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Boundary Value Problems for Non-Parametric Surfaces
of Prescribed Mean Curvature.

ENRICO GIUSTI (*)

dedicated to Hans Lewy

0. - Introduction.

The equation of surfaces of prescribed mean curvature:

has received considerable attention; in particular in connection with the
Dirichlet problem, i.e. the problem of the existence of a solution to the
equation (0.1) in an open set D, taking prescribed values at the boundary.

For the two-dimensional case the theory was initiated by Bernstein at
the beginning of the century, and received contributions from various au-
thors. On the contrary, the general n-dimensional problem has been suc-
cessfully studied only recently; we shall mention the work of Jenkins and
Serrin [17] in the case of minimal surfaces (H = 0), and of Serrin [25] for
general H.

The method of Serrin is based on a-priori bounds for solutions of the
Dirichlet problem for equation (0.1), in view of an application of the Leray-
Schauder fixed point theorem. This allows to prove the existence of a C2

solution to the problem, provided some conditions are satisfied, involving the
function B’(x, u) and the mean curvature of aS2.

In the meantime, a different approach to the Dirichlet problem for equa-
tion (0.1) was developed, starting from the observation that (0.1) is the Euler

(*) Istituto di Matematica dell’Università di Trento.
Pervenuto alla Redazione il 16 Febbraio 1976 ed in forma definitiva 1’8 Marzo 1976.
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equation for the functional

where Euristic considerations (see [15]) suggest in-

cluding the boundary datum 99 in the functional, and hence looking for a
minimum of

in the class BV(Q) of function with bounded variation in S~.
This variational approach to the Dirichlet problem (see [15], [11] and [23])

permits separate discussion of the assumptions on the mean curvature func-
tion B’(x, ~c) and on the boundary mean curvature .g(x), so that one can ob-
tain sharp (and in many cases necessary and sufficient) conditions for the
existence of a minimum for ~1. These conditions do not involve the mean

curvature of the boundary.
A careful use of the a-priori estimate for the gradient (see [18], [30]

and [3]) shows that the solution u(x) is smooth in Q, and is a solution of
equation (0.1). If in addition is continuous and

at every point x E aS2, then u(x) _ q(r) at 8Q (see [23]) and hence is a

" elassical" solution to the Dirichlet problem.
The two methods outlined above have been successfully applied to the

problem of capillary free surfaces. In this case one looks for a solution

to (0.1), with H(r, u) = 2u, subject to the boundary condition

where v is the exterior normal, and x is the cosinus of the (prescribed) angle
between the surface y = u(x) and the boundary of the cylinder S~ X R.

For this problem, variational results have been obtained in [4], minimizing
the functional
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and at the same time the classical approach has been shown to work in [31]
(see also [27] and [26]).

The situation is quite different when a mixed boundary value problem
is considered:

with 81Q W a2 S~ = aS2. In this case, when singularities at points of Ol!J r1
can possibly occur, the classical method seems to be hardly appli-

cable as it is; on the contrary one can show the existence of a minimum for
the functional

The aim of this paper is to prove such existence results under sharp condi-
tions for the functions H and x. As Y reduces to 3:, or to 3,, when or

3i.Q is empty, we shall find the existence of a solution with pure Dirichlet
or capillarity boundary conditions. We want to observe that our results are
significantly new also in these situations.

The paper is divided in four sections. The first is devoted to the assump-
tions on H and x, and to the discussion of a variety of special cases. In

chapter 2 we prove the existence of a minimum for the functional Y. After

a brief discussion of the regularity of the solution in S~ and at a,, S2, we
refine our method in order to treat some borderline situations, including
the capillary free surfaces with In I == 1 (compare [7]; see also [8] for an

application of the results of ch. 4).
In conclusion, we shall get a quite general existence result for the

problem (0.4). The solutions to this problem are regular in D, and at in-
terior points of provided (0.2) holds. The regularity at 02Q remains
still an open problem; a special case (x = 0) is discussed in [16].

I wish to thank R. Finn for his stimulating remarks.

1. - The variational problem.

1.A. Throughout this paper we shall denote by S~ a bounded connected
open set in Rn, n&#x3E;2, with Lipschitz-continuous boundary 8Q. We will
write U 22 S~, where 01Q is the intersection of 8Q with a bounded
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open set Ai, such that the set

is connected. We suppose that r1 02Q) = 0, and that 02Q coin-
cides with the closure of its interior.

