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Abstract. Let ∆k be the Dunkl Laplacian on R
d associated with a

reflection group W and a multiplicity function k. The purpose of this paper

is to establish the existence and the uniqueness of a positive solution on the

unit ball B of Rd to the following boundary value problem:

∆ku = ϕ(u) in B and u = f on ∂B.

We distinguish two cases of nonnegative perturbation ϕ: trivial and

nontrivial.
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1. INTRODUCTION

The Dunkl Laplacian is the sum of a second order differential operator and a

difference term associated with a multiplicity function k and a reflection group W .

An important motivation to study the Dunkl Laplacian rises from its relevance for

the analysis of certain exactly solvable models of mechanics, namely the Calogero–

Moser–Sutherland type (see [5], [13], [19]). Since its introduction by C. F. Dunkl

in [6], the analysis of Dunkl theory has been the subject of many articles and it

has deep and fruitful interactions with various mathematics fields, namely Fourier

analysis and special functions [15], [28], [29], algebra (double affine Hecke al-

gebras [17]) and probability theory (Feller processes with jumps [11], [4]). The

Dunkl Laplacian generates a positive strongly continuous contraction semigroup

[25]. This fact gives rise to a Hunt process, called a Dunkl process, and so to a

corresponding family of harmonic kernels (HV )V . If the multiplicity function k is

identically zero, then the operator ∆k reduces to the classical Laplace operator ∆,

and so the Dunkl process is the Brownian motion and HV (x, ·) is the classical har-

monic measure relative to V and x. If k is not trivial, then paths of the Dunkl pro-
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cess are discontinuous (see [11]), and thus it follows from the general theory of bal-

ayage spaces [1] that ∆k generates a balyage space and not a harmonic space. This

yields that for every bounded open set V and every x ∈ V the harmonic measure

HV (x, ·) is not necessarily supported by the Euclidean boundary ∂V of V , as in

the classical setting k = 0, but it may live on the entire complement V c := Rd\V .

Throughout this paper we assume that k is strictly positive. Our first purpose

is to show that, for every bounded open subset V of Rd and every x ∈ V , the

harmonic measure HV (x, ·) is supported by a compact set of V c and not by the

whole V c. In the particular case where V is invariant under the reflection group W
(e.g. V is an open ball of Rd centered at the origin), we shall prove that the support

of HV (x, ·) is contained in ∂V . This fact allows us to investigate, for an open ball

B of center zero, the boundary value problem

(1.1)

{
∆ku = φ(u) in B,

u = f on ∂B,

where f is a nonnegative continuous function on ∂B. We impose that φ : [0,∞[→
[0,∞[ is nondecreasing, continuous and satisfies φ(0) = 0. Our main goal is to

establish the existence and the uniqueness of a positive solution to problem (1.1).

We distinguish two cases of perturbation φ (trivial and nontrivial). In the first step,

we consider φ = 0 and we prove that the function HBf defined on B by

HBf(x) =
∫
∂B

f(y)HB(x, dy)

is the unique continuous extension u of f on B satisfying ∆ku = 0 in B. That is,

HBf is the unique solution of (1.1) for φ = 0. Assuming that φ is not trivial, we

show that u satisfies (1.1) if and only if

u+Gk
B

(
φ(u)

)
= HBf,

where Gk
B is the Green operator on B. Then, by a compactness argument of Gk

B ,

we prove that the map u 7→ HBf −G
k
B

(
φ(u)

)
admits one and only one fixed point

u ∈ C(B), and so u is the unique solution of problem (1.1).

2. NOTATION AND PRELIMINARIES

For every subset F of Rd, let B(F ) be the set of all Borel-measurable func-

tions on F and let 1F be the indicator function of F . Let C(F ) be the set of all

continuous real-valued functions on F , Cn(F ) be the class of all functions that are

n times continuously differentiable on F , and C0(F ) be the set of all continuous

functions on F such that u = 0 on ∂F, which means that limx→z u(x) = 0 for all

z ∈ ∂F and limx→∞ u(x) = 0 if F is unbounded. We denote by C∞c (F ) the set

of all infinitely differentiable functions on F with compact support. If G is a set
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of numerical functions, then G+ (respectively Gb) will denote the class of all func-

tions in G which are nonnegative (respectively bounded). The uniform norm will

be denoted by ∥ · ∥.
For every α ∈ Rd \ {0}, let Hα be the hyperplane orthogonal to α and let σα

be the reflection in Hα, i.e.,

σα(x) := x− 2
⟨α, x⟩

|α|2
α,

where ⟨·, ·⟩ denotes the usual inner product on Rd and | · | is the associated norm.

A finite subset R of Rd \ {0} is called a root system if R ∩ R · α = {±α} and

σα(R) = R for all α ∈ R. For a given root system R, the reflection σα, α ∈ R,

generates a finite group W called a reflection group associated with R. A function

k : R→ R+ is called a multiplicity function if it satisfies k(σαβ) = k(β) for every

α, β ∈ R. Throughout this paper we fix a root system R and a multiplicity func-

tion k. We consider the differential-difference operators Ti, 1 6 i 6 d, defined in

[7] for every u ∈ C1(Rd) by

Tiu(x) =
∂u

∂xi
(x) +

1

2

∑

α∈R

k(α)αi
u(x)− u(σαx)

⟨α, x⟩
,

and called Dunkl operators in the literature. The Dunkl Laplacian ∆k is the sum

of squares of Dunkl operators:

∆k :=
d∑

i=1

T 2
i .

It is given explicitly, for u ∈ C2(Rd), by

(2.1) ∆ku(x) = ∆u(x) +
∑

α∈R

k(α)

(
⟨∇u(x), α⟩

⟨α, x⟩
−
|α|2

2

u(x)− u
(
σα(x)

)

⟨α, x⟩2

)
.

Likewise the classical Laplace operator ∆, the Dunkl Laplacian has the following

symmetry property: For u ∈ C2(Rd) and v ∈ C2
c (R

d),

(2.2)
∫
Rd

∆ku(x)v(x)wk(x) dx =
∫
Rd

u(x)∆kv(x)wk(x) dx,

where wk is the homogeneous weight function defined on Rd by

wk(x) =
∏
α∈R

|⟨x, α⟩|k(α).

A fundamental result in Dunkl theory is the existence of an intertwining operator

Vk : C∞(Rd)→C∞(Rd) between the classical Laplacian ∆ and Dunkl Laplacian,
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i.e., ∆kVk = Vk∆. We refer to [8], [26], [28] for more details about the intertwin-

ing operator. By means of Vk, there exists a counterpart of the usual exponential

function, called a Dunkl kernel Ek(·, ·), which is defined for every y ∈ Cd and

x ∈ Rd by

Ek(x, y) = Vk(e
⟨·,y⟩)(x).

It is clear from (2.1) that if k vanishes identically, then the Dunkl Laplacian reduces

to the classical Laplacian ∆. In this case the intertwining operator Vk is the identity

operator, and so Ek reduces to the classical exponential function. Notice that Ek

is symmetric and positive on Rd × Rd and satisfies Ek(λy, x) = Ek(y, λx) = for

every λ ∈ C.

In all this paper we assume that

m := d+
∑

α∈R

k(α) > 2.

Let pkt be the Dunkl heat kernel, introduced in [25], defined for every t > 0 and

every x, y ∈ Rd by

(2.3) pkt (x, y) =
c2k
2m

∫
Rd

e−t|ξ|
2

Ek(−ix, ξ)Ek(iy, ξ)wk(ξ)dξ,

where

ck =
( ∫

Rd

e−|y|
2

wk(y) dy
)−1

.

For every x, y ∈ Rd, pkt (x, y) > 0, pkt (x, y) = pkt (y, x) and

(2.4) pkt (x, y) 6
ck

(4t)m/2
exp

(
−

(|x| − |y|)2

4t

)
.

Also, for every x ∈ Rd, the function (t, y) 7→ pkt (x, y) solves the generalized heat

equation ∂tu−∆ku = 0 on ]0,∞[×Rd. More precisely, the following holds:

(2.5)
∂

∂t
pkt (x, y) = ∆k

(
pkt (·, y)

)
(x) = ∆k

(
pkt (x, ·)

)
(y).

For every f ∈ C0(R
d) and t > 0 let

P k
t f(x) =

∫
Rd

pkt (x, y)f(y)wk(y) dy, x ∈ R
d.

Then (P k
t )t>0 forms a positive strongly continuous contraction semigroup on

C0(R
d) of generator ∆k. This fact yields the existence of a Hunt process (Xt, P

x)
(see [2], Theorem I.9.4), called the Dunkl process, with state space Rd and transi-

tion kernel

P k
t (x, dy) = pkt (x, y)wk(y) dy.
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3. HARMONIC KERNELS

For every bounded open subset D of Rd, we denote by τD the first exit time

from D by (Xt), i.e.,

τD = inf{t > 0;Xt /∈ D}.

LEMMA 3.1. Let D be a bounded open set. Then, for every x ∈ D,

P x (0 < τD <∞) = 1.

P r o o f. Let x ∈ D. Since the Dunkl process has right continuous paths, we

immediately conclude that P x(0 < τD) = 1. Let r > 0 be such that D ⊂ Br, the

ball of center zero and radius r. Clearly,

Ex[τD] 6 Ex[τBr
] = Ex

[ τBr∫
0

1Br
(Xt) dt

]

6

∞∫
0

Ex[1Br
(Xt)]dt =

∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt.

So, to prove that P x(τD <∞) = 1, it will be sufficient to show that

∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt <∞.

Using spherical coordinates and applying the fact that the function wk is homoge-

neous of degree m − d, we infer from the integral representation (2.3) of pkt that,

for every y ∈ Rd,

pkt (x, y) =
c2k
2m

∞∫
0

∫
Sd−1

e−ts
2

Ek(−ix, sξ)Ek(iy, sξ)wk(ξ)s
m−1σ(dξ)ds,

where σ denotes the surface area measure on the unit sphere Sd−1 of Rd. Therefore,

∞∫
0

pkt (x, y)dt =
c2k
2m

∞∫
0

∫
Sd−1

Ek(−ix, sξ)Ek(iy, sξ)wk(ξ)s
m−3σ(dξ)ds.

Using again spherical coordinates and then applying Fubini’s theorem, we get

∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt =
r∫
0

∫
Sd−1

(∞∫
0

pkt (x, uy)dt
)
wk(y)u

m−1σ(dy)du

=
c2k
2m

r∫
0

∞∫
0

∫
Sd−1

( ∫
Sd−1

Ek(iuy, sξ)wk(y)σ(dy)
)

× Ek(−ix, sξ)wk(ξ)s
m−3um−1σ(dξ)dsdu.
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On the other hand, we recall from [27] that

∫
Sd−1

Ek(iz, y)wk(y)σ(dy) = 2m/2c−1k

Jm/2−1(|z|)

|z|m/2−1
,

where Jm/2−1 is the Bessel function of index m/2− 1 given by

Jm/2−1(z) :=

(
z

2

)m/2−1 ∞∑

n=0

(−1)nz2n

4nn!Γ(n+m/2)
.

Hence

∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt

=
r∫
0

um−1

(u|x|)m/2−1

(∞∫
0

Jm/2−1(s|x|)Jm/2−1(us)s
−1ds

)
du,

and so
∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt =
1

m− 2

r∫
0

um−1
(
max(u, |x|)

)2−m
du(3.1)

=
1

m− 2

(
|x|2

m
+
r2 − |x|2

2

)
.

To get (3.1), one should use a formula from [21], p. 100. �

For every bounded open set D, we define

WD :=
∪

w∈W

w(D) and ΓD := WD \D.

That is, WD is the smallest open bounded set containingD which is invariant under

the reflection groupW . In the following theorem, we show that if the process starts

from x ∈ D then, at the first exit time from D, it should be in the compact ΓD.

THEOREM 3.1. LetD be a bounded open subset of Rd. Then, for every x∈D,

(3.2) P x (XτD ∈ ΓD) = 1.

In particular, if D is W -invariant, i.e., WD = D, then ΓD = ∂D, and therefore

P x (XτD ∈ ∂D) = 1.

P r o o f. Let x ∈ D and consider the function ̥ defined for every y, z ∈ Rd

by ̥(y, z) = 0 if z ∈ {σαy;α ∈ R} and ̥(y, z) = 1 otherwise. Let

Yt :=
∑

s<t

1{X
s−

≠Xs}̥(Xs− , Xs), t > 0.
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It follows from Proposition 3.2 in [11] that for every t > 0, P x(Yt = 0) = 1, and

consequently

P x
(
1{X

s−
≠Xs}̥(Xs− , Xs) = 0; ∀s > 0

)
= 1.

Then, since P x(0 < τD <∞) = 1, we deduce that

P x
(
1{X

τ
−

D

≠XτD
}̥(Xτ−

D
, XτD) = 0

)
= 1.

On the other hand, since Xτ−
D
∈ D on {0 < τD <∞}, we have

{XτD ̸∈ ΓD, 0 < τD <∞} ⊂ {1{X
τ
−

D

≠XτD
}̥(Xτ−

D
, XτD) = 1}.

This completes the proof. �

For every bounded open setD and every x ∈ Rd, letHD(x, ·) be the harmonic

measure relative to x and D, i.e., for every Borel set A,

HD(x,A) := P x(XτD ∈ A).

For every f ∈ Bb(R
d), let HDf be the function defined on Rd by

HDf(x) =
∫
f(y)HD(x, dy).

Since, for x ∈ D, the harmonic measure HD(x, ·) is supported by the compact set

ΓD, it will be convenient to put again

(3.3) HDf(x) =
∫
f(y)HD(x, dy), x ∈ D,

for every f ∈ Bb(ΓD).
Let ∗H+(Rd) denote the set of all nonnegative lower semicontinuous functions

f on Rd such that

HDf 6 f for every bounded open set D.

Because (Rd, P x) is a Hunt process, it follows from Theorem IV.8.1 in [1] that(
Rd,∗H+(Rd)

)
is a balayage space. Hence, it follows from the general theory of

balayage spaces that for every f ∈ Bb(ΓD)

(3.4) HDf ∈ C(D)

and

(3.5) HVHDf = HDf on V for all open sets V such that V ⊂ D.
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Furthermore, a function f ∈ B+(Rd) belongs to ∗H+(Rd) if and only if

sup
t>0

P k
t f = f.

Let us now introduce the Green function Gk of the Dunkl Laplacian which

will play an important role in our approach. It is defined for every x, y ∈ Rd by

Gk(x, y) =
∞∫
0

pkt (x, y)dt.

For every y ∈ Rd, the function Gk
y := Gk(·, y) ∈ ∗H+(Rd). Indeed, by the semi-

group property,

P k
t G

k
y(x) =

∞∫
t

pks(x, y)ds 6 Gk(x, y).

This implies that the map t 7→ P k
t G

k
y is decreasing on ]0,∞[, and so

sup
t>0

P k
t G

k
y = lim

t→0
P k
t G

k
y = Gk

y .

Hence Gk
y ∈
∗H+(Rd), which means that for every bounded open set D,

(3.6)
∫
Gk(z, y)HD(x, dz) 6 Gk(x, y).

Furthermore, it is obvious that Gk is positive and symmetric on Rd × Rd. There-

fore, it follows from Theorem VI.1.16 in [2] that for every bounded open setD and

every x, y ∈ Rd,

(3.7)
∫
Gk(x, z)HD(y, dz) =

∫
Gk(y, z)HD(x, dz).

4. DIRICHLET PROBLEM

LetB be an open ball of Rd of center zero and radius r > 0. We first introduce

the following three kinds of harmonicity on B:

A continuous function h : B → R is said to be

(i) ∆k-harmonic on B if h ∈ C2(B) and ∆kh(x) = 0 for every x ∈ B.

(ii) X-harmonic onB ifHDh(x) = h(x) for every bounded open set D such

that D ⊂ B and every x ∈ D.

(iii) ∆k-harmonic on B in the distributional sense if

⟨h,∆kφ⟩k :=
∫
B

h(x)∆kφ(x)wk(x)dx = 0 for all φ ∈ C∞c (B).
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LEMMA 4.1. Let f ∈ C2
c (R

d). For every x ∈ Rd,

(4.1)
∫
Rd

Gk(x, y)∆kf(y)wk(y)dy = −f(x).

In particular, for every bounded open set D and every x ∈ D,

(4.2) HDf(x)− f(x) = Ex
[ τD∫

0

∆kf(Xs)ds
]
.

P r o o f. Let x ∈ Rd. Using Fubini’s theorem and formulas (2.2) and (2.5),

we have

∫
Rd

Gk(x, y)∆kf(y)wk(y) dy =
∞∫
0

∫
Rd

pkt (x, y)∆kf(y)wk(y) dy dt

=
∞∫
0

∫
Rd

∆k

(
pkt (x, ·)

)
(y)f(y)wk(y) dy dt

=
∞∫
0

∫
Rd

∆k

(
pkt (·, y)

)
(x)f(y)wk(y) dy dt

= lim
t→∞

P k
t f(x)− lim

t→0
P k
t f(x) = −f(x).

To get limt→∞ P
k
t f(x) = 0, we only use (2.4) and the fact that f has compact

support. Formula (4.2) follows from (4.1) and the strong Markov property. In fact,

let D be a bounded open set and let x ∈ D. Then

− f(x) =
∫
Gk(x, y)∆kf(y)wk(y)dy =

∞∫
0

∫
pkt (x, y)∆kf(y)wk(y)dydt

= Ex
[∞∫

0

∆kf(Xs)ds
]
= Ex

[ τD∫
0

∆kf(Xs)ds
]
+ Ex

[ ∞∫
τD

∆kf(Xs)ds
]

= Ex
[ τD∫

0

∆kf(Xs)ds
]
+ Ex

[
EXτD

[∞∫
0

∆kf(Xs)ds
]]

= Ex
[ τD∫

0

∆kf(Xs)ds
]
+ Ex [−f(XτD)] = Ex

[ τD∫
0

∆kf(Xs)ds
]
−HDf(x). �

LEMMA 4.2. For every bounded open set D and for every φ,ψ ∈ C2
c (R

d),

(4.3) ⟨HDψ,∆kφ⟩k = ⟨∆kψ,HDφ⟩k.

P r o o f. Applying formula (4.1) to ψ, we get

⟨HDψ,∆kφ⟩k = −
∫ ∫ ∫

Gk(z, y)∆kψ(y)wk(y)dyHD(x, dz)∆kφ(x)wk(x)dx.

Then (4.3) is obtained by Fubini’s theorem by using formula (3.7) and formula

(4.1) applied to φ. �
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Now, we show that the three kinds of harmonicity on B introduced at the

beginning of this section are equivalent.

THEOREM 4.1. Let h ∈ C(B). The following three assertions are equivalent:
(i) h is ∆k-harmonic on B.

(ii) h is X-harmonic on B.

(iii) h is ∆k-harmonic on B in the distributional sense.

P r o o f. (i) Assume that h is ∆k-harmonic on B. Let D be a bounded open

set such that D ⊂ B and let x ∈ D. We claim that

(4.4) HDh(x)− h(x) = Ex
[ τD∫

0

∆kh(Xs)ds
]
.

Let V be a bounded open set such that D ⊂ V ⊂ V ⊂ B. By C∞-Uryshon’s

lemma, there exists θ ∈ C∞c (B) such that θ = 1 on V . Let f := hθ and ψ :=
h − f . Obviously, h = f on V , ψ = 0 on V and f ∈ C2

c (B). Then, using (4.2),

we obtain

(4.5) HDh(x)− h(x) = Ex
[ τD∫

0

∆kf(Xs)ds
]
+HDψ(x).

For every y ∈ Rd, let N(y, dz) be the Lévy kernel of the Dunkl process X which

is given in [11] by the following formula:

(4.6) N(y, dz) =
∑

α∈R+,⟨y,α⟩̸=0

k(α)

⟨α, y⟩2
δσαy(dz).

Since ψ = 0 on V , it follows from Theorem 1 in [14] that

(4.7) HDψ(x) = Ex
[ τD∫

0

∫
ψ(z)N(Xs, dz)ds

]
.

On the other hand, by (2.1) and (4.6) we easily see that for every y ∈ D,

(4.8) ∆kf(y) = ∆kh(y)−
∫
ψ(z)N(y, dz).

Thus formula (4.4) is obtained by combining (4.5), (4.7) and (4.8). Hence, by (4.4),

HDh(x) = h(x), and so h is X-harmonic on B.

(ii) Assume that h is X-harmonic on B. Let φ ∈ C∞c (B) and let D ⊂ D ⊂ B
be aW -invariant bounded open set which contains the support of φ. Let (hn)n>1 ⊂
C2
c (B) be a sequence which converges uniformly to h on ∂D. Since HDφ=0

on D, applying (4.3), we obtain

(4.9) ⟨HDhn,∆kφ⟩k = 0, n > 1.
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On the other hand,

sup
x∈D
|HDhn(x)−HDh(x)| = sup

x∈D

∣∣ ∫
∂D

(
hn(y)− h(y)

)
HD(x, dy)

∣∣

6 sup
y∈∂D
|hn(y)− h(y)| → 0 as n→∞.

Hence, by letting n tend to infinity in (4.9), we get ⟨HDh,∆kφ⟩k = 0, and there-

fore ⟨h,∆kφ⟩k = 0 since h = HDh on D.

(iii) Assume that h is ∆k-harmonic onB in the distributional sense. The hypo-

ellipticity of the Dunkl Laplacian ∆k on W -invariant open sets [12], [22] yields

h ∈ C∞(B). Thus, by (2.2), it follows that, for every φ ∈ C∞c (B),

∫
B

∆kh(x)φ(x)wk(x) dx = 0.

Hence ∆kh(x) = 0 for every x ∈ B, which means that h is ∆k-harmonic on B. �

It is worth noting that the equivalence established in the above theorem re-

mains valid if we replace the ball B by any W -invariant open set, for example, the

whole space Rd.

THEOREM 4.2. For every f ∈ C+(∂B), the problem

(4.10)

{
∆kh = 0 on B,

h = f on ∂B

admits one and only one solution in C+(B) which is given by HBf .

P r o o f. Let f ∈ C+(∂B). By (3.4) and (3.5), the function HBf is continu-

ous andX-harmonic onB. We shall show thatHBf is a continuous extension of f
on B. Let z ∈ ∂B and consider V = Rd\{0}, and let u be the function defined on

V by

u(x) = Gk(x, 0)−Gk(z, 0).

Since

pkt (x, 0) =
ck

(4t)m/2
e−|x|

2/(4t), x ∈ R
d,

it follows that

(4.11) Gk(x, 0) =
ck
4

Γ(m/2− 1)

|x|m−2
.

Then, using (3.6) and (4.11), it is easy to verify that u is a barrier of z (with respect

to B), i.e.,

(i) u is hyperharmonic on V ∩B,
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(ii) u is positive on V ∩B,

(iii) limx∈V ∩B,x→z u(x) = 0.

Hence, by Propositions VII.3.1 and VII.3.3 in [1], we obtain HB(z, ·) = δz and

limx∈B,x→zHBf(x) = f(z). Since z is arbitrary in ∂B, HBf is a continuous

extension of f on B. So, it remains to prove the uniqueness of the solution. Let h
be another continuous extension of f on B which is the solution to the problem

(4.10). Let x ∈ B and let (Dn)n>1 be a sequence of nonempty bounded open sets

such that x ∈ Dn ⊂ Dn ⊂ Dn+1 and B =
∪

nDn. Then (τDn
)n converges to

τB almost surely. Hence, the continuity of h on B together with the quasi-left-

continuity of the Dunkl process yield HBh(x)=limnHDn
h(x), and consequently

HBh(x)=h(x), sinceHDn
h(x) = h(x) for every n > 1. Thus h(x)−HBf(x) =

HB(h− f)(x) = 0 since h = f on ∂B. So, h = HBf on B and the uniqueness is

proved. �

5. GREEN OPERATORS

The Green operatorGkon the whole space Rd is defined, for every f ∈B+(Rd),
by the formula

Gkf(x) :=
∫
Rd

Gk(x, y)f(y)wk(y) dy, x ∈ R
d.

By Fatou’s lemma, for each y ∈ Rd, Gk(·, y) is lower semicontinuous on Rd, and

so Gkf is lower semicontinuous on Rd.

In the sequel, Br denotes the ball of Rd of center zero and radius r > 0, and

At,s denotes the annulus of Rd of center zero and radius 0 < t < s <∞.

LEMMA 5.1. (i) For every 0 < r <∞,

(5.1) Gk1Br
(x) =





1
m−2

(
|x|2

m + r2−|x|2

2

)
if |x| 6 r,

1
m(m−2)r

m|x|2−m if |x| > r.

(ii) For every 0 6 t < s <∞,

(5.2) 0 6 sup
x∈At,s

Gk1At,s
(x) 6

2

m− 2
s(s− t).

P r o o f. Formula (5.1) follows immediately from (3.1) because

Gk1Br
(x) =

∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt.

Let 0 6 t < s <∞. It is clear that 0 6 Gk1At,s
and that

Gk1At,s
= Gk1Bs

−Gk1Bt
.
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Then, by (5.1), it follows that for every x ∈ At,s,

Gk1At,s
(x) =

1

m− 2

[
|x|2

m
+
s2 − |x|2

2

]
−

1

m(m− 2)
tm|x|2−m

=
1

m− 2

[
|x|2

m

(
1−

(
t

|x|

)m)
+
s2 − |x|2

2

]

6
1

m− 2

[
s2

m

(
1−

(
t

s

)m)
+
s2 − t2

2

]

6
1

m− 2

[
s2
(
1−

t

s

)
+
s2 − t2

2

]

6
2

m− 2
s(s− t). �

An immediate consequence of the above lemma is that for each x ∈ Rd the

function Gk(·, x)wk is locally Lebesgue-integrable on Rd. Thus, by Fubini’s theo-

rem, for every f ∈ Bb(R
d) with compact support, we have

Gkf(x) =
∫
Rd

Gk(x, y)f(y)wk(y)dy =
∞∫
0

∫
Rd

pkt (x, y)f(y)wk(y)dydt

=
∞∫
0

Ex [f(Xt)] dt = Ex
[∞∫

0

f(Xt)dt
]
.

PROPOSITION 5.1. Let f ∈Bb(R
d) with compact support. ThenGkf ∈C0(R

d)
and

(5.3) ∆kG
kf = −f in R

d

in the distributional sense, i.e., for every ψ ∈ C∞c (Rd),

∫
Rd

Gkf(x)∆kψ(x)wk(x) dx = −
∫
Rd

f(x)ψ(x)wk(x) dx.

Moreover, Gkf is radially symmetric whenever f is.

P r o o f. Let r > 0 be such that the support of f is contained in Br. Let us as-

sume first that f > 0 and put g = ∥f∥ 1Br
− f . Then, applying the Green operator

Gk, we obtain

(5.4) Gkf +Gkg = ∥f∥Gk1Br
.

Since Gkf and Gkg are lower semicontinuous on Rd and Gk1Br
∈ C0(R

d) (see

(5.1)), we immediately deduce from (5.4) that Gkf ∈ C0(R
d). For f of arbitrary

sign, we write f = f+− f−, where f+ = max(f, 0) and f− = max(−f, 0). Then
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the same reasoning shows that Gkf+ and Gkf− are in C0(R
d). Hence Gkf =

Gkf+ − Gkf− is in C0(R
d), as desired. Let ψ ∈ C∞c (Rd). Then, by (4.1), for

every y ∈ Rd we have
∫
Rd

Gk(x, y)∆kψ(x)wk(x) = −ψ(y).

Hence,
∫
Rd

Gkf(x)∆kψ(x)wk(x) dx =
∫
Rd

( ∫
Rd

Gk(x, y)f(y)wk(y) dy
)
∆kψ(x)wk(x) dx

=
∫
Rd

( ∫
Rd

Gk(x, y)∆kψ(x)wk(x) dx
)
f(y)wk(y) dy

= −
∫
Rd

f(y)ψ(y)wk(y) dy.

Formula (5.1) justifies the transformation of the above integrals by Fubini’s the-

orem. Now, assume that f is radially symmetric. Let (fn)n be an increasing se-

quence of functions of the form

fn =
n∑

i=1

αi1Bri
,

which converges pointwise to f on Rd. Clearly, by formula (5.1), Gkfn is radi-

ally symmetric. On the other hand, using the dominated convergence theorem, we

get for every x ∈ Rd, limn→∞G
kfn(x) = Gkf(x). Thus Gkf is radially sym-

metric. �

For every open set D, we define the Green operator Gk
D on Bb(D) by

Gk
Df(x) := Ex

[ τD∫
0

f(Xs) ds
]
, x ∈ D.

For every f ∈ Bb(D), we denote by f̃ the extension of f on Rd such that f̃ = 0
on Rd \D. Since the Dunkl process satisfies the strong Markov property, for every

x ∈ D we have

Gkf̃(x) = Ex
[∞∫

0

f̃(Xs) ds
]

= Ex
[ τD∫

0

f̃(Xs) ds
]
+ Ex

[ ∞∫
τD

f̃(Xs) ds
]

= Ex
[ τD∫

0

f(Xs) ds
]
+ Ex

[
EXτD

[∞∫
0

f̃(Xs)ds
]]

= Ex
[ τD∫

0

f(Xs) ds
]
+HDG

kf̃(x).
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Therefore,

(5.5) Gk
Df = Gkf̃ −HDG

kf̃ on D.

Let B be an open ball of Rd of center zero and radius r > 0. Then it follows from

(5.5) that, for every f ∈ Bb(B), Gk
Bf can be represented by

Gk
Bf(x) =

∫
B

Gk
B(x, y)f(y)wk(y) dy,

where, for every x, y ∈ B,

(5.6) Gk
B(x, y) := Gk(x, y)−

∫
∂B

Gk(y, z)HB(x, dz).

Since, by (2.4), for every y, z ∈ Rd, we have

(5.7) Gk(y, z) 6
ckΓ(m/2− 1)

4 (|y| − |z|)m−2
,

it is immediate to see that, for every x, y ∈ B,

∫
∂B

Gk(y, z)HB(x, dz) 6
ckΓ(m/2− 1)

4 (|y| − r)m−2
<∞.

Therefore, Gk
B(x, y) introduced in (5.6) exists, and so the Green function Gk

B(·, ·)
is well defined fromB ×B into ]0,∞]. In the following corollary, we collect some

properties of the Green operator Gk
B .

COROLLARY 5.1. Let f ∈ Bb(B). Then Gk
Bf ∈ C0(B) and

(5.8) ∆kG
k
Bf = −f in B

in the distributional sense.

P r o o f. Clearly, Gk
Bf is continuous on B since Gkf̃ and HBG

kf̃ are. For

every z ∈ ∂B,

lim
x→z

Gk
Bf(x) = 0

since limx→zHBG
kf̃(x) = Gkf̃(z). Thus Gk

Bf ∈ C0(B). Formula (5.8) follows

immediately from (5.3) and (5.5). �

PROPOSITION 5.2. For every M > 0, the family {Gk
Bf, ∥f∥ 6 M} is rela-

tively compact in C0(B) endowed with the uniform norm.
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P r o o f. In virtue of the Arzelà–Ascoli theorem, we need to show that {Gk
Bf,

∥f∥ 6M} is uniformly bounded and equicontinuous on B. Let r be the radius of

the ballB. Let f ∈ Bb(B) be such that ∥f∥ 6M . Obviously, ∥Gk
Bf∥ 6M∥Gk

B1∥
6M∥Gk1B∥. Thus, using (5.1), we obtain

∥Gk
Bf∥ 6

r2M

2(m− 2)
.

This means that the family {Gk
Bf, ∥f∥ 6 M} is uniformly bounded. Next, we

claim that the family {Gk
B(x, ·), x ∈ B} is uniformly integrable with respect to the

measure wk(y) dy. Let x ∈ B and ϵ > 0 be small enough. Let At,s be the annulus

of Rd of center zero and radius t = max(0, |x| − ϵ) and s = |x| + ϵ. Then, for

every Borel subset D of B, we have

∫
D

Gk
B(x, y)wk(y)dy 6

∫
D

Gk(x, y)wk(y)dy

=
∫

D∩At,s

Gk(x, y)wk(y) dy +
∫

D\At,s

Gk(x, y)wk(y)dy

6 Gk1At,s
(x) +

(
sup

y∈D\At,s

Gk(x, y)
) ∫
D

wk(y)dy.

Hence, it follows from (5.7) and (5.2) that

∫
D

Gk
B(x, y)wk(y) dy 6

4r

m− 2
ϵ+

ckΓ(m/2− 1)

4ϵm−2

∫
D

wk(y) dy.

Put η = ϵm−1. Then for every Borel subset D ofB such that
∫
D
wk(y) dy < η, we

have
∫
D

Gk
B(x, y)wk(y) dy 6

(
4r

m− 2
+
ckΓ(m/2− 1)

4

)
ϵ.

Thus, the uniform integrability of the family {Gk
B(x, ·), x ∈ B} is shown. There-

fore, in virtue of Vitali’s convergence theorem, for z ∈ B,

lim
x→z

∫
B

|Gk
B(x, y)−G

k
B(z, y)|wk(y) dy = 0.

Hence, the family {Gk
Bf, ∥f∥ 6M} is equicontinuous on B since

lim
x→z

sup
∥f∥6M

|Gk
Bf(x)−G

k
Bf(z)|

6M lim
x→z

∫
B

|Gk
B(x, y)−G

k
B(z, y)|wk(y) dy = 0. �
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6. SEMILINEAR DIRICHLET PROBLEM

Let B be an open ball of Rd of center zero. Let φ : [0,∞[→ [0,∞[ be a non-

decreasing continuous function such that φ(0) = 0. By a solution of

(6.1) ∆ku = φ(u) in B

we shall mean every function u ∈ C(B) such that

∫
B

u(x)∆kψ(x)wk(x) dx =
∫
B

φ
(
u(x)

)
ψ(x)wk(x) dx

holds for every ψ ∈ C∞c (B). We recall from Theorem 4.2 that if φ ≡ 0, then HBf
is the unique solution of (6.1) satisfying u = f on ∂B. In all the following, we

assume that φ is not identically zero.

LEMMA 6.1. Let u ∈ C+(B). Then u is a solution of equation (6.1) if and

only if u+Gk
B

(
φ(u)

)
= HBu on B.

P r o o f. Let us note first that Gk
B

(
φ(u)

)
∈ C0(B) since the function φ(u) is

bounded on B. Put h := u + Gk
B

(
φ(u)

)
. Clearly, h ∈ C(B) and h = u on ∂B.

On the other hand, using Fubini’s theorem and formula (5.8), we obtain for every

ψ ∈ C∞c (B),

∫
B

h(x)∆kψ(x)wk(x) dx

=
∫
B

u(x)∆kψ(x)wk(x) dx+
∫
B

Gk
B

(
φ(u)

)
(x)∆kψ(x)wk(x) dx

=
∫
B

u(x)∆kψ(x)wk(x) dx−
∫
B

φ
(
u(x)

)
ψ(x)wk(x) dx.

So, ∆ku = φ(u) in B if and only if ∆kh = 0 in B. In this case, since h = u on

∂B, the uniqueness of the solution to problem (4.10) yields h = HBu on B. This

completes the proof. �

LEMMA 6.2. Let u, v ∈ C+(B) be two solutions of equation (6.1). If u > v
on ∂B, then u > v on B.

P r o o f. Define w := u− v and ρ := φ(u)− φ(v). By Lemma 6.1, we have

(6.2) w +Gk
Bρ = HBw on B.

Suppose that the open set D := {x ∈ B; w(x) < 0} is not empty. Since φ is

nondecreasing, it follows that ρ 6 0 on D, and hence Gk
Dρ 6 0 on D. Let x ∈ D.
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It is clear that B contains the support of the measure HD(x, ·). Now integrate (6.2)

with respect to HD(x, ·) to obtain

HDw(x) +HD(G
k
Bρ)(x) = HDHBw(x) = HBw(x).

Consequently,

(6.3) HDw(x)=HBw(x)−HD(G
k
Bρ)(x)=w(x) +

(
Gk

Bρ(x)−HDG
k
Bρ(x)

)
.

On the other hand, using the strong Markov property, we obtain

Gk
Bρ(x)−G

k
Dρ(x) = Ex

[ τB∫
τD

ρ(Xs) ds
]
= Ex

[
EXτD

[ τB∫
0

ρ(Xs) ds
]]

(6.4)

= HDG
k
Bρ(x).

Thus, it follows from (6.3) and (6.4) that w(x) +Gk
Dρ(x) = HDw(x). But this is

absurd since w(x) +Gk
Dρ(x) < 0 and HDw(x) > 0. Therefore, D is empty, and

consequently u > v on B. �

THEOREM 6.1. For every f ∈ C+(∂B), the semilinear Dirichlet problem

(6.5)

{
∆ku = φ(u) in B,

u = f on ∂B

admits one and only one solution u ∈ C+(B).

P r o o f. It follows from Lemma 6.2 that problem (6.5) admits at most one

solution. To prove the existence, in virtue of Lemma 6.1, it will be sufficient to

establish the existence of u ∈ C+(B) such that

(6.6) u+Gk
B

(
φ(u)

)
= HBf on B.

Since Gk
B1 6 Gk1B , we immediately deduce by (5.1) that supx∈B G

k
B1(x) <∞.

Let f ∈ C+(∂B), a = ∥f∥ and M = a + φ(a)∥Gk
B1∥. Let ϕ be the function de-

fined on R by

ϕ(t) =





0 if t 6 0,

φ(t) if 0 6 t 6 a,

φ(a) if t > a.

Let Λ := {u ∈ C(B); ∥u∥ 6 M} and consider the operator T : Λ → C(B) de-

fined by

Tu(x) = HBf(x)−G
k
B

(
ϕ(u)

)
(x), x ∈ B.
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Since supx∈B ϕ
(
u(x)

)
6 φ(a), we easily deduce that

∥Tu∥ 6M

for every u ∈ Λ. This implies that T (Λ) ⊂ Λ. Now, let (un)n be a sequence in Λ
converging uniformly to u ∈ Λ. Let ε > 0. Since ϕ is uniformly continuous on the

interval [−M,M ], we immediately deduce that there exists n0 ∈ N such that, for

every n > n0,

∥ϕ(un)− ϕ(u)∥ 6 ε.

Then, for every n > n0 and every x ∈ B,

|Tun(x)− Tu(x)| 6 Gk
B

(
|ϕ(un)− ϕ(u)|

)
(x) 6 ε sup

x∈B
Gk

B1(x).

This show that (Tun)n converges uniformly to Tu, and therefore T is continuous.

On the other hand, Λ is a closed bounded convex subset of C(B) and, in virtue of

Proposition 5.2, T (Λ) is relatively compact. Thus, the Schauder fixed point theo-

rem ensures the existence of a function u ∈ Λ such that

u+Gk
B

(
ϕ(u)

)
= HBf on B.

Clearly, u ∈ C(B) and u(x) 6 HBf(x) 6 a for every x ∈ B. So, to obtain (6.6),

we need to show that ϕ(u) = φ(u) on B, or equivalently, u > 0 on B. Assume

that the open set D := {x ∈ B, u(x) < 0} is not empty. Let x ∈ D. Then,

HDu(x) = HD

(
HBu−G

k
B

(
ϕ(u)

))
(x) = HBu(x)−HDG

k
B

(
ϕ(u)

)
(x).

The same reasoning as in (6.4), based on the strong Markov property, shows that

HDG
k
B

(
ϕ(u)

)
(x) = Gk

B

(
ϕ(u)

)
(x)−Gk

D

(
ϕ(u)

)
(x).

Thus, because ϕ(u) = 0 on D, we get

HDu(x) = HBu(x)−G
k
B

(
ϕ(u)

)
(x) +Gk

D

(
ϕ(u)

)
(x)

= u(x) +Gk
D

(
ϕ(u)

)
(x) = u(x) < 0.

But, HDu(x)>0 since u>0 on B \D, which contains the support of HD(x, ·).
So D must be empty, and consequently u>0 on B. This completes the proof. �
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GUANGQU Z H E N G (LAWRENCE), AND EZZEDINE H AO UA L A (TUNIS)

Abstract. This paper deals with the asymptotic behavior of random os-

cillatory integrals in the presence of long-range dependence. As a byprod-

uct, we solve the corrector problem in random homogenization of one-

dimensional elliptic equations with highly oscillatory random coefficients

displaying long-range dependence, by proving convergence to stochastic in-

tegrals with respect to Hermite processes.

2010 AMS Mathematics Subject Classification: Primary: 60F05,

80M40; Secondary: 60H05, 60H20, 60G10, 60G18.

Key words and phrases: Elliptic equation, Hermite process, oscilla-

tory integral, corrector, homogenization.

1. MAIN RESULTS

1.1. Convergence of random oscillatory integrals. One of our goals in the

paper is to study, once properly normalized, the distributional convergence of some

random oscillatory integrals of the form

1∫
0

Φ[g(x/ε)]h(x) dx,(1.1)

where
• h ∈ C([0, 1]) is deterministic,

•

{
g(x)}x∈R+

is a certain centered stationary Gaussian process exhibiting

long-range correlation,

• Φ ∈ L2(R, ν) has Hermite rank m  1 (with ν the standard Gaussian mea-

sure).

As we will see later, the main motivation of this study comes from the random

corrector problem studied in [4].
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Let us first introduce the Gaussian process {g(x)}x∈R+
we will deal with

throughout all this paper. It is constructed as follows:

1. Letm ∈ N
∗ be fixed, letH0 ∈

(
1− 1

2m , 1
)
, and setH = 1+m(H0− 1) ∈

(1/2, 1).

2. Fix a slowly varying function L : (0,+∞) → (0,+∞) at +∞, that is,

consider a measurable and locally bounded function L such that L(λx)/L(x)→ 1
as x→ +∞, for every λ > 0. Assume furthermore that L is bounded away from 0
and +∞ on every compact subset of (0,+∞). (See [3] for more details on slowly

varying functions.)

3. Let e : R→ R be a square-integrable function such that

(3a)
∫
R
e(u)2 du = 1;

(3b) |e(u)| ¬ CuH0−3/2L(u) for almost all u > 0 and for some absolute con-

stant C;

(3c) e(u) ∼ C0u
H0−3/2L(u), where C0 =

( ∫∞
0

(u+ u2)H0−3/2 du
)−1/2

;

(3d) there exists 0 < γ < min
{
H0 −

(
1− 1

2m

)
, 1−H0

}
such that

0∫
−∞

|e(u)e(xy + u)| du = o
(
x2H0−2L(x)2

)
y2H0−2−2γ

as x→∞, uniformly in y ∈ (0, t] for each given t > 0.

4. Finally, let W be a two-sided Brownian motion.

Bearing all these ingredients in mind, we can now set, for x ∈ R+,

(1.2) g(x) :=
∞∫
−∞

e(x− ξ)dWξ.

REMARK 1.1. (i) Assumptions (3a) and 4 ensure that {g(x)}x∈R+
is a nor-

malized centered Gaussian process.

(ii) Assumption (3b) controls |e(u)| for small u, while assumption (3d) en-

sures that the “forward” contribution of e(u) is ultimately negligible due to the

following computation:

E[g(s)g(s+ x)] =
∞∫
−∞

e(s− ξ)e(s+ x− ξ) dξ =
∞∫
−∞

e(u)e(u+ x) du

=
0∫
−∞

e(u)e(u+ x) du+
∞∫
0

e(u)e(u+ x) du

= o
(
x2H0−2L(x)2

)
+ x

∞∫
0

e(xu)e(xu+ x) du.

(iii) Assumption (3c) ensures that the process {g(x)}x∈R+
exhibits the fol-

lowing asymptotic behavior:

(1.3) Rg(x) := E[g(s)g(s+ x)] ∼ x2H0−2L(x)2 as x→ +∞,
see [12], equation (2.3).
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In Section 3.1, we will show that the random integral given by (1.1) exhibits

the following asymptotic behavior as ε→ 0.

THEOREM 1.1. Let g be the centered stationary Gaussian process defined

by (1.2) and assume that Φ ∈ L2(R, ν) has Hermite rank m  1. Then, for any

h ∈ C([0, 1]), the following convergence in law holds:

(1.4) M ε
h :=

1

εd(1/ε)

1∫
0

Φ[g(x/ε)]h(x) dx
ε↓0−−→M0

h :=
Vm
m!

1∫
0

h(x) dZ(x),

where Z is the mth order Hermite process defined by (2.4) below, and d(·) is

defined by

(1.5) d(x) =

√
m!

H(2H − 1)
xHL(x)m.

As we already mentioned, the fine analysis of the asymptotic behavior of (1.4)

is motivated by the random corrector problem studied in [4]; it will be described

below.

1.2. A motivating example. Theorem 1.1 appears to be especially useful and

relevant in the study of the following homogenization problem. Consider the fol-

lowing one-dimensional elliptic equation displaying random coefficients:




− d

dx

(
a(x/ε, ω)

d

dx
uε(x, ω)

)
= f(x), x ∈ (0, 1), ε > 0,

uε(0, ω) = 0, uε(1, ω) = b ∈ R.
(1.6)

In (1.6), the random potential {a(x)}x∈R+
is assumed to be a uniformly bounded,

positive1 and stationary stochastic process, whereas the data f is continuous. This

model has received a lot of interests in the literature (see, e.g., [5], pp. 13–14).

Taking strong advantage of the fact that the ambient dimension is one, it is

immediate to check that the solution to (1.6) is given explicitly by

(1.7) uε(x, ω) = cε(ω)
x∫
0

1

a(y/ε, ω)
dy −

x∫
0

F (y)

a(y/ε, ω)
dy,

where F (x) :=
∫ x

0
f(y) dy is the antiderivative of f vanishing at zero, and where

cε(ω) :=

(
b+

1∫
0

F (y)

a(y/ε, ω)
dy

)( 1∫
0

1

a(y/ε, ω)
dy

)−1
.

1That is, there exists r ∈ (0, 1) such that r ¬ a(x) ¬ r
−1 for every (x, ω) ∈ R+ × Ω.
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Under suitable ergodic and stationary assumptions on a, the ergodic theorem ap-

plied to (1.7) implies that uε converges pointwise to ū as ε→ 0, where

ū(x) =
c∗x

a∗
−

x∫
0

F (y)

a∗
dy,

with c∗ := ba∗ +
∫ 1

0
F (y) dy and

a∗ :=
1

E[1/a(0)]
.

The above parameter a∗ is usually referred to as the effective diffusion coefficient

in the literature, see e.g. [10]. It is also immediately checked that ū is the unique

solution to the following deterministic equation:




− d

dx

(
a∗

d

dx
ū(x)

)
= f(x), x ∈ (0, 1),

ū(0) = 0, ū(1) = b.
(1.8)

Interested readers can refer to [2] for a recent review on models involving more

general elliptic equations.

In this work, we address to the random corrector problem for (1.6) in presence

of long-range media, that is, we analyze the behavior of the random fluctuations be-

tween uε and ū when the random potential a is obtained by means of a long-range

process (see below for the details). Taking advantage of the explicit expressions

for both (1.6) and (1.8), it is easy but crucial to observe that the random corrector

uε(x) − ū(x) can be fully expressed by means of random oscillatory integrals of

the form

(1.9)
1∫
0

[
1

a(y/ε)
− 1

a∗

]
h(y) dy

for some function h. Thus, the random corrector problem for (1.6) reduces in a

careful analysis of the asymptotic behavior of random quantities of the form (1.9)

as ε → 0. To this aim, we need to give a precise description of the form of the

process a.

Let ν denote the standard Gaussian measure on R. Every Φ ∈ L2(R, ν) admits

the series expansion

Φ =
∞∑

q=0

Vq
q!
Hq, with Vq :=

∫
R

Φ(x)Hq(x)ν(dx),(1.10)

where Hq(x) = (−1)q exp(x2/2) dq

dxq exp(−x2/2) denotes the qth Hermite poly-

nomial. Recall that the integer mΦ := inf{q  0 : Vq ̸= 0} is called the Hermite
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rank of Φ (with the convention inf ∅ = +∞). For any integerm  1, we define Gm

to be the collection of all square-integrable functions (with respect to the standard

Gaussian measure on R) that have Hermite rank m.

Using Theorem 1.1 as the main ingredient, we will prove the following result

about the asymptotic behaviour of the random corrector associated with (1.6).

THEOREM 1.2. Fix an integer m  1 as well as two real numbers H0 ∈(
1− 1

2m , 1
)

and b ∈ R, and let {a(x)}x∈R+
be a uniformly bounded, positive and

stationary stochastic process. Assume in addition that q = {q(x)}x∈R+
given by

(1.11) q(x) =
1

a(x)
− 1

a∗
, where a∗ := 1/E[1/a(0)],

has the form

(1.12) q(x) = Φ
(
g(x)

)
,

where Φ ∈ L2(R, ν) belongs to Gm and {g(x)}x∈R+
is the Gaussian process given

by (1.2). Finally, let f : [0, 1]→ R be continuous and let us consider the solutions

uε and ū of (1.6) and (1.8) respectively. Then, for each ε > 0, the random cor-

rector uε − ū is a continuous process on [0, 1]. Moreover, we have the following

convergence in law on C([0, 1]) endowed with the supremum norm as ε→ 0:

{
uε(x)− ū(x)
εd(1/ε)

}

x∈[0,1]

=⇒
{
Vm
m!

∫
R

F (x, y) dZ(y)

}

x∈[0,1]

,

where d is given by (1.5),

F (x) =
x∫
0

f(y)dy, c∗ = a∗b+
1∫
0

F (y) dy,

F (x, y) = [c∗ − F (y)]1[0,x](y) + x
(
F (y)−

1∫
0

F (z)dz − a∗b
)
1[0,1](y),

and Z is the Hermite process of order m and self-similar index

H := 1 +m(H0 − 1) ∈ (1/2, 1).

(The definition of Z is given in Theorem 2.1 below.)

Note that it is not difficult to construct a process a satisfying all the assump-

tions of Theorem 1.2. Indeed, bearing in mind the notation of Theorem 1.2, we can

write

(1.13) a(x) =

(
q(x) +

1

a∗

)−1
=

(
Φ
(
g(x)

)
+

1

a∗

)−1
.
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First, we note that since g given by (1.2) is stationary, clearly the same holds for a,

whatever the expression of Φ. Second, given any fixed a∗ > 0, we can construct a

bounded measurable function Φ ∈ G2 with ∥Φ∥∞ ¬ 1/(2a∗) as follows.

Let h1, h2 be two bounded measurable functions; then it is clear that they

belong to L2(R, ν) and admit the series expansion

h1 −
∫
R

h1 dν =
∞∑

k=1

akHk and h2 −
∫
R

h2 dν =
∞∑

k=1

bkHk,

where the coefficients ak, bk are defined in an obvious manner. Therefore, the func-

tion

Ψ := b1
(
h1 −

∫
R

h1 dν
)
− a1

(
h2 −

∫
R

h2 dν
)

is bounded and belongs to G2. Then we pick Φ = Ψ/(2a∗∥Ψ∥∞) ∈ G2. Therefore,

a(x) defined by (1.13) satisfies

0 <
2a∗

3
¬ a(x) ¬ 2a∗.(1.14)

Inductively, one can construct a bounded measurable Φ with Hermite rank m  3
(by starting with two bounded functions in Gm−1) such that the process {a(x), x ∈
R} given in (1.13) satisfies (1.14).

Another possibility of constructing such a process {a(x), x ∈ R} is stated

(more explicitly) as follows: let us fix 0 < t1 < . . . < tm and consider the unique

(m+ 1)-tuple (b0, . . . , bm) satisfying

(1.15)





m∑

l=0
bl e
−ktl = 0 for all k ∈ {0, . . . ,m− 1},

m∑

l=0
bl e
−mtl = 1.

(The existence and uniqueness of a solution to (1.15) is a consequence of a Van-

dermonde determinant.) Now, consider any measurable function ψ satisfying

(1.16) 0 ¬ ψ ¬ 1

2a∗
m∑

l=0
|bl|

.

Since ψ belongs obviously to L2(R, ν), it may be expanded in Hermite polynomi-

als as ψ =
∑∞

k=0 akHk. We assume moreover that am ̸= 0. (The existence of ψ
satisfying both (1.16) and am ̸= 0 is clear by a contradiction argument.) Now, let

Φ =
m∑

l=0

blPtlψ,
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where Ptψ(x) =
∫
R
ψ(e−tx+

√
1− e−2ty)ν(dy) is the classical Ornstein–Uhlen-

beck semigroup. Due to (1.15), it is readily checked that the expansion of Φ is

Φ = amHm +
∞∑

k=m+1

{ m∑

l=0

ble
−ktl

}
akHk,

so that Φ ∈ Gm. Moreover,

∥Φ∥∞ ¬
m∑

l=0

|bl|∥Ptlψ∥∞ ¬ ∥ψ∥∞
m∑

l=0

|bl| ¬
1

2a∗
,

and a given by (1.13) is positive and bounded. So, the existence of a process a
satisfying all the assumptions of Theorem 1.2 is shown.

Theorem 1.2 should be seen as an extension of and a unified approach to the

main results of [4], and it contains these results as particular cases. More precisely,

the case where the Hermite rank of Φ is m = 1 corresponds to Theorem 2.5 in [1]

and involves the fractional Brownian motion in the limit, whereas the case where

the Hermite rank of Φ is m = 2 corresponds to Theorem 2.2 in [4] and involves

the Rosenblatt process in the limit. Also, in their last section (entitled Conclusions

and further discussion), the authors of [4] pointed out that “it is natural to ask

what would happen if the Hermite rank of Φ was greater than 2”. Our Theorem 1.2

answers this question by showing (as guessed by the authors of [4]) that, in the case

m  3, the limit takes the form of an integral with respect to the Hermite process

of order m. Finally, we would like to emphasize that our Theorem 1.2, even in the

cases m = 1 and m = 2, is a strict extension of the results of [4], as we allow the

possibility to deal with a slowly varying function L. That being said, our proof of

Theorem 1.2 is exclusively based on the ideas and results contained in the seminal

paper [12] and follows the strategy developed in [4]. In higher dimension, it is

usually very hard to study the corrector theory due to the lack of the explicit form

of the solution. In the recent papers [8], [9], the authors considered the discretized

version of the corrector problem in higher dimension and were able to study the

scaling limit to some Gaussian fields. For more details, we refer the interested

readers to these two papers and the references therein.

The rest of the paper is organized as follows. In Section 2, we give some

preliminary results divided into several subsections. Section 3 contains the proof

of Theorems 1.2 and 1.1.

2. PRELIMINARY RESULTS

Throughout this section, we let all the notation and assumptions of Sections 1.1

and 1.2 prevail.
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2.1. Asymptotic behavior of the covariance function of q. For x ∈ R, set

Rq(x) = E[q(0)q(x)]. Also, recall that m is the Hermite rank of Φ. Then, pro-

ceeding in similar lines to those in Lemma 2.1 of [4], one can show that

(2.1) |Rq(x)| =
(
o(1) + V 2

m/m!
)
L(|x|)2m|x|−2(1−H)

as |x| → +∞. Here o(1) means that the term converges to zero when x→∞.

The asymptotic relation (2.1) implies the existence of some absolute constant

C satisfying

|Rq(x)| ¬ C L(|x|)2m|x|−2(1−H)(2.2)

for any x ̸= 0.

2.2. Taqqu’s theorem and convergence to the Hermite processZ . Recall d(x)
from (1.5). Its main property is that the variance of 1

d(x)

∫ x

0
Hm

(
g(y)

)
dy is asymp-

totically equal to one as x→ +∞.

The following result, due to Taqqu in 1979, is the key ingredient in our proofs.

THEOREM 2.1 ([12], Lemma 5.3). Let us assume Φ ∈ Gm and let g be given

by (1.2). Then, as T → +∞, the process

(2.3) YT (x) =
1

d(T )

Tx∫
0

Φ[g(y)] dy, x ∈ R+,

converges to (Vm/m!)Z(x) in the sense of finite-dimensional distributions, where

the mth order Hermite process Z with self-similar index H = m(H0 − 1) + 1 is

defined by

(2.4) Z(x)

= K(m,H0)
{ ∞∫
−∞

dBξ1

ξ1∫
−∞

dBξ2 . . .
ξm−1∫
−∞

dBξm

x∫
0

m∏
i=1

(s− ξi)H0−3/21(ξi<s) ds
}
,

where

K(m,H0) :=

√√√√√
m!H(2H − 1)

(∞∫
0

(u+ u2)H0−3/2 du
)m

is the normalizing constant such that E[Z(1)2] = 1. (See [12], equation (1.6).)

Note that Z(x) lives in the Wiener chaos of order m, which is non-Gaussian

unless m = 1 or x = 0.
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2.3. Wiener integral with respect to Z . Let Z be given as above and let E be

the set of elementary (deterministic) functions, that is, the set of functions h of the

form

h(x) =
ℓ∑

k=1

ak1(tk,tk+1](x)

with ℓ ∈ N
∗, ak ∈ R, tk < tk+1. For such h, we define the Wiener integral with

respect to Z in the usual way, as a linear functional over E :

∫
R

h(x) dZ(x) =
ℓ∑

k=1

ak[Z(tk+1)− Z(tk)].

One can easily verify that this definition is independent of choices of representation

for elementary functions. Now we introduce the space of (deterministic) integrands

for this Wiener integral:

(2.5) ΛH =
{
f : R −→ R

∣∣ ∫
R

∫
R

f(u)f(v)|u− v|2H−2 du dv < +∞
}
,

equipped with the norm

(2.6) ∥f∥2ΛH = H(2H − 1)
∫
R

∫
R

f(u)f(v)|u− v|2H−2 du dv.

When h ∈ E , it is straightforward to check the following isometry property:

E
[( ∫

R

h(x)dZ(x)
)2]

= ∥h∥2ΛH .

As a consequence, one can define the Wiener integral
∫
R
f(x)dZ(x) for any f ∈

ΛH by a usual approximation procedure.

It is well known by now (thanks to [11]) that (ΛH , ∥ · ∥ΛH ) is a Hilbert space

that contains distributions in the sense of Schwartz. To overcome this problem, we

shall restrict ourselves to the proper subspace

|ΛH | =
{
f : R→ R

∣∣ ∫
R

∫
R

|f(u)f(v)||u− v|2H−2 du dv < +∞
}

equipped with the norm

∥f∥2|ΛH | = H(2H − 1)
∫
R

∫
R

|f(u)f(v)||u− v|2H−2 du dv.

We then have (see [11], Proposition 4.2)

(2.7) L1(R) ∩ L2(R) ⊂ L1/H(R) ⊂ |ΛH | ⊂ ΛH .
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Moreover, (|ΛH |, ∥ · ∥|ΛH |) is a Banach space in which the set E is dense. So for

h ∈ |ΛH |, we can define

(2.8)
∫
R

h(x) dZ(x) = lim
n→+∞

∫
R

hn(x) dZ(x),

where (hn) is any sequence of E converging to h in (|ΛH |, ∥ · ∥|ΛH |); the conver-

gence in (2.8) holds in L2(Ω
)
.

