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Boundary Value Problems for Non-Parametric Surfaces
of Prescribed Mean Curvature.

ENRICO GIUSTI (¥)

dedicated to Hans Lewy

0. — Introduction.

The equation of surfaces of prescribed mean curvature:

n

(0.1) divTu =Y % {%/Vl—l— |gradu|2} = H(x, u)

i=1

has received congiderable attention; in particular in connection with the
Dirichlet problem, i.e. the problem of the existence of a solution to the
equation (0.1) in an open set £, taking prescribed values at the boundary.

For the two-dimensional case the theory was initiated by Bernstein at
the beginning of the century, and received contributions from various au-
thors. On the contrary, the general n-dimensional problem has been suc-
cessfully studied only recently; we shall mention the work of Jenkins and
Serrin [17] in the case of minimal surfaces (H = 0), and of Serrin [25] for
general H.

The method of Serrin is based on a-priori bounds for solutions of the
Dirichlet problem for equation (0.1), in view of an application of the Leray-
Schauder fixed point theorem. This allows to prove the existence of a C?
solution to the problem, provided some conditions are satisfied, involving the
function H(x, ) and the mean curvature K(x) of 9L.

In the meantime, a different approach to the Dirichlet problem for equa-
tion (0.1) was developed, starting from the observation that (0.1) is the Euler

(*) Istituto di Matematica dell’Universitd di Trento.
Pervenuto alla Redazione il 16 Febbraio 1976 ed in forma definitiva 1’8 Marzo 1976.
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equation for the functional
f\/l + |Duf? —i—fl(w, u)dx
Q Q2

11
where A(x, t)_—_fH (w, s)ds. Euristic considerations (see [15]) suggest in-
0

cluding the boundary datum ¢ in the functional, and hence looking for a
minimum of

3,(u) =f\/1+ fpu|z+fz(m, u)dm—l—f]u—(p[dﬂ,,_l
2 2 o002

in the class BV(£2) of function with bounded variation in £.

This variational approach to the Dirichlet problem (see [15], [11] and [23])
permits separate discussion of the assumptions on the mean curvature funec-
tion H(x, #) and on the boundary mean curvature K(«), so that one can ob-
tain sharp (and in many cases necessary and sufficient) conditions for the
existence of a minimum for J;,. These conditions do not involve the mean
curvature of the boundary.

A careful use of the a-priori estimate for the gradient (see [18], [30]
and [3]) shows that the solution w(x) is smooth in £, and is a solution of
equation (0.1). If in addition ¢ is continuous and

{0.2) [H(z, p(@))|<(n—1)K()

at every point x€0f2, then u(x)= @(x) at 02 (see [23]) and hence is a
¢ clasgical” solution to the Dirichlet problem.

The two methods outlined above have been successfully applied to the
problem of capillary free surfaces. In this case one looks for a solution
to (0.1), with H(x, u) = 2u, subject to the boundary condition

{0.3) ——Tu-vz——iv a—u/\/l—i- lgrad u|? = 2 in 202
=1 Oxy

k3

where v is the exterior normal, and »x is the cosinus of the (prescribed) angle
between the surface y = u(x) and the boundary of the cylinder 2 X R.

For this problem, variational results have been obtained in [4], minimizing
the functional

3,(u) =f\/1+ Dul -+ [urde + [xudH,_,
Q 0 o
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and at the same time the classical approach has been shown to work in [31]
(see also [27] and [26]).

The situation is quite different when a mixed boundary value problem
is considered:

divTu=H(x,u) in Q
(0.4) u=g in 8,0Q
—Tuv==n in 9,02

with 8,QU 9,2 = 82. In this case, when singularities at points of 3,2 N

N 0,2 can possibly occur, the classical method seems to be hardly appli-
cable as it is; on the contrary one can show the existence of a minimum for
the functional

F(u) =f\/1+ ]Du[z—}—fﬂ(w, u)dw—I—flu—tpde,,_l—{—fxudHn_l .
2 Py 0,0 8.0

The aim of this paper is to prove such existence results under sharp condi-
tions for the functions H and x». As F reduces to J, or to J, when 2,82 or
0,02 is empty, we shall find the existence of a solution with pure Dirichlet
or capillarity boundary conditions. We want to observe that our results are
significantly new also in these situations.

The paper is divided in four sections. The first is devoted to the assump-
tions on H and x», and to the discussion of a variety of special cases. In
chapter 2 we prove the existence of a minimum for the functional . After
a brief discussion of the regularity of the solution in £ and at 0,02, we
refine our method in order to treat some borderline situations, including
the capillary free surfaces with |x|=1 (compare [7]; see also [8] for an
application of the results of ch. 4).

In conclusion, we shall get a quite general existence result for the
problem (0.4). The solutions to this problem are regular in @, and at in-
terior points of 6,42, provided (0.2) holds. The regularity at 0,{2 remains
still an open problem; a special case (x = 0) is discussed in {16].

I wish to thank R. Finn for his stimulating remarks.

1. — The variational problem.
1.A. Throughout this paper we shall denote by £ a bounded connected

open set in R*, n>2, with Lipschitz-continuous boundary 0f2. We will
write 002 = 0,2 VU 0,82, where 0,2 is the intersection of 002 with a bounded



504 ENRICO GIUSTI
open set A,, such that the set

.le .QUA1

is connected. We suppose that H, (0.2N 0,2)=0, and that 9,02 coin-
cides with the closure of its interior.
We shall discuss the existence of a minimum for the functional

11)  F(u) =f\/1+ Duf +f/1(x, w)dw +f|u—¢|dH"_1+fnudH,,_1
Q Q 8,2 3,9

in the class BV(£2), of functions of bounded total variation in 0.
It can be useful to recall that the symbol

[ViTDur
2

means the total variation in 2 of the vector-valued measure whose components
are the Lebesgue measure in R” and the derivatives D,u of u:

fv1+ Duf — sup{ f(go+ iqugi)dw; gec OHQ); igg<1} .
i=1 i=0
2 0

The integrals on 0£2 have sense as every function of bounded variation has a
trace on 0£2, which we denote also by u, in L,(00Q) [21].

1.B. Let

t
Mz, 1) =J.H(x, 8)ds,
0

and let u(z) be a function of class C2(2), a minimum for the functional F(u).
It is clear that u(x) satisfies the equation

(1.2) S DAD:u/ VIt [Dul}= H(z, u(x))
i=1
and the boundary conditions:

— iviD,-u/\/l—i— [Du|? = %n(x) in 2,2.
i1
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Let B be a Caccioppoli set; i.e. a Borel set whose characteristic function ¢4
has distributional derivatives which are measures of bounded total variation.
We can integrate (1.2) over B to get:

fH(w, w(x)) dw =f(D,~u/Vl—|— lDuP)DHpB—f(prdH,,_l .

B 2, 8,02

Let t,= sup |«| and suppose H(z, t) is a non decreasing function of {. We have:

[H@,t5) a0+ [y dH, s> — (1 — &) [ 1Dyl
B 0,02 2,

and
[H@,—t9) a0+ [wppaH, ;<1 =) [|Des|
@

B 8,2

for every Caccioppoli set Bc £2, where

1—ego=sup {|Du|/Vi+ |Dul*}

1.0. We will prove the existence of a minimum for the functional F(u)
under the following assumptions on the functions H and x:

(1.3) x(x) is a bounded measurable function in 0,02. H(x,t) is a function
defined in Q% R, which is non-decreasing in t for almost every xe £,
and belongs to L,(2) for every te R.

(1.4) There exist two positive constants g, and t, such that for every Caccioppoli
set Bc L2 we have:

(1.4) f H@, ty)ds -+ [np,dH, 1> — (1 — &) f Dy,
B 8,0 2,

(1.47) [H@,—tdo + [ap,dH,a< (1—e)[1De
B 5,2 2

The meaning of assumption (1.3) is clear as it implies that the fune-
tional F is convex. On the other hand condition (1.4), which we have
shown to be necessary for the existence of a smooth minimum, can ap-
pear somewhat involved and artificial, so that it is advisable to illustrate in
some detail its meaning and generality. For that we shall postpone the proof
of the existence theorem to the next chapter and we will devote this section
to a complete discussion of some particular hypotheses leading to (1.4).