We shall discuss the existence of a minimum for the functional

in the class of functions of bounded total variation in S~.
It can be useful to recall that the symbol

means the total variation in Q of the vector-valued measure whose components
are the Lebesgue measure in Rn and the derivatives Di u of u:

The integrals on 8Q have sense as every function of bounded variation has a
trace on which we denote also by u, in Zi(3D) [21].

1.B. Let

and let u(x) be a function of class C2(S2), a minimum for the functional Y(u).
It is clear that satisfies the equation

and the boundary conditions:
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Let B be a Caccioppoli set; i.e. a Borel set whose characteristic function cpB
has distributional derivatives which are measures of bounded total variation.

We can integrate (1.2) over B to get:

Let to = sup lul and suppose H(x, t) is a non decreasing function of t. We have:
D

and

for every Caccioppoli set where

1. C. We will prove the existence of a minimum for the functional Y(u)
under the following assumptions on the functions H and x:

(1.3) x(x) is a bounded measurable f unction in 02Q. g(x, t) is a function
defined in Q X R, which is non-decreasing in t for almost every x E S~,
and belongs to Ln(Q) for every t E R.

(1.4) There exist two positive constants so and to such that for every Caccioppoli
set B c Q we have :

The meaning of assumption (1.3) is clear as it implies that the func-
tional Y is convex. On the other hand condition (1.4), which we have
shown to be necessary for the existence of a smooth minimum, can ap-
pear somewhat involved and artificial, so that it is advisable to illustrate in
some detail its meaning and generality. For that we shall postpone the proof
of the existence theorem to the next chapter and we will devote this section
to a complete discussion of some particular hypotheses leading to (1.4).
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1.D. Let us start from the Dirichlet problem. We have the following

PROPOSITION 1.1..Let

where H+ = max (H, 0) and H- = min (H, 0).
Suppose that

and let a, S2 = 0.
Then (1.4) is satisfied.

PROOF. Since monotonically decreases to we have:

and similarly

whence there exist to and 0 such that

Let B c SZ be a Caccioppoli set; we have

and (1.4’) follows at once from the isoperimetric inequality:

A similar argument lead to ( 1. 4" ) . Q.E.D.
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We remark that if H does not depend on t, conditions (1.5) and (1.6)
reduce to the assumptions of [1] (see also [11]):

Another interesting situation is

with a and b in and a(x) ~ 0. It is clear from the proposition that no
condition has to be imposed on b(x) if a(x) &#x3E; 0 almost everywhere; if we

denote by A the zero set of a(x), condition (1.4) will be satisfied if

1.E. We shall discuss now the general case. For that we remember the

following

LEMMA 1.1 (Sobolev-Poincaré inequality). -Let 92 be a connected bounded
open set with Lipschitz-continuous boundary and let Then

where is the mean value of w in Q and C1 is a constant independent o f w.
As a corollary we get easily, taking w = qJA, the inequality

for every Caccioppoli set A with meas A  meas D/2.
For x E 8Q let B(x, r) be the ball of radius r centered at x, and let

We introduce the function

Let us start with a necessary condition.
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PROPOSITION 1.2. Let assumption (1.4) be satisfied and let x be continuous.
on 02Q. Then for every x E 02Q we have

PROOF. We can suppose 0. Let r be a positive number such that

and let A r).
We have from (1.8) :

where

We observe that mr goes to zero with r. Recalling condition (1.4) we get

On the other hand

with

so that in conclusion we have, for every Caccioppoli set A

and (1.10) follows at once. Q.E.D.

1.F. In order to obtain sufficient conditions we introduce the function

which coincides with I whenever x is continuous.
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LEMMA 1.2. Suppose that there exists a positive constant ar such that for
for every x E 02Q we have

Then there exists a constant c2, depending on x, a and Q, such that for every

PROOF. We can suppose
such that

and for

for every Caccioppoli set B c rs), and

for almost all y E B(xo, rs) f1 ô2Q.
If spt w c B(xo, rs) we have:

where

In conclusion, choosing s small enough, we get from the coarea formula

(cfr. [6], 4.3.2(2)):

and (1.12) is proved if spt(w) c B(xo, rs).
For general w, let x E 02Q and let r be such that (1.13 ) holds. We can

choose a finite covering of 02Q with balls B(xi, ri) (i =1, 2, ..., N) and non-
N N

negative smooth functions 10 with ~ f i c 1 
i=l i=l

on 02Q. Writing (1.13) for each of the functions and adding from 1 to
N we obtain at once ( 1.12 ) . Q.E.D.
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PROPOSITION 1.3. Let x and H satis f y assumption (1.3) and let

for every x E 02Q.
Let B’(x, t) satisfy the assumptions of Proposition 1.1, i. e.

and suppose that for almost every x in a neighborhood of we have

Then (1.4) is satisfied.