For a detailed account of this integration theory, one can refer to [7], [11].

2.4. Some facts about slowly varying functions. Let L : (0,+∞)→ (0,+∞)
be a slowly varying function at +∞ and α > 0. It is well known (see [3], Proposi-

tion 1.3.6(v)) that

xαL(x)→ +∞ and x−αL(x)→ 0

as x→ +∞. In particular, one can deduce that

lim
ε↓0

ε1−HL(1/ε)m = 0.(2.9)

The following result is known as Potter’s theorem (see [3], Theorem 1.5.6(ii)).

THEOREM 2.2. Let L : (0,+∞)→ (0,+∞) be a slowly varying function at

+∞ such that it is bounded away from 0 and +∞ on every compact subset of

(0,+∞). Then for any δ > 0 there exists some constant C = C(δ) such that

L(y)

L(x)
¬ Cmax{(x/y)δ , (y/x)δ} for any x, y ∈ (0,+∞).

3. PROOFS OF THE MAIN RESULTS

3.1. Proof of Theorem 1.1. First recall that a typical function h in E has the

form

h(x) =
n∑

ℓ=1

aℓ1(tℓ,tℓ+1](x), tℓ < tℓ+1, aℓ ∈ R, ℓ = 1, . . . , n.

For such a simple function h, we deduce from Taqqu’s theorem (Theorem 2.1) that

M ε
h =

1

εd(1/ε)

∫
R

q(x/ε)
n∑

ℓ=1

aℓ1(tℓ,tℓ+1](x) dx

=
n∑

ℓ=1

aℓ
1

d(1/ε)

( tℓ+1/ε∫
0

Φ
(
g(x)

)
dx−

tℓ/ε∫
0

Φ
(
g(x)

)
dx

)

ε→0−−−→ Vm
m!

n∑

ℓ=1

aℓ[Z(tℓ+1)− Z(tℓ)] =
Vm
m!

∫
R

h(x) dZ(x).

This proves (1.4) for simple functions h ∈ E .
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Let us now consider h ∈ C([0, 1]). It is easy to see that there exists a sequence

(hn) ⊂ E such that

lim
n→+∞

∥hn − h∥∞ = 0.

Let us fix a number ζ ∈ (0, 1) and show the convergence in L2(Ω) of M ε
hn

, uni-

formly in ε ∈ (0, ζ). First, one can write

sup
ε∈(0,ζ)

E[|M ε
hn
−M ε

h|2 ]

= sup
ε∈(0,ζ)

1

ε2d(1/ε)2
E
[∣∣

1∫
0

q(x/ε)[hn(x)− h(x)] dx
∣∣2]

¬ ∥hn − h∥2∞ sup
ε∈(0,ζ)

1

ε2d(1/ε)2

∫
R2\D

∣∣∣∣Rq

(
y − x
ε

)∣∣∣∣ dx dy,

where D = {(x, y) ∈ [0, 1]2 : x = y} is a negligible subset of R2. By (2.2),

∣∣∣∣Rq

(
y − x
ε

)∣∣∣∣¬CstL

(∣∣∣∣
y − x
ε

∣∣∣∣
)2m∣∣∣∣

y − x
ε

∣∣∣∣
−2(1−H)

for all (x, y)∈R2\D.

Second, with β > 0 small enough such that 2mβ + 2(1−H) ∈ (0, 1), we have

(3.1) sup
ε∈(0,ζ)

1

X(ε)2

∫
[0,1]2\D

∣∣∣∣Rq

(
y − x
ε

) ∣∣∣∣ dx dy

¬ Cst sup
ε∈(0,ζ)

∫
[0,1]2\D

{
L
(
|(x− y)/ε|

)

L(1/ε)

}2m

|x− y|−2(1−H) dx dy

¬ Cst
∫

[0,1]2\D

|x− y|−2mβ−2(1−H) dx dy

< +∞,

where the second inequality follows from Theorem 2.2. It is now clear that, indeed,

(3.2) lim
n→+∞

sup
ε∈(0,ζ)

E
[
|M ε

hn
−M ε

h|2
]
= 0.

To conclude, let d(·, ·) denote any distance metrizing the convergence in distribu-

tion between real-valued random variables (for instance, the Fortet–Mourier dis-

tance). For h ∈ C([0, 1]) and (hn) ⊂ E converging to h, one can write, for any

ε > 0 and n ∈ N:

d(M ε
h,M

0
h) ¬ d(M ε

h,M
ε
hn
) + d(M ε

hn
,M0

hn
) + d(M0

hn
,M0

h).
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Fix η > 0. By (3.2), one can choose n big enough so that, for any ε ∈ (0, ζ), both

d(M ε
h,M

ε
hn
) and d(M0

hn
,M0

h) are less than η/3. It remains to choose ε > 0 small

enough so that d(M ε
hn
,M0

hn
) is less than η/3 (by (1.4) for the simple function

hn ∈ E), to conclude that (1.4) holds true for any continuous function h.

REMARK 3.1. Clearly, the above result still holds true for any function h that

is continuous except at finitely many points. Note also that the function Φ ∈ Gm is

not necessarily bounded in Theorem 1.1.

3.2. Proof of Theorem 1.2. The proof is divided into five steps. We write

X(ε) = εd(1/ε) =

√
m!

H(2H − 1)
ε1−HL(1/ε)m.

(a) Preparation. Following [4], especially identities (5.1) and (5.19) therein,

we first rewrite the rescaled corrector as follows:

uε(x)− ū(x)
X(ε)

= Uε(x) + 1

X(ε)
rε(x) +

1

X(ε)
ρε
x

a∗︸ ︷︷ ︸
=:Rε(x)

,(3.3)

where

Uε(x) = 1

X(ε)

∫
R

F (x, y)q(y/ε) dy,

rε(x) = (cε − c∗)
x∫
0

q(y/ε) dy,

and

ρε :=
a∗

1∫
0

a(y/ε)−1 dy

[(
a∗b+

1∫
0

F (y)dy
)( 1∫

0

q(y/ε) dy
)2

−
1∫
0

F (y)q(y/ε) dy
1∫
0

q(y/ε) dy
]
.

Now, let us first show the weak convergence of Uε to U in C([0, 1]) and then

prove that Rε is a remainder. To prove the first claim, we start by establishing the

f.d.d. convergence and then prove the tightness.

(b) Convergence of finite-dimensional distributions of Uε. For x1, . . . , xn ∈ R

and λ1, . . . , λn ∈ R (n  1), we have

n∑

k=1

λk Uε(xk) =
1

X(ε)

∫
R

n∑

k=1

λk F (xk, y)q(y/ε) dy.
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Note that the function
∑n

k=1 λk F (xk, ·) has at most finitely many discontinuities.

Thus, Theorem 1.1 and Remark 3.1 imply that
∑n

k=1 λk Uε(xk) converges in dis-

tribution to
∑n

k=1 λk U(xk), yielding the desired convergence of finite-dimensional

distributions.

(c) Tightness of Uε. We check Kolmogorov’s criterion ([6], Corollary 16.9).

First observe that Uε(0) = 0. Now, fix 0 ¬ u < v ¬ 1, and set F1(y) = c∗ −
F (y) and F2(y) = F (y) −

∫ 1

0
F (t) dt − a∗b, so that F (x, y) = F1(y)1[0,x](y) +

xF2(y)1[0,1](y). Then

(3.4) E
(
|Uε(u)− Uε(v)|2

)

= E

[
1

X(ε)2
∣∣
1∫
0

1(u,v](y)q(y/ε)F1(y) dy + (v − u)
1∫
0

q(y/ε)F2(y) dy
∣∣2
]

¬ 2

X(ε)2
E
[∣∣

1∫
0

1(u,v](y)q(y/ε)F1(y) dy
∣∣2 +

∣∣(v − u)
1∫
0

q(y/ε)F2(y) dy
∣∣2]

¬ 2

X(ε)2

v∫
u

v∫
u

F1(x)F1(y)Rq

(
y − x
ε

)
dx dy

+
2(v − u)2
X(ε)2

1∫
0

1∫
0

F2(x)F2(y)Rq

(
y − x
ε

)
dx dy.

Note that F2 is bounded on [0, 1]. Therefore, as far as the second term in the last

inequality in (3.4) is concerned, one can write, using Potter’s theorem as in the

proof of Theorem 1.1,

(3.5) sup
ε∈(0,ζ)

∣∣∣∣
(v − u)2
X(ε)2

1∫
0

1∫
0

F2(x)F2(y)Rq

(
y − x
ε

)
dx dy

∣∣∣∣ ¬ Cst(v − u)2.

Now, let us consider the first term in the last inequality in (3.4). Similarly,

(3.6) sup
ε∈(0,ζ)

1

X(ε)2

∣∣∣∣
v∫
u

v∫
u

F1(x)F1(y)Rq

(
y − x
ε

)
dx dy

∣∣∣∣

¬ Cst sup
ε∈(0,ζ)

1

X(ε)2

v∫
u

v∫
u

∣∣∣∣Rq

(
y − x
ε

)∣∣∣∣dx dy (since F1 is bounded)

¬ Cst sup
ε∈(0,ζ)

1

L(1/ε)2m

v∫
u

v∫
u

L(|y − x|/ε)2m dx dy

|y − x|2(1−H)

¬ Cst
v∫
u

v∫
u

|y − x|−2(1−H)−2mβ dy dx (as in (3.1))

= Cst(v − u)2−2mβ−2(1−H).

Since 2 − 2m(1 −H0) − 2mβ > 1, this proves the tightness of (Uε)ε by means

of the usual Kolmogorov’s criterion.
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(d) Control on the remainder term Rε in (3.3). We shall prove that the pro-

cess Rε converges in probability to zero in C([0, 1]). First we claim that if G ∈
C([0, 1]), then there exists some constant C = C(G) such that

sup
x∈[0,1]

E
[( x∫

0

q(y/ε)G(y) dy
)2] ¬ C X(ε)2.(3.7)

Indeed, the same argument we used for obtaining (3.5) works here as well, so

we get

sup
x∈[0,1]

E
[( x∫

0

q(y/ε)G(y) dy
)2]

¬ ∥G∥2∞
∫

[0,1]2

∣∣Rq(|y − z|/ε)
∣∣ dy dz

¬ ∥G∥2∞X(ε)2
(

sup
ε∈(0,ζ)

1

X(ε)2

∫
[0,1]2

∣∣Rq(|y − z|/ε)
∣∣ dy dz

)

¬ CstX(ε)2,

where the last inequality follows from (3.1).

Now, let us considerRε:

(i) Due to the explicit expression of ρε, it follows from (3.7), the fact that a is

bounded from below and the Cauchy–Schwarz inequalities that

E[|ρε|]

¬ Cst
{∥∥

1∫
0

q(y/ε) dy
∥∥2
L2(Ω)

+
∥∥

1∫
0

F (y)q(y/ε) dy
∥∥
L2(Ω)

∥∥
1∫
0

q(y/ε) dy
∥∥
L2(Ω)

}

¬ CstX(ε)2.

(ii) Observe that

cε − c∗ = a∗
1∫
0

(
F (y)−

1∫
0

F (t) dt− ba∗
)
q(y/ε) dy + ρε

=:
1∫
0

F̂ (y)q(y/ε) dy + ρε.

Then

sup
x∈[0,1]

E[|rε(x)|] = sup
x∈[0,1]

E
[∣∣(cε − c∗)

x∫
0

q(y/ε) dy
∣∣]

¬ sup
x∈[0,1]

E
[∣∣

1∫
0

F̂ (y)q(y/ε) dy
x∫
0

q(y/ε) dy
∣∣]+ CstE[|ρε|] ¬ CstX(ε)2.
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Therefore, as ε→ 0 we have, by (2.9),

sup
x∈[0,1]

E[|Rε(x)|] ¬ CstX(ε)→ 0.

In particular, {Rε(x), x ∈ [0, 1]} converges to zero in the sense of finite-dimen-

sional distributions. Now, let us check the tightness of (Rε)ε. Note thatRε(0) = 0
and that, for 0 ¬ u < v ¬ 1,

∥∥Rε(u)−Rε(v)
∥∥2
L2(Ω)

¬ 2

X(ε)2

{∥∥rε(u)− rε(v)
∥∥2
L2(Ω)

+
2(u− v)2
|a∗|2 E[|ρε|2]

}

¬ 2

X(ε)2
∥∥rε(u)− rε(v)

∥∥2
L2(Ω)

+ Cst
(u− v)2
X(ε)2

E[|ρε|] (since ρε is uniformly bounded)

¬ 2

X(ε)2
∥∥rε(u)− rε(v)

∥∥2
L2(Ω)

+ Cst(u− v)2 (by point (i) above)

¬ Cst
1

X(ε)2

∫
[u,v]2

∣∣R
(
(y − z)/ε

)∣∣ dy dz

+ Cst(u− v)2 (since cε − c∗ is uniformly bounded)

¬ Cst(v − u)2−2(1−H)−2mβ + Cst(v − u)2,

where the last inequality follows from the same arguments as in (3.6). Therefore,

Rε converges in distribution to zero, as ε ↓ 0, so it converges in probability to zero.

(e) Conclusion. Combining the results of (a) to (d), we conclude the proof of

Theorem 1.2 by evoking the Slutsky lemma.

REFERENCES

[1] G. Bal , J . Garnier, S. Motsch, and V. Perr ier, Random integrals and correctors in

homogenization, Asymptot. Anal. 59 (1–2) (2008), pp. 1–26.

[2] G. Bal and Y. Gu, Limiting models for equations with large random potential: A review,

Commun. Math. Sci. 13 (3) (2015), pp. 729–748.

[3] N. H. Bingham, C. M. Goldie , and J. L. Teugels, Regular Variation, Cambridge Uni-

versity Press, Cambridge 1989.

[4] Y. Gu and G. Bal, Random homogenization and convergence to integrals with respect to the

Rosenblatt process, J. Differential Equations 253 (4) (2012), pp. 1069–1087.

[5] V. V. Jikov, S. M. Kozlov, and O. A. Ole ı̆nik, Homogenization of Differential Oper-

ators and Integral Functionals, Springer, Berlin 1994.

[6] O. Kallenberg, Foundations of Modern Probability, second edition, Springer, New York

2002.

[7] M. Maejima and C. A. Tudor, Wiener integrals with respect to the Hermite process and

a non-central limit theorem, Stoch. Anal. Appl. 25 (5) (2007), pp. 1043–1056.

Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS



286 A. Lechiheb et al.

[8] J . Mourrat and J. Nolen, Scaling limit of the corrector in stochastic homogenization, Ann.

Appl. Probab. 27 (2) (2017), pp. 944–959.

[9] J . Mourrat and F. Otto, Correlation structure of the corrector in stochastic homogeniza-

tion, Ann. Probab. 44 (5) (2016), pp. 3207–3233.

[10] G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly os-

cillating random coefficients, in: Proceedings of the Colloquium on Random Fields (Esztergom,

Hungary, 1979), Colloq. Math. Soc. János Bolyai 27, North Holland, 1981, pp. 835–873.

[11] V. Pipiras and M. S. Taqqu, Integration questions related to fractional Brownian motion,

Probab. Theory Related Fields 118 (2) (2000), pp. 251–291.

[12] M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch.

Verw. Gebiete 50 (1) (1979), pp. 53–83.

Atef Lechiheb

Université de Tunis El Manar

Faculté des sciences de Tunis

LR11ES13 Laboratoire d’Analyse stochastique

et applications

2092, Tunis, Tunisie

E-mail: atef.lechiheb@gmail.com

Ivan Nourdin

Université du Luxembourg

Unité de Recherche en Mathématiques

Maison du Nombre

6, avenue de la Fonte

L-4364 Esch-sur-Alzette

Grand Duchy of Luxembourg

E-mail: ivan.nourdin@uni.lu

Guangqu Zheng

University of Kansas

Mathematics Department

Snow Hall, 1460 Jayhawk Blvd

Lawrence, Kansas 66045, USA

E-mail: gzheng90@ku.edu

Ezzedine Haouala

Université de Tunis El Manar

Faculté des sciences de Tunis

LR11ES13 Laboratoire d’Analyse stochastique

et applications

2092, Tunis, Tunisie

E-mail: ezdine.haouala@fst.rnu.tn

Received on 14.7.2016;
revised version on 18.2.2017

Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS



PROBABILITY

AND

MATHEMATICAL STATISTICS

Vol. 38, Fasc. 2 (2018), pp. 287–298

doi:10.19195/0208-4147.38.2.3

AN EQUIVALENT CHARACTERIZATION

OF WEAK BMO MARTINGALE SPACES

BY

DEJIAN Z H O U (CHANGSHA), WEIWEI L I (CHANGSHA), AND YONG J I AO
∗

(CHANGSHA)
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1. INTRODUCTION

Let (Ω,F ,P) be a complete probability space, and {Fn}n0 be an increasing

sequence of sub-σ-algebras of F such that F = σ
(∪

n0Fn
)

. The expectation

operator and the conditional expectation operator relative to Fn are denoted by E

and En, respectively. A sequence f = (fn)n0 of random variables such that fn is

Fn-measurable is said to be a martingale if E(|fn|) <∞ and En(fn+1) = fn for

every n  0.

The study of the space BMO (Bounded Mean Oscillation) began with the es-

tablishment of the so-called John–Nirenberg theorem in [11]. Basing mainly on the

duality and something else, the space BMO plays a remarkable role both in classi-

cal analysis and martingale theory. For example, BMO is a good space in operator

actions (see e.g. [14], Chapter 4). And the martingale space BMOr(α) was first

introduced by Herz in [4] as the dual ofHs
p (0 < p ¬ 1) associated with the dyadic

filtration (see Example 2.1 below). With the help of atomic decomposition, Weisz

extended this result in [15] to a general case. Let T be the set of all stopping times

with respect to {Fn}n0. The martingale space BMOr(α) ([16], p. 8; or [15]) for

1 ¬ r <∞ and α  0 is defined as

BMOr(α) = {f = (fn)n0 : ∥f∥BMOr(α) <∞},

∗ Research supported by NSFC (11471337) and Hunan Province Natural Science Foundation

(14JJ1004).
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where

∥f∥BMOr(α) = sup
ν∈T

P(ν <∞)−1/r−α∥f − fν∥r.

We present two well-known results (see [16] or [15]). If 0 < p ¬ 1 and α = 1
p − 1,

then BMO2(α) is the dual space of the Hardy space Hs
p . If the stochastic basis

{Fn}n1 is regular, then BMOr(α) = BMO1(α). And recently, Yi et al. proved

in [18] that BMOE(α) = BMO1(α), where α = 0 and E is a rearrangement

invariant Banach function space.

In the present paper, we consider a weak BMO martingale space. To char-

acterize the dual of the weak Hardy martingale space Hs
p,∞, Weisz in [17] first

introduced and studied the weak BMO martingale space. Let us recall the defini-

tion. We also refer the reader to [12] and [13] for some new results related to weak

BMO martingales spaces.

DEFINITION 1.1. Let 1 ¬ r < ∞, αr + 1 > 0. The space wBMOr(α) is

defined as the set of all martingales f ∈ Lr with the norm

∥f∥wBMOr(α) =
∞
∫

0

trα(x)

x
dx <∞,

where

trα(x) = x−1/r−α sup
ν∈T :P (ν<∞)¬x

∥f − fν∥r.

In the very recent paper [8], the generalized BMO martingale space is intro-

duced as the dual of Hardy–Lorentz martingale space. Strongly motivated by [8],

Definition 1.1, we introduce the following new weak BMO martingale space by

stopping time sequences.

DEFINITION 1.2. Let 1 ¬ r < ∞ and α  0. The weak BMO martingale

space wBMOr(α) is defined by

wBMOr(α) = {f ∈ Lr : ∥f∥wBMOr(α) <∞},

where

∥f∥wBMOr(α) = sup

∑

k∈Z
2kP(νk <∞)1−1/r∥f − fνk∥r

supk 2
kP(νk <∞)1+α

and the supremum is taken over all stopping time sequences {νk}k∈Z such that

2kP(νk <∞)1+α ∈ ℓ∞.

It is a very natural question: what is the relationship between wBMOr(α)
and wBMOr(α)? The paper fully answers this question. Our main result can

be described as follows. We simply put wBMO = wBMO(0) and wBMO =
wBMO(0).
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THEOREM 1.1. Let 1 ¬ r <∞ and α  0. If the stochastic basis {Fn}n0
is regular, then

wBMOr(α) = wBMOr(α)

with equivalent norms. In particular,

wBMOr = wBMOr

with equivalent norms.

In this paper, the set of integers and the set of nonnegative integers are always

denoted by Z and N, respectively. We use C to denote a positive constant which

may vary from line to line. The symbol ⊂ means the continuous embedding.

2. PRELIMINARIES

Firstly, we give the definition of Lorentz spaces. We denote by L0(Ω,F ,P),
or simply L0(Ω), the space of all measurable functions on (Ω,F ,P). For any f ∈
L0(Ω), we define the distribution function of f by

λs(f) = P
(

{ω ∈ Ω : |f(ω)| > s}
)

, s  0.

Moreover, denote by µt(f) the decreasing rearrangement of f defined by

µt(f) = inf{s  0 : λs(f) ¬ t}, t  0,

with the convention that inf ∅ =∞.

DEFINITION 2.1. Let 0 < p < ∞ and 0 < q ¬ ∞. Then, the Lorentz space

Lp,q(Ω) consists of measurable functions such that ∥f∥p,q <∞, where

∥f∥p,q =

[∞
∫

0

(

t1/pµt(f)
)q dt

t

]1/q

, 0 < q <∞,

and

∥f∥p,∞ = sup
0¬t<∞

t1/pµt(f), q =∞.

REMARK 2.1. We refer the reader to [2] for the following basic properties.

(1) If p = q, then Lp,q(Ω) becomes Lp(Ω).

(2) If 0 < p1 ¬ p2 <∞ and 0 < q ¬ ∞, then ∥f∥p1,q ¬ C∥f∥p2,q, where C
depends on p1, p2 and q. This is due to P(Ω) = 1.

(3) If 0 < p <∞ and 0 < q1 ¬ q2 ¬ ∞, then ∥f∥p,q2 ¬ C∥f∥p,q1 , where C
depends on q1, q2 and p.
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Denote by M the set of all martingales f = (fn)n0 relative to {Fn}n0
such that f0 = 0. For f ∈ M, denote its martingale difference by dnf = fn −
fn−1 (n  0, with the convention f−1 = 0). Then the maximal function and the

conditional quadratic variation of a martingale f are respectively defined by

f∗n = sup
0¬i¬n

|fi|, f∗ = sup
n0
|fn|,

sn(f) =
(

n
∑

i=1

Ei−1|dif |
2
)1/2

, s(f) =
(

∞
∑

i=1

Ei−1|dif |
2
)1/2

.

Then we define martingale Hardy–Lorentz spaces as follows.

DEFINITION 2.2. Let 0 < p <∞ and 0 < q ¬ ∞. Define

H∗p,q = {f ∈M : ∥f∥H∗p,q = ∥f∗∥p,q <∞},

Hs
p,q = {f ∈M : ∥f∥Hs

p,q
= ∥s(f)∥p,q <∞}.

If p = q, then the martingale Hardy–Lorentz spaces recover the martingale

Hardy spaces H∗p and Hs
p (see [16]).

Recall that the stochastic basis {Fn}n0 is said to be regular if there exists a

positive constant R > 0 such that

(2.1) fn ¬ Rfn−1, ∀n > 0,

holds for all nonnegative martingales f = (fn)n0. Condition (2.1) can be replaced

by several other equivalent conditions (see [14], Chapter 7). We refer the reader to

[14], p. 265, for examples for regular stochastic basis. Here, we give a special case.

EXAMPLE 2.1. Let
(

(0, 1],F , µ
)

be a probability space such that µ is the

Lebesgue measure and subalgebras {Fn}n0 are generated as follows:

Fn = a σ-algebra generated by atoms

(

j

2n
,
j + 1

2n

]

, j = 0, . . . , 2n − 1.

Then {Fn}n0 is regular. And all martingales with respect to such {Fn}n0 are

called dyadic martingales.

The method of atomic decompositions plays an important role in martingale

theory (see, for example, [3]–[5], [16], [17]). The atomic decompositions of Hardy–

Lorentz martingale spacesHs
p,q and martingale inequalities are given in [6] and [8].

We also mention that Hardy–Lorentz spaces with variable exponents were inves-

tigated very recently in [9] and [10]. Let us first introduce the concept of an atom

(see [16], p. 14).

DEFINITION 2.3. Let 0 < p <∞ and p < r ¬ ∞. A measurable function a
is called a (1, p, r)-atom (or (3, p, r)-atom) if there exists a stopping time ν ∈ T
such that an = En(a) = 0 if ν  n, and

∥s(a)∥r (or ∥a∗∥r) ¬ P(ν <∞)1/r−1/p.
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REMARK 2.2. Let 0 < p < r ¬ ∞ and 0 < q ¬ r. If a is a (1, p, r)-atom,
then ∥a∥Hs

p,q
¬ C. Choose p1, p2 such that 1

p = 1
r +

1
p1
, 1
q = 1

r +
1
q1

. By Hölder’s

inequality, we have (ν is the stopping time corresponding to the atom a)

∥a∥Hs
p,q

= ∥s(a)χ{ν<∞}∥p,q ¬ C∥s(a)∥r,r∥χ{ν<∞}∥p1,q1

¬ CP(ν <∞)1/r−1/p
(

∞
∫

0

tq1/p1−1χ(0,P(ν<∞))dt
)1/q1

¬ C.

Similarly, we have ∥a∥H∗p,q ¬ C for a (3, p, r)-atom a. If p = q, then C = 1.

The following result is from [8]. And the result about the Hardy space H∗p,q
follows from the combining of Theorem 3.3 and Lemma 5.1 in [8].

THEOREM 2.1. If f = (fn)n0 ∈ H
s
p,q for 0 < p < ∞, 0 < q ¬ ∞, then

there exist a sequence (ak)k∈Z of (1, p,∞)-atoms and a positive number A sat-

isfying µk = A · 2kP(νk < ∞)1/p (where νk is the stopping time corresponding

to ak) such that

(2.2) fn =
∑

k∈Z

µka
k
n a.e., n ∈ N,

and

∥{µk}∥lq ¬ C∥f∥Hs
p,q
.

Conversely, if the martingale f has the above decomposition, then f ∈ Hs
p,q and

∥f∥Hs
p,q
≈ inf ∥{µk}∥lq , where the infimum is taken over all the above decompo-

sitions.

Moreover, if the stochastic basis {Fn}n0 is regular and if we replace Hs
p,q,

(1, p,∞)-atoms by H∗p,q, (3, p,∞)-atoms, then the conclusions above still hold.

LEMMA 2.1 ([1], Lemma 1.2). Let 0 < p < ∞ and let the nonnegative se-

quence {µk} be such that {2kµk} ∈ l
q, 0 < q ¬ ∞. Further, suppose the nonnega-

tive function φ satisfies the following property: there exists 0 < ε < min(1, q/p)
such that, given an arbitrary integer k0, we have φ ¬ ψk0 + ηk0 , where ψk0 and

ηk0 satisfy

2k0pP(ψk0 > 2k0)ε ¬ C
k0−1
∑

k=−∞

(2kµεk)
p,

2k0εpP(ηk0 > 2k0) ¬ C
∞
∑

k=k0

(2kεµk)
p.

Then φ ∈ Lp,q and ∥φ∥p,q ¬ C∥{2
kµk}∥lq .
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3. A JOHN–NIRENBERG THEOREM

In this section, we prove a John–Nirenberg theorem when the stochastic basis

{Fn}n0 is regular. The main idea and method are similar to those of [8]. The

following lemma can be found in [5], [16]. In fact, it follows from Theorem 7.14

in [5] and Corollary 5.13 in [16].

LEMMA 3.1. Suppose that 0 < q ¬ ∞ and the stochastic basis {Fn}n0 is

regular.

If 0 < p <∞, then H∗p,q and Hs
p,q are equivalent.

If 1 < p <∞, then H∗p,q, H
s
p,q and Lp,q are all equivalent.

Lp is not dense in Lp,∞. This fact is mentioned in [17], p. 143 (see also [2],

Remark 1.4.14). Hence, to describe the duality, we need the following definition

from [7], Remark 1.7.

DEFINITION 3.1. Let a measurable set Ak⊂Ω satisfy P(Ak)→0 as k→∞.
Define Lp,∞ as the set of all f ∈ Lp,∞ having the absolute continuous quasi-norm

defined by

Lp,∞ = {f ∈ Lp,∞ : lim
k→∞
∥fχAk

∥p,∞ = 0}.

Lp,∞ is a closed subspace of Lp,∞ and Lp ⊂ Lp,∞ ⊂ Lp,∞ (see [7]). Now we

define

Hs
p,∞ = {f = (fn)n0 : s(f) ∈ Lp,∞},

which is a closed subspace of Hs
p,∞. Similarly, we defineH∗p,∞.

REMARK 3.1. (1) According to [7], Remark 2.2, we can conclude that Hs
2 =

L2 is dense inHs
p,∞.

(2) If the stochastic basis {Fn}n0 is regular, then, by the same argument of

Remark 2.2 in [7], L∞ is dense inH∗p,∞.

LEMMA 3.2. Let 0 < p ¬ 1. If the stochastic basis {Fn}n0 is regular, then

(H∗p,∞)
∗ = wBMO1(α), α =

1

p
− 1.

P r o o f. Let g ∈ wBMO1(α). Define

ϕg(f) = E(fg), f ∈ L∞.

Then, by Theorem 2.1, we find that (νk is the stopping time corresponding to the
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atom ak for every k ∈ Z)

|ϕg(f)| ¬
∑

k∈Z

|µk|E
(

ak(g − gνk)
)

¬
∑

k∈Z

|µk|∥a
k∥∞∥g − g

νk∥1

¬ C
∑

k∈Z

|µk|∥(a
k)∗∥∞∥g − g

νk∥1

¬ C
∑

k∈Z

|µk|P(νk <∞)−1/p∥g − gνk∥1

= C ·A
∑

k∈Z

2k∥g − gνk∥1.

By the definition of ∥ · ∥wBMOr(α), we obtain

|ϕg(f)| ¬ C ·A sup
k

2kP(νk <∞)1/p∥g∥wBMO1(α)

¬ C∥f∥H∗p,∞∥g∥wBMO1(α).

Since the stochastic basis {Fn}n0 is regular, L∞ is dense in H∗p,∞ (see Re-

mark 3.1(2)). Then ϕg can be uniquely extended to be a continuous linear func-

tional onH∗p,∞.

Conversely, let ϕ ∈ (H∗p,∞)
∗. Since L2 is dense inH∗p,∞ (see Remark 3.1(2)),

there exists g ∈ L2 ⊂ L1 such that

ϕ(f) = E(fg), f ∈ L∞.

Let {νk}k∈Z be a stopping time sequence satisfying {2kP(νk <∞)1/p}k∈Z ∈ l∞
and let

hk = sign(g − gνk), ak =
1

2
(hk − h

νk
k )P(νk <∞)−1/p.

Then ak is a (3, p,∞)-atom. Let fN =
∑N

k=−N 2k+1
P(νk <∞)1/pak, where N

is an arbitrary nonnegative integer. By Theorem 2.1, we have fN ∈ H∗p,∞ and

∥fN∥H∗p,∞ ¬ C sup
k

2kP(νk <∞)1/p.

Consequently,

N
∑

k=−N

2k∥g − gνk∥1 =
N
∑

k=−N

2kE
(

hk(g − g
νk)

)

=
N
∑

k=−N

2kE
(

(hk − h
νk
k )g

)

= E(fNg) = ϕ(fN ) ¬ ∥fN∥H∗p,∞∥ϕ∥

¬ C sup
k

2kP(νk <∞)1/p∥ϕ∥.
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Thus we have
N
∑

k=−N
2k∥g − gνk∥1

supk 2
kP(νk <∞)1/p

¬ C∥ϕ∥.

This implies ∥g∥wBMO1(α) ¬ C∥ϕ∥. The proof is complete. �

LEMMA 3.3. Let 0 < p ¬ 1, 1 < r <∞. If the stochastic basis {Fn}n0 is

regular, then

(H∗p,∞)
∗ = wBMOr(α), α =

1

p
− 1.

P r o o f. By Hölder’s inequality, we have ∥f∥wBMO1(α) ¬ ∥f∥wBMOr(α) for

any f ∈ wBMOr(α). Let g ∈ wBMOr(α) ⊂ Lr. We define

ϕg(f) = E(fg), ∀f ∈ Lr′ .

Then, by Lemma 3.2, we have

|ϕg(f)| ¬ C∥f∥Hs
p,∞
∥g∥wBMO1(α) ¬ C∥f∥Hs

p,∞
∥g∥wBMOr(α).

It follows from Remark 3.1(2) that Lr′ is dense inH∗p,∞. Thus ϕg can be uniquely

extended to be a continuous linear functional onH∗p,∞.

Conversely, if ϕ ∈ (H∗p,∞)
∗, by Doob’s maximal inequality, we have Lr′ =

H∗r′,r′ ⊂ H
∗
p,∞. Then (H∗p,∞)

∗ ⊂ (Lr′)
∗ = Lr. Thus there exists g ∈ Lr such that

ϕ(f) = ϕg(f) = E(fg), ∀f ∈ Lr′ .

Let {νk}k∈Z be a stopping time sequence such that {2kP(νk <∞)1/p}k∈Z ∈ l∞
and N be an arbitrary nonnegative integer. Let

hk =
|g − gνk |r−1sign(g − gνk)

∥g − gνk∥r−1r
, f =

N
∑

k=−N

2kP(νk <∞)1/r
′

(hk − h
νk
k ).

For an arbitrary integer k0 which satisfies−N ¬ k0 ¬ N (for k0 ¬ −N , letG = 0
and H = f ; for k0 > N , let H = 0 and G = f ), let

f = G+H,

where

G =
k0−1
∑

k=−N

2kP(νk <∞)1/r
′

(hk − h
νk
k )

and

H =
N
∑

k=k0

2kP(νk <∞)1/r
′

(hk − h
νk
k ).
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Obviously, ∥hk∥r′ = 1, and ∥G∥r′ ¬ 2
∑k0−1

k=−N 2kP(νk <∞)1/r
′

. By the sublin-

earity of the maximal operator ∗, we have f∗ ¬ G∗+H∗. Let ε = p/r′ (0<ε<1).

By Doob’s maximal inequality, we have

P(G∗ > 2k0) ¬
1

2k0r′
∥G∗∥r

′

r′ ¬ C
1

2k0r′
∥G∥r

′

r′

¬ C
1

2k0r′
(

k0−1
∑

k=−N

2kP(νk <∞)1/r
′)r′

.

On the other hand, {H∗ > 0} ⊂
∪N

k=k0
{νk <∞}. Then, for each 0 < ε < 1, we

have

2k0εpP(H∗ > 2k0) ¬ 2k0εpP(H∗ > 0) ¬ 2k0εp
N
∑

k=k0

P(νk <∞)

¬
N
∑

k=k0

2kεpP(νk <∞) =
N
∑

k=k0

(

2kεP(νk <∞)1/p
)p

¬
∞
∑

k=k0

(

2kεP(νk <∞)1/p
)p
.

By Lemma 2.1, we have f∗ ∈ Lp,∞ and ∥f∗∥p,∞ ¬ C∥{2
k
P(νk <∞)1/p}k∈Z∥l∞ .

Thus, f ∈ H∗p,∞ and

∥f∥H∗p,∞ ¬ C sup
k

2kP(νk <∞)1/p.

Consequently,

N
∑

k=−N

2kP(νk <∞)1−1/r∥g − gνk∥r =
N
∑

k=−N

2kP(νk <∞)1/r
′

E
(

hk(g − g
νk)

)

=
N
∑

k=−N

2kP(νk <∞)1/r
′

E
(

(hk − h
νk
k )g

)

= E(fg) = φ(f) ¬ ∥f∥H∗p,q∥φ∥

¬ C sup
k

2kP(νk <∞)1/p.

Thus we obtain

N
∑

k=−N
2kP(νk <∞)1−1/r∥g − gνk∥r

supk 2
kP(νk <∞)1/p

¬ C∥φ∥.

Taking N → ∞ and the supremum over all stopping time sequences satisfying

{2kP(νk <∞)1/p}k∈Z ∈ l∞, we get ∥g∥wBMOr(α) ¬ C∥φ∥. �
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Now we formulate the weak version of the John–Nirenberg theorem, which

directly follows from Lemmas 3.2 and 3.3.

THEOREM 3.1. Let α  0 and 1 ¬ r <∞. If the stochastic basis {Fn}n0
is regular, then

wBMOr(α) = wBMO1(α)

with equivalent norms.

According to Lemma 3.1, Lemma 3.3 holds if we replace H∗p,∞ by Hs
p,∞.

Without regularity of stochastic basis {Fn}n0, we also get a duality result.

PROPOSITION 3.1. Let 0 < p ¬ 1. Then
(

Hs
p,∞

)∗
= wBMO2(α) with α =

1/p− 1.

P r o o f. Note thatHs
2 = L2 is dense inHs

p,∞ by Remark 3.1(1). The first part

of the proof is similar to that of Lemma 3.2, and the converse part is similar to that

of Lemma 3.3 with r = 2. We omit the proof. �

4. PROOF OF THE MAIN THEOREM

In this section we complete the proof of Theorem 1.1.

Let H
s
p,∞ be the Hs

p,∞ closure of Hs
∞. Since Hs

∞ ⊂ Hs
2 = L2, using Re-

mark 3.1(1), we have H
s
p,∞ ⊂ H

s
p,∞. Then (Hs

p,∞)
∗ ⊂ (H

s
p,∞)

∗.

LEMMA 4.1 ([17], Corollary 6). Let 0 < p < 2. Then the dual space of H
s
p,∞

is wBMO2(α) with α = 1/p− 1.

LEMMA 4.2 ([17], Corollary 8). Suppose that the stochastic basis {Fn}n0
is regular and 1 ¬ r <∞. If αr + 1 > 0 for a fixed α, then

wBMOr(α) = wBMO2(α)

with equivalent norms.

THEOREM 4.1. Suppose that α  0. Then

wBMO2(α) = wBMO2(α)

with equivalent norms.

P r o o f. Let p = 1
1+α . Since (Hs

p,∞)
∗ ⊂ (H

s
p,∞)

∗, it follows from Proposi-

tion 3.1 and Lemma 4.1 that

wBMO2(α) ⊂ wBMO2(α).

To obtain

wBMO2(α) ⊃ wBMO2(α),
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we shall show that

C∥f∥wBMO2(α)  ∥f∥wBMO2(α)

for any f ∈ wBMO2(α). Suppose that {νk}k∈Z is an arbitrary stopping time se-

quence such that {2kP(νk <∞)1/p}k∈Z ∈ ℓ∞. Let

B = sup
k

2kP(νk <∞)1/p.

We can claim that

∞
∑

k=−∞

t2α(B
p2−kp) ¬ C∥f∥wBMO2(α).

To this end, let Ck = B2−kp. Then, for any x ∈ (Ck+1, Ck), we have

C
1/2+α
k+1 t2α(Ck+1) ¬ x

1/2+αt2α(x) ¬ C
1/2+α
k t2α(Ck).

We refer to [17], p. 144, for a more general case of the inequalities above. Hence,

∞
∫

0

t2α(x)

x
dx =

∞
∑

k=−∞

Ck
∫

Ck+1

t2α(x)

x
dx  (1− 2−p)2−p(1/2+α)

∞
∑

k=−∞

t2α(B
p2−kp).

On the other hand, since Bp2−kp  P(νk <∞) for all k, we have

∞
∑

k=−∞

t2α(B
p2−kp) 

∞
∑

k=−∞

2k(Bp2−kp)1/2∥f − fνk∥2
B


∞
∑

k=−∞

2kP(νk <∞)1/2∥f − fνk∥2
B

.

By the definition of wBMO2(α), we complete the proof. �

REMARK 4.1. If one proves the dual space ofHs
p,∞ is wBMO(α), then The-

orem 4.1 holds. If one shows Hs
p,∞ = H

s
p,∞, then Proposition 3.1 implies Theo-

rem 4.1. We leave the proofs to the interested reader.

Now we are ready to prove the main result of the paper.

P r o o f o f T h e o r e m 1.1. It directly follows from Theorems 3.1 and 4.1

and Lemma 4.2. �
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SERIES REPRESENTATION OF TIME-STABLE STOCHASTIC PROCESSES

BY

CHRISTOPH KO P P (BERN) AND ILYA M O L C H A N OV∗ (BERN)

Abstract. A stochastically continuous process ξ(t), t  0, is said to

be time-stable if the sum of n i.i.d. copies of ξ equals in distribution the

time-scaled stochastic process ξ(nt), t  0. The paper advances the under-

standing of time-stable processes by means of their LePage series represen-

tations as the sum of i.i.d. processes with the arguments scaled by the se-

quence of successive points of the unit intensity Poisson process on [0,∞).

These series yield numerous examples of stochastic processes that share

one-dimensional distributions with a Lévy process.

2010 AMS Mathematics Subject Classification: Primary: 60G52;

Secondary: 60G51.

Key words and phrases: Infinite divisibility, LePage series, Lévy

process, point process, time-stable process.

1. INTRODUCTION

The (strict) stability property of stochastic processes is conventionally defined

by requiring that the sum of i.i.d. copies of a process is distributed as the space-

scaled variant of the original process. An alternative scaling operation applied to

the time argument leads to another definition of stability.

DEFINITION 1.1. A stochastically continuous real-valued process ξ(t), t  0,

is said to be time-stable if, for each n  2,

(1.1) ξ1 + . . .+ ξn
D

∼ n ◦ ξ,

where ξ1, . . . , ξn are i.i.d. copies of ξ,
D

∼ means the equality of all finite-dimen-

sional distributions and (n ◦ ξ)(t) = ξ(nt), t  0, is the process obtained by time

scaling ξ.

∗ Supported in part by Swiss National Science Foundation grants 200021-137527 and 200021-

153597.
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Definition 1.1 goes back to Mansuy [18], where processes satisfying (1.1),

regardless of their stochastic continuity, are called infinitely divisible with respect

to time (IDT), see also [4], Section 6.7. Indeed, they are infinitely divisible in the

sense that ξ can be represented as the sum of n i.i.d. processes for each n  2.

However, the “time-stable” name better emphasises the particular stability feature

of such processes. These processes have recently been investigated in [8], [12], also

with a multivariate time argument. Time-stable processes with values in Rd can

be defined similarly to Definition 1.1. Similarly to other stable random elements,

time-stable processes naturally appear as limits for time-scaled sums of stochastic

processes.

The major difficulty in the analysis of time-stable processes stems from the

necessity to work with the whole paths of the processes. The time-stability concept

cannot be formulated in terms of finite-dimensional distributions at any given time

moments, since the time argument on the right-hand side of (1.1) is scaled.

Definition 1.1 can be modified to introduce α-time-stable processes as

ξ1 + . . .+ ξn
D

∼ n1/α ◦ ξ,

where each α ̸= 0 is possible. This concept appears in Example 8.12 of [7] as an

example of the stability property in the cone of continuous functions with scaling

applied to the argument. While such processes (for general α) have been consid-

ered in [11], the process ξ(t1/α), t  0, obtained by time change is time-stable

(with α = 1) and so it is not necessary to study α-time stability for general α ̸= 1.

Another closely related concept is that of a dilatively stable process ζ that

satisfies the following scaling relation for some α > 0, δ ∈ (0, 2α], and all n  2:

ζ1 + . . .+ ζn
D

∼ n1/2−α/δ(n1/δ ◦ ζ),

see [14], where such processes are also assumed to have moments of all orders

and the left-hand side is replaced by the convolution power for finite-dimensional

distributions of order n with not necessarily integer n (which however does not

alter the family of processes). If ζ is dilatively stable, then ξ(t) = t1/2−α/δζ(t1/δ),
t  0, satisfies (1.1) and so is a time-stable process if ζ is stochastically continuous.

Barczy et al. [1] extended the setting from [14] by allowing α and δ be arbi-

trary real numbers and relaxing the moment conditions. They also defined (ρ1, ρ2)-
aggregate self-similar processes ζ for arbitrary real numbers ρ1 and ρ2 by the scal-

ing relation

ζ1 + . . .+ ζn
D

∼ nρ1(n−ρ2 ◦ ζ),

so that for ρ1=ρ2 one recovers the aggregate similar process from [16]. It is easy

to see that tρ1ζ(t−ρ2), t  0, satisfies (1.1), so that this and all other above-men-

tioned generalisations may be obtained by time and scale change from time-stable

processes. An exponential time change leads to translatively stable processes,

see [13], Definition 2.4.3. A similar concept was introduced by Penrose [21], who
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called a non-negative stochastic process ξ semi-min-stable if min
(

ξ1(t), . . . , ξn(t)
)

shares the finite-dimensional distributions with n−1ξ(nαt), t  0.

Section 2 discusses elementary properties of time-stable processes. The in-

finite divisibility of such processes makes it possible to use their spectral repre-

sentation obtained in [15] and then show that the Lévy measure is homogeneous

with respect to time scaling, see Section 3. The main result of Section 4 and of

the whole paper is the LePage representation of time-stable processes whose Lévy

measures are supported by the family of right-continuous functions with left lim-

its. In particular, this is the case for non-negative processes. The obtained LePage

representation yields the series representations for dilatively stable and aggregate

self-similar processes. The structure of pure jump time-stable processes is closely

related to the stability property of marked point processes; in this case the LePage

representation is similar to the cluster representation of infinitely divisible point

processes, see Section 5.

The concept of time stability allows generalisations in various directions. The

necessary structure consists of a time set which is invariant under scaling by arbi-

trary positive real numbers and an associative and commutative binary operation

which is applied pointwisely to the values of processes. For instance, the definition

applies also to stochastic processes defined on the whole line and on Rd or with

addition replaced by the maximum operation.

While (1.1) actually defines a strictly time-stable stochastic process, the sta-

bility concept can be relaxed by replacing the right-hand side with n ◦ ξ + fn for

deterministic functions {fn}. Moreover, it is possible to consider random measures

stable with respect to scaling of their argument (see [7], Example 8.23) and also

time-stable generalised stochastic processes, i.e. random generalised functions.

2. ELEMENTARY PROPERTIES

The following standard result provides an alternative definition of time-stable

processes.

PROPOSITION 2.1. A stochastically continuous process ξ(t), t  0, is time-

stable if and only if

(2.1) a ◦ ξ1 + b ◦ ξ2
D

∼ (a+ b) ◦ ξ

for all a, b > 0, where ξ1 and ξ2 are independent copies of ξ.

Each Lévy process is time-stable, see [4], Section 6.7. If ξ is time-stable, then

there exists a unique Lévy process ξ̃, called the associated Lévy process of ξ, such

that ξ̃(t) coincides in distribution with ξ(t) for each given t  0, see [18], Propo-

sition 4.1. Thus, the characteristic function of ξ(t) is given by

(2.2) E exp{ıλξ(t)} = exp{−tΨ(λ)}, t  0, λ ∈ R,

where Ψ denotes the cumulant of ξ̃ and also of ξ.
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It follows from (2.2) that ξ(t) weakly converges to zero as t ↓ 0, which corre-

sponds to the stochastic continuity of ξ, since ξ(0) = 0 a.s. by (1.1). Furthermore,

if ξ(t) and ξ(s) share the same distribution for t ̸= s, then ξ is a.s. zero.

Comparing the one-dimensional distributions shows that if the non-degenerate

time-stable process is a.s. non-negative for any t > 0, then it is a.s. non-negative

everywhere, its one-dimensional distributions are increasing in the stochastic order,

and supt0 ξ(t) is a.s. infinite. In contrast to Lévy processes, non-negative time-

stable processes need not be a.s. monotone, for example, ξ(t) = N(2t) − N(t),
t  0, if N is the standard Poisson process.

THEOREM 2.1. A time-stable process ξ is identically distributed as the sum

of a linear function, a centred Gaussian process with covariance function C that

satisfies C(ut, us) = uC(t, s) for all t, s, u  0, and an independent time-stable

process without Gaussian component.

P r o o f. Since ξ is infinitely divisible, its finite-dimensional distributions are

infinitely divisible. The rest follows by comparing the Lévy triplets of the n-fold

convolution of
(

ξ(t1), . . . , ξ(tk)
)

and of
(

ξ(nt1), . . . , ξ(ntk)
)

for any t1, . . . , tk
 0 and k, n  1. �

Various characterisations of Gaussian time-stable processes are presented

in [18]. In the following we only consider time-stable processes without a Gaussian

part.

3. LÉVY MEASURES OF TIME-STABLE PROCESSES

Each stochastically continuous process is separable in probability (also is said

to satisfy Condition S from [25], Definition 3.11.2), meaning the existence of an

at most countable set T0 ⊂ [0,∞) such that for all t  0, there exists a sequence

tn ∈ T0, n  1, such that ξ(tn) converges to ξ(t) in probability. The spectral repre-

sentation of infinitely divisible stochastic processes that are separable in probability

and do not have a Gaussian component is obtained in [15], Theorem 2.14, using

a Poisson process on a certain space (Ω,F) with a σ-finite measure µ. Reformu-

lating this result for (Ω,F) being the space R[0,∞) with the cylindrical σ-algebra

C, we see that an infinitely divisible stochastically continuous process ξ without a

Gaussian component admits a spectral representation

(3.1) ξ(t)
D

∼ c(t) +
∫

R[0,∞)\{0}

f(t)dΠQ(f),

where c is a deterministic function and ΠQ = {fi(·) : i  1} is the Poisson pro-

cess on R[0,∞) \ {0} with a σ-finite intensity measure Q such that

(3.2)
∫

R[0,∞)\{0}

min
(

1, f(t)2
)

Q(df) <∞
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for all t  0. The measure Q is called the Lévy measure of ξ. The integral with

respect to ΠQ in (3.1) is defined as the a.s. existing limit of the compensated sums

(3.3) lim
r↓0

[
∑

fi∈ΠQ

fi(t)1|fi(t)|>r −
∫

{f : |f(t)|>r}

L
(

f(t)
)

Q(df)
]

,

where

(3.4) L(u) =











u, |u| ¬ 1,

1, u > 1,

−1, u < −1,

is a Lévy function, see also [19].

Furthermore, Theorem 2.14 in [15] ensures the existence of a minimal spec-

tral representation, meaning that the σ-algebra generated by {f : f(t) ∈ A} for

all t  0 and Borel A ⊂ R coincides with the cylindrical σ-algebra C on R[0,∞)

up to Q-null sets and there is no set B ∈ C with Q(B) > 0 such that for every

t  0, Q
(

{f ∈ B : f(t) ̸= 0}
)

= 0. In the following assume that the cylindrical

σ-algebra C is complete with respect to Q. By [15], Theorem 2.17, the minimal

spectral representation is unique up to an isomorphism, and so the Lévy measure

is well defined.

The stochastic continuity of ξ implies that ξ has a measurable modification,

see [10], Theorem 3.3.1. Then Proposition 2.19 in [15] establishes that the repre-

sentation (3.1) involves a measurable function c(t), t  0, and that the functions

f from ΠQ can be chosen to be strongly separable. The latter means the existence

of a measurable null-set Ω0 ⊂ R[0,∞) and a countable set Q ⊂ [0,∞) (called a

separant) such that, for each open G ⊂ [0,∞) and closed F ⊂ R, we have

(3.5) {f : f(t) ∈ F ∀t ∈ G ∩Q} \ {f : f(t) ∈ F ∀t ∈ G} ⊂ Ω0.

If (3.2) is strengthened to require

(3.6)
∫

R[0,∞)\{0}

min
(

1, |f(t)|
)

Q(df) <∞,

then the integral (3.1) is well defined without taking the limit and without the com-

pensating term in (3.3), so that

(3.7) ξ(t)
D

∼ c(t) +
∑

fi∈ΠQ

fi(t)

for a deterministic function c. It is well known that (3.6) holds if ξ(t) is a.s. non-

negative for all t  0, see e.g. [26], Theorem 51.1.

LEMMA 3.1. For each B ∈ C and s > 0, the set s ◦ B = {s ◦ f : f ∈ B}
also belongs to C.
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P r o o f. If B is a cylinder, then s ◦ B ∈ C, and the statement follows from

the monotone class argument. �

The next result follows from the fact that ξ(0) = 0 a.s. for a time-stable pro-

cess ξ.

LEMMA 3.2. The Lévy measure of a time-stable process is supported by
{

f ∈

R[0,∞) \ {0} : f(0) = 0
}

.

LEMMA 3.3. An infinitely divisible stochastically continuous process ξ with-

out a Gaussian component is time-stable if and only if c(t) = bt, t  0, for a

constant b ∈ R and the Lévy measure Q satisfies

(3.8) Q(s ◦B) = s−1Q(B), s > 0,

for all B ∈ C.

P r o o f. The sufficiency follows from the expression for the characteristic

function of the finite-dimensional distributions of ξ,

(3.9) E exp
{

ı
∑

j

θjξ(tj)
}

= exp
{

ıb
∑

j

θjtj +
∫
[

exp
(

ı
∑

j

θjf(tj)
)

− 1− ı
∑

j

θjL
(

f(tj)
)]

Q(df)
}

.

Now assume that ξ is time-stable. Comparing the characteristic functions of the

finite-dimensional distributions for the processes on the left- and right-hand side

of (2.1) and using the uniqueness of the Lévy triplets show that the function c is

additive and so is linear in view of its measurability.

The Lévy measure corresponding to the minimal spectral representation of the

process on the left-hand side of (2.1) is Q(a−1 ◦B) +Q(b−1 ◦B). In view of the

uniqueness of the minimal spectral representation (see [15], Theorem 2.17), the

Lévy measures of the processes on the left- and right-hand side of (2.1) coincide.

Thus

Q(a−1 ◦B) +Q(b−1 ◦B) = Q
(

(a+ b)−1 ◦B
)

for all a, b > 0 and all B ∈ C. Since Q is non-negative, Theorem 1.1.7 in [3] im-

plies that Q(s−1 ◦B) is a linear function of s, i.e. (3.8) holds. �

The same scaling property for the Lévy measure appears in [18], Lemma 5.1,

and later on was reproduced in [11], Proposition 4.1, for time-stable processes with

paths in the Skorokhod space of right-continuous functions with left limits (càdlàg

functions). The proof there is however incomplete, since it is not shown that the

Lévy measure of such a process is supported by càdlàg functions.
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PROPOSITION 3.1. If ξ(t), t  0, is a time-stable càdlàg process with a.s.

non-negative values, then its Lévy measure Q is supported by càdlàg functions.

P r o o f. In this case the Lévy measure Q satisfies (3.6) and so ξ admits the

representation (3.7). If ξ′ is an independent copy of ξ, then ξ − ξ′ is symmetric and

has the series decomposition with the Lévy measure supported by càdlàg (free of

oscillatory discontinuities) functions, see [22], Theorem 4. The support of Q is a

subset of the support of the Lévy measure for ξ − ξ′. �

4. LEPAGE SERIES REPRESENTATION

In finite-dimensional spaces, Lévy measures of strictly stable laws admit a

polar decomposition into the product of a radial and a finite-directional part, and the

corresponding sum (if necessary compensated) of points of the Poisson process is

known as the LePage series, see [25], Corollary 3.10.4, and [17], [23]. The LePage

series can be defined in general spaces [7], where they provide a rich source of

stable laws and in many cases characterise stable laws.

The following result provides the LePage series characterisation for time-

stable processes without a Gaussian part and whose Lévy measure is supported

by the family D′ of not identically vanishing càdlàg functions on [0,∞). We en-

dow the family D′ with the σ-algebra induced by C. Let D′0 be the family of not

identically vanishing càdlàg functions that vanish at the origin.

THEOREM 4.1. The following statements are equivalent for a stochastically

continuous càdlàg process ξ(t), t  0.

(i) The process ξ is time-stable without a Gaussian part and with its Lévy

measure Q supported by D′.

(ii) The stochastic process ξ is infinitely divisible without a Gaussian part,
with a deterministic linear part, its Lévy measure Q is supported by D′0, and

(4.1) Q(B) =
∞
∫

0

σ(t ◦B)dt

for each measurable B ⊂ D′0 and a probability measure σ on D′0 such that

(4.2)
∫

D′0

∞
∫

0

min
(

1, f(t)2
)

t−2dtσ(df) <∞.

(iii) The stochastic process ξ has the same distribution as

(4.3) bt+ lim
r↓0

[

∞
∑

i=1

εi(Γ
−1
i t)1|εi(Γ−1

i t)|>r

−E

∞
∫

0

L
(

ε(s−1t)
)

1|ε(s−1t)|>r ds
]

, t  0,
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where the limit exists almost surely, b ∈ R is a constant, L is defined as in (3.4),
{εi, i  1} is a sequence of i.i.d. stochastic processes distributed as ε, such that ε
a.s. takes values in D′0,

(4.4) E

∞
∫

0

min
(

1, ε(t)2
)

t−2dt <∞,

and {Γi, i  1} is the sequence of successive points of a homogeneous unit inten-

sity Poisson process on [0,∞).

P r o o f. By Lemma 3.3, a time-stable process without a Gaussian part can be

alternatively described as an infinitely divisible stochastically continuous process

whose Lévy measure Q satisfies (3.8) and so is supported by D′0. It is obvious that

Q given by (4.1) satisfies (3.8). It remains to show that the scaling property (3.8)

yields (4.1), so that (i) implies (ii).

The following construction is motivated by the argument used to prove The-

orem 10.3 in [9]. By Lemma 3.2, Q is supported by D′0. Decompose D′0 into the

union of disjoint sets

X0 = {f : sup
t0
|f(t)| > 1}

and

Xk = {f : sup
t0
|f(t)| ∈ (2−k, 2−k+1], f /∈ Xj , j = 0, . . . , k − 1}, k  1.

In view of the completeness assumption on the σ-algebra, all sets Xk, k  0, are

measurable. Recall the separant Q and the exceptional set Ω0 from (3.5) that holds

due to the assumed stochastic continuity and infinite divisibility of ξ. Denote by

X̃k, k  0, the analogues of Xk where the supremum is taken over the set of non-

negative rational numbers. Since

Xc
0 = {f : |f(t)| ¬ 1, t ∈ [0,∞)},

we have X0 \ X̃0 ⊂ Ω0. Similarly, Xk \ X̃k ⊂ Ω0 for all k  1.

For each k  0, define the map τk : Xk → (0,∞) by

τk(f) = inf{t > 0 : |f(t)| > 2−k}, f ∈ Xk.

Since all functions from D′0 vanish at the origin, τk(f) is strictly positive and finite,

and τk(c ◦ f) = c−1τk(f) for all c > 0. Let

Sk = {f ∈ Xk : τk(f) = 1}.

