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Abstract. We study boundary value problems for first-order elliptic differ-
ential operators on manifolds with compact boundary. The adapted bound-

ary operator need not be selfadjoint and the boundary condition need not be
pseudo-local.

We show the equivalence of various characterisations of elliptic boundary

conditions and demonstrate how the boundary conditions traditionally consid-
ered in the literature fit in our framework. The regularity of the solutions up to

the boundary is proven. We show that imposing elliptic boundary conditions

yields a Fredholm operator if the manifold is compact. We provide examples
which are conveniently treated by our methods.
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1. Introduction

First-order elliptic operators are abundant in the context of physics and geometry.
In particular, index theory is a topic of significance where first-order elliptic dif-
ferential operators play a key role. While these questions were firstly focused on
closed manifolds, it was apparent that the case of manifolds with boundary is useful,
particularly for applications. Traditionally, when dealing with second-order ellip-
tic operators, one imposes local boundary conditions which are conditions on the
function and its derivatives at all points of the boundary. Dirichlet- and Neumann
boundary conditions are prominent examples. Local elliptic boundary conditions
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can also be defined for operators of arbitrary order and are known as Lopatinsky-
Schapiro conditions. For first-order operators however they cannot always be im-
posed; depending on the operator and the underlying manifold with boundary there
can be topological obstructions against their existence.

Atiyah, Patodi, and Singer overcame this problem in their pioneering work [1–4]
by introducing non-local boundary conditions. These boundary conditions were
phrased in terms of the spectral decomposition of an operator on the boundary.
Since the work of Atiyah-Patodi-Singer, a plethora of results have been obtained
in different settings under various assumptions. Much of this work has focused on
the so-called pseudo-local case, where the boundary condition is obtained as the
range of a pseudodifferential projector on the boundary. To name a few relevant
references, see [11, 14, 15, 17, 23, 33, 34, 36, 37] by Ballmann, Booß-Bavnbek, Boutet
de Monvel, Brüning, Carron, Grubb, Lesch, Melrose, Rempel, Schulze, and Zhu.
There has also been effort to understand such questions in non-smooth settings as
well as for general elliptic operators, for instance [29,30] by Krainer and Mendoza.

In [10] by Bär and Ballmann, a framework is constructed to study boundary value
problems for first-order elliptic operators which induce a selfadjoint operator on the
boundary. Although this is a restriction, they are able to account for a large class of
operators, including all Dirac type operators. A tremendous boon of their analysis
is that they are able to capture all possible boundary conditions. In particular, they
are able to go beyond those that are pseudo-local. Such conditions are significant
and arise naturally. For instance, the so-called matching boundary conditions are
not pseudo-local but are extremely useful to study relative index theory.

In the present paper, we show how to study boundary value problems for a general
first-order elliptic differential operator, i.e. we drop the assumption that the adapted
boundary operator be selfadjoint. This is necessary for the study of more exotic,
but geometrically natural operators such at the Rarita-Schwinger operator on 3/2-
spinors.

More generally, we address aspects of the research program sketched out in [13]
by Booß-Bavnbek and Lesch to close the gap in the understanding of boundary
value problems between the geometric Dirac type operator situation and general
first-order elliptic case. We define the boundary trace map on the maximal domain
of the operator and understand its topology given by the spectral subspaces of
the adapted operator on the boundary. The minimal domain is the kernel of the
boundary trace map and hence, we are able to understand the totality of possible
boundary conditions. In particular, we introduce a very general notion of an elliptic
boundary condition through a host of different characterisations. We also include
an important characterisation of ellipticity of a boundary condition in the language
of Fredholm pairs, as initially demonstrated by [16] by Braverman and Shi in the
context of selfadjoint boundary operators. Under a coercivity assumption on the
operator at infinity, we demonstrate that elliptic boundary conditions are Fredholm.
Moreover, we also understand the boundary regularity of solutions.

We emphasise that although we are guided by [10], the methods and techniques
used here are vastly different. The analysis in [10] is carried out in the spirit of the
Fourier series through concentrating the analysis to each eigenspace of the boundary
adapted operator and reconstructing the global picture through orthogonality. In
our more general case, the adapted operators may not be realised as a selfadjoint
operator. There, the eigenspaces alone may not sum to the total space, and to make
matters worse, there may be non-orthogonality of the generalised eigenspaces.

Therefore, the basis of our approach is to understand the adapted operator on the
boundary. We show that up to the addition of a real constant, such an operator
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is an invertible bisectorial operator. This observation is of paramount importance
and is stronger than the so-called parametric ellipticity along the imaginary axis
that was observed in [13]. Using the work of Grubb in [24], we obtain spectral
projectors to the generalised eigenspaces of the boundary operator, as pseudo-
differential operators of order zero. This allows us to build the modulus operator
as an invertible sectorial operator.

The engine of our work is the H∞-functional calculus and its quadratic estimates
characterisation, pioneered by McIntosh in [32]. We show that our model operator
enjoys this functional calculus. Then, this allows us to access the so-called maxi-
mal regularity for sectorial operators, which is obtained through the H∞-functional
calculus and underpins much of the analysis. These methods are used in a differ-
ent context of non-smooth coefficient first-order factorisations of divergence form
equations, see e.g. [5–7,9] by Auscher, Axelsson (Rosén), Hofmann, and McIntosh.

The structure of the paper is as follows. In Section 2, we describe the key assump-
tions as well as the results, so that the results may be accessed with the minimal
amount of technicalities. Section 3 illustrates examples of some adapted operators
to the boundary which exhibits phenomena that cannot be captured by the frame-
work in [10]. In particular, this section shows through explicit calculation that the
adapted boundary operator for the Rarita-Schwinger operator cannot be chosen in
such a way that it becomes selfadjoint. In Section 4, we study the operator the-
ory, particularly the spectral theory, of the boundary adapted operator. There, we
demonstrate that the boundary adapted operator is, up to the addition of a real
perturbation, an invertible bisectorial operator. This simple but important obser-
vation allows us in Section 5 to show the existence of the H∞-functional calculus
for the modulus operator. Moreover, we also demonstrate the connections between
fractional powers of the modulus to fractional Sobolev scales. Then, in Section 6,
we consider the reduction to the cylinder, and study the properties of the so-called
model operator. In this section, we also demonstrate how maximal regularity is
used in order to obtain higher regularity results on the cylinder. Following this,
in Section 7, we return to the general manifold situation and study the maximal
domain of the operator. We conclude the paper with Section 8 where we consider
boundary value problems. An appendix A is included that captures some of the
abstract tools needed in various parts of the paper.

Acknowledgements. We thank Andreas Rosén for useful discussions. Penelope
Gehring also deserves acknowledgement for carefully reading through the manu-
script and providing feedback. The second author was supported by SPP2026 from
the German Research Foundation (DFG).

2. Setup and results

In this section, we list background assumptions, necessary definitions, as well as
the results which we obtain in this paper. The proofs of many of these results are
technical in nature and we defer these to later points of the paper. Here, we present
the necessary details to enable a working knowledge of the framework and results
so that it can be readily applied.

2.1. Notation. Let B be a Banach space and T : dom(T ) ⊂ B → B an unbounded
operator. The objects dom(T ), ran(T ), ker(T ), spec(T ), and res(T ) denote the
domain, range, null space, spectrum and resolvent set of T , respectively. The
operator T is said to be invertible if it is injective, ran(T ) is dense, and T−1 is
bounded. In this case, we often write T−1 to denote the unique bounded extension
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of T−1 on ran(T ) to all of B. The graph norm of T is ‖ · ‖2T := ‖ · ‖2 + ‖T · ‖2 on
dom(T ).

For M a smooth manifold with smooth boundary ∂M , by K b M we mean that
K ⊂M , the interior K̊ 6= ∅ and that K is compact. On (E, hE)→M a Hermitian
vector bundle, the support of a section u will denoted by sptu. We equip M
with a smooth measure µ. For p ∈ [1,∞), we denote measurable sections u such
that

´
M
|u|p

hE
dµ < ∞ by Lp(M ;E). This is a Banach space with norm ‖u‖Lp =

(
´
M
|u|p

hE
dµ)1/p. Since hE is Hermitian, the norm in the case of p = 2 polarises

and hence L2(M ;E) is a Hilbert space with inner product

〈u, v〉 =

ˆ
M

hE(u, v) dµ.

The space L∞(M ;E) is defined similarly, namely as the space consisting of mea-
surable sections u, each of which for there exists a C > 0 with |u(x)|hE(x) ≤ C for
almost every x ∈M . The L∞-norm is then the infimum over such constants C.

The following table lists the notations for significant function spaces we will require
in this paper:

Ck(M ;E) k-times continuously differentiable sections

Ckc (M ;E) sections u ∈ Ck(M ;E) such that sptu compact in M

Ckcc(M ;E) sections u ∈ Ckc (M ;E) such that sptu ⊂M \ ∂M
Hk(K;E) L2-Sobolev space of order k on the compact subset K ⊂M
Hk

loc(M ;E) u ∈ L2(M ;E) s. t. u|
K
∈ Hk(K;E) for every compact K ⊂M

We emphasise that for Ckc (M ;E) as well as Hk
loc(M ;E), the support of sections

may touch the boundary ∂M .

For a first-order differential operator D : C∞(M ;E) → C∞(M ;F ), where
(F, hF ) → M is another Hermitian bundle, we denote the principal symbol by
σD(x, ξ). In our convention, this symbol is given by the expression [D, f ](x) where
df(x) = ξ, [·, ·] is the commutator, and f acts by multiplication.

There exists a formal adjoint D† of D on the domains C∞cc (M ;F ) and C∞cc (M ;E),
respectively. Denoting these operators Dcc and D†cc, we can obtain the maximal
operators as:

Dmax = (D†cc)
∗ and D†max = (Dcc)

∗,

where ∗ denotes the adjoint of an unbounded operator in the Hilbert space L2(M ;E)
or L2(M ;F ), respectively. The operator D is said to be complete if the subspace of
compactly supported sections in dom(Dmax) is dense in dom(Dmax) in the graph
norm of D in L2(M ;E).

2.2. The framework and results. The following are the background assumptions
we use throughout this article. These are to be assumed throughout the paper unless
specified otherwise.
(S1) M is a smooth manifold with smooth compact boundary Σ = ∂M ;

(S2) ~T is a smooth interior vectorfield along ∂M ;
(S3) µ is a smooth volume measure on M and ν is the smooth volume measure on

Σ, induced by µ and ~T ;
(S4) (E, hE), (F, hF )→M are Hermitian vector bundles over M ;
(S5) D is a first-order elliptic differential operator from E to F ;
(S6) D and D† are complete.
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The interior co-vectorfield to ~T is given by τ . This is the 1-form that satisfies
τ(x)(T (x)) = 1 and τ(x)|

TxΣ
= 0.

Definition 2.1 (Adapted boundary operator). An operator A is said to be an
adapted boundary operator for D if its principal symbols is given by

σA(x, ξ) = σD(x, τ(x))−1 ◦ σD(x, ξ)

for all x ∈ ∂M and ξ ∈ T ∗x∂M . By Ã, we denote an adapted boundary operator
for D† which satisfies the definition with D replaced by D†.

Such operators always exist and are elliptic differential operators of order 1. They
are unique up to an operator of order zero. In what is to follow, we will always fix
such an operator (unless specified otherwise).

Definition 2.2 (Admissible spectral cut). If r ∈ R is a number such that the
vertical line lr = {ζ ∈ C : Re ζ = r} does not intersect the spectrum of A, we say
that r is an admissible cut.

Any adapted operator A, being an elliptic operator on a compact manifold without
boundary, has discrete spectrum. Hence all real numbers but a countable set of
exceptions are admissible spectral cuts. Given such a cut r, we define the operator
Ar := A− r which is then invertible.

We are able to obtain spectral projectors

χ±(Ar) : L2(Σ;E)→ L2(Σ;E)

to the spectral subspaces corresponding to eigenvalues with positive and negative
real parts respectively. These are pseudo-differential operators of order zero and
therefore we obtain

Hs
±(Σ;E) = χ±(Ar)H

s(Σ;E)

as closed subspaces of the Sobolev spaces Hs(Σ;E) for all s ∈ R. Note that these
projectors are, in general, non-orthogonal.

The fundamental space for the analysis of boundary value problems is the following
so-called check space corresponding to A

Ȟ(A) := H
1
2
−(Ar)⊕H

− 1
2

+ (Ar),

with norm

‖u‖2
Ȟ(A)

= ‖χ−(Ar)u‖2
H

1
2

+ ‖χ+(Ar)u‖2
H−

1
2
.

We write the left hand side of these definitions independent of the cut parameter r
since the subspace Ȟ(A) is independent of the cut parameter r and any two norms
corresponding to two admissible spectral cuts are comparable. In practice, it is
often useful to choose a cut that is convenient to the problem at hand.

We set Ĥ(A) := Ȟ(−A) and define σ0 : C∞(Σ;E) → C∞(Σ;F ) by σ0(x) :=
σD(x, τ(x)). The homomorphism field (σ−1

0 )∗ induces an isomorphism between

Ĥ(A∗) and Ȟ(Ã) and β(u, v) := −〈σ0u, v〉L2(Σ;F ) for u ∈ C∞c (Σ;E) and v ∈
C∞c (Σ;F ) extends to a perfect pairing between Ȟ(A) and Ȟ(Ã). For convenience,
we will denote this extension simply as −〈σ0u, v〉.

Theorem 2.3. The following hold:
(i) The space C∞c (M ;E) is dense in dom(Dmax) with respect to the corresponding

graph norm;
(ii) The trace maps C∞c (M ;E) → C∞(Σ;E) given by u 7→ u|

Σ
extend uniquely

to surjective bounded linear maps dom(Dmax)→ Ȟ(A);
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(iii) The spaces

dom(Dmax) ∩H1
loc(M ;E) =

{
u ∈ dom(Dmax) : u|

Σ
∈ H

1
2 (Σ;E)

}
,

(1)

(iv) For all u ∈ dom(Dmax) and v ∈ dom((D†)max),

〈Dmaxu, v〉L2(M ;F ) −
〈
u, (D†)maxv

〉
L2(M ;E)

= −
〈
σ0u|Σ, v|Σ

〉
. (2)

The corresponding statements hold for D† on replacing E by F .

Higher elliptic regularity is then described by the following theorem:

Theorem 2.4. The following holds:

dom(Dmax) ∩Hk+1
loc (M ;E)

=
{
u ∈ dom(Dmax) : Du ∈ Hk

loc(M ;F ) and χ+(Ar)(u|Σ) ∈ Hk+ 1
2 (Σ;E)

}
.

As a consequence of Theorem 2.3 (ii), the following is a notion of boundary condi-
tion.

Definition 2.5 (Boundary condition and the associated operator). A boundary
condition for D is a closed linear subspace B ⊂ Ȟ(A). The domains of the operators
are

dom(DB,max) =
{
u ∈ dom(Dmax) : u|

Σ
∈ B

}
,

dom(DB) =
{
u ∈ dom(Dmax) ∩H1

loc(Σ;E) : u|Σ ∈ B
}
,

and similarly for the formal adjoint D† with A replaced by Ã.

For any boundary condition DB , the operator DB is a closed map between Dcc and
Dmax. Given any closed extension Dc of Dcc, there exists a boundary condition B,
given by B =

{
u|

Σ
: u ∈ dom(Dc)

}
, so that Dc = DB,max. Moreover, a boundary

condition B satisfies B ⊂ H
1
2 (Σ;E) if and only if DB = DB,max. See Proposition 8.1

for an elaborate description of these statements as well as their proofs.

Given a boundary condition B, the associated adjoint boundary condition is denoted
by B∗ for the operator D∗B,max. This space is given by:

B∗ :=
{
v ∈ Ȟ(Ã) : 〈σ0u, v〉 = 0 ∀u ∈ B

}
,

and this is a closed subspace of Ȟ(Ã). As aforementioned, the symbol σ∗0 : Ȟ(Ã)→
Ĥ(A∗) is an isomorphism and we have that σ∗0B

∗ ⊂ Ĥ(A∗) is closed. In applications,
it is easier to work with this latter space so as to only have to consider the operator
A rather than both A and Ã simultaneously.

The following decomposition of a boundary condition is useful in characterising
elliptic boundary conditions.

Definition 2.6 (Elliptically decomposed boundary condition). Let B ⊂ H
1
2 (Σ;E)

be a boundary condition. Let r ∈ R be an admissible spectral cut and suppose:
(i) W±, V± are mutually complementary subspaces of L2(Σ;E) such that

V± ⊕W± = χ±(Ar)L
2(Σ;E)

(ii) W± are finite dimensional with W±,W
∗
± ⊂ H

1
2 (Σ;E), and

(iii) there exists a bounded linear map g : V− → V+ with g(V
1
2
− ) ⊂ V

1
2

+ and

g∗((V ∗+)
1
2 ) ⊂ (V ∗−)

1
2 such that

B = W+ ⊕
{
v + gv : v ∈ V

1
2
−

}
.
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Then, we say that B can be elliptically decomposed with respect to r.

Here, given a subspace V ⊂ L2(Σ;E), we put V s := V ∩Hs(Σ;E) for s ∈ R.

Remark 2.7. The spaces W ∗± and V ∗± are defined by Q∗±L2(Σ;E) and P ∗±L2(Σ;E),
where Q± and P± are the unique projectors with respect to the splitting of the space
L2(Σ;E) = V−⊕W−⊕V+⊕W+ so that W± = Q∗±L2(Σ;E) and V± = P ∗±L2(Σ;E).
In particular, dim(W±) = dim(W ∗±).

The notion of Fredholm pairs is also useful in characterising elliptic boundary con-
ditions. Recall that a pair (X,Y ) of closed subspaces of a Hilbert space Z is called
a Fredholm pair if X + Y is closed in Z and X ∩ Y and coker(X,Y ) := Z/(X + Y )
are finite dimensional. The index of a Fredholm pair (X,Y ) is

index(X,Y ) = dim(X ∩ Y )− dim coker(X,Y ) ∈ Z.

Definition 2.8 (Fredholm pair decomposition). Let B ⊂ H
1
2 (Σ;E) and let r ∈ R

be an admissible spectral cut.

Suppose:
(i) B is closed subspace of H

1
2 (Σ;E),

(ii) (χ+(Ar)H
1
2 (Σ;E), B) and (χ−(A∗r)H

1
2 (Σ;E), B⊥,H

1
2 (Σ;E)) are Fredholm pairs

in H
1
2 (Σ;E) (where B⊥,H

1
2 (Σ;E) denotes the annihilator of B in H

1
2 (Σ;E)),

and

(iii) index(χ+(Ar)H
1
2 (Σ;E), B) = − index(χ−(A∗r)H

1
2 (Σ;E), B⊥,H

1
2 (Σ;E)).

Then, we say that B is Fredholm-pair decomposed with respect to r.

The following is an important theorem that provides useful criteria to determine
elliptic boundary conditions. This theorem also illustrates that this notion of ellip-
ticity agrees with previous notions in the literature.

Theorem 2.9. Let B ⊂ H
1
2 (Σ;E) be a subspace. Then the following are equivalent:

(i) dom(DB,max) ⊂ H1
loc(M ;E) and dom(D†B∗,max) ⊂ H1

loc(M ;F ).

(ii) B is a closed subset of Ȟ(A) and B∗ ⊂ H
1
2 (Σ;F ),

(iii) with respect to every admissible spectral cut r ∈ R, B can be elliptically
decomposed,

(iv) with respect to some admissible spectral cut r ∈ R, B can be elliptically de-
composed,

(v) with respect to every admissible spectral cut r ∈ R, B can be Fredholm pair
decomposed,

(vi) with respect to some admissible spectral cut r ∈ R, B can be Fredholm pair
decomposed.

Moreover, whenever one of the equivalent statements (ii)-(vi) is satisfied,

σ∗0(B∗) = W ∗− ⊕
{
u− g∗u : u ∈ (V ∗+)

1
2

}
. (3)

Definition 2.10 (Elliptic boundary condition). If one and hence all assertions in
Theorem 2.9 hold true, we call B an elliptic boundary condition.

Note that for an elliptic boundary condition B, we have that B∗ is an elliptic
boundary condition for D†.

The following is a useful notion to allow for regularity of solutions up to the bound-
ary.

Definition 2.11 ((s+ 1
2 )-(semi)regular boundary condition). For s ≥ 1

2 , we say an

elliptic boundary condition B is (s+ 1
2 )-semiregular w.r.t. an admissible spectral cut

r if W+ ⊂ Hs(Σ;E) and g(V s−) ⊂ V s+. Here, W±, V± and g are as in Definition 2.6.
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If, in addition, B∗ is also (s+ 1
2 )-semiregular w.r.t. r, then we say that B is (s+ 1

2 )-
regular w.r.t. r.

It turns out that (semi)regularity is independent of the choice of admissible spectral
cut r, cf. Lemma 8.9.

The main result along these lines is the following higher boundary regularity result.

Theorem 2.12 (Higher boundary regularity). Let m ∈ N and B be an elliptic
boundary condition that is m-semiregular. Then, for k ∈ {0, 1, . . . ,m− 1} and

u ∈ dom(DB), we have that Dmaxu ∈ Hk
loc(M ;F ) implies u ∈ Hk+1

loc (M ;E).

The following are two significant types of boundary conditions that arise in appli-
cations.

Definition 2.13 (Local boundary condition). A boundary conditionB ⊂ H
1
2 (Σ;E)

is a local boundary condition if there exists a subbundle E′ ⊂ E|
Σ

such that

B = H
1
2 (Σ;E′)

Ȟ(A)

.

Definition 2.14 (Pseudo-local boundary condition). Let P be a classical pseudo-
differential projector of order zero (not necessarily orthogonal). Then,

B = P H
1
2 (Σ;E)

Ȟ(A)

is called a pseudo-local boundary condition.