33 - Annali della Scuola Norm. Sup. di Pisa
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1.D. Let us start from the Dirichlet problem. We have the following
ProposrrioN 1.1. Let
h(x) = lim H—~(x, 1)
t—>o00

k(x) = lim Ht(x, 1)

—>—oo

where H' = max (H, 0) and H~ = min (H, 0).
Suppose that

(1.5) 1] iy <m0y
(1.6) [l z. ) < me”

and let 0,Q2=0.
Then (1.4) is satisfied.

Proor. Since |H™ (w,t)| monotonically decreases to |h(x)| we have:
1] zocey = lim | H~(w, 1) | z(2)
—>+o0

and similarly

[l ey = lim [H¥(2, 8)] 2.2

whence there exist {, and g > 0 such that
1H™ (@, 20) | 10y < (1 — &g)ne™

[H* (@, — to) | 22y < (1 — go)navy™.

Let Bc Q be a Caccioppoli set; we have

f H(x,t,) dm>fH‘(w, t)de > — (1 — g;)nwl/(meas B)~1"
B B

and (1.4') follows at once from the isoperimetric inequality:

(meas B)'" V" <n " o V™| Deyl.
€

A gimilar argument lead to (1.4"). Q.E.D.
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We remark that if H does not depend on f, conditions (1.5) and (1.6)
reduce to the assumptions of [1] (see also [11]):

J‘|Hi(x)l"‘dac<n”w".
g

Another interesting situation is
H(x,t)= a(x)t+b(z)
with a and b in L.(2), and a(x)>0. It is clear from the proposition that no
condition has to be imposed on b(x) if a(x)> 0 almost everywhere; if we
denote by A the zero set of a(z), condition (1.4) will be satisfied if

8% 2,0y < me0y™ .

1.E. We shall discuss now the general case. For that we remember the
following

LeMMA 1.1 (Sobolev-Poincaré inequality). Let 2 be a connected bounded
open set with Lipschitz-continuous boundary end let we BV (L2). Then

(1.7) { [l — wgpn? dw}l‘””<cl(!2) [1Dw)
2 Q

where wgq is the mean value of w in 2 and ¢, is a constant independent of w.
As a corollary we get easily, taking w = ¢,, the inequality

(1.8) (meas A)l“‘/"<201f|D<pA|
Q

for every Caccioppoli set 4 with meas A4 <meas Q/2.
For xc 02 let B(x,r) be the ball of radius r centered at x, and let

Qz,ry= 2N Bz, r).

We introduce the funection

(19) g(x)=1lim sup{ [peam,., / f Dgal; AcQ,r), measd > 0} .
2 2,

—>0+ 2

Let us start with a necessary condition.
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PROPOSITION 1.2. Let assumption (1.4) be satisfied and let x be conlinuous
on 0,82. Then for every xec 0,2 we have

(1.10) q(@) (@) | <1 — & .
PrOOF. We can suppose »(x) = 0. Let r be a positive number such that

meas Q(xz, r)<meas 2/2,

and let 4 c Q(z, 7).
We have from (1.8):

[|H@, +t)ldn<2em, [|Dp.]
A 2,

where
m, = max {|H(@, to)|| 1 cawm» [ H @ — o) 5 cawmm) -

We observe that m, goes to zero with r. Recalling condition (1.4) we get

I fmpAdH,,_l

2,0

<1 —g+ 201m,)f|D¢pA|

On the other hand

(I( m)l—’nr)f%dﬂn_l<‘ fmpAdH,, .

0,Q

with
limn, =0
r—>0+

so that in conclusion we have, for every Caccioppoli set A c Q(x,r):

so—f— 2clmfI

z)|—mn,

J-(pA dH,,__l £

EX)
and (1.10) follows at once. Q.E.D.

1.F. In order to obtain sufficient conditions we introduce the function

(1.11) Jj(a) = ess lim sup |»(y)|

vz

which coincides with |x(x)| whenever » is continuous.
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LEMMA 1.2. Suppose that there exists a positive constant ¢ such that for
for every x€ 0,2 we have

q(z)j(x) <1 —20.

Then there exists a constant ¢y, depending on », ¢ and £2, such that for every
we BV (0Q):

(1.12) l J\xwdH,,_1 <(1— a)f[Dw| -+ czflw[dw .
0.2 2, 2

Proor. We can suppose w>0. Let #,€0,£2, and for s> 0 let r, be
such that

[odt, i< (a@) + 5) [1Dgs]
8,2 2,
for every Caccioppoli set Bc Q(z,,r;), and

Pe)] <jlwo) + s

for almost all y € B(wz,, r,) N 0,2.
If sptwc B(x,, r,) we have:

Iagjf;xw dH,_,

<fdt] [rpwaB )< (i) + 5)(ata0) + s)Tdt [ 1Dy,
0 8,2 0 2,

where

W,={weQ: wx)>1}.

In conclusion, choosing s small enough, we get from the coarea formula
(cfr. [6], 4.3.2(2)):

(1.13) | [rwar, o< —o)[|Duw)
8,0 2,

and (1.12) is proved if spt(w)cC B(wz,, r,).
For general w, let < 9,2 and let r be such that (1.13) holds. We can
choose 4 finite covering of 0,2 with balls B(x;, r,) (i=1,2,..., N) and non-
N N
negative smooth functions f;, with sptf,c B(z;, r,), > f.<1 and D> f,=1
i=1 i=1
on ¢,£2. Writing (1.13) for each of the functions wf,, and adding from 1 to
N we obtain at once (1.12). Q.E.D.
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ProPOSITION 1.3. Let x and H satisfy assumption (1.3) and let

(1.14) qx)j@)<l—o

for every xe 0,0,
Let H(w,t) satisfy the assumptions of Proposition 1.1, i.e.

h < nol®
(1.15) ” ”Ln(!)) :
1% 2.y < 0™

and suppose that for almost every x in a neighborhood of 9,2 we have

(1.16) lim sign () H(z, t) = + oo .

l#}—> 00
Then (1.4) is satisfied.

ProOF. Let Ac £, be a closed set with 8,2 N A = @ and such that (1.16)
is satisfied in 8= Q,— A. We can suppose that o8 N 2, is smooth and
gince 0,2 is compact we can assume that S has finitely many connected
components.

As in the proof of Proposition 1.1, there exist positive numbers ¢, and ¢,
such that for ¢{>¢, we have

"H_ (%, 1) ” L)< 1—¢g) ”wyn

and

[H* (@, — )| 2y <1 — &) newy™ .

Let B be a Caccioppoli set in Q; we get for #,>¢,:

f H(w, t,)do> f H(@, t,) 4o — nwl™(1 — &,)(meas (B A))~ ">
B BnS

> [H(@, ty) do— (1 — &) [|Dgy| — (1 — “) ! opdH,_,

BnS 4

and bhence

f wppdH,_, - f H(@, to)do> (RpsdH,_, — (1 —é) f |Dg s -+ f H(z, to)psde,
8,2 B a8 4 s
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where
(@) x€ 0,0
#X)=3 —(1—e) xz€8SNL

0 elsewhere in 0S8 .

Since 98 N 2, is smooth we have g(x) =1 there (see 1.G below) and
therefore if 4¢,= min (o, &):

q@)j ()<l —4e, in 98.

Applying Lemma 1.2 we get:

\

| [upsdH.s| < —260)[IDgal + s [gada
o8 S 8

where ¢, depends on § and » but not on the set B. In conclusion

f%¢BdHn_1 +fH(w, to)de> — (1 — 280)IID¢B| + fH(m, to)@sde — cszpsdm
B o, s s

5,0

and in order to prove (1.4) we have only to show that it is possible to choose
t,>t, in such a way that

(1.17) (@@, 1)~ e gdw+2 [1Dgs|>0
S S

Let 2 be a connected part of 8, and for t> ¢, let

2= {weX: H(»,t)<2¢,}

f(@, t) = min {H (z, t) — c,, 0}.
‘We have
lim meas 2, = 0

t—>o0

tlim £y )| zaezy = 0

and hence we can find a number ¢, such that for ¢>1:

(1.18) meas 2, < meas X/4

(1.19) If(z, t)]an(2)<min{oz (measz)”". & }

4 T 2¢(]
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We discuss separately two cases:

(D) meas BN X>meas 2/2 .
We have

f{H(w, t) — ¢, }ps d > 0, meas X4 —}—ff(w, t)de >
z P

—~1/n
> ¢, Meas 2/4-—— Hf(x, t)”L,.(Z‘) (meals Z‘)1 >0

4
(IT) meas BN X< meas X2 .