PROOF. Let be a closed set with 0 and such that (1.16)
is satisfied in S = A. We can suppose that 8S r1 is smooth and

since 02Q is compact we can assume that S has finitely many connected
components.

As in the proof of Proposition 1.1, there exist positive numbers t1 and E,,
such that for t &#x3E; t1 we have

and

Let B be a Caccioppoli set in S2; we get for 

and hence
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where

elsewhere in as .

Since as t1 Q1 is smooth we have q(x) =1 there (see 1.G below) and
therefore if 4so = min (a, 81):

Applying Lemma 1.2 we get:

where C2 depends on S and x but not on the set B. In conclusion

and in order to prove (1.4) we have only to show that it is possible to choose
in such a way that

Let Z be a connected part of S, and for t &#x3E; t1 let

We have

and hence we can find a number t_, such that for t &#x3E; t :
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We discuss separately two cases:

We have

In this case we use (1.8) and we get

and therefore

whence in both cases we have for t &#x3E; tz.

Since there are only finitely many connected open sets Z* c S, we get
easily (1.17) with to = and hence (1.4’ ) .

In a similar way one can prove (1.4"), thus getting the full result. Q.E.D.

1.G. We conclude this chapter with a computation of the function q(x)
in various situations.

It is easily seen that we have always 

PROPOSITION 1.4. Let of class C1 in a neighborhood of xo E 
Then q(xo) = 1.

PROOF. We can suppose that xo = 0 and that 8Q can be represented
as the graph of a function f (x’ ), x’ _ (x1, 0153a, ..., Xn-l), such that f (0) = 0,

== 0 and that
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Let A c Q(0, r ) and let (we remember that
is the trace of q;A on Let nA be the projection of a2A on the

hyperplane xn = 0 . We have:

If we set = we get lim M, = 0 and

On the other hand

and letting r - 0 we obtain q(xo) =1. Q.E.D.
Another situation in which q(xo) = 1 is when the mean curvature of aS2

is bounded from above in a neighborhood of Xo. More precisely we have

PROPOSITION 1.5. Let there exist I~ &#x3E; 0 and a f unction K(x) in 

(QR = R)) such that

for every set coinciding outside some compact set in BR.
Then q(xo) =1.

PROOF. Let r and let A c From (1.21 ) with .L = ~ 2013 ~i we get
easily

If r is small enough we have meas SZr  meas and hence from (1.8) :

and letting r - 0 we get q(xo) = 1. Q.E.D.
To conclude this section let us calculate the function at the vertex

of an angular region.
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Let S~ be the set and let zo = 0. It is evident that

the supremum in (1.9) is attained when A is the triangle

For such set we have:

and hence

in agreement with the results of Emmer [4].
It can be interesting to remark that if instead of S~ we consider the set

A = R2 - Q, we get q ( o ) =1.

2. - Existence of a minimum.

2.A. We will show in this section that conditions (1.3) and (1.4) of sec-
tion 1. C are sufficient to guarantee the existence of a minimum for the func-
tional

in the class BV(Q). To be precise we have the following

THEOREM 2.1. Let Q be a bounded connected open set with locally Lipschitz-
continuous boundary and tet x and H be two functions satisfying condi-
tions (1.3) and (1.4) of section l.C. Let 99 be a function in Then the

functional Y(u) has a minimum in the class BV(Q).
The proof of Theorem 2.1 will take all this chapter.
The first step is quite usual in the theory of non-parametric minimal

surfaces, and consists in a suitable handling of the integral involving the
function 99.

Since 99 is in Z~( al,~), there exists a function I(x) in the Sobolev space
such that (p is the trace of f on [9]. If we denote by w the

function
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we have [21] w E BV(Ql) and

The problem of minimizing the functional Y in BV(Q) is thus reduced
to a minimum problem for the new functional

in the class

We remark that when = 0 the functionals Y and 9 coincide, and that
W = BV(Q) in this case.

2.B. Let us show first that g(u) is bounded from below in W.

LEMMA 2.1. Let Hand x satisfy (1.3) and (1.4). Then for every function
we have

where C3 is a constant independent of v.