The following is a useful tool that characterises pseudo-local conditions.

Theorem 2.15. For a pseudo-local boundary condition B = P H
1
2 (Σ;E)

Ȟ(A)

, the
following are equivalent:

(i) B is an elliptic boundary condition and B = P H
1
2 (Σ;E).

(ii) For some/every admissible spectral cut r ∈ R, the operator

P − χ+(Ar) : L2(Σ;E)→ L2(Σ;E)

is a Fredholm operator.
(iii) For some/every admissible spectral cut r ∈ R, the operator

P − χ+(Ar) : L2(Σ;E)→ L2(Σ;E)

is elliptic.
(iv) For every ξ ∈ T ∗xΣ \ {0}, x ∈ Σ, the principal symbol σP (x, ξ) : Ex → Ex

restricts to an isomorphism from the sum of the generalised eigenspaces
of iσAr (x, ξ) to the eigenvalues with negative real part onto the image
σP (x, ξ)(Ex) and, similarly, σP∗(x, ξ) restricts to an isomorphism from the
sum of the generalised eigenspaces of iσA∗r (x, ξ) to the eigenvalues with neg-
ative real part onto σP∗(x, ξ)(Ex).

In condition (iv) we have to consider generalised eigenspaces rather than eigenspaces
because the principal symbol σA(x, ξ) is not necessarily diagonalisable, cf. the ex-
ample in (4) below.

An immediate and significant consequence is that every such condition is∞-regular.

Corollary 2.16. Every pseudo-local elliptic boundary condition is ∞-regular. In
particular, if DBv ∈ C∞(M ;F ) then v ∈ C∞(M ;E). That is, v is smooth up to
the boundary.
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By Remark 4.2, iσAr (x, ξ) has as many eigenvalues (counted with algebraic mul-
tiplicities) with positive real part as those with negative real part if dimM ≥ 3.
Thus, if P is the projector of an elliptic pseudo-local boundary condition, the rank
of σP (x, ξ) must be precisely half the dimension of Ex.

There is a classical concept of local elliptic boundary value problem known as
Lopatinsky-Schapiro boundary conditions, see Section 20.1 in [26] for details. For
first order operators this condition reduces to considering a subbundle E′ ⊂ E|Σ
and setting B = H

1
2 (Σ;E′). We consider the subbundle F ′ := (σ−1

0 )∗(E′) ⊂ F |Σ.

Then B∗ = H
1
2 (Σ; (F ′)⊥).

Corollary 2.17. If (D,B) and (D†, B∗) form elliptic boundary value problems in

the sense of Lopatinsky and Schapiro, then B = H
1
2 (Σ;E′) and B⊥ = H

1
2 (Σ; (E′)⊥)

are elliptic boundary conditions for D in the sense of Definition 2.10 and so are
B∗ = H

1
2 (Σ; (F ′)⊥) and (B∗)⊥ = H

1
2 (Σ;F ′) for D†.

Moreover, these boundary conditions are pseudo-local and hence ∞-regular.

The following condition is required to yield Fredholm operators for elliptic boundary
conditions. This condition automatically holds for manifolds that are compact.

Definition 2.18 (Coercive at infinity). The operator D is said to be coercive at
infinity if there exists a compact subset K ⊂M and a constant C such that

‖u‖L2(M ;E) ≤ C‖Du‖L2(M ;E)

for all u ∈ C∞c (M ;E) with sptu ⊂M \K.

Theorem 2.19 (Fredholmness). Let D and D† be coercive at infinity. Suppose
that B an elliptic boundary condition for D. Then, the following hold.

(i) DB is a Fredholm operator and

index(DB) = dim kerDB − dim kerD†B∗ ∈ Z.

(ii) Let C be a complementary subspace to B in Ȟ(A) with an associated projec-
tion P̌ : Ȟ(A)→ Ȟ(A) with kernel B and image C. Then

Ľ : dom(Dmax)→ L2(M ;F )⊕ C, Ľu := (Dmaxu, P̌u|Σ)

is a Fredholm operator with the same index as DB,max = DB.

(iii) If B′ ⊂ B is another elliptic boundary condition, then dimB�B′ <∞ and

index(DB) = index(DB′) + dimB�B′.

3. Examples

We look at a few examples in order to see how an adapted boundary operator A can
look like. First we give a very simple example showing that the principal symbol
of A need not be diagonalisable.

Then we consider a Dirac operator onM . For an orthonormal boundary transversal,
the adapted boundary operator is essentially the Dirac operator of the boundary
(up to zero-order terms). In particular, it can be chosen to be selfadjoint. We show
in a simple example that for non-orthonormal transversal the adapted boundary
operator no longer has real spectrum.

Finally, we consider the Rarita-Schwinger operator on M and find that the
eigenspaces of A do not span L2(Σ;S

3
2 Σ); the generalised eigenspaces are larger

than the true eigenspaces.
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3.1. Nondiagonalisable principal symbols. The following example shows that
the principal symbol of a first-order elliptic operator need not be diagonalisable, not
even if it is an induced boundary operator. To start, let M = R2 whose Cartesian
coordinates we denote by t and x. The operator acts on C2-valued functions, i.e.
the bundle E →M is the trivial complex vector bundle of rank 2. Put

D =

(
−i 1
0 −i

)
∂

∂t
+

(
1 0
0 1

)
∂

∂x
.

Since

det(σD((t, x), (ξ1, ξ2))) = det

(
−iξ1 + ξ2 ξ1

0 −iξ1 + ξ2

)
= (ξ2 − iξ1)2 6= 0

for (ξ1, ξ2) 6= (0, 0), the operator D is elliptic.

Now we restrict to {t ≥ 0} and consider the operator A induced on the boundary
Σ = {t = 0}. We find

A =

(
−i 1
0 −i

)−1

·
(

1 0
0 1

)
∂

∂x
=

(
i 1
0 i

)
∂

∂x
. (4)

We see that the principal symbol σA(ξ) = ξ ·
(

i 1
0 i

)
is nondiagonalisable.

3.2. Dirac operator and non-orthogonal boundary transversal. Let M be
a compact Riemannian spin manifold with compact boundary Σ. Let τ0 be the
conormal along Σ whose length is normalised to 1 w.r.t. the Riemannian metric. Let
D be the Dirac operator acting on spinors on M . The adapted boundary operator
A on Σ can be chosen in such a way that it is essentially the Dirac operator on Σ. In
particular, it is then selfadjoint and has real spectrum. The Atiyah-Patodi-Singer
boundary conditions B = χ−(A)H

1
2 (Σ;E) then are the most prominent example of

an elliptic boundary condition.

More specifically, let M = S1× [0,∞) so that Σ = S1 with length 2π. If we denote
the standard coordinates on M by (θ, t), then the interior unit normal covector
field is given by τ0 = dt. With the appropriate choice of spin structure, the spinor
bundle is the trivial C2-bundle and the Dirac operator is given by

D =

(
0 −1
1 0

)
∂

∂t
+

(
0 i
i 0

)
∂

∂θ
.

As an adapted boundary operator we can choose

A0 =

(
0 −1
1 0

)−1(
0 i
i 0

)
∂

∂θ
=

(
i 0
0 −i

)
∂

∂θ
.

This operator has the eigenvalues k ∈ Z with multiplicity 2. The corresponding
eigenspinors are given by

θ 7→
(
e−ikθ

0

)
and θ 7→

(
0
eikθ

)
.

Now, fix a parameter α ∈ R and put τ = τ0 + αdθ. From

σD(x, dθ)−1σD(x, τ) = σD(x, dθ)−1
(
σD(x, τ0) + ασD(x, dθ)

)
=

(
0 i
i 0

)−1(
0 −1
1 0

)
+ α

(
1 0
0 1

)
=

(
α− i 0

0 α+ i

)
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we get the adapted boundary operator

A =

(
α− i 0

0 α+ i

)−1
∂

∂θ
=

1

α2 + 1

(
1− iα 0

0 1 + iα

)
A0.

Thus, for α 6= 0, the operator A has the eigenvalues 1−iα
α2+1k and 1+iα

α2+1k for k ∈ Z
with multiplicity 1.

Fig. 1: Spectrum of A0 and of A (dashed lines)

3.3. The Rarita-Schwinger operator. If D is the Dirac operator on M , then
the adapted boundary operator can be chosen to be selfadjoint. For other geometri-
cally natural operators this is no longer the case. We discuss the Rarita-Schwinger
operator as an example. Since this operator is much less known as compared to the
Dirac operator, we include some basics in the discussion, see [18,27,39] for further
aspects concerning this operator.

Let M be a Riemannian spin manifold of dimension n ≥ 3. We denote its complex
spinor bundle by SM . Clifford multiplication will be denoted by γ : SM ⊗ TM →
SM , i.e. γ(φ ⊗ ξ) = ξ · φ. Clifford multiplication is characterised by the relation
η · ξ · φ + ξ · η · φ + 2〈ξ, η〉φ = 0. For Φ = φ ⊗ ξ ∈ SxM ⊗ TxM and η ∈ TxM we
write Φ(η) := 〈ξ, η〉φ. Now

ι : SM → SM ⊗ TM, ι(φ) = − 1

n

n∑
j=1

ej · φ⊗ ej

defines an embedding of SM into SM⊗TM . Here e1, . . . , en is a local orthonormal
tangent frame and ι is independent of the choice of this frame. We then have

ι(φ)(η) = − 1

n

n∑
j=1

〈ej , η〉ej · φ = − 1

n
η · φ

and

γ(ι(φ)) = − 1

n

n∑
j=1

ej · ej · φ = φ.

The bundle of 3
2 -spinors is defined as

S
3
2M := ker(γ) = ι(SM)⊥ ⊂ SM ⊗ TM.

It is naturally a Hermitian vector bundle over M . Now, ι∗ = 1
nγ and ι ◦ γ is

the orthogonal projection SM ⊗ TM → ι(SM). The complementary orthogonal

projection π
3
2 : SM ⊗ TM → S

3
2M is given by

π
3
2 (Φ) = Φ− ι(γ(Φ)), i.e. π

3
2 (Φ)(η) = Φ(η) +

1

n
η · γ(Φ).
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Now let D : C∞(M ;SM ⊗ TM) → C∞(M ;SM ⊗ TM) be the twisted Dirac
operator with coefficients in TM . We define the Rarita-Schwinger operator by
restricting to the subbundle S

3
2M ⊂ SM ⊗ TM , i.e.

D := π
3
2 ◦D |

S
3
2M

.

Its principal symbol is easily computed for Φ ∈ S
3
2
xM to be

σD(x, ξ[)(Φ) = π
3
2 (σD(x, ξ[)(Φ)) = π

3
2 ((ξ ⊗ 1)Φ) = (ξ ⊗ 1)Φ + 2ι(Φ(ξ)). (5)

Here ξ[ is the covector corresponding to the tangent vector ξ under the isomorphism
TM → T ∗M induced by the Riemannian metric. For ξ ∈ TxM \ {0} put

S
3
2 (ξ) := {Φ ∈ S

3
2
xM : Φ(ξ) = 0},

S̃
3
2 (ξ) := {π 3

2 (φ⊗ ξ) : φ ∈ SxM}.

Then S
3
2
xM = S

3
2 (ξ)⊕ S̃ 3

2 (ξ) is an orthogonal decomposition which is respected by

σD(x, ξ[). On S
3
2 (ξ) the principal symbol σD(x, ξ[)(Φ) simply acts by ξ⊗ 1 as one

can see from (5). For π
3
2 (φ⊗ ξ) ∈ S̃ 3

2 we have

σD(x, ξ[)(Φ)(π
3
2 (φ⊗ ξ)) = n−2

n π
3
2 (ξφ⊗ ξ).

Thus, with respect to this splitting, the square of σD(x, ξ[) is given by

σD(x, ξ[)2 = −|ξ|2 ·
(

1 0
0 (n−2

n )2

)
.

In particular, D is elliptic.

Next, we consider adapted boundary operators. For the sake of simplicity, we

restrict ourselves to the case n = 3. Let τ = ~T [ ∈ T ∗xM be the interior unit
conormal where x ∈ Σ = ∂M . For ξ ∈ TxΣ the principal symbol of an adapted
boundary operator is given by σA(x, ξ[) = σD(x, τ)−1σD(x, ξ[). We first determine
the spectrum of σA(x, ξ[) and assume for now that |ξ| = 1. We choose η ∈ TxΣ in

such a way that ~T , ξ, η form an orthonormal basis of TxM and that ~T · ξ · η acts as
1 by Clifford multiplication.

Let Φ ∈ S
3
2
xM \ {0} be an eigenvector of σA(x, ξ[) to the eigenvalue λ ∈ C, i.e.

σD(x, ξ[)Φ = λσD(x, τ)Φ. (6)

We write Φ = φ0 ⊗ ~T + φ1 ⊗ ξ + φ2 ⊗ η where φj ∈ SxM . The relation γ(Φ) = 0 is

equivalent to φ2 = η ~Tφ0 + ηξφ1, i.e.

Φ = φ0 ⊗ ~T + φ1 ⊗ ξ − (~Tηφ0 + ξηφ1)⊗ η.
A straightforward computation yields

σD(x, ξ[)Φ = (ξφ0 − 2
3
~Tφ1)⊗ ~T + 1

3ξφ1 ⊗ ξ + (φ0 + 1
3ηφ1)⊗ η,

σD(x, τ)Φ = 1
3
~Tφ0 ⊗ ~T + (~Tφ1 − 2

3ξφ0)⊗ ξ + ( 1
3ηφ0 − φ1)⊗ η.

Comparing the coefficients of the ~T and ξ-terms, (6) implies

φ1 = −3~Tξ + λ

2
φ0,

φ0 =
3~Tξ − 1

λ

2
φ1.

This shows that if φ0 = 0, then φ1 = 0 and hence Φ = 0. Thus φ0 6= 0. Combining
the two equations gives

φ0 =
10 + ( 3

λ − 3λ)~Tξ

4
φ0,
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hence

(2 + (λ− 1
λ )η)φ0 = 0. (7)

In a suitable spinor basis, Clifford multiplication by η is given by the matrix(
0 i
i 0

)
. Thus (7) says that the matrix

(
2 (λ− 1

λ )i
(λ− 1

λ )i 2

)
(8)

is singular. Its determinant is given by (λ+ 1
λ )2 and has to vanish. Thus λ = ±i.

If ξ is no longer be assumed to have unit length, then by linearity the eigenvalues
of σA(x, ξ[) are ±|ξ|i. Note that for λ = ±i, the matrix in (8) has rank 1. Hence,
the geometric multiplicity of the eigenvalue λ = ±|ξ|i is 1, while the algebraic

multiplicities must add up to 4, the dimension of S
3
2
xM (except for ξ = 0). Indeed,

the algebraic multiplicities are 2.

We compute the spectrum of A for the example where Σ is a flat 2-torus. Let
Σ = R2/Γ where Γ is a lattice. We assume that Σ carries the flat metric induced
from R2 and the spin structure with respect to which the spinor bundle SΣ has
trivial holonomy, cf. [20]. Then S

3
2M has also trivial holonomy and the space of

parallel sections has dimension 4. As adapted boundary operator, we choose

A = σA(dx1)
∂

∂x1
+ σA(dx2)

∂

∂x2
.

Let k = (k1, k2) ∈ Γ∗, the dual lattice. Then Vk = {e2πi〈k,x〉Φ : Φ parallel} is an

A-invariant subspace of L2(Σ;S
3
2 Σ). Indeed,

A(e2πi〈k,x〉Φ) = 2πi e2πi〈k,x〉σA(x, k1dx
1 + k2dx

2)Φ.

Thus, restricted to the 4-dimensional space Vk, the operator A has the eigenvalues
±2π|k|, with multiplicity 1 each. By Fourier analysis we know L2(Σ;S

3
2 Σ) =⊕

k∈Γ∗ Vk. Thus A has real spectrum but the eigenspaces do not span all of

L2(Σ;S
3
2 Σ). The generalised eigenspaces, however, do.

4. Operator theory of the boundary adapted operator

Recall the principal symbols σD and σA for the operatorD and the induced operator
A on the boundary from §2.2.

Let Sω = {λ ∈ C \ {0} : arg λ ∈ [0, ω) ∪ (π − ω, π + ω) ∪ (2π − ω, 2π)} be the open
bisector of angle ω with vertex at the origin in C.
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Fig. 2: Bisector Sω

We make the following central observation.

Lemma 4.1. There exists a ν > 0 such that

spec(σA(x, ξ)) ∩ Sν = ∅,
for all (x, ξ) ∈ T ∗Σ such that ξ 6= 0.

Proof. We first show, by contradiction, that the spectrum of the principal symbol
of A satisfies:

spec(σA(x, ξ)) ∩ R = ∅ (9)

for any 0 6= ξ ∈ T ∗xΣ.

Suppose that the conclusion is false for some ξ 6= 0 . Then, there exists t ∈ R
and v ∈ Ex \ {0} such that σA(x, ξ)v = tv. This is equivalent to σD(x, ξ)v =
tσD(x, τ)v = σD(x, tτ)v. Then ξ − tτ 6= 0 and

σD(x, ξ − tτ)v = σD(x, ξ)v − tσD(x, τ)v = 0.

But this contradicts the ellipticity of D and proves (9).

Since the spectra of σA(x, ξ) depend continuously on (x, ξ) and the unit cosphere
bundle of Σ is compact, the set of all eigenvalues of all σA(x, ξ) with x ∈ Σ and
‖ξ‖ = 1 is a compact subset of C. It avoids the real axis, hence we can find a ν > 0
such that

⋃
‖ξ‖=1 spec(σA(x, ξ)) ∩ Sν = ∅. Since Sν is conic and t 7→ σA(x, tξ) is

homogeneous of degree 1, the claim follows. �

Remark 4.2. We note that if dimM ≥ 3, for fixed (x, ξ), the number of eigen-
values (counted with algebraic multiplicities) of σA(x, ξ) with positive imaginary
part equals that of the eigenvalues with negative imaginary part. Namely, in this
case dimT ∗xΣ ≥ 2 and hence we can joint ξ with −ξ by a continuous path ξ(t)
of nonvanishing covectors. Since σA(x, ξ(t)) never has real eigenvalues, the num-
ber of eigenvalues with positive imaginary part does not change as t varies. But
σA(x,−ξ) = −σA(x, ξ) because A is of first order.

In dimension 2 this is no longer true, see Subsection 3.1 for a counter-example.

Throughout, we regard the operator A as an unbounded operator on L2(Σ;E)
and we obtain the following information on the spectrum of the operator A. Let
BR = {λ ∈ C : |λ| ≤ R}.

Proposition 4.3. The L2-spectrum of the operator A satisfies the following:
(i) there exists R > 0 and ω ∈ [0, π/2) such that spec(A) ⊂ Sω ∪BR;
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(ii) there exists C > 0 such that for ζ ∈ C \ (Sω ∪ BR) the resolvent bound
|ζ|‖(A− ζ)−1‖ ≤ C holds;

(iii) the spectrum spec(A) is discrete.

Proof. Let ν ∈ (0, π/2) be as in Lemma 4.1. Choose η ∈ (0, ν). From
spec(iσA(x, ξ))∩iSν = ∅ for all (x, ξ) we conclude spec(iσA(x, ξ))∩iSη = ∅ whenever
ξ 6= 0. Now (i) and (ii) follow from Theorem 9.3 in [38] with ω = π/2− η.

Assertion (iii) simply follows from the ellipticity of A along with the Rellich embed-
ding: H1(Σ;E) ↪→ L2(Σ;E) is compact, which gives that (A − λ)−1 is a compact
operator. �

To obtain useful operators associated to A needed for the study of boundary value
problems, we recall the important class of operators that are known as bi-sectorial.
Let T : dom(T ) ⊂ B → B be a densely-defined and closed operator on a Banach
space B. Given 0 < ω < π/2, it is called ω-bisectorial if spec(T ) ⊂ Sω and for each
µ > ω, there exists a Cµ such that for ζ 6∈ Sµ,

‖(ζ − T )−1‖ ≤ Cµ
|ζ|
.

Put C+ := {λ ∈ C : Re λ > 0}. If the condition holds with Sω and Sµ replaced
with Sω+ = Sω ∩ C+ and Sµ+ respectively, then T is said to be ω-sectorial. To
avoid confusion, let us remark that in older literature, the notion ω-sectorial (in
the context of a Hilbert space) contains the extra condition on the numerical range
of T . Such operators are now called Kato-sectorial. See Remark 4.9 for further
details.

For any r ∈ R and ε > 0, let Lε,r = ∪|s−r|≤εls be the closed vertical strip of width
2ε centred about lr.

Lemma 4.4. For any admissible spectral cut r there exists an εr > 0 such that
Lr,ε ⊂ res(A).

Proof. By Proposition 4.3 (i) and (iii), the intersection spec(A) ∩ L1,r is finite,
spec(A) ∩ L1,r = {λ1, . . . , λk}. If the intersection is empty put εr := 1, otherwise
εr := 1

2 min1≤i≤k |Re λi − r| does the job. �

From this point onward, we fix an admissible spectral cut r.

Proposition 4.5. There exist 0 < ωr < π/2 and εr > 0 such that Ar is invertible
and ωr-bisectorial and spec(Ar) ⊂ Sωr \ Lεr,0.

Proof. Let R and ω be as in Proposition 4.3 and r and εr as in Lemma 4.4. Then
the spectrum of A is contained in the area shaded in grey in Figure 3.



16 CHRISTIAN BÄR AND LASHI BANDARA

Fig. 3: Spectrum of A

Thus the spectrum of Ar is contained in Sωr \ Lεr,0, with ωr as indicated in the
picture. In particular, 0 /∈ spec(Ar), hence Ar is invertible.