In this case we use (1.8) and we get
(meas BN X)-1n<26,(X) f |Ds|
z

and therefore

f{H(m, t) — ¢y} ppda> ff(w, tyde > — ||f(@,t) "L,,(2)2CJID‘P31
= b5 j

whence in both cases we have for t>1t;.

(1.20) f (H(z, 1) — o3} pad> — & f IDgs| .
z py

Since there are only finitely many connected open sets X'c 8, we get
eagily (1.17) with {,—= maxt;, and hence (1.4').
In a similar way one can prove (1.4"), thus getting the full result. Q.E.D.

1.G. We conclude this chapter with a computation of the function ¢(x)
in various situations.
It is easily seen that we have always ¢(x)>1.

PROPOSITION 1.4. Let 082 be of class C' in a neighborhood of xy€ 0,8,
Then q(x,) = 1.

PrOOF. We can suppose that #,—= 0 and that 02 can be represented
as the graph of a function f(2'), &' =(21, %3, ..., Z.,), such that f(0)= 0,
Df(0)= 0 and that

z,> f(x') in (0, r).
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Let Ac2(0,7) and let 0,4 = {xec0,Q: g (v)=1} (we remember that
@4(x) is the trace of ¢, on 002). Let n, be the projection of 9,4 on the
hyperplane z,= 0. We have:

[padHo = H, (@) = [VIT DfFdo

0,02 7

If we set M, =sup {|Df(«')|, |¢'|<r} we get lim M, =0 and
r—0

[paaBoc+ M) Ho s

2,02
On the other hand
(109> Hosl

o2,

and letting » —0 we obtain ¢(z,)=1. Q.E.D.
Another situation in which ¢(z,) =1 is when the mean curvature of 002
is bounded from above in a mneighborhood of xz,. More precisely we have

PRrOPOSITION 1.5. Let there exist R>0 and a function K(z) in L,(2,)
(2, = 2(xy, R)) such that

(1.21) le(p_QR[ —dex<f|D<pL| —dew
Br Qp Br L
for every set Lc £y, coinciding with 5 outside some compact set in Bp.
Then q(xy)=1.

Proo¥. Let r<< R and let Ac £,. From (1.21) with L= 2, — A we get
easily

f% daH,_ 1—f|D‘PA |< fK 40 < | K|z, 0,(meas 4)71" .
o2 o2 4

If r is small enough we have meas 2, < meas £2,/2 and hence from (1.8):

[PadB,_ < {1+ 26,(20) | E |10} [ 1D
R 2

and letting r — 0 we get ¢(z,) =1. Q.E.D.
To conclude this section let us calculate the function g(x) at the vertex
of an angular region.
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Let Q be the set {#xec R?:z,> L|x,|} and let 2= 0. It is evident that
the supremum in (1.9) is attained when A is the triangle

A= {weRe: Ll | <z, < Lr/V1+ Lt}

For such set we have:

f(pA dH"_l S 27'
002
[IDga = 2rVI+ T2
2
and hence
q(0) = V1+ Iz

in agreement with the results of Emmer [4].
It can be interesting to remark that if instead of 2 we consider the set
A= R*— 0, we get ¢(0)=1.

2. — Existence of a minimum.

2.A. We will show in this section that conditions (1.3) and (1.4) of sec-
tion 1.C are sufficient to gnarantee the existence of a minimum for the fune-
tional

2.1) $(u)=f\/1+ |Du|2+fz(x, u)dx—{—f{u—q;[dﬂ,,_l—}— wudH,_,
) Q 2Q

8,02
in the class BV(£2). To be precise we have the following

THEOREM 2.1, Let 2 be a bounded connected open set with locally Lipschitz-
continuous boundary 082, and let » and H be two functions satisfying condi-
tions (1.3) and (1.4) of section 1.C. Let ¢ be a function in L,(0,82). Then the
functional F(u) has a minimum in the class BV (Q).

The proof of Theorem 2.1 will take all this chapter.

The first step is quite usual in the theory of non-parametric minimal
surfaces, and consists in a suitable handling of the integral involving the
function ¢.

Since ¢ is in I,(0:£2), there exists a function f(») in the Sobolev space
HY(Q,) such that ¢ is the trace of f on 0,2 [9]. If we denote by w the
funetion

w(x) =

u(x) wxef
fl) 2e—Q
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we have [21] we BV (£,) and

@2)  [VIFDwlk=[vVit [Duf+ [VIF Dffdo +[ju—gla,_,
& Q o2,—0 8,0

The problem of minimizing the functional & in BV (£) is thus reduced
to a minimum problem for the new functional

(2.3) S(u) — f\/1+ Dul + f Ao, w)ds + [xudH,_,
2, 0

2,0

in the class

(2.4) W= {weBV(Q):w=fin Q,—Q}.

We remark that when 0,02 = ¢ the functionals ¥ and § coincide, and that
W= BV(Q) in this case.

2.B. Let us show first that G(u) is bounded from below in W.

LeMMA 2.1. Let H and x satisfy (1.3) and (1.4). Then for every function
v BV (2) we have

(2.5) ,,f A, v)da 4;!) w0 dH, > — (1 — so){gf \Do| +- 9|v|dH,,_1} —e,

2
where ¢, is a constant independent of v.

ProoF. We extend v as zero outside 2. Let us suppose first v>0. Setting

V= {re: v(x)>1}

we get

[i@, v a0+ [wvam,., =fdt [B(@, )20 +fdt [y edH, .
Q 0,2 0 7. 0 0,2

On the other hand:

fd: f Hix, 1) dz >fdz f H(x, t)dw —}—fdt f Hix, 1) do

s Vi
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so that from (1.4'):

(2.6) Mz, v)do 4 |evdH 1> — ¢, — (1 — &) | dt | | Doy, |
] 1 faon

0,92 ty 2,

where

to
0= toH,_1(3,2) - f at f \H(z, t)|dz .
0 Q2

In general we have (2.6) for v, = max(v, 0), while for v_= min(v, 0)
we get:

—ty
(2.7 Mz, v )doe +\wv_dH, > —cy— (1 —¢g)|dt||Dgy,|.
e L

—o0 £,

From (2.6) and (2.7) we get at once (2.5), recalling the coarea formula:

[1Do| + [lo} df, = [ Do] = ﬁu [1Dgy) QE.D.
Q 80 o2, —o0

From the preceding lemma we obtain at once the inequality

2.8) S(u) >eof\/1+ Dulf— e
I

for every ue W, ¢, being a constant independent of w.

LuMMA 2.2. Let x and H satisfy conditions (1.3) and (1.4). Then for every
8> 0 there exists a constant ¢,(8) such that for each we BV (L), with w=10
in Q,— 0, we have:

(2.9) | fwndHn_l

0,2

< —80/2)f|1>w| + 07(5)f|w|dw
Ss Se

where

8= {we Q,: dist(z, 0,Q2) < 6} .
ProOF. Let us suppose that w> 0 and that sptwc §;. We have from (1.4"):

f %pw, AH, > —(1—¢ )f|D¢W,1 ~ | H(, t) || 1,.s,) (meas W)™,
2,

8,0
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Suppose now that J, is such that

meas S; <meas 2,/2
and

1 H (5, )| o509 <ol41 -
If 6 < 6, we have from (1.8):
f"‘PW; aH, ,>—(1— 80/2)f|D¢W¢| .
8.2 a,
In a similar way, using (1.4") instead of (1.4'), we obtain:

J‘mpm dH, ,<(1—¢g/2 )f[D‘PWJ
2

3,2
and hence

(2.10) ‘ [rwam, .| <1 —eoi2)[|Dw].
8,2 Ss

Arguing as in Lemma 2.1 it is easy to see that (2.10) remains valid for
a general w, provided sptwc 8;, with 6 < d,.

