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Boundary value problems for evolution inclusions

by NiIkoLAos S. PAPAGEORGIOU (Davis, California, U.S.A.)

Abstract. This paper examines boundary value problems for evolution inclusions, with
nonlinear boundary conditions. Two existence theorems are proved. One for convex multivalued
perturbations and the other for nonconvex ones. Finally an example [rom partial differential
equations is presented.

1. Introduction. In this paper we study boundary value problems for
evolution inclusions. Our work was motivated by the papers of Anichini [1],
Kartsatos [6] and Zecca-Zezza [13]. Anichini [1], considered quasilinear
differential equations in R", with nonlinear boundary conditions and using
a fixed point theorem due to Eilenberg-Montgomery, established the existence
of solutions. Kartsatos [6] too considers boundary value problems for
R"-valued differential equations, but over an unbounded time interval. Finally
Zecca-Zezza [13] extend the work of Kartsatos to differential equations in
Banach spaces.

In this note, the differential inclusion is defined on a compact time interval
and this allows us to weaken considerably the hypotheses on the orientor field
F(t, x). Furthermore, contrary to Zecca-Zezza [13], here the linear operator is
in general unbounded, covering this way the very important case of partial
differential operators. Also we establish the existence of solutions for problems
with nonconvex multivalued perturbations, a case which is not addressed in the
paper of Zecca—Zezza [13]. Finally we present an application to partial
differential equations.

2. Preliminaries. Let (22, X) be a measurable space and X a separable
Banach space. Throughout this paper we will be using the following notations:

P;(X) = {A € X: nonempty, closed, (convex)}
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252 N. S. Papagcorgiou

Pioko(X) = {A = X: nonempty, (weakly-)compact, (convex)].

A multifunction F: Q- P(X) 1s said to be measurable if, for all ze X,
w—d(z, F(w)) = inf{z—x|: xe F(w)] is measurable. Other equivalent de-
finitions of measurability of multifunctions can be found in Wagner [12].
By S} we denote the set of I'(X)-selectors of F(-), ie. S}={fel'(X):
f(w)e F(w) p-ae.}. This set may be empty. It is nonempty if and only if
w—inf{||x|: xeF(w)} belongs in L'.. Using S} we can define a sct valued
integral for F(-), by setting [ F = {[ f: feS}}.
o] Q

Next let ¥, Z be Hausdorff topological spaces. Let G: Y—2%\{@} be
a multifunction. We say that G(-) is upper semicontinuous (u.s.c.) (resp. lower
semicontinuous (1.s.c.)) if for all U = Z open F*(U) = {ye Y: F(y) < U} is open
in Y(resp. F-(U)={yeY: F(3)n U # @} is open in Y).

3. Existence result: convex case. Let T= [0, b] and X be a separable
Banach space. The multivalued boundary value problem under consideration
is the following:

(*) x(eA()x()+ F(t, x(1)), Lx= Mx.

We will assume that the family of linear operators {A4(1): te T} generates
a strongly continuous evolution operator S(¢, s), 0 < s <t < b. So by a solu-
tion of (), we will understand a mild solution. Thus we say that x(-)e C(T, X)
solves (%) 1If

1

x(£) = S(t, 0)x(0)+ [ S(t, 5) f(s)ds  for some fe€ Sk .

0
and
Lx= Mx.

The full set of hypotheses on the data of problem (x) is the following:

H(A). The family {A(z): te[0, b]} generates a strongly continuous evolu-
tion operator S: 4 = {0 < s <t < b} - £(X), which is compact for t—s > 0.

H(F). F: Tx X - P,,.(X) 1s a multifunction s.t.

(1) (t, x)—> F(t, x) is measurable,

(2) x—F(t,x) is usc. from X into X,
1 b

(3) lim — | sup |F(¢, x)dt = 0.

n—+x "0 |[|x|| €n
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H(L). L: C(T, X)— X is continuous, linear. Also if V2 C(T, X)—-C(T, X)
is defined by (Vx)(-) = x(-)—S(-, 0) x(0), then there exists K: X — kerV con-
t
tinuous, linear s.t. (I— Ly K)(Mx—L[S(t, s) f(s)ds) = O for all fe Sk ., and
0
all x()e C(T, X), with Ly = Lli.v.

H(M). M: C(T, X)— X is a generally nonlinear, completely continuous
operator s.t.

M|
lim — =
WXl = ox ".‘C||

Having these hypotheses, we can now state our first existence result
concerning ().

THEOREM 1. If hypotheses H(A), H(F), H(L) and H(M) hold, then (x) admits
a mild solution.