It remains to show the resolvent estimate for ζ ∈ C \ Sωr . If, in addition, ζ + r /∈
Sω ∪BR then Proposition 4.3 (ii) yields the resolvent bound

‖(ζ −Ar)−1‖ = ‖((ζ + r)−A)−1‖ ≤ C

|ζ + r|
≤ |ζ + r|+ |r|

|ζ + r|
C

|ζ|
≤
(

1 +
|r|
R

)
C

|ζ|
.

On the other hand, Z := ((Sω ∪BR)− r)∩ (C \ Sωr ) is a compact set contained in
the resolvent set of Ar. Hence there exists a constant C1 > 0 such that |ζ| ≤ C1

and ‖(ζ −Ar)−1‖ ≤ C1 for all ζ ∈ Z. This implies, for those ζ:

‖(ζ −Ar)−1‖ ≤ C1 ≤
C2

1

|ζ|
. �

To define spectral projectors, consider

χ±(ζ) =

{
1, if ± Re ζ > 0,

0, otherwise.

Proposition 4.6. For r an admissible spectral cut, the projection χ+(Ar) to the
spectral subspace associated to the eigenvalues of the right half open plane is a
pseudo-differential operator of order 0. Similarly, χ−(Ar), the projection to the
spectral subspace of the left half open plane, is also a pseudo-differential operator of
order 0.

Proof. By Proposition 4.5, Ar is an invertible ωr-sectorial operator and also that
l0 ⊂ res(Ar). The main theorem of Grubb in [24] asserts that χ+(Ar) can be
defined as the contour integral

χ+(Ar)u =
i

2π

˛
{ir:∞>r>−∞}

ζ
−1A(ζ −A)−1u dζ (10)

for u ∈ C∞(Σ;E) and it extends to a pseudo-differential operator of order zero.

The conclusion for χ−(Ar) follows by analogy or simply from χ−(Ar) = 1−χ+(Ar).
�
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Recall the function sgn : C→ C given by:

sgn(ζ) =


+1, if Re ζ > 0,

−1, if Re ζ < 0,

0, if Re ζ = 0.

Whenever Re ζ 6= 0, we have that

sgn(ζ) =
ζ√
ζ2

=

√
ζ2

ζ
= χ+(ζ)− χ−(ζ).

Thus, on using that χ±(A) is L2(EΣ) bounded by Proposition 4.6 and lo ⊂ res(Ar),
define

|Ar| =
√
A2
r = sgn(Ar)Ar = (χ+(Ar)− χ−(Ar))Ar. (11)

For the remainder of this paper, we use the analyst’s inequality a . b to mean that
a ≤ Cb, there exists some C. Typically, the dependence of the implicit constant
will be clear from context or made explicitly clear in the analysis. We write a ' b
to mean a . b and b . a.

Lemma 4.7. The operator |Ar| is invertible and ωr-sectorial with dom(|Ar|) =
dom(Ar) = H1(Σ;E) with the norm estimate ‖Aru‖ ' ‖|Ar|u‖,

Proof. Since the projectors χ±(Ar) are bounded, the domain equality dom(|Ar|) =
dom(Ar) = H1(Σ;E) follows. For the norm estimate, first note

‖|Ar|u‖ = ‖(χ+(Ar)− χ−(Ar))Aru‖ ≤ ‖χ+(Ar)Aru‖+ ‖χ−(Ar)Aru‖ . ‖Aru‖.

The reverse inequality follows similarly from Ar = sgn(Ar)|Ar|.
The operators Ar and |Ar| have the same eigenvectors and if λ is an eigenvalue of Ar
then sgn(λ)λ is the corresponding eigenvalue of |Ar|. This shows ωr-sectoriality. �

Since we now have that |Ar| is an ωr-sectorial operator, we obtain the existence of
a bounded holomorphic semigroup via standard semigroup theory (c.f. [28]). We
require this in later parts to define the boundary extension operator.

Proposition 4.8. The operator family ζ 7→ exp(−ζ|Ar|) is holomorphic on the
sector Sπ

2−ωr ∩ C+ and for any ε ∈ (0, π/2 − ωr), it is uniformly bounded on

Sπ
2−ωr−ε ∩ C+. For u ∈ L2(EΣ), U(ζ) = exp(−ζ|Ar|)u solves the heat equation

∂ζU(ζ) = −|Ar|U(ζ) in L2(EΣ) with lim|ζ|→0 U(ζ) = u.

Proof. By Lemma 4.7, we have that |Ar| is a ωr-sectorial operator. From Chap-
ter 9, §6 in [28], the semigroup ζ 7→ exp(−ζ|Ar|) is holomorphic on Sπ

2−ωr and is
uniformly bounded on Sπ

2−ωr−ε for each ε ∈ (0, π/2− ωr).
By holomorphicity of the semigroup, U solves the heat equation. Equation (1.58)
on page 491 of [28] yields lim|ζ|→0 U(ζ) = U(0) = u. �

Remark 4.9. In [28], the definition of a sectorial operator is what is known in the
literature today as Kato-sectorial, which further assumes that the numerical range
of the operator is also valued inside the sector. However, the hypothesis on operator
in Chapter 9 §6 of [28] (c.f. page 490) is precisely the modern notion of sectoriality
which we have assumed and this is what allows us to assert the conclusion in this
proposition. See Remark 7.3.3 in [25] which further outlines these differences.
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5. H∞-functional calculus and fractional Sobolev spaces

While in the previous section we showed the existence of the holomorphic semi-
group, to treat certain estimates and properties of the semigroup in later parts,
we will show that the operator |Ar| has an H∞-functional calculus. Although this
takes some effort to establish, we will see that our labours are well worth the fruit
they bear as this is a fundamental property that affords us with the ability to
overcome some of the kerfuffles that would otherwise arise in our analysis.

To recall the notion of an H∞-functional calculus, let T be an ω-sectorial operator
on a Hilbert space H. For µ > ω, let Ψ(Sµ ∩ C+) denote bounded the algebra of
holomorphic functions ψ : Sµ ∩ C+ → C for each of which there exists α > 0 and
C > 0 satisfying

|ψ(ζ)| ≤ C min
{
|ζ|α, |ζ|−α

}
.

Integrating along the unbounded contour

γ =
{
reiθ :∞ > r > 0

}
∪
{
re−iθ : 0 < r <∞

}
for θ ∈ (ω, µ) defines the following functional calculus:

ψ(T )u :=
i

2π

˛
γ

ψ(ζ)(ζ − T )−1u dζ,

for u ∈ H. This is an absolutely convergent integral due to the decay of ψ and the
resolvent bounds on T . The operator ψ(T ) is a bounded operator on H. If there
exists C > 0 such that for every ψ ∈ Ψ(Sµ ∩ C+) satisfies:

‖ψ(T )‖ ≤ C ‖ψ‖∞,
then we say that T has an H∞(Sµ ∩ C+), or simply an H∞-functional calculus.
This is due to the fact that for functions f : (Sµ ∩ C+) ∪ {0} → C bounded
and holomorphic on Sµ ∩ C+, we can define f(T ) as a bounded operator on H
when T has an H∞-functional calculus. More significantly, via the pioneering work
of McIntosh in [32], T has an H∞-calculus if and only if the following so-called
quadratic estimates ˆ ∞

0

‖ψ(tT )u‖2 dt

t
' ‖u‖2 (12)

hold for all u ∈ ran(T ) and some non-zero ψ ∈ Ψ(Sµ ∩ C+), or equivalently, for
all such ψ. Our goal is to establish quadratic estimates (12) for T = |Ar| and
H = L2(Σ;E) by demonstrating the H∞-functional calculus by other means.

Lemma 5.1. The following hold:
(i) χ±(Ar)

∗ commute with A∗r on dom(A∗r),
(ii) dom(A∗r) = H1(Σ;E) and χ±(A∗r) are bounded projectors,

(iii) χ±(Ar)
∗ = χ±(A∗r) and sgn(Ar)

∗ = sgn(A∗r), and
(iv) χ±(A∗r)|χ±(Ar)L2(Σ;E) : χ±(Ar)L

2(Σ;E) → χ±(A∗r)L
2(Σ;E) and

χ±(Ar)|χ±(A∗r)L2(Σ;E) : χ±(A∗r)L
2(Σ;E) → χ±(Ar)L

2(Σ;E) are iso-
morphisms.

Proof. To prove (i), note that for u ∈ dom(A∗r) and v ∈ dom(Ar),〈
χ±(Ar)

∗A∗ru, v
〉

=
〈
A∗ru, χ

±(Ar)v
〉

=
〈
u,Arχ

±(Ar)v
〉

=
〈
u, χ±(Ar)Arv

〉
=
〈
χ±(Ar)

∗u,Arv
〉
,

which shows that χ±(Ar)
∗u ∈ dom(A∗r). On using the density of dom(Ar), we

obtain (i).

Assertion (ii) simply follows by applying the theory from section 4 to the operator
A∗r in place of Ar which is again elliptic. In particular, by elliptic regularity theory,
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we have that dom(A∗r) = H1(Σ;E) and we can apply Proposition 4.6 to assert that
χ±(A∗r) are bounded projectors.

We prove (iii) for χ+(Ar). From (10) we obtain

χ+(Ar)u =
i

2π

ˆ
{ir:∞>r>−∞}

ζ−1Ar(Ar − ζ)−1u dζ

=
i

2π

ˆ −∞
∞

(ir)−1Ar(Ar − ir)−1u d(ir)

=
−i

2π

ˆ ∞
−∞

Ar(Ar − ir)−1u
dr

r
.

On sending ir 7→ (−ir) and replacing Ar with A∗r ,

χ+(A∗r)u =
i

2π

ˆ
{−ir:−∞<r<∞}

ζ−1A∗r(A
∗
r − ζ)−1u dζ

=
i

2π

ˆ ∞
−∞

(−ir)−1A∗r(A
∗
r + ir)−1u d(−ir)

=
i

2π

ˆ ∞
−∞

A∗r(A
∗
r + ir)−1u

dr

r
.

Then, observe that for u ∈ dom(Ar) and v ∈ dom(A∗r),〈
χ+(Ar)u, v

〉
= − i

2π

ˆ ∞
−∞

〈
Ar(Ar − ir)−1u, v

〉 dr

r

= − i

2π

ˆ ∞
−∞

〈
u,A∗r(A

∗
r + ir)−1v

〉 dr

r
.

Also, 〈
u, χ+(A∗r)v

〉
= − i

2π

ˆ ∞
−∞

〈
u,A∗r(A

∗
r + ir)−1v

〉 dr

r
,

which shows that 〈χ+(Ar)u, v〉 = 〈u, χ+(A∗r)v〉 and by the density of dom(Ar) and
dom(A∗r) coupled with (i), we obtain χ+(Ar)

∗ = χ+(A∗r). Moreover,

χ−(Ar)
∗ = (1− χ+(Ar))

∗ = 1− χ+(A∗r) = χ−(A∗r).

Since sgn(Ar) = χ+(Ar)− χ−(Ar), (iii) follows.

It suffices to prove (iv) for χ+(A∗r)|χ+(Ar)L2(Σ;E) : χ+(Ar)L
2(Σ;E) →

χ+(A∗r)L
2(Σ;E), the other cases being analogous. On the one hand, we have

L2(Σ;E) = χ+(Ar)L
2(Σ;E)⊕ χ−(Ar)L

2(Σ;E) and on the other hand,

L2(Σ;E) = ker(χ−(Ar)
∗)⊕ χ−(Ar)L

2(Σ;E)

= ker(χ−(A∗r))⊕ χ−(Ar)L
2(Σ;E)

= χ+(A∗r)L
2(Σ;E)⊕ χ−(Ar)L

2(Σ;E).

Lemma A.1 with H = L2(Σ;E), H1 = χ+(A∗r)L
2(Σ;E), H′1 = χ+(Ar)L

2(Σ;E),
and H2 = χ−(Ar)L

2(Σ;E) implies (iv). �

With this device in hand, we are able to assert the existence of an H∞-functional
calculus for both |Ar| and |A∗r |.

Proposition 5.2. The operators |Ar| and |Ar|∗ are invertible elliptic pseudo-
differential operators of first order and they admit an H∞-functional calculus.
Moreover, |Ar|∗ = |A∗r |.



20 CHRISTIAN BÄR AND LASHI BANDARA

Proof. By Proposition 4.6 |Ar| and |Ar|∗ are pseudo-differential operators of first
order. Since they are invertible they are elliptic.

In particular, dom(|Ar|) = dom(|Ar|∗) = H1(Σ;E) and ‖|Ar|∗u‖ ' ‖|Ar|u‖ '
‖u‖H1 . Corollary 5.5 in [8] (with s = t = 1) yields that |Ar| and |Ar|∗ have an
H∞-functional calculus.

From Lemma 5.1, we have that

|Ar|∗ = (sgn(Ar)Ar)
∗ = A∗r sgn(Ar)

∗ = sgn(Ar)
∗A∗r = |A∗r |. �

Corollary 5.3. For any s ∈ R we have that

Hs(Σ;E) = dom(|Ar|s) = dom(|A∗r |
s
) = dom((|Ar|s)∗) = dom((|Ar|∗)s)

with ‖u‖Hs ' ‖|Ar|s‖ ' ‖|A∗r |
s‖. �

6. The model operator and boundedness of the extension

In this section, we proceed by using a key lemma from [10] (c.f. Lemma 6.1), which
allows us to localise our considerations to a cylinder [0, T ) × Σ, for some T > 0
determined by 2.2. As in Section 5 in [10], we analyse a simpler operator, the model
operator, on the infinite cylinder [0,∞) × Σ. In later sections, we will relate this
analysis back to the original operator D.

For convenience, define Z[0,r) = [0, r)× Σ for r ∈ (0,∞].

Lemma 6.1 (Lemma 2.4 in [10]). There exists a neighbourhood U around Σ in M ,
a constant Tc > 0 and a diffeomorphism Φ = (t, φ) : U → Z[0,Tc) such that

(i) Σ = t−1(0),
(ii) ΦΣ = idΣ,

(iii) dΦ(~T ) = ∂t along Σ,
(iv) τ = dt along Σ, and
(v) Φ∗(µ) = |dt| ⊗ ν.

In effect, this lemma allows us to localise our problem to the cylinder Z[0,Tc), but
we routinely consider the infinite cylinder Z[0,∞) in order to not worry about the
boundary at the end corresponding to the value Tc. Define the model operator D0

associated with D given the adapted boundary operator A in Z[0,∞) is given by

D0 = σ0(∂t +A), (13)

where we recall σ0(x) = σD(x, τ(x)). It will also be useful to consider the following
operator

(σ−1
0 D0)† = −(∂t −A∗) (14)

Now, letting r denote an admissible spectral cut as before, we define

Hs
±(Ar) := χ±(Ar)H

s(Σ;E) ⊂ Hs(Σ;E) (15)

as well as the space

Ȟ(Ar) := H
1
2
−(Ar)⊕H

− 1
2

+ (Ar), (16)

normed by

‖u‖2
Ȟ(Ar)

:= ‖χ−(Ar)u‖2
H

1
2

+ ‖χ+(Ar)u‖2
H−

1
2
. (17)

Similarly, define the space

Ĥ(Ar) := H
− 1

2
− (Ar)⊕H

1
2
+(Ar) = Ȟ(−Ar). (18)

Analogous definitions can be made with A∗r in place of Ar.
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Lemma 6.2. For α ∈ R, the L2-inner product induces a perfect pairing

〈·, ·〉 : H−α± (A∗r)×Hα
±(Ar)→ C

and H−α± (A∗r)
∼= (Hα

±(Ar))
∗.

Proof. Without loss of generality, we assume that α > 0 and by the density of
χ±(A∗r)L

2(Σ;E) in χ±(A∗r)H
−α(Σ;E), assume that u ∈ χ±(A∗r)L

2(Σ;E) and v ∈
χ±(Ar)H

α(Σ;E). Then, by Cauchy-Schwarz inequality and Corollary 5.3,

| 〈u, v〉 | = |
〈
|Ar|−αu, |A∗r |αv

〉
| . ‖u‖H−α‖v‖Hα .

Now, note that 〈·, ·〉 : H−α(Σ;E)×Hα(Σ;E)→ C is a duality, and in particular,

‖u‖H−α ' sup
0 6=y∈Hα(Σ;E)

| 〈u, y〉 |
‖y‖Hα

and ‖v‖Hα ' sup
06=x∈H−α(Σ;E)

| 〈x, v〉 |
‖x‖H−α

.

Note that by Section 4 page 156 in [28], we have that

χ±(A∗r)L
2(Σ;E) = ker(χ∓(A∗r)) ⊥ χ∓(Ar)L

2(Σ;E),

and therefore we obtain that 〈u, y〉 = 〈u, y + y′〉 for all y′ ∈ χ∓(Ar)H
α(Σ;E). Then,

‖u‖H−α ' sup
06=y∈Hα(Σ;E)

| 〈u, y〉 |
‖y‖Hα

= sup
06=y∈χ±Hα(Σ;E)

| 〈u, y〉 |
‖y‖Hα

.

Similarly, we obtain the estimate

‖v‖Hα ' sup
06=x∈χ±H−α(Σ;E)

| 〈x, v〉 |
‖x‖H−α

.

This shows that 〈·, ·〉 : χ±(A∗r)H
−α(Σ;E) × χ±(Ar)H

α(Σ;E) → C is a duality.
Therefore χ±(A∗r)H

−α(Σ;E) is embedded in (χ±(Ar)H
α(Σ;E))∗. However, since

H−α(Σ;E) and Hα(Σ;E) are reflexive, and χ±(Ar) and χ±(A∗r) are projectors, we
have that their ranges χ±(Ar)H

−α(Σ;E) and χ±(Ar)H
α(Σ;E), as well as their

counterparts with A∗r in place of Ar are closed, and therefore reflexive. Hence the
pairing induces an isomorphism χ±(A∗r)H

−α(Σ;E) ∼= (χ±(Ar)H
α(Σ;E))∗. �

Corollary 6.3. The L2-inner product induces a perfect pairing

〈·, ·〉 : Ȟ(Ar)× Ĥ(A∗r)→ C

and Ȟ(Ar)
∗ ∼= Ĥ(A∗r). �

Despite the fact that it may seem that the space Ȟ(Ar) depends on the cut r, in
the following, we show that it is independent of the cut.

Proposition 6.4. Let r, q ∈ R be two admissible spectral cuts. Then, we have that
Ȟ(Ar) = Ȟ(Aq) with the norm equivalence ‖u‖Ȟ(Ar) ' ‖u‖Ȟ(Aq)

.

Proof. Without loss of generality, assume that q < r and fix u ∈ C∞(Σ;E) and
recall that

‖u‖2
Ȟ(Aq)

= ‖χ−(Aq)u‖2
H

1
2

+ ‖χ+(Aq)u‖2
H−

1
2
.

On noting that Ar, Aq, χ
±(Ar), χ

±(Aq) all commute on the domain dom(Ar) =
dom(Aq) = H1(Σ;E) by functional calculus, and

χ−(Ar)u = χ−(Ar)
(
χ−(Aq)u+ χ+(Aq)u

)
= χ−(Aq)u+ χ−(Ar)χ

+(Aq)u.

Moreover, χ−(Ar)χ
+(Aq) is a pseudo-differential projector of order zero and

χ−(Ar)χ
+(Aq)H

α(Σ;E) and χ−(Aq)H
α(Σ;E) are complementary subspaces for
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any α ∈ R. Note that these projectors are in general non-orthogonal in L2(Σ;E)
and therefore,

‖χ−(Ar)u‖
H

1
2
' ‖χ−(Aq)u‖

H
1
2

+ ‖χ−(Ar)χ
+(Aq)u‖

H
1
2
.

Since the projector χ−(Ar)χ
+(Aq) has finite rank,

‖χ−(Ar)χ
+(Aq)u‖

H
1
2
' ‖χ−(Ar)χ

+(Aq)u‖
H−

1
2
.

Since q < r, we have

χ+(Aq)u = χ+(Aq)
(
χ−(Ar)u+ χ+(Ar)u

)
= χ−(Ar)χ

+(Aq)u+ χ+(Ar)u,

and similar to our earlier observation,

‖χ+(Aq)u‖
H−

1
2
' ‖χ+(Ar)u‖

H−
1
2

+ ‖χ−(Ar)χ
+(Aq)u‖

H−
1
2
.

Combining these estimates,

‖u‖Ȟ(Ar) ' ‖χ
−(Aq)u‖

H
1
2

+ ‖χ−(Ar)χ
+(Aq)u‖

H
1
2

+ ‖χ+(Ar)u‖
H−

1
2

' ‖χ−(Aq)u‖
H

1
2

+ ‖χ−(Ar)χ
+(Aq)u‖

H−
1
2

+ ‖χ+(Ar)u‖
H−

1
2

' ‖χ−(Aq)u‖
H

1
2

+ ‖χ+(Aq)u‖
H−

1
2

' ‖u‖Ȟ(Aq)
.

Since C∞(Σ;E) is dense in both Ȟ(Aq) and Ȟ(Ar), we have that Ȟ(Aq) = Ȟ(Ar)
with equivalence of norms. �

As a result of this Proposition, we simply write Ȟ(A) rather than Ȟ(Ar) and ‖·‖Ȟ(A)

for the norm.

Now, recall Tc > 0 given by Lemma 6.1, and fix a smooth function η : R → [0, 1]
to satisfy:

η(t) :=

{
1, t ∈ [0, Tc/2],

0, t ∈ [2Tc/3,∞).
(19)

Then, for u ∈ C∞(Σ;E), define the boundary extension operators by

(Eu)(t, x) := η(t)(exp(−t|Ar|)u)(x) and (E∗u)(t, x) := η(t)(exp(−t|A∗r |)u)(x)
(20)

The following lemma, which is a direct consequence of the fact that the operators
|Ar| and |A∗r | have an H∞-functional calculus, is the key observation required in
the estimates we will prove.