Let g(z) be a C® function with ¢g=1 on 0,02, 0<g<1 and sptgc8,.
We have

L’ i xwdH, ,

<(1—2/2)[IDiguo) | < (1 —&0/2) [ | D] + &1 [ ] de
Ss Ss Ss
where ¢, = ¢,(8) = s;1p |Dg| does not depend on w, so that (2.9) is proved
for 6 < §,. It is easily seen that (2.9) remains valid for every 6. Q.E.D.
We can prove now the lower semicontinuity of the functional G(u).

PROPOSITION 2.1. Let {v,} be a sequence of functions in W, bounded in
Lum_1(£21), and convergent in L,(£2;) to a function v W. Suppose that (1.3)
and (1.4) are satisfied. Then

(2.11) §(v) <lim inf §(v;)

k—c0

Proor. Let us prove first the lower semicontinuity of the term

(2.12) f M, v)das .
Q
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For that we define, for m > 0, the function

H(x, m) if t>m
Hm(g, )y =4 H(z,1) if tl<m
H(z,—m) if t<—m
and let
Az, t) —_—jH""’(w, s)ds.
0

We have
fl(w, v(x)) da = sup | A"z, v(x))dw
9

m>09

and hence it is sufficient to prove the lower semicontinuity of the integral
f A, v) de
2

for each fixed m > 0.
Let v, —o in L; and let
@, = max(v, — v, 0)
Y, = min (v, — v, 0) .

Since ¢, and y, tend to zero in L, and are bounded in L,,_,, they converge
to zero weakly in L,, ;. On the other hand

jl(m)(m’ vy) d _fl(m)(w7 v) dx =fdwa‘m)(w, t)ydi>
Q o Q v

> f H(z, — m)p do - f H (, m) o ds -
2 Q2

The right-hand side of (2.13) tends to zero as k — oo, thus proving the
lower semicontinuity of (2.12).

For the remaining part of G(u) we use Lemma 2.2 and a technique
similar to [9].

Let

8(v) = f VIF Do+ [wdH,
2,

2,2
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We have from Lemma 2.2 applied to w = v — v,

8(v)—8(vk)<f\/1+ |Dv|2+fjpv]_fx/1+ Do+ c,f[v—vkldm.
Q, Ss

Q2,—8s Ss

Letting & — oo and taking in account the lower semicontinuity of the area
integral we get
8(v) — lim inf 8(0,) <2 |Dv|
Se

k—>oco
for every > 0, and hence
&(v) <lim inf §(v,) Q.E.D.

k—co

2.D. The proof of Theorem 2.1 will be complete if we can show that there
exists a minimizing sequence which is bounded in I,(£,). For, let {u,c}
be such a sequence; from (2.8) we easily see that

(2.14) f VIE Dusp<es
[*}

and hence {u,} is bounded in BV(Q,).

Passing possibly to a subsequence we can suppose that u, converges in
L,(£2,) to a function e W. From Lemma 1.1 it follows that {u;} is bounded
in L., 1(£2;) and hence we can apply the semicontinuity result proved above
to get the conclusion of the theorem.

Depending whether 0,2 = 0 or 0,2 = 0 we need two different arguments.
The first situation can be handled by means of the following well-known
result:

LEMMA 2.3. Let 2, — Q be non empty and let w(x) be a function in BV (£,)
with w=0 in 2, — 2. Then

(2.15) [w|dx < e, | | Dw|
Jitaese]

where ¢y depends only on 2 and 2.
It is easily seen that Lemma 2.3 settles the case 0,2 0. In fact every
minimizing sequence is bounded in L,(£2,) since we have:

[1usddw < [ f1dn + e[ D11+ o 1D
&

1 1 1

and the last integral is bounded by (2.14).
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2E. When 0,2 = § the previous lemma does not work and we need a
different argument. Let wus remark first that if 0,02 =0 condition (1.4)
implies

(2.16) f H(w, ) dw -+ f wdH, >0
2 o2

(2.17) — f H(w, — to) ds— f wdH, ;>0
2 a2

LeMMA 2.4, Suppose that there exists a positive number h, such that

(2.18) f H(w, to) d® + [ dH,_y>h,
o 002

and

(2.19) — f H(w, — 1)z — (xdH,_,> 1y
02 02

and let we BV(Q) satisfy

plu) = | A(z, u(x)) dx —I—J‘xu dH, ,<1.

Q2 aQ
Then
(2.20) I dw<cm{1 +f 1Du[} .
Q Q
ProoFr. Let
v, = max{u — iy, 0)
V, = max{— 4 —1,, 0).
We have
P+ t) — plte) > [H(z, ty)0r 4 + [0, dH
Q aQ
and
P(—v,— b)) — p(—1t) > —fH(m, — 1)V dx — Vv dH,_, .
Q 82
Setting

U,= (meas Q)*|v,de (i=1,2);
Q
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we get

Tt <| [H (o, to) dn -+ [xal, o<
2 o2

< [B (@, t3)5— 00) @+ [#(5:— 0) Ao+ (02 +- t0) —Plt0) -
Q 0

From Lemma 1.1 we obtain:

‘ fH(ma ) (U, — ;) dm[ <||H(z, 1) ”L,,” v — 7—’1HL,./..-1< an.ID'Uli
2 0

a similar estimate holding for the boundary integral. In conclusion

hoB <o | D] + P01+ t0) — P(t0) -
Q

In a similar way
hou <05 1oy + P(— 13— to) — p(—to)
Q
and hence

(2.21)  ho(D1-+7,) <014f[1)u[ + P01+ 1) + p(— 02 — 1) — P(t,) — p{— 1) .
o

On the other hand we have
(meas Q)—lﬁu] de <t + U, 1,
Q2

and

P(v1-+ To) + P(— v — To) — D(te) — p(— to) = D(u) — p(%,)
where

wo(%) = max {min(u, ty), — o} .
Combining these relations we get
[tuldo<ey[1Dul + o4
Q 2
since
()| <to{H,_1(002) + |H (@, t)| 1, + | H(w, — o)z} Q.E.D.

34 - Annali della Scuola Norm. Sup. di Pisa
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The preceding lemma plays the role of Lemma 2.3 in the proof of
Theorem 2.1. Let {u,} be a minimizing sequence; we can suppose that

G(ux)<8(0)+1=meas 2+1

and hence
plug) <1,

for every k. From Lemma 2.4 and (2.14) we can conclude that {u,} is bounded
in Z,(£2) and therefore we get the conclusion of Theorem 2.1.

2.F. It remains the case when 0,0 = ¢ and either

(2.22) f H(w,t)dz + [xdH,_,— 0
Q 802

or

(2.23) fﬂ(w, —t)dw+ [xdH, =0
02 o0

for every 1>1,.

It is evident that an a-priori estimate for the L, norms of a general
minimizing sequence cannot hold, as one can realize considering the case
H = x=0, and hence we need a different argument.

To be definite let us suppose that (2.22) holds for every t>1¢,. Since H(x,?)
is a non-decreasing function of ¢ it follows that H(z,t)= H(x, t,) for almost
every x in Q and for each i>1,.

LEMMA 2.5. Let 0,2 =0 and let (2.22) and condition (1.4') hold. Then
for every Caccioppoli set Bc Q2 we have:

< —e)[|Dgs

(2.24) I A1) az+ f wpsdH,_;
B o2 2

ProoOF. Let Bc Q2 and let A= 2 — B. We have
[1Dgsl = 1Dy,
2 Q2

From (1.4') relative to the set A we get

fq;AH(m, t,) da +f<pAndH,._1> -1 eo)le%l .
Fe) o2 Q
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Since ¢, =1— ¢, in 2, we obtain from (2.22):

(2.25) I%Hwﬁmm+ﬁ@MHMﬁdL—mﬁD%[
2 o o2

and (2.24) follows at once from (1.4') relative to B. Q.E.D.
Let us introduce now the functional

Go(u) :f\/l—}— |Du|? —I—fH(w, to)uw(x)de 4 |»udH,_,.
Q2 2 o0

It follows from (2.22) that
So(u) = Go(u + ¢)

for every real number ¢ and every e BV(£2), so that a minimum for G,
in the class

Vo= {ve BV(2): fvdmz 0}
Fo)

will be also a minimum for G, in BV(£).