Proof. For some x,ekerL,, consider the multifunction R: C(T, X)
—20TXN I3 defined by:

R(x) = [ye C(T, X): y(t) = x,(t)+ KMx

—KL{S(t, ) f(s)ds+ S, s) f(s)ds, t€T, €Sk, -
0 0

Because of hypothesis H(L), it is easy to check that a fixed point of R(-) 1s
the desired mild solution of (x).

From the definition of R(-) and the convexity of the values of F(-,-) (and
s0 of Sk ), We see that R(-) is convex valued. We claim that the values of
R(-) are also closed. So let y,eR(x), y,—y in C(T. X). We have:

Yalt) = Xo()+ KMx—KL [ S(t, s) f,(s)ds+ [ S(t. s) f(s)ds
0 0

with f, €Sk« But from Proposition 3.1 of [9], we know that Sf. ., is
weakly compact in I!(X) and by the Eberlein-Shmul’yan theorem is weakly
sequentially compact. Thus by passing to a subsequence if necessary, we may
assume that f, 5fe Sk .y in L'(X). Then exploiting the fact that a continuous,
linear operator is also weakly continuous and that

[S(t. 5) £(5)ds 5 [S(t. 5)/(s)ds.
0 0

we get that

Pul0) 5 X () + KMx— KL [ S(t, 5) f(s)ds+ [ S(t, 5) f(s)ds, teT
0 0
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and fe Sk «y- So
t t
y(1) = xo(t)+ KMx—KL [ S(t, 5) f(s)ds+ [ S(t, 5) f(s)ds = yeR(x).
0 0

Hence we conclude that R(x)e P, (C(T, X)).

Now we will show that R(-) has closed graph (GrR = {(x, y)e C(T, X) x
x C(T, X): yeR(x)} = graph of R(’)). To this end let (x,, y,)eGrR,
(x5 ¥o)—=(x, y) in C(T, X)x C(T, X). Then we have:

y,(t) = xo(t)+KMx,,—KLiS(t, s)f,,(s)ds+ij(t, s) f,(s)ds,
0 0

with f, € Sk x.cy- Let G(t) = conv { ] F(t, x,(2)). Since by hypothesis H(F)(2),
n21

F(t,-)1s us.c. from X into X , it maps compact sets in X into w-compact sets.

Therefore | ) F(t, x,(t)) is w-compact and by the Krein-Shmul’yan theorem

nz=1

we have that conv | ) F(t, x,(t)) is w-compact. So for all te T, G(1)€ P, (X).
nz1

Finally from hypothesis H(F)(3), we see that G(-) is integrably bounded (i.c.

t—|G(1)| = sup{liz|l: ze G(t)} e L';). Hence once again Proposition 3.1 of [9]

tells us that S} is w-compact in I!(X). So by passing to a subsequence if

necessary, we may assume that f, 5 fin [!(X). From Theorem 3.1 of [10], we

have

f()econvw—limf, (1) S convw—LimF(t, x,(t) < F(t, x(t))  ae.

the last inclusion following from hypothesis H(F)(2). So fe Sk x)- Also note
that

! t
Xo(t)+ KMx,— KL [S(t, s) f,(s)ds+ | S(z, s) £,(s)ds
0 0
converges weakly to
xo(t)+ KMx—KL | S(, s)f(s)ds+fS(t, s) f(s)ds = y(t) = yeR(x)
0o 0
= GrR is closed.
Next, we claim that there exists r > 0 s.t. for

Ixll, < r==|R(x)] = sup{liyll..: yeR(x)} <r.

Suppose not. Then, we can find {x,},>, < C(T, X) st |x,ll,<n and
|R(x,)| > n. So we have 1 <|R(x,)|/n. But note that for y,e R(x,) we have:

12Ol < 1Xo]l o + I KMx, || +||KL [ S(t, 5) fu(s)ds]| +]|f S(z, 5) f(s)ds]|
0 0

t !
< Ixoll o + IKI- I Mx,lt+ IKLI N §|F(s, x,(s))|ds+ N [| F(s, x,(s))|ds,
0 0
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where |[S(t, s)]| < N. So we have:

R(:..)I < le:ll +IK] | M “+N(||KL||+1)]|F(S’ x"(s))lds

[Mx,|
x|

Using hypotheses H(F) (3) and H(M), as well as the above inequality, we
get that 1 < lim R(x,)/n = 0, a contradiction. So indeed R: B, — P,.(B,), where
B, = {xeC(T, X): |x|l, <7}.