Then |f(1)|  2−k for all f ∈ Sk, k  0, and each function g ∈ Xk can be uniquely

represented as s ◦ f for f ∈ Sk and s > 0. The maps (f, s) 7→ s ◦ f and g 7→
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(

τk(g) ◦ g, τk(g)
−1

)

are mutually inverse measurable bijections between the sets

Sk×(0,∞) and Xk. This is seen by using the separability assumption (3.5) and

Lemma 3.1. The right-continuity of f and (3.5) imply that

∆k(f) = sup{t ∈ Q : |f(s)|  2−k−1 for all s ∈ [1, 1 + t]}, f ∈ Sk,

is strictly positive and Borel measurable for each k  0. Define

Sk0 = {f ∈ Sk : ∆k(f) > 1},

Skj = {f ∈ Sk : ∆k(f) ∈ (2−j , 2−j+1]}, j  1.

Then Sk is the disjoint union of Skj for j  0 and Xk is the disjoint union of

Xkj = {s ◦ f : f ∈ Skj , s > 0}, j  0.

Fix any k, j  0. Then

qkj = Q({s ◦ f : f ∈ Skj , s ∈ [1, 1 + 2−j ]})

¬ Q
(

{f ∈ D′0 : |f(1)|  2−k−1}
)

¬ 22k+2
∫

{f : |f(1)|2−k−1}

min
(

1, f(1)2
)

Q(df)

¬ 22k+2
∫

min
(

1, f(1)2
)

Q(df) <∞.

By (3.8),

Q({s ◦ f : f ∈ Skj , s  1})

¬
∞
∑

i=0

Q
(

{s ◦ f : f ∈ Skj , s ∈ [(1 + 2−j)i, (1 + 2−j)i+1]}
)

=
∞
∑

i=0

(1 + 2−j)−iqkj <∞.

Thus, Q restricted onto Xkj is a push-forward under the map (f, s) → s ◦ f of

the product ηkj ⊗ θ of a finite measure ηkj supported by Skj and the measure θ
on (0,∞) with density s−2ds. Let ckj be some positive number; then the measure

σkj defined on D′0 by σkj(B) = ckjηkj(c
−1
kj ◦ B) assigns all its mass to the set

ckj ◦ Skj . Then the push-forward of σkj ⊗ θ under the map (f, s) → s ◦ f is Q
restricted on Xkj and the total mass of σkj equals ckjηkj(Skj). By choosing ckj
appropriately, it is always possible to achieve that σ =

∑

k,j0 σkj is a probability

measure on D′0. Combining the push-forward representations of Q restricted to

Xkj , k, j  0, we see that Q is the push-forward of σ⊗ θ and so (4.1) holds. Given

(4.1), (4.2) is equivalent to (3.2).

The equivalence of (ii) and (iii) is immediate by choosing ε to be i.i.d. with

distribution σ and noticing that (4.2) is equivalent to (4.4) and that the limit in (4.3)

corresponds to the limit in (3.3). Note that {Γ−1i , i  1} form the Poisson process

on R+ with intensity s−2ds. �
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REMARK 4.1. There are many probability measures σ that satisfy (4.1), and

so the distribution of ε in (4.3) is not unique. For example, it is possible to scale the

time arguments of {εi, i  1} by a sequence of i.i.d. positive random variables of

mean one. The distribution of ε is unique if ε is supported by a given measurable

set S′ ⊂ D′0 such that each f ∈ D′0 can be uniquely represented as c ◦ g for c > 0
and g ∈ S′.

REMARK 4.2. It follows from Theorem 3.1 in [2] that the LePage series (4.3)

converges uniformly for t from any compact subset of (0,∞). If H(t, r, V ) =
ε(t/r), then Condition (3.3) of [2] becomes

∞
∫

0

P
{(

ε(t1/r), . . . , ε(tk/r)
)

∈ B
}

dr = Q
(

{

f :
(

f(t1), . . . , f(tk)
)

∈ B
}

)

for all Borel B in Rk \ {0}, t1, . . . , tk  0, and k  1.

THEOREM 4.2. A stochastically continuous stochastic process ξ is time-stable

without a Gaussian part and with the Lévy measure Q supported by D′ and satis-

fying (3.6) if and only if

(4.5) ξ(t)
D

∼ bt+
∞
∑

i=1

εi(Γ
−1
i t), t  0,

where the series converges almost surely, b ∈ R is a constant, {εi, i  1} is a

sequence of i.i.d. stochastic processes with realisations in D′0 such that

(4.6) E

∞
∫

0

min
(

1, |ε(t)|
)

t−2dt <∞,

and {Γi, i  1} is the sequence of successive points of the homogeneous unit in-

tensity Poisson process on [0,∞).

P r o o f. It suffices to note that (4.6) is equivalent to (3.6). �

COROLLARY 4.1. Each a.s. non-negative càdlàg time-stable process admits

the LePage representation (4.5).

REMARK 4.3. Condition (4.6) (respectively (4.4)) holds if
∫ 1

0
E|ε(t)|t−2dt <

∞ (respectively
∫ 1

0
E
(

ε(t)2
)

t−2dt <∞). For example, this is the case if ε(t) = 0,

t ∈ [0, τ), for a positive random variable τ such that τ−1 is integrable.

REMARK 4.4. Analogues of the above results hold for time-stable processes

with values in Rd. This can be shown by replacing Skj from the proof of Theo-

rem 4.1 with the Cartesian product of d-tuples of such sets S1k1j1 × . . . × Sdkdjd ,
ki, ji  0, i = 1, . . . , d, constructed for each of the coordinates of the process. In

particular, Corollary 4.1 applies for time-stable processes with values in Rd
+.
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EXAMPLE 4.1 (Lévy processes). The spectral representation (3.1) of a Lévy

process ξ without a Gaussian part can be obtained by setting fi(t) = mi1tτi ,

where {(τi,mi), i  1} is a marked Poisson process on (0,∞)× (R \ {0}) with

intensity measure being the product of the Lebesgue measure and a Lévy measure

Λ on R \ {0}. Indeed, then

ξ(t)
D

∼ bt+ lim
r↓0

[
∑

|mi|>r

mi1τi¬t − t
∫

|x|>r

L(x)Λ(dx)
]

,

which is the classical decomposition of a Lévy process. In view of the uniqueness

of the minimal spectral representation, the Lévy measure Q is supported by step

functions of type m1tτ . By Theorem 4.1, ξ admits the series decomposition (4.3)

with ε(t) = η1tζ1, where (4.4) corresponds to E[min(1, η2)ζ] < ∞. Following

the construction from the proof of Theorem 4.1, the joint distribution of (η, ζ) can

be constructed as follows. Write B0 = {x ∈ R : |x| > 1} and Bk = {x ∈ R :
2−k < |x| ¬ 2−k+1}, k  1, let qk = Λ(Bk), k  0, and choose strictly positive

{ck, k  0} such that
∑∞

k=0 ckqk = 1. Then

P{η ∈ A, ζ = c−1k } = Λ(A ∩Bk)ck

for every Borel A ⊂ R \ {0} and k  0. It is easy to see that

E[min(1, η2)ζ] =
∫

R\{0}

min(1, x2)Λ(dx).

If ξ has bounded variation, then Theorem 4.2 applies and

ξ(t)
D

∼ bt+
∞
∑

i=1

ηi1tζiΓi

provides a LePage representation of ξ on the whole R+, cf. [24] for the LePage

representation of Lévy processes on [0, 1]. The choice of ε(t) = η1t1, t  0,

yields the compound Poisson process ξ(t), which becomes the standard Poisson

process if η = 1 a.s.

The time and the size of the jump of ε may be dependent. For instance, let

ε(t) = η1tη for a positive random variable η. This random function always satis-

fies (4.6) and yields the Lévy process

ξ(t) =
∞
∑

i=1

ηi1tΓiηi

with the cumulant Ψ(λ) = E[(1− eıλη)η−1].

EXAMPLE 4.2. If ε(t) = ηt1/α, where α ∈ (0, 2) and η is a symmetric ran-

dom variable with E|η|α <∞, then the LePage series (4.5) converges a.s., by The-

orem 1.4.2 of [25], to ξ(t) = bt+ ζt1/α for a symmetric α-stable random variable
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ζ, see [18]. If α = 1 and b = 0, then ξ(t) = ζt for the Cauchy random variable ζ.

This yields a time-stable process with stationary increments, which is not a Lévy

process. If α < 1, the symmetry of η is not required for the convergence of the

LePage series and ζ is strictly α-stable by Theorem 1.4.5 in [25].

EXAMPLE 4.3. Choosing ε to be a stochastic process with stationary incre-

ments yields examples of time-stable processes with stationary increments which

are not Lévy processes. For instance, let ε be the fractional Brownian motion with

Hurst parameter H ∈
(

1
2 , 1

)

. Then (4.4) holds since

E

1
∫

0

min
(

1, ε(t)2
)

t−2dt ¬
1
∫

0

Eε(t)2t−2dt =
1
∫

0

t2H−2dt <∞.

EXAMPLE 4.4 (Sub-stable processes). Let ε(t) = ξ(t1/α), t  0, for α ∈
(0, 1) and a time-stable process ξ such that E|ξ(1)| <∞. Then (4.6) holds since

1
∫

0

E|ξ(t1/α)|t−2dt = E|ξ(1)|
1
∫

0

t1/α−2dt <∞.

By conditioning on {Γi} and using Proposition 2.1, one obtains

∞
∑

i=1

εi(Γ
−1
i t) =

∞
∑

i=1

ξi(Γ
−1/α
i t1/α)

D

∼ ξ
(

t1/α
∞
∑

i=1

Γ
−1/α
i

)

= ξ(t1/αζ)

for a strictly α-stable non-negative random variable ζ independent of ξ. Then the

LePage series (4.5) yields the process X(t) = ξ(t1/αζ), t  0, where ξ is time-

stable and ζ is a positive strictly α-stable random variable independent of ξ, with

α ∈ (0, 1). The process X is called sub-stable in view of the construction of sub-

stable random elements in [25], Section 1.3.

EXAMPLE 4.5 (Subordination by time-stable processes). Let ξ be a non-

decreasing time-stable process that admits the LePage representation (4.5) with

b = 0. If {Xi, i  1} are i.i.d. copies of a Lévy process X independent of ξ, then

∞
∑

i=1

Xi

(

εi(Γ
−1
i t)

)

is the LePage representation of the time-stable process X
(

ξ(t)
)

. This is seen by

conditioning upon εi and {Γi, i  1} and noticing that X is stochastically continu-

ous. The time-stability property of X
(

ξ(t)
)

is proved in [8], Theorem 3.6, directly

by computing the characteristic function.

EXAMPLE 4.6 (Random convex broken lines). Consider ε(t) = (t− 1)+, i.e.

the positive part of (t − 1). Then the graph of ξ is the continuous convex broken
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line with vertices at (0, 0) and at

(

Γn,Γn

n
∑

i=1

Γ−1i − n
)

, n  1.

In order to obtain a differentiable curve, it is possible to use ε(t) = (t − 1)β+ for

β > 1.

5. TIME-STABLE STEP FUNCTIONS

Assume that ξ is a pure jump time-stable process, i.e. its paths are càdlàg

piecewise constant functions with finitely many jumps in each finite interval in

[0,∞) and a.s. vanishing at zero. In view of the assumed stochastic continuity

and Lemma 1.6.2 of [27], the jump times of ξ have non-atomic distributions. The

jump part of any càdlàg time-stable process is also time-stable by noticing that

the jump part of the sum of two independent stochastic processes with non-atomic

distribution of jump times is equal to the sum of their jump parts. This also applies

to the process of jumps larger than δ > 0 in absolute value.

PROPOSITION 5.1. The time of the first jump of a non-degenerate càdlàg pure-

jump time-stable process has an exponential distribution.

P r o o f. Observe that the time of the first jump of the sum of n independent

processes equals the minimum of the first jump times τ1, . . . , τn of all summands.

Then (1.1) implies that n−1τ has the same distribution as the minimum of n i.i.d.

copies of τ and so characterises the exponential distribution. �

The time of the second jump is not necessarily distributed as the sum of two

independent exponential random variables since the times between jumps may be

dependent and the waiting time between the first and the second jump is no longer

exponentially distributed in general.

Let M
(

(0,∞) × R
)

denote the family of marked point configurations on

(0,∞) with marks from R. A marked point process is a random element in the

product spaceM
(

(0,∞)× R
)

, see [5], Section 6.4. The successive ordered jump

times {τk} and the jump heights {mk} of a pure jump time-stable process ξ form

the marked point process M = {(τk,mk), k  1}, so that

ξ(t) =
∑

τk¬t

mk, t  0.

The sum is finite for every t since the process is assumed to have only a finite

number of jumps in any bounded interval. This construction introduces a corre-

spondence between pure jump processes and marked point processes. Note that M
is a random closed (and locally finite) set in (0,∞) × R, see [20]. The process
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ξ is compound Poisson if and only if M is an independently marked homoge-

neous Poisson process, i.e. the jump times form a homogeneous Poisson process

on (0,∞), while the jump sizes are i.i.d. random variables independent of the jump

times.

Scaling the argument of a pure jump process ξ can be rephrased in terms of

scaling the marked point process M corresponding to ξ, so that a ◦ ξ corresponds

to the marked point process

a−1 ◦M = {(a−1τk,mk) : k  1}.

The sum of independent pure jump processes corresponds to the superposition of

the corresponding marked point processes. The next result relates the time-stability

property to the union stability of random sets (see [20], Section 4.1.3); it immedi-

ately follows from (1.1).

PROPOSITION 5.2. A stochastically continuous pure jump process ξ is time-

stable if and only if its corresponding marked point process M is a union-stable

random closed set in the sense that

(5.1) M1 ∪ . . . ∪Mn
D

∼ n−1 ◦M

for each n  2, where M1, . . . ,Mn are independent copies of M .

COROLLARY 5.1. A stochastically continuous pure jump process ξ is time-

stable if and only if ξ = ξ+ − ξ− for the pair of stochastically continuous pure

jump processes (ξ+, ξ−) that form a pure jump time-stable process with values

in R2
+.

P r o o f. For (τ,m) ∈ (0,∞)×R, let f(τ,m) = (τ,m+,m−), with m+ and

m− being the positive and negative parts of m ∈ R. Then M satisfies (5.1) if

and only if f(M) satisfies the analogue of (5.1) with the scaling along the first

coordinate. Finally, this property of f(M) is a reformulation of the time stability

of (ξ+, ξ−), where ξ+ is the sum of all positive jumps of ξ and ξ− is the sum of all

negative jumps. �

THEOREM 5.1. A stochastically continuous pure jump process ξ is time-stable

if and only if

(5.2) ξ(t)
D

∼
∞
∑

i=1

εi(Γ
−1
i t), t  0,

where {Γi, i  1} form a homogeneous unit intensity Poisson point process on

(0,∞), and {εi, i  1} are independent copies of a random step function ε defined

on [0,∞) which is independent of {Γi} and satisfies (4.6).
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P r o o f. The sufficiency is immediate and follows from Theorem 4.2. For the

necessity, consider the map f and the random set M from the proof of Corollary 5.1

and note that f(M) is an infinitely divisible point process on (0,∞) × R2
+. It is

well known (see e.g. [6], Theorem 10.2.V) that such infinitely divisible marked

point process can be represented as a superposition of point configurations that

build a Poisson point process onM
(

(0,∞)× R2
+

)

. The unique intensity measure

Q̃ of this Poisson process is called the KLM measure of M . This measure can also

be viewed as the Lévy measure, see [7], Corollary 6.9.

Each point configuration fromM
(

(0,∞)× R2
+

)

corresponds to a pure jump

function. The push-forward of Q̃ under this correspondence is the Lévy measure

of (ξ+, ξ−) that is supported by pure jump (and so càdlàg) functions. Since the

components of (ξ+, ξ−) are non-negative, Remark 4.4 yields its representation as

(

ξ+(t), ξ−(t)
)

D

∼
∞
∑

i=1

(

ε′i(Γ
−1
i t), ε′′i (Γ

−1
i t)

)

,

so that ξ admits the series representation (5.2) with ε = ε′ − ε′′. �

REMARK 5.1. In the classical LePage series for random vectors, it is possible

to scale the directional component to bring its norm to one. However, it is not

possible in general to rescale the argument of {εi, i  1} from (5.2) in order to

ensure that each function has the first jump at time one.

REMARK 5.2. It is possible to derive Theorem 5.1 from the LePage represen-

tation of the marked point process M as the union of clusters corresponding to the

Poisson cluster process determined by Q̃. The corresponding series representation

then becomes

M =
∞
∪

i=1

Γi ◦ Ei,

where {Ei, i  1} is a point process onM
(

(0,∞)× R2
+

)

with the intensity mea-

sure Q̃.

If ε has a single jump only, then (5.2) yields a Lévy process, see Example 4.1.

EXAMPLE 5.1. Let ε(t) = [t] be the integer part of t. Then

ξ(t) =
∞
∑

k=1

N(t/k),

where N(t) is the Poisson process. For every t  0, the series consists of a finite

number of summands and so converges almost surely. Note that ξ(t) is not inte-

grable for t > 0. The jump sizes of ξ are always one, and the jump times form a

point process on R+ obtained as the superposition of the set of natural numbers

scaled by Γi, i  1.
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constructions, Stochastics 85 (6) (2013), pp. 1073–1111.

[13] E. Iglói, Dilative Stability, Ph.D. thesis, University of Debrecen, Debrecen 2008.

[14] E. Iglói and M. Barczy, Path properties of dilatively stable processes and singularity of

their distributions, Stoch. Anal. Appl. 30 (5) (2012), pp. 831–848.

[15] Z. Kabluchko and S. Stoev, Stochastic integral representations and classification of sum-

and max-infinitely divisible processes, Bernoulli 22 (1) (2016), pp. 107–142.

[16] I . Kaj, Limiting fractal random processes in heavy-tailed systems, in: Fractals in Engineering:

New Trends in Theory and Applications, J. Lévy-Véhel and E. Lutton (Eds.), Springer, London

2005, pp. 199–217.

[17] R. LePage, M. Woodroofe, and J. Zinn, Convergence to a stable distribution via order

statistics, Ann. Probab. 9 (4) (1981), pp. 624–632.

[18] R. Mansuy, On processes which are infinitely divisible with respect to time, arXiv

math:0504408, 2005.

[19] G. Maruyama, Infinitely divisible processes, Teor. Verojatn. Primen. 15 (1970), pp. 3–23.

[20] I . Molchanov, Theory of Random Sets, Springer, London 2005.

[21] M. D. Penrose, Semi-min-stable processes, Ann. Probab. 20 (3) (1992), pp. 1450–1463.
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MARCIN H Ł AW K A (WROCŁAW),

KRZYSZTOF JA M R Ó Z (WROCŁAW),

MACIEJ K AW E C K I (WROCŁAW), AND ADAM Z AG DA Ń S K I (WROCŁAW)

Abstract. In the paper, the construction of unconditional bootstrap pre-

diction intervals and regions for some class of second order stationary mul-

tivariate linear time series models is considered. Our approach uses the sieve

bootstrap procedure introduced by Kreiss (1992) and Bühlmann (1997). Ba-

sic theoretical results concerning consistency of the bootstrap replications

and the bootstrap prediction regions are proved. We present a simulation

study comparing the proposed bootstrap methods with the Box–Jenkins ap-

proach.
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time series, sieve bootstrap, prediction regions, simultaneous prediction in-

tervals.

1. INTRODUCTION

Determination of forecasts of time series future values based on previous ob-

servations is an extremely important – from a practical point of view – part of

statistical data analysis. Since the high-speed personal computers have appeared,

we can even deal with the prediction for a large number of dimensions of data.

Methods of determining the prediction for the future and unknown observations

are now frequently used in the world around us. They have a wide range of appli-

cations, both to predict the behavior of stock prices, stock indices, interest rates,

and similar financial market and economic data ([27], [28]) as well in predicting

the data of the general nature and geographic scope. For instance, the vector autore-

gressive models V AR were used by Di Battista et al. [11] in modeling the diversity

of the population of some species in their natural environment, and Mirmirani and

Li [22] used V AR models to predict the oil prices.
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318 R. Róża ński et al.

In this paper we present the construction of bootstrap prediction regions for

some class of second order stationary multivariate linear time series models. We

consider both hybrid bootstrap and bootstrap-t methods. Using the Bonferroni in-

equality, we can construct a multivariate bootstrap prediction cube, i.e. we con-

struct a prediction interval for each coordinate. We consider also bootstrap simul-

taneous prediction intervals based on extreme statistics. They are an alternative to

the bootstrap prediction intervals based on the Bonferroni correction. The main ad-

vantages of the bootstrap methods are nonparametricity (no specific assumptions

about the form of the model) and easiness to implement. Thus, the bootstrap meth-

ods are a natural alternative to the methods under general asymptotic statistical

considerations (e.g. with the popular assumption of the normality of noise distri-

bution).

We consider the most popular and nonparametric method for constructing the

replication of time series data, namely the sieve bootstrap. The algorithm was

proposed by Kreiss [18] and Bühlmann [9]. Their idea uses a Grenander sieve

[14] involving the approximation of infinite-dimensional model by a sequence

of finite-dimensional models whose size increases with the number of observa-

tions n. For the class of stationary and invertible time series models (V AR(∞)
models), Bühlmann proposed approximation as a sequence of vector autoregres-

sive (V AR(p)) models, where p = p(n) increases to infinity at an appropriate

rate. In [21] the consistency of sieve bootstrap for general statistics being estima-

tors of parameters in vector autoregressive time series models is considered under

assumptions which essentially imply the assumptions imposed on the time series

models and the sieve method investigated in our paper (see the assumptions (LA)

in Remark 2.1). However, the characterization of asymptotic behavior of paramet-

ric estimators obtained by the authors does not cover the problem of asymptotics

of V AR sieve bootstrap for predictors and bootstrap prediction regions considered

in this article.

In the case of univariate causal linear time series models admitting theAR(∞)
representation, Alonso et al. [1] constructed the sieve bootstrap estimator X⋆

T+h of

the future value XT+h. They proved that X⋆
T+h →

d⋆ XT+h in probability, which

implies that the bootstrap distribution F ⋆
X⋆

T+h

approximates in probability the un-

known distribution of FXT+h
. Further, using the quantiles Q⋆() of the distribution

F ⋆
X⋆

T+h

as bootstrap estimators of quantiles Q() of the distribution FXT+h
, the au-

thors construct a prediction interval for the future value XT+h. In general, the

distribution F ⋆
X⋆

T+h

and the quantiles Q⋆() are not known. So, in simulations, the

authors use the Monte Carlo method to approximate F ⋆
X⋆

T+h

and Q⋆(). Unfortu-

nately, they did not argue that the Monte Carlo approximation of Q⋆() is a consis-

tent estimator of the quantile Q(). At least, one should mention the results of Shi

et al. [26].

Since the sieve approximation p(n) is charged with serious error as an estima-

tor of possibly finite but unknown order p of the considered univariate time series
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model, Alonso et al. [2] joined the sieve bootstrap and the moving block bootstrap

to select the order p⋆ and to introduce model uncertainty in procedures of resam-

pling. Unfortunately, no proofs of consistency are given and the simulation results

are restricted to the Gaussian errors.

In this article, we construct sieve bootstrap prediction regions for causal linear,

invertible (V AR(∞)) multivariate time series, approximating the prediction error

by bootstrap replications of the prediction error. There are two ways (described in

Section 4.2) of the bootstrap replicating of the prediction error. One can see that,

in the univariate case, prediction hybrid bootstrap intervals constructed by the first

method are identical with bootstrap prediction intervals constructed in [1] but it

does not happen when we construct bootstrap-t (studentized) prediction intervals.

In this work, we generalize the results obtained in [13] from V AR(p) models

with finite but unknown order p to some class of second order stationary multivari-

ate linear, V AR(∞) time series models.

It is worth noting that we have constructed consistent unconditional bootstrap

prediction regions and the results allow us to use these prediction regions as effec-

tive and useful tools for testing and selection of models. Moreover, it follows from

the theorems proved in the present article that the constructed bootstrap prediction

regions are good approximations of prediction regions constructed on the base of

unknown optimal linear predictors.

2. MODEL AND ASSUMPTIONS

Let {Xt}t∈Z be a second order stationary k-dimensional vector process with

meanEXt = 0 and the autocovariance function γ(j) = EXt+jX
T
t , where Z is the

set of all integers. We assume also that the process {Xt}t∈Z is purely stochastic.

Thus, using Wold’s Decomposition Theorem (see [3] or [20]), we can represent

{Xt}t∈Z as an infinite vector moving average process VMA(∞),

(2.1) Xt =
∞∑

j=0

ψjϵt−j , ψ0 = Ik,

where
∑∞

j=0 ∥ψj∥
2 < ∞ and {ϵt}t∈Z is a vector white noise process with the

covariance matrix Eϵtϵ
T
t = Σ (Σ is invertible). Additionally, we assume that the

process {Xt}t∈Z is invertible. Thus, it can be represented as an infinite vector au-

toregressive process V AR(∞):

(2.2) Xt =
∞∑

j=1

ϕjXt−j + ϵt,

where
∑∞

j=1 ∥ϕj∥
2 <∞.

Further, we will use the following assumptions:
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(A1) Xt =
∑∞

j=0 ψjϵt−j , ψ0 = Ik, t ∈ Z, where

{ϵt}t∈Z = {(ϵt,1, . . . , ϵt,i, . . . , ϵt,k)
T }t∈Z

is an i.i.d. sequence such that Eϵt = 0, Eϵtϵ
T
t = Σ and E|ϵt,iϵt,jϵt,lϵt,s| <∞ for

i, j, l, s = 1, . . . , k and all t.

(A2)
∣∣ det

(
Ψ(z)

)∣∣ =
∣∣ det

(∑∞
j=0 ψjz

j
)∣∣ > 0 for |z| ¬ 1 and

∑∞
j=0 j

r∥ψj∥ <∞
for some r ∈ N.

(B) p = p(n) → ∞ as n → ∞ and Φ̂p = [ϕ̂1,n, . . . , ϕ̂p,n]
T satisfies the Yule–

Walker equations, i.e.

(2.3) Γ̂pΦ̂p = γ̂p,

where Γ̂p = [γ̂(i− j)]pi,j=1, γ̂p = [γ̂(1), . . . , γ̂(p)]T , and γ̂(·) is the sample auto-

covariance function,

γ̂(j) =
1

n

n−j∑

t=1

(Xt+j −Xn)(Xt −Xn)
T , γ̂(−j) = γ̂T (j),

where Xn = 1
n

∑n
t=1Xt.

REMARK 2.1. In the sequel, the following list of assumptions, called (LA),
will be also imposed:

• assumption (A1),
• assumption (A2) with r  1,
• assumption (B) with p(n) = o

(
(n/ log n)1/(2r+2)

)
and r  1.

Under the assumptions (LA) we prove the main theorems on bootstrap consis-

tency.

3. SIEVE BOOTSTRAP ALGORITHM

The invertibility of the process {Xt}t∈Z implies the V AR(∞) representation

of the process which is crucial in the idea of the sieve bootstrap (see e.g. [9]). The

sieve bootstrap algorithm uses the idea of the Grenander method of sieve (see [14]).

Namely, we approximate V AR(∞) given by (2.2) by the sequence of V AR(p)
models, where p = p(n) is a sequence growing to infinity sufficiently slow with

the sample size n (assumption (B)).

REMARK 3.1. It is also possible to approximate the process {Xt}t∈Z given by

(2.1) and construct sieve as a sequence of finite VMA(q), where q = q(n)→∞
(see [8]).

Let X1, . . . , Xn be the observations of the process {Xt}t∈Z. We describe the

sieve bootstrap algorithm in the following steps.
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S t e p 1. Choose the approximation order p = p(n) using FPE, the final

prediction error (see [20]),

FPE(p) =

(
n+ pk + 1

n− pk − 1

)k

det(Σ̂p),

where Σ̂p is an estimator of the covariance matrix Σ of the white noise {ϵt}t∈Z in

the model V AR(p). Further, we choose p = p(n), which minimizes FPE(p) and

p ∈ {pmin(n), . . . , pmax(n)}, where pmin = log10 n, pmax = 10 log10 n.

S t e p 2. Estimate the coefficients ϕ1,n, . . . , ϕp,n of the model V AR(p) using

the Yule–Walker method (assumption (B)) and obtain estimators ϕ̂1,n, . . . , ϕ̂p,n.

S t e p 3. Compute the residuals

ϵ̂t = Xt −
p∑

j=1

ϕ̂j,nXt−j , t = p+ 1, . . . , n.

S t e p 4. Center the residuals

ϵ̃t = ϵ̂t −
1

n− p

n∑

j=p+1

ϵ̂t, t = p+ 1, . . . , n,

and draw bootstrap residuals ϵ∗t from the empirical cumulative distribution function

F̂ϵ,n, where

(3.1) F̂ϵ,n(x) =
1

n− p

n∑

t=p+1

1{ϵ̃t ¬ x},

and ¬ denotes the relation of product order (partial order) in R
k.

S t e p 5. Define bootstrap replications X∗1 , . . . , X
∗
n of X1, . . . , Xn by

X∗t =
p∑

j=1

ϕ̂j,nX
∗
t−j + ϵ∗t , t = 1, . . . , n.

In practice, we can generate replications X∗1 , . . . , X
∗
n starting the recursion from

some initial values, e.g. X∗t = ϵ∗t , t = 0,−1, . . . ,−p+ 1.

S t e p 6. Generate bootstrap replications ϕ̂∗j,n of the Yule–Walker estimators

ϕ̂j,n, where j = 1, 2, . . . , p(n).

The bootstrap construction induces a conditional probability measureP ∗ given

the sample X1, . . . , Xn. In the sequel, all quantities with respect to P ∗ will be en-

dowed with asterisk ∗.
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REMARK 3.2. The FPE criterion, used in Step 1, is asymptotically equiva-

lent to the AIC criterion (see [20]) used in [9].

REMARK 3.3. In Step 2, the Yule–Walker estimators can be computed by us-

ing Whittle’s algorithm, which is a multivariate version of the Durbin–Levinson

algorithm (see [7]).

In the sequel, we will use the following notation for the coefficients of autore-

gressive models and their related moving average models. For the stationary time

series {Xt}t∈Z given by (2.1) or (2.2) the autoregressive coefficients ϕj and the

moving average coefficients ψj are related by

Φ(z) = Ik −
∞∑

j=1

ϕjz
j , Φ−1(z) = Ψ(z) =

∞∑

j=0

ψjz
j ,

ψ0 = Ik, and ψj =
j∑

i=1

ϕiψj−i, j = 1, 2, . . .

In the model V AR(p), approximating the model (2.2), we denote by ϕj,n the au-

toregressive coefficients which fulfill the theoretical Yule–Walker equations (2.3)

(assumption (B), where the sample autocovariance function is replaced by γ(j) =
EXt+jX

T
t ), and by ψj,n the moving average coefficients:

Φn(z) = Ik −
p∑

j=1

ϕj,nz
j , Φ−1n (z) = Ψn(z) =

∞∑

j=0

ψj,nz
j ,(3.2)

ψ0,n = Ik, and ψj,n =
j∑

i=1

ϕi,nψj−i,n, j = 1, 2, . . .

We write the Yule–Walker estimators given in assumption (B):

Φ̂n(z) = Ik −
p∑

j=1

ϕ̂j,nz
j , Φ̂−1n (z) = Ψ̂n(z) =

∞∑

j=0

ψ̂j,nz
j ,(3.3)

ψ̂0,n = Ik, and ψ̂j,n =
j∑

i=1

ϕ̂i,nψ̂j−i,n, j = 1, 2, . . .

Let ϕ̂∗j,n and ψ̂∗j,n be the bootstrap replications of Yule–Walker estimators ϕ̂j,n,

ψ̂j,n,

(3.4) Φ̂∗n(z) = Ik −
p∑

j=1

ϕ̂∗j,nz
j , Φ̂∗−1n (z) = Ψ̂∗n(z) =

∞∑

j=0

ψ̂∗j,nz
j ,

where ψ̂∗0,n = Ik.
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REMARK 3.4. The assumptions (A1) and (A2) provide us with the correct-

ness of defined functions Ψ(z) and Φ(z), which means that the series
∑∞

j=0 ψjz
j

and
∑∞

j=1 ϕjz
j are convergent for |z| ¬ 1 and Φ−1(z) = Ψ(z). The properties

of the Yule–Walker equations ensure the correctness of defined functions Ψn(z),

Ψ̂n(z) and Ψ̂∗n(z) (solutions of the Yule–Walker equations give us a causal model,
see [7]).

4. PREDICTION REGIONS

4.1. Linear predictors and Gaussian prediction regions. Forecasting the fu-

ture values Xn+h, h = 1, 2, . . ., is a very common task in the statistical analysis of

time series. For the second order stationary process we can construct the best linear

predictor, in the mean square sense, as an orthogonal projection of Xn+h onto a

closed subspace sp{X1, . . . , Xn} of L2(Ω,F ,P) (see [20]). We can represent the

h-step predictor as

ProjnXn+h = Projsp{X1,...,Xn}Xn+h

and the mean squared prediction error as

(4.1) ΣX(h) = E (Xn+h − ProjnXn+h) (Xn+h − ProjnXn+h)
T .

Assuming that (A1) holds, we have also

(4.2) ΣX(h) =
h−1∑

j=0

ψjΣψ
T
j .

The mean squared prediction error can be obtained by using the multivariate ver-

sion of the innovations algorithm (see [7]).

REMARK 4.1. For the autoregressive model V AR
(
p = p(n)

)
,

Xt =
p∑

j=1

ϕj,nXt−j + ϵt,n,

approximating the model V AR(∞), the best linear predictor (in the mean square

sense) and the mean squared error matrix have the forms

ProjnXn+h,V AR(p) =
p∑

j=1

ϕj,nProjnXn+h−j,V AR(p),

Σn,X(h) =
h−1∑

j=0

ψj,nΣψ
T
j,n,

where ProjnXn+j,V AR(p) = Xn+j for j ¬ 0, Σ = Eϵtϵ
T
t and coefficients ψj,n are

given by the recursive equations

ψ0,n = Ik and ψj,n =
j∑

i=1

ϕi,nψ(j−i),n, j = 1, 2, . . .
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From the continuity of the projection operator in L2 it follows that

ProjnXn+h−ProjnXn+h,V AR(p)
L2

−→ 0 and Σn,X(h)→ ΣX(h) as n→∞.

Since the form of the best linear predictor (in the mean square sense) and

the mean squared error matrix depend on unknown parameters of a model con-

sidered, we will use an estimator P̂rojnXn+h = X̂n+h of the best linear predictor

ProjnXn+h with appropriately chosen estimators of parameters of the model.

The most common method of constructing the prediction regions for Xn+h,

h = 1, 2, . . ., is the Box–Jenkins method. This method assumes that the prediction

error has at least asymptotically normal distribution

Xn+h − X̂n+h ∼ N
(
0,ΣX(h)

)
.

Thus, the quadratic form below has at least the asymptotically χ-square distribution

with k degrees of freedom:

(Xn+h − X̂n+h)
TΣ−1X (h)(Xn+h − X̂n+h) ∼ χ

2(k).

So, the prediction region for Xn+h, h = 1, 2, . . ., with nominal confidence level

1− α has a shape of k-dimensional ellipse

(4.3) EB−J(h) = {(Xn+h − X̂n+h)
TΣ−1X (h)(Xn+h − X̂n+h) ¬ χ

2
1−α(k)},

where χ2
α(k) is an α quantile of χ-square distribution with k degrees of freedom.

We can also use the Bonferroni inequality and construct a k-dimensional prediction

cube

(4.4) IB−J(h) = {Xn+h,j ∈ [X̂n+h,j + σX,j(h)zα/(2k),

X̂n+h,j + σX,j(h)z1−α/(2k)], j = 1, . . . , k},

where zα is an α quantile of the normal distribution N (0, 1) and σX,j(h) is a

square root of the jth diagonal element of the mean squared error matrix ΣX(h).

4.2. Bootstrap prediction regions. The bootstrap methods are very common

in the problem of constructing the confidence intervals (see e.g. [12]). The same

idea can be used in the construction of prediction regions for Xn+h, h = 1, 2, . . .
Namely, we may apply the sieve bootstrap method and generate bootstrap repli-

cations X∗1 , . . . , X
∗
n using observations X1, . . . , Xn. Then, we construct the boot-

strap replications of the future observations on the base of the V AR(p) approxi-

mation

for h = 1: X∗n+1 =
p∑

j=1

ϕ̂∗j,nXn+1−j + ϵ∗n+1,(4.5)

for h > 1: X∗n+h =
h−1∑

j=1

ϕ̂∗j,nX
∗
n+h−j +

p∑

j=h

ϕ̂∗j,nXn+h−j + ϵ∗n+h,
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where ϕ̂∗j,n is a bootstrap replication of the estimator ϕ̂j,n. It is worth noting that

we applied a modification of a standard procedure, proposed by Bühlmann [9]

for the one-dimensional case, to generate the future bootstrap observations in the

equation (4.5). Namely, we generated future observations starting recursion from

X1, . . . , Xn, in contrast to the standard method in which the recursion is started

from the bootstrap replications X∗1 , . . . , X
∗
n. The results of the simulations showed

that this type of modification improved the empirical probability of coverage of the

bootstrap prediction regions.

Using the V AR(p) approximation, we construct the estimator of the best lin-

ear predictor

(4.6) X̂n+h =
p(n)∑

j=1

ϕ̂j,nX̂n+h−j ,

where X̂n+j = Xn+j , j ¬ 0.

We construct the bootstrap prediction regions using two methods: hybrid boot-

strap and bootstrap-t.

In the hybrid bootstrap, the unknown distribution of the prediction error

(4.7) Hn(h) = Xn+h − X̂n+h

can be approximated by two bootstrap variants:

(4.8) H∗n(h) = X∗n+h − X̂n+h,

(4.9) H̃∗n(h) = X∗n+h − X̂
∗
n+h,

where X̂∗n+h is the bootstrap replication of X̂n+h given by (4.6). It can be proved

that both bootstrap variants of the prediction error (4.7) are consistent. However,

we will focus on (4.8) because of its good simulation results. Since the proof of

consistency for the bootstrap variant (4.9) goes along the same lines as the proof

of consistency for the bootstrap variant (4.8), we will omit it. Thus, the bootstrap

prediction cube, constructed by using the Bonferroni inequality, has the form

(4.10) IB(h) = {Xn+h,j ∈ [X̂n+h,j + q∗α/(2k),j ,

X̂n+h,j + q∗1−α/(2k),j ], j = 1, . . . , k},

where q∗α,j is an α quantile of the distribution X∗n+h,j − X̂n+h,j , j = 1, . . . , k.

Using the hybrid bootstrap, we can also create a bootstrap prediction region in

the shape of k-dimensional ellipse:

(4.11) EB(h) = {(Xn+h − X̂n+h)
T (Xn+h − X̂n+h) ¬ q

∗
1−α},

where q∗α is an α quantile of the distribution ∥H∗n(h)∥
2
.
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In the bootstrap-t method we approximate the studentized unknown distribu-

tion of the prediction error

(4.12) Tn(h) = Σ̂
−1/2
n,X (h)(Xn+h − X̂n+h)

by its bootstrap replication

(4.13) T ∗n(h) = Σ̂
∗−1/2
n,X (h)(X∗n+h − X̂n+h),

where Σ̂n,X(h) is an estimator of the mean squared error matrix ΣX(h), and

Σ̂∗X(h) is a bootstrap replication of the estimator. By Remark 4.1, we define the

estimator Σ̂n,X(h) as

(4.14) Σ̂n,X(h) =
h−1∑

j=0

ψ̂j,nΣ̂ψ̂
T
j,n,

where ψ̂j,n =
∑j

i=1 ϕ̂i,nψ̂(j−i),n. Thus, the bootstrap prediction cube, constructed

by using the Bonferroni inequality, has the form

(4.15) IB−t(h) = {Xn+h,j ∈ [X̂n+h,j + σ̂X,j(h)t
∗
α/(2k),j ,

X̂n+h,j + σ̂X,j(h)t
∗
1−α/(2k),j ], j = 1, . . . , k},

where t∗α,j is an α quantile of the distribution σ̂∗−1X,j (h)(X
∗
n+h,j − X̂n+h) for j =

1, . . . , k.

Using the bootstrap-t, we can also create a bootstrap prediction region in the

shape of k-dimensional ellipse:

(4.16) EB−t(h) = {(Xn+h − X̂n+h)
T Σ̂−1n,X(h)(Xn+h − X̂n+h) ¬ t

∗
1−α},

where t∗α is an α quantile of the distribution ∥T ∗n(h)∥
2
.

4.3. Bootstrap simultaneous prediction regions based on extreme statistics.
In this subsection we present different types of bootstrap confidence regions based

on the distribution of minimum and maximum of Xn+h − X̂n+h. More precisely,

we investigate simultaneous hybrid and studentized confidence regions. For each

type we propose left-sided, right-sided and both-sided regions. First, we introduce

the following notation for statistics Un+h, Vn+h and Rn+h:

Un+h = min
1¬i¬k

Wn+h,i = min
1¬i¬k

(Xn+h,i − X̂n+h,i),(4.17)

Vn+h = max
1¬i¬k

Wn+h,i = max
1¬i¬k

(Xn+h,i − X̂n+h,i),(4.18)

Rn+h = max
1¬i¬k

|Wn+h,i| = max
1¬i¬k

|Xn+h,i − X̂n+h,i|,(4.19)
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and for their bootstrap versions:

U∗n+h = min
1¬i¬k

W ∗n+h,i = min
1¬i¬k

(X∗n+h,i − X̂n+h,i),(4.20)

V ∗n+h = max
1¬i¬k

W ∗n+h,i = max
1¬i¬k

(X∗n+h,i − X̂n+h,i),(4.21)

R∗n+h = max
1¬i¬k

|W ∗n+h,i| = max
1¬i¬k

|X∗n+h,i − X̂n+h,i|.(4.22)

Let û∗n+h,(·), v̂
∗
n+h,(·) and r̂∗n+h,(·) be Monte Carlo estimators of quantiles of boot-

strap distributions of U∗n+h, V ∗n+h and R∗n+h. Then, the bootstrap prediction cubes,

constructed by using extreme statistics, can be written in the following form:

IUV
B (h) = {Xn+h,i ∈ [X̂n+h,i + û∗n+h,α/2,(4.23)

X̂n+h,i + v̂∗n+h,1−α/2], i = 1, . . . , k},

IUB (h) = {Xn+h,i ∈ [X̂n+h,i + û∗n+h,α,+∞), i = 1, . . . , k},(4.24)

IVB (h) = {Xn+h,i ∈ (−∞, X̂n+h,i + v̂∗n+h,1−α], i = 1, . . . , k},(4.25)

IRB (h) = {Xn+h,i ∈ [X̂n+h,i − r̂
∗
n+h,1−α,(4.26)

X̂n+h,i + r̂∗n+h,1−α], i = 1, . . . , k}.

We can also construct studentized prediction cubes:

IUV
B−t(h) = {Xn+h,i ∈ [X̂n+h,i + ûs∗n+h,α/2σ̂n+h,i,(4.27)

X̂n+h,i + v̂s∗n+h,1−α/2σ̂n+h,i], i = 1, . . . , k},

IUB−t(h) = {Xn+h,i ∈ [X̂n+h,i + ûs∗n+h,ασ̂n+h,i,+∞), i = 1, . . . , k},(4.28)

IVB−t(h) = {Xn+h,i ∈ (−∞, X̂n+h,i + v̂s∗n+h,1−ασ̂n+h,i], i = 1, . . . , k},(4.29)

IRB−t(h) = {Xn+h,i ∈ [X̂n+h,i − r̂s
∗
n+h,1−ασ̂n+h,i,(4.30)

X̂n+h,i + r̂s∗n+h,1−ασ̂n+h,i], i = 1, . . . , k},

where ûs∗n+h,(·), v̂s
∗
n+h,(·) and r̂s∗n+h,(·) are, respectively, Monte Carlo estimators

of quantiles of bootstrap distributions of

US∗n+h = min
1¬i¬k

W ∗n+h,i = min
1¬i¬k

(
X∗n+h,i − X̂n+h,i

σ̂∗n+h,i

)
,

V S∗n+h = max
1¬i¬k

W ∗n+h,i = max
1¬i¬k

(
X∗n+h,i − X̂n+h,i

σ̂∗n+h,i

)
,

RS∗n+h = max
1¬i¬k

|W ∗n+h,i| = max
1¬i¬k

∣∣∣∣
X∗n+h,i − X̂n+h,i

σ̂∗n+h,i

∣∣∣∣,
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and US∗n+h, V S∗n+h and RS∗n+h are the following bootstrap versions of distribu-

tions:

USn+h = min
1¬i¬k

Wn+h,i = min
1¬i¬k

(
Xn+h,i − X̂n+h,i

σ̂n+h,i

)
,

V Sn+h = max
1¬i¬k

Wn+h,i = max
1¬i¬k

(
Xn+h,i − X̂n+h,i

σ̂n+h,i

)
,

RSn+h = max
1¬i¬k

|Wn+h,i| = max
1¬i¬k

∣∣∣∣
Xn+h,i − X̂n+h,i

σ̂n+h,i

∣∣∣∣.

5. CONSISTENCY OF BOOTSTRAP METHODS

5.1. Representation of the V AR(∞) model by the moving average model. In

this subsection we use the following theorem proved in [15] (see Theorem 7.4.2).

The theorem is formulated below but with changed notation, adapted to the present

article.

THEOREM 5.1 ([15], Theorem 7.4.2). If det
(
Ψ(z)

)
̸= 0 for |z| ¬ 1 and

∞∑

j=0

jλ ∥ψj∥ <∞, λ > 0,

then for Φ(z) = Ψ−1(z) =
∑∞

j=1 ϕjz
j we have

∞∑

j=0

jλ ∥ϕj∥ <∞.

By analogical reasoning, we can prove the converse of Theorem 5.1. Namely,

we have

COROLLARY 5.1. The following assertions are equivalent:
(i) det

(
Φ(z)

)
̸= 0, |z| ¬ 1,

∑∞
j=0 j

λ ∥ϕj∥ <∞, λ > 0.

(ii) det
(
Ψ(z)

)
̸= 0, |z| ¬ 1,

∑∞
j=0 j

λ ∥ψj∥ <∞, λ > 0.

The next lemma is a multivariate version of a lemma given by Bühlmann ([8],

Lemma 2.2). For the purpose of this lemma (and only for this lemma) we assume

that Φn(z) = Ik −
∑∞

j=1 ϕj,nz
j is some deterministic approximation of the func-

tion Φ(z) = Ik −
∑∞

j=1 ϕjz
j (model (2.2)) and we define Ψn(z) = Φ−1n (z) =∑∞

j=0 ψj,nz
j , where ψ0,n = Ik. The lemma gives us conditions under which the

function Ψn(z) is correctly defined and also asymptotical properties of the coeffi-

cients ψj,n.

LEMMA 5.1. Let (A2) with r  1 hold and
∑∞

j=1 j
r∥ϕj,n − ϕj∥ = o(1),

where n→∞. Then:
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(i) There exists n0 ∈ N such that

sup
nn0

∞∑

j=1

jr ∥ϕj,n∥ <∞ and inf
nn0

inf
|z|¬1

∣∣ det
(
Φn(z)

)∣∣ > 0.

(ii) There exists n1 ∈ N such that, for n  n1,Ψn(z) is absolutely convergent

for |z| ¬ 1 and

sup
nn1

∞∑

j=0

jr ∥ψj,n∥ <∞.

P r o o f. (i) is an immediate consequence of the assumptions of the lemma

and Corollary 5.1.

(ii) By the formula for the inversion of the matrix we have

Ψn(z) = Φ−1n (z) =
1

det
(
Φn(z)

)adj
(
Φn(z)

)
.

Denoting the element of the matrix by ϕj,n = [ϕ(sv),j,n]
k
s,v=1, j = 1, 2, . . . , we get

Φn(z) =
[ ∞∑
j=1

ϕ(sv),j,nz
j
]k
s,v=1

.

From (i) we have det
(
Φn(z)

)
̸= 0 for |z| ¬ 1, n  n0 and

sup
nn0

∞∑

j=1

jr|ϕ(sv),j,n| <∞ for all s, v = 1, . . . , k.

For some s, v, u, w = 1, . . . , k we have

∞∑

j=1

ϕ(sv),j,nz
j ·
∞∑

j=1

ϕ(uw),j,nz
j =

∞∑

j=1

(ϕ(sv) ∗ ϕ(uw))j,nz
j ,

(ϕ(sv) ∗ ϕ(uw))j,n =
∞∑

l=1

ϕ(sv),l,nϕ(uw),j−l,n.

Using properties of the convolution, we get

∞∑

j=1

jr|(ϕ(sv) ∗ ϕ(uw))j,n| ¬
∞∑

j=1

jr|ϕ(sv),j,n|
∞∑

j=1

jr|ϕ(uw),j,n|,

and further

sup
nn0

∞∑

j=1

jr|(ϕ(st) ∗ ϕ(uw))j,n| <∞.
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In consequence, we infer that the coefficients of the determinant det
(
Φn(z)

)
and

the coefficients of all elements of the matrix adj
(
Φn(z)

)
fulfill

det
(
Φn(z)

)
=
∞∑

j=1

ϕ̌j,nz
j , sup

nn0

∞∑

j=1

jr|ϕ̌j,n| <∞,

adj
(
Φn(z)

)
= [ϕ0(sv),n(z)]

k
s,v=1, ϕ0(sv),n(z) =

∞∑

j=1

ϕ0(sv),j,nz
j ,

sup
nn0

∞∑

j=1

jr|ϕ0(sv),j,n| <∞ for all s, v = 1, . . . , k.

To complete the proof, we have to show that 1/ det
(
Φn(z)

)
is an analytical func-

tion for |z| ¬ 1 with coefficients ϕ
j,n

satisfying

1

det
(
Φn(z)

) =
∞∑

j=1

ϕ
j,n
zj , sup

nn0

∞∑

j=1

jr|ϕ
j,n
| <∞.

However, this is a consequence of the Wiener theorem (see [30]) and the lemma

given by Bühlmann [8] for the one-dimensional case. Finally, we get

Ψn(z) =
1

det
(
Φn(z)

)adj
(
Φn(z)

)
=
∞∑

j=1

ϕ
j,n
zj [ϕ0(sv),n(z)]

k
s,v=1

=
∞∑

j=1

ϕ
j,n
zj
[ ∞∑
j=1

ϕ0(sv),j,nz
j
]k
s,v=1

=
∞∑

j=0

ψj,nz
j

and

sup
nn1

∞∑

j=0

jr ∥ψj,n∥ <∞. �

The next two theorems give us properties of the coefficients ψ̂j,n from the

representation (3.3), in which Φ̂n(z) replaces the function Φn(z) in Lemma 5.1.

These two theorems are multivariate versions of the theorems given by Bühlmann

for the one-dimensional case ([8], Theorems 3.1 and 3.2).

THEOREM 5.2. Let (LA) hold. Then there exists a random variable n1 for

which

sup
nn1

∞∑

j=0

jr∥ψ̂j,n∥ <∞ almost surely.

P r o o f. We will use Lemma 5.1. Thus, we have to check its assumption:

∞∑

j=1

jr∥ϕ̂j,n − ϕj∥ ¬
p∑

j=1

jr∥ϕ̂j,n − ϕj,n∥+
p∑

j=1

jr∥ϕj,n − ϕj∥+
∞∑

j=p+1

jr ∥ϕj∥

= S1 + S2 + S3.
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By Theorem 2.1 from [16] we obtain S1 = o(1) almost surely. Under the assump-

tion (A2), using the Baxter inequality ([15], Theorem 6.6.12 and p. 271) and Corol-

lary 5.1, we get S2 = o(1). Similarly we show that S3 = o(1). Finally, we get

∞∑

j=1

jr∥ϕ̂j,n − ϕj∥ = o(1) almost surely.

We complete the proof using Lemma 5.1. �

THEOREM 5.3. Let (LA) hold. Then

sup
1¬j<∞

∥ψ̂j,n − ψj∥ = O
(
(log n/n)1/2

)
+O(p−r) almost surely.

P r o o f. We start from showing that

(5.1) Σ− Σ̂ = Oa.s.

(
(log n/n)1/2

)
+O(p−r).

To prove it, we use Theorem 2.1 from [16] and the Hannan and Deistler bound

([15], Theorem 7.4.3). We get

(5.2) max
0¬j<∞

∥γ̂(j)− γ(j)∥ = Oa.s.

(
(log n/n)1/2

)
,

where γ̂(j) = 0 for |j|  n. From the Yule–Walker equations for the models (2.2)

and (3.3) we have

Σ = γ(0)−
∞∑

j=1

ϕjγ
T (j), Σ̂ = γ̂(0)−

p∑

j=1

ϕ̂j,nγ̂
T (j).

Therefore,

∥Σ− Σ̂∥ ¬ ∥γ(0)− γ̂(0)∥+
∥∥

p∑

j=1

(
ϕ̂j,nγ̂

T (j)− ϕjγ
T (j)

)∥∥+
∥∥
∞∑

j=p+1

ϕjγ
T (j)

∥∥

¬ ∥γ(0)− γ̂(0)∥

+ max
1¬j¬p

∥ϕ̂j,n − ϕj∥
(
p max
1¬j¬p

∥γ̂(j)− γ(j)∥+
p∑

j=1

∥γ(j)∥
)

+ max
1¬j¬p

∥γ̂(j)− γ(j)∥
∞∑

j=1

∥ϕj∥+ ∥[EX
2
t,iEX

2
t,j ]

k
i,j=1∥

∞∑

j=p+1

∥ϕj∥

= Oa.s.

(
(log n/n)1/2

)
+O(p−r)

and we get (5.1).
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Following the ideas of the proof of Theorem 3.2 from [8] for the one-dimen-

sional case, let {Yt}t∈Z be a conditional process (given X1, . . . , Xn) in the form

(5.3) Yt =
p∑

j=1

ϕ̂j,nYt−j + ηt,

where {ηt}t∈Z is a sequence of i.i.d. random vectors and Eηt = 0, Eηtη
T
t = Σ.

Additionally, we assume that ηt and ϵt are independent. According to properties of

the Yule–Walker estimators, {Yt}t∈Z is a causal process

(5.4) Yt =
∞∑

j=0

ψ̂j,nηt−j .

Denote by EY and CovY the conditional expectation and the autocovariance func-

tion of the process {Yt}t∈Z under the condition X1, . . . , Xn. Thus, using (5.3) and

(5.4) for Yt+i, we have

EY Yt+iη
T
t = ψ̂i,nΣ = γY (i)−

p∑

j=1

γY (i+ j)ϕ̂Tj,n,

where γY (j) = CovY (Yt+j , Yt) =
∑∞

l=0 ψ̂l+j,nΣψ̂
T
l,n. We get a similar equality

for ψi:

ψiΣ = γ(i)−
∞∑

j=1

γ(i+ j)ϕTj .

Thus, for i = 0, 1, 2, . . . we have

∥ψ̂i,n − ψi∥ ¬ ∥Σ
−1∥

∥∥γY (i)−
p∑

j=1

γY (i+ j)ϕ̂Tj,n − γ(i) +
∞∑

j=1

γ(i+ j)ϕTj
∥∥

¬ ∥Σ−1∥
∥∥

p∑

j=1

γY (i+ j)(ϕ̂Tj,n − ϕ
T
j )−

∞∑

j=p+1

γY (i+ j)ϕTj
∥∥

+ ∥Σ−1∥
∥∥
∞∑

j=1

(
γY (i+ j)−γ(i+ j)

)
ϕTi

∥∥+∥Σ−1∥ ∥γY (i)−γ(i)∥

= ∥Σ−1∥(S1,i + S2,i + S3,i).

We bound the components separately. We get

S1,i ¬
p∑

j=1

∥γY (i+ j)∥ ∥ϕ̂j,n − ϕj∥+
∞∑

j=p+1

∥γY (i+ j)∥ ∥ϕj∥

¬ ∥Σ∥ max
1¬j¬p

∥ϕ̂j,n − ϕj∥
( ∞∑
l=0

∥ψ̂l,n∥
)2

+ ∥Σ∥
( ∞∑
l=0

∥ψ̂l,n∥
)2 ∞∑

j=p+1

∥ϕj∥

= Oa.s.

(
(log n/n)1/2

)
+O(p−r) for each i ∈ N,
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where the last approximation is obtained by using Theorem 2.1 from [16] and

Theorem 5.2. Further, using the convention
∑i

j=l aj = 0 for i < l, we have

S2,i ¬
∥∥

p−i∑

j=1

(
γY (i+ j)− γ(i+ j)

)
ϕTj

∥∥+
∥∥

∞∑

j=p−i+1

(
γY (i+ j)− γ(i+ j)

)
ϕTj

∥∥

¬ max
1¬j¬p

∥γ̂(j)− γ(j)∥
∞∑

j=0

∥ϕj∥+ ∥Σ− Σ̂∥
( ∞∑
j=0

∥ψ̂j,n∥
)2 ∞∑

j=0

∥ϕj∥

+ ∥Σ∥
∞∑

j=0

∥ϕj∥
( ∞∑
j=0

∥ψ̂j,n∥
∞∑

j=p+1

∥ψ̂j,n∥+
∞∑

j=0

∥ψj∥
∞∑

j=p+1

∥ψj∥
)

= Oa.s.

(
(log n/n)1/2

)
+O(p−r) for each i ∈ N,

where the last approximation is due to (5.1), (5.2), Theorem 5.2 and the assumption

(A2). The component S3,i can be bounded analogously to the component S2,i and

we get S3,i = Oa.s.

(
(log n/n)1/2

)
+O(p−r) for each i ∈ N. Finally, we have

sup
0¬i
∥ψ̂i,n − ψi∥ = Oa.s.

(
(log n/n)1/2

)
+O(p−r). �

5.2. Consistency of sieve bootstrap. From the construction of the bootstrap

replications algorithm we have E∗ϵ∗t = 0. The following lemma gives us the con-

vergence of the bootstrap covariance matrix Σ∗ = E∗ϵ∗t ϵ
∗T
t to the covariance ma-

trix Σ of the white noise {ϵt}t∈Z. In the one-dimensional case, this fact was proved

in [9] (see Lemma 5.3).

LEMMA 5.2. Let (A1), (A2) with r  1 and (B) with p(n) = o
(
(n/ log n)1/2

)

hold. Then

E∗ϵ∗t ϵ
∗T
t = Eϵtϵ

T
t + oP (1).