Lemma 6.5. For any α > 0 and µ ∈ (0, π/2), the function

ζ 7→ ψα(ζ) = ζα exp(−ζ) ∈ Ψ(Sµ)

and ˆ ∞
0

‖tα|Ar|α exp(−t|Ar|)u‖2
dt

t
' ‖u‖2

for all u ∈ L2(Σ;E).

Proof. We note that for |ζ| → 0 or |ζ| → ∞, |ψα(ζ)| → 0 and it is easy to see that
it is holomorphic. This shows that ψα ∈ Ψ(Sµ) for any µ ∈ (0, π/2). By Proposi-
tion 5.2, the ωr-sectorial invertible operators |Ar| and |A∗r | have an H∞-functional
calculus and so we obtain the required quadratic estimate in the conclusion. �

Recall that for an operator S, the graph norm is given by ‖ · ‖2S = ‖S · ‖2 + ‖ · ‖2.
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Proposition 6.6. For u ∈ C∞(Σ;E),

‖Eu‖D0
. ‖u‖Ȟ(A) and ‖E∗u‖(σ−1

0 D0)† . ‖u‖Ĥ(A∗).

Proof. First, write D0,r = σ0(∂t + Ar) and note that D0 = D0,r + σ0r. It is easy
to see that ‖u‖D0 ' ‖u‖D0,r and therefore, we use the latter norm to establish the
required estimate. The norm ‖Eu‖D0,r is then given by

‖Eu‖2D0,r
=

ˆ Tc

0

‖D0,r(η(t) exp(−t|Ar|)u)‖2 dt+

ˆ Tc

0

‖η(t) exp(−t|Ar|)u‖2 dt

since spt η ⊂ [0, Tc].

We first estimate the latter term:
ˆ Tc

0

‖η(t) exp(−t|Ar|)u‖2 dt .
ˆ ∞

0

‖ exp(−t|Ar|)u‖2 dt

=

ˆ ∞
0

‖t 1
2 |Ar|

1
2 exp(−t|Ar|) |Ar|−

1
2u‖2 dt

t

' ‖|Ar|−
1
2u‖2

' ‖u‖2
H−

1
2

≤ ‖u‖2
Ȟ
,

where we used Lemma 6.5.

Now, note that

∂t(Eu)(t, ·) = η′(t) exp(−t|Ar|)u− η(t)|Ar| exp(−t|Ar|)u,
Ar(Eu)(t, ·) = η(t)Ar exp(−t|Ar|)u. (21)

It suffices to consider the two cases u = χ±(Ar)u. If u = χ−(Ar)u, then we have
that |Ar|u = −Ar and therefore,

D0,r(Eu)(t, ·) = σ0(η′(t)− 2η(t)|Ar|) exp(−t|Ar|)u.

The norm of this quantity is dominated by two terms as follows:

ˆ ∞
0

‖D0,r(Eu)(t, ·)‖2 dt .
ˆ ∞

0

η′(t)2‖ exp(−t|Ar|)u‖2 dt+

ˆ ∞
0

4η(t)2‖|Ar| exp(−t|Ar|)u‖2 dt.

The first term is estimated as before, where as the second term is estimated by
ˆ ∞

0

‖|Ar| exp(−t|Ar|)u‖2 dt =

ˆ ∞
0

‖t 1
2 |Ar|

1
2 exp(−t|Ar|)|Ar|

1
2u‖2 dt

t

. ‖|Ar|
1
2u‖2

' ‖u‖2
H

1
2
,

again by Lemma 6.5 and Corollary 5.3.

Next, consider the case that u = χ+(Ar)u. In this case, we have that |Ar|u = Aru
and therefore,

D0,r(Eu)(t, ·) = η′(t) exp(−t|Ar|)u.
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Thus, ˆ ∞
0

‖D0,r(Eu)(t, ·)‖2 dt .
ˆ ∞

0

‖ exp(−t|Ar|)t
1
2 |Ar|

1
2 |Ar|−

1
2 ‖2 dt

t

. ‖|Ar|−
1
2u‖2

' ‖u‖2
H−

1
2
.

On combining these estimates, we obtain the first inequality.

Finally, to consider the operator E∗, as before, we write (σ−1
0 D0)†r = −(∂t − A†r)

and run the exact same argument with −A∗r in place of Ar for v ∈ C∞(Σ;E). This
gives us that ‖E∗v‖(σ−1

0 D0)† . ‖v‖Ȟ(−A∗r) and the conclusion follows on noting that

Ȟ(−A∗r) = Ĥ(A∗r). �

6.1. Maximal regularity and regularity in the cylinder. To establish the
results we obtain in this subsection, the approach taken in [10] is to use the Fourier
expansion afforded by the selfadjointness of the boundary operator and use ODE
theory to obtain the desired results. We are unable to take this approach in our
setting since our boundary operator is non-selfadjoint in general and hence the
eigenspaces need not span all of L2(Σ;E) and the generalised eigenspaces need not
be orthogonal. We use Banach-valued ODE theory instead.

Fix ρ ∈ (0, Tc), where Tc is from Lemma 6.1. Given f ∈ L2(Z[0,ρ];E), we consider
the following Banach-valued Cauchy problem

∂tW (t; f) + |Ar|W (t; f) = f(t),

lim
t→0

W (t; f) = 0.
(22)

Lemma 6.7. For a given f ∈ L2(Z[0,ρ];E)), a unique solution W (t; f) :

L2(Σ;E)→ C∞(Σ;E), t > 0 to (22) exists and it is given by

W (t; f) =

ˆ t

0

exp(−(t− s)|Ar|)f(s) ds. (23)

It satisfies the estimateˆ ρ

0

‖∂tW (t; f)‖2L2(Σ) dt+

ˆ ρ

0

‖|Ar|W (t; f)‖2L2(Σ) dt .
ˆ ρ

0

‖f(t)‖2L2(Σ) dt. (24)

The implicit constant depends on Tc but not on ρ.

Proof. First note the identification L2(Z[0,ρ];E) ∼= L2([0, ρ]; L2(Σ;E)). Since

L2(Σ;E) is a Hilbert space, it is γ-convex, which means that the Hilbert transform
is bounded on Lp(R; L2(Σ;E)) for p ∈ (1,∞), cf. Remark 2.7 in [21]. Also, we have
that |Ar| has bounded holomorphic functional calculus by Proposition 5.2. This is
equivalent to the fact that there exist K ≥ 1 and θ > 0 so that ‖|Ar|is‖ ≤ Keθ|s| for
all s ∈ R by the theorem in Section 8 in [32]. These facts verify the hypotheses of
Theorem 2.1 in [22] and therefore, we obtain that the solution W (t; f) to (22) exists
uniquely for a given f ∈ L2(Z[0,ρ];E) satisfying the estimate (24). Formula (23) is
standard. �

Using this, we define the following operator that is the crucial device for our treat-
ment of regularity.

S0,ru(t) :=

ˆ t

0

exp(−(t−s)|Ar|)χ+(Ar)u(s) ds−
ˆ ρ

t

exp(−(s−t)|Ar|)χ−(Ar)u(s) ds.

(25)
Throughout, let us fix D0,r := σ0(∂t +Ar) and (Cρu)(s) := u(ρ− s).
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Lemma 6.8. The operator S0,r satisfies the following:
(i) S0,ru(t) = W (t;χ+(Ar)u)−W (ρ− t;χ−(Ar)Cρu),

(ii) χ+(Ar)(S0,ru)(0) = χ−(Ar)(S0,ru)(ρ) = 0, and

(iii) σ−1
0 D0,rS0,r = 1.

Proof. Applying the coordinate transformation s→ ρ−s to the second term in the
definition of S0,r in (25) yields the formula in (i). Claim (ii) follows simply from
the fact that the projector commutes with the functional calculus of the operator.

For (iii), write u = u+ + u−, where u± = χ±(Ar)u. Then it suffices to show that
σ−1

0 D0,rS0,ru
± = u±. Noting that S0,ru

+(t) = W (t;u+) which solves (22), and
since |Ar| = Ar sgn(Ar),

∂tS0,ru
+(t) = −Ar sgn(Ar)S0,ru

+(t) + u+(t) = −ArS0,ru
+(t) + u+(t).

This is exactly that σ−1
0 D0,rS0,ru

+(t) = u+(t). Now, for u−, note that

∂tW (ρ− t;Cρu−) = +Ar sgn(Ar)W (ρ− t;Cρu−)− Cρu−(ρ− t)
= −ArW (ρ− t;Cρu−)− u−(t)

since χ−(Ar) sgn(Ar) = −χ−(Ar). Then,

σ−1
0 D0,rS0,ru

−(t) = −(∂t +Ar)W (ρ− t;Cρu−) = u−(t). �

Furthermore, we note that S0,r increases regularity.

Lemma 6.9. The operator S0,r maps Hk(Z[0,ρ])→ Hk+1(Z[0,ρ];E) boundedly, with
the bound independent of ρ (but dependent on Tc).

Proof. First, we consider the case k = 0, and note that

‖u‖2H1(Z[0,ρ])
'
ˆ ρ

0

‖∂tu‖2L2(Σ) dt+

ˆ ρ

0

‖|Ar|u‖2L2(Σ) dt.

Now,

‖S0,ru‖2H1(Z[0,ρ])

.
ˆ ρ

0

‖∂tW (t, χ+(Ar)u)‖2L2(Σ) dt+

ˆ ρ

0

‖|Ar|W (t, χ+(Ar)u)‖2L2(Σ) dt

+

ˆ ρ

0

‖∂tW (ρ− t, χ−(Ar)Cρu)‖2L2(Σ) dt+

ˆ ρ

0

‖|Ar|W (ρ− t, χ−(Ar)Cρu)‖2L2(Σ) dt

.
ˆ ρ

0

‖χ+(Ar)u‖2L2(Σ) dt+

ˆ ρ

0

‖χ−(Ar)Cρu‖2L2(Σ) dt

.
ˆ ρ

0

‖u‖2L2(Σ) dt = ‖u‖2L2(Z[0,ρ])
,

where the first inequality follows from (i) in Lemma 6.8, the second from equation
(24) in Lemma 6.7, and the third from noting that Cρ is an isometry of L2(Z[0,ρ];E).

For higher regularity, fix f ∈ dom(|Ar|l). Differentiating (23) we get that

∂ltW (t; f) = (−1)lW (t; |Ar|lf) +

l−1∑
m=0

∂l−1−m
t |Ar|mf(t) (26)

and

∂ltW (ρ− t; f) = (−1)l+1W (ρ− t; |Ar|lf) +

l−1∑
m=0

∂l−1−m
t |Ar|mf(t). (27)
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Moreover, since the metric on Z[0,ρ] is of product type, we have that

‖u‖Hk(Z[0,ρ]) '
k∑
l=0

ˆ ρ

0

‖∂k−lt u‖Hl(Σ) dt '
k∑
l=0

ˆ ρ

0

‖|Ar|l∂k−lt u‖L2(Σ) dt.

Therefore, when f ∈ Hk(Z[0,ρ];E), then f ∈ ∩kl=0dom(∂k−lt |Ar|l). We show that
whenever 0 ≤ l ≤ k + 1,

‖∂lt|Ar|k+1−lW (·; f)‖L2(Z[0,ρ]) . ‖f‖Hk(Z[0,ρ]).

For l = 0,

‖∂lt|Ar|k+1−lW (·; f)‖L2(Z[0,ρ]) = ‖|Ar|W (·; |Ar|kf)‖L2(Z[0,ρ])

. ‖|Ar|kf‖L2(Z[0,ρ])

. ‖f‖Hk(Z[0,ρ])

by functional calculus and (24) in Lemma 6.7. When l ≥ 1,

∂lt|Ar|k+1−lW (t; f) = (−1)l|Ar|W (t; |Ar|kf) +
l−1∑
m=0

∂l−1−m
t |Ar|k+1+m−lf(t)

by (26). Therefore,

‖∂lt|Ar|k+1−lW (·; f)‖L2(Z[0,ρ])

≤ ‖(|Ar|W (t; |Ar|kf)‖L2(Z[0,ρ]) +

l−1∑
m=0

‖∂l−1−m
t |Ar|k+1+m−lf(t)‖L2(Z[0,ρ])

. ‖|Ar|kf‖L2(Z[0,ρ]) +

l−1∑
m=0

‖f‖Hk(Z[0,ρ])

' ‖f‖Hk(Z[0,ρ]),

via (24) in Lemma 6.7 and since (l − 1−m) + (k + 1 +m− l) = k.

Replicating this argument and using (27) instead of (26) and noting that Cρ is
bounded on Hk(Σ;E), we get a similar estimate for t 7→ W (Cρ(·), f). Thus, we
obtain

‖W (·, f)‖Hk+1(Z[0,ρ]) . ‖f‖Hk(Z[0,ρ]), and

‖W (Cρ(·), f)‖Hk+1(Z[0,ρ]) . ‖f‖Hk(Z[0,ρ]). (28)

To finish the proof, let u ∈ Hk(Z[0,ρ]) and note

‖S0,ru‖Hk+1(Z[0,ρ]) ≤ ‖W (·, χ+(Ar)u)‖Hk+1(Z[0,ρ])

+ ‖W (Cρ(·), χ−(Ar)Cρu)‖Hk+1(Z[0,ρ])

. ‖χ+(Ar)u‖Hk(Z[0,ρ]) + ‖χ−(Ar)u‖Hk(Z[0,ρ])

' ‖u‖Hk(Z[0,ρ]),

where we use (i) in Lemma 6.8 in the first inequality, the estimate (28) in the
second, the fact that Cρ commutes with χ±(Ar) and is bounded on Hk(Z[0,ρ]) in

the third, and the fact that χ±(Ar) are pseudo-differential operators of order zero
in the last. �

Define

B0 := H
1
2
−(A)⊕H

1
2
+(A) (29)
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where we recall that H
1
2
±(A) = χ±(Ar)H

1
2 (Σ;E). Moreover, for k ≥ 1, define

Hk(Z[0,ρ];E;B0) :=
{
u ∈ Hk(Z[0,ρ];E) : (u(0), u(ρ)) ∈ B0

}
.

In the following proposition, we use some facts from the theory of Banach-valued
calculus. A standard reference is the book [19], but an excellent overview of this
topic is contained in [31].

Proposition 6.10. Regard D0,r as an operator on L2(Z[0,ρ];E). Then:

(i) For all u ∈ dom((D0,r)max) satisfying χ−(Ar)(u(ρ)) = 0,

(1− S0,rσ
−1
0 D0,r)u(t, ·) = exp(−t|Ar|)(χ+(Ar)u(0)).

(ii) For all k ≥ 0, the operator

D0,r : Hk+1(Z[0,ρ];E;B0)→ Hk(Z[0,ρ];F )

is an isomorphism with inverse S0,rσ
−1
0 .

Proof. Write D0,ru(s) = D0,ru
−(s) +D0,ru

+(s) where u± = χ±(Ar)u and note

σ−1
0 D0,ru

±(s) =
(
∂su
±(s)± |Ar|u±(s)

)
.

Moreover, from

S0,rσ
−1
0 D0,ru

+(t) =

ˆ t

0

exp(−(t− s)|Ar|)(∂su+(s) + |Ar|u+(s)) ds

and

∂s(exp(−(t− s)|Ar|)u+(s)) = |Ar| exp(−(t− s)|Ar|)u+(s)+exp(−(t− s)|Ar|)∂su+(s),

we obtain

S0,rσ
−1
0 D0,ru

+(t) =

ˆ t

0

∂s(exp(−(t− s)|Ar|)u+(s)) ds

= u+(t) + exp(−t|Ar|)(u+(0)), (30)

via the Banach-valued fundamental theorem of calculus.

For the remaining term, via (i) in Lemma 6.8, first observe that

S0,rσ
−1
0 D0,ru

−(t) = −
ˆ ρ−t

0

exp(−(ρ− t− s)|Ar|)Cρ(∂su−(s)− |Ar|u−(s)) ds.

(31)
Also,

∂s(exp(−(ρ− t− s)|Ar|)u−(ρ− s))
= |Ar| exp(−(ρ− t− s)|Ar|)u−(ρ− s)− exp(−(ρ− t− s)|Ar|)∂s′u−(s′)|

s′=ρ−t

= |Ar| exp(−(ρ− t− s)|Ar|)(Cρu−)(s)− exp(−(ρ− t− s)|Ar|)(Cρ∂su−)(s).

On substituting this into (31) and again using the fundamental theorem of calculus
for Banach-valued functions,

S0,rσ
−1
0 D0,ru

−(t) = −
ˆ ρ−t

0

(
|Ar| exp(−(ρ− t− s)|Ar|)(Cρu−)(s)

− ∂s(exp(−(ρ− t− s)|Ar|)(Cρu−)(s))

− |Ar| exp(−(ρ− t− s)|Ar|)(Cρu−)(s)
)
ds

= u−(t)− exp(−(ρ− t)|Ar|)u−(ρ)

= u−(t), (32)



28 CHRISTIAN BÄR AND LASHI BANDARA

where the penultimate equality follows from the assumption u−(ρ) = 0. The for-
mula in the conclusion then follows by adding (30) and (32).

Noting S0,r : Hk(Z[0,ρ];E) → Hk+1(Z[0,ρ];E) boundedly by Lemma 6.9, σ−1
0 is

smooth, and combining with what we have just proved, the second assertion follows.
�

Remark 6.11. For a general u, without assuming that χ−(Ar)(u(ρ)) = 0, the
same argument would yield the equation:

(1− S0,rσ
−1
0 D0,r)u = exp(−t|Ar|)(χ+(Ar)u(0))− exp(−(ρ− t)|Ar|)(χ−(Ar)u(ρ)).

7. The maximal domain

In this section, we use the results from Section 6 to analyse the maximal domain
of D. This done via an adaption of Lemma 4.1 in [10] (c.f. Lemma 7.2) to obtain
normal form for the operators D and D†. Using this, in Lemma 7.3, we show that
the extension operators are bounded for the operator D in place of D0. There, we
arguing in a similar way to Lemma 6.1 in [10], but using the H∞-functional calculus
instead of Fourier series. This allows us to obtain 7.4, which demonstrates the
boundedness of the boundary restriction map. Moreover, in order to move between
the operators D and D0 in the later analysis, we prove a relatively boundedness
result in Lemma 7.6.

The argument here is in the spirit of Lemma 5.2 in [10], which crucially relies on
Lemma 7.5. While this latter lemma is similar in conclusion to Lemma 5.1 in [10],
its proof deviates significantly due to the fact that A is not necessarily selfadjoint in
our setting. The proof here obtained via maximal regularity considerations on the
cylinder, which we demonstrated in Subsection 6.1. Having gathered the required
ingredients, we prove Theorems 2.3 and 2.4.

Lemma 7.1. The space C∞c (M ;E) is dense in dom(Dmax) and C∞c (M ;F ) is dense
in dom(D†max). Moreover, the operators D and D† satisfy the following Green’s
formula:

〈Du, v〉L2(M ;F ) −
〈
u,D†v

〉
L2(M ;E)

= −
〈
σ0u|Σ, v|Σ

〉
L2(Σ;F )

, (33)

for all u ∈ C∞c (M ;E) and v ∈ C∞c (M ;F ).

Proof. The proof is identical to those of Lemmas 2.6 and 6.4 in [10]. �

Lemma 7.2 (Lemma 4.1 in [10]). In coordinates Φ given by (6.1), over the cylinder
Z[0,Tc), we have that

D = σt(∂t +A+Rt),

D† = −σ∗t (∂t + Ã+ R̃t),
(34)

for any pair of adapted boundary operators A and Ã for D and D†, respectively.
The remainder terms are pseudo-differential operators of order at most one, with
coefficients depending smoothly on t and which satisfy the estimates:

‖Rtu‖L2(Σ) . t‖Au‖L2(Σ) + ‖u‖L2(Σ), and

‖R̃tv‖L2(Σ) . t‖Ãv‖L2(Σ) + ‖v‖L2(Σ).
(35)

for u ∈ C∞(Σ;E) and v ∈ C∞(Σ;F ).

Proof. Write D = σt(∂t+Pt) where Pt are a family of elliptic differential operators
of order one whose coefficients depend smoothly on t. Therefore, writingRt = Pt−A
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given such an A, we note that this is an operator whose coefficients depend smoothly
on t and is of order at most one. Noting that R0 is of order 0 and Σ is closed,

‖Rtu‖L2(Σ) . t‖u‖H1(Σ) + ‖u‖L2(Σ) . t‖Au‖L2(Σ) + ‖u‖L2(Σ)

where the second inequality follows from elliptic estimates. The conclusion for R̃t
follows in exactly the same way. �

Given that we have the normal form D = σt(∂t +A+Rt) we obtain

(σ−1D)† = −(∂t −A∗ −R†t ). (36)

Lemma 7.3. For all u ∈ C∞(Σ;E), the sections Eu, E∗u ∈ dom(Dmax) and

‖Eu‖D . ‖u‖Ȟ(A) and ‖E∗u‖(σ−1D)† . ‖u‖Ĥ(A∗).

Proof. Via a simple calculation, we obtain that

‖D(Eu)‖L2(M) . ‖Eu‖D0
+ ‖Rt(Eu)‖L2(Z[0,Tc))

.

Since we have estimated the first term on the right by Proposition 6.6, it suffices
to bound the latter term. Now, note that

‖RtEu‖L2(Σ) . ‖tAEu‖+ ‖Eu‖ ' ‖t|Ar|Eu‖+ ‖Eu‖

and therefore,ˆ ∞
0

‖RtEu‖2L2(Σ) dt .
ˆ ∞

0

η(t)2‖t|Ar| exp(−t|Ar|)u‖2L2(Σ) dt

+

ˆ ∞
0

η(t)2‖ exp(−t|Ar|)u‖2L2(Σ) dt.