The existence of a minimum for G, in V, follows from (2.24) with the
same argument as before; the L, norm of a minimizing sequence being
bounded from Lemma 1.1, since v, = 0.

2.G. We shall prove now an a-priori bound for the supremum of a func-
tion u(x) minimizing the functional §(«). The following lemma is a simple
consequence of (1.8).

LEMMA 2.6. Let we BV(Q) and let

meas spt(w) < meas Q2/2 .
Then

(2.26) (me%wQPW<%me.
Q2 Q
ProoF. We can suppose w>0. We have

(meas W,)1-Vr chf |Doy,|
0

where as usual
W= {xec2: wx)>t}.

and (2.26) follows as in [2], Lemma 1. Q.E.D.
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The a-priori bound for a solution can now be proved using the method
of [28] (see [10]).

THEOREM 2.2. Let conditions (1.3) and (1.4) be satisfied and let u(x) be
a minimum for the functional S(u). We have:

(2.27) sup [u]<ey,
Q

where ¢y, i3 a constant depending on &, to, |u|;, and on sup |p|.
X

ProOF. Let my,=sup |p|; we can suppose that sup|f|=m,. Let
k>max(m,, t,) and let &

v = min (u, k)
w:max(u—k,O)zu—v.

We have as in [10]:

f]pw|—meas Uk<fx/1+ |Du|2—f\/1+ Dol
2, L2 2,

where
Up={we 2: ux)> ¥k}

and therefore, since G(u)<SG(v):

lew| +fdwa(x, t)dt + |#wwdH,_y<meas Uy.
2 L] 8,0

&
From the very definition of v and w we get

f do[Hz, t)dt> f H(z, to)ywde
2 o

v

and from (1.4'):

fH(m, ty) wdzr + | wwdH,_;>— (1 — So)JIDw[
@

Q ,Q

so that in conclusion:

(2.28) & f |Dw| <meas U, .
2,
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On the other hand we have

k meas U, < |u] 1,0
and hence if
k> 2| u|; q/meas 2
we get
meas spt(w) < meas 2/2 .

From Lemma 2.6 we conclude that
[10]3,,., <2, 1D0]
02
and therefore

(2.29) f (4 — k) do < 2, £5 (meas U,)L ¥
Uy

for every k> ko= max {m,,ty, 2|u|,q/meas 2}.
Using a2 well known result of Stampacchia [28] we get the estimate

supu <k, 2(n -+ 1) e, 6" (neas 2)/7,
0

A similar computation gives the estimate for the infimum of v in 2. Q.E.D.

2.H. We are now ready to prove the existence of a minimum for the
functional G(u), under the condition

(2.22) fH(a:,t)dm—l— xdH, ;=0 for every t>1,.
2

002

We observe that (2.22) implies H(x,t)= H(x,1,) for every t>1,, and hence
H(x,t)<H(z,1,) for each {. If we set

t

o= f dw f (H(z, 1) — H(z, 1)) &t
02 ]

we have, for every function ue BV(Q):

Golu) <G(u) 4 ¢,

the equality holding if u(z)>1{, a.e. in Q.
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Let now »(z) be a minimum for the functional G; in V,; it follows from
Theorem 2.2 that |[v(x)| is bounded by some constant ¢,; depending only
on t,, & and . If u(x) is a function in BV(2) we have

S(u) > SGp(%) — ¢o=>Go(v + 15+ 1) — o = S(v 4 15 -+ 1) .

In conclusion, the function

V=0 15+ 1o

gives the required minimum for the functional.
The proof of Theorem 2.1 is thus complete. We can summarize the results
of this chapter as follows:

THEOREM 2.3. Let x and H be two functions satisfying conditions (1.3)
and (1.4) of section 1.C. and let ¢ be in L,(0:£2).
The functional

u(x)
= \/ 2 s - n—1 n—-1
F(u) gf 11 Du] +gfdaifﬂ(a; t)dt—la—lyu o|dH —Zixudﬂ

has ¢ minimum in BV ().
Moreover, if ¢ is bounded, every minimum u of F is bounded by a constant
depending on &, %o, sau‘?lﬂ and [uf|,q-

In particular if 0,02~ @ and ¢ is bounded, or if 9,2 = ¢ and the func-
tions » and H satisfy (2.18) and (2.19) then every minimum of F is bounded
by a constant depending only on &, t,, sup |p| and possibly on &,.

3. — Regularity of the solution.

3.A. The problem of the regularity of the solutions to our variational
problem is still open in what concerns the regularity at the boundary 0,£.
On the contrary, for interior smoothness, as well as for the regularity at
0,8, the situation is quite satisfactory and, for instance, one can get com-
plete results for the Dirichlet problem.

In this chapter we shall sketch briefly the ideas involved in the proof
of these results, referring to [15], [13] and [23] for details.

3.B. We begin with interior regularity, and we suppose that the mean
curvature function H(x,t) is Lipschitz-continuous in Q2 xR.
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The first step congists in the observation that if the function u(x) gives
a minimum for the functional ¥(«) in BV (L), then the set

U= {1t e 2xR: t< u(x)}
minimize the functional

Fo(U) = [|Dyy| + [ (2, gy deat
K K

in every compact set Kc 2 xR.
In other words we have

(3.1) F(U)<Fg(V)

for every Caccioppoli set V c 2 xR and such that ¢, — ¢, = 0 outside the
compact set K (see [20]).

We can apply the results of [19] and conclude that the boundary oU
of U is a regular hypersurface, except possibly for a locally compact set X,
whose Hausdorff dimension does not exceed n — 7.

The argument used in [15] and [13] applies to this case also (wWe use again
the fact that H(x,?) is non-decreasing in t) and we conclude that the func-
tion u(x) is regular (say C***), except for the set N = proj~X. In addition
the function » belongs to the Sobolev space H(£Q).

In order to get the complete regularity of the function #(x) one must
use the a-priori inequality for the gradient (see [18] and [30]), and an ap-
proximation procedure, for which we refer to [15], [12] and [22]. The final
result is the following

THEOREM 3.1. Let H(x,t) be a Lipschitz-continuous function in QxR
and let u(x) be a minimum for the functional

(3.2) Fw=[Vit Duft+ [Aa, u)dx+f|u—<p]dﬂ,,_1+ wudH,_,
2 Q 0,2 9

Q

Then u belongs to O**(Q), for every a< 1.
In addition for every xz,€ 2 and for every R << dist(x,, 02) we have

(3.3) | Du(a,)| < €10 €XP {0200 (R)/ R}

where w(R) is the oscillation of w in the ball B(xy, R) and ¢, and ¢y depend
on H, DH and sup |u|.
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3.C. It has been proved in [3] that the inequality (3.3) does not
hold in general if the function H(x,t) is not Lipschitz-continuous. To be
precise, if H does not depend on ¢ it is not sufficient to assume that H(x)
belongs to the Sobolev space H'?, for every p << co.

In this section we shall give an example showing that if H is not
Lipschitz-continuous the function u(x) does not belong in general to the
space H(Q). The example will concern the one-dimensional problem, but
it is easily seen that it works in any dimension.

Let
exp(—(x—1)1) z>1
f@)=7 0 —l<r<l
exp ((z41)77) r<—1
If we set
0 t=0
h(t) =
{ tlog® |t|(2 4 log [t]) (1 4 t2log* t))"F  ¢20
we have

d
= (FA+ 78 = (@)

The function k(?) is increasing for |t|< T =e¢~°; if we set
Q={zcR: |r|<1+ g}

we get |[f(x)]< T in @ and hence

(1t ) = H(f@)
where
h(t) it < T
H(t) =y MT)+W(D)(t—1T) t>T

M—T)+H(—T)+T) t<—T
The function H(t) is increasing in R and therefore the set

F={@x1ec@xR:fz)<y<T}
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minimizes the functional

[1Dgs)+ [op B ) dway
K K

in every compact set KcA =Qx(—T,T).
Let

v(y) = sign(y)(1 — (logly)™) ;
we have ve BV(— T, T) and
F = {(my y)ed: I?/]< T, w<”(y)} .