P r o o f. Although the proof of this lemma is similar to the proof of Lem-

ma 5.3 in [9] for the one-dimensional case, we will give it for completeness. Notice

the following equality holds:

(5.5) ϵ̂t,n = Xt −
p∑

j=1

ϕ̂j,nXt−j = ϵt +Qt,n +Rt,n,

where

Qt,n =
p∑

j=1

(ϕj,n − ϕ̂j,n)Xt−j ,

Rt,n =
∞∑

j=1

(ϕj − ϕj,n)Xt−j , ϕj,n = 0 for j > p.
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The bootstrap covariance matrix has the form

E∗ϵ∗t ϵ
∗T
t =

1

n− p

n∑

t=p+1

(ϵ̂t,n − ϵn) (ϵ̂t,n − ϵn)
T ,

where ϵn = 1
n−p

∑n
t=p+1 ϵ̂t,n. First, we show that ϵn = oP (1). We have

ϵn =
1

n− p

n∑

t=p+1

ϵ̂t,n =
1

n− p

n∑

t=p+1

(ϵt +Qt,n +Rt,n) = S1 + S2 + S3.

From the assumption (A1) and the Markov inequality we get S1 = OP (n
−1/2).

Using the Cauchy–Schwarz inequality and the Jensen inequality, we obtain

∥S2∥ =

∥∥∥∥
1

n− p

n∑

t=p+1

p∑

j=1

(ϕj,n − ϕ̂j,n)Xt−j

∥∥∥∥

¬
( p∑

j=1

∥ϕj,n − ϕ̂j,n∥
2
)1/2

(
1

n− p

n∑

t=p+1

p∑

j=1

∥Xt−j∥
2

)1/2

.

By Theorem 2.1 from [16] we have

p∑

j=1

∥ϕj,n − ϕ̂j,n∥
2 ¬ p max

1¬j¬p
∥ϕj,n − ϕ̂j,n∥

2 = oa.s.
(
(log n/n)1/2

)
.

Under the assumption (A1) and using the Markov inequality, we have

1

n− p

n∑

t=p+1

p∑

j=1

∥Xt−j∥
2 = OP

(
p(n)

)
,

and further

S2 = oa.s.
(
(log n/n)1/4

)
OP

(
p(n)1/2

)
= oP (1).

To bound S3, we use the Baxter inequality (see [15], Theorem 6.6.12 and p. 271)

and get

E ∥S3∥ ¬
∞∑

j=1

∥ϕj − ϕj,n∥E ∥Xt−j∥ ¬ const · E ∥Xt∥
∞∑

j=p+1

∥ϕj∥ .

Using Corollary 5.1 and the Markov inequality, we see that S3 = oP (1). Thus, we

have ϵn = oP (1). By formula (5.5) for ϵ̂t,n we can write

1

n− p

n∑

t=p+1

ϵ̂t,nϵ̂
T
t,n =

1

n− p

n∑

t=p+1

(ϵtϵ
T
t +Qt,nQ

T
t,n +Rt,nR

T
t,n + ϵtQ

T
t,n

+ ϵtR
T
t,n +Qt,nϵ

T
t +Qt,nR

T
t,n +Rt,nϵ

T
t +Rt,nQ

T
t,n).
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Under the assumption (A1) we obtain 1
n−p

∑n
t=p+1 ϵtϵ

T
t = Eϵtϵ

T
t + OP (n

−1/2).
Using the Cauchy–Schwarz inequality, we have

∥∥∥∥
1

n− p

n∑

t=p+1

Qt,nQ
T
t,n

∥∥∥∥ ¬
p∑

j=1

∥ϕj,n − ϕ̂j,n∥
2 1

n− p

n∑

t=p+1

p∑

j=1

∥Xt−j∥
2 = oP (1).

From the Baxter inequality we get

E

∥∥∥∥
1

n− p

n∑

t=p+1

Rt,nR
T
t,n

∥∥∥∥ ¬
∞∑

i,j=1

∥ϕj − ϕj,n∥ ∥ϕi − ϕi,n∥E ∥Xt−j∥ ∥Xt−i∥

¬ const · E ∥Xt∥
2 ( ∞∑

j=p+1

∥ϕj∥
)2

= O(p−2r).

Thus 1
n−p

∑n
t=p+1Rt,nR

T
t,n = oP (1). The remaining components can be bounded

analogously, by using the Cauchy–Schwarz inequality. Finally, we obtain

1

n− p

n∑

t=p+1

ϵ̂t,nϵ̂
T
t,n = Eϵtϵ

T
t + oP (1),

which completes the proof of the lemma. �

By similar arguments to those given above, we obtain

COROLLARY 5.2. Let us assume that (A1), (A2) with r  1 and (B) with

p(n) = o
(
(n/ log n)1/2

)
hold. Then

E∗(ϵ∗t ϵ
∗T
t )2 = E(ϵtϵ

T
t )

2 + oP (1).

In the next lemma we prove the consistency of the bootstrap replications ϵ∗t .

It is a multivariate version of Lemma 5.5 given by Bühlmann [9] for the one-

dimensional case.

LEMMA 5.3. Let (A1), (A2) with r  1 and (B) with p(n) = o
(
(n/ log n)1/2

)

hold. Then

ϵ∗t
D∗
−→ ϵt in probability.

P r o o f. Write Fϵ,n(x) =
1

n−p

∑n
t=p+1 1{ϵt ¬ x} and Fϵ(x) = P (ϵt ¬ x).

Let F̂ϵ,n be given by (3.1) and d2(·, ·) be the Mallows metric. Consequently, we

have (see [6])

d2(Fϵ,n, Fϵ) = o(1) almost surely.

To complete the proof, we have to show that

d2(F̂ϵ,n, Fϵ,n) = oP (1).
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By the definition of the Mallows metric and (5.5) we obtain

d22(F̂ϵ,n, Fϵ,n) ¬
1

n− p

n∑

t=p+1

∥ϵ̃t,n − ϵt∥
2 =

1

n− p

n∑

t=p+1

∥ϵ̂t,n − ϵt − ϵn∥
2

=
1

n− p

n∑

t=p+1

∥Qt,n +Rt,n − ϵn∥
2 .

Using bounds from the proof of Lemma 5.2, we have d2(F̂ϵ,n, Fϵ,n) = oP (1), and

as a consequence

d2(F̂ϵ,n, Fϵ) ¬ d2 (Fϵ,n, Fϵ) + d2(F̂ϵ,n, Fϵ,n) = oP (1),

which completes the proof of the lemma. �

The following lemma gives us asymptotic bounds for some sample bootstrap

estimators.

LEMMA 5.4. Let (A1), (A2) with r  1 and (B) with p(n) = o
(
(n/ log n)1/2

)

hold. Then

1

n

n∑

t=1

ϵ∗t = OP ∗(n
−1/2) in probability,(5.6)

1

n

n∑

t=1

ϵ∗t ϵ
∗T
t+s = OP ∗(n

−1/2) in probability,(5.7)

1

n

n∑

t=1

ϵ∗t ϵ
∗T
t = Σ∗ +OP ∗(n

−1/2) in probability,(5.8)

where Σ∗ = E∗ϵ∗t ϵ
∗T
t and s ̸= 0.

P r o o f. Let ϵ, η > 0. According to Lemma 5.2 we have

E∗ ∥ϵ∗t ∥
2 = E∗

k∑

i=1

ϵ∗2t,i
P
−→ E

k∑

i=1

ϵ2t,i = E∥ϵt∥
2.

So, there exists some constant Mη such that

P (E∗ ∥ϵ∗t ∥
2 > Mη) < η.

Let δϵ,η =
√
Mη/ϵ. Thus, (5.6) is a consequence of the following inequality:

P

(
P ∗

(
n1/2

∥∥∥∥
1

n

n∑

t=1

ϵ∗t

∥∥∥∥ > δϵ,η

)
> ϵ

)
¬ P

(
E∗∥ϵ∗t ∥

2

δ2ϵ,η
> ϵ

)
< η.

The bounds (5.7) and (5.8) can be shown analogously, by using Corollary 5.2. �
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In the next lemma we prove the convergence of the bootstrap replications ϕ̂∗j
of the Yule–Walker estimators. It is a multivariate version of the result given by

Alonso et al. [1].

LEMMA 5.5. Let (LA) hold. Then

max
1¬j¬p

∥ϕ̂∗j − ϕj,n∥
P ∗
−→ 0 in probability.

P r o o f. We have the following bounds:

∥Φ̂∗p − Φp,n∥kp×p,∞ = ∥Γ̂∗−1p γ̂∗p − Γ−1p γp∥kp×p,∞

= ∥(Γ̂∗−1p − Γ−1p )γ̂∗p − Γ−1p (γp − γ̂
∗
p)∥kp×p,∞

¬ ∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞∥γ̂
∗
p∥kp×p,∞

+ ∥Γ−1p ∥kp×kp,∞∥γp − γ̂
∗
p∥kp×p,∞,

where Φ̂∗p = (ϕ̂∗1, . . . , ϕ̂
∗
p)

T , Φp,n = (ϕ1,n, . . . , ϕp,n)
T , Γ̂∗p = [γ̂∗(i− j)]pi,j=1, γ̂∗p =

(
γ̂∗(1), . . . , γ̂∗(p)

)T
, Γp = [γ(i − j)]pi,j=1, and γp =

(
γ(1), . . . , γ(p)

)T
. Hannan

and Deistler ([15], Theorem 6.6.11) proved that the norm of the matrix Γ−1p is uni-

formly bounded with respect to p, i.e. sup0<p<∞ ∥Γ
−1
p ∥kp×kp,∞ ¬ C <∞. Thus,

we get

∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞ = ∥Γ̂∗−1p (Γ̂∗p − Γp)Γ
−1
p ∥kp×kp,∞

¬ ∥Γ̂∗−1p ∥kp×kp,∞∥Γ̂
∗
p − Γp∥kp×kp,∞∥Γ

−1
p ∥kp×kp,∞

¬ (C + ∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞)C∥Γ̂
∗
p − Γp∥kp×kp,∞.

Further, we have

∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞

(C + ∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞)C
¬ ∥Γ̂∗p − Γp∥kp×kp,∞.

So, we have to show that ∥Γ̂∗p − Γp∥kp×kp,∞ = oP ∗(1) in probability.

Notice that ∥Γ̂∗p − Γp∥kp×kp,∞ ¬ pmax0¬i¬p ∥γ̂
∗(i)− γ(i)∥. We have

p∥γ̂∗(i)− γ(i)∥ ¬ p∥γ̂∗(i)− γ∗(i)∥+ p∥γ∗(i)− γ(i)∥ = S1 + S2.

The component S1 contains a sample bootstrap autocovariance function, thus we

are able to bound it only for |i| ¬ p. We have

S1 = p

∥∥∥∥
1

n

n−i∑

t=1

X∗t+iX
∗T
t − γ

∗(i)

∥∥∥∥

¬ p

∥∥∥∥
∞∑

j,l=0

ψ̂j,n
1

n

n−i∑

t=1

ϵ∗t+i−jϵ
∗T
t−lψ̂

T
l,n −

∞∑

j=0

ψ̂j+i,nΣ
∗ψ̂T

j,n

∥∥∥∥

= oP ∗(1) in probability,
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where the obtained bounds are a consequence of Theorem 5.2 and Lemma 5.4.

Notice that with p(n) = o
(
(log n/n)−1/(2r+2)

)
in assumption (B) of Lemma 5.2

we get

(5.9) p (Σ− Σ∗) = oP (1).

We bound the component S2 for each i ∈ Z. We get

S2 = p
∥∥
∞∑

j=0

ψ̂j+i,nΣ
∗ψ̂T

j,n −
∞∑

j=0

ψj+iΣψ
T
j

∥∥

¬
∞∑

j=0

p∥ψ̂j+i,n − ψj+i∥∥Σ
∗∥∥ψ̂j,n∥+

∞∑

j=0

∥ψj+i∥p∥Σ
∗ − Σ∥∥ψ̂j,n∥

+
∞∑

j=0

∥ψj+i∥∥Σ∥p∥ψ̂j,n − ψj∥

= oP (1),

where the bounds are obtained by Theorems 5.2 and 5.3 and formula (5.9). Finally,

we have

(5.10) p max
0¬i¬p

∥γ̂∗(i)− γ(i)∥ = oP ∗(1) in probability,

which completes the proof of the lemma. �

Moreover, from Lemma 5.5, Theorem 2.1 in [16] and the Baxter inequality

([15], Theorem 6.6.12 and p. 271) we obtain

COROLLARY 5.3. Let (LA) hold. Then

max
1¬j¬p

∥ϕ̂∗j − ϕj∥
P ∗
−→ 0 in probability.

In the next lemmas we present multivariate generalizations of the results given

by Różański and Zagdański for the one-dimensional case (see [24]) and concerning

the prediction error Xn+h − X̂n+h. Since the proofs of these lemmas are similar

to the proofs for the one-dimensional case, we omit them.

LEMMA 5.6. Let (LA) hold. Then for h ∈ N

Xn+h − X̂n+h = OP (1).

LEMMA 5.7. Let (LA) hold. Then for h ∈ N

Xn+h − X̂n+h = D1,h(Φh−1)ϵn+1 + . . .+Dh−1,h(Φh−1)ϵn+h−1

+ ϵn+h + oP (1),

where D1,h(·), . . . , Dh−1,h(·) are some continuous functions and

Φh−1 = (ϕ1, . . . , ϕh−1)
T .
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In the following, we prove analogous results for the bootstrap prediction error

X∗n+h − X̂n+h approximating the prediction error Xn+h − X̂n+h.

LEMMA 5.8. Let (LA) hold. Then for h ∈ N

X∗n+h − X̂n+h = OP ∗(1) in probability.

P r o o f. We give the proof by induction on h. For h = 1 we have

X∗n+1 − X̂n+1 =
p∑

j=1

ϕ̂∗jXn+1−j + ϵ∗n+1 −
p∑

j=1

ϕ̂jXn+1−j

=
p∑

j=1

Xn+1−j(ϕ̂
∗
j − ϕ̂j) + ϵ∗n+1

= ϵ∗n+1 + oP ∗(1) = OP ∗(1) in probability.

Let us assume that for all l such that 1 ¬ l ¬ h − 1 we have X∗n+l − X̂n+l =
OP ∗(1) in probability and we prove it for h. We have

X∗n+h − X̂n+h =
( h−1∑

j=1

ϕ̂∗jX
∗
n+h−j +

p∑

j=h

ϕ̂∗jXn+h−j + ϵ∗n+h

)

−
( h−1∑

j=1

ϕ̂jX̂n+h−j +
p∑

j=h

ϕ̂jXn+h−j

)

=
h−1∑

j=1

ϕ̂∗j (X
∗
n+h−j − X̂n+h−j) +

h−1∑

j=1

X̂n+h−j(ϕ̂
∗
j − ϕ̂j)

+
p∑

j=h

Xn+h−j(ϕ̂
∗
j − ϕ̂j) + ϵ∗n+h

= OP ∗(1) in probability,

where the last bounds are a consequence of Lemma 5.5, Corollary 5.3, the Baxter

inequality ([15], Theorem 6.6.12 and p. 271) and the induction assumption. �

LEMMA 5.9. Let (LA) hold. Then for h ∈ N

X∗n+h − X̂n+h = D1,h(Φh−1)ϵ
∗
n+1 + . . .+Dh−1,h(Φh−1)ϵ

∗
n+h−1

+ ϵ∗n+h + oP ∗(1) in probability,

where D1,h(·), . . . , Dh−1,h(·) are the same continuous functions as in Lemma 5.7

and Φh−1 = (ϕ1, . . . , ϕh−1)
T .

Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS
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P r o o f. We give the proof by induction on h. For h = 1 we have

X∗n+1 − X̂n+1 =
p∑

j=1

ϕ̂∗jXn+1−j + ϵ∗n+1 −
p∑

j=1

ϕ̂jXn+1−j

=
p∑

j=1

Xn+1−j(ϕ̂
∗
j − ϕ̂j) + ϵ∗n+1

= ϵ∗n+1 + oP ∗(1) in probability.

Let us assume that for all l such that 1 ¬ l ¬ h− 1 we have

X∗n+l − X̂n+l = D̃1,l(Φl−1)ϵ
∗
n+1 + . . .+ D̃l−1,l(Φl−1)ϵ

∗
n+l−1

+ ϵ∗n+l + oP ∗(1) in probability.

We prove the equality for h. We have

X∗n+h − X̂n+h =
( h−1∑

j=1

ϕ̂∗jX
∗
n+h−j +

p∑

j=h

ϕ̂∗jXn+h−j + ϵ∗n+h

)

−
( h−1∑

j=1

ϕ̂jX̂n+h−j +
p∑

j=h

ϕ̂jXn+h−j

)

=
h−1∑

j=1

ϕ̂∗j (X
∗
n+h−j − X̂n+h−j) +

h−1∑

j=1

X̂n+h−j(ϕ̂
∗
j − ϕ̂j)

+
p∑

j=h

Xn+h−j(ϕ̂
∗
j − ϕ̂j) + ϵ∗n+h

=
h−1∑

j=1

ϕj(X
∗
n+h−j − X̂n+h−j) + oP ∗(1) + ϵ∗n+h in probability,

where the last bounds are obtained by Corollary 5.3, Lemma 5.8 and the Baxter

inequality ([15], Theorem 6.6.12 and p. 271). We complete the proof of the lemma

using the induction assumption. �

In the same way as in the one-dimensional case (see [24]) we can prove the

following useful lemma.

LEMMA 5.10. Assume that

|P ∗ (X∗n ¬ u)− P (X ¬ u)|
P
−→ 0

for some continuity point u of the cumulative distribution function FX , where ¬
means the relation of product order (partial order) in R

k,

Y ∗n
P ∗
−→ 0 in probability,

Vn
P
−→ 0.

Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS



Prediction intervals and regions for multivariate time series models 341

Then

|P ∗ (X∗n + Y ∗n ¬ u)− P (X + Vn ¬ u)|
P
−→ 0.

The next theorem gives us consistency of the hybrid bootstrap. An analo-

gous result for the one-dimensional case was given by Różański and Zagdański

(see [24]).

THEOREM 5.4. Let (LA) hold. Then for h ∈ N we have

|P ∗(X∗n+h − X̂n+h ¬ u)− P (Xn+h − X̂n+h ¬ u)| = oP (1)

for each u being a continuity point of the cumulative distribution function of the

random vector D1,h(Φh−1)ϵ1 + . . . + Dh−1,h(Φh−1)ϵh−1 +ϵh, where Φh−1 =
(ϕ1, . . . , ϕh−1)

T .

P r o o f. Let h ∈ N. According to Lemmas 5.7 and 5.9 we can write

P ∗(X∗n+h − X̂
∗
n+h ¬ u)− P (Xn+h − X̂n+h ¬ u)

= P ∗
(
D1,h(Φh−1)ϵ

∗
n+1 + . . .+Dh−1,h(Φh−1)ϵ

∗
n+h−1 + ϵ∗n+h + oP ∗(1) ¬ u

)

− P
(
D1,h(Φh−1)ϵn+1 + . . .+Dh−1,h(Φh−1)ϵn+h−1 + ϵn+h + oP (1) ¬ u

)

= P ∗
(
D1,h(Φh−1)ϵ

∗
1 + . . .+Dh−1,h(Φh−1)ϵ

∗
h−1 + ϵ∗h + oP ∗(1) ¬ u

)

− P
(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh + oP (1) ¬ u

)
.

Using the independence of ϵt, conditional independence of ϵ∗t and Lemmas 5.3 and

5.10 we complete the proof of the theorem. �

By Theorem 5.4 and Remark 4.1 we have

COROLLARY 5.4. Let (LA) hold. Then for h ∈ N we have

|P ∗(X∗n+h − X̂n+h ¬ u)− P (Xn+h − ProjnXn+h ¬ u)| = oP (1)

for each u being a continuity point of the cumulative distribution function of the

random vector D1,h(Φh−1)ϵ1 + . . . + Dh−1,h(Φh−1)ϵh−1 + ϵh, where Φh−1 =
(ϕ1, . . . , ϕh−1)

T and ProjnXn+h is the best linear h-step predictor (in the mean

square sense) of Xn+h.

COROLLARY 5.5. Let (LA) hold. Additionally, assume that the cumulative

distribution function of the distribution ϵt is continuous. Then for h ∈ N we have

sup
u∈Rk

|P ∗(X∗n+h − X̂n+h ¬ u)− P (Xn+h − X̂n+h ¬ u)| = oP (1)

and

sup
u∈Rk

|P ∗(X∗n+h − X̂n+h ¬ u)− P (Xn+h − ProjnXn+h ¬ u)| = oP (1).
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To prove the consistency of bootstrap-t, we have to show the consistency of

the estimator Σ̂n,X(h) (estimator of the mean squared prediction error (4.1)).

LEMMA 5.11. Let (LA) hold. Then

Σ̂n,X(h)
P
−→ ΣX(h),(5.11)

Σ̂−1n,X(h)
P
−→ Σ−1X (h).(5.12)

P r o o f. We consider an estimator of the mean squared prediction error of the

form (4.2):

ΣX(h) =
h−1∑

j=0

ψjΣψ
T
j , Σ̂n,X(h) =

h−1∑

j=0

ψ̂j,nΣ̂ψ̂
T
j,n.

Thus

∥∥
h−1∑

j=0

ψ̂j,nΣ̂ψ̂
T
j,n −

h−1∑

j=0

ψjΣψ
T
j

∥∥ ¬
h−1∑

j=0

∥ψ̂j,n − ψj∥∥Σ̂∥∥ψ̂j,n∥

+
h−1∑

j=0

∥ψj∥∥Σ̂− Σ∥∥ψ̂j,n∥+
h−1∑

j=0

∥ψj∥∥Σ∥∥ψ̂j,n − ψj∥

= oP (1),

where the bounds are obtained by using (5.1) and Theorems 5.2 and 5.3. From the

consistency of Σ̂n,X(h) it follows that P (Σ̂n,X(h) is invertible)→ 1 as n→∞,

which together with the continuity of Σ̂−1X (h) as a function of elements of Σ̂X(h)
imply (5.12) (see [25], Theorem 5.18, p. 188). �

In the next lemma we prove the convergence of the bootstrap replication ψ̂∗j .

It is a multivariate version of the result given by Zagdański [29].

LEMMA 5.12. Let (LA) hold. Then

sup
0¬j
∥ψ̂∗j − ψj∥ = oP ∗(1) in probability.

P r o o f. We use a similar method to that given in the proof of Theorem 5.3.

We can write analogous equations:

ψjΣ = γ(j)−
∞∑

i=1

γ(j + i)ϕTi , ψ̂∗jΣ
∗ = γ∗(j)−

p∑

i=1

γ∗(j + i)ϕ̂∗Ti .
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For j ∈ N we have

∥ψ̂∗j − ψj∥ ¬ ∥Σ
−1 − Σ∗−1∥

∥∥γ(j)−
∞∑

i=1

γ(j + i)ϕTi
∥∥

+ ∥Σ∗−1∥∥γ∗(j)− γ(j)∥

+ ∥Σ∗−1∥
∥∥
∞∑

i=1

γ(j + i)ϕTi −
p∑

i=1

γ∗(j + i)ϕ̂∗Ti
∥∥

= S1 + S2 + S3.

We treat the components Si individually. We have

∥Σ−1 − Σ∗−1∥ = ∥Σ∗−1(Σ∗ − Σ)Σ−1∥

¬ ∥Σ∗−1∥∥Σ∗ − Σ∥∥Σ−1∥

¬ (∥Σ−1∥+ ∥Σ−1 − Σ∗−1∥)∥Σ∗ − Σ∥∥Σ−1∥.

Further we get

(5.13)
∥Σ−1 − Σ∗−1∥

(C + ∥Σ−1 − Σ∗−1∥)C
¬ ∥Σ∗ − Σ∥ = oP (1),

where ∥Σ−1∥ ¬ C. Thus S1 = oP (1) by Lemma 5.2 and the assumption (A2). We

bound the components S2 and S3 using the same method. Thus, we present the

calculations only for S3:

S3 = ∥Σ
∗−1∥

∥∥
p∑

i=1

γ(j + i)(ϕTi − ϕ̂
∗T
i ) +

∞∑

i=p+1

γ(j + i)ϕTi

+
p∑

i=1

(
γ(j + i)− γ∗(j + i)

)
ϕ̂∗Ti

∥∥

¬ ∥Σ∗−1∥
(
max
1¬i¬p

∥ϕi − ϕ̂
∗
i ∥
∞∑

i=1

∥γ(i)∥+
∥∥[EX2

t,iEX
2
t,j ]

k
i,j=1

∥∥
∞∑

i=p+1

∥ϕi∥

+ p max
1¬i¬p

∥γ(i)− γ∗(i)∥ max
1¬i¬p

∥ϕ̂∗i ∥
)

= oP ∗(1),

where the bounds are a consequence of (5.10), (5.13) and Corollary 5.3. �

LEMMA 5.13. Let (LA) hold. Then

Σ̂∗X(h)
P ∗
−→ ΣX(h) in probability,(5.14)

Σ̂∗−1X (h)
P ∗
−→ Σ−1X (h) in probability.(5.15)
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P r o o f. We consider the bootstrap estimator of the mean squared prediction

error in the form

Σ̂∗X(h) =
h−1∑

j=0

ψ̂∗jΣ
∗ψ̂∗Tj .

Thus, using (5.10) and Lemma 5.12, we obtain

∥∥
h−1∑

j=0

ψ̂∗jΣ
∗ψ̂∗Tj −

h−1∑

j=0

ψjΣψ
T
j

∥∥ ¬
h−1∑

j=0

∥ψ̂∗j − ψj∥∥Σ
∗∥∥ψ̂∗j ∥

+
h−1∑

j=0

∥ψj∥∥Σ
∗ − Σ∥∥ψ̂∗j ∥+

h−1∑

j=0

∥ψj∥∥Σ∥∥ψ̂
∗
j − ψj∥

= oP ∗(1),

which proves (5.14). And (5.15), in the same way as (5.12), follows from the con-

tinuity of Σ̂∗−1X (h) as a function of elements of Σ̂∗X(h) (see [25], Theorem 5.18,

p. 188). �

REMARK 5.1. All proofs of the theorems and lemmas above remain valid for

p(n) chosen as in Step 1 of the sieve bootstrap algorithm.

The next theorem gives us consistency of bootstrap-t. An analogous result for

the one-dimensional case was given by Zagdański (see [29]).

THEOREM 5.5. Let (LA) hold. Then for h ∈ N we have

∣∣P ∗
(
Σ̂
∗−1/2
X (h)(X∗n+h − X̂n+h) ¬ u

)

− P
(
Σ̂
−1/2
X (h)(Xn+h − X̂n+h) ¬ u

)∣∣ = oP (1)

for each u being a continuity point of the cumulative distribution function of the

random vector Σ
−1/2
X (h)

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)
, where

Φh−1 = (ϕ1, . . . , ϕh−1)
T .

P r o o f. We have the convergence

Xn+h − X̂n+h
D
−→ D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh.

Using the multidimensional version of Slutsky’s theorem ([20], Proposition C,

p. 683) and Lemma 5.11, we have

Σ̂
−1/2
X (h)(Xn+h − X̂n+h)

D
−→ Σ

−1/2
X (h)

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)
.
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Similarly, using the conditional independence of ϵ∗t and Lemma 5.3, we obtain

convergence for the bootstrap prediction error

X∗n+h−X̂n+h
D∗
−→ D1,h(Φh−1)ϵ1+. . .+Dh−1,h(Φh−1)ϵh−1+ϵh in probability.

By the Conditional Slutsky’s Theorem ([19], p. 77) and Lemma 5.13 we get

Σ̂
∗−1/2
X (h)(X∗n+h − X̂n+h)

D∗
−→ Σ

−1/2
X (h)

(
D1,h(Φh−1)ϵ1+ . . .+Dh−1,h(Φh−1)ϵh−1+ ϵh

)
in probability.

Finally, we show that

∣∣P ∗
(
Σ̂
∗−1/2
X (h)(X∗n+h − X̂n+h) ¬ u

)

− P
(
Σ̂
−1/2
X (h)(Xn+h − X̂n+h) ¬ u

)∣∣ = oP (1)

for some u being a continuity point of the cumulative distribution function of the

random vector Σ
−1/2
X (h)

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)
. �

From Corollary 5.4, Lemmas 5.11, 5.13 and Theorem 5.5 we deduce the fol-

lowing corollaries.

COROLLARY 5.6. Let (LA) hold. Then for h ∈ N we have

∣∣P ∗
(
Σ̂
∗−1/2
X (h)(X∗n+h − X̂n+h) ¬ u

)

− P
(
Σ̂
−1/2
X (h)(Xn+h − ProjnXn+h) ¬ u

)∣∣ = oP (1)

for each u being a continuity point of the cumulative distribution function of the

random vector Σ
−1/2
X (h)

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)
, where

Φh−1 = (ϕ1, . . . , ϕh−1)
T .

COROLLARY 5.7. Let (LA) hold. Additionally, assume that the cumulative

distribution function of the distribution ϵt is continuous. Then for h ∈ N we have

sup
u∈Rk

∣∣P ∗
(
Σ̂
∗−1/2
X (h)(X∗n+h − X̂n+h) ¬ u

)

− P
(
Σ̂
−1/2
X (h)(Xn+h − X̂n+h) ¬ u

)∣∣ = oP (1)

and

sup
u∈Rk

∣∣P ∗
(
Σ̂
∗−1/2
X (h)(X∗n+h − X̂n+h) ¬ u

)

− P
(
Σ̂
−1/2
X (h)(Xn+h − ProjnXn+h) ¬ u

)∣∣ = oP (1).
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5.3. Consistency of extreme statistics. By Lemma 5.7 and the continuous map-

ping theorem we conclude that Un+h, Vn+h and Rn+h given by formulas (4.17)–

(4.19) are convergent in distribution to some random variables.

LEMMA 5.14. Assume that (LA) hold and that ϵt has a continuous distribu-

tion function. Then, as n→∞, Un+h
D
−→U, Vn+h

D
−→V andRn+h

D
−→R, where

U, V and R are random variables with continuous distribution functions.

In the next lemma we show that distributions of U∗n+h, V ∗n+h and R∗n+h given

by formulas (4.20)–(4.22) are close to their corresponding non-bootstrap distribu-

tions.

LEMMA 5.15. Assuming that (LA) hold, we have U∗n+h
D∗
−→U, V ∗n+h

D∗
−→V

and R∗n+h
D∗
−→R in probability.

P r o o f. By Lemma 5.7, Lemma 10 from [5], and Theorem 5.4 we conclude

that, as n→∞,

Wn+h=Xn+h− X̂n+h
D
−→W =D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh,

and the sequence of bootstrap distributions of W ∗n+h weakly approaches in prob-

ability the sequence of distributions of Wn+h. In consequence, W ∗n+h
D∗
−→W in

probability. Since the mappings defining U∗n+h, V ∗n+h, R∗n+h are continuous func-

tions, the version of the continuous mapping theorem (see [4]) impliesU∗n+h
D∗
−→U

in probability, V ∗n+h
D∗
−→V in probability and R∗n+h

D∗
−→R in probability, which

completes the proof. �

Using Lemmas 5.11, 5.13, and Theorem 5.5 we can prove analogous results

for asymptotic distributions of USn+h, V Sn+h, RSn+h and their bootstrap ver-

sions US∗n+h, V S∗n+h, RS∗n+h in the same way as in the proofs of the lemmas

above.

LEMMA 5.16. With (LA) we have, as n→∞,

USn+h
D
−→US, V Sn+h

D
−→V S and RSn+h

D
−→RS.

LEMMA 5.17. With (LA)

US∗n+h

D∗
∼= US, V S∗n+h

D∗
∼= V S and RS∗n+h

D∗
∼= RS in probability.

In the construction of simultaneous confidence intervals we should replace un-

known quantiles with their bootstrap equivalences. Therefore, we show that boot-

strap quantiles of U∗n+h, V ∗n+h and R∗n+h are approximations of the quantiles of U ,

V and R. This fact has been proved in [24] (see Lemma 5.2). For the clearance let

us reformulate their lemma with notation stated in Lemma 5.15.
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LEMMA 5.18. With (LA)

u∗n+h,α = uα + oP (1), v∗n+h,α = vα + oP (1), r∗n+h,α = rα + oP (1).

In practice, we also do not know the exact bootstrap distributions of U∗n+h,

V ∗n+h and R∗n+h. Therefore, using the result by Shi et al. [26], we apply the Monte

Carlo method to approximate corresponding quantiles. In consequence, we obtain

the following lemmas.

LEMMA 5.19. With (LA)

û∗n+h,α = uα + oP (1),

v̂∗n+h,α = vα + oP (1),

r̂∗n+h,α = rα + oP (1).

LEMMA 5.20. With (LA) and for a continuous distribution function of ϵt

ûs∗n+h,(·) = us(·) + oP (1),

v̂s∗n+h,(·) = vs(·) + oP (1),

r̂s∗n+h,(·) = rs(·) + oP (1),

where ûs∗n+h,(·), v̂s
∗
n+h,(·) and r̂s∗n+h,(·) are Monte Carlo bootstrap estimators of

quantiles of US∗n+h, V S
∗
n+h, RS

∗
n+h, and thus the approximations of quantiles of

USn+h, V Sn+h, RSn+h.

6. CONSISTENCY OF BOOTSTRAP PREDICTION REGIONS

In this section we present results about the consistency of the bootstrap pre-

diction regions for the stationary time series models. Theorem 6.1 is a multivariate

version of the result given by Różański and Zagdański (see [24]), and Theorem 6.3

is a multivariate version of the result given by Zagdański (see [29]).

To prove the consistency of the prediction regions we will use auxiliary results

about convergence of quantiles for a weakly convergent sequence of the cumula-

tive distribution function. The first lemma was given by Politis et al. [23] and the

second one, the modification for the conditional case, was given by Różański and

Zagdański [24].

LEMMA 6.1 ([23], Lemma 1.2.1). Let {Fn} be a sequence of cumulative dis-

tribution functions which converges to F in a weak sense and assume that F is con-

tinuous and strictly increasing at y = F−1(α) (for x ∈ (0, 1), F−1(x) = inf{y :
x ¬ F (y)}). Then

F−1n (α)→ F−1(α).
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LEMMA 6.2 ([24]). Let {F ∗n} be a sequence of cumulative distribution func-

tions which converges to F in a weak sense (i.e. F ∗n ⇒ F in probability) and

assume that F is continuous and strictly increasing at y = F−1(α). Then

F ∗−1n (α)
P
−→ F−1(α).

In Subsection 4.3 we have presented the hybrid bootstrap prediction cube

given by (4.10). In practice we do not know the distribution of the random vec-

tor H∗n(h), and in consequence we are not able to compute its quantiles. Thus, we

define the modified hybrid bootstrap prediction cube in the form

(6.1) ÎB(h) = {Xn+h,j ∈ [X̂n+h,j + q̂∗α/(2k),j ,

X̂n+h,j + q̂∗1−α/(2k),j ], j = 1, . . . , k},

where q̂∗α/(2k),j , q̂
∗
1−α/(2k),j are Monte Carlo approximations of quantiles q∗α/(2k),j ,

q∗1−α/(2k),j (computed by using B bootstrap replications).

REMARK 6.1. The replacement of the quantiles is made due to the result given

by Shi et al. [26], i.e.

q∗α,j − q̂
∗
α,j = oP (1), j = 1, . . . , k, α ∈ (0, 1).

THEOREM 6.1. Let (LA) hold. Additionally, assume that cα/(2k),j , c1−α/(2k),j
are continuity points of the cumulative distribution function of the random vari-

ables Hj , which are the jth coordinates of the random vector D1,h(Φh−1)ϵ1 +
. . .+Dh−1,h(Φh−1)ϵh−1 + ϵh . Then for h ∈ N we have

P
(
Xn+h ∈ ÎB(h)

)
 1− α as n→∞.

P r o o f. Using Theorem 5.4 we get for 1 ¬ j ¬ k

Xn+h,j − X̂n+h,j
D
−→ Hj .

By the result given by Różański and Zagdański [24] we have for 1 ¬ j ¬ k

P (Xn+h,j ∈ [X̂n+h,j + q̂∗α/(2k),j , X̂n+h,j + q̂∗1−α/(2k),j ])→ 1− α/k.

Using the Bonferroni inequality, we obtain

P
(
Xn+h ∈ ÎB(h)

)

 1−
k∑

j=1

P (Xn+h,j ∈ [X̂n+h,j + q̂∗α/(2k),j , X̂n+h,j + q̂∗1−α/(2k),j ]
c)→ 1−α. �
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In a similar way, we define ÊB(h) as an equivalent of EB(h) given by (4.11)

in the form

(6.2) ÊB(h) = {(Xn+h − X̂n+h)
T (Xn+h − X̂n+h) ¬ q̂

∗
1−α},

where q̂∗1−α is the Monte Carlo approximation of quantile q∗1−α (computed by using

B bootstrap replications). The consistency of this hybrid prediction region is given

in the next theorem.

THEOREM 6.2. Let (LA) hold. Additionally, assume that c1−α is a continuity

point of the cumulative distribution function of the random variable ∥D1,h(Φh−1)ϵ1
+ . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh∥

2. Then for h ∈ N

P
(
Xn+h ∈ ÊB(h)

)
→ 1− α.

P r o o f. Using continuity of the function ∥ · ∥2 and Theorem 5.4, we have

∥Hn(h)∥
2 D
−→ ∥D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1+ϵh∥

2 ,

∥H∗n(h)∥
2 D∗
−→ ∥D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1+ϵh∥

2
in probability.

Let q1−α be the 1− α quantile of the distribution ∥Hn(h)∥
2. By Lemmas 6.1, 6.2

and the consistency of the bootstrap sample quantiles (Remark 6.1) we have

q1−α − c1−α = o(1), q∗1−α − q1−α = oP (1), q̂∗1−α − q
∗
1−α = oP (1).

Notice that

P
(
Xn+h ∈ ÊB(h)

)
= P

(
∥Hn(h)∥

2 ¬ q̂∗1−α
)

= P
(
∥Hn(h)∥

2 ¬ (q̂∗1−α − q1−α) + (q∗1−α − q1−α) + (q1−α − c1−α) + c1−α
)

= P
(
∥Hn(h)∥

2 + oP (1) ¬ c1−α
)
.

We use the Slutsky theorem to complete the proof:

P
(
∥Hn(h)∥

2 + oP (1) ¬ c1−α
)

→ P
(
∥D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh∥

2 ¬ c1−α
)
= 1−α. �

We define the modified bootstrap-t prediction cube ÎB−t(h) and the modified

bootstrap-t prediction ellipse ÊB−t(h):

(6.3) ÎB−t(h) = {Xn+h,j ∈ [X̂n+h,j + σ̂X,j(h)t̂
∗
α/(2k),j ,

X̂n+h,j + σ̂X,j(h)t̂
∗
1−α/(2k),j ], j = 1, . . . , k},
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(6.4) ÊB−t(h) = {(Xn+h − X̂n+h)
T Σ̂−1n,X(h)(Xn+h − X̂n+h) ¬ t̂

∗
1−α},

where t̂∗α/(2k),j , t̂
∗
1−α/(2k),j are the Monte Carlo approximations of the quantiles

t∗α/(2k),j , t
∗
1−α/(2k),j , and t̂∗1−α is the Monte Carlo approximation of the quantile

t∗1−α (all the approximations are computed by using B bootstrap replications).

THEOREM 6.3. Let (LA) hold. Additionally, assume that dα/(2k),j , d1−α/(2k),j
are continuity points of the cumulative distribution functions of the random vari-

ables Tj = Hj/σX,j(h). Then for h ∈ N we have

P
(
Xn+h ∈ ÎB−t(h)

)
 1− α as n→∞.

P r o o f. Using Theorem 5.4, Lemma 5.11 and the Slutsky theorem, we get

for 1 ¬ j ¬ k

Xn+h,j − X̂n+h,j

σ̂X,j(h)

D
−→ Tj .

By the result given by Zagdański [29] we have for 1 ¬ j ¬ k

P
(
Xn+h,j∈ [X̂n+h,j + t̂∗α/(2k),j σ̂X,j(h), X̂n+h,j + t̂∗1−α/(2k),j σ̂X,j(h)]

)
→1−α/k.

Using the Bonferroni inequality, we obtain

P
(
Xn+h ∈ ÎB−t(h)

)

 1−
k∑

j=1

P
(
Xn+h,j∈ [X̂n+h,j+ t̂

∗
α/(2k),j σ̂X,j(h), X̂n+h,j+ t̂

∗
1−α/(2k),j σ̂X,j(h)]

c
)

→ 1− α. �

THEOREM 6.4. Let (LA) hold. Assume that d1−α is a continuity point of the

cumulative distribution function of the random variable

∥∥Σ−1/2X (h)
(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)∥∥2.

Then for h ∈ N

P
(
Xn+h ∈ ÊB−t(h)

)
→ 1− α.

P r o o f. The proof is analogous to the proof of Theorem 6.2. �

Now, we will prove the consistency of simultaneous bootstrap prediction in-

tervals. First, assume that we know the distribution of U , V and R. By the Slutsky

lemma, we obtain the following theorem.
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THEOREM 6.5. With the assumptions from Lemma 5.14 we get

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i + uα/2, X̂n+h,i + v1−α/2]

)
 1− α,(6.5)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i + uα,+∞)

)
= 1− α,(6.6)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ (−∞, X̂n+h,i + v1−α]

)
= 1− α,(6.7)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i − r1−α, X̂n+h,i + r1−α]

)
= 1− α,(6.8)

where u(·), v(·) and r(·) are quantiles of corresponding distributions of U , V
and R.

Further, we can formulate the main theorem about consistency of bootstrap

prediction simultaneous intervals with theoretical quantiles in formulas (6.5)–(6.8)

replaced by their Monte Carlo approximations by using the result given by Shi

et al. [26]:

THEOREM 6.6. Assume that (LA) hold and that ϵt has a continuous distri-

bution. Then for each u being the continuity point of limited distribution we have

simultaneous prediction intervals satisfying the following:

lim
n→∞

P
(
∀i=1,...,k Xn+h,i ∈ [X̂n+h,i + û∗n+h,α/2,(6.9)

X̂n+h,i + v̂∗n+h,1−α/2]
)
 1− α,

lim
n→∞

P
(
∀i=1,...,k Xn+h,i ∈ [X̂n+h,i + û∗n+h,α,+∞)

)
= 1− α,(6.10)

lim
n→∞

P
(
∀i=1,...,k Xn+h,i ∈ (−∞, X̂n+h,i + v̂∗n+h,1−α]

)
= 1− α,(6.11)

lim
n→∞

P
(
∀i=1,...,k Xn+h,i ∈ [X̂n+h,i − r̂

∗
n+h,1−α,(6.12)

X̂n+h,i + r̂∗n+h,1−α]
)
= 1− α.

P r o o f. For the formula (6.9) we have the following relations:

1− P
(
∀i=1,...,k Xn+h,i ∈ [X̂n+h,i + û∗n+h,α/2, X̂n+h,i + v̂∗n+h,1−α/2]

)

= 1− P
(
min
1¬i¬k

(Xn+h,i − X̂n+h,i)  û
∗
n+h,α/2

∧ max
1¬i¬k

(Xn+h,i − X̂n+h,i) ¬ v̂
∗
n+h,1−α/2

)

= P (Un+h < û∗n+h,α/2 ∨ Vn+h > v̂∗n+h,1−α/2)

¬ P (Un+h < û∗n+h,α/2) + P (Vn+h > v̂∗1−α/2)

≈P
(
U < oP (1) + uα/2

)
+ P

(
V > oP (1) + v1−α/2

)

→
α

2
+
α

2
= α as n→∞,
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where the above approximation is a consequence of Lemma 5.19, and the last con-

vergence follows from the Slutsky lemma. For formulas (6.10)–(6.12) the reason-

ing is analogous. �

As in the case of hybrid intervals defined in Theorem 6.6 we can construct

studentized bootstrap intervals and prove the following theorem.

THEOREM 6.7. With the assumptions from Lemma 5.14 we have the following

simultaneous prediction intervals:

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i + ûs∗n+h,α/2σ̂n+h,(6.13)

X̂n+h,i + v̂s∗n+h,1−α/2σ̂n+h]
)
 1− α,

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i + ûs∗n+h,ασ̂n+h,+∞)

)
= 1− α,(6.14)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ (−∞, X̂n+h,i + v̂s∗n+h,1−ασ̂n+h]

)
= 1− α,(6.15)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i − r̂s

∗
n+h,1−ασ̂n+h,(6.16)

X̂n+h,i + r̂s∗n+h,1−ασ̂n+h]
)
= 1− α,

where ûs∗n+h,(·), v̂s
∗
n+h,(·) and r̂s∗n+h,(·) are Monte Carlo estimators of quantiles

of bootstrap distributions of US∗n+h, V S∗n+h and RS∗n+h, respectively.

REMARK 6.2. It is worth noting that by Remark 4.1 and Corollaries 5.4–5.7

all the constructed bootstrap prediction intervals and regions are asymptotically

equivalent to corresponding prediction intervals and regions based on the best

linear mean squared prediction of Xn+h.

7. SIMULATIONS

In this section we investigate how the presented procedures work on simulated

data. We consider the following V ARMA(5, 4) model:

Xt =

[
−0.91 0.01
0.37 −0.90

]
Xt−1 +

[
−0.37 0.12
0.42 −0.49

]
Xt−2

+

[
−0.18 0.10
0.30 0.18

]
Xt−3 +

[
−0.12 0.08
0.14 0.24

]
Xt−4

+

[
0.17 −0.02
0.18 0.36

]
Xt−5 +

[
−0.91 0.01
0.37 −0.90

]
ϵt−1

+

[
−0.37 0.12
0.42 −0.49

]
ϵt−2 +

[
−0.18 0.10
0.30 0.18

]
ϵt−3

+

[
−0.12 0.08
0.14 0.24

]
ϵt−4 + ϵt.
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In the model V ARMA(5, 4) we used the following distributions for the noise

process ϵt:
(N) normal distribution N (0,Σ),

(T) t-Student distribution T (5),

(χ2) χ-square distribution χ2(5),

(M) mixture of the normal distributions 0.1N ([9, 9]T ,Σ) + 0.9N ([−1,−1]T ,Σ).
The observations of the noise process ϵt for each of these distributions have

been scaled (observations from χ2 have been centered). Thus for each considered

distribution we have the mean Eϵt = [0, 0]T and the covariance matrix

Eϵtϵ
T
t = Σ =

[
1.0 0.5
0.5 1.0

]
.

On the base of the simulation results, we compare sample coverage of the

prediction regions, which were computed by using the Box–Jenkins method (this

method assumes normality of ϵt), with the sample coverage of the bootstrap pre-

diction regions. We check performance of each method for different distributions

of ϵt. We use t-Student distribution (T) as a heavy tailed distribution, χ-square

distribution (χ2) as a nonsymmetric distribution, and mixture (M) of the normal

distributions as a bimodal distribution.

In simulations we used parameters:
• confidence level 1− α = 90%,

• forecast horizon h = 1, 2, 3, 4, 5,

• number of observations n = 50, 200,

• number of bootstrap replications B = 1000,

• number of Monte Carlo repetitions N = 1000.

We have constructed three types of the prediction regions. The first type of

the prediction regions is constructed by using the Bonferroni inequality and the

prediction regions have cubical shape. The Box–Jenkins prediction cube is given as

in equation (4.4) and the bootstrap prediction cubes have forms of hybrid bootstrap

(6.1) and bootstrap-t (6.3).

The prediction regions of the second type have elliptical shape. The Box–

Jenkins prediction ellipse is given by (4.3) and the bootstrap prediction ellipses are

given by hybrid bootstrap (6.2) and bootstrap-t (6.4).

The third type of prediction regions is constructed by using extreme statistics,

and the prediction regions have cubical shape. We have constructed the hybrid

bootstrap prediction cubes IUV
B (h) (see (4.23)), IRB (h) (see (4.26)) and bootstrap-t

prediction cubes IUV
B−t(h) (see (4.27)), IRB−t(h) (see (4.30)).

In Tables 1 and 3, we present empirical coverage of the prediction cubes, and

in Table 2, we present empirical coverage of the prediction ellipses for different

number of observations n = 50, 200. In the brackets, next to the empirical cover-

age, we present the mean area of the prediction regions.
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The area of the prediction ellipse, constructed by using the Box–Jenkins meth-

od, has been calculated via the formula (see [17])

(7.1) V
(
EB−J(h)

)
=

πk/2

Γ
(
k
2 + 1

)
(
χ2
1−α(k)

)k/2 (
det

(
ΣX(h)

))1/2
,

where ΣX(h) is replaced by Σ̂X(h).
The area of the bootstrap-t prediction ellipse has been calculated by using (7.1)

with ΣX(h) replaced by Σ̂X(h) and the quantile χ2
1−α(k) replaced by t̂∗1−α.

It is worth noting the better performance of the bootstrap prediction regions

in comparison with the performance of the prediction regions constructed via the

Box–Jenkins method.

In all cases we observe that empirical coverage of bootstrap-t prediction re-

gions is larger than empirical coverage of hybrid bootstrap prediction regions but

bootstrap-t prediction regions have larger areas.

The empirical coverage of the bootstrap prediction cubes is similar to empir-

ical coverage of the bootstrap prediction ellipses. However, areas of the bootstrap

prediction ellipses are smaller than areas of the bootstrap prediction cubes.

The bootstrap prediction regions constructed with extreme statistics are more

stable than the bootstrap prediction regions constructed by using the Bonferroni

inequality.

Table 1. The empirical coverage of the bootstrap prediction cubes for the model V ARMA(5, 4).

Distribution h
n = 50 n = 200

Box–Jenkins hybrid bootstrap bootstrap-t Box–Jenkins hybrid bootstrap bootstrap-t

1 77.2 (3.1) 83.1 (3.8) 89.0 (4.7) 86.1 (3.1) 88.1 (3.4) 90.3 (3.6)

2 75.6 (5.2) 80.1 (6.2) 86.6 (8.0) 85.2 (5.5) 86.7 (5.8) 88.9 (6.4)

N 3 77.0 (6.0) 82.0 (7.1) 87.8 (9.1) 87.2 (6.3) 88.1 (6.7) 89.9 (7.4)

4 79.3 (6.7) 82.7 (7.7) 87.4 (9.7) 87.7 (7.0) 89.1 (7.4) 91.3 (8.2)

5 79.3 (7.2) 82.3 (8.2) 87.5 (10.3) 87.7 (7.7) 89.2 (8.1) 90.6 (8.9)

1 78.0 (3.1) 82.6 (3.9) 88.0 (4.9) 86.7 (3.1) 88.4 (3.4) 90.6 (3.8)

2 77.0 (5.2) 82.7 (6.4) 88.9 (8.3) 85.6 (5.6) 87.3 (6.0) 89.2 (6.7)

T 3 77.7 (6.1) 82.6 (7.3) 87.1 (9.4) 85.8 (6.4) 87.6 (6.8) 89.4 (7.6)

4 80.1 (6.7) 83.4 (7.8) 89.0 (10.1) 87.4 (7.1) 88.4 (7.6) 90.4 (8.5)

5 80.1 (7.3) 83.7 (8.4) 89.1 (10.7) 87.4 (7.8) 88.3 (8.3) 90.6 (9.2)

1 75.6 (3.1) 81.7 (3.9) 86.6 (4.8) 85.4 (3.1) 86.5 (3.5) 88.7 (3.8)

2 77.7 (5.2) 80.7 (6.3) 87.3 (8.2) 84.2 (5.5) 85.5 (5.9) 87.9 (6.6)

χ2 3 76.0 (6.1) 81.3 (7.2) 87.2 (9.2) 84.3 (6.3) 85.2 (6.8) 87.7 (7.5)

4 76.9 (6.7) 81.7 (7.8) 86.9 (9.9) 85.9 (7.0) 86.9 (7.5) 88.3 (8.3)

5 76.9 (7.3) 80.3 (8.3) 85.2 (10.5) 85.9 (7.7) 86.4 (8.2) 88.2 (9.1)

1 74.7 (3.0) 80.8 (4.0) 85.6 (5.1) 81.1 (3.1) 86.0 (4.0) 87.6 (4.4)

2 73.4 (5.2) 77.8 (6.5) 83.6 (8.6) 81.0 (5.5) 83.5 (6.3) 85.2 (7.0)

M 3 72.8 (6.1) 77.1 (7.4) 82.3 (9.6) 80.2 (6.4) 83.4 (7.1) 85.2 (7.9)

4 76.2 (6.7) 79.4 (8.0) 84.9 (10.3) 80.2 (6.4) 83.4 (7.1) 85.2 (7.9)

5 76.2 (7.4) 78.2 (8.6) 83.6 (11.0) 83.4 (7.8) 85.6 (8.6) 86.5 (9.5)
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Table 2. The empirical coverage of the bootstrap

prediction ellipses for the model V ARMA(5, 4).

Distribution h
n = 50 n = 200

Box–Jenkins hybrid bootstrap bootstrap-t Box–Jenkins hybrid bootstrap bootstrap-t

1 75.6 (2.8) 85.3 (5.7) 88.7 (4.4) 84.6 (2.9) 87.6 (5.1) 88.9 (3.3)

2 75.0 (4.8) 84.5 (8.8) 86.3 (7.6) 84.3 (5.1) 87.9 (7.7) 88.5 (5.9)

N 3 74.0 (5.5) 83.9 (9.4) 86.0 (8.5) 85.9 (5.7) 89.4 (8.3) 89.1 (6.7)

4 78.6 (6.2) 85.0 (10.1) 87.6 (9.2) 86.0 (6.5) 88.9 (9.3) 89.6 (7.5)

5 78.6 (6.7) 84.8 (11.0) 88.2 (9.8) 86.0 (7.2) 89.7 (10.4) 90.0 (8.3)

1 77.2 (2.8) 86.6 (5.7) 88.1 (4.5) 86.7 (2.9) 89.4 (5.0) 90.1 (3.4)

2 75.7 (4.8) 85.6 (9.0) 88.6 (7.8) 85.8 (5.1) 87.8 (7.8) 89.0 (6.1)

T 3 76.9 (5.6) 85.3 (9.7) 87.6 (8.8) 86.4 (5.8) 87.8 (8.4) 88.7 (6.8)

4 77.7 (6.2) 85.5 (10.3) 89.1 (9.4) 85.8 (6.6) 88.9 (9.4) 89.4 (7.7)

5 77.7 (6.8) 85.4 (11.3) 89.3 (10.1) 85.8 (7.3) 88.8 (10.5) 88.8 (8.5)

1 74.4 (2.8) 83.1 (5.7) 86.8 (4.5) 85.1 (2.9) 87.1 (5.1) 88.6 (3.4)

2 74.7 (4.8) 86.0 (8.9) 87.3 (7.8) 83.9 (5.1) 87.4 (7.8) 88.3 (6.0)

χ2 3 75.7 (5.5) 84.6 (9.5) 87.6 (8.6) 84.0 (5.7) 88.2 (8.4) 87.8 (6.8)

4 75.1 (6.2) 82.8 (10.2) 87.1 (9.3) 85.4 (6.5) 86.7 (9.3) 89.0 (7.6)

5 75.1 (6.8) 83.4 (11.1) 85.5 (9.9) 85.4 (7.2) 86.3 (10.5) 88.7 (8.4)

1 73.3 (2.8) 82.8 (5.8) 86.8 (4.8) 80.7 (2.9) 88.3 (5.8) 88.3 (4.0)

2 71.5 (4.8) 81.7 (9.0) 83.9 (8.1) 81.1 (5.1) 86.0 (8.3) 85.5 (6.6)

M 3 72.3 (5.6) 83.1 (9.6) 83.8 (9.0) 79.8 (5.8) 84.0 (8.9) 85.2 (7.3)

4 75.0 (6.2) 83.5 (10.3) 84.1 (9.6) 82.7 (6.6) 88.1 (9.8) 86.7 (8.1)

5 75.0 (6.8) 82.7 (11.2) 84.6 (10.3) 82.7 (7.3) 88.3 (10.9) 87.6 (8.8)

Table 3. The empirical coverage of the bootstrap prediction cubes

constructed by extreme statistics for the model V ARMA(5, 4).

Distri-
h

n = 50 n = 200

bution UV R UV-t R-t UV R UV-t R-t

1 85.6 (6.6) 85.6 (6.7) 88.5 (4.7) 89.1 (4.7) 88.1 (6.0) 88.0 (6.0) 90.2 (3.6) 89.7 (3.5)

2 85.1 (10.0) 85.1 (10.3) 86.3 (7.9) 87.6 (8.0) 88.2 (8.9) 88.8 (9.0) 88.5 (6.3) 88.8 (6.3)

N 3 83.7 (10.6) 84.5 (10.8) 87.6 (8.9) 88.3 (9.0) 89.0 (9.5) 89.6 (9.6) 89.8 (7.2) 89.4 (7.2)

4 84.9 (11.4) 86.0 (11.7) 87.0 (9.6) 87.6 (9.6) 88.4 (10.7) 88.7 (10.7) 90.9 (8.0) 90.7 (8.0)

5 84.5 (12.4) 86.1 (12.7) 87.7 (10.2) 88.8 (10.3) 90.6 (12.0) 90.6 (12.1) 90.6 (8.7) 90.5 (8.7)

1 86.2 (6.6) 87.4 (6.8) 87.5 (4.8) 87.5 (4.7) 89.0 (5.9) 89.2 (6.0) 90.0 (3.7) 89.3 (3.6)

2 84.6 (10.3) 85.6 (10.5) 87.4 (8.1) 88.1 (8.2) 87.9 (9.0) 88.1 (9.0) 88.5 (6.4) 88.6 (6.4)

T 3 84.7 (10.9) 85.4 (11.2) 86.8 (9.2) 87.7 (9.2) 87.7 (9.5) 87.7 (9.6) 88.8 (7.3) 89.1 (7.3)

4 85.4 (11.7) 85.8 (11.9) 87.7 (9.9) 88.7 (9.9) 89.4 (10.7) 89.5 (10.8) 90.0 (8.2) 89.8 (8.1)

5 85.4 (12.8) 85.6 (13.1) 88.7 (10.6) 88.7 (10.6) 89.0 (12.1) 89.6 (12.1) 89.8 (8.9) 89.4 (8.9)

1 82.7 (6.6) 83.7 (6.7) 86.2 (4.8) 87.1 (4.8) 87.6 (6.0) 87.9 (6.0) 88.6 (3.7) 88.4 (3.6)

2 85.0 (10.1) 86.4 (10.4) 87.1 (8.0) 87.0 (8.1) 87.2 (9.0) 87.8 (9.0) 88.0 (6.3) 87.4 (6.3)

χ2 3 83.5 (10.7) 85.1 (10.9) 86.7 (9.0) 87.4 (9.0) 87.8 (9.5) 88.2 (9.5) 87.6 (7.2) 87.6 (7.2)

4 82.5 (11.5) 84.2 (11.7) 86.7 (9.7) 86.9 (9.8) 86.1 (10.6) 87.3 (10.7) 88.0 (8.1) 88.3 (8.1)

5 82.7 (12.6) 83.8 (12.8) 85.1 (10.4) 85.8 (10.4) 86.0 (12.0) 86.5 (12.1) 88.2 (8.9) 88.2 (8.8)

1 82.8 (6.8) 84.0 (6.9) 84.9 (5.0) 86.1 (5.0) 87.7 (6.7) 88.1 (6.8) 87.4 (4.3) 87.3 (4.2)

2 82.5 (10.3) 83.0 (10.5) 83.8 (8.4) 85.0 (8.4) 86.8 (9.5) 86.5 (9.5) 84.6 (6.7) 85.0 (6.7)

M 3 83.7 (10.9) 84.4 (11.1) 82.3 (9.4) 82.8 (9.4) 84.2 (10.0) 84.2 (10.0) 84.5 (7.6) 85.1 (7.6)

4 83.1 (11.6) 84.1 (11.8) 84.6 (10.0) 84.9 (10.1) 88.5 (11.1) 88.2 (11.1) 86.1 (8.5) 86.3 (8.4)

5 82.9 (12.8) 83.7 (13.0) 84.1 (10.8) 83.8 (10.8) 88.4 (12.5) 88.9 (12.6) 86.4 (9.2) 86.6 (9.2)
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LIMITING SPECTRAL DISTRIBUTIONS OF SUMS OF PRODUCTS
OF NON-HERMITIAN RANDOM MATRICES∗

BY

HOLGER K Ö S T E R S (BIELEFELD) AND ALEXANDER T I K H O M I ROV (SYKTYVKAR)

Abstract. For fixed l  0 and m  1, let X
(0)
n ,X

(1)
n , . . . ,X

(l)
n be in-

dependent random n × n matrices with independent entries, let F
(0)
n :=

X
(0)
n (X

(1)
n )−1 . . . (X

(l)
n )−1, and let F

(1)
n , . . . ,F

(m)
n be independent ran-

dom matrices of the same form as F
(0)
n . We show that as n → ∞, the

matrices F
(0)
n and m−(l+1)/2(F

(1)
n + . . . + F

(m)
n ) have the same limiting

eigenvalue distribution.