PROOF. We extend v as zero outside D. Let us suppose first Setting

we get

On the other hand:
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so that from (1.4’) :

where

In general we have (2.6) for v+ = max(v, 0), while for v- = min(v, 0)
we get:

From (2.6) and (2.7) we get at once (2.5), recalling the coarea formula:

From the preceding lemma we obtain at once the inequality

for every u E yY, c6being a constant independent of u.

LEMMA 2.2. Let x and H satisfy conditions (1.3) and (1.4). Then for every
~ &#x3E; 0 there exists a constant c~(~) such that for each w E BV(Ql), with w = 0
in we have:

where

PROOF. Let us suppose that and that spt w c $6. We have from (1.4’ ) :
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Suppose now that ~o is such that

and

have from (1.8) :

In a similar way, using ( 1.4" ) instead of (1.4’), we obtain:

and hence

Arguing as in Lemma 2.1 it is easy to see that (2.10) remains valid for
a general w, provided 

Let g(x) be a C°° function with g = 1 on a2 S~, and 

We have

where c7 = C7(b) = sup does not depend on w, so that (2.9) is proved
s.

for 6  It is easily seen that (2.9) remains valid for every . Q.E.D.

We can prove now the lower semicontinuity of the functional 

PROPOSITION 2.1. Let be a sequence of functions in W, bounded in
and convergent in to ac f unction v E W. Suppose that (1.3)

and (1.4) are satisfied. Then

PROOF. Let us prove first the lower semicontinuity of the term
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For that we define, for m &#x3E; 0, the function

and let

We have

and hence it is sufficient to prove the lower semicontinuity of the integral

for each fixed m &#x3E; 0.

Let v ---&#x3E;- v in Zi and let

Since g~k and 1pk tend to zero in Ll and are bounded in Ln/n-l’ they converge
to zero weakly in On the other hand

The right-hand side of (2.13) tends to zero as k -~ oo , thus proving the
lower semicontinuity of (2.12).

For the remaining part of we use Lemma 2.2 and a technique
similar to [9].

Let
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We have from Lemma 2.2 applied to zv = v - vk:

Letting k ~ oo and taking in account the lower semicontinuity of the area
integral we get

for every 6 &#x3E; 0, and hence

2.D. The proof of Theorem 2.1 will be complete if we can show that there
exists a minimizing sequence which is bounded in For, let ~~k~
be such a sequence; from (2.8) we easily see that

and hence lukl is bounded in 

Passing possibly to a subsequence we can suppose that Uk converges in
a function u E W. From Lemma 1.1 it follows that is bounded

in and hence we can apply the semicontinuity result proved above
to get the conclusion of the theorem.

Depending whether a1 S~ ~ ~ or 81 Q = 0 we need two different arguments.
The first situation can be handled by means of the following well-known
result:

LEMMA 2.3. Let be non empty and let w(x) be a f unction in 
with w = 0 in Q. Then

where C9 depends only on Q and Q1.
It is easily seen that Lemma 2.3 settles the case =1= 0. In fact every

minimizing sequence is bounded in L1(Q1) since we have:

and the last integral is bounded by (2.14).
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2E. When 81Q = 0 the previous lemma does not work and we need a
different argument. Let us remark first that if condition (1.4)
implies

LEMMA 2.4. Suppose that there exists a positive number ho such that

and

and let u E BV(Q) satisfy

Then

PROOF. Let

We have

and

Setting
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we get

From Lemma 1.1 we obtain:

a similar estimate holding for the boundary integral. In conclusion

In a similar way

and hence

On the other hand we have

and

where

Combining these relations we get

since
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The preceding lemma plays the role of Lemma 2.3 in the proof of

Theorem 2.1. Let be a minimizing sequence; we can suppose that

and hence

for every k. From Lemma 2.4 and (2.14) we can conclude that is bounded
in Zi(G) and therefore we get the conclusion of Theorem 2.1.

2.F. It remains the case when 81Q = # and either

or

for every t &#x3E; to .
It is evident that an a-priori estimate for the L1 norms of a general

minimizing sequence cannot hold, as one can realize considering the case
H = x = 0, and hence we need a different argument.

To be definite let us suppose that (2.22) holds for Since H(z, t)
is a non-decreasing function of t it follows that .g(x, t) = to) for almost

every x in Q and for each t ~ to .