.
ˆ ∞

0

‖t 3
2 |Ar|

3
2 exp(−t|Ar|)|Ar|−

1
2u‖2L2(Σ)

dt

t

+

ˆ ∞
0

‖t 1
2 |Ar|

1
2 exp(−t|Ar|)|Ar|−

1
2u‖2L2(Σ)

dt

t

. ‖u‖2
H−

1
2 (Σ)

+ ‖u‖2
H−

1
2 (Σ)

. ‖u‖2
Ȟ(A)

,

where the penultimate inequality follows from Lemma 6.5. The estimate for
‖E∗u‖(σ−1D)∗ is similar on replacing A with −A∗ and |Ar| with |A∗r | and on noting

that Ȟ(−A∗) = Ĥ(A∗). �

Using this lemma, we obtain the following.

Lemma 7.4. For all u ∈ C∞c (Z[0,Tc);E), we have the bounds

‖u|
Σ
‖Ȟ(A) . ‖u‖D and ‖u|

Σ
‖Ĥ(A∗) . ‖u‖(σ−1D)† .

Proof. From the Green’s formula (33), we have for φ ∈ C∞c (M ;E) and ψ ∈
C∞c (M ;F ),

〈Dφ,ψ〉L2(M) −
〈
φ,D†ψ

〉
L2(M)

= −〈σφ, ψ〉L2(Σ) .

On fixing v ∈ C∞(Σ;E) and setting ψ = (σ−1)∗E∗v and φ = u, we have that〈
σ−1Du, E∗v

〉
L2(M)

−
〈
u, (σ−1D)∗E∗v

〉
L2(M)

= −
〈
u|

Σ
, v
〉

L2(Σ)
,
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since v = (E∗v)|
Σ

. Therefore,

|
〈
u|

Σ
, v
〉

L2(Σ;E)
| . ‖(σ−1D)u‖‖E∗v‖+ ‖u‖‖(σ−1D)†E∗v‖

. ‖(σ−1D)u‖‖E∗v‖(σ−1D)† + ‖u‖‖E∗v‖(σ−1D)†

. ‖u‖D‖E∗v‖(σ−1D)†

. ‖u‖D‖v‖Ĥ(A∗),

where the second inequality follows from the fact that ‖ · ‖L2 . ‖ · ‖(σ−1D)† and the
last inequality from Lemma 7.3.

By taking a supremum over v ∈ C∞(Σ;E), which is dense in Ĥ(A∗), and since this
latter space is dual to Ȟ(A) via Corollary 6.3, we obtain the first estimate. The
remaining estimate is obtained by a similar calculation after making a choice of
φ = Ev and ψ = (σ−1)∗u. �

This demonstrates the well-posedness of boundary value problems and shows that
the definition of Ȟ(A) is the correct function space for considering boundary value
problems. Now we set ourselves the task of identifying the maximal domain. Unlike
in selfadjoint case, this situation is slightly more subtle and later we are forced to
calculate via a different, but equivalent norm on L2(Σ;E).

Lemma 7.5. For all ρ ∈ (0, Tc) and u ∈ C∞c (Z[0,ρ);E) with χ+(Ar)(u(0)) = 0, we
have that

‖u‖2H1 . ‖(∂t +A)u‖2 + ‖u‖2.
The implicit constant depends on Tc but not on ρ.

Proof. This statement follows from the inverse S0,r which we constructed for
(∂t +Ar) on Z[0,ρ] in Subsection 6.1. This operator satisfies S0,r : Hk(Z[0,ρ];E)→
Hk+1(Z[0,ρ];E) and in Proposition 6.10, we obtain that

(1− S0,r(∂t +Ar))v(t) = e−t|Ar|(χ+(Ar)v(0))

whenever χ−(Ar)(v(0)), χ+(Ar)(v(ρ)) ∈ H
1
2 (Σ;E). Since sptu ⊂ Z[0,ρ) the desired

conclusion follows. �

Since we need to consider the maximal domain of D on subsets of X ⊂M , we use
the notation dom(Dmax;X) to denote the maximal domain of D on X.

Lemma 7.6. There exists C1 > 0 such that for all ρ ∈ (0, Tc) and u ∈
C∞(Z[0,ρ);E),

‖(D −D0)u‖L2(Z[0,ρ);E) ≤ C1ρ‖D0u‖L2(Z[0,ρ);E) + ‖u‖L2(Z[0,ρ);E).

Moreover, if ρ < 1/C1, then dom(Dmax;Z[0,ρ)) = dom(D0,max;Z[0,ρ)).

Proof. The key is to write

D −D0 = (σt − σ0)σ−1
0 D0 + σtRt

via Lemma 7.2 and note that it suffices to estimate t‖Au‖L2(Σ) = ‖A(tu)‖L2(Σ).
But v = tu satisfies v(0) = 0 and so by Lemma 7.5, the asserted inequality follows.
The existence of C1 independent of ρ is also guaranteed by Lemma 7.5.

Now, for the maximal domains, note that for the choice of ρ < 1/C1, ‖(D −
D0)u‖ ≤ ‖D0u‖+ ‖u‖, and so we have that D−D0 and D0 are relatively bounded
with constant less than 1. Using Theorem 1.1 on page 190 in [28], and since
C∞c (Z[0,ρ);E) are dense in both dom(Dmax;Z[0,ρ)) and dom(D0,max;Z[0,ρ)) by the
completeness assumption, we conclude that D and D0 have the same maximal
domain on L2(Z[0,ρ);E). �
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Now we study and characterise the maximal domain. Put T̃c := min{Tc, 1/C1}.
Define the space

H1
D(M ;E) := dom(Dmax) ∩H1

loc(M ;E) (37)

with norm

‖u‖2H1
D

:= ‖η̃u‖2H1(M) + ‖Du‖2L2(M) + ‖u‖2L2(M), (38)

where η̃ : R→ [0, 1] is a smooth cutoff function satisfying:

η̃(t) =

{
1, t ∈ [0, T̃c/2],

0, t ∈ [2T̃c/3,∞).

With this, we obtain the following.

Lemma 7.7. Whenever u ∈ C∞c (M ;E) with χ+(Ar)(u|Σ) = 0, we have that
‖u‖D ' ‖u‖H1

D
.

Proof. The easy direction is simply given by

‖u‖2D ≤ ‖η̃u‖2H1 + ‖u‖2D = ‖u‖2H1
D
.

For the reverse direction, we have that η̃u = u for t < T̃c/2 and therefore,
χ+(A)((η̃u)|Σ) = 0. Then,

‖η̃u‖H1 . ‖η̃u‖D0
. ‖η̃u‖D . ‖u‖D,

where the first inequality follows from Lemma 7.5 and the uniform boundedness of
σ0, the second from Lemma 7.6, and the last from the fact that η̃ ∈ C∞c ([0, T̃c)).
By Lemma 7.1, we obtain that C∞c (M ;E) is dense in H1

D(M ;E) and C∞cc (M ;E) is
dense in

{
u ∈ H1

D(M ;E) : u|
Σ

= 0
}
. This completes the proof. �

We have the following corollary that identifies the minimal domain of the operator.

Corollary 7.8. We have that dom(Dmin) =
{
u ∈ H1

D(M ;E) : u|
Σ

= 0
}

. �

Before presenting the key theorem of this section, we note the following which
allows us to dualise over the boundary defining subspaces of D and D†. Recall that
σ0(x) = σD(x, τ(x)).

Lemma 7.9. Over the boundary Σ, the homomorphism field (σ−1
0 )∗ : E|

Σ
→ F |

Σ

induces an isomorphism Ĥ(A∗)→ Ȟ(Ã) where Ã is the adapted boundary operator
for D†. Moreover, β(u, v) = −〈σ0u, v〉L2(Σ;F ) for u ∈ C∞c (Σ;E) and v ∈ C∞c (Σ;F )

extends to a perfect pairing β : Ȟ(A)× Ȟ(Ã)→ C.

Proof. Fix u ∈ C∞(Σ;E). We have that (σ−1
0 )∗u ∈ C∞(Σ;F ). Then, on noting

that (σ−1
0 )∗u = (σ−1)∗(E∗u)|

Σ
,

‖(σ−1
0 )∗u‖2

Ȟ(Ã)
. ‖(σ−1)∗E∗u‖2D†

= ‖D†(σ−1)∗E∗u‖2L2(Z[0,Tc))
+ ‖(σ−1)∗E∗u‖2L2(Z[0,Tc))

. ‖E∗u‖2(σ−1D)†

. ‖u‖2
Ĥ(A∗)

,

where the first inequality is obtained from invoking Lemma 7.4 applied to the
operator D† and its associated adapted boundary operator Ã, whereas the last
inequality follows from Lemma 7.3.
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Next, let Ẽ be the extension operator associated to Ãr, that is explicitly Ẽv(t, ·) =

η(t) exp(−t|Ãr|)v. Since σ∗0v = (σ∗Ẽv)|
Σ

,

‖σ∗0v‖Ĥ(A∗) . ‖σ
∗Ẽv‖(σ−1D)† . ‖Ẽu‖D† . ‖u‖Ȟ(Ã),

where the penultimate inequality follows from the fact that (σ−1D)†σ∗ = D† and
the final inequality from applying Lemma 7.3 to D†.

Therefore, β induces a perfect pairing as stated in the conclusion since the usual
inner product in L2 induces a perfect paring between Ȟ(A) and Ĥ(A∗). �

Putting these facts together, we now obtain a proof of Theorem 2.3.

Proof of Theorem 2.3. The proof of (i) is stated in Lemma 7.1.

To prove (ii), note that Eu ∈ dom(Dmax) by Lemma 7.4. By this same lemma
and (i), the trace map is a bounded map dom(Dmax) → Ȟ(A). Since E : Ȟ(A) →
dom(Dmax) is a right inverse of the trace map, surjectivity follows.

We prove (iii). Clearly, if u ∈ H1
loc(M ;E) then u|

Σ
∈ H

1
2 (Σ;E) by the trace

theorem.

For the converse, let uΣ ∈ C∞(Σ;E). Here, we resort to the H∞-functional calculus
of |Ar|. Then u+

Σ := χ+(Ar)(u|Σ) ∈ C∞(Σ;E). Now

‖Eu+
Σ‖

2
H1

D
= ‖η̃Eu+

Σ‖
2
H1 + ‖Eu+

Σ‖
2
L2 + ‖DEu+

Σ‖
2
L2

.
ˆ T̃c

0

‖(η̃Eu+
Σ)′‖2L2(Σ) dt+

ˆ T̃c

0

‖|Ar|Eu+
Σ‖

2
L2(Σ) dt,

since DEu+
Σ = (η′(t) + η(t)r) exp(−t|Ar|)u+

Σ given that χ−(Ar)u
+
Σ = 0 and also

since ‖Eu+
Σ‖ . ‖|Ar|Eu

+
Σ‖ by the invertibility of |Ar|. Thus,

ˆ T̃c

0

‖(η̃Eu+
Σ)′‖2L2(Σ) dt .

ˆ T̃c

0

‖(Eu+
Σ)′‖2L2(Σ)dt+

ˆ T̃c

0

‖Eu+
Σ‖

2
L2(Σ)dt

.
ˆ T̃c

0

‖η′ exp(−t|Ar|)u+
Σ‖

2
L2(Σ)dt+

ˆ T̃c

0

‖η|Ar| exp(−t|Ar|)u+
Σ‖

2
L2(Σ)dt

.
ˆ ∞

0

‖|Ar| exp(−t|Ar|)u+
Σ‖

2
L2(Σ).

On noting that ‖|Ar|Eu+
Σ‖2L2(Σ) ≤ ‖|Ar| exp(−t|Ar|)u+

Σ‖2L2(Σ), we obtain

‖Eu+
Σ‖

2
H1

D
.
ˆ ∞

0

‖|Ar| exp(−t|Ar|)u+
Σ‖

2
L2(Σ) dt

.
ˆ ∞

0

‖t 1
2 |Ar|

1
2 exp(−t|Ar|)|Ar|

1
2u+

Σ‖
2
L2(Σ)

dt

t

. ‖|Ar|
1
2u+

Σ‖
2

' ‖u+
Σ‖

2

H
1
2
,

where the third inequality follows from Lemma 6.5. Thus E restricts to a bounded
map χ+(A)H

1
2 (Σ;E)→ H1

D(M ;E).

Now let u ∈ dom(Dmax) such that uΣ := u|
Σ
∈ H

1
2 (Σ;E). Then u − Eu+

Σ ∈
dom(Dmax) and χ+(Ar)(u− Eu+

Σ) = 0. By Lemma 7.7, we obtain that u− Eu+
Σ ∈

H1
D(M ;E). Since Eu+

Σ ∈ H1
D(M ;E) we have that u ∈ H1

D(M ;E).
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The assertions for the operator D† mirrors this argument exactly, but with A
replaced by Ã, the adapted boundary operator for D† on F , and moreover, the
integration by parts formula follows directly. �

Lemma 7.10. There exists TR < Tc such that

(D − σ0R0) : Hk+1(Z[0,TR];E;B0)→ Hk(Z[0,TR];F )

is an isomorphism.

Proof. Note that from Lemma 7.2, we obtain that for any given ε > 0, there exists
a ρ < Tc such that

‖D0,r − (D − σ0R0)u‖Hk(Z[0,ρ]) ≤ ε‖u‖Hk+1(Z[0,ρ]), (39)

for u ∈ Hk+1(Z[0,ρ];E). Moreover, as noted in Lemma 6.9, the norm on the operator

S0,r mapping Hk(Z[0,ρ];E) → Hk+1(Z[0,ρ];E) is independent of ρ. On letting this
constant be C, choose ε = 1/2C and let TR be the corresponding ρ. We conclude
the proof by combining this with (39). �

Using this lemma, we prove the following main theorem, Theorem 2.4, of this
section.

Proof of Theorem 2.4. The inclusion

dom(Dmax) ∩Hk+1
loc (M ;E)

⊂
{
u ∈ dom(Dmax) : Du ∈ Hk

loc(M ;F ) and χ+(Ar)(u|Σ) ∈ Hk+ 1
2 (Σ;E)

}
is immediate. So we prove the opposite containment. Assume that u ∈ dom(Dmax)

with Du ∈ Hk
loc(M ;F ) and that χ+(Ar)u|Σ ∈ Hk+ 1

2 (Σ;E).

Multiplying with a cutoff function, interior elliptic regularity allows us to assume
that sptu ⊂ Z[0,ρ) for, say ρ := min{1/(2C1), TR}, where C1 is the constant in
Lemma 7.6 and TR is given by Lemma 7.10. By induction on k we can further
assume that u ∈ Hk

loc(M ;E).

Since Z[0,ρ] is compact, u ∈ Hk(Z[0,ρ];E) and Du ∈ Hk(Z[0,ρ];F ). By our choice of
ρ, dom((D0,r)max;Z[0,ρ]) = dom(Dmax;Z[0,ρ]). As u|{ρ}×Σ = 0, we apply Proposi-

tion 6.10 to write

u(t) = S0,rσ
−1
0 D0,ru(t) + exp(−t|Ar|)(χ+(Ar)u(0)) =: u0(t) + u1(t).

For 0 ≤ l ≤ k + 1,

‖∂lt|Ar|k+1−lu1‖2L2(Z[0,ρ])
= ‖|Ar|k+1u1‖2L2(Z[0,ρ])

=

ˆ ρ

0

‖t 1
2 |Ar|

1
2 exp(−t|Ar|)|Ar|k+ 1

2 (χ+(Ar)u(0))‖2L2(Σ)

dt

t

. ‖|Ar|k+ 1
2 (χ+(Ar)u(0))‖2L2(Σ)

by Lemma 6.5. Thus, we conclude that u1 ∈ Hk+1(Z[0,ρ];E).

Moreover, σ0R0 is of order 0 and hence bounded as an operator Hk(Z[0,ρ];E) →
Hk(Z[0,ρ];E). Therefore

(D − σ0R0)u0 = (D − σ0R0)u− (D − σ0R0)u1 ∈ Hk(Z[0,ρ];F ).

By the construction of S0,r, we have u0 ∈ Hk(Z[0,ρ];E;B0). Again by our choice of
ρ, Lemma 7.10 implies that

(D − σ0R0) : Hk+1(Z[0,TR];E;B0)→ Hk(Z[0,TR];F )
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is an isomorphism. Therefore, there is a ũ0 ∈ Hk+1(Z[0,TR];E;B0) such that (D −
σ0R0)ũ0 = (D − σ0R0)u0. However, we have that ũ0 = u0 because (D − σ0R0) :
Hk(Z[0,TR];E;B0) → Hk−1(Z[0,TR];F ) is injective. Therefore, u ∈ Hk+1(Z[0,ρ];E).

�

8. Boundary value problems

In this section, we obtain a generalisation of statements in Section 7 in [10]. The
results of the previous sections can be considered a suitable substitute for those of
Sections 4–6 in [10] which furnishes us with the ability to define boundary conditions
as well as consider a range of significant questions surrounding them. We begin with
Subsection 8.1, due to Theorem 2.3, we are able to formulate notions of boundary
conditions quite simply mimicking [10]. We are then also able to understand the
associated closed operators to boundary conditions as well as all closed extensions
of the minimal operator via boundary conditions. Moreover, we also obtain a
description of the adjoint of an operator with a particular boundary condition via
the formal adjoint with an associated adjoint boundary condition.

Then, in Subsection 8.2, we move on to the proof of Theorem 2.9, which is at the
heart of this section. Despite the tools made available to us in the previous sections,
establishing this theorem is considerably harder than the version found in [10] as
Theorem 7.11. There, the authors were able to enjoy the luxury of orthogonality
due to the selfadjointness of their adapted boundary operators. It is precisely this
which we cannot afford and which is at the heart of our complications. A particular
aspect of our troubles lie in the notion of an elliptic decomposition of a boundary
condition with respect to an admissible cut parameter. In [10], this definition
involved four subspaces, but in our more general case, there are eight. Therefore,
much of the effort in this section is to prove Theorem 2.9, which although is similar
in spirit to the proof of Theorem 7.11, is quite different in implementation.

We also consider boundary regularity in Subsection 8.3, again taking inspiration
from Section 7.4 in [10]. There, we provide a proof of Theorem 2.12, which is the
corresponding replacement and generalisation for Theorem 7.17 in [10].

An important class of boundary conditions are the so-called local and pseudo-local
boundary conditions. We consider these in Subsection 8.4 and provide a proof of
Theorem 2.15. This theorem generalises Theorem 7.20 in [10], with some of the
directions argued exactly the same as they are simply consequences of well known
results by Hörmander.

8.1. Boundary conditions and closed extensions. For a subspace U ⊂
∪r∈RHr(Σ;E), let Us be the closure of U ∩ Hs(Σ;E) in Hs(Σ;E), and similarly

define Ǔ and Û .

We say B ⊂ Ȟ(A) is a boundary condition for D if it is a closed subspace in
Ȟ(A). This is justified as a consequence of (ii) in Theorem 2.3. The domains of the
associated operators are given by:

dom(DB,max) =
{
u ∈ dom(Dmax) : u|

Σ
∈ B

}
dom(DB) =

{
u ∈ H1

D(M,E) : u|
Σ
∈ B

}
.

Proposition 8.1. We have that:
(i) If Dc is a closed extension of D between Dcc and Dmax, then there exists a

boundary condition B ⊂ Ȟ(A) such that Dc = DB,max.

(ii) A boundary condition B is contained in H
1
2 (Σ;E) if and only if DB =

DB,max. In this case, ‖u‖H1
D
' ‖u‖D for all u ∈ dom(DB).
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Proof. By Theorem 2.3 (ii) the restriction map induces an isomorphism
dom(Dmax)/dom(Dmin) → Ȟ(A). Since Dc is closed, dom(Dc) is a closed sub-
space of dom(Dmax) and B is its image in Ȟ(A).

The first part of assertion (ii) follows from Theorem 2.3 (iii). As to the estimate,
we assume w.l.o.g. that sptu ⊂ Z[0,ρ] for ρ so small that Lemma 7.6 and Proposi-
tion 6.10 are valid. Then

‖u‖H1 ≤ ‖S0,rσ
−1
0 D0,ru‖H1 + ‖ exp(−t|Ar|)χ+(Ar)u|Σ‖H1

. ‖D0,ru‖L2 + ‖χ+(Ar)u|Σ‖
H

1
2

. ‖u‖D + ‖u|Σ‖Ȟ(A)

. ‖u‖D. �

Define:

B∗ :=
{
v ∈ Ȟ(Ã) : 〈σ0u, v〉 = 0 ∀u ∈ B

}
. (40)

The subspace B∗ is called the adjoint boundary condition and this nomenclature is
justified by the following proposition.

Proposition 8.2. We have that

dom((DB,max)∗) =
{
v ∈ dom((D†)max) : v|

Σ
∈ B∗

}
.

If further B ⊂ H
1
2 (Σ;E), then σ∗0B

∗ = B⊥,H
− 1

2 ∩ Ĥ(A∗) where

B⊥,H
− 1

2 :=
{
w ∈ H−

1
2 (Σ;E) : 〈u,w〉 = 0 ∀u ∈ B

}
.

Here 〈·, ·〉 denotes the pairing between H
1
2 (Σ;E) and H−

1
2 (Σ;E), that is, B⊥,H

− 1
2

is the annihilator of B in H−
1
2 (Σ;E).

Proof. Note (DB,max)∗ ⊂ (Dcc)
∗ = (D†)max where (DB,max)∗ is the adjoint of

DB,max in L2(M ;E). This satisfies the equation

〈DB,maxu, v〉 = 〈u, (DB,max)∗v〉

for all u ∈ dom(DB,max) and v ∈ dom((DB,max)∗). Therefore, by (2) in Theo-
rem 2.3, we have that 〈

σ0u|Σ, v|Σ
〉

= 0,

where we recall that this is the pairing between Ȟ(A) and Ȟ(Ã) from Lemma 7.9.
Thus, the characterisation of the domain of (DB,max)∗ as given in the conclusion
follows.