Now we claim that R(B,) is compact in C(T, X). First note that for every
teT, we have

|xo||

<S——+I|Kl=——

+N(KL| kl)jw

R(B,)(t) = xo(t)+KM(B,)—KLi s, s)P(s)ds+}S(t, 5) P(s)ds,

where P(s) = {yeX: |ly] <sup (IF(S x)|: [Ix] €r)=u(s)}. But recall that
M () is completely continuous. So M(B,) is compact = KM (B,) is compact.
Also since by hypothesis H(A), S(t, s) is compact for t—s > 0, we have that
S(t, s)P(s)e P,.(X) and clearly s— S(t, s) P(s) is measurable and integrably
bounded. Hence using the Ridstrom embedding theorem (see Hiai-Umegaki

t

[5], Theorem 4.5), we have that { S(z, s) P(s)ds€ Py (X) (note that in the above
(V]

mentioned result of Hiai-Umegaki [5], the RNP-hypothesis on X is super-

14
fluous, since by the corollary to Proposition 3.1 of [9], [ S(z, s) P(s)ds is closed).
0

SoforallteT, R(B,)(t)e P, (X). Now,lett',teT, t <t.For yeR(B,), we have:
Iy(€)—y@I < [IS(¢', 0)xo—S(z, 0) x|

+[KLI ||f S(t', ) f(s)ds—§ S(t, s) f(s)ds|| +||f S(', s) f(s)ds— [ S(t, s) f (s)ds].
0 0 0 0

Since S(t, s) is a strongly continuous evolution operator given ¢ > 0, there
exists d,(¢) >0 s.t. if |t'—t] <4,

IS, 0)xo—S(¢, 0)x,l < /3.
Also note that:

l”S(t s)f(s)ds—j'S(t s)f(s)ds“ “I (S, ) f(s)—S(t, 9) f (s)ds“

+|| j' (S(t’, s)—S(, s))f(s)ds+§S(t’, s) f (s)ds|

3 — Annales Polonici Mathematici L.3
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Because of H(A), from Proposition 2.1 of [11], we have that t— S§(t, s) is
continuous in the uniform operator topology, uniformly in s, for t —s bounded
away from 0. So by choosing J,(¢) > 0 appropriately small, we will have:

t— 82 t
| § (S, 9)—S(t, s)) f(s)ds]||+|| '[5 (S(, s)—S(t, 5)) f (s)ds]|
(1] 1—6>
+|f S(¢, 5) f(s)ds]|
< !-j'dz IS(t', s)—S(t, )||lu,(s5)ds+ 2N jf ,u,(s)ds+N}u,(s)ds < s/3a.
0 t—d2 t

where a = max(1, |KL||). Thus for é = min(d,, 4,), we have for |t—t| < o

ly(t)—y(@)| < ¢ for all y(-)eR(B,) = R(B,) is equicontinuous.

Invoking the Arzela—Ascoli theorem, we deduce that R(B,) is compact in
C(T, X). Since R(*) has closed graph and compact range when restricted to B,,
from Theorem 7.1.16 of Klein—-Thompson [7] R(*} is u.s.c. and so we can apply
the Kakutani—-Ky Fan fixed point theorem to get x€ B, s.t. x€ R(x). As we
already indicated, x(-) is a mild solution of (*). o

Remark. If L, has a continuous, linear inverse, then H(L) is satisfied.

4. Existence result: nonconvex case. We also have an existence result for the
case where the multivalued perturbation F(¢, x) is nonconvex valued. In this
case the hypothesis about F(- , -) takes the following form:

H(F). F: TxX - P (X) is a multifunction s.t.

(1 (t, x)— F(t, x) is measurable,

(2) x—F(t,x) 1s lsc. from X into X,
1 b

A3) lim —{ sup |F(t, x)ldt = 0.

n»xc Mo x|l €n

TueoreM 2. If hypotheses H(A), H(F), H(L)H(M) hold with M linear, then
(*) admits a mild solution.

Prool. We have already seen in the proof of Theorem 1, that R(-) maps
the ball B, into itself and furthermore W= convR(B,) is compact in C(T, X).
Let H: W— P,(L'(X)) be the multifunction defined by H(x) = Sk .. Let
x,—x in C(T, X). Then because of hypotheses H(F)' (1) and (3) we can apply
Theorem 4.1 of [10] and get that H(x)< s-lim H(x,)=H(') is ls.c. (see
Delahaye-Denel [3]). Apply Fryszkowski’s selection theorem (4], to get
h: W—I!(X) continuous s.t. h(x)e H(x) for all xe W. Then consider the
following problem:

(C18%) x(t)y= AO)x(®)+h(y)(t), Lx= Mx.
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Let Q: W— P, (W) be the multifunction defined by Q(y) = {x(*): x is
a mild solution of (+)(y)}. It has nonempty values by-Theorem 1 and since M is
linear the values of Q are also convex.