LEMMA 2.5. Let and let (2.22) and condition (1.4’) hold. Then

for every Caccioppoli set B c Q we have :

PROOF. Let and let A = S2 - B. We have

From (1.4’ ) relative to the set JL we get
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Since 99.4 = 1 - 99B in Q, we obtain from (2.22) :

and (2.24) follows at once from (1.4’) relative to B. Q.E.D.
Let us introduce now the functional

It follows from (2.22) that

for every real number c and every u E B V(,Q), so that a minimum for So
in the class

will be also a minimum for So in BV(Q).
The existence of a minimum for So in Vo follows from (2.24) with the

same argument as before; the L, norm of a minimizing sequence being
bounded from Lemma 1.1, since v. = 0.

2.G. We shall prove now an a-priori bound for the supremum of a func-
tion minimizing the The following lemma is a simple
consequence of (1.8).

LEMMA 2.6. Let WE and let

meas spt(w)  meas ~/2 .
Then

PROOF. We can suppose We have

where as usual

and (2.26) follows as in [2], Lemma 1. Q.E.D.
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The a-priori bound for a solution can now be proved using the method
of [28] (see [10]).

THEOREM 2.2. Let conditions (1.3) and (1.4) be satisfied and let 2c(x) be
a minimum for the functional g(u). We have:

where is a constant depending on to, II u II L and on sup 1991.1 
0,,D 

.

PROOF. Let mo=suplq;l; we can suppose that suplfl==m08 Let

k &#x3E; max(mo , to) and let 
OJD D,

We have as in [10] :

where

and therefore, since

From the very definition of v and w we get

and from (1.4’):

so that in conclusion:
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On the other hand we have

and hence if

we get

From Lemma 2.6 we conclude that

and therefore

for every = max {mo , to , 21IuIIL¡(D)fmeas DI.
Using a well known result of Stampacchia [28] we get the estimate

A similar computation gives the estimate for the infimum of u in Q. Q.E.D.

2.H. We are now ready to prove the existence of a minimum for the
functional g(u), under the condition

We observe that (2.22) implies for every t ~ to, and hence

H(x, t) c.8’(x, to) for each t. If we set

we have, for every function 

the equality holding if a.e. in Q.
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Let now v(x) be a minimum for the functional So in Vo ; it follows from
Theorem 2.2 that Iv(x)1 ( is bounded by some constant C18 depending only
on to, Eo and S~. If u(z) is a function in BV(Q) we have

In conclusion, the function

gives the required minimum for the functional.
The proof of Theorem 2.1 is thus complete. We can summarize the results

of this chapter as follows :

THEOREM 2.3. Let x and H be two junctions satis f ying conditions (1.3)
and (1.4) of section 1. C. and let (p be in Ll( al SZ) .

The functional

has a minimum in BV(Q).
bounded, every minimum u of Y is bounded by a constant

depending on to, I and 

In particular if 0 and is bounded, or if a,. Q = 0 and the func-
tions x and .H satisfy (2.18) and (2.19) then every minimum of Y is bounded
by a constant depending only on 80, to, 7 sup 1991 I and possibly on ho.

3. - Regularity of the solution.

3.A. The problem of the regularity of the solutions to our variational
problem is still open in what concerns the regularity at the boundary 8zQ.
On the contrary, for interior smoothness, as well as for the regularity at

the situation is quite satisfactory and, for instance, one can get com-
plete results for the Dirichlet problem.

In this chapter we shall sketch briefly the ideas involved in the proof
of these results, referring to [15], [13] and [23] for details.

3.B. We begin with interior regularity, and we suppose that the mean
curvature function t) is Lipschitz-continuous in Q X R.
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The first step consists in the observation that if the function u(z) gives
a minimum for the functional Y(u) in then the set

minimize the functional

in every compact set 
In other words we have

for every Caccioppoli set and such that outside the

compact set IT (see [20]).
We can apply the results of [19] and conclude that the boundary a U

of U is a regular hypersurface, except possibly for a locally compact set ~,
whose Hausdorff dimension does not exceed n - 7.

The argument used in [15] and [13] applies to this case also (we use again
the fact that H(z, t) is non-decreasing in t) and we conclude that the func-
tion u(z) is regular (say 01+Gt), except for the set In addition

the function u belongs to the Sobolev space g’1~1(SZ).
In order to get the complete regularity of the function u(x) one must

use the ac-priori inequality for the gradient (see [18] and [30]), y and an ap-
proximation procedure, for which we refer to [15], [12] and [22]. The final
result is the following

THEOREM 3.1. Let Lipschitz-continuous f unction in Q X R
and let be ac minimum for the functional

Then u belongs to for every oc  1.
In addition for every x,, E 92 and for every R  dist(xo, aS2) we have

where w(R) is the oscillation of u in the ball and C19 and C20 depend
on H, DH and sup lul.
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3. C. It has been proved in [3] that the inequality (3.3) does not

hold in general if the function t) is not Lipschitz-continuous. To be

precise, if .H’ does not depend on t it is not sufficient to assume that 

belongs to the Sobolev space B"1~~, for every p  oo.
In this section we shall give an example showing that if .H’ is not

Lipschitz-continuous the function u(z) does not belong in general to the
space The example will concern the one-dimensional problem, but
it is easily seen that it works in any dimension.