Now, assume that B ⊂ H
1
2 (Σ;E). Then 〈·, ·〉 agrees with the pairing H

1
2 (Σ;E) ×

H−
1
2 (Σ;E)→ C. Thus,

σ∗0B
∗ =

{
σ∗0v ∈ Ĥ(A∗) : v ∈ Ȟ(Ã) and 〈σ0u, v〉 = 0 ∀u ∈ B

}
=
{
w ∈ Ĥ(A∗) : 〈u,w〉 = 0 ∀u ∈ B

}
= B⊥,H

− 1
2 ∩ Ĥ(A∗). �

8.2. Proof of Theorem 2.9. Our goal in this subsection is to prove Theorem 2.9,
which states the equivalence of several criteria for ellipticity of a boundary condi-
tion.

We proceed by first proving the equivalence between (i)–(iv). Indeed, it is immedi-
ate that in Theorem 2.9 assertion (iii) implies (iv) and that (i) implies (ii).
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Proof of (iv) ⇒ (i) and equation (3) in Theorem 2.9. It suffices to prove (3). The

annihilators in H−
1
2 (Σ;E) of the following subspaces of H

1
2 (Σ;E) are given by

W
⊥,H−

1
2

± = W ∗∓ ⊕ (V ∗−)−
1
2 ⊕ (V ∗+)−

1
2 ,{

v + gv : v ∈ V
1
2
−

}⊥,H− 1
2

= W ∗− ⊕W ∗+ ⊕
{
v − g∗v : v ∈ (V ∗+)−

1
2

}
.

Since, by assumption, g restricts to a map V
1
2
− → V

1
2

+ the dual map naturally

extends to a map (V ∗+)−
1
2 → (V ∗−)−

1
2 . From B = W+⊕

{
v + gv : v ∈ V

1
2
−

}
we have

B⊥,H
− 1

2 = W
⊥,H−

1
2

+ ∩
{
v + gv : v ∈ V

1
2
−

}⊥,H− 1
2

= W ∗− ⊕
{
v − g∗v : v ∈ (V ∗+)−

1
2

}
.

Since g∗ preserves H
1
2 -regularity,

B⊥,H
− 1

2 ∩ Ĥ(A∗) = W ∗− ⊕
{
v − g∗v : v ∈ (V ∗+)

1
2

}
.

From Proposition 8.2 we recall that σ∗0B
∗ = B⊥,H

− 1
2 ∩ Ĥ(A∗) which concludes the

proof. �

Next, we demonstrate that (ii) implies (iii). This is considerably more involved than
the proof of the corresponding result in the selfadjoint case given as Theorem 7.11
in [10].

Lemma 8.3. Suppose W± and V± are mutually complementary subspaces such
that χ±(Ar)L

2(Σ;E) = W± ⊕ V± and that W± are finite dimensional. Let P± :
L2(Σ;E) → V± and Q± : L2(Σ;E) → W± be associated projectors that respect the
decomposition

L2(Σ;E) = W− ⊕ V− ⊕W+ ⊕ V+.

Then, writing W ∗± := Q∗±L2(Σ;E) and V ∗± := P ∗±L2(Σ;E), we have that:
(i) V ∗− ⊕W ∗− = χ−(A∗r)L

2(Σ;E) and V ∗+ ⊕W ∗+ = χ+(A∗r)L
2(Σ;E),

(ii) ker(P ∗±) = V ∗∓ ⊕W ∗− ⊕W ∗+ and ker(Q∗±) = W ∗∓ ⊕ V ∗− ⊕ V ∗+,
(iii) dim(W ∗±) = dim(W±).

Proof. From the observation W± ∩ V± = {0}, we have

ker(P± +Q±) = ker(P±) ∩ ker(Q±) = W∓ ⊕ V∓ = χ∓(Ar)L
2(Σ;E).

This proves χ±(Ar) = P± + Q±. Therefore, on taking adjoints, we obtain asser-
tion (i).

Now, note that 1 = P ∗− + Q∗− + P ∗+ + Q∗+ and by the observation ker(P ∗±) =
(1− P ∗∓)L2(Σ;E) and ker(Q∗±) = (1−Q∗∓)L2(Σ;E), we obtain (ii)

Since the ranks of Q± and Q∗± coincide, assertion (iii) holds. �

Lemma 8.4. Let V± and W± be closed subspaces of L2(Σ;E) as Lemma 8.3 with

corresponding projectors P± and Q±. In addition, assume W± ⊂ H
1
2 (Σ;E). Then,

(i) V
1
2
± = V± ∩H

1
2 (Σ;E) are closed in H

1
2 (Σ;E) and

H
1
2 (Σ;E) = V

1
2
− ⊕W− ⊕ V

1
2

+ ⊕W+,

(ii) the spaces V
1
2
± are dense in V±,

(iii) the projectors P± restrict to bounded projectors

P
1
2
± : H

1
2 (Σ;E)→ V

1
2
± .
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If W ∗± ⊂ H
1
2 (Σ;E), the same conclusions hold for V ∗±, W ∗± and P ∗± and Q∗± in place

of V±, W±, P±, Q±.

Proof. Since χ±(Ar) = P± + Q±, we have that P± = χ±(Ar) − Q±. The first
operator is a pseudo-differential operator of order 0 and the latter has range in

H
1
2 (Σ;E) and finite rank. Hence, P

1
2
± : H

1
2 (Σ;E) → H

1
2 (Σ;E) is bounded. This

shows (iii).

Let v ∈ V±. By density of H
1
2 (Σ;E) in L2(Σ;E), there exists vn ∈ H

1
2 (Σ;E) such

that vn → v. Then P±vn → P±v = v. This shows (ii).

The spaces W± and V
1
2
± are ranges of H

1
2 -bounded projectors and hence closed in

H
1
2 (Σ;E). For u ∈ H

1
2 (Σ;E),

u = P−u+Q−u+ P+u+Q+u

with P±u ∈ V
1
2
± as we have proved earlier. This shows (i). �

Lemma 8.5. Let X be one of Ȟ(A), Ĥ(A), Ȟ(A∗) or Ĥ(A∗) and let Z ⊂ X be a

closed subspace of X. If Z ⊂ H
1
2 (Σ;E), then it is a closed subspace of H

1
2 (Σ;E)

and moreover, ‖u‖
H

1
2
' ‖u‖X .

Proof. Set Y = H
1
2 (Σ;E) and note that we have ‖u‖X . ‖u‖

H
1
2

. All possible

choices of X are Banach spaces and hence, we can apply Lemma A.2 to obtain that
(Z, ‖ · ‖

H
1
2

) is a Banach space. Thus, this satisfies the hypothesis of Lemma A.3

and hence, we obtain the desired conclusion. �

Define the following spaces:

W ∗− := χ−(A∗r)L
2(Σ;E) ∩ σ∗0B

∗ W− := χ−(Ar)W
∗
−

W+ := χ+(Ar)L
2(Σ;E) ∩B W ∗+ := χ+(A∗r)W+

V ∗− := χ−(A∗r)L
2(Σ;E) ∩ (W ∗−)⊥ V− := χ−(Ar)V

∗
−

V+ := χ+(Ar)L
2(Σ;E) ∩W⊥+ V ∗+ := χ+(A∗r)V+.

(41)

Proposition 8.6. Let B and B∗ be as in Theorem 2.9 (ii). Then, the following
properties hold for the spaces listed in (41):

(i) they are all closed subspaces of L2(Σ;E),
(ii) χ±(Ar)L

2(Σ;E) = V± ⊕W± and χ±(A∗r)L
2(Σ;E) = V ∗± ⊕W ∗±,

(iii) W±,W
∗
± are finite dimensional and contained in H

1
2 (Σ;E),

(iv) χ−(Ar)B and χ+(A∗r)σ
∗
0B
∗ are closed subspaces of H

1
2 (Σ;E).

Proof. We first prove (iii) and (iv). For u ∈ B,

‖u‖
H

1
2
' ‖u‖Ȟ(A) ' ‖χ

−(Ar)u‖
H

1
2

+ ‖χ+(Ar)u‖
H−

1
2
.

The first equivalence follows from Lemma 8.5 by the assumption that B is a bound-
ary condition (i.e. B ⊂ Ȟ(Ar) is closed) and since B ⊂ H

1
2 (Σ;E).

Set X = B with norm ‖ · ‖X = ‖ · ‖
H

1
2

and so we have that this is a Banach space

by Lemma 8.5. Let Y = χ−(Ar)H
1
2 (Σ;E) and Z = χ+(Ar)H

− 1
2 (Σ;E). Each of

these are Banach spaces. Moreover, χ+(Ar)|B : B → H
1
2 (Σ;E) ↪→ H−

1
2 (Σ;E) is

a compact map since the latter embedding is compact. By Proposition A.8, we
obtain that χ−(Ar)|B has closed range and finite dimensional kernel. Now, one

easily sees that ker(χ−(Ar)|B) = B ∩ χ+(Ar)L
2(Σ;E).
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To obtain the corresponding conclusion for W ∗−, we note that for v ∈ σ∗0B
∗,

‖v‖
H

1
2
' ‖v‖Ĥ(A∗) ' ‖χ

−(A∗r)v‖H− 1
2

+ ‖χ+(A∗r)v‖H 1
2
.

By invoking Proposition A.8 with X = σ∗0B
∗ with norm ‖ · ‖X = ‖ · ‖

H
1
2

, Y =

χ+(A∗r)H
1
2 (Σ;E), and Z = χ−(A∗r)H

− 1
2 (Σ;E), we obtain that χ+(A∗r)|σ∗0B∗ has

closed range and finite dimensional kernel.

This proves (iv) and that W+ and W ∗− are finite dimensional and contained in

H
1
2 (Σ;E). The latter fact for W− and W ∗+ is simply from χ−(Ar) and χ+(A∗r) both

being pseudo-differential operators of order zero.

Observing that V+ is the orthogonal complement of W+ in χ+(Ar)L
2(Σ;E) shows

(i)–(iii) for V+ and W+ and similarly for V ∗− and W ∗−. Lemma 5.1 (iv) then implies
these assertions for the remaining spaces. �

Recall from before that we use the notation X⊥,Y to mean the annihilator of X in
the space Y .

Lemma 8.7. Let B and B∗ be as in Theorem 2.9 (ii). Then the spaces

χ−(Ar)B = V
1
2
− and χ+(A∗r)σ

∗
0B
∗ = (V ∗+)

1
2 .

Proof. Let Ṽ
1
2
− = χ−(Ar)B. We prove the assertion in the following steps.

a) Claim: W ∗− = χ−(Ar)
∗H−

1
2 (Σ;E) ∩B⊥,H

− 1
2 .

The containment ⊂ is clear by Proposition 8.2, so we prove the reverse con-

tainment. Fix u ∈ χ−(A∗r)H
− 1

2 (Σ;E) ∩ B⊥,H
− 1

2 . Then u ∈ Ĥ(A∗) and hence

u ∈ B⊥,H
− 1

2 ∩Ĥ(A∗) = σ∗0B
∗. By assumption, σ∗0B

∗ ⊂ H
1
2 (Σ;E) and therefore,

χ−(Ar)
∗H−

1
2 (Σ;E) ∩B⊥,H

− 1
2 ⊂ χ−(A∗r)L

2(Σ;E) ∩ σ∗0B
∗ = W ∗−. X

b) Claim: W ∗− = (Ṽ
1
2
− )⊥,χ

−(A∗r)H−
1
2 .

Using a) note that:

w ∈W ∗− ⇐⇒ w ∈ χ−(A∗r)H
− 1

2 (Σ;E) and 〈w, b〉 = 0, ∀b ∈ B

⇐⇒ w ∈ χ−(A∗r)H
− 1

2 (Σ;E) and
〈
χ−(A∗r)w, b

〉
= 0, ∀b ∈ B

⇐⇒ w ∈ χ−(A∗r)H
− 1

2 (Σ;E) and
〈
w,χ−(Ar)b

〉
= 0, ∀b ∈ B

⇐⇒ w ∈ χ−(A∗r)H
− 1

2 (Σ;E) and 〈w, v〉 = 0, ∀v ∈ Ṽ
1
2
− X

c) Claim: Ṽ
1
2
− = (W ∗−)⊥,χ

−(Ar)H
1
2 .

By Lemma 6.2, we have that χ−(A∗r)H
− 1

2 (Σ;E) ∼= (χ−(Ar)H
1
2 (Σ;E))∗, and

therefore by b) and Proposition 8.6 (iv):

(W ∗−)⊥,χ
−(Ar)H

1
2 =

(
(Ṽ

1
2
− )⊥,χ

−(A∗r)H−
1
2

)⊥,χ−(Ar)H
1
2

= (Ṽ
1
2
− )

χ−(Ar)H
1
2

= Ṽ
1
2
− . X

d) Claim: (W ∗−)⊥,χ
−(Ar)H

1
2 = (W ∗−)⊥,L

2 ∩ χ−(Ar)L
2(Σ;E) ∩H

1
2 (Σ;E).

This is clear since χ−(Ar)L
2(Σ;E) ∩H

1
2 (Σ;E) = χ−(Ar)H

1
2 (Σ;E). X
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e) Claim: (W ∗−)⊥,L
2 ∩χ−(Ar)L

2(Σ;E) = χ−(Ar)
[
(W ∗−)⊥,L

2 ∩ χ−(A∗r)L
2(Σ;E)

]
.

Let u ∈ χ−(Ar)
[
(W ∗−)⊥,L

2 ∩ χ−(A∗r)L
2(Σ;E)

]
. That is, u = χ−(Ar)u

′, where

u′ ∈ (W ∗−)⊥,L
2 ∩ χ−(A∗r)L

2(Σ;E). Then, for w ∈W ∗−,

〈u,w〉 =
〈
χ−(Ar)u

′, w
〉

=
〈
u′, χ−(A∗r)w

〉
= 〈u′, w〉 = 0,

which shows that u ∈ (W ∗−)⊥,L
2 ∩ χ−(Ar)L

2(Σ;E).

For the reverse inclusion, let u ∈ (W ∗−)⊥,L
2 ∩ χ−(Ar)L

2(Σ;E). Then by
Lemma 5.1 (iv), we have some u∗ ∈ χ−(A∗r)L

2(Σ;E) such that u = χ−(Ar)u
∗.

Therefore, for w ∈W ∗−

0 = 〈u,w〉 =
〈
χ−(Ar)u

∗, w
〉

=
〈
u∗, χ−(A∗r)w

〉
= 〈u∗, w〉

and therefore, u∗ ∈ χ−(A∗r)L
2(Σ;E) ∩ (W ∗−)⊥,L

2

and u = χ−(Ar)u
∗. X

f) Claim: χ−(Ar)B = V− ∩H
1
2 (Σ;E).

χ−(Ar)B = Ṽ
1
2
−

= (W ∗−)⊥,χ
−(Ar)H

1
2

= (W ∗−)⊥,L
2

∩ χ−(Ar)L
2(Σ;E) ∩H

1
2 (Σ;E)

= χ−(Ar)
[
(W ∗−)⊥,L

2

∩ χ−(A∗r)L
2(Σ;E)

]
∩H

1
2 (Σ;E)

= χ−(Ar)V
∗
− ∩H

1
2 (Σ;E)

= V− ∩H
1
2 (Σ;E),

where the second is c), the third is d), and the fourth is e). X
Since χ−(Ar)B is closed in H

1
2 (Σ;E) by Proposition 8.6 (iv), we have that V− ∩

H
1
2 (Σ;E) = V

1
2
− .

The proof of χ+(A∗r)σ
∗
0B
∗ = (V ∗+)

1
2 is identical, with W+ in place of W ∗−, χ+(A∗r)

in place of χ−(Ar) and χ+(Ar) in place of χ−(A∗r). �

Lemma 8.8. Let B and B∗ be as in Theorem 2.9 (ii). Then the following hold:

(i) (V ∗±)−
1
2 = W

⊥,χ±(A∗r)H−
1
2

± ,

(ii) V ∗± = (V ∗±)−
1
2 ∩ L2(Σ;E),

(iii) χ±(A∗r)H
− 1

2 (Σ;E) = (V ∗±)−
1
2 ⊕W ∗±, and

(iv) the L2-inner product induces a perfect pairing 〈·, ·〉 : (V ∗±)−
1
2 × V

1
2
± → C.

Proof. It is immediate that (V ∗−)−
1
2 = W

⊥,χ−(A∗r)H−
1
2

− from the definition of V ∗−.

For the other case, let (Ṽ ∗+)−
1
2 := W

⊥,χ+(A∗r)H−
1
2

+ . On mirroring the argument of e)
in the proof of Lemma 8.7 replacing χ−(Ar) by χ+(A∗r), W

∗
− by W+ and χ−(A∗r)

by χ+(Ar), we obtain that V ∗+ = (Ṽ ∗+)−
1
2 ∩ L2(Σ;E). By density of V ∗+ in (V ∗+)−

1
2 ,

we obtain that (V ∗+)−
1
2 = W

⊥,χ+(A∗r)H−
1
2

+ .

By Proposition 8.6 (i), V ∗± is a closed subspace of L2(Σ;E), hence (ii) holds by
definition.

From Proposition 8.6 (ii) we have V ∗±⊕W ∗± = χ±(A∗r)L
2(Σ;E). Since W ∗± is finite-

dimensional by Proposition 8.6 (iii), completion in H−
1
2 (Σ;E) yields (iii).
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Recall by Lemma 6.2 that the L2-inner product induces a perfect pairing 〈·, ·〉 :

χ±(A∗r)H
− 1

2 (Σ;E)×χ±(Ar)H
1
2 (Σ;E)→ C. Write χ±(Ar)H

1
2 (Σ;E) = (V±)

1
2 ⊕W±

and χ±(A∗r)H
− 1

2 (Σ;E) = (V ∗±)−
1
2 ⊕W ∗±. Now (i) implies (iv). �

Proof of (ii) ⇒ (iii) in Theorem 2.9. We prove that (ii) implies (iii), and consider
the spaces in (41). By Proposition 8.6, they satisfy (i) and (ii) in Definition 2.6.

Moreover, by Lemma 8.7, V
1
2
− = χ−(Ar)B and (V ∗+)

1
2 = χ+(A∗r)σ

∗
0B
∗. Define the

maps

X− = χ−(Ar)|B∩W⊥+ : B ∩W⊥+ → χ−(Ar)B, and

X∗+ = χ+(A∗r)|σ∗0B∗∩(W∗−)⊥
: σ∗0B

∗ ∩ (W ∗−)⊥ → χ+(A∗r)σ
∗
0B
∗.

We claim that both these maps are bounded and invertible isomorphisms onto their
ranges. For that, let x ∈ χ−(Ar)B, that is, x = χ−(Ar)b for some b ∈ B. Then,

x = χ−(Ar)b = χ−(Ar)(PW⊥+ ,W+
b+ PW+,W⊥+

b) = χ−(Ar)PW⊥+ ,W+
b

since χ−(Ar) ◦ PW+,W⊥+
= 0. Now,

PW⊥+ ,W+
b = b− PW+,W⊥+

b ∈ B ∩W⊥+
because W+ ⊂ B. This shows that X− is surjective.

To show that it is injective, let u ∈ B ∩W⊥+ such that 0 = X−u. That is, u ∈
ker(χ−(Ar)) = χ+(Ar)L

2(Σ;E) and putting this together, we have that

u ∈ χ+(Ar)L
2(Σ;E) ∩B ∩W⊥+ = W+ ∩W⊥+ = {0} .

Thus, we have a continuous bijection between two closed subspaces and so by the
open mapping theorem, the inverse is also continuous. The assertion for X∗+ follows
by a similar argument.

Next, put

P+ := PV+,W−⊕V−⊕W+
, P ∗− := PV ∗−,W∗−⊕V ∗+⊕W∗+ ,

Q+ := PW+,W−⊕V−⊕V+
, Q∗− := PW∗−,V ∗−⊕V ∗+⊕W∗+ .

Observe that P+ + Q+ = χ+(Ar) and P ∗− + Q∗− = χ−(A∗r). We define the maps
g0 : χ−(Ar)B → V+ and h0 : χ+(A∗r)σ

∗
0B
∗ → V ∗− by

g0 := P+ ◦ (X−)−1 and h0 := P ∗− ◦ (X∗+)−1.

By Lemma 8.4, we have that P+ and P ∗− restrict to H
1
2 -bounded maps on H

1
2 (Σ;E)

and therefore, it is clear that g0(V
1
2
− ) ⊂ V

1
2

+ and h0((V ∗+)
1
2 ) ⊂ (V ∗−)

1
2 .

Now, we show that B = W+ ⊕
{
v + g0v : v ∈ V

1
2
−

}
. It is clear that W+ ⊂ B by

definition, so fix v ∈ V
1
2
− = χ−(Ar)B. Then, for u := (X−)−1v ∈ B ∩W⊥+ we have

v + g0v = v + P+(X−)−1v

= X−u+ P+u

= χ−(Ar)u+ P+u+Q+u−Q+u

= χ−(Ar)u+ χ+(Ar)u−Q+u

= u−Q+u.

Since Q+u ∈W+ ⊂ B, we have v + g0v ∈ B. That shows the containment “⊃”.

For the reverse, take b ∈ B, and note that b = b⊥ + b+, where b⊥ ∈ B ∩W⊥+ and

b+ ∈W+. Then, v := X−b
⊥ ∈ χ−(Ar)B and therefore,

b⊥ = χ−(Ar)(X−)−1v + P+(X−)−1v +Q+(X−)−1v = v + g0v +Q+(X−)−1v.