Let (y,, x,)€Gr@.s.t. (y,, x,)—=(y, x) in C(T, X)x C(T, X). We have:

t
x,(t) = S(t, 0)x,(0)+ § S(¢, ) h(y,)(s)ds, Lx,= Mx,
o
Passing to the limit as n— oo and exploiting the continuity of h(:), we get

x(t) = S(¢, 0)x(0)+jS(t, ;)h(y)(s)ds, Lx = Mx,
0

= x€Q(y),
= GrQ is closed in C(T, X)x C(T, X) and Q.

Since W is compact in C(7, X), we conclude that Q(-) is u.s.c. Apply the
Kakutani-Ky Fan fixed point theorem to get y e @(y). Clearly y(-) solves (). o

5. Application. We consider the following multivalued boundary value
problem.

ou(t, y) d

Ey ey a—p(y) u(t, y)+£(t y, u(t,y)) on TxG,
k=19

(*%) ut,y)=0, (¢, y)eTx0G,

u(0, y)—u(b, y) = [ { g(t, y, z, u(t, z))drdz.
GO

Here G = R" is an open, bounded domain with smooth boundary JG. Also
T=[0, b]. We assume that g: TxGxGx R—R is a function satisfying the
Carathéodory conditions, i.e. z—g(t, y, z, r) is measurable and r—g(t, y, z, 1)
is continuous. Moreover, for each k > 0 there exist measurable functions

B: TxGxG—R, ~and 7y: TxGxGxR-R, st,

. b
lg(t, v, 2, ) < Blt, y,2) for i<k and [ (B¢, y, 2)dtdz < M,,
Go

and
lg(t, y, z,r)—g@t, ¥y, z, )l < plt, y,y,2z) for || <k

lim | jy,,(t, y, ¥, z)dtdz=0 uniformly in y'.

y=*y' GO ’
Finally, there exist p> 1 and B <2 s.t., |g(t, y, z, 1) < p(1 +|x}%).
Also assume that f: Tx G x R— P (R) is a muitifunction s.t.
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(@) (¢, y)—=f(t, y, r) is measurable;
(b) r—f (¢, y, r) is d-continuous (i.e., for every zeR, r—d(z, f(t, y, 1)) is
continuous),

© If(t, y, ) < k@A +]r%, 0 <a< 1.

Set X = I?(G), D(A) = W#(G) and on D(A) consider the operator

n

0 0
Au= ) TP(y)a—u(y)-

=109 Y

So A(-) is densely defined and it is well known (see for example Martin
[8]), that it generates a compact semigroup S(t), te T.

Also let F: Tx X — P, (X) be defined by F(t, u) = S}q.uy- Clearly
because of the reflexivity of X = I?(G), F(t, u)e P,,.(X). Furthermore note
that for all veX we have d(v, F(t, w) = {d(v(z), f(t, z, u(z)))dz. From the

F

hypotheses on f(-, -, *), {t, u)—>d(v, F(t, u)) is measurable in z, continuous in u,
hence jointly measurable and so (t, u)— F(t, u) is measurable. Also from
Theorem 4.2 of [10], we have that F(t, ) is u.s.c. from X into X . Next let

b
M: C(T, X)— X be defined by (Mu)(y) = { [ g(t, y, 2, u(t)(2))dtdz. From Pro-
GO

position 4.2, p. 175 of Martin [8], we have that M(-) is completely continuous.
Also using the growth condition on g, we have

lim | Mul| L2G) _

lull =0 lulleer,x

0.

Let L: C(T, X)— X be defined by Lu = u(0, -)—u(b, ). Clearly this is
continuous, linear. Furthermore the only solution of & = Au, u(0) = u(b), 1s
u=0. Thus if Lx= L(S(")x), L: X->X is continuous, linear and
Lx = (Id—S(b))x = 0 has zero as its only solution. So ! exists (Fredholm
alternative)= H(L) is satisfied. So if we rewrite (+*) as the following evolution
equation:

(*%) u(t)e Au(t)+ F(t, u(t)), Lu= Mu,

we see that all hypotheses of Theorem 1 are satisfied and so we conclude the
existence of a solution belonging in C(T, I*(G)).

It is clear, that the general existence results proved here, can give us
periodic solutions for problems of evolution inclusions, extending this way the
work of Aubin—Cellina [2].
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