From the minimum properties of ¥ it follows that
T T T T

B.4)  [VIFDop+[H@) o) dy< [VIF Dl + [H(y)wi)dy
-7 -7 -7 -T

for every we BV(— T, T), such that spt(v — w)c(— T, T') and such that the
graph of w is contained in A, i.e. [w]<1-+ 3.
From the convexity of the funetional it follows at once that the func-
tion »(y) satisfies (3.4) for every we BV(— T, T) with spt(v —w)c(— T, T).
It is easily seen that H(y) is in HY?(— T, T) for every p < -+ oo and
v(y) does not belong to H'.

3.D. TFor what eoncerns the regularity of the solution at points of 0,0
we refer to [23] and [13]. We have the following

THEOREM 3.2. Let 0,02 be of class O3 and let p(x) be a continuous function
on 0.82. Let xyc 0.2 be such that the sum of the principal curvatures of 02
at x, is greater than |H(zy, p(®,))|. Let w(w) minimize the functional (3.2)
and let H(x,t) be continuous. Then

lim u(x) = @(x,).

LT

If in addition @(x) is of class C*** in a neighborhood of x, and H(xz,t) is
Lipschitz-continuous, then the gradient of u(zx) is bounded in a neighborhood of x,.

The first assertion of the Theorem is a special case of [23], Theorem 6;
the lagt part can be easily proved with the method of [13] using inequality (3.3)
and the bound for sup |u].
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4. — Existence revisited.

4.A. In this chapter we shall come back to the existence of a minimum
for the functional

F(u) =f\/1+ [Duf+ Ao, w)do —l—f]u—(p]dH,,_l—l— wudH,_,
2 2 2.0

0,2

with the purpose of generalizing the results of ch. 2.
We shall make the following assumptions:

(4.1) The boundary of £2, 002, is a hypersurface of class C3; and @(x) and x»(x)
are bounded measurable functionsin 0,2 = 0Q,N 02 and 0,02, respec-
tively, with |x(r)|<1.

H(x,t) is a Lipschite-continuous function in Q x R, non-decreasing in t
for every ze Q.

(4.2) There exist two positive constants t, and o, suchthat for every Caccioppoli
set Bc L:

(4.27) fH(w,to)dm —|—mdeH,,_1>—f|D¢B]+2uomin{|B|, 12— BJ}
B 1

8,02 Q

(4.2") f H(w, —t,)dw +f wppdH, s < f |Dgs| — 200 min {|B|, |2 — B[}
B 2,

0,02

where we have denoted by |B| the measure of B.

It is clear from (1.8) that condition (4.2) is more general than the cor-
responding assumption (1.4); in particular we are able to treat the case
where x(x) takes the values 41, formerly forbidden by the proposition 1.2.
From the results of [14] it is apparent that one must have quantitative
conditions on the mean curvature of that part of the boundary where
#(x) takes the values +1 or —1. For xze Q let d(z) = dist(x,02) and let

I'y={red,Q:x(x)= 1}.

P_lz {xeazg: x(ﬁ) :—1}.
We have:

PROPOSITION 4.1. Let x, be an interior point of I',, and let (4.2") hold. Then

4.3) H(wy, —t,) < Ad(w0) — 20, -
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If instead x, is an interior point of I'_; and if (4.2") holds, we have:
(4.4) H(xy, ty) > — Ad(@o) + 20t .

Proor. Let B, be a ball centered at x, such that |B,|<|Q}/2 and
02N B,cI,,, and let BcB,. We have from (4.2"):

[ @, —t)+ 200} do + [paal, < | Dgs)
B oQ 2
Setting
H, = inf H(z, —1,) + 20t
BT

we obtain

f(deHn_1<f|D(pB| — H,y|B|.
a0 Q

Let @ = R*— £, and let A=Q U B. We have

[1D0g| = [ 1Dyl + [1Dgs| — [z,
Br Br Q 80

and hence

Dl — HylQ N B, < [IDg, | — Hol4 N B,

B,

B

for every set 4 5@, and coinciding with @ outside B,.
The last relation implies that the sum of the principal curvatures of
02 N B, does not exceed — H,; from Lemma 1.2 of [25] we conclude

— Ad(x))< — H, .
Since r is arbitrary, we can let r -0, getting (4.3). With the same ar-
gument one can prove (4.4) and hence the Proposition. Q.E.D.

The preceding result justifies the additional assumption

(4.5) SUPPLEMENTARY CONDITION. There exist two positive constants »; <1
and o, and two open sets L, and L_, such that

4.5') =(@)<#, in 0,Q2—L,,, and H(w —1t)< Ad®)—2a, in L,

(4.5") #{x)>—2n, in 0,2—L_,, and Hx,t,) >—Ad(x)+2e, in L_,.
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‘We remark that if »(«) is a continnous function and if the sets I",; and I"_,
coincide with the closure of their interior, the supplementary condition
(with o = $o,) follows from (4.2) and Proposition 4.1.

4.B. As in ch. 1 we shall begin with a short discussion of condition (4.2).
Let us congider first the Dirichlet problem (i.e. 9,2 = @) for constant
mean curvature H, in the borderline case [3]:

(4.6) |H| = nol™|Q7",

We have
| [Has| = @ BP-m@pm(1 — 1@ — BljjQ)
B

and hence

| [#ae|< [IDgs) — nm((1BIIQ) -2 — Bl<
B £2.

1

[ 1Dgs| — n|H|1Bl|12 — Blj2-

which gives at once (4.2).
In general, in the case of Dirichlet problem, condition (4.2) is satisfied
if for some ¢, and some p, n < p< + oo,

[ H= (@, TF ty)]| 1,0 <mew)™| Q3"
where, as usual, H+* = max(H, 0) and H- = min(H, 0).
The situation is more involved in the case of mixed boundary condi-

tions. We need the following

LEMMA 4.1. Let L be a set with C* boundary and let we BV (L). Then

(4.7) f (w|dH,_, < f |Dw| + 63(L) f | de .
oL L L
PROOF (see [10], Lemma 1). Let d, be such that the distance function
d(z) = dist(x, 0L) is of class C* in the strip
S={reL:d®)<d,}.
Arguing as in [10], we get (4.7) with

e(L) = dy' + sup max (— A4d, 0) . Q.E.D.
8
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PROPOSITION 4.2. Let 2, » and H satisfy assumptions (4.1) and let
h(z) = lim H~(z, t)
t—>+oo

k(x) = lim H*(x, t)

t——co
Suppose that
1] 2.0 < meoy™

%] 202y < me™
and

(4.8) lim sgn (3) H(x, t) = + oo

{tl<~+ o0
uniformly for x in some neighborhood L of 0,2. Then (4.2) is satisfied.

Proor. We remark that since H is continuous and non-decreasing in ¢,
uniform convergence in (4.8) is equivalent to pointwise convergence. More-
over, we can suppose that oL is smooth. Arguing as in Proposition 1.3 we
get the inequality:

f H(x,t,) dw -+ f @pdH, 1> |%psdH, 1 — (1 —&) f [Des| +
B 3.2 8L 2—-L

+fH(a77 to)‘PBdw + & f‘PBdHn._l
L LN 0y
for every t,>1t,, where

b3
i

» in 080
—1 in 0L N £,.

From Lemma 4.1 we obtain
fH(w, to) do +f74993 dH,_, >“_J‘!D¢Bl +f(H(x’ ty) — 021)?93 dxr 4+
B 8,92

1 + el{gl [Pl [ puatt .

OLn 2,

If we choose ¢, in such a way that H(x,{,)>¢»+1 in L, we get immedia-
tely (4.2’) observing that

[Des1+] 9508, ,>noim "B A (@ - 1)

2.5 LnQ,

The proof of (4.2") is similar and will be omitted. Q.E.D.
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4.C. The existence of a minimum for the functional F(u) with the as-
sumptions of section 4.A4. cannot be proved directly as before, because in
general we don’t have an a-priori bound for the area of minimizing sequences.
However, for a suitable minimizing sequence we shall prove an estimate
in BV, from which we will derive the existence of a minimum.