BVPS FOR GENERAL FIRST-ORDER ELLIPTIC DIFFERENTIAL OPERATORS 41

But Q+(X−)−1v ∈ W+ so b = w+ + (v + g0v) where w+ = (b+ + Q+(X−)−1v) ∈
W+. This shows B = W+ ⊕

{
v + g0v : v ∈ V

1
2
−

}
. A similar argument shows that

σ∗0B
∗ = W ∗− ⊕

{
u+ h0u : u ∈ (V ∗+)

1
2

}
.

Let g∗0 : (V ∗+)−
1
2 → (V ∗−)−

1
2 the map adjoint to g0, characterised by 〈v, g∗0u〉 =

〈g0v, u〉 for u ∈ (V ∗+)−
1
2 and v ∈ V

1
2
− . We prove g∗0((V ∗+)

1
2 ) ⊂ (V ∗−)

1
2 by showing

g∗0 = −h0 on (V ∗+)
1
2 , since we have already shown that h0((V ∗+)

1
2 ) ⊂ (V ∗−)

1
2 . Fix u ∈

(V ∗+)
1
2 and take v ∈ V

1
2
− . From the decompositions of B and σ∗0B

∗ and 〈B,σ∗0B∗〉 =〈
V−, V

∗
+

〉
=
〈
V ∗−, V+

〉
= 0, we obtain that 0 = 〈v + g0v, u+ h0u〉 = 〈g0v, u〉 +

〈v, h0u〉. Hence,

〈v, g∗0u〉 = 〈v,−h0u〉

and since V
1
2
− is dense in V−, we obtain that g∗0u = −h0u. Similarly, we have

g0v = −h∗0v for all v ∈ V
1
2
− .

It remains to show that g0 can be extended to a continuous map V− → V+. We

have already seen that −h∗0 extends g0 to a continuous map (V−)−
1
2 → (V+)−

1
2 . In

order to show −h∗0(V−) ⊂ V+ and (−h∗0)|V− : V− → V+ is bounded it suffices to
prove

V± = [(V±)
1
2 , (V±)−

1
2 ]θ= 1

2
, (42)

where the right hand side denotes the complex interpolation space. Since
[H

1
2 (Σ;E),H−

1
2 (Σ;E)]θ= 1

2
= L2(Σ;E), χ±(Ar) is a pseudo-differential projector

of order 0, and W± is a closed subspace of H
1
2 (Σ;E), we have

V± ⊕W± = χ±(Ar)L
2(Σ;E)

= [χ±(Ar)H
1
2 (Σ;E), χ±(Ar)H

− 1
2 (Σ;E)]θ= 1

2

= [(V±)
1
2 ⊕W±, (V±)−

1
2 ⊕W±]θ= 1

2

= [(V±)
1
2 , (V±)−

1
2 ]θ= 1

2
⊕W±.

Since V± ⊂ (V±)−
1
2 , this implies (42). �

This establishes the equivalence between (i)–(iv). Since (v)⇒(vi) is immediate,
to demonstrate the remaining equivalences, it suffices to establish (ii)⇒(v) and
(vi)⇒(ii).

Proof of (vi)⇒(ii) in Theorem 2.9. Fix r ∈ R an admissible spectral cut as given

by (vi). We need to show that B is closed in Ȟ(A) and that B∗ ⊂ H
1
2 (Σ;F ).

Observe that B + χ+(Ar)H
1
2 (Σ;E) = χ−(Ar)B ⊕ χ+(Ar)H

1
2 (Σ;E) using

Lemma A.4 with Z = H
1
2 (Σ;E), X = χ+(Ar)H

1
2 (Σ;E) and Y = χ−(Ar)H

1
2 (Σ;E)

and W = B. This also yields that χ−(Ar)B is closed in H
1
2 (Σ;E) since

B + χ+(Ar)H
1
2 (Σ;E) is closed by the fact that (B,χ+(Ar)H

1
2 (Σ;E)) is a Fred-

holm pair in H
1
2 (Σ;E).

Next, note that χ−(Ar)B ⊂ χ−(Ar)H
1
2 (Σ;E) = χ−(Ar)Ȟ(A) ⊂ Ȟ(A). Therefore,

χ−(Ar)B is, in fact, a closed subspace in Ȟ(A).

Now, on setting Z = Ȟ(A), X = χ+(Ar)H
− 1

2 (Σ;E) and Y = χ−(Ar)H
1
2 (Σ;E)

and W = B, by Lemma A.4, we have that B + χ+(Ar)H
− 1

2 (Σ;E) = χ−(Ar)B ⊕
χ+(Ar)H

− 1
2 (Σ;E). The latter is a closed subspace in Ȟ(A) since χ−(Ar)B is closed

in Ȟ(A).
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Let W+ := χ+(Ar)H
− 1

2 (Σ;E) ∩ B. Since B ⊂ H
1
2 (Σ;E), we have that W+ =

χ+(Ar)H
1
2 (Σ;E) ∩ B. This is finite dimensional since (B,χ+(Ar)H

1
2 (Σ;E)) is a

Fredholm pair in H
1
2 (Σ;E). Since W+ ⊂ B, we can write

B = W+ ⊕ (B ∩W⊥,H
1
2

+ ). (43)

Moreover, since W+ ⊂ χ+(Ar)H
− 1

2 (Σ;E) and also W+ ⊂ H
1
2 (Σ;E),

χ+(Ar)H
− 1

2 (Σ;E) = W+ ⊕ (χ+(Ar)H
− 1

2 (Σ;E) ∩W⊥,H
− 1

2

+ ). (44)

Note also that

B ∩ χ+(Ar)H
− 1

2 (Σ;E) ∩W⊥,H
− 1

2

+ = W+ ∩W
⊥,H−

1
2

+ = 0.

Combining this along with (43) and (44), we obtain

B + χ+(Ar)H
− 1

2 (Σ;E) = B ⊕ (χ+(Ar)H
− 1

2 (Σ;E) ∩W⊥,H
− 1

2

+ ).

From Corollary 4.13 in Chapter IV, Section 4.2 in [28], we obtain that

((B⊥,H
1
2 )⊥,−H−

1
2 , χ+(Ar)H

− 1
2 (Σ;E)) is a Fredholm pair in H−

1
2 (Σ;E). Let B̌ :=

(B⊥,H
1
2 )⊥,−H−

1
2 ∩ Ȟ(A) = (B⊥,H

1
2 )⊥,Ȟ(A). Setting X = (B⊥,H

1
2 )⊥,−H−

1
2 , Y =

χ+(Ar)H
− 1

2 (Σ;E) and W = Ȟ(A) and invoking Lemma A.6, we obtain that

(B̌, χ+(Ar)H
− 1

2 (Σ;E)) is a Fredholm pair in Ȟ(A).

Set Z = Ȟ(A), X = B, X ′ = B̌, and Y = χ+(Ar)H
− 1

2 (Σ;E) ∩ W⊥,H
− 1

2

+ . By

construction, B̌ is an annihilator and hence closed in Ȟ(A). It is readily seen that

B ⊂ B̌. Moreover, by the fact that (B̌, χ+(Ar)H
− 1

2 (Σ;E)) is a Fredholm pair in

Ȟ(A), we obtain that B̌ ∩ χ+(Ar)H
− 1

2 (Σ;E) is finite dimensional. Therefore, so is

B̌ ∩ χ+(Ar)H
− 1

2 (Σ;E) ∩W⊥,H
− 1

2

+ . Thus we can apply Lemma A.5 to Z, X, X ′,

and Y and conclude that B⊕ (B̌∩χ+(Ar)H
− 1

2 (Σ;E)∩W⊥,H
− 1

2

+ ) is closed in Ȟ(A).

To prove that B itself is closed we show that B̌∩χ+(Ar)H
− 1

2 (Σ;E)∩W⊥,H
− 1

2

+ = 0.

For that, we show that B̌ ∩ χ+(Ar)H
− 1

2 (Σ;E) = B ∩ χ+(Ar)H
− 1

2 (Σ;E) = W+.

It is immediate that B ∩ χ+(Ar)H
− 1

2 (Σ;E) ⊂ B̌ ∩ χ+(Ar)χ
+(Ar)H

− 1
2 (Σ;E). To

obtain the opposite inclusion, it suffices to show that dim
(
B̌∩χ+(Ar)H

− 1
2 (Σ;E)

)
≤

dim
(
B ∩ χ+(Ar)H

− 1
2 (Σ;E)

)
. Letting B̂ = B⊥,Ĥ(A∗),

dim
(
B̌ ∩ χ+(Ar)H

− 1
2 (Σ;E)

)
= dim

(
Ĥ(A∗)/(B̂ + χ−(A∗r)H

− 1
2 (Σ;E))

)
= dim

(
χ+(A∗r)H

1
2 (Σ;E)/χ+(A∗r)B̂

)
≤ dim

(
χ+(A∗r)H

1
2 (Σ;E)/χ+(A∗r)B

⊥,H
1
2
)

= dim
(
H

1
2 (Σ;E)/(B + χ−(A∗r)H

1
2 (Σ;E))

)
= dim

(
B ∩ χ+(Ar)H

− 1
2 (Σ;E)

)
,

where the first and last equalities follow from Theorem 4.8 in Section 4 of Chap-

ter 4 in [28], the inequality from B⊥,H
1
2 ⊂ B̂, and the remaining equalities from

Lemma A.4.

To show that B∗ ⊂ H
1
2 (Σ;F ) we show that B⊥,Ĥ(A∗) = B⊥,H

1
2 . For this, we first

demonstrate that (B,χ+(Ar)H
− 1

2 (Σ;E)) is a Fredholm pair in Ȟ(A) with the same

index as (B,χ+(Ar)H
1
2 (Σ;E)) in H

1
2 (Σ;E).

It is clear that both B and χ+(Ar)H
− 1

2 (Σ;E) are closed in Ȟ(A). As we have noted

previously, B ∩ χ+(Ar)H
− 1

2 (Σ;E) = B ∩ χ+(Ar)H
1
2 (Σ;E) and therefore have the
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same finite dimension. As before, setting Z = Ȟ(A), X = χ+(Ar)H
− 1

2 (Σ;E), Y =

χ−(Ar)H
1
2 (Σ; )E, and W = B, by Lemma A.4, we obtain B + χ+(Ar)H

− 1
2 (Σ;E)

is closed in Ȟ(A) since χ−(Ar)B is closed in Ȟ(A) and that

Ȟ(A)/(B + χ+(Ar)H
− 1

2 (Σ;E)) ∼= χ−(Ar)H
1
2 (Σ;E)/χ−(Ar)B.

Setting Z = H
1
2 (Σ;E), X = χ+(Ar)H

1
2 (Σ;E), Y = χ−(Ar)H

1
2 (Σ;E) and W = B,

again by Lemma A.4, we obtain

H
1
2 (Σ;E)/(B + χ+(Ar)H

1
2 (Σ;E)) ∼= χ−(Ar)H

1
2 (Σ;E)/χ−(Ar)B.

On combining these two isomorphisms, we conclude that (B,χ+(Ar)H
− 1

2 (Σ;E)) is

a Fredholm pair in Ȟ(A) with the same index as (B,χ+(Ar)H
1
2 (Σ;E)).

Since χ−(A∗r)H
− 1

2 (Σ;E) = χ+(Ar)H
− 1

2 (Σ;E)⊥,Ĥ(A∗), from Corollary 4.13 in

Chapter IV, Section 4.2 in [28], we conclude that (B⊥,Ĥ(A), χ−(A∗r)H
− 1

2 (Σ;E))

is a Fredholm pair in Ĥ(A∗). By repeating the argument that allowed

us to obtain (B,χ+(Ar)H
− 1

2 (Σ;E)) as a Fredholm pair in Ȟ(A) with the

same index as (B,χ+(Ar)H
1
2 (Σ;E)), but with B replaced with B⊥,H

1
2 ,

χ+(Ar)H
− 1

2 (Σ;E) with χ−(A∗r)H
− 1

2 (Σ;E) and Ȟ(A) with Ĥ(A∗), allows us to

conclude that (B⊥,H
1
2 , χ−(A∗r)H

− 1
2 (Σ;E)) is a Fredholm pair in Ĥ(A∗) with

the same index as (B⊥,H
1
2 , χ−(A∗r)H

1
2 (Σ;E)). Next, using the fact that

index(B⊥,H
1
2 , χ−(A∗r)H

− 1
2 (Σ;E)) = − index(B,χ+(Ar)H

1
2 (Σ;E)), we obtain that

index(B⊥,H
1
2 , χ−(A∗r)H

− 1
2 (Σ;E)) = index(B⊥,Ĥ(A), χ−(A∗r)H

− 1
2 (Σ;E)).

This along with the fact that B⊥,H
1
2 ⊂ B⊥,Ĥ(A) yields B⊥,H

1
2 = B⊥,Ĥ(A) via

Lemma A.7. �

Lastly, we prove the remaining direction.

Proof of (ii)&(iii)⇒(v). Fix any admissible spectral cut r ∈ R. By (ii), B is a

closed subspace of H
1
2 (Σ;E). Using (iii),

B ∩ χ+(Ar)H
1
2 (Σ;E) = (W+ ⊕ {v + gv : v ∈ V

1
2
− }) ∩ χ+(Ar)H

1
2 (Σ;E) = W+

and

B + χ+(Ar)H
1
2 (Σ;E) = V

1
2
− ⊕ χ+(Ar)H

1
2 (Σ;E).

Hence, (χ+(Ar)H
1
2 (Σ;E), B) is a Fredholm pair with index dimW+ − dimW−.

By Proposition 8.2, B⊥,Ĥ(A∗) = σ∗0B
∗ and by (ii) B∗ ⊂ H

1
2 (Σ;F ), thus B⊥,H

1
2 =

σ∗0B
∗. Using (3), we see that B⊥,H

1
2 = W ∗− ⊕

{
u− g∗u : u ∈ (V ∗+)

1
2

}
. Argu-

ing as above, we see that (χ−(A∗r)H
1
2 (Σ;E), B⊥,H

1
2 ) is a Fredholm pair with in-

dex dimW ∗− − dimW ∗+. Remark 2.7 shows that index(χ+(Ar)H
1
2 (Σ;E), B) =

− index(χ−(A∗r)H
1
2 (Σ;E), B⊥,H

1
2 ). �

8.3. Boundary regularity. Recall the notion of an (s+ 1
2 )-semiregular boundary

condition from Definition 2.11, by which we mean thatW+ ⊂ Hs(Σ;E) and g(V s−) ⊂
V s+. It is (s+ 1

2 )-regular if further W ∗− ⊂ Hs(Σ;E) and g∗((V ∗+)s) ⊂ (V ∗−)s.

Lemma 8.9. Let B be an elliptic boundary condition. For s ≥ 1
2 , the following are

equivalent:
(i) There exist an admissible spectral cut r such that B is (s + 1

2 )-semiregular
w.r.t. r.
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(ii) For all admissible spectral cuts r we have that B is (s+ 1
2 )-semiregular w.r.t.

r.
(iii) There exists an admissible spectral cut r, such that whenever u ∈ B with

χ−(Ar)u ∈ Hs(Σ;E) we have that u ∈ Hs(Σ;E).
(iv) For any admissible spectral cut r, whenever u ∈ B with χ−(Ar)u ∈ Hs(Σ;E)

we have that u ∈ Hs(Σ;E).

Proof. The implications (ii)⇒(i) and (iv)⇒(iii) are clear. The implications (i)⇒(iii)
and (ii)⇒(iv) are easy. If r1 and r2 are admissible spectral cuts, then the difference
of the spectral projectors χ−(Ar1) and χ−(Ar2) is smoothing. This shows (iii)⇒(iv).

It remains to show (iii)⇒(i). Since W+ ⊂ B and χ−(Ar)w+ = 0 ∈ Hs(Σ;E) for
w+ ∈W+, we have by (iii) that w+ ∈ Hs(Σ;E), which shows that W+ ⊂ Hs(Σ;E).
Now, let v ∈ V s−. Then v+ gv ∈ B, hence χ−(Ar)(v+ gv) = v ∈ Hs(Σ;E). By (iii),
v + gv ∈ Hs(Σ;E) and therefore gv ∈ Hs(Σ;E). �

Proof of Theorem 2.12. Fix u ∈ dom(DB) such that Dmaxu ∈ Hk
loc(M ;F ). Since

k < m, B is (k + 1
2 )-semiregular.

a) W.l.o.g., assume that sptu ⊂ Z[0,ρ] = [0, ρ] × Σ for some ρ < 1 to be chosen
sufficiently small so that dom((D0,r)max;Z[0,ρ]) = dom(Dmax;Z[0,ρ]). Through

induction, we assume u ∈ Hk
loc(Σ;E) as well as D0,ru ∈ Hk(Z[0,ρ];F ).

b) Let η : [0, ρ]→ [0, 1] be a smooth cutoff such that η = 1 on [0, ρ4 ] and η = 0 on

[ 3ρ
4 , ρ]. Set

v(t) = χ−(Ar)η(t)u(t) = η(t)χ−(Ar)u(t)

on Z[0,ρ] and note that we have

v(0) = χ−(Ar)(η(0)u|
Σ

) = χ−(Ar)u|Σ and v(ρ) = 0.

c) Since v(ρ) = 0, Proposition 6.10 implies that

(1− S0,rσ
−1
0 D0,r)v = exp(−t|Ar|)χ+(Ar)v(0) = 0.

Hence, we obtain that v ∈ Hk+1(Z[0,ρ];E) because S0,r : Hk(Z[0,ρ]];E) →
Hk+1(Z[0,ρ];E) by Lemma 6.9.

d) Putting this together, we have that v ∈ dom((D0,r)max;Z[0,ρ])∩Hk+1(Z[0,ρ];E).

By the properties of the trace map, we obtain that v(0) ∈ Hk+ 1
2 (Σ;E). That

is, χ−(Ar)u|Σ = v(0) ∈ Hk+ 1
2 (Σ;E).

e) Moreover, u|
Σ

= u−0 +gu−0 +w+ ∈ V−⊕V+⊕W+ since B is an elliptic boundary

condition. Therefore, χ−(Ar)u|Σ = u−0 and we have that u−0 ∈ Hk+ 1
2 (Σ;E).

f) Since B is (k + 1
2 )-semiregular, gu+

0 ∈ Hk+ 1
2 (Σ;E). Also, we have that W+ ⊂

Hk+ 1
2 (Σ;E) and therefore, χ+(Ar)u|Σ ∈ Hk+ 1

2 (Σ;E).

g) Since we have by hypothesis that Dmaxu ∈ Hk
loc(M ;F ) and that χ+(Ar)u|Σ ∈

Hk+ 1
2 (Σ;E), by Theorem 2.4, we obtain that u ∈ Hk+1

loc (M ;E). �

8.4. Local and pseudo-local boundary conditions. Recall from Definition 2.13
that a boundary condition B ⊂ H

1
2 (Σ;E) is local if if there exists a subbundle

E′ ⊂ E|Σ such that B = H
1
2 (Σ;E′). More generally, Definition 2.14 describes the

notion of a pseudo-local boundary condition, where we write B = PH
1
2 (Σ;E)

Ȟ(A)

for P a classical pseudo-differential projector of order zero.

Proof of Theorem 2.15. Fix an admissible spectral cut r ∈ R. The equivalence of
(ii) and (iii) is obtained by invoking Theorems 19.5.1 and 19.5.2 in [26].
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We show that (iii) and (iv) are equivalent. By Lemma A.9, we obtain that
σP−χ+(Ar)(x, ξ) = σP (x, ξ) − σχ+(Ar)(x, ξ) is an isomorphism if and only if
σP (x, ξ) : ker(σχ+(Ar)(x, ξ)) → σP (x, ξ)(Ex) and σP∗(x, ξ) : ker(σχ+(A∗r)(x, ξ)) →
σP∗(x, ξ)(Ex) are isomorphisms. The projectors χ+(Ar) and χ+(A∗r) are classical
pseudo-differential operators of order zero by Theorem 3.2 in [24]. By Theorem 3.3
in [24], their symbols σχ+(Ar)(x, ξ) and σχ+(A∗r)(x, ξ) are given as contour integrals
around the spectrum with positive real part of iσAr (x, ξ) and iσA∗r (x, ξ), respec-
tively. Therefore, ker(σχ+(Ar)(x, ξ)) and ker(σχ+(A∗r)(x, ξ)) are respectively the
sums of the generalised eigenspaces of iσAr (x, ξ) and iσA∗r (x, ξ) with negative real
part. This proves the equivalence between (iii) and (iv).

To show that (iii) implies (i), note that since P is a pseudo-differential operator of
order zero, we have that

P : H
1
2 (Σ;E)→ H

1
2 (Σ;E)

boundedly. Since P is a projection, PH
1
2 (Σ;E) is closed in H

1
2 (Σ;E). To show that

it defines a boundary condition, that is, that B is a closed subset of Ȟ(A), we use
Theorems 19.5.1 and 19.5.2 in [26] to obtain the existence of a pseudo-differential
operator R of order zero and a smoothing operator S to write:

R(P − χ+(Ar)) = 1 + S.

Now, note that for u ∈ B,

‖u‖
H

1
2
. ‖(1 + S)u‖

H
1
2

+ ‖Su‖
H

1
2
. ‖χ−(Ar)u‖

H
1
2

+ ‖|Ar|
1
2Su‖,

since P − χ+(Ar) = 1− χ+(Ar) = χ−(Ar) on B. Moreover, since S is smoothing,

‖|Ar|
1
2Su‖ . ‖u‖

H−
1
2
≤ ‖u‖Ȟ(A).