To obtain our results, we apply the general framework recently intro-

duced in Götze, Kösters, and Tikhomirov (2015) to sums of products of in-

dependent random matrices and their inverses. We establish the universality

of the limiting singular value and eigenvalue distributions, and we provide

a closer description of the limiting distributions in terms of free probability

theory.

2010 AMS Mathematics Subject Classification: Primary: 60B20;

Secondary: 60E07, 60F05, 46L54.

Key words and phrases: Non-Hermitian random matrices, limiting

spectral distributions, free probability theory, stable distributions.

1. INTRODUCTION AND MAIN RESULTS

The investigation of the asymptotic spectral distributions of random matrices

is a major topic in random matrix theory. In recent years, sums and products of

independent non-Hermitian random matrices with independent entries have found

increasing attention; see e.g. [1], [3], [11], [13]–[18], [20], [25], [27], [29], [31],

[35]–[37] for results on global spectral distributions, and also the survey paper [2]

and the references therein for results on local spectral distributions. In particular,

the paper [18] provides a general framework for the investigation of the limiting

(global) spectral distributions of products of independent random matrices with

independent entries. Furthermore, the paper [37] shows that this approach proves

useful for the investigation of sums of products as well. The aim of the present

∗ Research supported by CRC 701.
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paper is to show that certain products of independent random matrices give rise

to random matrices with stable limiting eigenvalue distributions, in the sense that

the sums of several independent copies of these products have the same limiting

eigenvalue distribution after appropriate rescaling.

Throughout this paper, for each n  1, let X
(1)
n ,X

(2)
n ,X

(3)
n , . . . be indepen-

dent random matrices of size n × n with independent entries. More precisely,

we assume that

X
(q)
n =

(
1√
n
X

(q)
jk

)

j,k=1,...,n
,(1.1)

where (X
(q)
jk )j,k,q∈N is a family of independent real or complex random variables

such that

EX
(q)
jk = 0, E(X

(q)
jk )2 = 1 in the real case,(1.2)

and

(1.3) EX
(q)
jk = 0, E(X

(q)
jk )2 = 0, E|X(q)

jk |2 = 1 in the complex case,

and we additionally assume that this family is uniformly square-integrable, i.e.

lim
a→∞

sup
j,k,q∈N

E
(
|X(q)

jk |2 111{|X(q)
jk |a}

)
= 0.(1.4)

In this case we also say the matrices X
(q)
n are independent Girko–Ginibre matrices.

In the special case where the entries have real or complex Gaussian distributions,

we usually write Y
(q)
n =

(
1√
n
Y

(q)
jk

)
j,k=1,...,n

instead of X
(q)
n =

(
1√
n
X

(q)
jk

)
j,k=1,...,n

and call the matrices Y
(q)
n Gaussian random matrices or Ginibre matrices. Note

that the assumption (1.4) is clearly satisfied in this special case, the random vari-

ables Y
(q)
jk being independent and identically distributed (i.i.d.).

We will be interested in the limiting spectral distributions of random matrices

Fn given by sums of products of the matrices X
(q)
n and their inverses. Let Fn have

the singular values s1(Fn)  . . .  sn(Fn) and eigenvalues λ1(Fn), . . . , λn(Fn).
Then we write νn := ν(Fn) :=

1
n

∑n
j=1 δsj(Fn) for the (empirical) singular value

distribution of Fn and µn := µ(Fn) :=
1
n

∑n
j=1 δλj(Fn) for the (empirical) eigen-

value distribution of Fn. The corresponding weak limits in probability (if existent)

will be denoted by ν := νF and µ := µF, respectively. Note that µ will in general

be a probability measure on the complex plane, the random matrices Fn being non-

Hermitian. The density of µ (if existent) will be denoted by f(z), or by f(r) (with

r = |z|) in case it is rotation-invariant with respect to the origin.

Let us mention some relevant results from the literature.

EXAMPLES 1.1.

(a) (Circular law) Let Fn = X
(1)
n . Then f(r) = 1

π 111[0,1](r), i.e. µ is the uni-

form distribution on the unit disk.

Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS



Sums of products of non-Hermitian random matrices 361

(b) Let Fn = X
(1)
n + . . . + X

(m)
n . Then Fn is a random matrix with inde-

pendent entries of mean zero and variance m/n, so, by simple rescaling, f(r) =
1

mπ 111[0,
√
m](r). In particular, for the rescaled matrices 1√

m
Fn, the limiting eigen-

value distribution is again the uniform distribution on the unit disk.

(c) Let Fn = X
(1)
n X

(2)
n . Then f(r) = 1

2πr 111[0,1](r), i.e. µ is the induced dis-

tribution of the uniform distribution on the unit disk under the mapping z 7→ z2.

See e.g. [18], Section 8.2.2, for a “simple” derivation.

(d) Let Fn = X
(1)
n X

(2)
n + . . .+X

(2m−1)
n X

(2m)
n . Then

f(r) =
1

π
√

(m− 1)2 + 4r2
111[0,
√
m](r);

see [37], Section 2.

(e) (Spherical law) Let Fn = X
(1)
n (X

(2)
n )−1. Then

f(r) =
1

π(1 + r2)2
,

i.e. µ is the spherical distribution on the complex plane.

(f) Let Fn = X
(1)
n (X

(2)
n )−1 + . . .+X

(2m−1)
n (X

(2m)
n )−1. Then

f(r) =
m2

π(m2 + r2)2
;

see [37], Section 3. Thus, for the rescaled matrices 1
mFn, the limiting eigenvalue

distribution is again the spherical distribution on the complex plane.

In view of examples (b) and (f), it seems natural to ask whether there exist

further examples of random matrices F
(0)
n such that for any m ∈ N, the sums of

m independent matrices of the same form as F
(0)
n have the same limiting eigen-

value distribution as the original random matrices F
(0)
n , after appropriate rescaling.

We will answer this question in the affirmative by proving the following result,

which contains examples (b) and (f) as special cases:

THEOREM 1.1. Fix m ∈ N and l ∈ N0, let

F
(0)
n := (X(0)

n )(X(1)
n )−1 . . . (X(l)

n )−1,(1.5)

where X
(0)
n ,X

(1)
n , . . . ,X

(l)
n are independent random matrices as in (1.1)–(1.4),

and let F
(1)
n , . . . ,F

(m)
n be independent matrices of the same form as F

(0)
n . Then

the matricesm−(l+1)/2(F
(1)
n + . . .+F

(m)
n ) and F

(0)
n have the same limiting eigen-

value distribution µ. More precisely, we have µ = H
(
σs
(

2
l+1

))
, where σs

(
2

l+1

)

is the symmetric ⊞-stable distribution with parameter 2
l+1 (see Section 2.3) and

H
(
σs
(

2
l+1

))
is the associated rotation-invariant distribution on C (see Section 2.1).

Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS



362 H. Kösters and A. Tikhomirov

Moreover, as we will see in Section 3, apart from a possible permutation of the

exponents±1, the matrices F
(0)
n in Theorem 1.1 are the only examples of products

of independent Girko–Ginibre matrices and their inverses such that for anym ∈ N,

F
(0)
n and F

(1)
n + . . . + F

(m)
n have the same limiting eigenvalue distribution after

appropriate rescaling. In particular, the matrices

F
(0)
n := X

(1)
n . . .X(k)

n (X(k+1)
n )−1 . . . (X(k+l)

n )−1(1.6)

with k > 1 do not share this property.

However, the same limiting eigenvalue distributions may arise for products

involving powers of random matrices:

THEOREM 1.2. Fix m ∈ N, k ∈ N0 and l1, . . . , lk ∈ N, let l := l1 + . . .+ lk
and define

F
(0)
n := (X(0)

n )(X(1)
n )−l1 . . . (X(k)

n )−lk ,(1.7)

where X
(0)
n ,X

(1)
n , . . . ,X

(k)
n are independent random matrices as in (1.1)–(1.4),

and let F
(1)
n , . . . ,F

(m)
n be independent matrices of the same form as F

(0)
n . Then

the matricesm−(l+1)/2(F
(1)
n + . . .+F

(m)
n ) and F

(0)
n have the same limiting eigen-

value distribution µ, which is the same as in Theorem 1.1.

Theorem 1.1 will be deduced from a more general result about random matri-

ces of the form

Fn(X) :=
m∑

q=1

F
(q)
n (X) :=

m∑

q=1

l∏
r=1

(X((q−1)l+r)
n )εr ,(1.8)

where m, l ∈ N and ε1, . . . , εl ∈ {+1,−1} are fixed. (Thus, the matrices F
(q)
n (X)

are independent random matrices of the same form as the matrix
∏l

r=1(X
(r)
n )εr .)

Let us note that under the assumptions (1.1)–(1.4), each matrix X
(r)
n is invertible

with probability 1 + o(1) as n→∞ (see e.g. Lemma 4.9), so that Fn(X) is de-

fined with probability 1 + o(1) as n → ∞. Here we have the following result,

which establishes the existence of the limiting singular value and eigenvalue dis-

tributions and provides a closer description of them in terms of free probability

theory:

THEOREM 1.3. Let the matrices Fn(X) be defined as in (1.8). Then there ex-

ist non-random probability measures ν and µ on (0,∞) and C, respectively, such

that limn→∞ ν
(
Fn(X)

)
= ν and limn→∞ µ

(
Fn(X)

)
= µ weakly in probability,

and the limiting distributions are the same as those for the matrices Fn(Y) derived

from Gaussian random matrices. More precisely, the limiting measures ν and µ are

given by

(1.9) Sν =
(
Q−1(γε1 ⊠ . . .⊠ γεl)

)⊞m
and µ = H(Sν),
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where γ is the Marchenko–Pastur distribution, γ−1 is the inverse Marchenko–

Pastur distribution, ⊞ and ⊠ denote the additive and multiplicative free convolu-

tion, and S, Q andH are the operators described in Section 2.1 below.

In particular, this result shows that the limiting spectral distributions are uni-

versal, i.e. they do not depend on the distributions of the matrix entries apart from

a few moment conditions as in (1.2)–(1.4).

REMARK 1.1. As will follow from the proof, Theorem 1.3 extends to cer-

tain sums of products of powers of independent Girko–Ginibre matrices and their

inverses, namely to random matrices of the form

(1.10) Fn(X) :=
m∑

q=1

F
(q)
n (X) :=

m∑

q=1

k∏
r=1

(
(X((q−1)k+r)

n )εr
)lr ,

where m, k ∈ N, ε1, . . . , εk ∈ {−1,+1} and l1, . . . , lk ∈ N are fixed, and

for some r = 1, . . . , k, we have lr = 1.(1.11)

Here, with the notation as above, the limiting measures ν and µ are given by

(1.12) Sν =
(
Q−1

(
(γε1)⊠l1 ⊠ . . .⊠ (γεk)⊠lk

))⊞m
and µ = H(Sν).

This will be important for the proof of Theorem 1.2.

To obtain the preceding results, we apply the general framework from [18]

for the investigation of (global) limiting spectral distributions to sums of products

of independent Girko–Ginibre random matrices and their inverses (see Section 4).

Related results for various special cases can be found e.g. in [1], [3], [11], [13],

[14], [16], [20], [25], [27], [29], [35], [37]. In particular, in the Gaussian case,

the limiting eigenvalue and singular value distributions of the products (1.6) were

recently obtained in [1] and [16], respectively.

To apply the framework from [18], we need to verify certain technical condi-

tions, see Conditions A, B and C in Section 4.2 for details. This will be achieved

by means of a suitable induction argument, which forms the major part of Sec-

tion 4 and which represents the main contribution of this work. Furthermore, to

identify the limiting spectral distributions, we use tools from free probability the-

ory. Here it is worth emphasizing that for the matrices in Theorems 1.1 and 1.2 the

limiting spectral distributions may be described relatively explicitly. It seems that

comparable results are available only in a few special cases, see e. g. [10], [21],

[22], [26]. Let us mention, however, the very recent work [6], [33], [7] which pro-

vides an algorithm for calculating the Brown measures of general polynomials in

free non-commutative random variables. This should yield many further examples

where the limiting spectral distributions may now be determined.
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2. BACKGROUND

In this section we recall some well-known concepts and results from the liter-

ature which will be needed later.

2.1. Results from random matrix theory. The derivation of our results on

limiting eigenvalue distributions will be based on Girko’s Hermitization method

(see also [12]). Thus, we will first study the limiting eigenvalue distributions of the

Hermitian matrices

Vn :=

[
O Fn

F
∗
n O

]
and Wn := FnF

∗
n.(2.1)

Note that if the singular values of Fn are given by s1, . . . , sn, then the eigen-

values of Vn and Wn are given by ±s1, . . . ,±sn and s21, . . . , s
2
n, respectively.

It is easy to see that knowledge of one of the distributions ν(Fn), µ(Vn), µ(Wn)
(or its convergence) implies knowledge of the other two (or their convergence).

More precisely, if S denotes the operator which associates with each distribution ν
on (0,∞) its symmetrization on R

∗, and Q denotes the operator which associates

with each symmetric distribution µ on R
∗ its induced distribution on (0,∞) under

the mapping x 7→ x2, the operators S and Q are one-to-one, and we have

µ(Vn) = Sν(Fn) and µ(Wn) = Qµ(Vn).(2.2)

Furthermore, given a symmetric distribution µV on R
∗ such that

∫
log+ |t| dµV(t) <∞,(2.3)

we writeHµV for the rotation-invariant distribution on C (if existent) such that

UV(α) := −
∫
log |z − α| d(HµV)(z) = −

∫
log |x| d

(
µV ⊞B(α)

)
(x)(2.4)

for any α ∈ C. Here, the function UV(α) is the so-called logarithmic potential of

the measure HµV, B(α) := 1
2δ−|α| +

1
2δ+|α| denotes the Bernoulli distribution,

and ⊞ denotes free additive convolution. It follows from basic results in logarith-

mic potential theory that such a distribution HµV, if it exists, is uniquely deter-

mined by (2.4), see e.g. [32], and also the comments at the end of Section 2.2.

Girko’s Hermitization method (see also [12]) now states that under appropriate

assumptions, the weak convergence of the eigenvalue distributions µ(Fn) follows

from the weak convergence of the singular value distributions ν(Fn − αIn) of the

shifted matrices Fn − αIn for all α ∈ C. We will only need the following special

case:

THEOREM 2.1 ([18], Theorem 7.6). If the random matrices Fn satisfy Con-

dition C in Section 4 below and there exists a non-random probability measure νF
on (0,∞) such that for all α ∈ C, Sν(Fn − αIn) → (SνF) ⊞ B(α) weakly in
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probability, then µ(Fn)→ µF := H(SνF) weakly in probability. Moreover, with

the notation from [18] and under regularity conditions, the measure µF has the

Lebesgue density

f(u, v) =
1

2π|α|2
(
u
∂ψ

∂u
+ v

∂ψ

∂v

)
,(2.5)

where α = u+ iv and ψ is a continuous function on C
∗ taking values in [0, 1] and

satisfying

ψ(α)
(
1− ψ(α)

)
= −|α|2

(
1− ψ(α)

)2(
SV

(
−
(
1− ψ(α)

)))2
.(2.6)

Here, SV denotes the S-transform of the symmetric probability measure µV =
SνF (see [30], [4], [18]).

Furthermore, as the starting point for the proof of Theorem 1.3 (which will be

by induction on the number of factors and summands in (1.8)), we will rely upon

the well-known Marchenko–Pastur theorem, which states that when Fn = X
(1)
n ,

n ∈ N, then µ(Wn)→ γ weakly in probability, where

γ(dx) =
1

2π

√
4− x
x

111(0,4)(x)λλ(dx)(2.7)

is the Marchenko–Pastur distribution (with parameter one). Therefore, when Fn =

(X
(1)
n )−1, n ∈ N, we have µ(Wn)→ γ−1 weakly in probability, where γ−1 is the

induced measure of γ under the mapping x 7→ x−1. We will call this measure the

inverse Marchenko–Pastur distribution. Finally, let us note that the S-transforms

of γ and γ−1 are given by

(2.8) Sγ(z) =
1

z + 1
and Sγ−1(z) = −z,

respectively, see e.g. Section 8.1.1 in [18].

2.2. Results from free probability theory. To describe the limiting singular

value distributions of the random matrices Fn in Theorem 1.3, we will use various

concepts and results from free probability theory. See e.g. [38], [28] for a thorough

introduction to free probability theory, or Section 5 in [18] for a brief introduction

tailored to our purposes. In particular, we will use the free additive and multiplica-

tive convolutions ⊞ and ⊠, the associated R and S transforms (also for probability

measures with unbounded support), and the asymptotic freeness of random matri-

ces. Furthermore, we will frequently use the following result:

PROPOSITION 2.1 (Asymptotic freeness). For each n ∈ N, let An and Bn

be independent bi-unitary invariant random matrices of size n× n such that

sup
n∈N

max
{
E
(
1
n trace(AnA

∗
n)

k
)
,E

(
1
n trace(BnB

∗
n)

k
)}

<∞
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for all k ∈ N, and suppose that there exist compactly supported (deterministic)
probability measures µAA∗ and µBB∗ on (0,∞) such that µ(AnA

∗
n) → µAA∗

and µ(BnB
∗
n)→ µBB∗ weakly in probability. Then one has the following:

(a) The families {An,A
∗
n} and {Bn,B

∗
n} are asymptotically free, and

(AnBn)(AnBn)
∗ → µAA∗ ⊠ µBB∗ in moments.

(b) For any k, l ∈ N, the matrices (Ak
n)
∗
A

k
n and A

l
n(A

l
n)
∗ are asymptoti-

cally free, and for any k ∈ N,

A
k
n(A

k
n)
∗ → µ⊠k

AA∗ in moments.

(c) The matrices Vn(An) and Vn(Bn) are asymptotically free, and

Vn(An) +Vn(Bn)→ µV(A) ⊞ µV(B) in moments.

(d) The matrices Vn(An) and Jn(α) are asymptotically free, and

Vn(An) + Jn(α)→ µV(A) ⊞B(α) in moments.

Here,V(An) and V(Bn) are defined as in equation (2.1), µV(A) and µV(B)

denote the corresponding limiting distributions, and

Jn(α) :=

[
O −αIn
−αIn O

]
.(2.9)

Parts (a) and (b) follow from the results in Section 4.3 in [23], part (d) is proved

in Section 5 in [18], and part (c) follows by similar arguments. Also, let us mention

that part (c) is already implicit in [37].

REMARK 2.1. Observe that Proposition 2.1 may be used to establish the weak

convergence of the mean singular value distributions of the matrices AnBn, A
k
n

and An + Bn. However, in most of the situations in which we will use Propo-

sition 2.1 later, this already implies the weak convergence in probability of the

singular value distributions of these matrices (see e.g. Section A.1 in [18]).

It is worth mentioning that there is another description of the limiting density

f(u, v) in Theorem 2.1 due to Haagerup and Larsen [21] and Haagerup and Schultz

[22]. Actually, in these papers, the density f is shown to describe the Brown mea-

sure of a so-called R-diagonal element in a W ∗-probability space. Roughly speak-

ing, an R-diagonal element is a non-commutative random variable of the form uh,

where u is Haar unitary and h is a positive element ∗-free from u.

For our purposes, this description of the density f may be summarized as fol-

lows. In the situation of Theorem 2.1, let νF be the limiting singular value distri-

bution of the matrices Fn, set µV = SνF and µW = QνV (which are the limiting
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eigenvalue distributions of the matrices Vn and Wn in (2.1), respectively), and

suppose that µW is not a Dirac measure. Let SW denote the S-transform of µW,

and set

F (t) :=
1√

SW(t− 1)
.

Then F is a smooth bijection from the interval (0, 1) to the interval

(a, b) :=
(( ∫

x−2 dνF(x)
)−1/2

,
( ∫

x2 dνF(x)
)1/2)

(where 1/∞ := 0 and 1/0 :=∞), and the limiting eigenvalue distribution µF =
HµV of the matrices Fn has a rotation-invariant density f(r) given by

f(r) =
1

2πr F ′
(
F−1(r)

)111(a,b)(r)(2.10)

(see [21], Section 4, and [22], Section 4). Clearly, the connection to Theorem 2.1

arises from the fact that ψ = F−1 on the interval (a, b). Moreover, equation (2.10)

shows that F−1(r) =
∫ r

0
2πs f(s) ds, which implies that µW, and hence µV, is

uniquely determined by µF. Thus, the mapping µV 7→ µF is one-to-one.

Furthermore, it follows from the results in [21], [22] that the measure HµV
exists for any symmetric probability measure µV on R

∗ satisfying (2.3) and that

the operatorH thus defined furnishes a one-to-one correspondence between the set

of these distributions on R
∗ and a certain set H of rotation-invariant distributions

on C. Finally, it is easy to see that for any symmetric distribution µ on R
∗ satisfying

(2.3), we have

H(Dcµ) = DcH(µ)(2.11)

for all c > 0, where Dc is the scaling operator which maps a probability measure

on R or C to its induced measure under the mapping x 7→ cx.

2.3. Results on ⊞-stable distributions. Let us collect some results on ⊞-stable

distributions which will be needed later. A distribution µ on R is called (strictly)

⊞-stable if there exists a constant α > 0 such that µ⊞m = Dm1/αµ for all m ∈ N.

Here, Dc is defined as in equation (2.11). We will often call the constant α the

stability index of µ.

The (strictly) ⊞-stable distributions have been investigated in [9], [8] and [4].

First of all, let us recall that for any ⊞-stable distribution, α ∈ ]0, 2]. We will need

the following result, which is contained in Appendix A of [8] and in [4]:

PROPOSITION 2.2. Fix α ∈ ]0, 2]. For a symmetric probability measure µ on

R
∗, the following are equivalent:

(i) µ is (strictly) ⊞-stable with stability index α.

(ii) Rµ(z) = bzα−1, where b ∈ C
∗ with arg b = −π + απ/2.
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(iii) Sµ(z) = z(1/α)−1/b1/α, where b ∈ C
∗ with arg b = −π + απ/2.

Moreover, in this case, the constants b in parts (ii) and (iii) are the same.

Here, for the S-transform Sµ(z), we make the convention that we take argu-

ments in ]−π,+π] to define powers of b and arguments in (−2π, 0) to define pow-

ers of z. Then, with i the imaginary unit, we have Sµ(z) ∈ (0,∞)i for z ∈ (−1, 0),
in line with the convention in [18].

Henceforward, we write σs(α) for the (unique) symmetric ⊞-stable distribu-

tion with parameters α ∈ ]0, 2] and b := e(−π+απ/2)i. Note that in the special cases

α = 2 and α = 1, we obtain the standard semicircle and Cauchy distribution, re-

spectively. Furthermore, let us recall from [8], Appendix A, that the distribution

σs(α) has a continuous density fα such that fα(x) = O(|x|−α−1) as |x| → ∞.

Thus, in particular, the distribution σs(α) satisfies condition (2.3).

3. PROOF OF THEOREMS 1.1 AND 1.2

In this section, we prove Theorems 1.1 and 1.2 using Theorem 1.3 and Re-

mark 1.1, respectively.

P r o o f o f T h e o r e m 1.1. By Theorem 1.3, the limiting eigenvalue dis-

tributions of the matrices Fn := F
(0)
n and F̃n := m−(l+1)/2(F

(1)
n + . . .+F

(m)
n ) in

Theorem 1.1 are given by

µF = H
(
Q−1

(
γ ⊠ (γ−1)⊠l

))

and

µ
F̃
= H

(
Dm−(l+1)/2

(
Q−1

(
γ ⊠ (γ−1)⊠l

))⊞m)
,

respectively, where Dc is defined as in equation (2.11). To obtain the description

asserted in the theorem, we calculate the S-transform ofQ−1
(
γ ⊠ (γ−1)⊠l

)
. Using

(2.8) and the relation Sν1⊠ν2(z) = Sν1(z)Sν2(z), we find that

SW(z) = Sγ⊠(γ−1)⊠l(z) =
(−z)l
z + 1

,

and therefore

SV(z) = SQ−1(γ⊠(γ−1)⊠l)(z) =

√
z + 1

z
SW(z) =

√
z + 1

z

(−z)l
z + 1

= ilz(l−1)/2.

By Proposition 2.2, the corresponding distribution is Q−1
(
γ ⊠ (γ−1)⊠l

)
=

σs
(

2
l+1

)
, the symmetric ⊞-stable distribution of parameter 2

l+1 . Thus, µF =

H
(
σs
(

2
l+1

))
. Also, using the defining property of a ⊞-stable distribution, we get

Dm−(l+1)/2

((
Q−1

(
γ ⊠ (γ−1)⊠l

))⊞m)
=Dm−(l+1)/2

((
σs
(

2
l+1

))⊞m)
=σs

(
2

l+1

)
.

Thus, µ
F̃
= H

(
σs
(

2
l+1

))
as well, and the proof of Theorem 1.1 is complete. �
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P r o o f o f T h e o r e m 1.2. By Theorem 1.3 and Remark 1.1, the limiting

eigenvalue distributions of the matrices

Fn := F
(0)
n and F̃n := m−(l+1)/2(F(1)

n + . . .+ F
(m)
n )

in Theorem 1.2 are given by

µF = H
(
Q−1

(
γ ⊠ (γ−1)⊠l1 ⊠ . . .⊠ (γ−1)⊠lk

))

and

µ
F̃
= H

(
Dm−(l+1)/2

(
Q−1

(
γ ⊠ (γ−1)⊠l1 ⊠ . . .⊠ (γ−1)⊠lk

))⊞m)
,

respectively. But (γ−1)⊠l1 ⊠ . . . ⊠ (γ−1)⊠lk = (γ−1)⊠l, so the assertion follows

in the same way as in the previous proof. �

REMARK 3.1. In principle, the density of the limiting distribution µF in The-

orems 1.1 and 1.2 can be found by means of Theorem 7.6 in [18]. In our situation,
it is easy to check that equation (2.6) reduces to

ψ(α)
(
1− ψ(α)

)
= |α|2

(
1− ψ(α)

)l+1
.

(Recall from Section 2.3 that SV(z) takes values in (0,∞)i when z ∈ (−1, 0).)
Thus, since ψ(α) is continuous with values in [0, 1] and ψ(α) ̸= 1 for α ≈ 0 (see

Sections 6 and 7 in [18]), we obtain, for l = 0, 1, 2, 3,

ψ0(r) = 1 ∧ r2, ψ1(r) =
r2

1 + r2
, ψ2(r) = 1− 2√

1 + 4r2 + 1
,

ψ3(r) = 1− 3
(
1 + v2(r) + w2(r)

)2 ,

and therefore

f0(r) =
1

π
111(0,1)(r), f1(r) =

1

π(1 + r2)2
,

f2(r) =
2

π
√
1 + 4r2(1 + 2r2 +

√
1 + 4r2)

,

f3(r) =
27
(
v(r) + w(r)

)

π
√
4 + 27r2

(
1 + v2(r) + w2(r)

)3 ,

where we have set

v(r) :=
(
1
2

√
4 + 27r2 + 1

2

√
27r

)1/3
and w(r) :=

(
1
2

√
4 + 27r2 − 1

2

√
27r

)1/3

for abbreviation. �
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REMARK 3.2. It seems natural to ask whether there exist further examples of

random matrices F
(0)
n such that for any m ∈ N, F

(0)
n and F

(1)
n + . . .+ F

(m)
n have

the same limiting eigenvalue distributions after appropriate rescaling. However,
it turns out that within the class of products of independent Girko–Ginibre matri-

ces and their inverses, there exist no further examples beyond those mentioned in

Theorem 1.1, apart from possible permutations of the exponents ±1. Indeed, sup-

pose that F
(0)
n is a product of p factors Y

(r)
n and q factors (Y

(r)
n )−1 (all of them

independent, and in arbitrary order), and let Vn and Wn be defined as in (2.1).

Then, arguing as in the proof of Theorem 1.1, we find that the corresponding S-

transforms SW and SV are given by

SW(z) =
(−z)q
(1 + z)p

and SV(z) =
iq z(q−1)/2

(1 + z)(p−1)/2
,

respectively, and by Proposition 2.2, the latter is the S-transform of a symmetric

⊞-stable distribution if and only if p = 1 and q ∈ N0. Now use the observation

that, by equation (2.11), if µ⊞m is not a rescaled version of µ, thenH(µ⊞m) is not

a rescaled version ofH(µ). �

REMARK 3.3. The limiting eigenvalue distribution in Theorems 1.1 and 1.2

may be interpreted as a stable distribution with respect to an appropriately defined

convolution ⊕. To define this convolution, suppose that µ1 and µ2 are two prob-

ability measures which belong to the class H introduced above equation (2.11)

and that An and Bn are independent bi-unitary invariant random matrices with

limiting eigenvalue distributions µ1 and µ2, respectively. Also, suppose that these

matrices satisfy the assumptions of Theorem 2.1. Then, if ν̃1 and ν̃2 are the limiting

symmetrized singular value distributions of An and Bn, we have µ1 = H(ν̃1) and

µ2 = H(ν̃2) by Theorem 2.1. Furthermore, suppose that the matrix sums An +Bn

have the limiting symmetrized singular value distribution ν̃1 ⊞ ν̃2 (which seems

natural in view of Proposition 2.1) and that they also satisfy the assumptions of

Theorem 2.1. Then, again by Theorem 2.1, the associated limiting eigenvalue dis-

tribution is given byH(ν̃1 ⊞ ν̃2). This motivates the following definition:

DEFINITION 3.1. Given two probability measures µ1 and µ2 of class H , set

µ1 ⊕ µ2 := H
(
H−1(µ1)⊞H−1(µ2)

)
.

This convolution⊕may also be interpreted in terms of free probability. Indeed,
given µ1 and µ2 in H, pick R-diagonal elements x1 and x2 (in some W ∗-proba-

bility space) such that the Brown measure of x1 is µ1, the Brown measure of x2 is

µ2, and x1 and x2 are ∗-free. Then µ1 ⊕ µ2 is the Brown measure of x1 + x2, as

follows from the results in [21] and [22].

It is now natural to introduce the concept of a (strictly) ⊕-stable distribution:
A probability measure µ of classH is called (strictly)⊕-stable if there exists a con-

stant α > 0 such that µ⊕m = Dm1/αµ for all m ∈ N. Then, by equation (2.11), ν̃
is ⊞-stable if and only ifH(ν̃) is ⊕-stable. Therefore, the ⊕-stable distributions in
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H are in one-to-one correspondence with the symmetric ⊞-stable distributions on

R
∗, and the limiting spectral distributions occurring in Theorems 1.1 and 1.2 are

special examples of this type. �

4. PROOF OF THEOREM 1.3

4.1. Overview. In this section we prove Theorem 1.3 using the general frame-

work from [18]. In Subsection 4.2, we summarize the technical conditions and

the main universality results from [18] to make the presentation reasonably self-

contained. Subsections 4.3–4.5 prepare for the proof of Theorem 1.3 by verifying

the technical conditions from [18]. Subsection 4.6 contains the core of the proof

of Theorem 1.3, and Subsection 4.7 describes the necessary modifications for Re-

mark 1.1. Some auxiliary results from the literature are collected in Subsection 4.8.

4.2. General framework. A major step in [18] is to prove the universality

of the limiting singular value and eigenvalue distributions, i.e. to show that these

distributions (if existent) do not depend on the distributions of the matrix entries,

apart from a few moment conditions as in (1.2)–(1.4). To state this more precisely,

we need two sets of random matrices.

To this end, it seems convenient to regard Fn in (1.8) as a matrix function

(by slight abuse of notation) and to write

Fn(Z
(1)
n , . . . ,Z(ml)

n ) :=
m∑

q=1

l∏
r=1

(Z((q−1)l+r)
n )εr ,(4.1)

where m, l ∈ N and ε1, . . . , εl ∈ {−1,+1} are the same as in (1.8), and Z
(q)
n =

(Z
(q)
jk )j,k=1,...,n is a matrix in the indeterminates Z

(q)
jk , q = 1, . . . ,ml. Then, we

may write Fn(X) := Fn(X
(1)
n , . . . ,X

(ml)
n ) for the random matrices built from the

random matrices X
(q)
n :=

(
1√
n
X

(q)
jk

)
j,k=1,...,n

, and Fn(Y) :=Fn(Y
(1)
n , . . . ,Y

(ml)
n )

for the corresponding random matrices built from the Gaussian random matrices

Y
(q)
n :=

(
1√
n
Y

(q)
jk

)
j,k=1,...,n

. We always assume that the families (X
(q)
jk )j,k,q∈N and

(Y
(q)
jk )j,k,q∈N are defined on the same probability space and independent. When the

choice of the matrices X
(1)
n , . . . ,X

(ml)
n is clear from the context, we also write Fn

instead of Fn(X).

REMARK 4.1. More generally, using the arguments from this section, we

might deal with matrix functions of the form

Fn(Z
(1)
n ,Z

(n)
2 ,Z

(n)
3 , . . .) :=

m∑

q=1

lq∏
r=1

(Z
(iq,r)
n )εq,r ,

wherem, l1, . . . , lm ∈ N, εq,r ∈ {+1,−1}, the indices iq,r ∈ N are pairwise diffe-
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rent, and all parameters do not depend on n. That is to say, the numbers and the

types of the factors in the m summands need not be the same.

In our investigation of the limiting spectral distributions of the matrices Fn,

we will also consider the shifted matrices Fn − αIn, with α ∈ C, the regularized

matrices Fn,t, with t > 0, and their combinations Fn,t−αIn. Here, the regularized

matrices Fn,t arise from the regularized matrix functions

Fn,t(Z
(1)
n , . . . ,Z(ml)

n ) :=
m∑

q=1

l∏
r=1

(Z((q−1)l+r)
n )εrt ,(4.2)

where (Zn)
ε
t := Zn for ε = +1 and (Zn)

ε
t := (Z∗nZn + tIn)

−1
Z
∗
n for ε = −1.

Note that, by definition, the regularization has no effect when ε = +1 and that

limt↓0(Zn)
−1
t = (Zn)

−1 when Zn is invertible.

Furthermore, fix a sequence (τn)n∈N of positive real numbers such that τn→0
and τn

√
n→∞, and for 0 ¬ ϕ ¬ π/2, set

Z
(q)
jk (ϕ) :=(cosϕ)X

(q)
jk 111{|X(q)

jk |¬τn
√
n}+(sinϕ)Y

(q)
jk 111{|Y (q)

jk |¬τn
√
n} (j, k, q∈N),

Z
(q)
n (ϕ) :=

(
1√
n
Z

(q)
jk (ϕ)

)
j,k=1,...,n

(q ∈ N), Fn(ϕ) :=Fn

(
Z
(1)
n (ϕ), . . . ,Z

(ml)
n (ϕ)

)
.

Note that the matrices Z
(q)
n (ϕ) provide an interpolation between truncated versions

of the matrices X
(q)
n (for ϕ = 0) and Y

(q)
n (for ϕ = π/2).

With this notation, we have to check the following Conditions A, B and C.

CONDITION A. For Fn = Fn(X) and Fn = Fn(Y), the matrices Fn satisfy

the following condition:

For each α∈C and z∈C+, we have limt→0 lim supn→∞ |sn,t(z)− sn(z)|=0
in probability, where sn(z) and sn,t(z) are the Stieltjes transforms of the Hermitian

matrices (Fn − αIn)(Fn − αIn)∗ and (Fn,t − αIn)(Fn,t − αIn)∗, respectively.

CONDITION B. For each t > 0, α ∈ C, z ∈ C
+, we have

sup
ϕ∈[0;π/2]

sup
q,j,k

max
D

∥∥E
{
Dg

(q)
j,k (ϕ)

∣∣X(q)
jk , Y

(q)
jk

}∥∥
∞ ¬ A <∞,

where the maximum is over all partial derivatives D of orders zero, one and two in

the matrix entries ReZ
(q)
jk and ImZ

(q)
jk , g

(q)
j,k (ϕ) may be either

g
(q)
j,k (ϕ) =

(
∂

∂ Re Z
(q)
jk

trace
(
Vn,t(α;ϕ)− zI2n

)−1
)∣∣∣

Z
(q)
jk →θZ

(q)
jk

or

g
(q)
j,k (ϕ) =

(
∂

∂ Im Z
(q)
jk

trace
(
Vn,t(α;ϕ)− zI2n

)−1
)∣∣∣

Z
(q)
jk →θZ

(q)
jk

,
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the Vn,t(α;ϕ) are the Hermitizations of the matrices Fn(ϕ), but with Fn replaced

by Fn,t − αIn, and θ (the rescaling parameter in the substitution Z
(q)
j,k → θZ

(q)
j,k )

is a random variable which is uniformly distributed on [0, 1] and independent of

everything else.

CONDITION C. For Fn = Fn(X) and Fn = Fn(Y), the matrices Fn satisfy

the following conditions:

(C0) There exists some p > 0 such that 1
n

∑n
k=1 s

p
k(Fn) is bounded in proba-

bility as n→∞.

(C1) For any fixed α ∈ C, there exists some Q > 0 such that

lim
n→∞

P
(
sn(Fn − αIn) ¬ n−Q

)
= 0.

(C2) For any fixed α ∈ C, there exists some 0 < γ < 1 such that for any

sequence (δn)n∈N with δn → 0,

lim
n→∞

P
(
1
n

∑

n1¬j¬n2

| log sj(Fn − αIn)| > ε
)
= 0 for all ε > 0,

where n1 = [n− nδn] + 1 and n2 = [n− nγ ].

REMARK 4.2 (Condition Csimple). It will be convenient to consider Condi-

tion C for more general random matrices Fn (with Fn of dimension n × n) than

in (1.8). If a sequence of random matrices Fn satisfies Conditions (C0), (C1) and

(C2), we say that the matrices Fn satisfy Condition C. Also, if a sequence of ran-

dom matrices Fn satisfies Condition (C0) as well as Conditions (C1) and (C2) with

α = 0, we say that the matrices Fn satisfy Condition Csimple.

The following universality result is implicitly contained in [18]:

THEOREM 4.1 (Universality of singular value and eigenvalue distributions).

Let Fn(X), Fn(Y) be defined as above, and let νn(X), νn(Y) and µn(X), µn(Y)
denote the associated singular value and eigenvalue distributions, respectively.

(a) If Conditions A and B hold, νn(X)− νn(Y)→ 0 weakly in probability.

(b) If Conditions A, B and C hold, µn(X)−µn(Y)→0 weakly in probability.

P r o o f. (a) Set α := 0. For Z = X and Z = Y, let mn(z;Z) and sn(z;Z)
denote the Stieltjes transforms of the Hermitian matrices

Vn(Z) :=

[
O Fn(Z)

F
∗
n(Z) O

]
and Wn(Z) := Fn(Z)F

∗
n(Z),

and let mn,t(z;Z) and sn,t(z;Z) denote the corresponding Stieltjes transforms

when Fn(Z) is replaced with Fn,t(Z). Fix t > 0. By Condition B and Theorem 3.2

in [18], we have, for each z ∈ C
+, mn,t(z;X) −mn,t(z;Y)→ 0 in probability,
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and therefore sn,t(z;X)− sn,t(z;Y)→ 0 in probability. (Note that the Lindeberg

condition in [18] holds by our assumption (1.4), while the rank condition in [18]

follows from basic inequalities for the rank of matrix sums and matrix products.) It

therefore follows from Condition A that, for each z ∈ C
+, sn(z;X)−sn(z;Y)→0

in probability, which implies the claim.

(b) By the same argument as in (a), the conclusion of (a) holds not only for

the singular value distributions of the matrices Fn, but also for the singular value

distributions of the shifted matrices Fn −αIn for any fixed α ∈ C. Thus, the claim

follows from Condition C and Remark 4.2 in [18]. �

REMARK 4.3. As follows from the proof, if one is only interested in the lim-

iting singular value distributions of the matrices Fn, it suffices to assume that

Conditions A and B hold with α = 0.

We will use Theorem 4.1 to establish Theorem 1.3. This requires verifying

Conditions A, B and C, of course. For this purpose, we provide some auxiliary

results in the next three subsections.

4.3. On Condition A. Let Fn = Fn(X) be defined as in (1.8). To obtain a

matrix function which is smooth in the matrix entries (as needed for Condition B),

we replace all inverses (X
(q)
n )−1 with regularized inverses (X

(q)
n )−1t . We do this

in a step-by-step fashion. Hence, fix t > 0, fix an index Q such that εQ = −1,

and for all the other indices q with εq = −1, fix a choice between (X
(q)
n )−1 and

(X
(q)
n )−1t . Then it suffices to consider random matrices of the form

Fn = An(Xn)
−1

Bn +Cn,(4.3)

where Xn ≡ X
(Q)
n (we omit the index Q for simplicity) and An, Bn and Cn

depend only on the matrices X
(q)
n with q ̸= Q.

Fix α ∈ C, and for 0 ¬ u ¬ t, let

(4.4) Fn,u := An(Xn)
−1
u Bn +Cn := An(X

∗
nXn + u)−1X∗nBn +Cn

and

sn,u(z) :=
1
n trace

(
(Fn,u − αIn)(Fn,u − αIn)∗ − zIn

)−1
.(4.5)

Note that Fn,0 coincides with Fn if Xn is invertible. Then, by way of induction, it

will suffice to prove the following lemma:

LEMMA 4.1. For each n∈N, let Xn=
(

1√
n
Xjk

)
j,k=1,...,n

be as in (1.1)–(1.4).

Furthermore, for each n ∈ N, let An, Bn and Cn be random matrices of dimen-

sion n × n such that the singular value distributions of the random matrices Bn

and Cn converge weakly in probability to (non-random) probability measures on
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(0,∞) and [0,∞), respectively, and let Fn,u and sn,u(z) be defined as in (4.4)

and (4.5). Then, for any z = u+ iv ∈ C
+, we have

lim
t→0

lim sup
n→∞

|sn,t(z)− sn,0(z)| = 0 in probability.(4.6)

REMARK 4.4. Let us emphasize that although the matrices An, Bn, Cn and

Xn in the decomposition (4.3) are independent, this is not required in Lemma 4.1.

REMARK 4.5. Lemma 8.16 in [18] contains a similar result for the case

Cn = 0, although under additional assumptions and with a proof which does not

seem to extend to the case Cn ̸= 0. The main difference in the proof of Lemma 4.1

(as compared to that of Lemma 8.16 in [18]) is that we control the auxiliary modifi-

cations of the matrices Bn and Cn via the matrix rank, and not via the resolvent.

REMARK 4.6. Let us illustrate the way Lemma 4.1 will be used later. Consider

an l-fold product Fn(X) = (X
(1)
n )ε1 . . . (X

(l)
n )εl , where ε1, . . . , εl ∈ {−1,+1},

and suppose by way of induction that we have weak convergence for any matrix

product with less than l factors, possibly regularized. Then, setting Fn,t1,...,tl :=

(X
(1)
n )ε1t1 . . . (X

(l)
n )εltl and

sn(t1, . . . , tl; z) :=
1
n trace

(
(Fn,t1,...,tl − αIn)(Fn,t1,...,tl − αIn)∗ − zIn

)−1

and writing tk := (t, . . . , t, 0, . . . , 0) for the vector consisting of k t’s and l − k
0’s, we have the estimate

|sn,t(z)− sn,0(z)| ¬
l∑

k=1

|sn(tk; z)− sn(tk−1; z)|.(4.7)

Now, for each k = 1, . . . , l, the kth summand on the right-hand side in (4.7) satis-

fies (4.6), either trivially (when εk = +1) or by Lemma 4.1 (when εk = −1). Thus,
the left-hand side in (4.7) satisfies (4.6) as well, and Condition A is proved for

the l-fold product Fn(X).

P r o o f o f L e m m a 4.1. For the sake of simplicity, we consider only the

case α = 0 here, the extension to the case α ̸= 0 being straightforward. We have

to show that for any given ε > 0 and δ > 0,

lim sup
t→0

lim sup
n→∞

P
(
|sn,t(z)− sn,0(z)| > ε

)
< δ.(4.8)

Hence, fix ε > 0 and δ > 0. As in the proof of Lemma 8.16 in [18], we introduce

auxiliary modifications of the matrices Bn and Cn before we regularize the inverse

matrices X−1n .

For an n× nmatrix M, let s1(M)  . . .  sn(M) denote the singular values.

Since the singular value distributions of Bn and Cn converge weakly in probability
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to (non-random) probability measures on (0,∞) and [0,∞), respectively, we may

find K > 1 and N ∈ N such that for n  N , we have

P

(
1

n

n∑

k=1

111{sk(Bn)<K−1 or sk(Bn)>K} >
εv

24
or

1

n

n∑

k=1

111{sk(Cn)>K} >
εv

24

)
<
δ

2
.

Then, the modifications B̃n and C̃n are defined as follows. For the matrix Cn,

take the singular value decomposition Cn = U∆V
∗, let ∆̃ be the diagonal matrix

obtained from ∆ by replacing the diagonal elements ∆kk with ∆̃kk := ∆kk ∧K,

and set C̃n := U∆̃V
∗. For the matrix Bn, take the singular value decomposition

Bn = U∆V
∗, let ∆̃ be the diagonal matrix obtained from ∆ by replacing the

diagonal elements ∆kk with ∆̃kk := (∆kk ∧K) ∨K−1, and set B̃n := U∆̃V
∗.

Then we have

∥B̃n∥ ¬ K, ∥B̃−1n ∥ ¬ K, ∥C̃n∥ ¬ K,(4.9)

and for n  N , with a probability of at least 1− δ/2, we also have

1
n rank(Bn − B̃n) ¬ εv/24, 1

n rank(Cn − C̃n) ¬ εv/24.(4.10)

Furthermore, let F̃n,u and s̃n,u(z) be defined as in (4.4) and (4.5), but with Bn

and Cn replaced by B̃n and C̃n. It then follows from (4.10) that for n  N , with

a probability of at least 1− δ/2, we have

1
n rank(Fn,uF

∗
n,u − F̃n,uF̃

∗
n,u) ¬ εv/6,

and therefore, by the rank inequality (compare e.g. [5], Lemma 6.9),

|sn,u(z)− s̃n,u(z)| ¬ ε/3.

Thus, we have reduced the proof of (4.8) to showing that

lim
t→0

lim sup
n→∞

|s̃n,t(z)− s̃n,0(z)| = 0 in probability.(4.11)

Since we only deal with the modified matrices for the rest of the proof, we omit

the tildes and write Bn,Cn,Fn,u and sn,u(z) instead of B̃n, C̃n, F̃n,u and s̃n,u(z),
respectively. Moreover, for brevity, we usually omit the index n.

To establish (4.11), we may proceed as in the proof of Lemma 8.16 in [18].

Setting Ru := (FuF
∗
u − zI)−1, 0 ¬ u ¬ t, we have the estimates

(4.12)
∥Ru∥ ¬ v−1, ∥F∗uRuFu∥ ¬ 1 + |z|v−1,

∥RuFu∥¬
(
v−1(1 + |z|v−1)

)1/2
, ∥F∗uRu∥¬

(
v−1(1 + |z|v−1)

)1/2
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as well as the representation

Rt −R0 =
t∫
0

dRu

du
du = −

t∫
0

Ru
d(FuF

∗
u)

du
Ru du.(4.13)

Thus, it is straightforward to check that

∣∣ 1
n trace(Rt −R0)

∣∣ ¬
t∫
0

∣∣ 1
n trace

(
RuFuB

−1(XX
∗+uI)−1BF

∗
uRu

)∣∣du

+
t∫
0

∣∣ 1
n trace

(
RuCB

−1(XX
∗+uI)−1BF

∗
uRu

)∣∣du

+
t∫
0

∣∣ 1
n trace

(
RuFuB

∗(XX
∗+uI)−1(B∗)−1F∗uRu

)∣∣du

+
t∫
0

∣∣ 1
n trace

(
RuFuB

∗(XX
∗+uI)−1(B∗)−1C∗Ru

)∣∣du.

Using the inequality |trace(M1M2M3)| ¬ ∥M1∥∥M3∥ trace(M2) (which holds

for any n× n matrices M1, M2, M3 such that M2 is positive definite) as well as

(4.9) and (4.12), we therefore obtain

(4.14)
∣∣ 1
n trace(Rt −R0)

∣∣ ¬ C(K, z)
t∫
0

1
n trace(XX

∗ + uI)−1 du,

where C(K, z) is some constant depending only on K and z. Thus, it remains

to show that

(4.15) lim
t→0

lim sup
n→∞

t∫
0

1
n trace(XnX

∗
n + uIn)

−1 du = 0 in probability.

But this follows from the fact that the random matrices Xn satisfy Condition C;

see the proof of Lemma 8.14 in [18] for details. �

4.4. On Condition B. Here we have the following result:

LEMMA 4.2. With Fn defined as in equation (1.8), Condition B holds.

The proof follows from similar estimates to those in Section 8.1 in [18]. Since

the required modifications are relatively straightforward, we omit the details.

4.5. On Condition C. Here we provide a number of lemmas which will be

helpful in verifying Conditions C and Csimple. Recall that Condition Csimple was

introduced in Remark 4.2.

LEMMA 4.3. For each n ∈ N, let Fn and Gn be random matrices of dimen-

sion n × n. If the matrices Fn and Gn satisfy Condition Csimple, then the ma-

trix products FnGn also satisfy Condition Csimple.
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Since this result follows from similar arguments to those in the proof of The-

orem 8.22 in [18] or to those for Lemma 4.6 below, we omit the proof.

LEMMA 4.4. For each n ∈ N, let Xn =
(

1√
n
Xjk

)
j,k=1,...,n

be as in the as-

sumptions (1.1)–(1.4). Then the matrices Xn and X
−1
n satisfy Condition C.

For the matrices Xn, Condition C is checked in [20] (in fact, it follows from

the relation E∥X∥22 = n and from Lemmas 4.9 and 4.10), and for the matrices

X
−1
n , Condition C follows from the arguments given in the proof of Theorem 8.22

in [18]. We therefore omit the details.

REMARK 4.7. A careful analysis of the proof of Theorem 8.22 in [18] shows

that if the matrices Gn satisfy Condition Csimple, then the inverse matrices G
−1
n

satisfy Conditions (C1) and (C2) with α = 0.

LEMMA 4.5. Let Fn = (X
(i1)
n )ε1 . . . (X

(il)
n )εl , where l ∈ N, i1, . . . , il ∈ N

(not necessarily different), and ε1, . . . , εl ∈ {−1,+1} are fixed. Then Fn satisfies

Condition Csimple.

P r o o f. By Lemma 4.4, the claim is true (even with the stronger Condition C)

for l = 1. By Lemma 4.3 and induction, the claim remains true for l > 1. �

LEMMA 4.6. For each n ∈ N, let Xn =
(

1√
n
Xjk

)
j,k=1,...,n

be as in the as-

sumptions (1.1)–(1.4). Furthermore, for each n ∈ N, let An, Bn and Cn be ran-

dom matrices of dimension n× n such that An,Bn,Cn and Xn are independent.

(a) If the matrices An and Bn satisfy Condition Csimple and the matrices Cn

satisfy Condition (C0), then the matrices AnXnBn +Cn satisfy Condition C.

(b) If the matrices An and Bn satisfy Condition Csimple and the matrices Cn

satisfy Condition C or Cn = 0 for all n ∈ N, then the matrices AnX
−1
n Bn +Cn

satisfy Condition C.

P r o o f. To shorten the notation, we omit the index n throughout this proof.

First of all, let us note that if a sequence of random matrices Gn (with Gn of

dimension n× n) satisfies Condition (C0), there exists some LG > 0 such that

lim
n→∞

P(∥Gn∥  nLG) = 0.(4.16)

In fact, if p > 0 is such that 1
n

∑n
k=1 s

p
k(Gn) is bounded in probability as n→∞

and ε > 0 is arbitrary, it follows that

lim sup
n→∞

P
(
s1(Gn)  n(1+ε)/p

)
¬ lim sup

n→∞
P
(
1
n

n∑

k=1

spk(Gn)  nε
)
= 0,

so that the assertion holds for any LG > 1/p.
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(a) Condition (C0) follows from Lemmas 4.8 and 4.7, Hölder’s inequality,

and the fact that the matrices A, B, C and X satisfy Condition (C0). To prove

Conditions (C1) and (C2), we use the factorization

AXB+C− αI = A
(
X+A

−1(C− αI)B−1
)
B.

Then it remains to check that for each of the three factors Mn on the right-hand

side, we have, for some Q > 0,

P
(
sn(Mn) ¬ n−Q

)
= o(1) and 1

n

∑

n1¬n¬n2

log− sj(Mn) = oP (1).

For A and B, this is true by assumption. For X+A
−1(C− αI)B−1, this follows

from Lemmas 4.9 and 4.10. More precisely, if the matrices A and B satisfy Con-

dition (C1) with α = 0 and Q > 0, and the matrices C satisfy (4.16) with LC > 0,

we have P
(
s1
(
A
−1(C − αI)B−1

)
> 2n2Q+LC

)
→ 0 by Lemma 4.7. Thus, we

may use Lemmas 4.9 and 4.10 conditionally on A,B,C, and on the set of prob-

ability 1 + o(1) where s1
(
A
−1(C− αI)B−1

)
¬ 2n2Q+LC .

(b) We consider only the case that the matrices C satisfy Condition C, leaving

the simpler case C = 0 to the reader. By reasoning as above, we see that Condition

(C0) follows from Lemmas 4.8 and 4.7, Hölder’s inequality, and the fact that the

matrices A, B, C and X
−1 satisfy Condition (C0). To prove Conditions (C1) and

(C2), we use the factorization

AX
−1

B+C− αI = AX
−1(

B(C− αI)−1A+X
)
A
−1(C− αI).

Then it remains to check that for each of the five factors Mn on the right-hand

side, we have, for some Q > 0,

P
(
sn(Mn) ¬ n−Q

)
= o(1) and 1

n

∑

n1¬n¬n2

log− sj(Mn) = oP (1).

But this is true (i) by assumption, (ii) by Lemma 4.4, (iii) by Lemmas 4.9 and 4.10

(applied conditionally on A, B, C), (iv) by Remark 4.7, and (v) again by assump-

tion. �

4.6. Proof of Theorem 1.3. After the preparations above, we may turn to the

proof of Theorem 1.3. Given a sequence of random matrices (Gn)n∈N, we write

ν(Gn) for the singular value distributions, µ(GnG
∗
n) for the squared singular

value distributions, Sν(Gn) for the symmetrized singular value distributions, and

νG, µGG∗ and SνG for the corresponding weak limits in probability (if existent).

Furthermore, for t > 0, let γ+1
t := γ+1 := γ, and let γ−1t be the induced measure

of γ under the mapping x 7→ (x + t)−1x(x + t)−1. These notions are motivated

by our regularization procedure in equation (4.2).

Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS



380 H. Kösters and A. Tikhomirov

Let us start with the singular value distributions. We will first use induction

on l to prove the claim for the case m = 1 and then use induction on m to prove

the claim for the case m > 1. More precisely, we will show the following:

The matrices Fn(X) from (1.8) satisfy Conditions A and B, and for any
t > 0, the singular value distributions of the matrices Fn,t(X) converge

weakly in probability to the probability measure νt on (0,∞) with sym-

metrization Sνt =
(
Q−1(γε1t ⊠ . . .⊠ γεlt )

)⊞m
.

(4.17)

Indeed, by Condition A, we may then let t→ 0 get the limiting singular value

distribution of the matrices Fn(X). Note that Condition B has already been estab-

lished in Lemma 4.2, so that it remains to check Condition A as well as the claim

about the limiting distribution.

Products of independent random matrices. For Fn(X) = Xn, Condition A

holds trivially, and for Fn(X) = X
−1
n , Condition A holds by Lemma 4.1. Further-

more, the Marchenko–Pastur theorem implies that, for any t > 0 and ε ∈ {−1,+1},
we have µ

(
X

ε
n,t(X

ε
n,t)
∗)→ γεt . Thus, (4.17) is true for l = 1.

Now let l > 1, let Fn be an l-fold product of independent random matri-

ces, and suppose that (4.17) holds for any product Gn with less than l factors.

It then follows from Lemma 4.1 that the matrices Fn(X) satisfy Condition A;

see Remark 4.6 for details. Now consider the particular decomposition Fn(X) =
X

ε
nGn(X), where ε = +1 or ε = −1 and Xn and Gn(X) are independent. Then,

for any t > 0, the matrices Yε
n,t and Gn,t(Y) are independent bi-unitary invariant

matrices with

µ
(
Y

ε
n,t(Y

ε
n,t)
∗)→ γεt and µ

(
Gn,t(Y)G∗n,t(Y)

)
→ µG(t)G(t)∗ ,

by the inductive hypothesis in the latter case. Therefore, by asymptotic freeness

(see Proposition 2.1 (a)),

µ
(
Fn,t(Y)F∗n,t(Y)

)
→ γεt ⊠ µG(t)G(t)∗ .

Thus, by Theorem 4.1 (a), (4.17) holds for the matrices Fn(X) as well.

Hence, by induction on l, we come to the conclusion that (4.17) holds for any

product of independent matrices (i.e. for the case m = 1).

