2), (uxuyy)x, belongs to LP(Q)
for every 1 < p < 2, by the Sobolev embedding theorem.

4. Conclusion. The regularity result just proved, in conjunction with the result cited
in the remark concluding the previous section allow a weak formulation of the boundary
value problem on a rectangle. Define u° as the "H-weak solution to

D[u°}-p[u0,w°} = f

with boundary conditions (3), wl (for I > 0) as the (4, |)-weak solution to

AV = {v!-lu[-l)x

with homogeneous Dirichlet boundary conditions, and ul (for I > 0) as the TL-weak
solution to

D[ul] - [ul,pw° +wl] = f

with boundary conditions (3). Then the existence of a weak solution to the boundary
value problem (l)-(4) is equivalent to the convergence of the sequence of ordered pairs
(ul,wl). For the classical von Karman equations, the convergence of this sequence in

(fi) is demonstrated by formulating the problem as a pseudomonotone operator
on this space [1[. Unfortunately, this method is not applicable in this case, since the weak
formulation requires the regularity demonstrated here. Because of the restrictions on r, p,
and / needed to obtain the result (there are simple examples showing the necessity of
these conditions; see for instance [20], [28]), the operator formulation is not defined on the
entire space H, and so demonstrating that it is pseudomonotone is not straightforward.

5. Appendix.
Proof of Lemma 1. We begin by showing that there are constants:
C\ depending upon the value c, the maximum value of a and its derivatives to order

two, and the maximum values of (p and its derivatives to order two,
C2 depending upon the value c, the maximum values of 0 and its first derivatives,

and the maximum values of a and its derivatives to order two,
C3 depending upon the area of Q, the value c, the maximum values of a and its

derivatives to order two, ]ju>||3,4;n, and the maximum values of <f> and its first
derivatives,

such that
|Bw(<pu(:,<t>u6) + Bw{u, (02u?)4)|

< CiClouct ;2 + ||ipu^W2 + \\i>uvr,\\2 + \\ipVu\\2) + rC2||^Vu||2 (20)(f,,,)

+ C3{\\ip\7u\\l + ]J^u55f + || ipu(v\\2 + ||VVu||2).
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The proof of this inequality consists essentially of integrations by parts to arrive at terms
that can be bounded by the right-hand side of (20) by means of the Schwarz inequality
and the arithmetic-geometric mean inequality. Notice that the normal to dfl has no £
component in the support of <j>. Further, u,uv, and the £ derivatives of these quantities
are all zero on in the support of 0 by the boundary conditions specified in the theorem,
Eq. (3). These facts assure no boundary terms appear in any of the integrations by parts
performed in this proof. By applying integration by parts we arrive at

Bw(u, (<A2u^)^) + Bw(<j)U£, (j>u^)

= J + [4c<^ + 2<t>v<f>£]u,££u£v + [4Acf>2 + 4cr<^r?0£ + <f>2 — 2<7/(</>2)r?]u|7?

vv® )77^€£^7777 (0 2.A (0 )^7777 H~ 2 (-^ ^

+ 2(A<f%us -I- 2a(j>v(j)^ + (<^2cr')^uri)riuirl + 2

+ + |((^),, - a'<t>l - (j'<t><t>vv\ (ul)v
2[a + G -f- A r/ri)]{u^(21)

+ [^V2 + A'(fx/),m + cr'(f>v(j)^ + cr/00j7J](it2)j + i[a(^>2)^ + (</>2)^](u|)^

+ + 2(J<f)vv'f'iv <f)^ri\u^ "I" (^(^Tfr) + <Pr,Wr,V 2(j)£(f)^

)^?(cr ^ )^^?C77 (^" ^

+ [{4>2)vUl + h(T'(f>2ul + ~
+ t([0| + A02 + 2ct^^ - (02),,ct']u|

+ + \{(f)2A')^ui) dA.

We bound representative terms of the integral above. The second term of the integral is
representative of those that are bounded by the C\ term on the right side of (20). It is
bounded by

f [4er02 + 2<j)v<f>i]utfU£ridA < -—^ + J'v^Woo f
Jn c Jn

< C(||V^«||2 + \\lpU^\\2).

The constant C is half the constant in the line above. The C2 term in (20) arises from
the terms containing t in the integral in Eq. (21) in the same way. The C3 term in
(20) bounds all the terms in the integral in Eq. (21) that contain a derivative of w. The
terms including derivatives up to order two of w can be easily bounded as above, since
the Sobolev embedding theorem implies w e Wt3'4' has continuous derivatives at these
orders. Further, the maximum values of these derivatives are bounded by the Sobolev

IQI1/4
inequality ||<7||4 < —L—||Vg|| (see [25] for the constant). A little more care must be
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shown in bounding the terms involving third derivatives of w. For example

/ (4>2u6)r,uvw^dA
Jn

fj2(priu^)2 dA^j + (c/m^)2 dA^j

max{|l4^lloo, ll<A2IU}1/2.    ... Il^ll^2

' Q

<
\ 1/2

(4>uvw^)2 dAj

<
c

< C\\wm\\4(\\lpujl + \\lpuj2 + ll^rjll2)-
All the remaining terms in the integral in Eq. (21) can be bounded in fashions analogous
to those presented here; notice that the bounds derived apply as well to the absolute
value of the integral of the term being bounded. This completes the proof of inequality

(20).
We use this inequality to prove the lemma as follows. By the reasoning leading to Eq.