The idea consists in approximating the functions H and » by means of
the functions

He(x,t) = (1 —¢)H(x, )
and

#e(x) =1 —e&)n(x).
For small values of e> 0 these new functions satisfy the hypotheses of
section 4.4. and moreover conditions (1.4) of seetion 1.C with ¢ =¢, so
that the corresponding funectional ¥, has a minimum u, in BV () which,
according to Theorems 2.3 and 3.1, belongs to the space C>*(2)N L_(Q).
Due to the convexity of the functional, the minimizing function is unique

up to an additive constant.
Our goal is to get a bound for sup |#te|, independent of e. To this pur-

pose we shall consider an auxiliary obstacle problem.
Let

(1—¢€)x in 82!2
Heg —
1—¢ 111 al.Q
and let

S.(v) = f Vit Do+ st(w, t)vde+ |RvdH,_, .
02 02

o

We have from (4.2')

j He(x, to)do 4 f RoppdH, 1> — (1—¢) f \Dg5| + 2a5(1 — &) min (}B], |2 — BJ)
B 002 Q

and therefore arguing as in chapter 2 (see also [5]) we can conclude that the
functional G; has a minimum v, in the class

K,={weBV(Q):v>T}.

The minimum v, is actually of class C%* in Q.
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LEMMA 4.2. Let ve be a minimum for the functional S; in Ky, and let ue
be a minimum for Fe in BV(LQ). Suppose that

T >max {t,, %1;13) lpl}.

Then either us<ve in Q or Fe(ve) = Felus).
Proor. Let

w = min(ue, ve)
and
A = {we Q: ve(w) < ue(®)} .
We have

(4.9)  Folw) = Folue)+ f (VI [Do.f— VIt [Duck)de -+
A

T f (Zeltty 0e) — Ael, ue)) der + f (1w — | — us— @|) AH oy + | #e(t0 — ue) dH,,_,
A 8,0 8,2

Recalling that for # in A we have #:>v:>7T>1,, we get

(4.10) f(la(m, ve) — Ae(, Ue)) dwnga(w, to) (Ve — ue) d
4 4

On the other hand the funetion y = max(u.,v) is in K,, and therefore
Ge(ve) <Ge(y). This implies

f (VIT [Doeff— Vit [Ducl)dw + f He(@, t,)(0e— ue) di < f Aoy — ve)AH o_,.
A o0

A

Comparing with (4.9) and (4.10):

Folw) < Folue) + (0 — et y — v wedHos +
0,02

+f{(1 — &)y — ve) + |0 — | — |t — @[} AH o_y < F () -
0,2

From the uniqueness of the minimum we get

w=wu-+c¢, ¢<0
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and hence either w = u., 50 that 4.<v., or w = v¢, and then

\7"6('17&) = 3'-3(’11/3) . Q.E.D. -

In any case there exists a funection u. minimizing the functional e,
satisfying u,<v., so that an upper bound for », will give a corresponding
upper bound for wu..

In a similar way we can find a lower bound for «. by means of the solu-
tion w; to the problem

fx/1+ [Dw|2—i—fH5(w,—to)wdw—|— nswdHn_l—f(l—e)wdHn_l->min
2 2

5,02 8,0
in the class

{fwe BV(2): w<— T}.

We are then reduced to the problem of finding a uniform upper bound for v.
(and a lower bound for w.). Since the arguments are perfectly symmetrical
we shall consider in detail only the first problem.

4.D. In order to avoid unnecessary complications we shall omit the

suffix &; we will derive an upper estimate for a function v(r), minimizing
the functional

S(v) = f\/1+ DofF + fH(w)vda:—l— %odH,_,
Q o2 oQ

in the class K,; the functions H and % satisfy the relations

(4.11) fﬂdm +fﬁ¢BdH,,_1> —fm%; + a,min {|B]|, |2 — B[}
B aQ Q

for every set Bc Q;

(4.12) #(x) >— 2 VeeoQ— L,
(4.13) Hax)>—Ad(x)+ o, VYxeL_,
where L_, and L_; are open sets, with L_,cL_,cL_,.

It is clear that He(x,t,) and %, satisfy the preceding relations uniformly
for £¢> 0 in a neighborhood of 0.
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LemMmA 4.2. For every ve K, we have

(4.14) f v — voldn <28(v)/og »
o

where v, denotes the mean value of v in £2.
Proor. Let

V= {xeQ:v(x)>1t};

we have from (4.11):

[ { [Eondo+ [yt + 1Dy} ata [min {7y, |0 — V., at
Q2 o] 2 0

0

and hence

g(v)>f;m[ +fmdx +f&vdﬂ,,_l>m,,fmin{|vt|, 12— V,[}at.
2 Q R 0

Let 7 be such that
[V=>1Q]/2 for t<

Vi<|2]/2 fort>7;
then

fmin{]VA, @ —Vpat=lo— 7|

and (4.14) follows from the simple inequality

f[v——v_oldm<2f[v—1|dx. Q.E.D.
Q Q

In particular, if v minimizes § in K,, we have the uniform estimate:

(4.15) f [0 — vg] da < 26(T) ety < Gs -
2

The next step consists in getting an estimate for the area of v in compact
subsets of Q2. For s> 0 let

Q,={xecQ:d(x)>s}.

35 - Annali della Scuola Norm. Sup. di Pisa
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LeEMMA 4.3. For every s> 0 there exists a constant cq,(s) such that if v(x)
minimizes S in K, we have:

(4.16) J' V1T [Dofdw<cy(s).
2,

Proor. Let g(x) be a smooth function in £, with 0<g<l, g=1
in 2, and g = 0 near 0.
Let

w = max(0, v — vy)
and let
h=v—gw.

We have he K, and therefore G(v)<G(h). If we observe that h=wv
near 902, we get

[(VIF Do — Vit DhP)do<—[Hgwdo .
Q2

Q

On the other hand

V14 [Dv|P— V14 [DhP= V1+ [Dwlt— V14 |[D(w—gw)|*>

>VIT Dwl—VIF 1 — g7 Dw]—w|Dy]
and whence
[Vit Dwlde< |21+ [uw(|H|+ Dg))do .
Q, Q
In a similar way, if z = min(0, v — vy) and k= v-— gz, we get

[ViFDeFao<|2|+ [lo)(1E |+ Dg))do .
0, Q

Combining the last two inequalities:

[VIF Dopas<2iQ1+ ew®)[(w+ 2l do = 2121+ 63, p— 00z
Q, Q Q

and (4.16) follows at once from (4.15). Q.E.D.
‘We conclude this section with an estimate of the oscillation of ».
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LEMMA 4.4, For every s> 0 there exists a constant cy(s) such that
(4.17) ose (v)<025f\/1+ Dol dw
2, a
PROOF. Let

V={x1telxR:t<v(x)}.

If B is a (n-}1)-ball centered on 0V= graph(v) and contained in the set
Q,X(T, -+ oo), we have ([20]):

f]D(pl +fH¢,dwdt<f|D¢Ql+fH<dewdt
B B B B

for every set @ coinciding with V in a neighborhood of oB.
From [19] we get the estimate

f|sz,,| > 0nT" — MW, SUP [H jrott
B

where r is the radius of B.
If nwq,.sup |Hir< w./2 we have

(4.18) f IDg,|> w2 .
B
Let now
A= 08¢ (v);
D4,

if r< s there are at least [A/2r] disjoint balls contained in Q,x (7T, + o)
for which (4.18) holds. We have therefore

[VI+Dofdw = [|Dg,|> 2rlwrny2
Ql

Q,xR
and (4.17) follows at once. Q.E.D.
4.E. The results of the preceding section give the uniform estimate

(4.19) 08C (1) < Caq($).
Q.
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Using the supplementary conditions (4.12) and (4.13) we shall get a bound
for the supremum of v in 2.

Let d,> 0 be such that the distance function d(z) is twice differentiable
outside £, , and let

(4.20) A=1+ sug{[AdH— |H|}.

Q- do
The function
1 3
9(s) = S {1—(4s + »,)*}
satisfies the equation

g=—Al+gn

in the interval 0 < s<< (1 —,)/24 = s,.
If we set s, = min(d,, s,) and

#(@) = g(d(=)) — g(0)
we have, for every xe Q— 0, :
(4.21) £(2) = — A — H(x)+ Adg'(1+¢'*) 7
where £ is the Euler operator relative to the functional G:
£(e) = (L4 [D2?)"H(1 + |Dz[?) 42 — 2,,2,,2,,,,} — H(2) .
From (4.20) it follows immediately
(4.22) L)< —1
so that z is a strict supersolution in the strip 2 —Q, .