Sums of products of independent random matrices. We have just proved (4.17)

for m = 1. Now let m > 1, let Fn be an m-fold sum of products of independent

random matrices, and suppose that (4.17) holds for any such sum Cn with less

than m summands. It then follows by Lemma 4.1 and a similar argument to that in

Remark 4.6 that the matrices Fn(X) satisfy Condition A. Now consider the par-

ticular decomposition Fn(X) = Gn(X) + Cn(X), where Gn(X) is a product,

Cn(X) is an (m − 1)-fold sum of products, and Gn(X) and Cn(X) are inde-

pendent. Then, for any t > 0, the matrices Gn,t(Y) and Cn,t(Y) are independent

bi-unitary invariant matrices with

Sν
(
Gn,t(Y)

)
→ SνG(t) and Sν

(
Cn,t(Y)

)
→ SνC(t)
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by the result for the case m = 1 and the inductive hypothesis, respectively. There-

fore, by asymptotic freeness (see Proposition 2.1 (c)),

Sν
(
Fn,t(Y)

)
→ SνC(t) ⊞ SνG(t).

Thus, by Theorem 4.1 (a), (4.17) holds for the matrices Fn(X) as well.

Hence, by induction on m, we come to the conclusion that (4.17) holds for

any sum of products of independent matrices (i.e. for the case m > 1).

Let us now consider the eigenvalue distributions. To begin with, by Lemma 4.6,

we may check by induction onm that the matrices Fn(X) satisfy Condition C, too.

Therefore, we may use Theorem 4.1 (b), and it remains to determine the limiting

eigenvalue distributions in the Gaussian case, i.e. for the matrices Fn(Y). Here,

it follows by asymptotic freeness (see Proposition 2.1 (d)) that Sν
(
Fn,t(Y)−αIn

)

→ Sνt,α := (Sνt)⊞B(α), withB(α) as in Theorem 2.1. Letting t→ 0 and using

Condition A, it further follows that Sν
(
Fn(Y)− αIn

)
→ Sνα := (Sν)⊞ B(α),

where ν is the probability measure described in the theorem. Now apply Theo-

rem 2.1. �

4.7. Proof of Remark 1.1. A slight variation of the preceding arguments shows

that Conditions A, B and C continue to hold for random matrices Fn of the form

(1.10), provided that the extra condition (1.11) holds:

C o n d i t i o n A. Here we can regularize the matrices (X−1n )l by means of(
(Xn)

−1
t

)l
(i.e. each factor in the power is regularized individually) and invoke

Lemma 4.1. For this, it is important that the matrices An, Bn and Cn in Lemma 4.1

need not be independent of Xn; see Remark 4.4.

C o n d i t i o n B. Here we may extend Lemma 4.2 to products of powers of

independent Girko–Ginibre matrices, using similar arguments to those in Sections

8.1.3 and 8.1.4 in [18].

C o n d i t i o n C. Under the extra condition (1.11), it follows from Lemma 4.6

(applied with X = X
(r)) and by induction on m that the matrices Fn satisfy Con-

dition C. (Unfortunately, without the extra condition (1.11), Lemma 4.6 does not

allow us to draw this conclusion in general, even though we would expect that

Condition C continues to hold in this case.)

Now, the proof of Remark 1.1 is quite similar to that of Theorem 1.3, which is

why we omit the details. �

4.8. Auxiliary results. In this subsection we collect several auxiliary results

from the literature which we have used to verify Condition C. Let A and B be

n× n matrices, and recall that s1(M)  . . .  sn(M) denote the singular values

of the n× n matrix M.

LEMMA 4.7 ([24], Theorem 3.3.14). For all p > 0 and all k = 1, . . . , n, we

have
∑k

j=1

(
sj(AB)

)p ¬
∑k

j=1

(
sj(A)sj(B)

)p
.
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LEMMA 4.8 ([24], Theorem 3.3.16). For all p>0, we have
∑n

j=1 s
p
j (A+B)

¬ Cp

(∑n
j=1 s

p
j (A) +

∑n
j=1 s

p
j (B)

)
, whereCp is a constant depending only on p.

Since sj(M
−1) = s−1n−j+1(M), j = 1, . . . , n, it is clear that similar results

hold for the smallest singular values.

LEMMA 4.9 ([20], Section 5). Suppose that the conditions (1.1)–(1.4) hold.

Then, for any fixed K > 0 and L > 0, there exist positive constants A and B such

that for any non-random matrices Mn with ∥Mn∥2 ¬ KnL, we have

P
(
sn(Xn −Mn) ¬ n−A

)
¬ n−B.

LEMMA 4.10 ([20], Section 5). Suppose that the conditions (1.1)–(1.4) hold.

Then, for any fixed K > 0 and L > 0, there exists a constant 0 < γ < 1 such

that for any non-random matrices Mn with ∥Mn∥2 ¬ KnL and for any sequence

δn → 0, we have

lim
n→∞

1
n

∑

n1¬j¬n2

log− sj(Xn −Mn) = 0 almost surely,

where n1 = [n− nδn] + 1 and n2 = [n− nγ ].
Acknowledgments. We thank an anonymous referee for careful reading.
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Abstract. We construct a dependence structure for binomial, Poisson

and Gaussian random vectors, based on partially ordered binary trees and

sums of independent random variables. Using this construction, we char-

acterize the supermodular ordering of such random vectors via the compo-

nentwise ordering of their covariance matrices. For this, we apply Möbius

inversion techniques on partially ordered trees, which allow us to connect

the Lévy measures of Poisson random vectors on the discrete d-dimensional

hypercube to their covariance matrices.

2010 AMS Mathematics Subject Classification: Primary: 60E15;

Secondary: 62H20, 05C05, 06A11, 60E07.

Key words and phrases: Stochastic ordering, supermodular func-

tions, Möbius transform, Möbius inversion, binary trees, Poisson random

vectors, binomial random vectors.

1. INTRODUCTION

A d-dimensional random vector X = (X1, . . . , Xd) is said to be dominated

by another random vector Y = (Y1, . . . , Yd) in the supermodular order, and one

writes X ¬sm Y , if

E[Φ(X)] ¬ E[Φ(Y )]

for all integrable supermodular functions, i.e., for all functions Φ : Rd → R such

that

Φ(x) + Φ(y) ¬ Φ(x ∧ y) + Φ(x ∨ y), x, y ∈ R
d,

where the maximum ∨ and the minimum ∧ are defined with respect to the com-

ponentwise order of x, y ∈ R
d. The supermodular stochastic ordering is used in

particular to capture a preference for greater interdependence in economic vari-

ables. In other words, we have X ¬sm Y if the (positive) dependence among the

∗ This research was supported by Singapore MOE Tier 1 Grant MOE2015-T1-2-130

RG122/15. We thank two anonymous referees for useful suggestions.
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components of Y is greater than the (positive) dependence among the components

of X . See, for example, [2] and [3] for applications of supermodular ordering in

insurance, and [9] for applications to portfolio risk management, cf. also [8] and

references therein for applications in economics.

In the case where X and Y are multivariate Gaussian vectors, the supermodu-

lar ordering of X and Y has been characterized by the componentwise ordering of

their covariance matrices in [10]. Sufficient conditions for the supermodular order-

ing of general random vectors have been given in [4] for general random vectors,

including Poisson and gamma vectors, cf. Section 4.2 therein. We note that our

recursive update of Bernoulli random vectors in (5.8) below consists in an imple-

mentation on binary trees of the formulas in Section 4.2 of [4] for Poisson and

gamma vectors.

In this paper, we construct a tree-based covariance structure for binomial and

Poisson random vectors, under which the supermodular ordering can be charac-

terized by the ordering of covariance matrices, cf. Theorems 4.1 and 5.1. This

approach uses Möbius inversion techniques which allow us to connect partially or-

dered binary trees on the discrete unit hypercube {0, 1}d to supermodular ordering.

We also show the necessity of dependence structure of this type in Counterexam-

ple 4.1. Other types of tree-based dependence structures in the setting of Bernoulli

random vectors have been developed in [5] and references therein.

We proceed as follows. In Section 2 we construct a general dependence struc-

ture based on independent variables arranged according to a binary tree on the

vertices of the d-dimensional hypercube. In Section 3 we describe the Möbius in-

version that allows one to recover the parameters of individual random variables

from the covariance matrix of the considered random vector. In Section 4 we deal

with the case of Poisson random vectors via the use of Lévy measures on the ver-

tices of the discrete unit hypercube {0, 1}d, cf. Theorem 4.1. In Section 5 we apply

this dependence structure to the characterization of the binomial supermodular or-

dering via the componentwise ordering of covariances, cf. Theorem 5.1. This result

naturally extends to the supermodular ordering of sums of binomial, multivariate

Gaussian and Poisson random vectors.

2. TREE-BASED CORRELATION STRUCTURES

In this section we introduce the general dependence structure used in this pa-

per. Let (e1, . . . , ed) denote the canonical basis of Rd, and let

Cd := {0, 1}d =
{

x = (x1, . . . , xd) : xi ∈ {0, 1}, i = 1, . . . , d
}

denote the discrete set of vertices of the d-dimensional unit hypercube.

Every x = (x1, . . . , xd) ∈ {0, 1}d is identified with its index set

Sx :=
{

i ∈ {1, . . . , d} : xi = 1
}

,
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and we endow Cd = {0, 1}d with the partial inclusion ordering of index sets, i.e.,

we write

x ≼ y when 0 ¬ xi ¬ yi ¬ 1, i = 1, . . . , d,

and x ≺ y when x ≼ y and x ̸= y; we also let x \ {a} denote (xi1{i ̸=a})i=1,...,d

for x ∈ Cd.

2.1. Random vectors. Given (Xi,j)1¬i¬j¬d a family of independent random

variables and (ek,l)1¬k¬l¬d ⊂ Cd with ek,k = ek, k = 1, . . . , d, we define the ran-

dom vector X = (X1, . . . , Xd) by

Xi :=
∑

1¬k¬l¬d
ei≼ek,l

Xk,l, i = 1, . . . , d.

In other words, we have

X =
d
∑

i=1

eiXi =
d
∑

i=1

ei
∑

1¬k¬l¬d
ei≼ek,l

Xk,l(2.1)

=
∑

1¬k¬l¬d

Xk,l

∑

1¬i¬d
ei≼ek,l

ei =
∑

1¬k¬l¬d

Xk,lek,l,

which implies

E[Xi] =
∑

1¬k¬l¬d
ei≼ek,l

E[Xk,l], i = 1, . . . , d,

and

(2.2) Cov(Xi, Xj) =
∑

1¬k¬l¬d
ei≼ek,l,ej≼ek,l

σ2
k,l, 1 ¬ i ¬ j ¬ d,

where σ2
k,l := Var[Xk,l], 1 ¬ k ¬ l ¬ d.

EXAMPLE 2.1. If we take d = 5, the subset (ek,l)1¬k¬l¬5 of C5 given by































































e1,2 = (1, 1, 0, 0, 1),
e1,3 = (1, 1, 1, 0, 1),
e1,4 = (1, 0, 0, 1, 0),
e1,5 = (1, 0, 0, 0, 1),
e2,3 = (0, 1, 1, 0, 0),
e2,4 = (0, 1, 0, 1, 0),
e2,5 = (0, 1, 0, 0, 1),
e3,4 = (0, 1, 1, 1, 0),
e3,5 = (0, 1, 1, 0, 1),
e4,5 = (1, 0, 0, 1, 1)
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corresponds, under (2.1), to the random vector

(2.3)























X1 = X1,1 +X1,2 +X1,3 +X1,4 +X1,5 +X4,5

X2 = X2,2 +X1,2 +X1,3 +X2,3 +X2,4 +X2,5 +X3,4 +X3,5

X3 = X3,3 +X1,3 +X2,3 +X3,4 +X3,5

X4 = X4,4 +X1,4 +X2,4 +X3,4 +X4,5

X5 = X5,5 +X1,2 +X1,3 +X1,5 +X2,5 +X3,5 +X4,5.

2.2. Binary tree structure. From now on, we work under the following Hy-

pothesis (H) that builds a tree on the set (ek,l)1¬k<l¬d. Note that not all random

vectors admit a tree-based representation according to Hypothesis (H), see Exam-

ples 3.4, 3.5 and Counterexample 4.1 below.

(H) The family (ek,l)1¬k¬l¬d ⊂ {0, 1}d forms an ordered binary tree for the

partial order ≼, in which every node ek,l, k < l, has exactly two children ek,l\{k}
and ek,l\{l}.

We note that the tree (ek,l)1¬k¬l¬d has size d(d+ 1)/2 and height at most d.

The random vector (2.3) of Example 2.1 satisfies Hypothesis (H) with the

following tree structure:

e1,3

11101

e4,5

10011

e1,2

11001

e3,4

01110

e3,5

01101

e1,4

10010

e1,5

10001

e2,3

01100

e2,4

01010

e2,5

01001

e1

10000

e2

01000

e3

00100

e4

00010

e5

00001

e1,3

11101

e4,5

10011

e1,2

11001

e3,4

01110

e3,5

01101

e1,4

10010

e1,5

10001

e2,3

01100

e2,4

01010

e2,5

01001

e1

10000

e2

01000

e3

00100

e4

00010

e5

00001

LEMMA 2.1. Under Hypothesis (H) we have the equivalence

ei,j ≼ ek,l ⇐⇒ (ei ≼ ek,l and ej ≼ ek,l)

for all 1 ¬ i ¬ j ¬ d and 1 ¬ k ¬ l ¬ d.

P r o o f. (i) Assume that ei,j ≼ ek,l. Since both children ei,j\{i} and ei,j\{j}
of ei,j satisfy ei,j\{i} ≺ ei,j and ei,j\{j} ≺ ei,j , we have ei ≼ ei,j and ej ≼ ei,j ,
which implies ei ≼ ek,l and ej ≼ ek,l since ei,j ≼ ek,l.

(ii) Assume that ei ≼ ek,l and ej ≼ ek,l. We work by decreasing induction on

the height of nodes in the tree. If ek,l = ek is a leaf, i.e. k = l, then (ei ≼ ek,l and

ej ≼ ek,l) implies i = j = k = l, hence ei,j = ei = ek = ek,l. Next, assuming that

the conclusion holds for all nodes of height at least h  2, consider a node ek,l of
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height h− 1, with k ̸= l. If (ei ≼ ek,l and ej ≼ ek,l) and {i, j} ̸= {k, l}, we must

have either i ̸= l and j ̸= l, or i ̸= k and j ̸= k. In the first case, (ei ≼ ek,l and

ej ≼ ek,l) implies ei ≼ ek,l\{l} and ej ≼ ek,l\{l}, where ek,l\{l} has height h,

hence ei ≼ ek,l\{l} ≼ ek,l and ej ≼ ek,l\{l} ≼ ek,l by the induction hypothesis.

The conclusion is similar in the second case, by replacing l with k. �

Based on Lemma 2.1, for all 1 ¬ i ¬ j ¬ d we can now rewrite (2.2) as the

sum

(2.4) Cov(Xi, Xj) =
∑

1¬k¬l¬d
ei,j≼ek,l

σ2
k,l, 1 ¬ i ¬ j ¬ d,

over all couples (k, l) with ei,j≼ek,l. In other words,
(

Cov(Xi, Xj)
)

1¬i¬j¬d
is the

Möbius transform of (σ2
k,l)1¬k¬l¬d on the partially ordered set

(

(ek,l)1¬k¬l¬d,≼
)

,

cf. [13] or Section 2.5 of [12] for details.

3. MÖBIUS INVERSION

By Möbius inversion (cf. Proposition 2.6.3 of [12]), we can recover the coef-

ficients (σ2
k,l)1¬k¬l¬d in (2.2) using the covariances

(

Cov(Xi, Xj)
)

1¬i¬j¬d
as the

sum

(3.1) σ2
k,l =

∑

1¬i¬j¬d
ek,l≼ei,j

µ(ei,j , ek,l)Cov(Xi, Xj), 1 ¬ k ¬ l ¬ d,

over all couples (i, j) such that ek,l ≼ ei,j , 1 ¬ i ¬ j ¬ d, where µ(x, y) is the

Möbius function defined recursively by µ(x, x) := 1 and

(3.2) µ(x, y) := −
∑

y≺z≼x

µ(x, z), x, y ∈ {0, 1}d,

cf. Proposition 2.6.1 of [12].

PROPOSITION 3.1.The Möbius function µ(x, y) on the tree
(

(ek,l)1¬k¬l¬d,≼
)

is given by

(3.3a)

(3.3b)



















µ(ek,l, ek,l) = 1,

µ(ek,l, ek,l\{k}) = −1,
µ(ek,l, ek,l\{l}) = −1,
µ(ek,l, ek,l\{k, l}) = 1, 1 ¬ k ¬ l ¬ d,

with µ(ek,l, ei,j) = 0 in all other cases.
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P r o o f. Given ek,l ∈ {0, 1}d, we clearly have

µ(ek,l, ek,l) = 1, µ(ek,l, ek,l\{k}) = −1, and µ(ek,l, ek,l\{l}) = −1.

Next, since the two children ek,l\{k} and ek,l\{l} of ek,l have themselves a unique

common child ek,l\{k, l}, (3.2) yields µ(ek,l, ek,l\{k, l}) = 1. �

The next graph, in which y /∈ {k, l}, summarizes the result of Proposition 3.1.

µ(ek,l, ek,l) = 1

µ(ek,l, ek,l\{ k}) = − 1 µ(ek,l, ek,l\{ l}) = − 1

µ(ek,l, ek,y) = 0 µ(ek,l, ek,l\{ k, l}) = 1 µ(ek,l, ey,l) = 0

Using formula (3.1), we can now solve (2.2) for (σ2
k,l)1¬k¬l¬d starting from

(

Cov(Xi, Xj)
)

1¬i¬j¬d
. However, not all these covariance matrices may lead to

a positive solution (σ2
k,l)1¬k¬l¬d, meaning that not all random vectors admit a

representation of the form (2.1), see Example 3.4 below.

EXAMPLE 3.1 (Comonotonic vectors). The comonotonic vector (Xk,l, Xk,l,
. . . , Xk,l) can be represented by using a binary tree with a single node ek,l =
111 . . . 111 and letting σ2

i,j = 0 for (i, j) ̸= (k, l), since Cov(Xi, Xj) = σ2
k,l for

all (i, j).

EXAMPLE 3.2 (Pairwise dependence). The binary tree is reduced to the d
leaves e1, . . . , ed, and to their parents (d− 1)d/2,

ek,l = (0, . . . , 0, 1,
↑

k

0, . . . , 0, 1
↑

l

, 0, . . . , 0), 1 ¬ k ¬ l ¬ d,

as in the following example with d = 4:

e1,2

1100

e1,3

1010

e1,4

1001

e2,3

0110

e2,4

0101

e3,4

0011

e1

1000

e2

0100

e3

0010

e4

0001
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Here, the vector (Xi)i=1,...,d is given by

(3.4)















X1 = X1,1 +X1,2 +X1,3 +X1,4

X2 = X2,2 +X1,2 +X2,3 +X2,4

X3 = X3,3 +X1,3 +X2,3 +X3,4

X4 = X4,4 +X1,4 +X2,4 +X3,4,

and for any d  1, by (2.2) we have

Cov(Xi, Xj) = σ2
i,j , 1 ¬ i < j ¬ d,

and

(3.5) Var[Xi] =
i−1
∑

j=1

σ2
j,i +

d
∑

j=i

σ2
i,j , i = 1, . . . , d.

Here, the inversion of (3.5) by the Möbius transform (3.1) reads

σ2
k,k = Var[Xk]−

d
∑

l=1, l≠k

Cov(Xk, Xl), k = 1, . . . , d.

EXAMPLE 3.3 (Recombining trees). In dimension d = 3, the only available

tree structure in addition to the pairwise dependence of Example 3.2 is the recom-

bining (or binomial) full tree

e1,2

111

e1,3

101

e2,3

011

e1

100

e2

010

e3

001

which is associated with the random vector






X1 = X1,1+X1,3 +X1,2

X2 = X2,2 +X2,3 +X1,2

X3 = X3,3+X1,3+X2,3+X1,2,

with the inversion formula (3.1) written as

(3.6)







































σ2
1,1 = Cov(X1, X1)− Cov(X1, X3),

σ2
2,2 = Cov(X2, X2)− Cov(X1, X3)− Cov(X2, X3) + Cov(X1, X2),

σ2
3,3 = Cov(X3, X3)− Cov(X2, X3),

σ2
1,3 = Cov(X1, X3)− Cov(X1, X2),

σ2
2,3 = Cov(X2, X3)− Cov(X1, X2),

σ2
1,2 = Cov(X1, X2).
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EXAMPLE 3.4 (Multivariate Gaussian vectors). If (Xi,j)1¬i¬j¬d is a family

of independent Gaussian random variables, then X = (X1, . . . , Xd) in (2.1) is a

multivariate Gaussian vector with matrix
(

Cov(Ui, Uj)
)

1¬i¬j¬d
of nonnegative

covariances given by (2.4). However, not all Gaussian vectors can fit into a tree-

based structure under Hypothesis (H) above. For example, when d = 3, consider

the multivariate Gaussian vector

(3.7)







X1 = X1,1+X1,3 +X1,2 +Z
X2 = X2,2 +X2,3 +X1,2 +Z
X3 = X3,3+X1,3+X2,3+X1,2,

where (Xk,l)1¬k¬l¬d are standard normal random variables and Z is an indepen-

dent Gaussian random variable with variance four. Here, (X1, X2, X3) has the

(positive definite) covariance matrix




Cov(X1, X1) Cov(X1, X2) Cov(X1, X3)
Cov(X1, X2) Cov(X2, X2) Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) Cov(X3, X3)



 =





7 5 2
5 7 2
2 2 4



,

in which case (3.6) cannot yield a nonnegative solution (σ2
k,l)1¬k¬l¬3, e.g. when

(k, l) = (1, 3). In this case, the multivariate Gaussian vector (X1, X2, X3) given

by (3.7) admits no binary tree-based representation as the inversion formula (3.6)

is based on a full tree.

EXAMPLE 3.5. As in Example 3.4 above, binomial, Poisson and gamma ran-

dom vectors having a given matrix of nonnegative covariances can be constructed

on a binary tree, provided that (3.1) admits a nonnegative solution (σ2
k,l)1¬k¬l¬3

since their marginals are characterized by their variance parameters and they are

stable by summation. However, in this case the construction may not be unique,

depending on the chosen binary tree structure, as their joint distribution is not char-

acterized by their covariance matrices.

EXAMPLE 3.6. The particular dependence structure considered in [7] for

Poisson random vectors corresponds to the binary tree built on the d(d − 1)/2
nodes

ei,j = (1, . . . , 1, 1
↑

i

, 0, . . . , 0, 1
↑

j

, 0, . . . , 0), 1 ¬ i < j ¬ d,

and on the d leaves e1, . . . , ed.

4. POISSON RANDOM VECTORS

In this section we provide a characterization of the supermodular ordering of

Poisson random vectors, based on their covariance matrices in Theorem 4.1. This

extends the results of [7] (cf. Example 3.6 above) to more general dependence

structures.
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Recall that any d-dimensional infinitely divisible Poisson random vector X =
(X1, . . . , Xd) is defined by its characteristic function

E[ei⟨t̄,X⟩] = exp
(
∫

Rd

(ei⟨t̄,x⟩ − 1)µ(dx)
)

,

where t̄ = (t1, . . . , td) ∈ R
d, ⟨·, ·⟩ denotes the scalar product in R

d, and the Lévy

measure

µ(dx) :=
∑

y∈{0,1}d
ayδy(dx)

is supported on Cd = {0, 1}d. Here δy denotes the Dirac measure at the point

y ∈ {0, 1}d, and (ay)y∈Cd
is a family of nonnegative coefficients with a(0,...,0) = 0.

Equivalently, X = (X1, . . . , Xd) can be represented as

(4.1) Xi =
∑

y∈{0,1}d
1{i∈y}Zy =

∑

y∈Cd, ei≼y

Zy, i = 1, . . . , d,

where (Zy)y∈Cd\{0} is a family of 2d − 1 independent Poisson random variables

with respective intensities (ay)y∈Cd\{0}, cf. also Example 4.3 of [4] and Theorem 3

of [6].

To characterize the ordering of Poisson random vectors based on the data of

their covariance matrices which contain only d(d+ 1)/2 components, we consider

Lévy measures of the form

(4.2) µ(dx) =
∑

1¬k¬l¬d

ak,lδek,l(dx),

on {0, 1}d, where ak,l ∈ R+, 1 ¬ k ¬ l ¬ d. In this case, (4.1) rewrites as

(4.3) Xi =
∑

1¬k¬l¬d
ei≼ek,l

Xk,l,

where (Xk,l)1¬k¬l¬d is a family of independent Poisson random variables whose

respective intensities (ai,j)1¬i¬j¬d satisfy Var[Xk,l] = E[Xk,l] = ak,l, 1 ¬ k ¬
l ¬ d.

In the remaining of this section we assume that the family (ek,l)1¬k¬l¬d ⊂
{0, 1}d forms a binary tree according to Hypothesis (H). In this case, the Möbius

inversion formula (3.1) shows that

(4.4) ak,l =
∑

1¬i¬j¬d
ek,l≼ei,j

µ(ei,j , ek,l)Cov(Xi, Xj), 1 ¬ k ¬ l ¬ d.
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4.1. Supermodular ordering of Poisson random vectors. Theorem 4.1 below

is a direct consequence of the following Lemma 4.1 which yields the decomposi-

tion

µ(dx) =
d
∑

i=1

Var[Xi]δei(dx)

+
∑

1¬i<j¬d

Cov(Xi, Xj)(δei,j + δei,j\{i,j} − δei,j\{i} − δei,j\{j})(dx)

of a Lévy measure µ(dx) of the form (4.2) under Hypothesis (H).

LEMMA 4.1. Let (X1, . . . , Xd) be an infinitely divisible Poisson random vec-

tor written as in (4.3) under Hypothesis (H), with Lévy measure µ(dx) on Cd. Then

we have

(4.5)
∫

Rd

φ(x)µ(dx) =
d
∑

i=1

E[Xi]φ(ei)

+
∑

1¬i<j¬d

Cov(Xi, Xj)
(

φ(ei,j)+φ(ei,j\{i, j})−φ(ei,j\{i})−φ(ei,j\{j})
)

for any function φ : {0, 1}d → R such that φ(0) = 0.

P r o o f. By the Möbius inversion formula (3.1) we have

∫

Rd

φ(x)µ(dx) =
∑

1¬k¬l¬d

ak,lφ(ek,l)

=
∑

1¬k¬l¬d

φ(ek,l)
∑

1¬i¬j¬d
ek,l≼ei,j

µ(ei,j , ek,l)Cov(Xi, Xj)

=
d
∑

i=1

Cov(Xi, Xi)
∑

1¬k¬d
ek≼ei

µ(ei, ek)φ(ek)

+
∑

1¬i<j¬d

Cov(Xi, Xj)
∑

1¬k<l¬d
ek,l≼ei,j

µ(ei,j , ek,l)φ(ek,l)

=
d
∑

i=1

E[Xi]φ(ei)

+
∑

1¬i<j¬d

Cov(Xi, Xj)
(

φ(ei,j)+φ(ei,j\{i, j})−φ(ei,j\{i})−φ(ei,j\{j})
)

,

where we used (3.3a), (3.3b) and the fact that ek ≼ ei if and only if k = i. �
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EXAMPLE 4.1. For d = 4, the tree structure

e1,4

1111

e1,3

1110

e2,4

0111

e1,2

1100

e2,3

0110

e3,4

0011

e1

1000

e2

0100

e3

0010

e4

0001

is satisfied by the random vector















X1 = X1,1 +X1,2 +X1,3 +X1,4

X2 = X2,2 +X1,2 +X1,3 +X1,4 +X2,3 +X2,4

X3 = X3,3 +X1,3 +X1,4 +X2,3 +X2,4 +X3,4

X4 = X4,4 +X1,4 +X2,4 +X3,4,

and relation (4.5) reads

∫

Rd

φ(x)µ(dx) = a1,4φ(1, 1, 1, 1) + a1,3φ(1, 1, 1, 0) + a2,4φ(0, 1, 1, 1)

+ a1,2φ(1, 1, 0, 0) + a2,3φ(0, 1, 1, 0) + a3,4φ(0, 0, 1, 1)

+ a1,1φ(1, 0, 0, 0) + a2,2φ(0, 1, 0, 0) + a3,3φ(0, 0, 1, 0) + a4,4φ(0, 0, 0, 1)

= E[X1]φ(1, 0, 0, 0) + E[X2]φ(0, 1, 0, 0)

+ E[X3]φ(0, 0, 1, 0) + E[X4]φ(0, 0, 0, 1)

+ Cov(X1, X2)
(

φ(1, 1, 0, 0) + φ(0, 0, 0, 0)− φ(1, 0, 0, 0)− φ(0, 1, 0, 0)
)

+ Cov(X1, X3)
(

φ(1, 1, 1, 0) + φ(0, 1, 0, 0)− φ(1, 1, 0, 0)− φ(0, 1, 1, 0)
)

+ Cov(X1, X4)
(

φ(1, 1, 1, 1) + φ(0, 1, 1, 0)− φ(1, 1, 1, 0)− φ(0, 1, 1, 1)
)

+ Cov(X2, X3)
(

φ(0, 1, 1, 0) + φ(0, 0, 0, 0)− φ(0, 1, 0, 0)− φ(0, 0, 1, 0)
)

+ Cov(X2, X4)
(

φ(0, 1, 1, 1) + φ(0, 0, 1, 0)− φ(0, 1, 1, 0)− φ(0, 0, 1, 1)
)

+ Cov(X3, X4)
(

φ(0, 0, 1, 1) + φ(0, 0, 0, 0)− φ(0, 0, 1, 0)− φ(0, 0, 0, 1)
)

.

Consider now two Poisson random vectors X and Y whose respective Lévy mea-

sures µ and ν are represented as in (4.2), i.e.,

µ(dx) =
∑

1¬i¬j¬d

ai,jδei,j (dx) and ν(dx) =
∑

1¬i¬j¬d

bi,jδei,j (dx).
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If Xi has the same distribution as Yi for all i = 1, . . . , d, then E[Xi] = E[Yi],
i = 1, . . . , d, and Lemma 4.1 shows that

(4.6)
∫

Rd

φ(y)ν(dy)−
∫

Rd

φ(x)µ(dx)

=
∑

1¬i<j¬d

(

Cov(Yi, Yj)− Cov(Xi, Xj)
)(

φ(ei,j) + φ(ei,j\{i, j})

− φ(ei,j\{i})− φ(ei,j\{j})
)

under Hypothesis (H). Relation (4.6) implies in particular that the nonnegativity of

the coefficients

(4.7) Cov(Yi, Yj)− Cov(Xi, Xj)  0, 1 ¬ i < j ¬ d,

becomes a necessary and sufficient condition for the supermodular ordering of the

Lévy measures µ and ν.

The following Theorem 4.1 reformulates (4.7) as a necessary and sufficient

condition for supermodular ordering of infinitely divisible Poisson random vectors,

based on Theorem 4.5 of [1], which allows one to carry over the notion of super-

modularity from the setting of Lévy measures on the discrete cube Cd = {0, 1}d
to the setting of Poisson random variables.

THEOREM 4.1. Consider two Poisson random vectors X and Y both repre-

sented as in (4.3) under Hypothesis (H). Then the conditions

(4.8) E[Xi] = E[Yi], 1 ¬ i ¬ d,

and

(4.9) Cov(Xi, Xj) ¬ Cov(Yi, Yj), 1 ¬ i < j ¬ d,

are necessary and sufficient for the supermodular ordering X ¬sm Y .

P r o o f. It is well known (cf. e.g. Theorem 3.9.5 of [11]) that for any couple

(X,Y ) of d-dimensional random vectors, the condition X ¬sm Y implies (4.8)

and (4.9), therefore it suffices to show sufficiency. For this, by Theorem 4.5 in [1]

it suffices to show that we have

(4.10)
∫

Rd

φ(x)µ(dx) ¬
∫

Rd

φ(y)ν(dy)

for all supermodular functions φ : Rd → R, where µ(dx) and ν(dy) denote the

Lévy measures of X and Y , respectively. By Lemma 4.1 we have the identity

(4.6) under condition (4.9), which allows us to conclude that (4.10) holds for all

supermodular functions φ. �
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Next, we consider a situation where Hypothesis (H) is not satisfied and the

equivalence of Theorem 4.1 does not hold.

COUNTEREXAMPLE 4.1. If we take d = 4, the tree

e2,3

1110

e3,4

0111

e1,2

1100

e1,3

1010

e1,4

1001

e2,4

0101

e1

1000

e2

0100

e4

0001

does not satisfy Hypothesis (H), and for its corresponding random vector

(4.11)















X1 = X1,1 +X1,2 +X1,3 +X1,4 +X2,3

X2 = X2,2 +X1,2 +X2,3 +X2,4 +X3,4

X3 = +X1,3 +X2,3 +X3,4

X4 = X4,4 +X1,4 +X2,4 +X3,4,

relation (4.1) reads

∫

Rd

φ(x)µ(dx) = a2,3φ(1, 1, 1, 0) + a3,4φ(0, 1, 1, 1)

+ a1,2φ(1, 1, 0, 0) + a1,3φ(1, 0, 1, 0) + a2,4φ(0, 1, 0, 1) + a1,4φ(1, 0, 0, 1)

+ a1,1φ(1, 0, 0, 0) + a2,2φ(0, 1, 0, 0) + a4,4φ(0, 0, 0, 1)

= E[X1]φ(1, 0, 0, 0) + E[X2]φ(0, 1, 0, 0)

+ E[X3]φ(0, 0, 1, 0) + E[X4]φ(0, 0, 0, 1)

+ Cov(X1, X2)
(

φ(1, 1, 0, 0) + φ(0, 0, 0, 0)− φ(1, 0, 0, 0)− φ(0, 1, 0, 0)
)

+ Cov(X1, X3)
(

φ(1, 0, 1, 0) + φ(0, 0, 0, 0)− φ(1, 0, 0, 0)− φ(0, 0, 1, 0)
)

+ Cov(X1, X4)
(

φ(1, 0, 0, 1) + φ(0, 0, 0, 0)− φ(1, 0, 0, 0)− φ(0, 0, 0, 1)
)

+ Cov(X2, X3)
(

φ(1, 1, 1, 0) + φ(1, 0, 0, 0)− φ(1, 1, 0, 0)− φ(1, 0, 1, 0)
)

+ Cov(X2, X4)
(

φ(0, 1, 0, 1) + φ(0, 0, 0, 0)− φ(0, 1, 0, 0)− φ(0, 0, 0, 1)
)

+ Cov(X3, X4)
(

φ(0, 1, 1, 1) + φ(0, 0, 0, 0)− φ(0, 1, 0, 1)− φ(0, 0, 1, 0)
)

− Cov(X3, X4)
(

φ(1, 1, 1, 0) + φ(1, 0, 0, 0)− φ(1, 0, 1, 0)− φ(1, 1, 0, 0)
)

.

In this case, the conclusion of Theorem 4.1 cannot hold for vectors of the form

(4.11) as the sum of the above two terms in factor of Cov(X3, X4) can become

negative, e.g. for the supermodular function φ(x1, x2, x3, x4) = x1x2x3 on the unit

cube.
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The next proposition replaces the equality of means in (4.8) with an inequal-

ity, and is obtained as in Proposition 4.3 of [7] by extending Theorem 4.5 of [1]

to nondecreasing supermodular functions φ on R
d satisfying φ(0) = 0, using the

same approximation as in Lemma 4.4 therein.

PROPOSITION 4.1. Consider two Poisson random vectors X and Y both rep-

resented as in (4.3) under Hypothesis (H), and assume that

E[Xi] ¬ E[Yi], 1 ¬ i ¬ d,

and

Cov(Xi, Xj) ¬ Cov(Yi, Yj), 1 ¬ i < j ¬ d.

Then we have

E[Φ(X)] ¬ E[Φ(Y )]

for all nondecreasing supermodular functions Φ : Rd → R.

4.2. Convex ordering. The next result is a remark on the convex ordering of

Poisson random vectors represented as in (4.3).

PROPOSITION 4.2. Consider two Poisson random vectors X and Y both rep-

resented as in (4.3) under Hypothesis (H). Then we have X ¬cx Y if and only if

X and Y have the same distribution.

P r o o f. We assume that X ¬cx Y , i.e., we have E[Φ(X)] ¬ E[Φ(Y )] for all

convex functions Φ : Rd → R. Clearly, this implies E[Xk] = E[Yk], k = 1, . . . , d,

and by the same argument as in part (b) of the proof of Theorem 4.5 in [1] we also

have µ ¬cx ν. Assume now that Cov(Yk, Yl) > Cov(Xk, Xl) for some 1 ¬ k <
l ¬ d. The function

(x1, . . . , xd) 7→ φk,l(x1, . . . , xd) := max
(

0, xl − xk −
∑

a/∈ek,l

xa
)

is convex on R
d and satisfies φk,l(ei,j) = 1 when ei,j is a (non-strict) descendant

of ek,l\{k} that contains l, and φk,l(ei,j) = 0 in all other cases. This shows that

φk,l(ek,l) + φk,l(ek,l\{k, l})− φk,l(ek,l\{k})− φk,l(ek,l\{l}) = −1,

and

φk,l(ei,j) + φk,l(ei,j\{i, j})− φk,l(ei,j\{i})− φk,l(ei,j\{j}) = 0

when (i, j) ̸= (k, l). Therefore, since Cov(Yk, Yl) > Cov(Xk, Xl), Lemma 4.1

shows that
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∫

Rd

φ(y)ν(dy)−
∫

Rd

φ(x)µ(dx)

=
∑

1¬i<j¬d

(

Cov(Yi, Yj)− Cov(Xi, Xj)
)(

φ(ei,j) + φ(ei,j\{i, j})

− φ(ei,j\{i})− φ(ei,j\{j})
)

=
(

Cov(Yk, Yl)− Cov(Xk, Xl)
)(

φ(ek,l) + φ(ek,l\{k, l})
− φ(ek,l\{k})− φ(ek,l\{l})

)

< 0,

which contradicts the fact that µ ¬cx ν, hence Cov(Yk, Yl) ¬ Cov(Xk, Xl). If

Cov(Yk, Yl) < Cov(Xk, Xl), we can proceed similarly with the convex function

(x1, . . . , xd) 7→ −φk,l(x1, . . . , xd),

and conclude that Cov(Yk, Yl) = Cov(Xk, Xl) for all 1 ¬ k ¬ l ¬ d, hence by

(4.4) the vectors X and Y have the same distribution. �

5. BINOMIAL RANDOM VECTORS

In this section we provide a characterization of the supermodular ordering of

binomial random vectors, based on their covariance matrices, cf. Theorem 5.1.

Consider (Z1, . . . , Zn) independent Bernoulli random variables with parame-

ter p ∈ [0, 1] and
(

A(ek,l)
)

1¬k¬l¬d
a partition of {1, . . . , n}. Let (Xk,l)1¬k¬l¬d =

(XA(ek,l))1¬k¬l¬d denote the family of independent binomial random variables

given by

Xk,l = XA(ek,l) :=
∑

i∈A(ek,l)

Zi, 1 ¬ k ¬ l ¬ d,

with

E[XA(ek,l)] = p|A(ek,l)|, 1 ¬ k ¬ l ¬ d,

where |A(ek,l)| denotes the cardinality of A(ek,l), and

σ2
k,l = Var[XA(ek,l)] = pq|A(ek,l)|, 1 ¬ k ¬ l ¬ d, q := 1− p.

Let now

Ai :=
∪

1¬k¬l¬d
ei≼ek,l

A(ek,l), i = 1, . . . , d,

and consider the vector (X1, . . . , Xd) = (XA1
, . . . , XAd

) of binomial random vari-

ables defined by

(5.1) Xi = XAi
:=

∑

k∈Ai

Zk =
∑

1¬k¬l¬d
ei≼ek,l

XA(ek,l), i = 1, . . . , d.
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In general, we have

E[XAi
] = p

∑

1¬k¬l¬d
ei≼ek,l

|A(ek,l)|, i = 1, . . . , d,

and

Cov(XAi
, XAj

) = pq
∑

1¬k¬l¬d
ei,j≼ek,l

|A(ek,l)|, 1 ¬ i ¬ j ¬ d.

Assuming that the family (ek,l)1¬k¬l¬d ⊂ Cd forms a binary tree according to

Hypothesis (H), the Möbius inversion formula (3.1) shows that we have

(5.2) pq|A(ek,l)| =
∑

1¬k¬d
ek,l≼ei,j

µ(ei,j , ek,l)Cov(XAi
, XAj

), 1 ¬ k ¬ l ¬ d.

The following is the main result of this section.

THEOREM 5.1. Consider (XA1
, . . . , XAd

) and (XB1
, . . . , XBd

) two bino-

mial random vectors represented as in (5.1) under Hypothesis (H). Then the con-

ditions

(5.3) E[XAi
] = E[XBi

], 1 ¬ i ¬ d,

and

(5.4) Cov(XAi
, XAj

) ¬ Cov(XBi
, XBj

), 1 ¬ i < j ¬ d,

are necessary and sufficient for the supermodular ordering

(XA1
, . . . , XAd

) ¬sm (XB1
, . . . , XBd

).

P r o o f. By Theorem 3.9.5 of [11], it suffices to show sufficiency. Using in-

duction, it is also sufficient to consider the case where

(5.5) Cov(XBk
, XBl

) = Cov(XAk
, XAl

) + pq

for some given 1 ¬ k < l ¬ d, and

(5.6) Cov(XBi
, XBj

) = Cov(XAi
, XAj

), 1 ¬ i ¬ j ¬ d, (i, j) ̸= (k, l).

By the Möbius inversion formula (5.2), there is a unique way (up to a permutation

of {1, . . . , n}) to choose
(

A(ei,j)
)

1¬i¬j¬d
and

(

B(ei,j)
)

1¬i¬j¬d
satisfying (5.5)

and (5.6), respectively. In this case, (3.1) shows that

pq|B(ei,j)| =
∑

1¬x¬y¬d
ei,j≼ex,y

µ(ex,y, ei,j)Cov(XBx , XBy)
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= pq1{ei,j≼ek,l}µ(ek,l, ei,j) +
∑

1¬x¬y¬d
ei,j≼ex,y

µ(ex,y, ei,j)Cov(XAx , XAy)

= pq1{ei,j≼ek,l}µ(ek,l, ei,j) + pq|A(ei,j)|, 1 ¬ i ¬ j ¬ d,

i.e.,

(5.7) |B(ei,j)| = 1{ei,j≼ek,l}µ(ek,l, ei,j) + |A(ei,j)|, 1 ¬ i ¬ j ¬ d.

Given the children ek,l\{k}, ek,l\{l} ∈ {0, 1}d and grandchild ek,l\{k, l} of ek,l ∈
{0, 1}d, by (3.3a), (3.3b) and (5.7), we have

(5.8)







































|B(ek,l)| = |A(ek,l)|+ 1,

|B(ek,l\{k})| = |A(ek,l\{k})| − 1,

|B(ek,l\{l})| = |A(ek,l\{l})| − 1,

|B(ek,l\{k, l})| = |A(ek,l\{k, l})|+ 1,

with |B(ei,j)| = |A(ei,j)|, since µ(ek,l, ei,j) = 0, in all other cases. We choose to

realize the above as

(5.9)







































A(ek,l) = B(ek,l) \ {k},

B(ek,l\{k}) = A(ek,l\{k}) \ {k},

B(ek,l\{l}) = A(ek,l\{l}) \ {l},

A(ek,l\{k, l}) = B(ek,l\{k, l}) \ {l}

for some given 1 ¬ k < l ¬ d, with k, l /∈ B(ei,j) = A(ei,j) in all other cases.

Noting that

l ∈ B(ek,l\{k, l}), k ∈ A(ek,l\{k}), l ∈ A(ek,l\{l}),

and

B(ek,l\{k, l}) ∩Bk = ∅, B(ek,l\{k, l}) ∩Bl = ∅,

A(ek,l\{k}) ∩Ak = ∅, A(ek,l\{l}) ∩Al = ∅,

we find that

l /∈ Bk, l /∈ Bl, k /∈ Ak, l /∈ Al.
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Hence, using the symmetric difference operator A \B := A∩Bc, for i = 1, . . . , d
we have

(5.10)

Ai =























(

Bk \B(ek,l) \B(ek,l\{k, l})
)

∪A(ek,l) ∪ {l}, i = k,
(

Bi \B(ek,l) \B(ek,l\{k, l})
)

∪A(ek,l) ∪ {k} ∪A(ek,l\{k, l}) ∪ {l},
i /∈ {k, l},

(

Bl \B(ek,l) \B(ek,l\{k, l})
)

∪A(ek,l) ∪ {k}, i = l,

and

(5.11)

Bi =











(

Bk \B(ek,l) \B(ek,l\{k, l})
)

∪B(ek,l), i = k,
(

Bi \B(ek,l) \B(ek,l\{k, l})
)

∪B(ek,l) ∪B(ek,l\{k, l}), i /∈ {k, l},
(

Bl \B(ek,l) \B(ek,l\{k, l})
)

∪B(ek,l), i = l.

In other words, by (5.9) we can write

(5.12)























XB(ek,l) = XA(ek,l) + U,

XA(ek,l\{k}) = XB(ek,l\{k}) + U,

XA(ek,l\{l}) = XB(ek,l\{l}) + V,

XB(ek,l\{k,l}) = XA(ek,l\{k,l}) + V,

where U, V ∈ {Z1, . . . , Zn} are two independent Bernoulli random variables, while

we have XB(ei,j) = XA(ei,j) in all other cases, and from (5.10) and (5.11) we get

(5.13)

XAi
=











XBk\B(ek,l)\B(ek,l\{k,l}) +XA(ek,l) + V, i = k,

XBi\B(ek,l)\B(ek,l\{k,l})+XA(ek,l)+U +XA(ek,l\{k,l})+V, i /∈{k, l},
XBl\B(ek,l)\B(ek,l\{k,l}) +XA(ek,l) + U, i = l,

and

(5.14)

XBi
=











XBk\B(ek,l)\B(ek,l\{k,l}) +XB(ek,l), i = k,

XBi\B(ek,l)\B(ek,l\{k,l}) +XB(ek,l) +XB(ek,l\{k,l}), i /∈ {k, l},
XBl\B(ek,l)\B(ek,l\{k,l}) +XB(ek,l), i = l.

Now, for any supermodular function φ : Rd → R we have, using formulas (5.14)

and (5.12),
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E
[

φ
(

(XBi
)1¬i¬d

)]

= E
[

φ
(

(XBi\B(ek,l)\B(ek,l\{k,l}) +XB(ek,l) +XB(ek,l\{k,l})1{i/∈{k,l}})1¬i¬d
)]

= E
[

φ
(

(

XBi\B(ek,l)\B(ek,l\{k,l}) +XA(ek,l) + U

+ (XA(ek,l\{k,l}) + V )1{i/∈{k,l}}
)

1¬i¬d

)]

 E
[

φ
(

(XBi\B(ek,l)\B(ek,l\{k,l}) +XA(ek,l) + U1{i≠k}

+XA(ek,l\{k,l})1{i/∈{k,l}} + V 1{i≠l})1¬i¬d
)]

= E
[

φ
(

(XAi
)1¬i¬d

)]

,

where we used (5.13) for the last equality. As for the inequality above, it follows

from

E[φ(U,U + V, . . . , U + V, U)]

= p2φ (1, 2, . . . , 2, 1) + q2φ (0, 0, . . . , 0, 0) + pqφ (1, 1, . . . , 1, 1)

+ pqφ (0, 1, . . . , 1, 0)

 p2φ (1, 2, . . . , 2, 1) + q2φ (0, 0, . . . , 0, 0) + pqφ (1, 1, . . . , 1, 0)

+ pqφ (0, 1, . . . , 1, 1)

= E [φ (U,U + V, . . . , U + V, V )]

for all supermodular functions φ : R|ek,l| → R, where |ek,l| denotes the cardinality

of ek,l whose indices are arranged as {k, . . . , l} for convenience of notation, and

we did not consider indices j /∈ ek,l, as U and V do not belong to Xj in this case. �

5.1. Multivariate Gaussian vectors. From the central limit theorem, Theo-

rem 5.1 can be used to deal with centered multivariate Gaussian random vectors

(X1, . . . , Xd) and (Y1, . . . , Yd) represented as in Example 3.4 as

(5.15) X =
∑

1¬k¬l¬d

Xk,lek,l, Y =
∑

1¬k¬l¬d

Yk,lek,l,

where (ek,l)1¬k¬l¬d ⊂ {0, 1}d satisfies Hypothesis (H). In this case we can apply

the Möbius inversion (3.1) to determine the variance coefficients

(σ2
k,l)1¬k¬l¬d=(Var[Xk,l])1¬k¬l¬d and (η2k,l)1¬k¬l¬d=(Var[Yk,l])1¬k¬l¬d

in the decomposition (5.15). Those coefficients can be obtained as the respective

limits of normalized variances (Var[Xn
k,l]/n)1¬k¬l¬d and (Var[Y n

k,l]/n)1¬k¬l¬d
of independent binomial random variables (Xn

k,l)1¬k¬l¬d and (Y n
k,l)1¬k¬l¬d. In

this case, the sequences (Xn
1 , . . . , X

n
d )n1 and (Y n

1 , . . . , Y n
d )n1 of independent
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random vectors defined by

Xn
i :=

1√
n

∑

1¬k¬l¬d
ei≼ek,l

(Xn
k,l − E[Xn

k,l])

and

Y n
i :=

1√
n

∑

1¬k¬l¬d
ei≼ek,l

(Y n
k,l − E[Y n

k,l]), i = 1, . . . , d,

converge in distribution to the multivariate Gaussian vectors (X1, . . . , Xd) and

(Y1, . . . , Yd), respectively. The condition Cov(Xi, Xj) ¬ Cov(Yi, Yj) shows that

Cov(Xn
i , X

n
j ) ¬ Cov(Y n

i , Y n
j ) for n sufficiently large, 1¬ i<j¬d, so by The-

orem 5.1 it becomes necessary and sufficient for (X1, . . . , Xd) ¬sm (Y1, . . . , Yd)
to hold. This is consistent with the general result proved for all multivariate Gaus-

sian random vectors in [10], Theorem 4.2, cf. also Theorem 3.13.5 of [11].

A similar limiting argument can be applied to recover Theorem 4.1 in the

Poisson case from Theorem 5.1 and the convergence in distribution of renormal-

ized binomial random variables to Poisson random variables.

5.2. Sums of binomial, Gaussian and Poisson vectors. By Theorem 4.2 of

[10] on Gaussian random vectors, Theorems 5.1 and 4.1 above, and the fact that

the supermodular ordering is closed under convolution, cf. Theorem 3.9.14-(C) of

[11], we deduce that the supermodular ordering of a sum of independent binomial,

Gaussian and Poisson vectors is implied by the componentwise ordering of their

respective covariances. Proposition 4.1 admits an analog extension to sums of bi-

nomial, Gaussian and Poisson random vectors.
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ON THE LONGEST RUNS IN MARKOV CHAINS
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Abstract. In the first n steps of a two-state (success and failure)

Markov chain, the longest success run L(n) has been attracting consider-

able attention due to its various applications. In this paper, we study L(n) in

terms of its two closely connected properties: moment generating function

and large deviations. This study generalizes several existing results in the

literature, and also finds an application in statistical inference. Our method

on the moment generating function is based on a global estimate of the cu-

mulative distribution function of L(n) proposed in this paper, and the proofs

of the large deviations include the Gärtner–Ellis theorem and the moment

generating function.

2010 AMS Mathematics Subject Classification: Primary: 60F10,

44A1; Secondary: 60J10, 60G70.

Key words and phrases: Longest run, moment generating function,

large deviation principle, Markov chain.

1. INTRODUCTION

Let {Xk}k1 be a time-homogeneous two-state (success and failure) Markov

chain. We assume that the initial distribution is P(X1 = 0) = p0 and P(X1 = 1) =
p1 = 1− p0, with ‘1’ and ‘0’ denoting the ‘success’ and ‘failure’, respectively. The

transition matrix of {Xk}k1 is written as

T =

[
p00 p01
p10 p11

]
.

To avoid triviality, it is assumed throughout the paper that 0 < p0 < 1 and 0 <
pij < 1 for i, j = 0, 1, which indicates that the Markov chain is ergodic. In the

first n steps of the Markov chain, the longest success run L(n), namely the longest

stretch of consecutive successes, has been attracting considerable attention due to

its applications in various fields, such as reliability and statistics (cf. [1]). We refer

to [4] and [5] for the first few seminal works in the 1970s, and [8]–[11] for the

latest progress.
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408 Z. Liu and X. Yang

Among various studies on the longest success run L(n), the probability esti-

mating of L(n) for large n (such as large deviations) is an important topic. Part of

the reason is that the exact distribution of L(n) (cf. [7]) is intricate despite known

explicit formulas, which gives no information as n approaches infinity. Even in

the identically independent case (that is, {Xk}k1 are independent and identically

distributed), there is much complexity of the exact distribution of L(n) which can

be seen (for instance cf. [8]) as follows:

P(L(n) < k) =

[n+1
k+1

]
∑

r=0

(−1)rprk1 pr−10

[(
n− rk
r − 1

)
+ p0

(
n− rk

r

)]
,

where [·] denotes the integer part of a constant. One topic of this paper is to study

the large deviations of L(n) in a Markov chain {Xk}k1 defined above. To appro-

priately propose such deviations, recall a law of large numbers (cf. e.g. [14]):

L(n)

log1/p11 n
→ 1 in probability as n→∞.

Such a limit in independent trails is a well-known result (cf. [4], [5], [12]). This sug-

gests to study the large deviation probabilities in the form P
(
L(n)/log1/p11 n∈A

)
,

where the set A does not include the most probable point 1. Our first result is for-

mulated as follows.

THEOREM 1.1. For each x > 0, we have

lim
n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
 1 + x

)
= −x · ln(1/p11).(1.1)

For each 0 < x < 1, we have

lim
n→∞

1

log1/p11 n
ln

[
− lnP

(
L(n)

log1/p11 n
¬ 1− x

)]
= x · ln(1/p11).(1.2)

Theorem 1.1 tells that the probability P
(
L(n)/ log1/p11 n  1 + x

)
decays

in a power rate, while the probability P
(
L(n)/ log1/p11 n ¬ 1 − x

)
decays expo-

nentially fast. If {Xk}k1 is a sequence of identically independent trails, namely

p00 = p10 = p0 and p01 = p11 = p1, then the limits (1.1) and (1.2) trivially hold

because of a well global estimate (cf. [7] and [9]): for k = 1, . . . , n,

(1− pk1)
n−k+1 ¬ P

(
L(n) < k

)
¬ (1− p0p

k
1)

n−k+1.(1.3)

Due to the lack of satisfactory estimates as above (namely (1.3)) for general Markov

chains {Xk}k1, the proof of Theorem 1.1 will be based on a less precise global

estimate proposed below (see Lemma 2.1) in this paper. Here we note that essen-

tially the same large deviation probability as (1.1) was claimed to be proved in [14]
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in the form: for all x > 0,

lim
n→∞

1

log1/p11 n
lnP

(
L(n)− ⌊log1/p11 n⌋  x · log1/p11 n

)
= −x · ln(1/p11).

(1.4)

Unfortunately, the proof of (1.4) therein contains a mistake stemming from the

employed (Stein–Chen) method, which seems to be impossible to be corrected in

principle. Section 4 includes detailed explanations on this aspect.

A natural generalization of the limit (1.1) (not (1.2)) is a large deviation prin-

ciple for the family of random variables L(n)/ log1/p11 n. For identically indepen-

dent trails {Xk}k1, large deviation principles were recently derived in [9] based

on (1.3). There are also related discussions on the large deviations of L(n) in [7]

and [11]. The second result of this paper is to establish a large deviation principle

for L(n), which includes (1.1) (or (1.4)) as a special case. To this end, we define a

function Λ∗(x) as

(1.5) Λ∗(x) =

{
+∞, x < 1,

(x− 1) ln(1/p11), x  1.

THEOREM 1.2. The normalized longest success run L(n)/ log1/p11 n satisfies

a large deviation principle with a good rate function Λ∗(x) given by (1.5) and a

speed log1/p11 n. Namely,
(i) for any open set O ⊆ R,

lim inf
n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
∈ O

)
 − inf

x∈O
Λ∗(x);(1.6)

(ii) for any closed set F ⊆ R,

lim sup
n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
∈ F

)
¬ − inf

x∈F
Λ∗(x).(1.7)

It is clear that the special case (1.1) (or (1.4)) comes from Theorem 1.2 with

an open set O = (1 + x,∞) and a closed set F = [1 + x,∞). The proof of Theo-

rem 1.2 is given in Section 3.2.

The large deviation principle in Theorem 1.2 is non-trivial since the rate func-

tion Λ∗(x) is not always zero or infinity. Now an interesting question arises: besides

the family of random variables L(n)/ log1/p11 n, are there other families which ad-

mit non-trivial large deviation principles? Note that large deviation principles have

very close connections with the corresponding Laplace transforms (or the moment

generating functions; see the Gärtner–Ellis theorem [3]), thus the above question

leads to the third result of this paper: precise logarithmic asymptotics for the mo-

ment generating function of L(n) as formulated in the following theorem, based on
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which there are (only) two families which admit non-trivial large deviation prin-

ciples: {L(n)/ log1/p11 n} and {L(n)/n}. Throughout the paper, a(n) ∼ b(n) as

n→∞ stands for limn→∞ a(n)/b(n) = 1.

THEOREM 1.3. The moment generating function of L(n) has the following

logarithmic asymptotics:
(i) for λ < ln(1/p11),

lnEeλL(n) ∼ λ log1/p11 n;

(ii) for λ = ln(1/p11),

lnEeλL(n) ∼ 2λ log1/p11 n;

(iii) for λ > ln(1/p11),

λ− ln(1/p11) ¬ lim inf
n→∞

1

n
lnEeλL(n) ¬ lim sup

n→∞

1

n
lnEeλL(n)

¬ max

{
λ− ln(1/p11), λ− ln

1

|p00 − p10|

}
,

and, in particular, if p10 ¬ p00 + p11, then

lnEeλL(n) ∼ λ− ln(1/p11).

Similar results for the identically independent case have been recently proved

in [9], where the condition p10 ¬ p00 + p11 is automatically fulfilled. Technically

speaking, the condition p10 ¬ p00 + p11 is due to an extra error term e(n) in

Lemma 2.2 below. In terms of the structure of the Markov chain, this condition

means that the transition probability p10 from the state ‘1’ to the state ‘0’ should

not exceed the probability that the chain stays still, which is p00 + p11. Although

we think that such a condition can be removed by using a more precise estimate

than the one in Lemma 2.2, the current method in this paper cannot get rid of this

condition.