Let

If we set

we have

The function h(t) is increasing for T = e-6; if we set

we get T in Q and hence

where

The function H(t) is increasing in R and therefore the set
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minimizes the functional

in every compact set
Let

we have v E BY(- T, T) and

From the minimum properties of .F it follows that

for every w c- BV(- T, T), such that spt(v - w) c (- T, T) and such that the
graph of w is contained in A, i.e. Iwl  1 + i-.

From the convexity of the functional it follows at once that the func-
tion v(y) satisfies (3.4) for every WE BV(- T, T) with spt(v - w) c (- T, T).

It is easily seen that H(y) is in T, T) for every p  + oo and

v(y) does not belong to 

3.D. For what concerns the regularity of the solution at points of 81Q
we refer to [23] and [13]. We have the following

THEOREM 3.2. Let 31Q be of class C3 and let be a continuous function
on xo c- be such that the sum of the principal curvatures of 3D
at xo is greater than cp(xo)) I. Let minimize the functional (3.2)
and let H(x, t) be continuous. Then

If in addition gg(x) is o f class Cl+°‘ in a neighborhood of Xo and g(x, t) is
Lipschitz- continuous, then the gradient of is bounded in a neighborhood of xo .

The first assertion of the Theorem is a special case of [23], Theorem 6;
the last part can be easily proved with the method of [13] using inequality (3.3)
and the bound for sup lul.
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4. - Existence revisited.

4.A. In this chapter we shall come back to the existence of a minimum
for the functional

with the purpose of generalizing the results of ch. 2.
We shall make the following assumptions :

(4.1) The boundary of Q, is a hypersurface of class C3; and and x(x)
are bounded measurable functions in = S~1 r1 aS~ and ô2Q, respec-
tively, with [x(x) ~ c 1.
H(x, t) is a Lipschitz-continuous function in Q X R, non-decreasing in t
for every x E D.

(4.2) There exist two positive constants to and oco such that for every Caccioppoli
set B c S2:

where we have denoted by ~B ( the measure of B.
It is clear from (1.8) that condition (4.2) is more general than the cor-

responding assumption (1.4); in particular we are able to treat the case
where takes the values formerly forbidden by the proposition 1.2.
From the results of [14] it is apparent that one must have quantitative
conditions on the mean curvature of that part of the boundary where
x(x) takes the values -E-1 or -1. For let d(x) = dist(0153,ôQ) and let

We have:

PROPOSITION 4.1. Let zo be an interior point of and let (4.2") hold. Then
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If instead x,, is an interior point of F-1 and i f (4.2’) holds, we have :

PROOF. Let Br be a ball centered at xo such that ]Br]  [Q[f2 and

and let We have from (4.2") :

Setting

we obtain

and hence

for every set AD Q, and coinciding with Q outside Br.
The last relation implies that the sum of the principal curvatures of

does not exceed 2013Bo; from Lemma 1.2 of [25] we conclude

Since r is arbitrary, we can let r - 0, getting (4.3). With the same ar-

gument one can prove (4.4) and hence the Proposition. Q.E.D.
The preceding result justifies the additional assumption

(4.5) SUPPLEMENTARY CONDITION. There exist two positive constants "1  1

and al, and two open sets L+, and L-1 such that

and

and
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We remark that if x(x) is a continuous function and if the sets and 

coincide with the closure of their interior, the supplementary condition
(with OC1 = 2 ao) follows from (4.2) and Proposition 4.1.

4.B. As in ch. 1 we shall begin with a short discussion of condition (4.2).
Let us consider first the Dirichlet problem (i.e. a,,Q =: 0) for constant

mean curvature H, in the borderline case [3]:

We have

and hence

which gives at once (4.2).
In general, in the case of Dirichlet problem, condition (4.2) is satisfied

if for some to and some p, n  p  + o,

where, as usual, .H+ = max(H, 0) and .H~- = min(H, 0).
The situation is more involved in the case of mixed boundary condi-

tions. We need the following

LEMMA 4.1..Let L be a set with C3 boundary and let w E BV(L). Then

PROOF (see [10], Lemma 1). Let do be such that the distance function
d(x) = dist(x, aL) is of class C2 in the strip

Arguing as in [10], we get (4.7) with
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PROPOSITION 4.2. Let Q, x and H satisfy assumptions (4.1 ) and let

Suppose that

and

uniformly for x in some neighborhood L of a,S2. Then (4.2) is satisfied.