(8), for u smooth enough to satisfy the conditions of the lemma of the following holds:

(IIMjll + HU(J) x —-—

Bw(u, = / /(„,„,) (</>V)fOL4.Jq
Thus there is a constant C depending on the maximum values of (f> and 4>z so that

\Bw(u,{<p2u^^)\ < C(\\ipf{UiW)\\2 + Hi/mdl2 + II^m^II2)-
Further, by expanding the quadratic form on the left-hand side of (20) we have

Bw{<fmz,<H) = (f>2(Au2vv + u+ 2au^u^

+ r(u| + Au2 + 2au^uv)) dA + C,

where \C\ has the form

L U(i + [4cr4>v - W(4>- )m + 2

4A<p2 - A(<p'2)vv - ^a{4>2)iri + Acr^t: + <j>\- \w{<p2)r,)e, -

2 {{Acfx^rj^U^ (7(f)cf)^U^)^ + (<T0(^r^'U£ + (fxp^U^)

uiv

+ <7(<M^)„ + ^(^ + ^cr(02)i;
2VT<" 2

+ lA<t>^ri + 2a(t>r1ri<fizr) + (t>\v\u\ +

(u2

T Ml - 7yM4>2)vV

-^(02)?r; + 2(T<pr,<t>Z + 4>t~ \(v((t>2)v)z ~

+ c(w, <j)U£,

u| dA
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In the same fashion used to obtain (20), C can be bounded by an expression of the form
of the right-hand side of that inequality. The differences are: the constants C\ and C2
depend upon <fi and its derivatives up to order two and a and its first derivative, while C3
depends on <f> and a and their first derivatives, and the ||^Vu||4 term may be omitted.
Since the integral on the right in Eq. (22) is qft times a weak formulation of we
can change variables to obtain

H<M«xJ2 + W^yyf + tW^U^W2 < BW{4>Ui,4>Ui) + \c\
< + Bw{u,{(j)2uz)z)\

+ |Bw(u, (02uj)j)| + \C\

<|D| + C(|^/(^)||2 + ||^||2 + II^«II2)>

where \D\ is the sum of the right-hand side of inequality (20)and the bound just
derived for C. Thus, by applying the Sobolev inequality to the quantity i/jVu in \V\ we
can show

\D\ < C(||x««||3 + IIX^II2 + llx^rjll2) + K\\XVu\\2.

Substituting this bound into the previous inequality gives the bound of (9); so the proof
is complete.

Proof of Lemma 3. By reasoning similar to that used in Lemma 1, since

Bw(<fm, 4>u) - Bw(u, cjftu) = / uurtri(-2A4ft - 2a<pv<p^)
Jn

+ uu^-Zcnp2 - 2<^f) + + 2^^)

+ w2(4^</>2 + 4 a<j>v<j>i + 4>\) + u\4>2 + uu^atpr,^ + 24>v4>(v) ^3)
H- ILlL-q (4^4.0^0^^ + 2<70y?r?0£ -f- AG(f)<q(f)£'q + 20^0^^)

+ u2(A(p2v + <f>^v + 2 (7(j)7777^77 "I" T(^2 + 2 + <t>2)

+ Wm4>l - 2wiT(prl<t>^ + W^(j>2 + a'(j)2Wv) dA,

we can show that

|Bw((/>u,(f>u) - Bw(u, 4>2u)\ < Ci||xVu||2 + K^WxuW2, (24)

where C\ and K\ depend upon the value c, the area of $7, the norm ||w||3,4;n, the
maximum values of a and its first derivative, and the maximum values of <j) and its
derivatives to order two. As usual, C\ is independent of and K\ is dependent upon the
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parameter r. Similarly, the identity

Bw(<jm, 4>u) - / 4>2{Au'2nr] + 2au^vulvl + uL + r(«| + ,4w2 + 2au^uv)) dA
Jn

= / (4(7^ - ct(^2)w + 24>v4>£)u£Uri + (02 - \{4>2)rrn)
Jn
+ (4A4>2 — A{4>2)r)ri + 4a4>r)4>s, + 4>\ — \(&{4>2)t])£ — ̂ cr(4)2)iri — |(02)^) u2

+ (|<J(^)»7 + |(^)?) (y2)? + (M4%)v + <T(^^)»7 + + |(T(^)«) (u2)t7

— 2([j40??t; + + [(ct^jj + </)j^)0u] + (A4>JjTj + 1a4)rin4>{,ri + 4)^n)u

+ t (-A4>4>m + 2<t4>v4>£ - i(cr(02),))4 - ^cr(02)^7? - A4>4>i()u2 dA + c(w, 4>u, 4>u)

leads to the assertion

<b2(Aui„ + 2aue„ur,„ + uL + r(u2 + Ail2 + 2autu„)) dA
(25)

Bw(4>u, 4>u) - / 4>2{Au2 + 2au^r,uvv + u2 + r(w? + Au2 + 2au^uv)) dA
Jn

<C2\\XVu\\2 + K2\\Xu\\2,

where C2 and K2 have the same dependencies as C\ and Ki, except that they depend
upon the derivatives of 4> UP to order three. Using the coercivity of the integral in (25)
mentioned in Sec. 3 (in the paragraph following the statement of the lemma), we arrive
at the inequality (17), and the lemma is proved. □
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