Several new difficulties arise in the proof of Theorem 1.3 due to the lack of sat-

isfactory global estimates of the cumulative distribution function of L(n), and we

overcome them using suitable non-global estimates included in Section 2.2. To see

how Theorem 1.3 yields non-trivial large deviation principles, we first consider the

logarithmic moment generating function of L(n)/ log1/p11n (according to (i) and

(ii) of Theorem 1.3) defined as Λn(λ) = lnE exp{λ ·L(n)/ log1/p11 n} for λ ∈ R,
and the cumulant defined as Λ(λ) := limn→∞ Λn(λ · log1/p11 n)/ log1/p11 n. Then

the Gärtner–Ellis theorem (cf. [3], Section 2.3) suggests that there is a non-trivial

large deviation principle for the family L(n)/ log1/p11 n with a rate function Λ∗

defined via the Fenchel–Legendre transform of Λ: Λ∗(x) = supλ∈R[λ · x−Λ(λ)].
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This is verified in detail in Theorem 1.2. Now, according to (iii) of Theorem 1.3,

we can also consider the logarithmic moment generating function of L(n)/n as

Λ̃n(λ) = lnE exp {λ · L(n)/n} for any λ ∈ R, and obtain the cumulant, under

the condition p10 ¬ p00 + p11, in the form

Λ̃(λ) := lim
n→∞

1

n
Λ̃n(λ · n) =

{
λ− ln(1/p11), λ  ln(1/p11),

0, λ < ln(1/p11).

The Gärtner–Ellis theorem again suggests that there is a non-trivial large deviation

principle for the family L(n)/n with a rate function Λ̃∗(x) defined as the Fenchel–

Legendre transform of Λ̃(λ):

(1.8) Λ̃∗(x) =





+∞, x < 0,

x ln(1/p11), 0 ¬ x ¬ 1,

+∞, x > 1.

This large deviation principle for the family {L(n)/n} corresponds to the law of

large numbers L(n)/n→ 0 which is directly from L(n)/ log1/p11 n→ 1. We for-

mulate this observation as our last result in the following theorem.

THEOREM 1.4. If p10 ¬ p00 + p11, then the normalized longest success run

L(n)/n satisfies a large deviation principle with a good rate function Λ̃∗(x) given

by (1.8) and a speed n. Namely,
(i) for any open set O ⊆ R,

lim inf
n→∞

1

n
lnP

(
L(n)

n
∈ O

)
 − inf

x∈O
Λ̃∗(x);(1.9)

(ii) for any closed set F ⊆ R,

lim sup
n→∞

1

n
lnP

(
L(n)

n
∈ F

)
¬ − inf

x∈F
Λ̃∗(x).(1.10)

Here we draw the reader’s attention that the Gärtner–Ellis theorem will be

used to prove the aforementioned two large deviation principles. It should be noted

that there are other methods to achieve such large deviation principles, such as the

Bryc’s Inverse Varadhan Lemma (cf. Section 4.4 in [3]). In [10] the Bryc’s Inverse

Varadhan Lemma was used to obtain a large deviation principle for L(n) with a

general speed in the identically independent case.

The rest of the paper is organized as follows. Section 2 includes global and

non-global estimates of the cumulative distribution function of L(n) which will

be used throughout the paper. In the first part of Section 3, we give the proof of

the main result of the paper: the precise logarithmic asymptotics for the moment
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generating function (Theorem 1.3). Then we show that the two large deviation

principles (Theorems 1.2 and 1.4) follow from Theorem 1.3 and the Gärtner–Ellis

theorem, which is included in the second part of Section 3. The last part of Sec-

tion 3 contains a very concise proof of Theorem 1.1. The use of the Stein–Chen

method in estimating the large deviation probabilities of L(n) is briefly described

in Section 4, where a mistake of proving (1.4) in [14] is pointed out. Finally, an

application of the derived results to statistical inference is presented in Section 5.

2. ESTIMATES OF THE DISTRIBUTION FUNCTION

In this section, we first propose a global estimate for the cumulative distribu-

tion function of L(n) which will be used throughout the paper. Then we present

several special non-global estimates which have more explicit forms.

2.1. Global estimate.

LEMMA 2.1. For all k = 1, . . . , n, we have

1− pk−111 [c1 · (n− k) + c2]− c(n, k) ¬ P
(
L(n) < k

)
¬ (1− c3 · p

k−1
11 )n−k+1,

(2.1)

where

c1 =
p01p10

p01 + p10
> 0, c2 =

p01(p0p01 − p1p10)

(p01 + p10)2
,

c3 = min

{
p1,

c1 + (p01 + p10) ·min{0, c2, c2(p00 − p10), c2(p00 − p10)
2}

1 + c1/p01 + |c2|(p01 + p10)/p01

}

(c3 > 0), and

c(n, k) =
c1p

k−1
11

1− p11
−

c2(p01 + p10)

p01
(p00 − p10)

n−1

−
c2(p01 + p10)

p11
·
(p00 − p10)

n − pk−111 (p00 − p10)
n−k

p00 − p10 − p11
> 0.

P r o o f. We first note that the exact distribution of L(n) has been known (cf.

[7]), but it hardly helps to gain useful information on the asymptotics as n→∞.
The proof of Lemma 2.1 is based on a newly built Markov chain {ηk}1¬k¬n, where

ηk is defined as the length of success runs at the end of the k-th step, namely

{ηk = i} is equivalent to {Xk = 1, . . . , Xk−i+1 = 1, Xk−i = 0}.

In this setting, the longest success run L(n) = max1¬k¬n ηk. This enables us to

estimate P
(
L(n) < k

)
a little more explicitly, using the probabilities involving ηk.

This idea was introduced in [6], where the derived results are

P
(
L(n) < k

)
 1− p01p

k−1
11

n−1∑

i=k

b(i− k)− c(n, k)(2.2)
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and

P
(
L(n) < k

)
¬ (1− p1p

k−1
11 )

n∏
i=k+1


1−

p01p
k−1
11 b(i− k)

b(i− 1) + p01
k−1∑

j=1
pj−111 b(i− j − 1)




(2.3)

with

b(i) = p0(p00 − p10)
i−1 +

p10
(
1− (p00 − p10)

i−1
)

1− p00 + p10
.

To achieve the upper bound in (2.1) from (2.3), we note that p1  c3, and

p01b(i− k)

b(i− 1) + p01
k−1∑

j=1
pj−111 b(i− j − 1)


p01minj b(j)

maxj b(j) + 1
,

since p01
∑k−1

j=1 p
j−1
11 b(i− j − 1) = P(ηi = 0, 1, . . . , k − 1) ¬ 1. To estimate two

quantities minj b(j) and maxj b(j), we rewrite b(j) as

b(j) = α+ β · (p00 − p10)
j−1, where α =

p10
p01 + p10

and β =
p0p01 − p1p10
p01 + p10

.

It then follows that

max
j

b(j) ¬ α+ |β|,

and

min
j

b(j)  min{α, α+ β, α+ β(p00 − p10), α+ β(p00 − p10)
2}.

Therefore,
p01minj b(j)

maxj b(j) + 1
 c3,

which implies the upper bound in (2.1).

To obtain the lower bound in (2.1) from (2.2), we see that the sum in (2.2) is

n−1∑

i=k

b(i− k) = (n− k)α+ β ·
1− (p00 − p10)

n−k

1− (p00 − p10)

¬ (n− k)α+ β ·
1

p01 + p10
,

which gives the lower bound. To see the positivity of c(n, k), we note that

c(n, k) = P(ηn ∈ {k, k + 1, . . . , n}) > 0. �
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2.2. Non-global estimates. One might be interested in comparing the global

estimate (2.1) in Lemma 2.1 with the i.i.d. case (1.3). They actually look alike

under suitable conditions, which will be summarized as follows.

LEMMA 2.2. If n > k := k(n)  1 + log1/p11

(
n(c1/(1−p11)+|c2|)

2

)
, then we

have

(1− c5 · p
k
11)

n−k+1 − e(n) ¬ P
(
L(n) < k

)
¬ (1− c4 · p

k
11)

n−k+1(2.4)

for large n, where c4 and c5 are two (uniform) positive constants, and e(n) is a

term which converges to zero exponentially fast as n → ∞ (note that e(n) = 0
when p00 = p10).

P r o o f. In (2.4) the claimed upper bound P
(
L(n)<k

)
¬
(
1− c4 · p

k
11

)n−k+1

comes directly from the upper bound of (2.1) by setting c4 = c3/p11, uniformly

in k. To achieve the lower bound of (2.4), we first rewrite the lower bound of (2.1)

as follows:

P
(
L(n) < k

)
 1− pk−111 [c1 · (n− k) + c2]− c(n, k)

= 1− pk−111

[
c1 · (n− k) + c2 +

c1
1− p11

]
+

c2(p01 + p10)

p01
(p00 − p10)

n−1

+
c2(p01 + p10)

p11
·
(p00 − p10)

n − pk−111 (p00 − p10)
n−k

p00 − p10 − p11

=: 1− pk−111

[
c1 · (n− k) + c2 +

c1
1− p11

]
+ e(n).

It is clear that the term e(n) converges to zero exponentially fast for all k, and

e(n) = 0 if p00 = p10. If we define c∗ = c1/(1− p11) + |c2|, then (with k < n)

1− pk−111

[
c1 · (n− k) + c2 +

c1
1− p11

]
 1− pk−111 · c∗ · (n− k).

In order to estimate 1− pk−111 · c∗ · (n− k), we set N = n− k + 1, a = pk−111 · c∗,
and obtain

(1− a)N ¬ 1− (N − 1)a(1− a)N−2
[

N

N − 1
(1− a)−Na/2

]
.

Since n > k(n)  1 + log1/p11

(
n(c1/(1−p11)+|c2|)

2

)
and n is large, a is small.

Therefore,

(1− a)N−2 = [(1− a)1/a]a(N−2)  [(1− a)1/a]c∗·p
c−1
11  (e/2)c∗·p

c−1
11
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with c = 1− log1/p11(2/c∗),

N

N − 1
(1− a)  1 + δ

for some small δ > 0, and

Na/2 ¬ 1.

In summary, we have

(1− a)N ¬ 1− (N − 1)a · δ(e/2)c∗·p
c−1
11 ,

which gives

(1− c∗ · p
k−1
11 )n−k+1 ¬ 1− (n− k) · c∗ · p

k−1
11 · δ(e/2)

c∗·p
c−1
11 .

Replacing c∗ by c∗/δ(e/2)
c∗·p

c−1
11 proves the lower bound of (2.4). �

In Lemma 2.2, if k is exactly the size α · log1/p11 n with α > 1, then we have

the following more explicit estimate.

LEMMA 2.3. If x > 0 and k(n) = [(1 + x) log1/p11 n], then

c6 · n
−(1+x) (n− k) ¬ P

(
L(n) > k

)
¬ c7 · n

−(1+x) (n− k)

for large n, where c6 and c7 are two (uniform) positive constants.

P r o o f. To see the lower bound, we infer from Lemma 2.2 that

P
(
L(n) > k

)
= 1− P

(
L(n) ¬ k

)

 1− (1− c4 · p
k+1
11 )n−k

= 1− [(1− c4 · p
k+1
11 )1/(c4·p

k+1
11 )]c4·p

k+1
11 (n−k)

= −[(1− c4 · p
k+1
11 )1/(c4·p

k+1
11 )]θn · ln

(
(1− c4 · p

k+1
11 )1/(c4·p

k+1
11 )

)

× c4 · p
k+1
11 (n− k)

 const · pk11(n− k)  const · n−(1+x)(n− k),

where θn ∈ [0, c4 · p
k+1
11 (n − k)]. The upper bound can be similarly handled by

noticing that

e(n) ∼ const · exp

{
−n · ln

1

|p00 − p10|

}
¬ const · n−(1+x) (n− k) . �

The next estimate is the case when k is of size α · log1/p11 n with α < 1.
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LEMMA 2.4. If 0 < x < 1 and k(n) = [(1− x) log1/p11 n], then

c8 · n
x ¬ lnP

(
L(n) < k

)
¬ c9 · n

x

for large n, where c8 and c9 are two (uniform) negative constants.

P r o o f. With k(n) = [(1− x) log1/p11 n], it follows from Lemma 2.1 that

P
(
L(n) < k

)
 1− pk−111 [c1 · (n− k) + c2]− c(n, k)

 1− const1 · p
k
11(n− k)− const2 · |p00− p10|

n− const3 · p
k
11|p00− p10|

n−k.

If we apply the inequality ln(1− a)  −2a for 0 < a < 1/2, then

lnP
(
L(n) < k

)

 −2 const1 p
k
11(n− k)− 2 const2|p00 − p10|

n − 2 const3 p
k
11|p00 − p10|

n−k

 const · n−x.

The upper bound is similarly proved with the help of the arguments in the proof of

Lemma 2.3. �

3. MOMENT GENERATING FUNCTION AND LARGE DEVIATIONS

In this section, we first give a proof of Theorem 1.3 regarding the precise

logarithmic asymptotics for the moment generating function, which is the main

result of the paper. Then, using this proved result, we derive two large deviation

principles (Theorems 1.2 and 1.4) with the help of the Gärtner–Ellis theorem. At

the end, a very concise proof of Theorem 1.1 is included.

3.1. Proof of Theorem 1.3.
S t e p 1. The following estimate holds for all λ ∈ R:

lim inf
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}  λ.

The case when λ = 0 is trivial. If λ > 0, then

1

log1/p11 n
lnE exp {λ · L(n)}


1

log1/p11 n
lnE

(
exp{λ · L(n)},

{∣∣∣∣
L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

})


1

log1/p11 n
ln exp{λ · (1− ε) log1/p11 n} · P

(∣∣∣∣
L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

)

= λ · (1− ε) +
1

log1/p11 n
lnP

(∣∣∣∣
L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

)
.
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Since L(n)/ log1/p11n converges to one almost surely, we have

lim
ε→0+

lim inf
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}  lim

ε→0+
λ · (1− ε) = λ.

If λ < 0, a similar argument as above yields

lim
ε→0+

lim inf
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}  lim

ε→0+
λ · (1 + ε) = λ.

S t e p 2. The following estimate holds for λ < ln(1/p11):

lim sup
n→∞

1

log1/p11 n
lnE exp {λ · L(n)} ¬ λ.

To see this, we first rewrite

lnE exp {λ · L(n)}

= lnE

(
exp{λ ·L(n)},

{∣∣∣∣
L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

}
∪

{∣∣∣∣
L(n)

log1/p11 n
− 1

∣∣∣∣ > ε

})
.

Therefore,

(3.1) lim sup
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}

= max

{
lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ ·L(n)},

{∣∣∣∣
L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

})
,

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{∣∣∣∣
L(n)

log1/p11 n
− 1

∣∣∣∣ > ε

})}
.

It is clear that the first limit satisfies

(3.2) lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{∣∣∣∣
L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

})

¬

{
λ(1 + ε), λ > 0,

λ(1− ε), λ < 0.

The second limit is more complicated, and the assumption λ < ln(1/p11) is needed.

We rewrite
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lnE

(
exp{λ · L(n)},

{∣∣∣∣
L(n)

log1/p11 n
− 1

∣∣∣∣ > ε

})

= lnE

(
exp{λ ·L(n)},

{
L(n)

log1/p11 n
− 1 > ε

}
∪

{
L(n)

log1/p11 n
− 1 < −ε

})
.

On the first part
{

L(n)
log1/p11 n − 1 > ε

}
, if λ < 0, then similar things can be done as

above. But if λ > 0, then we need to make the following separation:

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 > ε

})

= lim sup
n→∞

1

log1/p11 n

× lnE

(
exp{λ · L(n)},

∞∪
k=1

{
1 + kε <

L(n)

log1/p11 n
¬ 1 + (k + 1)ε

})

¬ lim sup
n→∞

1

log1/p11 n
ln

( ∞∑

k=1

eλ[1+(1+k)ε] log1/p11 n · P

(
1 + kε <

L(n)

log1/p11 n

))

= λ(1+ε)+lim sup
n→∞

1

log1/p11 n
ln

( ∞∑

k=1

eλkε log1/p11 n · P

(
1+kε<

L(n)

log1/p11 n

))
.

It now follows from Lemma 2.3 that

P

(
1 + kε <

L(n)

log1/p11 n

)
= 1− P

(
L(n)

log1/p11 n
¬ 1 + kε

)
¬ const · n−kε,

which gives

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 > ε

})

= λ(1 + ε)

+ lim sup
n→∞

1

log1/p11 n
ln

( ∞∑

k=1

eλkε log1/p11 n · P

(
1 + kε <

L(n)

log1/p11 n

))

¬ λ(1 + ε) + lim sup
n→∞

1

log1/p11 n
ln
( ∞∑
k=1

eλkε log1/p11 n · n−kε
)

= λ(1 + ε) + lim sup
n→∞

1

log1/p11 n
ln
( ∞∑

k=1

n
−(1− λ

ln(1/p11)
)kε

)

¬ λ(1 + ε),

where the last step follows from the fact that λ < ln(1/p11). Namely, we have
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proved that

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 > ε

})
¬ λ(1 + ε).

(3.3)

On the second part
{

L(n)
log1/p11 n − 1 < −ε

}
, the case when λ > 0 can be similarly

handled. For the case λ < 0, we can do a similar separation to that in the proof of

(3.3), but the argument here is a little different. We have

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 < −ε

})

= lim sup
n→∞

1

log1/p11 n

× lnE

(
exp{λ · L(n)},

[1/ε]−1∪
k=1

{
1− (k + 1)ε <

L(n)

log1/p11 n
¬ 1− kε

})

¬ lim sup
n→∞

1

log1/p11 n

× ln

( [1/ε]−1∑

k=1

eλ[1−(k+1)ε] log1/p11 n · P

(
1−(k+1)ε<

L(n)

log1/p11 n
¬1−kε

))
.

Since there are only finite terms in the summation, we can simplify the above

quantity, noticing that it is less than or equal to

max
1¬k¬[1/ε]−1

{
λ[1−(k+1)ε]+lim sup

n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
<1−kε

)}

= max
1¬k¬[1/ε]−1

{λ[1− (k + 1)ε]−∞} = −∞,

where the ‘−∞’ appears because of Lemma 2.4. Therefore,

(3.4)

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 < −ε

})
= −∞.

Now the proof is done by taking the estimates (3.2), (3.3) and (3.4) back into (3.1).

S t e p 3. If λ = ln(1/p11), then

lim
n→∞

1

log1/p11 n
lnE exp {λ · L(n)} = 2λ.

On the one hand, it follows from Lemma 2.3 that, for every ε > 0,
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1

log1/p11 n
lnE exp {λ · L(n)}


1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
> 1 + ε

}}

=
1

log1/p11 n

× lnE exp

{
λ · L(n),

q∪
k=1

{
1 + kε <

L(n)

log1/p11 n
¬ 1 + (k + 1)ε

}}
=: K,

where (and in the sequel) we put

q =

[
1

ε

(
n

log1/p11 n
− 1

)]
.

Now we have

K 
1

log1/p11 n
ln

q∑

k=1

exp{(1 + kε)(log1/p11 n) · ln(1/p11)}

×

(
P

{
L(n)

log1/p11 n
> 1 + kε

}
− P

{
L(n)

log1/p11 n
> 1 + (k + 1)ε

})

 ln(1/p11) +
1

log1/p11 n
ln

q∑

k=1

nkε
(
c6 · n

−(1+kε)
(
n− (1 + kε) log1/p11 n

)

− c7 · n
−(1+(k+1)ε)

(
n−

(
1 + (k + 1)ε

)
log1/p11 n

))

= ln(1/p11) +
1

log1/p11 n
ln

q∑

k=1

(
c6
n

(
n− (1 + kε) log1/p11 n

)

−
c7

n1+ε

(
n−

(
1 + (k + 1)ε

)
log1/p11 n

))

∼ ln(1/p11) +
1

log1/p11 n
ln

[
c6
n
·

n2

2ε log1/p11 n
−

c7
n1+ε

·
n2

2ε log1/p11 n

]

∼ ln(1/p11) +
1

log1/p11 n
ln

[
c6
n
·

n2

2ε log1/p11 n

]

∼ ln(1/p11) + ln(1/p11) = 2 ln(1/p11).

On the other hand,

lim sup
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}

= max

{
lim sup
n→∞

1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
¬ 1 + ε

}}
,

lim sup
n→∞

1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
> 1 + ε

}}}
.
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The first limit is estimated as

lim sup
n→∞

1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
¬ 1 + ε

}}

¬ lim sup
n→∞

1

log1/p11 n
ln exp{(1+ε) log1/p11 n·ln(1/p11)}P

{
L(n)

log1/p11 n
¬1+ε

}

= (1 + ε) ln(1/p11).

The second limit is estimated as

1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
> 1 + ε

}}

=
1

log1/p11 n
lnE exp

{
λ · L(n),

q∪
k=1

{
1 + kε <

L(n)

log1/p11 n
¬ 1 + (k + 1)ε

}}

¬
1

log1/p11 n
ln

q∑

k=1

exp
{(

1 + (k + 1)ε
)
log1/p11 n · ln(1/p11)

}

× P

{
L(n)

log1/p11 n
> 1 + kε

}

¬ (1 + ε) ln(1/p11)

+
1

log1/p11 n
ln

q∑

k=1

nkε · c7 · n
−(1+kε)

(
n− (1 + kε) log1/p11 n

)

∼ (1 + ε) ln(1/p11) +
1

log1/p11 n
ln

c7
n
·

n2

ε log1/p11 n

∼ (1 + ε) ln(1/p11) + ln(1/p11).

Therefore,

lim sup
n→∞

1

log1/p11 n
lnE exp {λ · L(n)} ¬ (1 + ε) ln(1/p11) + ln(1/p11),

which completes the proof.

S t e p 4. In order to study the asymptotic behavior of E exp {λ · L(n)} when

λ > ln(1/p11), we need to consider a large deviation probability which may be of

independent interest.

LEMMA 3.1. For a fixed 0 < x < 1, we have

lim inf
n→∞

1

n
lnP

(
L(n)

n
 x

)
 −x ln(1/p11)

and

lim sup
n→∞

1

n
lnP

(
L(n)

n
 x

)
¬ max

{
−x ln(1/p11), − ln

1

|p00 − p10|

}
.
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In particular, if p10 ¬ p00 + p11, then

lim
n→∞

1

n
lnP

(
L(n)

n
 x

)
= −x ln(1/p11).

P r o o f o f L e m m a 3.1. We apply Lemma 2.2 with k(n) = [nx] and ob-

tain the following:

1− (1− c4 · p
k
11)

n−k+1 ¬ P

(
L(n)

n
 x

)
¬ 1− (1− c5 · p

k
11)

n−k+1 + e(n).

The lower bound can be handled as

1− (1− c4 · p
k
11)

n−k+1

= 1− [(1− c4 · p
k
11)

1/(c4·pk11)]c4·p
k
11(n−k+1)

= −[(1− c4 · p
k
11)

1/(c4·pk11)]θn ln
(
(1− c4 · p

k
11)

1/(c4·pk11)
)
· c4 · p

k
11(n− k + 1),

where θn ∈ [0, c4 · p
k
11(n− k + 1)]. Therefore, for big enough n, the lower bound

satisfies

1− (1− c4 · p
k
11)

n−k+1  c4 · (1− δ)pk11(n− k + 1)

for some small δ > 0, which proves the lower bound. The upper bound can be

handled similarly except for the extra term e(n). In this case,

lim sup
n→∞

1

n
ln |e(n)|

¬ lim sup
n→∞

1

n
ln[const1 · |p00 − p10|

n + const2 · p
k
11|p00 − p10|

n−k]

¬ max

{
− ln

1

|p00 − p10|
, −x ln(1/p11)

}
,

from which the upper bound follows. �

S t e p 5. If λ > ln(1/p11), then

λ− ln(1/p11) ¬ lim inf
n→∞

1

n
lnEeλL(n) ¬ lim sup

n→∞

1

n
lnEeλL(n)

¬ max

{
λ− ln(1/p11), λ− ln

1

|p00 − p10|

}
.

It follows from Lemma 3.1 that, for any 0 < x < 1,
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lim inf
n→∞

1

n
lnE exp {λ · L(n)}

 lim inf
n→∞

1

n
lnE

[
exp{λ · L(n)},

{
L(n)

n
> x

}]

 λx+ lim inf
n→∞

1

n
lnP

(
L(n)

n
> x

)

= λx− x ln(1/p11) = λ− ln(1/p11) as x→ 1.

Furthermore,

lim sup
n→∞

1

n
lnE exp {λ · L(n)}

= lim sup
n→∞

1

n
lnE

(
exp{λ · L(n)},

{
L(n)

n
¬ ε

}
∪

{
L(n)

n
> ε

})

= max

{
lim sup
n→∞

1

n
lnE

(
exp {λ · L(n)} ,

{
L(n)

n
¬ ε

})
,

lim sup
n→∞

1

n
lnE

(
exp {λ · L(n)} ,

{
L(n)

n
> ε

})}
.

The first limit is

lim sup
n→∞

1

n
lnE

(
exp {λ · L(n)},

{
L(n)

n
¬ ε

})
¬ λε.

The second limit is handled as follows:

lim sup
n→∞

1

n
lnE

(
exp {λ · L(n)},

{
L(n)

n
> ε

})

= lim sup
n→∞

1

n
lnE

(
exp {λ · L(n)},

[1/ε]−1∪
k=1

{
kε <

L(n)

n
¬ (k + 1)ε

})

= max
1¬k¬[1/ε]−1

{
λ(k + 1)ε+ lim sup

n→∞

1

n
lnP

(
kε <

L(n)

n

)}

¬ max
1¬k¬[1/ε]−1

{
λ(k + 1)ε+max

{
−kε ln(1/p11), − ln

1

|p00 − p10|

}}

= max
1¬k¬[1/ε]−1

{
λ · ε+ kε

(
λ− ln(1/p11)

)
, λ(k + 1)ε− ln

1

|p00 − p10|

}

= max

{
λ− ln(1/p11) + λ · ε, λ− ln

1

|p00 − p10|

}
.

The condition λ > ln(1/p11) is used when the maximum is attained with k =
[1/ε]− 1. The proof now follows by taking ε→ 0+.
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3.2. Proofs of Theorems 1.2 and 1.4. Using the proved Theorem 1.3, we are

now ready to prove Theorems 1.2 and 1.4 with the help of the Gärtner–Ellis the-

orem. The proofs of Theorems 1.2 and 1.4 are essentially the same, and here we

only show the details for the one of Theorem 1.4. Let us define the logarithmic

moment generating function of L(n)/n as

Λ̃n(λ) = lnE exp{λ · L(n)/n}, λ ∈ R,

and the cumulant as

Λ̃(λ) := lim
n→∞

1

n
Λ̃n(λ · n) =

{
λ− ln(1/p11), λ  ln(1/p11),

0, λ < ln(1/p11),

where the last limit is from Theorem 1.3, under the condition p10 ¬ p00 + p11.
Then the large deviation upper bound (1.10) follows directly from the Gärtner–

Ellis theorem (cf. [3], Section 2.3) with the rate function Λ̃∗ in (1.8) defined by the

Fenchel–Legendre transform of Λ̃ as Λ̃∗(x) = supλ∈R[λ · x− Λ̃(λ)].
For the large deviation lower bound (1.9), it suffices to prove that for a fixed

point 0 < y < 1,

lim
δ→0

lim inf
n→∞

1

n
lnP

(
L(n)

n
∈ By,δ

)
 −y ln(1/p11),(3.5)

where By,δ is the open ball centered at y with a radius δ. To achieve (3.5), we write

P

(
L(n)

n
∈ By,δ

)
= P

(
L(n)

n
> y − δ

)
− P

(
L(n)

n
 y + δ

)
,

and apply an inequality in the form ln(a− b)  ln(a)− b
a−b for a > b > 0 to show

that

(3.6) lim
δ→0

lim inf
n→∞

1

n
lnP

(
L(n)

n
∈ By,δ

)

 lim
δ→0

lim inf
n→∞

1

n

(
ln

[
P

(
L(n)

n
> y − δ

)]

−
P
(
L(n)/n  y + δ

)

P
(
L(n)/n > y − δ

)
− P

(
L(n)/n  y + δ

)
)
.

Lemma 3.1 implies that the first limit is, under the assumption p10 ¬ p00 + p11,

(3.7) lim
δ→0

lim inf
n→∞

1

n
ln

[
P

(
L(n)

n
> y − δ

)]

= lim
δ→0
−(y − δ) ln(1/p11) = −y ln(1/p11).
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For the second ratio term, applying Lemma 3.1 twice gives

(3.8)
P
(
L(n)/n  y + δ

)

P
(
L(n)/n > y − δ

)
− P

(
L(n)/n  y + δ

)

=
1

P
(
L(n)/n > y − δ

)
/P

(
L(n)/n  y + δ

)
− 1

¬
1

e(2δ ln(1/p11)−ε)n − 1
→ 0,

as n → ∞, for sufficiently small ε > 0 with 2δ ln(1/p11) − ε > 0. Then (3.5)

follows by taking (3.7) and (3.8) back into (3.6).

3.3. Proof of Theorem 1.1. The limit (1.1) comes directly from Lemma 2.3.

For the limit (1.2), we apply Lemma 2.4 for each 0 < x < 1 and obtain

ln [−c9 · n
x] ¬ ln

[
− lnP

(
L(n)

log1/p11 n
¬ 1− x

)]
¬ ln[−c8 · n

x].

Then the proof follows directly by taking the limit limn→∞ 1/ log1/p11 n.

4. THE STEIN–CHEN METHOD

The aim of this section is to introduce the use of the Stein–Chen method in es-

timating the large deviation probabilities of L(n) in [14], and point out a mistake

in the proof of (1.4). It turns out that the employed Stein–Chen method is insuffi-

cient to prove such large deviation probabilities. Let us recall the limit (1.4): for all

x > 0,

lim
n→∞

1

log1/p11 n
lnP

(
L(n)− ⌊log1/p11 n⌋  x · log1/p11 n

)
= −x · ln(1/p11).

The idea used in the proof of (1.4) in [14] is to approximate the large devi-

ation probabilities P
(
L(n)− ⌊log1/p11 n⌋  x · log1/p11 n

)
by the ones involving

Poisson random variables, and then to control the error term using the Stein–Chen

method.

By setting k =
⌊
⌊log1/p11 n⌋ + x · log1/p11 n

⌋
+ 1, it was proved on p. 1947

of [14] that

(4.1)
∣∣P
(
L(n)− ⌊log1/p11 n⌋  x · log1/p11 n

)

−
(
1− exp{−nπ1(1− p11)p

k−1
11 + o(1)}

)∣∣

¬ Error
(
W (n), Po

(
λ(n)

))
,
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where π1 is a constant, W (n) is a random variable depending on n, defined on

p. 1941, and Po
(
λ(n)

)
is a Poisson random variable whose intensity λ(n), also

depending on n, was defined on p. 1942. It was then proved that

(
1− exp{−nπ1(1− p11)p

k−1
11 + o(1)}

)
= O(1)n−x.

The error term was estimated via the Stein–Chen method as

Error
(
W (n), Po

(
λ(n)

))
= O

(
ln(n)

n

)
.

It is then obvious true that if 0 < x < 1, then the limit (1.4) holds since the error

term (which is of order O
( ln(n)

n

)
) is smaller than n−x. But the problem occurs

when x > 1, since in this case the error term is much bigger than the target n−x,
and the limit in (1.4) is unclear. Therefore, while employing this method, the limit

(1.4) is true only for 0 < x < 1. Furthermore, the Stein–Chen method seems to

be impossible to remove the restriction 0 < x < 1 since it gives an error of power

orders, while the target term n−x is also of power order which can be any size

depending on x.

5. AN APPLICATION IN CONFIDENCE INTERVALS

Given simulations of the Markov chain {Xk}1¬k¬n with the transition matrix

[
p00 p01
p10 p11

]
,

the aim of this section is to make statistical inferences on the transition probabilities

pij . Since our interest throughout the paper is the longest success run, we will apply

Theorem 1.2 to study the confidence intervals of p11.
Theorem 1.2 implies that for each x  1,

lim
n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
 x

)
= −(x− 1) · ln(1/p11).

If x = 1 − ln(α)/ ln(n) with a given small α > 0, then it holds true asymptoti-

cally that P(p11 < e−(ln(n)−ln(α))/L(n)) = α. This suggests a 100(1− α)% lower

confidence bound of p11 as follows:

Ip11 =

(
exp

{
−

ln(n)− ln(α)

L̂(n)

}
, 1

)
,

where L̂(n) is a point estimate of L(n). A reasonable point estimate of L(n) is

the observed longest success run. We can also obtain a point estimate p̂11 of p11
using the observed (state ‘1’→ state ‘1’) proportion. For estimating the transition
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probabilities in terms of confidence intervals, there are many existing (more com-

plicated) methods (cf. [2] and [13] for instance), but the advantage of our method

is that the lower confidence bound is very simple and neat involving only one ob-

servation L̂(n).
Below in Table 1 we have simulations for different transition matrices. Al-

though the point estimate p̂11 does not work well, the derived lower confidence

bound Ip11 works really good. We chose the p which is close to 1, since p̂11 is

only a lower confidence bound. As the other transition probabilities change (see

T2 and T3), the confidence interval Ip11 does not change much. This is as expected

since the observed longest success run L̂(n) is not supposed to change when the

other transition probabilities change. Meanwhile, the point estimates p̂11 are quite

different due to the fact that the Markov chain with T3 will have more chance to

stay at the state ‘0’ when it is at ‘0’ now.

Table 1. 100(1− α)% lower confidence bound of p11.

T1 =

[

0.4 0.6

0.05 0.95

]

n = 1000 α = 0.05

p̂11 = 0.8810 p̂11 = 0.8650 p̂11 = 0.8780 p̂11 = 0.8900 p̂11 = 0.8630

L̂(n) = 111 L̂(n) = 102 L̂(n) = 190 L̂(n) = 99 L̂(n) = 127

Ip11 = (0.9146, 1) Ip11 = (0.9075, 1) Ip11 = (0.9492, 1) Ip11 = (0.9048, 1) Ip11 = (0.9250, 1)

T2 =

[

0.4 0.6

0.02 0.98

]

n = 1000 α = 0.05

p̂11 = 0.9510 p̂11 = 0.9450 p̂11 = 0.9530 p̂11 = 0.9500 p̂11 = 0.9660

L̂(n) = 302 L̂(n) = 156 L̂(n) = 259 L̂(n) = 212 L̂(n) = 319

Ip11 = (0.9677, 1) Ip11 = (0.9385, 1) Ip11 = (0.9625, 1) Ip11 = (0.9544, 1) Ip11 = (0.9694, 1)

T3 =

[

0.9 0.1

0.02 0.98

]

n = 1000 α = 0.05

p̂11 = 0.8510 p̂11 = 0.9250 p̂11 = 0.9140 p̂11 = 0.8200 p̂11 = 0.7680

L̂(n) = 227 L̂(n) = 396 L̂(n) = 203 L̂(n) = 232 L̂(n) = 155

Ip11 = (0.9573, 1) Ip11 = (0.9753, 1) Ip11 = (0.9524, 1) Ip11 = (0.9582, 1) Ip11 = (0.9381, 1)

We remark that the lower confidence bound presented above is very conser-

vative since Theorem 1.2 gives an equivalence up to logarithm. This can be seen

from the coverage probabilities. From simulations, the coverage probabilities with

the transition matrices Ti, i = 1, 2, 3, are all near 100%, which are much higher

than the confidence coefficient 100(1− 0.05)%.
It has been seen that Theorem 1.2 yields the lower confidence bound using

x  1. In the same way, Theorem 1.1 can give a two-sided confidence interval

of p11. Furthermore, hypothesis testings on p11 can be done in a similar way.
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Abstract. The entropic upper bound for Bayes risk in a general quan-

tum case is presented. We obtained generalization of the entropic lower

bound for probability of detection. Our result indicates upper bound for

Bayes risk (in a particular case of loss function – for probability of detec-

tion) in a pretty general setting of an arbitrary finite von Neumann algebra. It

is also shown under which condition the indicated upper bound is achieved.

2010 AMS Mathematics Subject Classification: Primary: 81P15;

Secondary: 81P50.

Key words and phrases: Bayes risk, probability of detection, quan-

tum measurement, entropy.

1. INTRODUCTION

One of the branches of quantum information is the theory of statistics deci-

sions and optimal measurement. It motivates to study the Bayes risk and proba-

bility of detection of states of the physical system. Many results in the mentioned

field were obtained for the quantum dynamical system represented by algebra of

all bounded operators with canonical trace (sometimes even on a finite-dimensional

Hilbert space) by [1]–[3], [11], and [12].

In this paper we present more general results received for an arbitrary von

Neumann algebra with finite faithful normal trace τ. We employ the definition of

the Segal entropy of states from a predual of algebra.

2. BASIC NOTIONS

2.1. Concept of entropy. Let M be a semi-finite von Neumann algebra of

operators acting on a Hilbert space H with a normal semi-finite faithful trace τ ,

identity 1, and predual M∗. By M
+
∗ we shall denote the set of positive functionals

in M∗. These functionals will sometimes be referred to as (non-normalized) states.

The set of normalized states, i.e. the elements ρ ∈M
+
∗ such that ρ(1) = ∥ρ∥ = 1,

will be denoted by S.
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The algebra of measurable operators M̃ is defined as a topological *-algebra

of densely defined closed operators on H affiliated with M with strong addition

and strong multiplication.

For each ρ ∈M∗ there is a measurable operator h such that

ρ(x) = τ(xh) = τ(hx), x ∈M.

The space of all such operators is denoted by L1(M, τ) and the correspondence

above is one-to-one and isometric, where the norm of L1(M, τ), denoted by ∥ · ∥1,

is defined as

∥h∥1 = τ(|h|), h ∈ L1(M, τ).

Moreover, self-adjoint operators in L1(M, τ) correspond to Hermitian functionals

in M∗, and positive operators in L1(M, τ) to the states in M∗.

For a state ρ the corresponding element in L1(M, τ) will be denoted by ρ̂ and

called the density matrix of ρ, thus

ρ(x) = τ(xρ̂) = τ(ρ̂x), x ∈M.

In particular,

τ(ρ̂) = ρ(1).

Observe that for a finite τ , we have M ⊂ L1(M, τ).
In the case of the full algebra B(H), a well-established concept of entropy

goes back to J. von Neumann who defined the entropy of a state ρ as

S(ρ) = − tr ρ̂ log ρ̂,

where ρ̂ is a positive trace operator of the trace one.

Unfortunately, when we deal with an arbitrary von Neumann algebra, a satis-

factory general definition of entropy is lacking. Thus we employ the Segal entropy

(up to the minus sign) of ρ ∈M∗, denoted by H(ρ) and defined as

H(ρ) = τ(ρ̂ log ρ̂),

i.e. for the spectral representation of ρ̂,

ρ̂ =
∞
∫

0

λe(dλ),

we have

H(ρ) =
∞
∫

0

λ log λτ
(

e(dλ)
)

.

Although for a semi-finite algebra M this definition is a straightforward gener-

alization of the von Neumann idea, the reasoning which substantiates Segal entropy

properties needs a different setup from the one used in the case of M = B(H).
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REMARK 2.1. Despite being a seemingly straightforward generalization of

von Neumann entropy, the Segal definition exhibits fundamental differences in

many respects from that of von Neumann. For example, while the density oper-

ator in the von Neumann definition is a trace-class operator, and thus has a discrete

spectrum with the eigenvalues summing up to one, this is not the case in the Segal

definition. Furthermore, the von Neumann entropy of a state is nonnegative (which

is a consequence of the above property of the density operator), while the Segal

entropy of a state need not be such. In addition, there are also some technical prob-

lems while dealing with a semi-finite trace. For these reasons, we shall consider

the case of a finite von Neumann algebra and adopt a definition of entropy more in

the spirit of the classical Boltzmann–Gibbs notion, where for a density function f
on a probability space (Ω,F, µ), its entropy is defined as

H(f) =
∫

Ω

f(log f)dµ.

As will be seen, our definition, which is just that of Segal up to a minus sign,

assigns a finite nonnegative entropy to a state, and more generally, for each non-

normalized state in M
+
∗ with bounded density, its entropy is finite.

It should be noted that some fundamental investigations concerning entropy

and related notions in the above setup were carried out in [9].

REMARK 2.2 (see [6]). For a finite algebra M (this is the case of our interest)
with faithful finite normal trace τ, τ(1) = 1, for each ρ ∈ S, H(ρ)  0, and for

ρ̂ ∈M, H(ρ) is also bounded from above.

Indeed, since λ log λ > λ− 1, we have

H(ρ) = τ
(

∞
∫

0

λ log λ e(dλ)
)

=
∞
∫

0

λ log λ τ
(

e(dλ)
)

>

∞
∫

0

(λ− 1) τ
(

e(dλ)
)

(2.1)

=
∞
∫

0

λ τ
(

e(dλ)
)

−
∞
∫

0

τ
(

e(dλ)
)

= τ(ρ̂)− τ(1) = ρ(1)− 1,

showing that the entropy is bounded from below, and in particular, it is nonnegative

for states. Moreover, since ρ̂ is bounded, its spectrum is a bounded set; thus, the

function λ 7→ λ log λ is bounded on the spectrum, which implies that the entropy

is bounded from above.

REMARK 2.3. In the classical quantum case, that is, for M = B(H), the

practical Klein’s inequality holds (see [7] and [10]). The analogue of this inequal-

ity is given by the formula

(2.2)

τ(a log a− a log b) > 0 for a, b ∈M+, τ(a) = τ(b) = 1 and supp a 6 supp b,

and it was proved by Umegaki [9] in the case of an arbitrary von Neumann algebra

M with finite faithful normal trace τ. In addition, it was proved (see [4], Theo-

rem 2.1.2(i)) that the equality in (2.2) holds if and only if a = b for M = B(Cd).
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REMARK 2.4. Moreover, apart from the very practical Klein’s inequality,
which holds for the Segal entropy, we have also the following inequality (see [6],

Proposition 1). Let a, b ∈M be such that 0 6 a 6 b. Then

(2.3) τ(a log b− a log a) > 0,

with equality if and only if ab = ba = a2. Moreover, a log a and a log b are bounded

(belong to M), and the numbers τ(a log b) and τ(a log a) are finite.

(This remark is presented and proved with details in [6], but we remind its

main idea to make our reasoning clearer.)

P r o o f. Since

0 6 a 6 b,

we have

0 6 (log b)a(log b) 6 (log b)b(log b) = b log2 b.

The operator on the right-hand side of the inequality above is bounded (belongs to

M), hence (log b)a(log b) is also bounded (belongs to M). Moreover,

(log b)a(log b) = (a1/2 log b)∗a1/2 log b,

thus a1/2 log b is bounded (belongs to M). Consequently, a1/2(log b − log a) and

a1/2 belong to M, so from the properties of trace we obtain

(2.4)

τ
(

a(log b− log a)
)

=τ
(

a1/2
(

a1/2(log b− log a)
)

)

=τ
(

a1/2(log b− log a)a1/2
)

.

Since the logarithm is an operator monotone function, we have

log b− log a > 0,

yielding

a1/2(log b− log a)a1/2 > 0,

and finally, by equation (2.4),

0 6 τ
(

a1/2(log b− log a)a1/2
)

= τ
(

a(log b− log a)
)

.

The assumption

(2.5) τ(a log b− a log a) = 0

gives

a1/2(log b− log a)1/2 = 0,
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yielding

a(log a− log b) = 0,

i.e.,

a log a = a log b.

Taking adjoints, we get

a log a = (log b)a.

In particular, log b commutes with a, leaves the range of a invariant and coincides

with log a on the range of a. Thus, on the range of a we have

a|Range a = elog a|Range a = elog b|Range a = b|Range a,

which is equivalent to the equalities

ab = ba = a2.

Conversely, assume that the equality above holds true. Then, a and b commute,

so after taking logarithms of both sides, we get

2 log a = log a+ log b,

that is

log a = log b,

which implies the equality

a log a = a log b,

and thus equation (2.5). �

2.2. Bayes risk in the quantum case. We are given a von Neumann algebra

M describing the (bounded) observables of a physical system. Let ρ1, ρ2, . . . be

normal states from M∗. We assume that the physical system can be in state ρi
with a priori probability πi, i = 1, 2, . . . , where π = (π1, π2, . . . ) is a probability

distribution. On the system we perform a measurement (called also a strategy) M
by which we mean a sequence (M1,M2, . . . ) of positive operators from M such

that
∞
∑

i=1

Mi = 1,

where the series is convergent in the weak operator topology on M.

We want to find, in an optimal way, the state in which the system really is.

If we receive an outcome Mi, we choose the state ρi. The probability that the

true state is ρi when the measurement gives the resultMj is determined by ρi(Mj).
Thus ρi(Mj) is the probability of guessing the state ρi correctly. If our guess is ρj
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while the true one is ρi, then we pay a penaltyL(i, j). The functionL : N×N→ R

is called a loss function. The risk function is defined by the formula

RM (i) =
∞
∑

j=1

L(i, j)ρi(Mj).

The expectation of the risk function is called the Bayes risk and denoted by

r(M,π), i.e.

r(M,π) =
∞
∑

i=1

∞
∑

j=1

πiL(i, j)ρi(Mj).

Consider the concrete loss function of the form

L(i, j) = 1− δij .

Then we have

r(M,π) =
∞
∑

i=1

∞
∑

j=1

πi(1− δij)ρi(Mj) = 1−
∞
∑

i=1

πiρi(Mj).

In this case, minimizing the Bayes risk is equivalent to maximizing the expression

∞
∑

i=1

πiρi(Mj)

which is the probability of the correct guess while performing the measurement

M , and is called the probability of detection. We shall denote this probability by

PD(M).

3. ENTROPIC BOUND

For an arbitrary loss function we have no guarantee of the existence of an

optimal measurement, e.g. the one which minimizes the Bayes risk. However. un-

der the assumptions presented in the following theorem, we can consider such an

optimal measurement.

THEOREM 3.1 ([5], Theorem 8). Let L be a loss function that satisfies the

following conditions:
(i) there are ai > 0 such that for each i we have |L(i, j)| 6 ai, j = 1, 2, . . . ,

and
∑∞

i=1 πiai <∞;

(ii) for each i there exists limj→∞ L(i, j) = bi such that for some j0 we have

L(i, j0) 6 bi for all i = 1, 2, . . .
Then, there exists an optimal measurement.
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In [3] we can find more information on the existence of an optimal measure-

ment. From now on, we will assume that the loss function satisfies the conditions

(i) and (ii) of Theorem 3.1. The following theorem will be very helpful for further

consideration.

THEOREM 3.2 ([2], Theorem II.2.2). We have the relation

(3.1) min
M

r(M,π) = max{ψ(1) : ψ ∈M∗, ψ 6 ϕj , j = 1, 2, . . .},

whereϕj =
∑∞

i=1 πiL(i, j)ρi, j = 1, 2, . . . Then the following assertions are equi-

valent:
(i) The measurementM = (Mi) is optimal for r, and ψ ∈M∗ maximizes the

right-hand side of (3.1).

(ii) ψ 6 ϕj , j = 1, 2, . . . , and ψ =
∑∞

j=1 ϕjMj =
∑∞

j=1Mjϕj .

Let c = (ci) be a sequence such that L(i, j) 6 ci for all i, j and the sum
∑∞

i=1 πici is convergent. Define the functional

rc(M,π) :=
∞
∑

j=1

ϕc
j(Mj) =

∞
∑

i=1

πici − r(M,π),

where ϕc
j =

∑∞
i=1 πi

(

ci − L(i, j)
)

ρi, j = 1, 2, . . . Minimizing the Bayes risk is

equivalent to maximizing the functional rc with positive functionals ϕc
j .

The next result is a simple consequence of Theorem 3.2.

THEOREM 3.3. We have the relation

(3.2) max
M

rc(M,π) = min{ϕ(1) : ϕ ∈M∗, ϕ > ϕc
j , j = 1, 2, . . .}.

Then the following assertions are equivalent:
(i) The measurement M = (Mi) is optimal for rc, and ϕ ∈M∗ minimizes

the right-hand side of (3.2).

(ii) ϕ > ϕc
j , j = 1, 2, . . . , and ϕ =

∑∞
j=1 ϕ

c
jMj =

∑∞
j=1Mjϕ

c
j .

P r o o f. From (3.1) we obtain

(3.3) min
M

r(M,π) = max
{

ψ(1) : ψ 6
∑

i

πiL(i, j)ρi, j = 1, 2, . . .
}

.

Denote by ϕ the functional
∑

i πiciρi − ψ. Then the above equality takes the form

min
M

r(M,π) =
∑

i

ciπi −min{ϕ(1) : ϕc
j 6 ϕ, j = 1, 2, . . .}.

Consequently,

(3.4) max
M

rc(M,π) = min{ϕ(1) : ϕc
j 6 ϕ, j = 1, 2, . . .}.
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(i)⇒(ii). Let ϕ be an optimal functional in (3.2). Then ϕ > ϕc
j , j = 1, 2, . . .

The functional ψ =
∑

i πiciρi − ϕ maximizes the right-hand side of (3.1). Then

from Theorem 3.2(ii) we have

ψ =
∑

j

ϕjMj ,

where ϕj =
∑

i πiL(i, j)ρi and (Mj) is an optimal measurement. Therefore, the

optimal functional ϕ in (3.4) is of the form
∑

i ϕ
c
iMi.

(ii)⇒(i). Let ϕ be such that ϕ > ϕc
j , j = 1, 2, . . ., and ϕ =

∑∞
j=1 ϕ

c
jMj =

∑∞
j=1Mjϕ

c
j . The functional ψ =

∑

i πiciρi − ϕ satisfies the conditions ψ 6 ϕj ,

j = 1, 2, . . ., and ψ =
∑∞

j=1 ϕjMj =
∑∞

j=1Mjϕj . Then, by Theorem 3.2, the

measurement M = (Mi) is optimal for r (also for rc) and ψ ∈M∗ maximizes the

right-hand side of (3.1). Therefore, ϕ ∈M∗ and ϕ minimizes the right-hand side

of (3.2). �

In the rest of this article we assume that M is a finite von Neumann algebra

with faithful finite normal trace τ , τ(1) = 1, and ρ̂1, ρ̂2, . . . ∈M.Denote by ∥ · ∥∞
the operator norm in M.

THEOREM 3.4 (Main theorem). Let the series
∑

ij πi
(

ci − L(i, j)
)

∥ρ̂i∥∞ be

convergent and let us put ac =
∑

ij πi
(

ci − L(i, j)
)

. Then we have the estimate

(3.5) min
M

r(M,π) 6
∑

i

πici − 2
1

ac
(
∑

i H(ϕc

i
))−H

(

1

ac
(
∑

i ϕ
c

i
)
)

.

P r o o f. Note that the convergence of the series
∑

ij πi
(

ci−L(i, j)
)

∥ρ̂i∥∞
implies that ϕ̂c

1, ϕ̂
c
2, . . . ∈M,

∑

i ϕ̂
c
i ∈M and also the convergence of the series

∑

ij πi
(

ci − L(i, j)
)

. Let ϕ′ be an optimal functional from the right-hand side

of (3.2). Then

ϕ̂′ =
∑

i

ϕ̂c
iMi,

whereM=(Mi) is an optimal measurement. The series
∑

ijπi
(

ci−L(i, j)
)

∥ρ̂i∥∞
is convergent, so the series

∑

i ϕ̂
c
iMi is the Cauchy series for the norm ∥ · ∥∞.

ϕ̂c
iMi ∈M, therefore ϕ̂′ ∈M. Observe that ac = τ

(∑

i ϕ̂
c
i

)

. By Remark 2.4, the

operator ϕ̂c
i log ϕ̂

′ is bounded because ϕ̂′ > ϕ̂c
i . The operator

(∑

i ϕ̂
c
i

)

log ϕ̂′ is the

pointwise limit of the sequence of operators
(∑n

i=1 ϕ̂
c
i

)

log ϕ̂′, so it is bounded.

On the other hand, using the inequality (2.3), we obtain

τ(ϕ̂c
i log ϕ̂

′) > τ(ϕ̂c
i log ϕ̂

c
i ).

In summary, we have the convergence of the series
∑

i τ(ϕ̂
c
i log ϕ̂

′) and

(3.6)
∑

i

τ
(

ϕ̂c
i (log ϕ̂

′ − log ϕ̂c
i )
)

 0.
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Thus there are two cases. First, the series
∑

i τ
(

ϕ̂c
i (log ϕ̂

′ − log ϕ̂c
i )
)

is diver-

gent, so
∑

i

τ
(

ϕ̂c
i (log ϕ̂

′ − log ϕ̂c
i )
)

=∞.

Then
∑

i τ(ϕ̂
c
i log ϕ̂

c
i ) = −∞ and the inequality (3.5) is true because it takes the

form

min
M

r(M,π) 6
∑

i

πici.

Second, since the series
∑

i τ
(

ϕ̂c
i (log ϕ̂

′ − log ϕ̂c
i )
)

is convergent, so is the series
∑

i τ(ϕ̂
c
i log ϕ̂

c
i ). Using the inequality (3.6), we have the estimate

logmax
M

rc(M,π) > log τ(ϕ̂′)−
1

ac

∑

i

τ
(

ϕ̂c
i (log ϕ̂

′ − log ϕ̂c
i )
)

(3.7)

= −
1

ac

∑

i

τ

(

ϕ̂c
i

(

log
ϕ̂′

τ(ϕ̂′)
− log ϕ̂c

i

))

= −
1

ac
τ

(

(
∑

i

ϕ̂c
i

)

log
ϕ̂′

τ(ϕ̂′)

)

+
1

ac

∑

i

τ(ϕ̂c
i log ϕ̂

c
i ).

With our notation, it is obvious that the assumptions of Klein’s inequality (2.2)

hold and

(3.8) τ

(

∑

i ϕ̂
c
i

ac
log

∑

i ϕ̂
c
i

ac

)

> τ

(

∑

i ϕ̂
c
i

ac
log

ϕ̂′

τ(ϕ̂′)

)

,

therefore

logmax
M

rc(M,π) > −τ

(

∑

i ϕ̂
c
i

ac
log

∑

i ϕ̂
c
i

ac

)

+
1

ac

∑

i

τ(ϕ̂c
i log ϕ̂

c
i ) =: A.

Consequently, we obtain the inequality

min
M

r(M,π) 6
∑

i

πici − 2A. �

In the proof of Theorem 3.4 we used the idea of the proof of Lemma 2 in [8].

COROLLARY 3.1. Assume that the series
∑∞

i=1 πi∥ρi∥∞ is convergent. Then

for the probability of detection we obtain

(3.9) max
M

PD(M) > 2
∑

i πi log πi−H(
∑

i πiρi)+
∑

i πiH(ρi).

P r o o f. In Theorem 3.4, let us consider the concrete loss function of the form

L(i, j) = 1 − δij and c = (1, 1, . . .). Then we have rc(M,π) =
∑

i πiρi(Mi).
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This expression is the probability of detection. From the inequality (3.5) we ob-

tain

max
M

PD(M) > 2
∑

i H(πiρi)−H(
∑

i πiρi).

We have

∑

i

H(πiρi) =
∑

i

τ(πiρi log πiρi) =
∑

i

[πiτ(ρi log ρi) + πi log πi].

By Remark 2.2, the inequality τ(ρi log ρi) > 0 holds. On the other hand, from the

inequality log x 6 x− 1 we obtain

τ(ρi log ρi) =
∥ρi∥∞
∫

0

λ log λτ
(

ei(dλ)
)

6 log ∥ρi∥∞ 6 ∥ρi∥∞ − 1.

Therefore, 0 6 πiτ(ρi log ρi) 6 πi∥ρi∥∞ − πi. By the assumption, the series
∑

i(πi∥ρi∥∞ − πi) is convergent, so the series
∑

i πiτ(ρi log ρi) is also conver-

gent. Consequently,

∑

i

[πiτ(ρi log ρi) + πi log πi] =
∑

i

πiτ(ρi log ρi) +
∑

i

πi log πi

and

∑

i

H(πiρi)−H
(
∑

i

πiρi
)

=
∑

i

πiH(ρi) +
∑

i

πi log πi −H
(
∑

i

πiρi
)

. �

In the case of a finite-dimensional Hilbert space and a finite number of states,

Corollary 3.1 is the main result in [12].

In the next theorem and corollary we assume that M = B(Cd) and consider a

finite number of states ρ1, ρ2, . . . , ρn.

THEOREM 3.5. Let ϕ̂c
i =

∑d
j=1 λ

j
i |v

j
i ⟩⟨v

j
i | be a spectral decomposition of the

operator ϕ̂c
i , i = 1, 2, . . . , n. Write E = {vji : j = 1, 2, . . . , d, i = 1, 2, . . . , n}.

Assume that LinE = C
d andE ̸= A∪B,whereA,B ̸= ∅ and ∀v∈A∀w∈B v ⊥ w.

We have the equality in (3.5) if and only if ϕ̂c
i = aPi, i = 1, 2, . . . , n, where a is

some positive number, Pi is a projection and
∑

i Pi =
ac
a 1.

P r o o f. S u f f i c i e n c y. If the equality holds in (3.5), then it must hold also

in (3.7). Thus, we have

∑

i

τ
(

ϕ̂c
i (log ϕ̂

′ − log ϕ̂c
i )
)

= 0

and, by Remark 2.4,

ϕ̂′ϕ̂c
i = ϕ̂c

i ϕ̂
′ = (ϕ̂c

i )
2.
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The commutation ϕ̂′ϕ̂c
i = ϕ̂c

i ϕ̂
′ means that all eigenvectors from the set E are

eigenvectors of ϕ̂′. By the assumption on the set E the operator ϕ̂′ has only one

eigenvalue. Denote it by a. Applying Theorem 3.3, we have the inequalities ϕ̂′ >
ϕ̂c
j , j = 1, 2, . . ., so the operator ϕ̂′ is invertible, therefore it is equal to a1. From

the equality ϕ̂c
i ϕ̂
′ = (ϕ̂c

i )
2 we have aϕ̂c

i = (ϕ̂c
i )

2, so all eigenvalues of the operator

ϕ̂c
i are equal to a. Therefore,

ϕ̂c
i = aPi for some projection Pi.

The equality must also be in formula (3.8), that is,

τ

(

∑

i ϕ̂
c
i

ac
log

∑

i ϕ̂
c
i

ac

)

= τ

(

∑

i ϕ̂
c
i

ac
log

ϕ̂′

τ(ϕ̂′)

)

.

So, by Remark 2.3, 1
τ(ϕ̂′) ϕ̂

′ = 1
ac

∑

i ϕ̂
c
i . This gives the condition

∑

i Pi =
ac
a 1.