PROOF. We remark that since .H is continuous and non-decreasing in t,
uniform convergence in (4.8) is equivalent to pointwise convergence. More-

over, we can suppose that aL is smooth. Arguing as in Proposition 1.3 we
get the inequality:

for every where

From Lemma 4.1 we obtain

If we choose to in such a way that to) &#x3E; in L, we get immedia-
tely (4.2’) observing that

The proof of (4.2") is similar and will be omitted. Q.E.D.
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4. C. The existence of a minimum for the functional with the as-

sumptions of section 4.A. cannot be proved directly as before, because in
general we don’t have an a-priori bound for the area of minimizing sequences.
However, for a suitable minimizing sequence we shall prove an estimate
in BV, from which we will derive the existence of a minimum.

The idea consists in approximating the functions H and x by means of
the functions

and

For small values of E &#x3E; 0 these new functions satisfy the hypotheses of

section 4.A. and moreover conditions (1.4) of section 1. C with Eo = e, so

that the corresponding functional Yg has a minimum Us in which,
according to Theorems 2.3 and 3.1, belongs to the space C2~°‘(SZ) r1 
Due to the convexity of the functional, the minimizing function is unique
up to an additive constant.

Our goal is to get a bound for sup lucl, independent of E. To this pur-
Q

pose we shall consider an auxiliary obstacle problem.
Let

and let

We have from (4.2’)

and therefore arguing as in chapter 2 (see also [5]) we can conclude that the
functional Se has a minimum vs in the class

The minimum vg is actually of class in S2.
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LEMMA 4.2. Let Ve be a minimum for the functional ge in and let Ue

be a minimum for ~’E in BV(Q). Suppose that

Then either

PROOF. Let

and

We have

Recalling that for z in A we have we get

On the other hand the function y = v,) is in ITy, and therefore

This implies

Comparing with (4.9) and (4.10):

From the uniqueness of the minimum we get
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and hence either so that or and then

In any case there exists a function ue minimizing the functional 5~
satisfying so that an upper bound will give a corresponding
upper bound for u~ .

In a similar way we can find a lower bound for ue by means of the solu-
tion we to the problem

in the class

We are then reduced to the problem of finding a uniform upper bound for we
(and a lower bound for Since the arguments are perfectly symmetrical
we shall consider in detail only the first problem.

4.D. In order to avoid unnecessary complications we shall omit the
suffix 8; we will derive an upper estimate for a function v(x), minimizing
the functional

in the class .gT; the functions H and x satisfy the relations

for every set Bc.Q;

where L-, and L_3 are open sets, with L-, c L-l c L-3 .
It is clear that to) and Ûe satisfy the preceding relations uniformly

in a neighborhood of 0.
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LEMMA 4.2. For every v E KT we have

where vn denotes the mean value of v in Q.
PROOF. Let

we have from (4.11 ) :

and hence

Let T be such that

then

and (4.14) follows from the simple inequality

In particular, if v minimizes 6 in gT, we have the uniform estimate:

The next step consists in getting an estimate for the area of v in compact
subsets of Q. For s &#x3E; 0 let
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LEMMA 4.3. For every s &#x3E; 0 there exists a constant C23(S) such that if v(x)
minimizes 9 in .gT we have:

PROOF. Let be a smooth function in JOy with 0yly 
in ~ and g = 0 near 8Q.

Let

and let

We have and therefore If we observe that h = v

near 8Q, we get

On the other hand

and whence

In a similar way, if z = min(0, w - v.) and k = v - gz, we get

Combining the last two inequalities:

and (4.16) follows at once from (4.15). Q.E.D.
We conclude this section with an estimate of the oscillation of v.
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LEMMA 4.4. For every s &#x3E; 0 there exists a constant C25(S) such that

PROOF. Let

If B is a (n+1)-ball centered on and contained in the set

+ oo), we have ([20]):

for every set Q coinciding with V in a neighborhood of aB.
From [19] we get the estimate

where r is the radius of B.

If sup IH ir  uy j2 we have

Let now

if r  s there are at least disjoint balls contained in -f- o)
for which (4.18) holds. We have therefore

and (4.17) follows at once. Q.E.D.