Combining these estimates, we get that ‖u‖
H

1
2
' ‖u‖Ȟ(A) and therefore, B is a

boundary condition. In order to see σ∗0B
∗ ⊂ H

1
2 (Σ;E), observe

v ∈ σ∗0B
∗ ⇐⇒ v ∈ Ĥ(A∗) and 〈v, Pu〉 = 0 ∀u ∈ H

1
2 (Σ;E)

⇐⇒ v ∈ Ĥ(A∗) and 〈P ∗v, u〉 = 0 ∀u ∈ H
1
2 (Σ;E)

⇐⇒ v ∈ (1− P ∗)H− 1
2 (Σ;E) and χ+(A∗r)v ∈ H

1
2 (Σ;E).

Since P ∗ − χ+(A∗r) is also a classical elliptic pseudo-differential operator of order
zero, we obtain R′ a pseudo-differential operator of order zero and S′ a smoothing
operator such that R′(P ∗ − χ+(A∗r)) = 1 + S′. Then,

v = (1 + S′)v − S′v = R′(P ∗ − χ+(A∗r))v − S′v = −R′χ+(A∗r)v − S′v

since v ∈ ker(P ∗). Noting that χ+(A∗r)v ∈ H
1
2 (Σ;E) and S′v ∈ C∞(Σ;E), we

obtain the conclusion.

Finally, we prove that (i) implies (ii). For this, write B = PH
1
2 (Σ;E) = W+ ⊕{

v + gv : v ∈ V
1
2
−

}
. Since P is a pseudo-differential projector of order zero, we

have that PL2(Σ;E) = W+ ⊕ {v + gv : v ∈ V−}. Let

〈·, ·〉N :=
〈
χ−(Ar)·, χ−(Ar)·

〉
+
〈
χ+(Ar)·, χ+(Ar)·

〉
and let g∗,N : V+ → V− the adjoint with respect to this scalar product. Note that
with respect to this scalar product χ+(Ar)L

2(Σ;E) ⊥ χ−(Ar)L
2(Σ;E) and that

V− ⊥ V+. Then, we obtain that V−
⊥
⊕ V+ = graph(g)

⊥
⊕ graph(−g∗,N ). Moreover,
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is it easy to see that(
1 0
g 0

)(
1 −g∗,N
g 1

)−1

: V− ⊕ V+ → graph(g)

is the orthogonal projection (with respect to 〈·, ·〉N ). But then, P (V− ⊕ V+) =
graph(g) and so

P =

(
1 0
g 0

)(
1 −g∗,N
g 1

)−1

.

Now,

χ+(Ar)|V−⊕V+ =

(
0 0
0 1

)
=

(
0 0
g 1

)(
1 −g∗,N
g 1

)−1

and hence,

(P − χ+(Ar))|V−⊕V+
=

(
1 0
0 −1

)(
1 −g∗,N
g 1

)−1

: V− ⊕ V+ → V− ⊕ V+

is an isomorphism. But W+ and W− are finite dimensional subspaces and hence
P − χ+(Ar) is Fredholm. �

Proof of Corollary 2.16. Fix s ≥ 1/2 and r ∈ R an admissible spectral cut. Let

u ∈ B = PH
1
2 (Σ;E) with χ−(Ar)u ∈ Hs(Σ;E). By Theorem 2.15, P − χ+(Ar) is

elliptic of order zero, and

(P − χ+(Ar))u = (1− χ+(Ar))u = χ−(Ar)u ∈ Hs(Σ;E).

By ellipticity of (P − χ+(Ar)), we have that u ∈ Hs(Σ;E). �

Proof of Corollary 2.17. Let P : Ex → E′x and P̃ : Fx → (F ′)⊥x = (σ−1
0 )∗(E′x)⊥ be

orthogonal projections. We verify condition (iii) in Lemma A.9 with a choice of P
as given here and Q = σχ+(Ar)(x, ξ).

By the Lopatinsky-Schapiro condition for B, for every x ∈M , ξ ∈ T ∗xM \ {0} and
each e ∈ E′x, there exists a unique u : [0,∞)→ E′x such that

Pu(0) = e with (∂t + iσA(x, ξ))u(t) = 0 and lim
t→∞

u(t) = 0. (45)

The solution to (45) is given by u(t) = exp(−tiσA(x, ξ))u(0). On writing iσA(x, ξ)
in Jordan normal form, one easily sees that the condition limt→∞ u(t) = 0 is equiv-
alent to u(0) ∈ χ+(iσA(x, ξ))(Ex), which is the sum of generalised eigenspaces of
iσA(x, ξ) to eigenvalues with positive real part. Thus, P restricts to an isomorphism
σχ+(Ar)(x, ξ)(Ex)→ E′x.

Given a ξ, applying the condition instead to −ξ and using the R-linearity of η 7→
iσA(x, η),

χ+(iσA(x,−ξ))(Ex) = χ+(−iσA(x, ξ))(Ex)

= χ−(iσA(x, ξ))(Ex)

= σχ−(Ar)(x, ξ)(Ex).

That is, P also restricts to an isomorphism ker(σχ+(Ar)(x, ξ)→ E′x = PEx.

Next, we use the Lopatinsky-Schapiro condition for B∗. This exactly means that
for x ∈ Σ and ξ 6= 0 fixed, and f̃ ∈ (F ′x)⊥, there is a unique ṽ : [0,∞) → (F ′x)⊥

so that P̃ ṽ(0) = f̃ , (∂t + iσÃ(x, ξ))ṽ(t) = 0 and limt→∞ ṽ(t) = 0. Recall that

σÃ(x, ξ) = (σ−1
0 )∗σA∗(x, ξ)σ

∗
0. Then, on setting v⊥ := σ∗0ṽ : [0,∞) → (E′)⊥x , from

the invertibility of σ0, we obtain

(∂t + iσA∗(x, ξ))v
⊥(t) = 0, and lim

t→∞
v⊥(t) = 0. (46)
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Since (F ′x)⊥ = (σ−1
0 )∗(E′x)⊥, given any e⊥ ∈ (E′x)⊥ and setting f̃ := (σ−1

0 )∗e⊥, we
obtain a unique v⊥ : [0,∞) with (1− P )v⊥ = e⊥ satisfying (46). That is precisely
that (1− P ) : σχ+(Ar)(x, ξ)(Ex)→ kerP is an isomorphism.

Therefore, by Lemma A.9 (iii), we obtain that P −σχ+(Ar)(x, ξ) is an isomorphism.

By Theorem 2.15 (iii), B and B∗ are elliptic boundary conditions for D and D†,
respectively.

To see that B⊥ and (B∗)⊥ are also elliptic boundary conditions, fix x ∈M and ξ 6=
0. By applying what we have just shown to −ξ, we deduce that P −σχ+(Ar)(x,−ξ)
is an isomorphism. Then,

−(P − σχ+(Ar)(x,−ξ)) = (1− P )− (1− σχ+(Ar)(x,−ξ))
= (1− P )− σχ−(Ar)(x,−ξ)
= (1− P )− σχ+(Ar)(x, ξ).

This shows that (1 − P ) − σχ+(Ar)(x, ξ) is an isomorphism and hence, by Theo-

rem 2.15 (iii), we obtain that B⊥ and (B∗)⊥ are also elliptic boundary conditions
for D and D†, respectively.

These boundary conditions are local, hence pseudo-local and thus ∞-regular by
Corollary 2.16. �

Proof of 2.19. We first note that Theorem 8.5 in [10], which states that D is coer-
cive if and only if DB has finite-dimensional kernel and closed range, holds in our

setting. Its proof only uses the fact that dom(DB) ⊂ H1
loc(M ;E) and dom(D†B∗) ⊂

H1
loc(M ;F ) since B is an elliptic boundary condition. Since we assume that both

D and D† are coercive at infinity, we obtain that both operators have finite-
dimensional kernels and that their ranges are closed. Coupling this with the simple

fact that L2(M ;E) = ker(DB) ⊕ ran(D†B∗) and L2(M ;F ) = ker(D†B∗) ⊕ ran(DB),
we obtain

L2(M ;F )�ran(DB)
∼= ker(D†B∗).

From this, (i) follows.

The statement (ii) follows simply on invoking Proposition A.1 in [10].

For the proof of (iii), fix two complements C and C ′ of B and B′ with C ⊂ C ′. These
complements exist since Ȟ(A) is a Hilbert space. Let P̌ and P̌ ′ be the projectors
with kernels B and B′ respectively and ranges C and C ′. Define Qu := P̌ u|

Σ
and

Q′u := P̌ u′|
Σ

. This yields the following commutative diagram

L2(M ;E)⊕ C

dom(Dmax)

L2(M ;E)⊕ C ′

(D,Q)

(D,Q′)

id⊕ι

where ι : C ↪→ C ′ is the inclusion map. By (ii), the maps (D,Q) and (D,Q′) are
Fredholm and therefore, so is id⊕ι. Then,

dimB�B′ = dimC ′�C = − index(ι) = − index(id⊕ι) = index(D,Q)−index(D,Q′),

and the desired index formula follows. �
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Appendix A. Auxiliary functional analytic facts

By PA,B , denote the projector with range A and kernel B.

Lemma A.1. Let H be a Hilbert space such that H = H1⊕H2 where H1, H2 ⊂ H
are closed subspaces. Let H′1 be another closed subspace such that H = H′1 ⊕ H2.
Then, PH1,H2 |H′1 : H′1 → H1 is an isomorphism with bounded inverse.

Proof. Let u ∈ H1 and note that

u = PH1,H2u = PH1,H2(PH′1,H2
u+ PH2,H′1)u = PH1,H2PH′1,H2

u,

because PH1,H2
◦ PH2,H′1 = 0. This shows surjectivity.

Now, let u ∈ H′1 and suppose that PH1,H2u = 0. But then, u ∈ ker(PH1,H2) = H2

and so, u ∈ H′1 ∩H2 = {0}, which shows that the map is injective.

Since it is a bounded map on all of H1, it is bounded, and by the closedness of H1

and the open mapping theorem, we can conclude that it has a bounded inverse. �

Lemma A.2. Let (X, ‖ · ‖X) be a Banach space and Y ⊂ X a subspace (not
necessarily closed in ‖·‖X) for which (Y, ‖·‖Y ) is a Banach space satisfying ‖u‖X .
‖u‖Y for all u ∈ Y . Then, if Z ⊂ X is a closed subspace with respect to ‖ · ‖X ,
then Z ∩ Y is closed Y with respect to ‖ · ‖Y .

Proof. Let un ∈ Z ∩ Y be Cauchy in ‖ · ‖Y . Then, there exists y ∈ Y such that
un → y in ‖ · ‖Y . Moreover, since un ∈ Y , we have that ‖un−um‖X . ‖un−um‖Y
so un is Cauchy in X, and therefore, by the closedness of Z, there exists z ∈ Z such
that un → z in ‖·‖X . Now, y, un ∈ Y for all n and therefore, ‖un−y‖X . ‖un−y‖Y
by hypothesis, which proves that un → y in X. Therefore, y = z which completes
the proof. �

Lemma A.3. Let (X, ‖·‖1) and (X, ‖·‖2) be Banach spaces for which ‖·‖1 . ‖·‖2.
Then, ‖ · ‖1 ' ‖ · ‖2.

Proof. The hypothesis implies that id : (X, ‖ · ‖1) ↪→ (X, ‖ · ‖2) is continuous. By
the open mapping theorem, it is an isomorphism. �

Lemma A.4. Let Z be a Banach space and X,Y ⊂ Z be complementary closed
subspaces such that Z = X ⊕ Y . For any subspace W ⊂ Z, we have

X +W = X ⊕ PY,XW.
Moreover PY,XW is closed if and only if X +W is closed. In this case,

Z/(X +W ) ∼= Y/PY,XW.

Proof. Let x+ w ∈ X +W . Then,

x+ w = PX,Y (x+ w) + PY,X(x+ w) = (x+ PX,Y w) + PY,Xw ∈ X ⊕ PY,XW.
Now, for x+ PY,Xw ∈ X ⊕ PY,XW , we have that

x+ PY,Xw = (x− PX,Y w) + PX,Y w + PY,Xw = (x− PX,Y w) + w ∈ X +W.

Now assume that PY,XW is closed. We need to conclude that X+W is closed which
is not as obvious as one might think because the direct sum of closed subspaces
need not be closed in general. So, let xn + wn ∈ X + W such that xn + wn → z.
Hence, PY,Xwn = PY,X(xn + wn) → PY,Xz and since PY,XW is closed we have
PY,Xz ∈ PY,XW . Now, z = PX,Y z + PY,Xz ∈ X ⊕ PY,XW = X +W .

For the converse statement, let PY,Xwn ∈ PY,XW be a convergent sequence. Since
PY,XW ⊂ X + W , there is some x + w ∈ X + W such that PY,Xwn → x + w.
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However, PY,Xwn = P 2
Y,Xwn → PY,X(x+ w) = PY,Xw. This shows that PY,XW is

closed.

The last assertion is obtained simply by noting

Z/(X +W ) = (X ⊕ Y )/(X ⊕ PY,XW ) ∼= Y/PY,XW. �

Lemma A.5. Let Z be a Banach space and Y a closed subspace. Suppose that X
is a complementary subspace with X ⊕ Y is closed in Z. Moreover, suppose there
exists a subspace X ′ closed in Z with X ′ + Y closed such that X ⊂ X ′ and X ′ ∩ Y
is finite dimensional. Then, X ⊕ (X ′ ∩ Y ) is closed.

Proof. Let U := X ′ ∩ Y . Since this is finite dimensional, there exists a closed
complementary subspace V so that Z = U ⊕ V . Equivalently, we have a bounded
projector PU,V : Z → U with kernel V . Now, since U ⊂ X ′ and U ⊂ Y , it is readily
checked that

X ′ = U ⊕ (X ′ ∩ V ) and Y = U ⊕ (Y ∩ V ).

Consequently, X ′ + Y = X ′ ⊕ (Y ∩ V ). Since X ∩ U ⊂ X ∩ Y = 0, we have that
X ⊕ Y = X ⊕ U ⊕ (Y ∩ V ).

It is readily checked that the natural map Φ : X ⊕ Y → X ⊕ Y/(Y ∩ V ) = X ⊕
U ⊕ (Y ∩ V )/(Y ∩ V ) restricts to an (algebraic) vector space isomorphism from
X ⊕ U onto X ⊕ Y/(Y ∩ V ). Moreover, ‖Φ(x)‖ = infv∈Y ∩V ‖x + v‖ ≤ ‖x‖ which
shows that it is continuous. Since X ′ + Y is closed we have the bounded projector
PY ∩V,X′ and we obtain

‖x‖ ≤ ‖x+ v‖+ ‖v‖ = ‖x+ v‖+ ‖PY ∩V,X′(x+ v)‖ ≤ (1 + ‖PY ∩V,X′‖)‖x+ v‖
so that ‖x‖ ≤ (1 + ‖PY ∩V,X′‖)‖Φ(x)‖. This shows that the inverse Φ−1 is also
bounded. Therefore, X ⊕ U = X ⊕ (X ′ ∩ Y ) is closed since X ⊕ Y/(Y ∩ V ) is
complete. �

Lemma A.6. Let (X,Y ) be a Fredholm pair in a Banach space Z. Suppose that
W ⊂ Z is a subspace (not necessarily closed) such that (W, ‖ · ‖W ) is a Banach
space satisfying ‖w‖Z . ‖w‖W for all w ∈ W . Then, if Y ⊂ W , we have that
(X ∩W,Y ) is a Fredholm pair in W .

Proof. First, we note that Y and X ∩W are closed in W by Lemma A.2. Next,
note that X∩W ∩Y ⊂ X∩Y , and since (X,Y ) is a Fredholm pair, the latter space
is finite dimensional and so is X ∩W ∩ Y .

It remains to prove that X ∩W + Y is closed in W and that W/(X ∩W + Y ) is
finite dimensional. For that, we first prove

X ∩W + Y = (X + Y ) ∩W. (47)

To prove the containment “⊂”, fix x+ y ∈ X ∩W +Y with x ∈ X ∩W and y ∈ Y .
Since Y ⊂W , it follows that x+ y ∈ (X + Y ) ∩W .

For the reverse containment, let x+ y ∈ (X +Y )∩W . But x = x+ y− y and since
Y ⊂W , we have that x ∈W . Therefore, x+ y ∈ X ∩W + Y .

The formula (47) immediately yields that X ∩W +Y is closed in W by noting that
X + Y is closed in Z and on invoking Lemma A.2.

To prove that W/(X ∩ W + Y ) is finite dimensional, consider the natural map
Φ : W/(X ∩W +Y )→ Z/(X+Y ). This map is well-defined because X ∩W +Y ⊂
X + Y . To complete the proof, it suffices to show that φ is an injection since we
know that Z/(X + Y ) is finite dimensional by the Fredholm pair assumption on
(X,Y ). So, suppose that Φ([w]) = 0. That is w ∈W and w ∈ X + Y . By (47), we
have that w ∈ (X ∩W ) + Y and therefore, [w] = 0. �
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Lemma A.7. Let (X1, Y ) and (X2, Y ) be two Fredholm pairs in a Banach space
Z with X1 ⊂ X2 and index(X1, Y ) = index(X2, Y ). Then, X1 = X2.

Proof. First note that X1 + Y ⊂ X2 + Y and therefore,

dim(Z/(X1 + Y )) ≥ dim(Z/(X2 + Y )).

Combining this with index(X1, Y ) = index(X2, Y ), we obtain that dim(X1 ∩ Y ) ≥
dim(X2 ∩ Y ). But X1 ∩ Y ⊂ X2 ∩ Y and so we have that X1 ∩ Y = X2 ∩ Y .
Moreover, we get that dim(Z/(X1 + Y )) = dim(Z/(X2 + Y )) and so the natural
map z+X1+Y 7→ z+X2+Y is an isomorphism. Therefore, X1+Y = X2+Y =: Z0.

Set W := X1 ∩ Y = X2 ∩ Y . Since W is finite dimensional, we obtain a comple-
mentary closed subspace W c such that Z0 = W ⊕W c. Moreover, since W ⊂ Y ,
Y = W ⊕ (Y ∩W c). Write

Z0 = Xi + (Y ∩W c),

since W ⊂ Xi. In fact,

Xi ∩ (Y ∩W c) = Xi ∩ Y ∩W c = W ∩W c = 0.

Therefore, Z0 = X1 ⊕ (Y ∩W c) = X2 ⊕ (Y ∩W c) and armed with the fact that
X1 ⊂ X2, we obtain that X1 = X2. �

Proposition A.8. Let X and Y be Banach spaces and L : X → Y be a bounded
linear map. Then the following are equivalent:

(i) The operator L has finite-dimensional kernel and closed image.
(ii) There is a Banach space Z, a compact linear map K : X → Z, and a constant

C such that

‖x‖X ≤ C · (‖Kx‖Z + ‖Lx‖Y ) ,

for all x ∈ X. In particular, kerK ∩ kerL = {0}.
(iii) Every bounded sequence (xn) in X such that (Lxn) converges in Y has a

convergent subsequence in X.
Moreover, these equivalent conditions imply

(iv) For any Banach space Z and compact linear map K : X → Z such that
kerK ∩ kerL = {0}, there is a constant C such that

‖x‖X ≤ C
(
‖Kx‖Z + ‖Lx‖Y

)
for all x ∈ X.

For proof see Proposition A3 in [10].

Lemma A.9. Let E be a finite dimensional Euclidean vector space and let P,Q :
E → E be projectors, i.e. P 2 = P and Q2 = Q. Then the following are equivalent:

(i) P −Q : E → E is an isomorphism.
(ii) P |kerQ : kerQ→ PE and P ∗|kerQ∗ : kerQ∗ → P ∗E are isomorphisms.

(iii) P |kerQ : kerQ→ PE and (1− P ) : QE → kerP are isomorphisms.

Note that the two conditions in (ii) of Lemma A.9 are independent conditions.

For example, let E = R2 with the usual inner product, let P =

(
1 1
0 0

)
and

Q =

(
1 0
0 0

)
. Then, P ∗ =

(
1 0
1 0

)
and Q∗ = Q. The kernel of Q = Q∗ is spanned

by e2 = (0, 1). Now, Pe2 6= 0 while P ∗e2 = 0. Thus, P |kerQ : kerQ → PE is an
isomorphism while P ∗|kerQ∗ : kerQ∗ → P ∗E is not.

Indeed, in this example, P −Q =

(
0 1
0 0

)
is not an isomorphism.
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Proof of Lemma A.9. Splitting E as E = QE ⊕ kerQ in the domain and as E =
kerP ⊕ PE in the target we can write endomorphisms of E as 2× 2-matrices:

P =

(
0 0

P |QE P |kerQ

)
, Q =

(
(1− P )|QE 0
P |QE 0

)
and hence

P −Q =

(
(P − 1)|QE 0

0 P |kerQ

)
.

This shows that P −Q is an isomorphism if and only if

P |kerQ : kerQ→ PE and (P − 1)|QE : QE → kerP

are isomorphisms and hence proves the equivalence between (i) and (iii). Moreover,
this proves the implication (i)⇒(ii) since P ∗ −Q∗ is also an isomorphism if P −Q
is one.

Conversely, assume (ii). We have to show that (P − 1)|QE : QE → kerP is
an isomorphism. Since we know that dim kerQ = dimPE, we also know that
dimQE = dim kerP . Thus it suffices to show that (P − 1)|QE : QE → kerP is
injective.

So, let (P − 1)x = 0 where x = Qx. Then Px = Qx = x. Since x ∈ PE we find a
y ∈ kerQ such that x = Py. Then we have for all z ∈ E:

〈y, P ∗z〉 = 〈Py, z〉 = 〈x, z〉 = 〈Qx, z〉 = 〈x,Q∗z〉 = 〈Py,Q∗z〉 = 〈y, P ∗Q∗z〉

and thus

〈y, P ∗(1−Q∗)z〉 = 0.

This, together with the assumption that P ∗|kerQ∗ : kerQ∗ → P ∗E is surjective
yields that y is perpendicular to P ∗E, and hence y ∈ kerP . Thus x = Py = 0. �
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