Let now L_, and L_, be ag in (4.12), (4.13), and let L_, be an open set
such that

Li.cL,cL ,cL ,cL_,.
Let M(x) be a function of class C* in Q, such that

M@x)=—1 in L,
M(x) =2[a;, outside L_,;
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let s, = min(d,, 2/a;), and for z in 2 — 0, let
2
y(@) = M(z)—= {1— (o d(@)/2— 1)} = M(z) + k(d(x)) .
1
If we observe that the function k(s) satisfies
=2 (A k)l
we get easily:
£(y)<(1+ |Dyl)? {m +my ke (L K k'SAd}—ch)

where m, and m, depend only on the C® norms of M and d.
Let now 2 L_sN (2 — 2, ); from (4.13) we get

£y) < (14 [Dy]2)"Hmy + mok'?) 4 (4d — o 2)(1 + E'3(1 4 [Dy[?) }) — /2 =
=—o/2+ R.

As s —> 0+, we have [Dy| - -+ oo and &'(1 4+ |Dy[?)~* - —1, and therefore
R —0. We can conclude that there exists a positive number s; such that

Ly)<—ofd in L,N(R—-2,).

In addition we have

—1<—1/A<2(x)<0

and
— 2, <k(s)<0
whence
yz)y=—1+kd)<—1<z@) ael_,
Y(@) = 2 /oy + k(d) >0 > 2() w¢L_,.
If we set

Z(2) = min {z(z), y(x)}

the function Z is a strict supersolution for the functional § in the strip
Q— 0, (sy,= min(s,, s5)), coinciding with y in L_; and with z outside L_,.
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More precisely, if # is a non-negative function with support in the strip
Q—Q,, we have:

-DiZ-Din

-23 S ———————
(4.23) V14 [DZ[

dw+'fﬂndx>o

the equality sign holding only for n=0.

LemMMA 4.5. For every g>0, with g=0 in O, , we have:

(4.24) [pgp.2(1 + D2 do +ngdm +fﬁgdH,._1>0 :
o 2 o

the equality sign holding only for g=0.

Proor. Let 0<<p< s
@(2) = min(d(z)/g, 1)
and let
n(x) = g(@)p(@) .
From (4.23) we get

(4.25) f ¢D.gD, Z(1+ ]DZ|2)—*dw+—1- ngdeiZ(1+ IDZ])~tdw +
Q2 Q'Q"Qn
+ |pHgdxr>0.
Q
As o —0 we have

1 f gD,dD, Z(1+ |DZ?)~*dw —~|gp dH,_,
Qg—ge a0

where f satisfies

{ I9 < — in 902
(4.26)

ﬂ:——l inE_lﬂa.Q.

As f<#% the conclusion of the lemma follows immediately passing to the
limit in (4.25). Q.E.D.

It is clear that the conclusion of the lemma holds if Z is replaced by
Z -+ const.
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PRrOPOSITION 4.3. Let v be ¢ minimizing function for the functional G in
the class K, and let p> 0 be such that the function w= Z 1 p satisfies

w>T in — 0,
w>v in 00,, s<s,.
Then
w>v in 22— Q,.
PROOF. Let
v — min(y, w) in Q— 0O,
g_—_{ 0 in Q,.

The function g is Lipschitz-continuous and non-negative in £; we want to
prove that g=0.
Suppose this is not true, and let

m(t) = G(min(v, w) + tg) .
We have

m'(0) =J‘DiwD,~g(1 + |Dw]?) "t dx -}—ng dz —l—f%gdH,,_1> 0
o g o2

and from the convexity of G:
G(v) = m(1) > m(0) = G(min(v, w))
contradicting the minimality of v. Q.E.D.

4. F. From Proposition 4.3 we get immediately the inequality

(4.27) supv(x) <supv(x) + §<C 8.
Q 2

In wiew of (4.19) we need only an estimate for the quantity

m, = info(x)

As in ch. 2 we discuss first the case where

(4.28) fde —|—fa’%dH,,_1>h.,> 0
0 80
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(we remark that if (4.28) holds for ¢= 0, it holds uniformly for 0 <e<}).
Let

B,= {we 2: v(z) < m,}
and let
v, = Max(v, m,) .
We have

8(v,) = Q(v)—f\/l—{— [Dv|2de + }le—l—fﬂwsdx +f7?wsdH”_1
By g o0

where

w, = max(m, — v, 0).
Using lemma 4.1 we get easily:
S(v.) <S(v) + |B[{1 + (m, — T)[en(2) + sup [H[]} =
= 8(v) + |B|[1 + xs(m, — T)].
On the other hand we deduce from (4.28):
8(v,— m, -+ T) = S(v,) — (m, — T){ f H dow + f fadH,,_l}<Q(v,,) — ho(m,— T)
Q a2
and hence
8(v,— m, -+ T)<B(v) + |B,| — (ms— T)(he— 53| B,})
Since v,— m,-+ T> T, we have §(v)<S(v,— m,+ T) and therefore
m,< T+ 2|21[h,
provided s is so small that
Cos| B| < 0o6} 82 — 2| <l /2 .
In conclusion, if s is small enough we have the inequality

(4.29) info(x) <y

which eventually, together with (4.19) and (4.27), gives the required bound
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for the funection v(x):

(4.30) sup v(x) < ey -
Q

4.G. It remains the case when

(4.31) f H(w, t,)dz -+ [xdH,_, + f dH, 1= 0.
0

2 EXe) 8

This is the typical situation when the curvature function H does not depend
on ¢ and 0,2 = 0; actually (4.31) becomes a necessary condition in this
case, as one can easily see from (4.2') and (4.2") (or else integrating equa-
tion (0.2) in 2 with the boundary conditions (0.3)).

As in 2.F, Lemma 2.5, we deduce from (4.11) and (4.31) the inequality

(4.32) l f Hdn+ f RppdH,_,
B :1e)

< [1Dgs] — womin {|B, |2 — B[}

for every set Bc 2, where

#(x) X E 0L
A(x) =
1 re 0,2

It follows from (4.32) and Proposition 4.1 (remember that 0,0 is open
in ¢02) that the new function % satisfies the supplementary condition (4.5).

Let now ¢> 0 and let », be a minimizing funetion for the funectional G,
in K,. We have as above the estimates

(4.33) 08C (V¢) < €54(8)

and

(4.34) SUP Ve < SUP Ve + o7
o

s

with ¢,s and ¢,; independent of e.

On the other hand from (4.31) we get G.(v) = Gs(v -+ const), and hence
v, minimizes G, in BV(£). From (4.32) and the supplementary condi-
tion (4.5) we conclude with the same argument as before

(4.35) info, > infv, — ¢,y
2 2,

which, together with (4.33) and (4.34) gives

08C (Ve) < €35 .
Q2



546 ENRICO GIUSTI

Adding possibly a constant to the function v we can suppose that
i%f ve= T, getting the required bound (4.30).

4.H. The estimate (4.30) and the lemma 4.2 give an a-priori bound for
the supremum of the function u., minimizing the funectional %.. This
supremum is actually independent of e.

In a similar way one can show that u. is bounded from below in 2, so
that we have the estimate

(4.36) Sup |ue(®) [ < cy5 -
Q

Since
Folu) <Fo0)= @] + | IplaH,,
8,2
we have from (4.36) the inequality

(4.37) f\/1+ D[ < 44
&

where we have set, as usual, u=1{ in Q, — Q.

Let now ¢; be a sequence converging to zero; from {u,} we can extract
a subsequence converging in Z,(£,) to a function u(x). It is easily seen that u
gives a minimum for the functional §. We have in eonclusion:

THEOREM 4.1. With the assumptions of section 4.A the functional

F(w) :f\/1+ Du? +fl(a:, u)dw-l—ﬁu—q)[dﬂ,,_l + [xuam,_,
Q Q 5,2

2,2

has a minimum in BV (Q).
It is clear that the results of ch. 3 apply to this case; in particular every
minimizing function has Holder-continuous second derivatives in €.
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