4.E. The results of the preceding section give the uniform estimate
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Using the supplementary conditions (4.12) and (4.13) we shall get a bound
for the supremum of v in S~.

Let do &#x3E; 0 be such that the distance function d(x) is twice differentiable
outside Qd., and let

The function

satisfies the equation

in the interval 0  s  (1 - x1)/2A = so.
If we set si = min(do, so) and

we have, for every 

where C is the Euler operator relative to the functional 9:

From (4.20) it follows immediately

so that z is a strict supersolution in the strip ,S~ - Ds! .
Let now L_i and L-, be as in (4.12 ), (4.13 ), and let L-, be an open set

such that

Let be a function of class C2 in SZ, such that
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let and for x in let

If we observe that the function k(s) satisfies

we get easily:

where m1 and m2 depend only on the C2 norms of if and d.
Let now x E .L_3 r1 (,~ - S~s~) ; from (4.13) we get

As s - 0+, we have + oo and k’(1 + -+ -1, and therefore
R - 0. We can conclude that there exists a positive number s., such that

In addition we have

and

whence

If we set

the function Z is a strict supersolution for the functional 9 in the strip
(84== mÎI1(81’ 83))’ coinciding with y in L-1 and with z outside 
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More precisely, if q is a non-negative function with support in the strip
we have:

the equality sign holding only for q = 0.

LEMMA 4.5. For every g ~ 0, with g = 0 in we have :

the equality sign holding only for g = 0.

PROOF. Let 0  e  S4

and let

From (4.23) we get

As e -~ 0 we have

where fl satisfies

the conclusion of the lemma follows immediately passing to the
limit in (4.25). Q.E.D.

It is clear that the conclusion of the lemma holds if Z is replaced by
Z + const.
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PROPOSITION 4.3. Let v be a minimizing function for the functional 9 in
the class gT and let p &#x3E; 0 be such that the function w = Z + p satisfies

Then

PROOF. Let

The function g is Lipschitz-continuous and non-negative in Q ; we want to
prove that g = 0.

Suppose this is not true, and let

We have

and from the convexity of 9:

contradicting the minimality of v. Q.E.D.

4.F. From Proposition 4.3 we get immediately the inequality

In wiew of ( 4.19 ) we need only an estimate for the quantity

As in ch. 2 we discuss first the case where
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(we remark that if (4.28) holds it holds uniformly for 
Let

and let

We have

where

Using lemma 4.1 we get easily:

On the other hand we deduce from (4.28) :

and hence

Since we have and therefore

provided s is so small that

In conclusion, if s is small enough we have the inequality

which eventually, y together with (4.19) and (4.27), gives the required bound
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for the function 

4.G. It remains the case when

This is the typical situation when the curvature function H does not depend
on t and a:, 0 = 0; actually (4.31) becomes a necessary condition in this

case, as one can easily see from (4.2’) and (4.2" ) (or else integrating equa-
tion (0.2) in S~ with the boundary conditions (0.3)).

As in 2.F, Lemma 2.5, we deduce from (4.11) and (4.31) the inequality

for every set where

It follows from (4.32) and Proposition 4.1 (remember that 01Q is open
in that the new function x satisfies the supplementary condition (4.5).

Let now s &#x3E; 0 and let Ve be a minimizing function for the functional t%
in Kg . * We have as above the estimates

and

with C26 and C27 independent of t.

On the other hand from (4.31) we get = g8(V + const), and hence
V8 minimizes in From (4.32) and the supplementary condi-

tion (4.5) we conclude with the same argument as before

which, together with (4.33) and (4.34) gives
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Adding possibly a constant to the function vs we can suppose that

13f wg = T, getting the required bound (4.30).

4.H. The estimate (4.30) and the lemma 4.2 give an a-priori bound for
the supremum of the function minimizing the functional Y,,. This

supremum is actually independent of e.

In a similar way one can show that ug is bounded from below in Q, so
that we have the estimate

Since

we have from (4.36) the inequality

where we have set, as usual, u = f in Q1 - ,~.
Let now 8; be a sequence converging to zero; from we can extract

a subsequence converging in to a function u(x). It is easily seen that u
gives a minimum for the functional ~F. We have in conclusion:

THEOREM 4.1. With the assumptions of section 4.A the functional

has a minimum in BV(Q).
It is clear that the results of ch. 3 apply to this case; in particular every

minimizing function has Holder-continuous second derivatives in Q.
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