N e c e s s i t y. Let M = (M1,M2, . . . ,Mn),Mi =
a
ac
Pi. We have

∑

i

ϕ̂c
iMi =

∑

i

a2

ac
Pi = a1 > aPi = ϕ̂c

i ,

so Theorem 3.3 implies that M is an optimal measurement and maxM rc(M,π) =
τ(a1) = a. On the other hand,

1

ac

(
∑

i

H(ϕc
i )
)

−H

(

1

ac

(
∑

i

ϕc
i

)

)

=
1

ac

(
∑

i

H(aPi)
)

−H (1)

=
a

ac

∑

i

τ
(

Pi log(aPi)
)

=
a

ac

∑

i

τ(Pi) log a = log a,

therefore

max
M

rc(M,π) = 2
1

ac
(
∑

i H(ϕc

i
))−H

(

1

ac
(
∑

i ϕ
c

i
)
)

. �

For the probability of detection we obtain

COROLLARY 3.2. Let ρ̂i =
∑d

j=1 λ
j
i |v

j
i ⟩⟨v

j
i | be a spectral decomposition of

the operator ρ̂i, i = 1, 2, . . . , n.WriteE = {vji : j = 1, 2, . . . , d, i = 1, 2, . . . , n}.
Assume that LinE = C

d andE ̸= A∪B,whereA,B ̸= ∅ and ∀v∈A∀w∈B v ⊥ w.
We have the equality in (3.9) if and only if ρ̂i =

1
mi
Pi, i = 1, 2, . . . , n, wheremi =

τ(Pi), Pi is a projection,
∑

i Pi = m1,m =
∑

imi and πi = mi/m.

P r o o f. In Theorem 3.5 consider the loss function of the formL(i, j)=1−δij
and c = (1, 1, . . .). Then we have πiρ̂i = aPi for some a > 0 and the projection Pi.
Therefore, πi = ami and a = 1

m . Consequently, πi = mi/m and
∑

i Pi = m1. �
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Abstract. Stochastic comparisons of lifetime characteristics of relia-

bility systems and their components are of common use in lifetime analysis.

In this paper, using Harris family distributions, we compare lifetimes of two

series systems with random number of components, with respect to several

types of stochastic orders. Our results happen to enfold several previous

findings in this connection. We shall also show that several stochastic or-

ders and ageing characteristics, such as IHRA, DHRA, NBU, and NWU,

are inherited by transformation to Harris family. Finally, some refinements

are made concerning related existing results in the literature.

2010 AMS Mathematics Subject Classification: Primary: 60E15;

Secondary: 60E05.

Key words and phrases: Ageing intensity order, Marshall–Olkin dis-

tribution, proportional stochastic order, shifted stochastic order, shifted pro-

portional stochastic order, usual stochastic order.

1. INTRODUCTION

Clearly, the lifetime of any reliability system depends on the lifetime of its

components. Thus, in practice, to compare stochastically the lifetime of two sys-

tems, we need to compare the lifetimes of their components. The Harris family of

distributions is a known family for the lifetime of a series system. It was introduced

by Aly and Benkherouf [8] as a generalization of the Marshall–Olkin family. The

Marshall–Olkin family of distributions is better known as the family with a tilt

parameter. It was introduced by Marshall and Olkin [25] and was obtained as the

proportional odds family (proportional odds model) by Kirmani and Gupta [23].

However, it was first proposed by Clayton [15].

∗ The work was supported by the University of Isfahan.
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The aim of this paper is to focus on the Harris family and stochastically com-

pare such lifetime systems with each other. We recall that the Harris family is con-

structed by combining the Harris probability generating function (pgf) introduced

by Harris [21] and a baseline distribution function. More precisely, a survival func-

tion of the family is defined as

(1.1) H̄(x; θ, k) =

(

θF̄ k(x)

1− θ̄F̄ k(x)

)1/k

,

−∞ < x <∞, 0 < θ <∞, θ̄ = 1− θ, k > 0,

where F (x) is called the baseline distribution function (df) and θ is called the tilt

parameter. It is easily seen that hazard rates corresponding to F (x) and H(x; θ, k),
namely, rF (·) = f(·)/F̄ (·) and rH(·; θ, k) = h(·; θ, k)/H̄(·; θ, k), are related by

(1.2) rH(x; θ, k) =
rF (x)

1− θ̄F̄ k(x)
,

−∞ < x <∞, 0 < θ <∞, θ̄ = 1− θ, k > 0.

Clearly, rH(x; θ, k) is shifted below (θ  1) or above (0 < θ ¬ 1) rF (x). When

k = 1, a Harris family distribution reduces to a Marshall–Olkin distribution.

In reliability terms, a random variable (rv) X , with Harris family distribution,

can be considered as the lifetime of a series system with independent and iden-

tical (iid) component lifetimes Y1, Y2, . . . , YN , with df’s F , when the number of

components, N , is itself a Harris rv independent of Yi’s.

Recently, Batsidis and Lemonte [11] discussed another method of construct-

ing the Harris family of distributions. They revealed that the Harris family of dis-

tributions is a proportional failure rate model which is obtained from a modified

Marshall–Olkin distribution. Then, they provided several results in connection with

behavior of the failure rate function for the Harris family and discussed their cer-

tain stochastic orders. Al-Jarallah et al. [7] presented a proportional hazard version

of the Marshall–Olkin family of distributions as [H̄(·; θ, 1)]γ and investigated like-

lihood ratio order in this model.

Our aim is to compare a Harris family distribution with its baseline distribu-

tion, with respect to several stochastic orders. Stochastic orders are important tools

for comparing probability distributions and play a great role in statistical inference

and applied probability. Frequently, they are applied in contexts of risk theory,

reliability, survival analysis, economic and insurance. For instance, recently, Bar-

toszewicz and Skolimowska [10], Błażej [14] and Misra et al. [27] studied preser-

vation of stochastic orders under weighting. Benduch-Frąszczak [13] investigated

preservation of stochastic orders and the class of life distributions in the propor-

tional odds family. Then, Maiti and Dey [24] applied the result of stochastic orders

of [13] to the tilted normal distribution. Nanda and Das [29] studied stochastic

orders in the Marshall–Olkin family. Aghababaei and Alamatsaz [3], Aghababaei
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et al. [4] and Alamatsaz and Abbasi [6] were concerned with stochastic compar-

isons of different distributions with their mixtures.

There is no theoretical basis for choosing the baseline distribution and its tilt

parameter in a Harris family distribution. Therefore, it is important to see how a

Harris family rv responds to the change of the baseline distribution and tilt pa-

rameter. This paper mainly investigates how the relations between tilt parameters

or baseline distributions affect stochastic orders between two given Harris fam-

ily distributions. Considering the utility desired, we are able to choose a baseline

distribution and the tilt parameter.

Abbasi et al. [1] compared two Harris families with different tilt parameters

using stochastic orders. In this paper, we are concerned with four types of stochas-

tic orders: simple stochastic orders, shifted stochastic orders, proportional stochas-

tic orders and shifted proportional stochastic orders. In Section 2, we shall sum-

marize some useful relations among stochastic orders to be used in the sequel. In

Section 3, we consider a baseline distribution and compare the two corresponding

Harris family distributions, with different tilt parameters, with respect to several

stochastic orders. In Section 4, it is observed that certain stochastic orders of the

baseline distribution are preserved by transformation to the Harris family with the

same tilt parameter and vice versa. Finally, in Section 5 we prove that certain age-

ing characteristics, such as increasing failure rate average (IFRA), decreasing fail-

ure rate average (DFRA), new better than used (NBU) and new worse than used

(NWU), are preserved by transformation to the Harris family. Thus, our results en-

fold all findings on stochastic orders of [19], [20], and [23] as special cases. In our

investigations, we also reveal that Theorem 2.2 of [20] is valid only if the support

of the tilt parameter is corrected. Hence, their result in Theorem 2.3 is not true as

it is.

2. STOCHASTIC ORDERS AND CLASSES OF LIFE DISTRIBUTIONS

Let X and Y be rv’s with df’s F and G, survival functions (sf) F̄ and Ḡ,

probability density functions (pdf) f and g, hazard rate functions rF and rG, re-

versed hazard rate functions r̃F (= f(·)/F (·)) and r̃G and supports SX and SY ,

respectively. The lower and upper bounds of supports are denoted by l. and u.. In

this paper, we consider F−1(u) = inf{x : F (x) ¬ u}, which is called the quan-

tile function. Also, throughout the paper, “increasing” is used in place of “non-

decreasing” and “decreasing” is used in place of “non-increasing”. In what follows,

some known stochastic orders and classes of life distributions, used in this article,

are recalled and their important properties are stated. For more details, we refer to

[28] and [31].

A. Usual stochastic orders

(a) X is statistically smaller than Y (X ¬st Y ) if F̄ (x) ¬ Ḡ(x) for all x ∈
(−∞,∞).
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444 S. Abbasi and M. H. Alamatsaz

(b) X is smaller than Y in the likelihood ratio order, denoted by X ¬lr Y , if

g(x)/f(x) increases in x over the SX ∪ SY .

(c) X is smaller than Y in the hazard rate order, denoted by X ¬hr Y , if

rF (x)  rG(x) for all x ∈ (−∞,∞).
(d) X is smaller than Y in the reversed hazard rate order, denoted by X ¬rh

Y , if r̃F (x) ¬ r̃G(x) for all x ∈ (−∞,∞).
(e) X is smaller than Y in the expectation order, denoted by X ¬E Y , if

E(X) ¬ E(Y ), where expectations are assumed to exist.

(f) The mean residual life (mrl) function of X is defined as m(t) = E(X − t|
X > t) for t < t∗, where t∗ = sup{t : F̄ (t) > 0}. If m and m∗ are mrl functions

of X and Y , respectively, then X is smaller than Y in the mrl order, denoted by

X ¬mrl Y , if m(t) ¬ m∗(t) for all t or, equivalently, if
∫∞

t
F̄ (u)du/

∫∞

t
Ḡ(u)du

decreases in t, when defined.

(g) X is smaller than Y in the convex order, denoted by X ¬cx Y , if for every

real-valued convex function φ(·) defined on the real line, E
(

φ(X)
)

¬ E
(

φ(Y )
)

.

(h) For non-negative rv’s, X is smaller than Y in the Lorenz order, denoted by

X ¬Lorenz Y , if LX(p)  LY (p) for all p ∈ [0, 1], where

LX(p) =

∫ p

0
F−1(u)du

∫ 1

0
F−1(u)du

, 0 ¬ p ¬ 1,

is the Lorenz curve of X .

(i) Zimmer et al. [32] defined the log-odds function of an rv X by

LOX(t) = ln
FX

F̄X

and introduced a new time-to-failure model based on the log-odds ratio (LOR)

function. The LOR function of an rv X is defined by

LORX(t) =
d

dt
LOX(t) =

f(t)

F (t)F̄ (t)
=

rX(t)

F (t)
.

We say that X is smaller than Y in the LOR order, denoted by X ¬LOR Y , if

lX ¬ lY , uX ¬ uY and LORX(t)  LORY (t) for all t ∈ (lY , uX).
(j) X is smaller than Y in the dispersive order, denoted by X ¬disp Y , if

F−1(β) − F−1(α) ¬ G−1(β) − G−1(α) whenever 0 < α ¬ β < 1, or, equiva-

lently, if G−1F (x)− x increases in x.

(k) X is smaller than Y in the convex transform order, denoted by X ¬c Y , if

G−1F (x) is convex in x ∈ SX .

(l) For non-negative rv’s, X is smaller than Y in the star order, denoted by

X ¬∗ Y , if G−1F (x)/x increases in x  0.

(m) For non-negative rv’s, X is smaller than Y in the super-additive order,

denoted by X ¬su Y , if G−1F (t+ u)  G−1F (t) +G−1F (u) for t  0, u  0.
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(n) X is smaller than Y in the ageing intensity order, denoted by X ¬AI Y ,

if for all x  0,

1

rF (x)

x
∫

0

rF (u)du ¬
1

rG(x)

x
∫

0

rG(u)du.

B. Shifted stochastic orders

(o) X is smaller than Y in the up likelihood ratio order, denoted by X ¬lr↑ Y ,

if [X − t | X > t] ¬lr Y for all t  0 or, equivalently, if g(x)/f(t+ x) increases

in x ∈ [lY , uX − t].
(p) X is smaller than Y in the down likelihood ratio order, denoted by X ¬lr↓

Y , if X ¬lr [Y − t | Y > t] for all x  0 or, equivalently, if g(t + x)/f(x) in-

creases in x ∈ [lX , uY − t].
(q) X is smaller than Y in the up hazard rate order (up reversed hazard

rate order), denoted by X ¬hr↑ (¬rh↑) Y , if for all t  0, [X − t | X > t] ¬hr

(¬rh) Y or, equivalently, if Ḡ(x)/F̄ (t + x) (G(x)/F (t + x)) increases in x ∈
(−∞, uY ) for all t  0.

(r) X is smaller than Y in the down hazard rate order (down reversed hazard

rate order), denoted by X ¬hr↓ (¬rh↓) Y , if for all t  0, X ¬hr (¬rh) [Y − t |
Y > t] or, equivalently, if Ḡ(t+ x)/F̄ (x) (G(t+ x)/F (x)) increases in x  0 for

all t  0.

C. Proportional stochastic orders. Belzunce et al. [12] and Ramos Romero

and Sordo Dı́az [30] have introduced the proportional likelihood ratio, proportional

hazard rate and proportional reversed hazard rate orders as follows. Let X and Y
be continuous and non-negative rv’s. Then

(s) X is smaller than Y in the proportional likelihood ratio order (plr) (pro-

portional hazard rate order (phr), proportional reversed hazard rate order (prh)),

denoted by X ¬plr (¬phr,¬prh) Y , if for all 0 < λ ¬ 1, λX ¬lr (¬hr,¬rh) Y
or, equivalently, if g(λx)/f(x) (Ḡ(λx)/F̄ (x), G(λx)/F (x)) increases in x for all

0 < λ ¬ 1.

D. Shifted proportional stochastic orders. Jarrahiferiz et al. [22] have intro-

duced the shifted proportional likelihood ratio order and shifted proportional haz-

ard rate order for continuous and non-negative rv’s as follows:

(t) X is smaller than Y in the up proportional likelihood ratio order, denoted

by X ¬plr↑ Y , if [X − t | X > t] ¬plr Y or, equivalently, g(λx)/f(t + x) is in-

creasing in x ∈ (lX − t, uX − t) ∪ (lY /λ, uY /λ) for all t  0 and 0 < λ ¬ 1.

(u) X is smaller than Y in the down proportional likelihood ratio order, de-

noted by X ¬plr↓ Y , if X ¬plr [Y − t | Y > t] or, equivalently, if g(λx+ t)f(x)
is increasing in x  0 for all t  0 and 0 < λ ¬ 1.

(v) X is smaller than Y in the up proportional hazard rate order, denoted by

X ¬phr↑ Y , if [X − t | X > t] ¬phr Y or, equivalently, if Ḡ(λx)/F̄ (t + x) is

increasing in x ∈ (0, uY /λ) for all t  0 and 0 < λ ¬ 1.
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(w) X is smaller than Y in the down proportional hazard rate order, denoted

by X ¬phr↓ Y , if X ¬phr [Y − t | Y > t] or, equivalently, if Ḡ(λx+ t)/F̄ (x) is

increasing in x  0 for all t  0 and 0 < λ ¬ 1.

E. Classes of life distributions

(a) X has the increasing likelihood ratio (ILR) (increasing failure rate (IFR),

increasing reversed failure rate (IRFR)) property, denoted by X ∈ ILR (IFR,
IRFR), if

X ¬lr↑ (¬hr↑,¬rh↑) X

or, equivalently, if f(x)/f(x + t) (F̄ (x)/F̄ (x + t), F (x)/F (x + t)) increases in

x for any t  0 and X has the decreasing likelihood ratio (DLR) (decreasing

failure rate (DFR), decreasing reversed failure rate (DRFR)) property, denoted

by X ∈ DLR (DFR,DRFR), if X ¬lr↓ (¬hr↓,¬rh↓) X or, equivalently, if

f(x+ t)/f(x) (F̄ (x+ t)/F̄ (x), F (x+ t)/F (x)) increases in x for any t  0.

(b) X has the increasing proportional likelihood ratio (IPLR) (increasing

proportional failure rate (IPFR), increasing proportional reversed failure rate

(IPRF )) property, denoted by X ∈ IPLR (IPFR, IPRF ), if X ¬plr (¬phr,
¬prh) X or, equivalently, if f(λx)/f(x) (F̄ (λx)/F̄ (x), F (λx)/F (x)) increases

in x for all 0 < λ ¬ 1.

(c) X has the up increasing proportional likelihood ratio (UIPLR) (up in-

creasing proportional failure rate (UIPFR)) property, denoted by

X ∈ UIPLR (UIPFR),

if X ¬plr↑ (¬phr↑) X or, equivalently, if f(λx)/f(x + t) (F̄ (λx)/F̄ (x + t)) in-

creases in x for all 0 < λ ¬ 1 and t  0 and X has the down increasing pro-

portional likelihood ratio (DIPLR) (down increasing proportional failure rate

(DIPFR)) property, denoted by X∈DIPLR (DIPFR), if X¬plr↓ (¬phr↓) X
or, equivalently, if f(λx + t)/f(x) (F̄ (λx + t)/F̄ (x)) increases in x for all 0 <
λ ¬ 1 and t  0.

Table 1. Some useful relations among various types of stochastic orders.

¬lr ⇒ ¬hr ⇒ ¬st ¬hr↑ ⇒ ¬hr ⇒ ¬st

⇑ ⇑

¬plr↑ ⇒ ¬prh↑ ⇒ ¬rh↑ ⇐ ¬lr↑ ⇐ ¬plr↑ ⇒ ¬phr↑ ⇒ ¬hr↑

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

¬plr ⇒ ¬prh ⇒ ¬rh ⇐ ¬lr ⇐ ¬plr ⇒ ¬phr ⇒ ¬hr

⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

¬plr↓ ¬prh↓ ⇒ ¬rh↓ ¬lr↓ ⇐ ¬plr↓ ⇒ ¬phr↓ ⇒ ¬hr↓

⇓ ⇓

¬st ⇐ ¬rh ¬hr↓
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(d) A non-negative rv X has IFRA (DFRA) if
(

− 1
t

)

ln F̄ (t) is increasing

(decreasing) in t  0.

(e) A non-negative rv X is NBU (NWU) if F̄ (t + u) ¬ () F̄ (t)F̄ (u) for

t  0 and u  0.

In Table 1, we summarize some useful relationships among several stochastic

orders to be used in the sequel.

3. STOCHASTIC COMPARISON

Assume that the baseline df F (x) in (1.1) is absolutely continuous with pdf

f(x). Then, the pdf and df associated with H̄(x; θ, k) in (1.1) are given by

(3.1) h(x; θ, k) =
θ1/kf(x)

(

1− θ̄F̄ k(x)
)1+1/k

,

−∞ < x <∞, 0 < θ <∞, θ̄ = 1− θ, k > 0,

and

(3.2) H(x; θ, k) = 1−

[

θF̄ k(x)
(

1− θ̄F̄ k(x)
)

]1/k

,

−∞ < x <∞, 0 < θ <∞, θ̄ = 1− θ, k > 0,

respectively.

Batsidis and Lemonte [11] in their Proposition 2 compared a Harris family

distribution with its corresponding baseline distribution with respect to several

stochastic and shifted stochastic orders. In the following theorem, we compare two

Harris families with respect to their tilt parameter θ.

THEOREM 3.1. Let X, Y1 and Y2 be continuous and non-negative rv’s cor-

responding to survival functions F̄ (·), H̄(·; θ1, k1) and H̄(·; θ2, k2), respectively.

Moreover, let {0 < θ1 ¬ 1, θ2  1}. Then:
(i) If X ∈ UIPLR (IPLR, ILR), then Y1 ¬plr↑ (¬plr,¬lr↑) Y2.

(ii) If X ∈ DIPLR (DLR), then Y1 ¬plr↓ (¬lr↓) Y2.

(iii) If X ∈ UIPFR (IPFR, IFR), then Y1 ¬phr↑ (¬phr,¬hr↑) Y2.

(iv) If X ∈ DIPFR (DFR), then Y1 ¬phr↓ (¬hr↓) Y2.

P r o o f. We give the proof for the first part. Proofs of other parts are similar

and thus omitted. Let {0 < θ1 ¬ 1, θ2  1} and X ∈ UIPLR. For Y1 ¬plr↑ Y2,

it is sufficient to show that

h(λx; θ2, k2)

h(x+ t; θ1, k1)
=

θ
1/k2
2

θ
1/k1
1

f(λx)

f(x+ t)

[

(

1− θ̄1F̄
k1(x+ t)

)1/k1+1

(

1− θ̄2F̄ k2(λx)
)1/k2+1

]
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is increasing in x for any 0 < λ ¬ 1, t  0 and k1, k2 > 0. Since X ∈ UIPLR,

f(λx)/f(x+ t) is increasing in x for any 0 < λ ¬ 1 and t  0. Also the term in

the brackets is increasing in x because

d

dx

[

(

1− θ̄1F̄
k1(x+ t)

)1/k1+1

(

1− θ̄2F̄ k2(λx)
)1/k2+1

]

=

[

(

1− θ̄1F̄
k1(x+ t)

)1/k1+1

(

1− θ̄2F̄ k2(λx)
)1/k2+1

]

×

[

θ̄1(k1 + 1)f(x+ t)F̄ (k1−1)(x+ t)

1− θ̄1F̄ k1(x+ t)
−

λθ̄2(k2 + 1)f(λx)F̄ (k2−1)(λx)

1− θ̄2F̄ k2(λx)

]

is non-negative provided that {0 < θ1 ¬ 1, θ2  1}. Thus, we have the assertion.

Our proof above also yields Y1 ¬plr Y2, by putting t = 0, and Y1 ¬lr↑ Y2, by

letting λ = 1. �

THEOREM 3.2. Let Y1 and Y2 be rv’s corresponding to the df’s H(·; θ1, k1)
and H(·; θ2, k2), respectively. If {0 < θ1 ¬ 1, θ2  1} or {0 < θ1 ¬ θ2, k1 =
k2 = k}, then Y1 ¬lr Y2.

P r o o f. Y1 ¬lr Y2 is equivalent to h(x; θ1, k1)/h(x; θ2, k2) being decreasing

in x. But, by equation (3.1), we have

h(x; θ1, k1)

h(x; θ2, k2)
=

(

θ
1/k1
1

θ
1/k2
2

)

[

1− θ̄2F̄
k2(x)

]1/k2+1

[

1− θ̄1F̄ k1(x)
]1/k1+1

.

Thus, for any k1 > 0 and k2 > 0 we obtain

d

dx

[

h(x; θ1, k1)

h(x; θ2, k2)

]

=
h(x; θ1, k1)

h(x; θ2, k2)
f(x)

[

(k2 + 1)θ̄2F̄
k2−1(x)

1− θ̄2F̄ k2(x)
−

(k1 + 1)θ̄1F̄
k1−1(x)

1− θ̄1F̄ k1(x)

]

which is non-positive if {0 < θ1 ¬ 1, θ2  1}.
For k1 = k2 = k, by equation (3.1), we have

h(x; θ1, k)

h(x; θ2, k)
=

(

θ1
θ2

)1/k [1− θ̄2F̄
k(x)

1− θ̄1F̄ k(x)

]1+1/k

.

Thus, for all k > 0 we obtain

d

dx

[

h(x; θ1, k)

h(x; θ2, k)

]

= C(x; k, θ1, θ2)

[

1− θ̄2F̄
k(x)

1− θ̄1F̄ k(x)

]1/k
θ̄2 − θ̄1

(

1− θ̄1F̄ k(x)
)2 ,

where C(x; k, θ1, θ2) = (θ1/θ2)
1/k(1 + k)f(x)F̄ k−1(x)  0 is non-positive if

θ1 ¬ θ2. This completes the proof. �
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By Theorem 3.2 and Table 1, we immediately obtain

COROLLARY 3.1. Let Y1 and Y2 be rv’s corresponding to df’s H(·; θ1, k1)
and H(·; θ2, k2), respectively. If {0 < θ1 ¬ 1, θ2  1} or {0 < θ1 ¬ θ2, k1 =
k2 = k}, then Y1 ¬hr (¬rh,¬st,¬E) Y2.

REMARK 3.1. It is worth mentioning that, in view of our Theorem 3.2, Theo-

rem 2.3 of [20] concerning the Marshall–Olkin family is not valid unless θ1  θ2
is replaced by θ2  θ1.

REMARK 3.2. Our results in Theorem 3.2 can be viewed as extensions of

those of Theorem 3 of [13], Theorem 4 of [16] and Proposition 1 of [17], where they

consider the special case of k = 1, i.e., the Marshall–Olkin family. Furthermore,
our result in Corollary 3.1 for k = 1 was proved by Benduch-Frąszczak [13] in

Corollary 2.

In the following theorem we study ageing intensity orders between rv’s Y1 and

Y2 corresponding to df’s H(·; θ1, k) and H(·; θ2, k), respectively.

THEOREM 3.3. Let Y1 and Y2 be rv’s corresponding to Harris family df’s

H(·; θ1, k) and H(·; θ2, k), respectively. Then Y1 ¬AI Y2 provided that θ1 > θ2.

P r o o f. Y1 ¬AI Y2 if and only if, for all x > 0, we have

1

rH(x; θ1, k)

x
∫

0

rH(u; θ1, k)du ¬
1

rH(x; θ2, k)

x
∫

0

rH(u; θ2, k)du, k > 0,

or, by equation (1.2),

1− θ̄1F̄
k(x)

rF (x)

1
∫

0

rF (u)

1− θ̄1F̄ k(u)
du ¬

1− θ̄2F̄
k(x)

rF (x)

x
∫

0

rF (u)

1− θ̄2F̄ k(u)
du, k > 0,

which is equivalent to

x
∫

0

rF (u)

[

1− θ̄1F̄
k(x)

1− θ̄1F̄ k(u)
−

1− θ̄2F̄
k(x)

1− θ̄2F̄ k(u)

]

du  0, k > 0.

But this is true if θ1 > θ2 because

d

dθ

(

1− θ̄F̄ k(x)

1− θ̄F̄ k(u)

)

=
F̄ k(x)− F̄ k(u)
(

1− θ̄F̄ k(u)
)2 ¬ 0,

or if
(

1− θ̄F̄ k(x)
)

/
(

1− θ̄F̄ k(u)
)

is decreasing in θ when 0 < u < x. Thus, we

have the result. �
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4. PRESERVATION OF STOCHASTIC ORDERS

BY HARRIS FAMILY WITH THE SAME TILT PARAMETERS

Let X1 and X2 be two rv’s with df’s F1 and F2 and pdf’s f1 and f2, respec-

tively. Suppose that Y1 and Y2 are their corresponding Harris family rv’s, i.e., the

df’s F1 and F2 with baseline, respectively. In this section, we shall study several

stochastic order preservations of the baseline distribution by its corresponding Har-

ris family.

Kirmani and Gupta [23] have shown that usual stochastic, hazard rate, con-

vex transform, super-additive and star orders are preserved by transformation to

proportional odds ratio (Marshall–Olkin) family. In what follows, their results are

generalized to Harris family, i.e., for any k > 0 in equation (1.1). In fact, more

generally, we have the following necessary and sufficient property.

THEOREM 4.1. X1 ¬st X2 if and only if Y1 ¬st Y2.

P r o o f. It is true by Theorem 3.1 of [1] when α = β. �

Since the Harris family of distributions coincides with weighted distributions,

with weight ω(x) = θ1/k/
(

1 − θ̄F̄ k(x)
)1/k+1

, by Theorem 9(a) of [9] we con-

clude that the hazard rate order is preserved by transformation to the Harris family.

The following theorem also provides a both-sided preservation for different types

of hazard rate orders. That is, by comparing lifetimes of two given systems, we

can detect which one is made of better quality components. But, in these cases, the

range of the tilt parameter values plays a restrictive role.

THEOREM 4.2. (i) Assume that θ  1. If X1 ¬phr↑ (¬phr,¬hr↑,¬hr)X2,
then Y1 ¬phr↑ (¬phr,¬hr↑,¬hr) Y2.

(ii) Assume that 0 < θ ¬ 1. If Y1 ¬phr↑ (¬phr,¬hr↑,¬hr) Y2, then X1 ¬phr↑

(¬phr,¬hr↑,¬hr) X2.

P r o o f. (i) It is true by Theorem 3.2(i) of [1] when α = β  1.

(ii) For the up proportional hazard rate order, let Y1 ¬phr↑ Y2. So, for all x,

t  0 and 0 < λ ¬ 1 we have rH1
(x+ t; θ, k)  λrH2

(λx; θ, k). So, by equation

(1.2), we have

(4.1)
rF1

(x+ t)

λrF2
(λx)


1− θ̄F̄ k

1 (x+ t)

1− θ̄F̄ k
2 (λx)

.

Since the hazard rate order is implied by the up proportional hazard rate order

(Table 1) and the simple stochastic order is implied by the hazard rate order, for any

x and all k > 0 we have H̄k
1 (x) ¬ H̄k

2 (x). Also, by Theorem 4.1, F̄ k
1 (x) ¬ F̄ k

2 (x).
Further, the survival function is decreasing, so for all 0 < λ ¬ 1, t  0, k > 0 and

x, we get

F̄ k
1 (x+ t) ¬ F̄ k

1 (x) ¬ F̄ k
2 (x) ¬ F̄ k

2 (λx).
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Thus, when 0 < θ < 1, we have

−θ̄F̄ k
1 (x+ t)  −θ̄F̄ k

2 (λx) =⇒ 1− θ̄F̄ k
1 (x+ t)  1− θ̄F̄ k

2 (λx).

Consequently, the right-hand side of inequality (4.1) is greater than one, which

implies rF1
(x+ t)  λrF2

(λx), i.e., X1 ¬phr↑ X2, as required.

With proper choices of t or λ, i.e. t = 0 or λ = 1, or both, proofs for the other

parts are immediate. �

By using the counterexample 3.2 of [1], the following counterexample shows

that the up hazard rate order is not preserved by transformation to the Harris family,

when 0 < θ < 1.

COUNTEREXAMPLE 4.1. Let X1 and X2 be two rv’s having the Erlang dis-

tributions with survival functions F̄1(x) = (1+ 2x)e−2x, F̄2(x) = (x+1)e−x and

hazard rates rF1
(x) = 4x/(1 + 2x), rF2

(x) = x/(x+ 1), for x > 0, respectively.

So, X1 ¬hr↑ X2. However, Figure 1 shows that for some 0 < θ < 1, t > 0 and

some x > 0, rH1
(x+ t; θ, k) ≯ rH2

(x; θ, k) or, equivalently, H̄2(x; θ, k)/H̄1(x+
t; θ, k) is not increasing in x, i.e., the up hazard rate order is not preserved by

transformation to the Harris family when 0 < θ < 1.

Figure 1. (a) showing that rH1
(x + t; θ, k) � rH2

(x; θ, k), and (b)

and (c) showing that H̄2(x; θ, k)/H̄1(x + t; θ, k) is not increasing in x.

COROLLARY 4.1. Let X1 and X2 be two rv’s with mean residual life (mrl)
functions m1 and m2 and Harris family rv’s Y1 and Y2 having mrl functions m∗1
and m∗2, respectively, such that m1(t)/m2(t) increases in t. If X1 ¬mrl X2, then

Y1 ¬mrl Y2 provided that θ  1. The orders are reversed if m∗1(t)/m
∗
2(t) increases

in t and 0 < θ ¬ 1.

P r o o f. By Theorem 2.A.2 of [31], the assertion holds because if X1¬mrlX2

and m1(t)/m2(t) increases in t, then X1 ¬hr X2. Thus, by Theorem 4.2(i) we can

conclude that Y1 ¬hr Y2. But by the sufficiency of the hazard rate order for mrl

order (Theorem 1.D.1 of [31]), this implies that Y1 ¬mrl Y2. �
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REMARK 4.1. Note that for the special case when k = 1, the log-odds func-

tion of an rv X is equal to the log-odds function of the corresponding Harris family

rv Y . Consequently, the log-odds ratio order is also preserved by transformation

to the Marshall–Olkin family.

For the ageing intensity order, we have the following

THEOREM 4.3. Assume that X1 and X2 are non-negative rv’s. For all k > 0,
if X1 ¬AI X2 and X1 ¬hr X2, then Y1 ¬AI Y2 provided that θ > 1.

P r o o f. Let k > 0 and θ > 1. Y1 ¬AI Y2 if and only if

1

rH1
(x; θ, k)

x
∫

0

rH1
(u; θ, k)du ¬

1

rH2
(x; θ, k)

x
∫

0

rH2
(u; θ, k)du

or
1− θ̄F̄ k

1 (x)

rF1
(x)

x
∫

0

rH1
(u; θ, k)du ¬

1− θ̄F̄ k
2 (x)

rF2
(x)

x
∫

0

rH2
(u; θ, k)du

But we have

x
∫

0

rH(u; θ, k)du = − ln H̄(x; θ, k) = − ln F̄ (x) +
1

k
ln

(

1− θ̄F̄ k(x)

θ

)

.

So, we should show that

(4.2)
(

1− θ̄F̄ k
1 (x)

)

[

− ln F̄1(x)

rF1
(x)

+
1

k

ln
((

1− θ̄F̄ k
1 (x)

)

/θ
)

rF1
(x)

]

¬
(

1− θ̄F̄ k
2 (x)

)

[

− ln F̄2(x)

rF2
(x)

+
1

k

ln
((

1− θ̄F̄ k
2 (x)

)

/θ
)

rF2
(x)

]

.

Since X1 ¬AI X2, we also have

1

rF1
(x)

x
∫

0

rF1
(u)du ¬

1

rF2
(x)

x
∫

0

rF2
(u)du

or
1

rF1
(x)

x
∫

0

f1(u)

F̄1(u)
du ¬

1

rF2
(x)

x
∫

0

f2(u)

F̄2(u)
du.

Equivalently, we have

(4.3)
− ln F̄1(x)

rF1
(x)

¬
− ln F̄2(x)

rF2
(x)

.

On the other hand, if X1 ¬hr X2, for all x we have 1/rF1
(x) ¬ 1/rF2

(x) and also

X1 ¬st X2. Thus, F̄ k
1 (x) ¬ F̄ k

2 (x). So, since θ > 1, we have

1− θ̄F̄ k
1 (x)

θ
¬

1− θ̄F̄ k
2 (x)

θ
.
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Hence, we can conclude that

(4.4)
ln
((

1− θ̄F̄ k
1 (x)

)

/θ
)

rF1
(x)

¬
ln
((

1− θ̄F̄ k
2 (x)

)

/θ
)

rF2
(x)

.

Now, adding up inequalities (4.3) and (4.4) and multiplying the left-hand side by
(

1− θ̄F̄ k
1 (x)

)

and the right-hand side by
(

1− θ̄F̄ k
2 (x)

)

, we obtain inequality (4.2).

This completes the proof. �

In the next lemma we need inverses of the df and survival function of a Harris

family distribution. It is easy to verify that equations (1.1) and (3.2) lead to

(4.5) H̄−1(p; θ, k) = F̄−1
(

pk

θ + θ̄pk

)1/k

, 0 < p < 1,

and

(4.6) H−1(p; θ, k) = F−1
(

1−

[

(1− p)k

θ + θ̄(1− p)k

]1/k)

, 0 < p < 1.

Equation (4.6) was observed by Batsidis and Lemonte [11].

LEMMA 4.1. If H1(x) ≡ H1(x; θ, k) and H2(x) ≡ H2(x; θ, k) are two Har-

ris family df’s with baseline df’s F1 and F2, respectively, then H−12

(

H1(x)
)

=

F−12

(

F1(x)
)

for all x.

P r o o f. This result can be obtained by using the assumed form of H1 together

with H−12 , which follows from equation (4.6). For any k > 0 and θ > 0, we have

(4.7) H−12

(

H1(x)
)

= F−12

(

1−

[

(

1−H1(x)
)k

θ + θ̄
(

1−H1(x)
)k

]1/k )

.

Thus, substituting H1(x) of equation (3.2) into (4.7), we obtain the lemma. �

Without any restriction on the tilt parameter θ, we have

THEOREM 4.4. The following orders are preserved by transformation from a

baseline distribution to its corresponding Harris family and vice versa.

(i) convex transform order,

(ii) star order,

(iii) supper-additive order,

(iv) dispersive order.
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P r o o f. (i) X1 ¬c X2 holds if F−12 F1(x) is convex in x ∈ SX1
. Thus, by

Lemma 4.1, H−12

(

H1(x)
)

is also convex in x ∈ SY1
. So Y1 ¬c Y2.

(ii) X1 ¬∗ X2 holds if F−12 F1(x)/x increases in x  0. Thus, by Lemma 4.1,

H−12

(

H1(x)
)

/x also increases in x  0. So Y1 ¬∗ Y2.

(iii) X1 ¬su X2 if F−12 F1(t + u)  F−12 F1(t) + F−12 F1(u) for t  0 and

u  0. Thus, by Lemma 4.1, H−12 H1(t+ u)  H−12 H1(t) +H−12 H1(u) for t  0
and u  0. So Y1 ¬su Y2.

(iv)X1 ¬disp X2 if F−12 F1(x) − x increases in x. Thus, by Lemma 4.1, it

follows that H−12

(

H1(x)
)

− x also increases in x. So Y1 ¬disp Y2.

Proofs of converse transformations are similar. �

COROLLARY 4.2. If X1 ¬Lorenz X2, then Y1 ¬Lorenz Y2 provided that the

function F−12 (x)/F−11 (x) is increasing for all x > 0.

P r o o f. If F−12 (x)/F−11 (x) is increasing for all x > 0, then, clearly, it fol-

lows that F−12 F1(x)/x is also increasing for all x > 0. Thus, X1 ¬∗ X2 and the

Lorenz order is implied by the star order (cf. [9], p. 90), i.e., X1 ¬Lorenz X2.

Since, by Theorem 4.4, the star order is preserved by transformation to the Harris

family, we have Y1 ¬∗ Y2, which yields the Lorenz order, as required. �

REMARK 4.2. The usual stochastic, hazard rate, convex transform and star

orders are preserved by transformation to the frailty family (proportional hazard

family, cf. [26], p. 240) and to Marshall–Olkin family (cf. [23]). By combining

these facts with Remark 1 of [11], it follows that such orders are also preserved

under transformation to the Harris family.

5. AGEING PROPERTIES

In the investigations pertaining to ageing concepts, the problem is to examine

how a component or system improves or deteriorates with age. In the reliability

context, life distributions are classified into different classes based on the mono-

tonic behavior of the failure rate and mean residual life functions. The works [2],

[5] and [18] proceed in this direction. Batsidis and Lemonte [11] showed that IFR

and DFR properties are preserved by transformation to the Harris family. In what

follows, we shall show that the ageing characteristics, i.e., IFRA, DFRA, NBU and

NWU, are also preserved by transformation to the Harris family. First, we need to

recall some results.

PROPOSITION 5.1 ([26], p. 182). The following two statements are equivalent:

(i) X has IFRA (DFRA),

(ii) X ¬∗ (∗) X1, where X1 has an exponential distribution.
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PROPOSITION 5.2 ([26], p. 182). The following two statements are equivalent:

(i) X is NBU (NWU),

(ii) X ¬su (su) X1, where X1 has an exponential distribution.

In the following corollary we shall investigate preservation of the IFRA, DFRA,

NBU and NWU characteristics by transformation to the Harris family.

COROLLARY 5.1. Let θ > 1 (0 < θ < 1).
(i) The IFRA (DFRA) characteristic is preserved by transformation to the

Harris family.

(ii) The NBU (NWU) characteristic is preserved by transformation to the

Harris family.

P r o o f. (i) Assume that an rv X has the IFRA (DFRA) property and that X1

is an rv with survival function F̄1(x) = e−x for x  0. We transform F̄1(·) to the

Harris family as follows:

H̄1(x; θ, k) =
θ1/ke−x

(1− θ̄e−kx)1/k
, x  0.

Let Y and Y1 be the corresponding Harris family rv’s with survival functions

H̄(·; θ, k) and H̄1(·; θ, k), respectively. By Proposition 5.1, we get X ¬∗ (∗)X1.

But, by Theorem 4.4(ii), the star order is preserved by transformation to the Har-

ris family, so we have Y ¬∗ (∗) Y1. Thus, by [10], for θ > 1 (0 < θ < 1), Y1
has the IFR (DFR) property. Moreover, the IFR (DFR) property implies the IFRA

(DFRA) property (cf. [26], p. 181). Thus, Y1 has IFRA (DFRA), and so, by Propo-

sition 5.1, Y1 ¬∗ (∗)X1. From the transitivity property of partial order, we obtain

Y ¬∗ (∗) X1. Thus, by Proposition 5.1, Y has the IFRA (DFRA) property.

(ii) Let an rv X with survival function F̄ (·) be NBU (NWU) and X1 be an rv

with survival function F̄1(x) = e−x for x  0. We transform F̄1(·) to the Harris

family as follows:

H̄1(x; θ, k) =
θ1/ke−x

(1− θ̄e−kx)1/k
, x  0.

Let Y and Y1 be rv’s with survival functions defined in (1.1) and H̄1(·; θ, k),
respectively. By Proposition 5.2, X ¬su (su) X1, but by Theorem 4.4(iii), the

super-additive order is preserved by transformation to the Harris family. Thus, we

have Y ¬su (su) Y1. For θ > 1 (0 < θ < 1), it can be easily shown that Y1 is

NBU (NWU). Then, by Proposition 5.2, Y1 ¬su (su)X1. Due to the transitivity

property of partial order, this implies that Y ¬su (su)X1. Thus, by Proposition 2,

Y is NBU (NWU). �
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REMARK 5.1. Since the Harris family of distributions coincides with weighted

distributions with weight

ω(x) =
θ1/k

(

1− θ̄F̄ k(x)
)1/k+1

,

the above corollary is a consequence of Theorem 3 of [10] and Theorem 3 of [14].

Note that, by Theorem 3 of [10], for the IFRA and NBU characteristics we should

let ω(x)F̄ (x) be increasing in x, but in our Corollary 5.1 we have a larger class

of θ values with no restriction on k and x.

6. DISCUSSION AND CONCLUSION

The hazard and lifetime in a series system with variable number of compo-

nents, model (1.1), are functions of a tilt parameter. So, a proper choice of the range

of values of this parameter plays an important role in optimization of the systems

lifetime. In Section 3, we indicated how a lower risk (hazard rate order), longer

lifetime (usual stochastic order), higher likelihood ratio (likelihood ratio order),

etc. can be achieved by a system comparing to its components by a proper choice

of the tilt parameter values. In Section 3, we also discussed how one can distinct

the optimum case of two systems using their tilt parameters. Section 4 determined

when a stochastic order between components is preserved by their corresponding

systems and, more interestingly, vice versa for the cases in which components are

not observable. Finally, in Section 5, we revealed when the ageing properties IFRA,

DFRA, NBU and NWU of components are transferred to their corresponding sys-

tems.
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BELLMAN FUNCTIONS AND Lp ESTIMATES FOR PARAPRODUCTS∗
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Abstract. We give an explicit formula for one possible Bellman func-
tion associated with the Lp boundedness of dyadic paraproducts regarded
as bilinear operators or trilinear forms. Then we apply the same Bellman
function in various other settings, to give self-contained alternative proofs
of the estimates for several classical operators. These include the martingale
paraproducts of Bañuelos and Bennett and the paraproducts with respect to
the heat flows.
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Secondary: 42B15.

Key words and phrases: Bellman function, martingale, paraproduct.

1. INTRODUCTION

According to Janson and Peetre [14] the name “paraproduct” denotes an idea
rather than a unique object. Various types of paraproducts appear in the literature
on analysis or probability and in each case certain boundedness properties (i.e. con-
tinuity) are crucial for their applications. An interested reader can find the historical
overview and further references in the short expository paper [4]. In this paper we
will focus mostly on martingale paraproducts and revisit the Lp estimates, which
they are well known to satisfy.

We start with the dyadic paraproduct as a motivation for the forthcoming Bell-
man function that we construct. For two functions f and g from an appropriate
space of real-valued test functions on R we can define the dyadic paraproduct as a
bilinear operator in the following way:

(1.1) Πϵ(f, g) :=
∑

I∈D
ϵI |I|

−2⟨f,1I⟩⟨g,hI⟩hI .

Here D denotes the family of dyadic intervals in R, 1I is the indicator function
of an interval I , hI := 1Ileft − 1Iright is the L∞-normalized Haar function, while

∗ This work has been supported by the Croatian Science Foundation under the project 3526.
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Ileft and Iright are respectively the left half and the right half of I . Moreover, ⟨·, ·⟩
denotes the standard inner product with respect to the Lebesgue measure and ϵ =
(ϵI)I∈D is a collection of real numbers such that |ϵI | 6 1 for each I ∈ D. (If we
choose ϵI ∈ {−1, 1}, then they simply represent − and + signs.) A convenient
choice for the test functions are the so-called dyadic step functions, i.e. finite linear
combinations of the indicator functions of dyadic intervals.

Typically, such an object is viewed as a linear operator in g with f fixed, when
it becomes a particular instance of Burkholder’s martingale transform [5]. Alter-
natively, one can fix g and consider it as a linear operator in f , in which case it
is known as the linear paraproduct. In this text we prefer to look at Πϵ symmetri-
cally and discuss its properties as a bilinear operator. This is partly motivated by
the multilinear harmonic analysis, where more singular operators of this type are
studied; see the book [24].

Equivalently, we can define the dyadic paraproduct as a trilinear form. We take
the third test function h, and dualize (1.1) to get

Λϵ(f, g, h) :=
∫

R

Πϵ(f, g)h =
∑

I∈D
ϵI |I|

−2⟨f,1I⟩⟨g,hI⟩⟨h,hI⟩(1.2)

=
∑

I∈D
ϵI |I|[f ]I

[g]Ileft − [g]Iright

2

[h]Ileft − [h]Iright

2
.

Here [f ]I denotes the average of a function f on a dyadic interval I .
It is well known that (1.2) satisfies certain Lp estimates, i.e. there exists a finite

constant Cp,q,r > 0 depending only on three exponents p, q, r such that

(1.3) |Λϵ(f, g, h)| 6 Cp,q,r∥f∥Lp(R)∥g∥Lq(R)∥h∥Lr(R)

holds whenever 1 < p, q, r 6∞ and 1/p+ 1/q + 1/r = 1. By ∥ · ∥Lp(R) we have
denoted the Lp norm on R with respect to the Lebesgue measure.

The easiest proof of (1.3) when q, r < ∞ uses boundedness of the dyadic
maximal function and the dyadic square function. We simply apply the Cauchy–
Schwarz and Hölder inequalities to get

|Λϵ(f, g, h)| 6
∫

R

(Mf)(Sg)(Sh) 6 ∥Mf∥Lp(R)∥Sg∥Lq(R)∥Sh∥Lr(R),

where

Mf := sup
I∈D
|I|−1|⟨f,1I⟩|1I and Sf :=

(
∑

I∈D
|I|−2|⟨f,hI⟩|

2
1I

)1/2

are the dyadic maximal function and the dyadic square function. Now the well-
known Lp estimates for Mf and Sf give us the desired estimate (1.3).

On the side p =∞ of the triangle in Figure 1, without loss of generality we
can assume that f ≡ 1. The sharp constant in (1.3) was found by Burkholder in [6]
and it equals C∞,q,r = max{q − 1, r − 1}.
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(0 1,0), (0,0,1)

(1,0,0)

p=∞

r
=

∞

q=
∞

q r=

Figure 1. The Banach triangle with barycentric coordinates
(

1
p
, 1
q
, 1
r

)

.

On the other hand, on the sides q =∞ and r =∞, instead of the Lp estimates
it is more natural to consider the BMO estimates, which will not be discussed in
this paper. On the altitude q = r of the triangle in Figure 1, the Lp estimates for
the trilinear form (1.2) reduce to the Lp estimates for the dyadic square function,
since

∫

R

f(Sg)2 = Λϵ(f, g, g) if ϵI = 1 for each I ∈ D.

This implies ∥S∥Lq(R)→Lq(R) 6
√

Cp,q,q. Actually, if the constant Cp,q,q is sharp,
the last inequality turns into an equality. That sharp constant was found by Davis
in [11] and it equals Cp,q,q = (z∗q )

−2, where z∗q is the smallest positive zero of the
confluent hypergeometric function (see [1]).

The special cases listed above are well studied and even the appropriate Bell-
man functions are found. For p =∞ one can find them in the papers by Burkholder
[6], Nazarov and Treil [17], Vasyunin and Volberg [25], Bañuelos and Osękowski
[3], while for q = r the reader can consult the book by Osękowski [20]. There-
fore, because of the symmetry, throughout this paper we restrict our attention to
the triples of exponents (p, q, r) satisfying

(1.4) 1 < p, q, r <∞, q > r,
1

p
+

1

q
+

1

r
= 1,

which correspond to the right half of the Banach triangle depicted in Figure 1.
Our goal is to give a direct proof of (1.3) using the Bellman function method.

Such proofs typically give a better quantitative control and the same Bellman func-
tion can often be applied in various other settings.

First, we may assume that f, g, h are non-negative, as otherwise we split them
into positive and negative parts. Furthermore, we observe that it turns out to be
more practical to apply Young’s inequality on the right-hand side of (1.3), but
the newly obtained inequality is actually equivalent to the old one, because of
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the homogeneity of the left-hand side. Therefore, it is enough to prove a non-
homogeneous estimate

∑

I∈D
|I|[f ]I

∣

∣

∣

∣

[g]Ileft − [g]Iright

2

∣

∣

∣

∣

∣

∣

∣

∣

[h]Ileft − [h]Iright

2

∣

∣

∣

∣

6 Cp,q,r

(

1

p
∥f∥pLp(R) +

1

q
∥g∥qLq(R) +

1

r
∥h∥rLr(R)

)

.

If we want to recover (1.3), we just have to homogenize the above inequality and
use the assumed bound on ϵI .

For an arbitrary dyadic interval I we define a scale-invariant expression

ΦI(f, g, h) :=
1

|I|

∑

J∈D
J⊆I

|J |[f ]J
|[g]Jleft − [g]Jright |

2

|[h]Jleft − [h]Jright |

2
,

so that we can normalize the desired estimate and rewrite it as

(1.5) ΦI(f, g, h) 6 Cp,q,r

(

1

p
[fp]I +

1

q
[gq]I +

1

r
[hr]I

)

.

This is easily seen multiplying (1.5) by |I| and letting I exhaust the positive and
the negative half-axis. Splitting

∑

J⊆I into
∑

J⊆Ileft
,
∑

J⊆Iright
, and J = I gives

us the following scaling identity:

ΦI(f, g, h) =
1

2
ΦIleft(f, g, h) +

1

2
ΦIright(f, g, h)(1.6)

+ [f ]I
|[g]Ileft − [g]Iright |

2

|[h]Ileft − [h]Iright |

2
.

We can define the abstract Bellman function

B(u, v, w, U, V,W ) := sup
f,g,h

ΦI(f, g, h),

where the supremum is taken over all non-negative functions f, g, h such that
[f ]I = u, [g]I = v, [h]I = w, [fp]I = U , [gq]I = V , [hr]I = W . Note that the
above supremum does not depend on the choice of the “base” interval I .

Now we list some properties of that function.

(B1) Domain: The function B is defined on the set

D := {(u, v, w, U, V,W ) ∈ [0,∞)6 : up 6 U, vq 6 V,wr 6W}.

The upper bounds simply follow from Jensen’s inequality.
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(B2) Range:

0 6 B(u, v, w, U, V,W ) 6 Cp,q,r

(

1

p
U +

1

q
V +

1

r
W

)

,

where on the right-hand side we assume that the estimate (1.5) holds.

(B3) The main inequality:

B(x) >
1

2
B(x1) +

1

2
B(x2) + u

|v1 − v2|

2

|w1 − w2|

2
,

whenever the six-tuples x = (u, v, w, U, V,W ) and xi = (ui, vi, wi, Ui,
Vi,Wi), i = 1, 2, belong to the domain and satisfy x = 1

2x1 +
1
2x2. This can

be easily seen by taking the supremum in the scaling identity (1.6) over all non-
negative functions f, g, h such that [f ]Ileft = u1, [fp]Ileft = U1, etc.

Conversely, suppose that we have already found a function B with properties
(B1)–(B3). We will show how its existence implies the estimate (1.3). Applying
(B3) n times with a fixed choice of the functions f, g, h > 0 and a fixed base
interval I gives us

|I| B
(

[f ]I , [g]I , [h]I , [f
p]I , [g

q]I , [h
r]I

)

>
∑

J⊆I
|J |=2−n|I|

|J |B
(

[f ]J , [g]J , [h]J , [f
p]J , [g

q]J , [h
r]J

)

+
∑

J⊆I
|J |>2−n|I|

|J |[f ]J

∣

∣[g]Jleft − [g]Jright

∣

∣

2

∣

∣[h]Jleft − [h]Jright

∣

∣

2
.

Since, by (B2), the first sum is non-negative and

B
(

[f ]I , [g]I , [h]I , [f
p]I , [g

q]I , [h
r]I

)

6 Cp,q,r

(

1

p
[fp]I +

1

q
[gq]I +

1

r
[hr]I

)

,

letting n→∞ leads us to the estimate (1.5) and then in turn also to (1.3).
It will be convenient to find a function B that also satisfies the following con-

dition:

(B4) B(x) + (dB)(x)(x1 − x) > B(x1) +
2

3
u|v1 − v||w1 − w|,

whenever the six-tuples x = (u, v, w, U, V,W ) and x1 = (u1, v1, w1, U1, V1,W1)
belong to the domain (B1). Here dB denotes the differential of B, which is a linear
form, and we consider it at the point x and apply it to the vector x1 −x. Condition
(B4) is required by an application considered in Subsection 3.1.
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Now we want to find an explicit formula for one possible function B. We
define the function B : D→ R as

(1.7) B(u, v, w, U, V,W ) := Cp,q,r

(

1

p
U +

1

q
V +

1

r
W

)

−A(u, v, w),

where A : [0,∞)3 → R is given by

A(u, v, w) :=






















































Aup +Bvq + Cwr, up 6 wr 6 vq,
A(p−1)−C

p−1 up +Bvq + Cp
p−1uw

r−r/p, wr 6 up 6 vq,
A(p−1)−(B+C)

p−1 up + Bp
p−1uv

q−q/p + Cp
p−1uw

r−r/p, wr 6 vq 6 up,
A(p−1)−(B+C)

p−1 up + Bq
2 uv

2w1−r/q + 2Cpr−Bp(q−r)
2r(p−1) uwr−r/p, vq 6 wr 6 up,

2Ar(p−1)−B(q+r)
2r(p−1) up + Bq2

2p(q−2)u
p−2p/qv2 + Bq(q−r)

2r(q−2) v
2wr−2r/q

+2Cr−B(q−r)
2r wr, vq 6 up 6 wr,

Aup + Bq
p(q−2)v

q + Bq(q−r)
2r(q−2) v

2wr−2r/q + 2Cr−B(q−r)
2r wr, up 6 vq 6 wr.

The coefficients A,B,C > 0 will be appropriately chosen depending only on the
exponents p, q, r and then one will be able to take Cp,q,r = max{Ap,Bq, Cr}. We
see that the function A has a similar form to the one constructed by Nazarov and
Treil [17], which can in our notation be written as

NT (v, w) = A(vq + wr) +B

{

2
qv

q +
(

2
r − 1

)

wr, vq > wr,

v2w2−r, vq 6 wr.

It corresponds to the endpoint case p = ∞, 1 < r < 2 < q < ∞. Instead of one
critical curve vq = wr for NT , we have three critical surfaces:

(1.8) up = vq, up = wr, vq = wr.

Finally, we are ready to state our main result.

THEOREM 1.1. For the exponents p, q, r satisfying (1.4) it is possible to

choose the coefficients A,B,C such that the function B defined by (1.7) is of

class C1 on the whole domain D and satisfies the conditions (B2) (with Cp,q,r =
max{Ap,Bq, Cr}), (B3), and (B4). One possible choice of the coefficients is

A =
88q4r

(p− 1)(r − 1)(q − r)
, B = 1, and C =

11q3r

(r − 1)(q − r)
,

which yields

Cp,q,r =
88pq4r

(p− 1)(r − 1)(q − r)
.
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The claim that B is of class C1 on D should be understood in the sense that the
function A is continuous on [0,∞)3, A is continuously differentiable on (0,∞)3,
and the partial derivatives of A can be continuously extended to [0,∞)3. At a
boundary point the differential dB in (B4) is interpreted as the linear form whose
coefficients are the aforementioned continuous extensions of partial derivatives to
that point.

The motivation behind finding the explicit Bellman function (instead of just
using the abstract one) is that in some contexts the explicit formula could be useful.
For example, Carbonaro and Dragičević in [7] and [8] made use of the fact that the
explicit Bellman function NT involves powers. Another source of motivation is
that we would also like to find a direct proof (without stopping time arguments)
of the estimates for the “twisted” paraproduct considered by one of the authors
in [15] or the “twisted” quadrilinear form considered by Durcik in [12] and [13].
This could also extend the range of exponents for a non-adapted stochastic integral
considered by the authors in [16] or for the norm-variation of ergodic averages
with respect to two commuting transformations [23]. So far we can only say that
the Bellman function that has to be constructed for any of the mentioned problems
should necessarily encode some structure of the function from Theorem 1.1, as
dyadic paraproducts are the simplest and prototypical multilinear multipliers.

The Bellman function that we construct certainly does not give the best possi-
ble constants Cp,q,r in (1.3). Indeed, the sharp constant for any triple of exponents
from the generic range (1.4) has not yet been determined to the best of our knowl-
edge. Search for the abstract Bellman function B would lead us to the equations

(1.9)

det

















∂2uB ∂u∂vB ∂u∂wB ∂u∂UB ∂u∂V B ∂u∂WB

∂u∂vB ∂2vB ∂v∂wB± u ∂v∂UB ∂v∂V B ∂v∂WB

∂u∂wB ∂v∂wB± u ∂2wB ∂w∂UB ∂w∂V B ∂w∂WB

∂u∂UB ∂v∂UB ∂w∂UB ∂2UB ∂U∂V B ∂U∂WB

∂u∂V B ∂v∂V B ∂w∂V B ∂U∂V B ∂2V B ∂V ∂WB

∂u∂WB ∂v∂WB ∂w∂WB ∂U∂WB ∂V ∂WB ∂2WB

















= 0.

One way of simplifying (1.9) is to consider the non-homogeneous function B of the
form (1.7). The function B is now a supersolution of the equation for the true Bell-
man function B, but a function of that form can still yield the optimal (unknown)
constant. This way (1.9) reduces to

(1.10) detA± = 0,

where A± are the matrices defined in (2.3) below. Alternatively, one can use the
homogeneities of B to reduce the dimension in (1.9). Equations like (1.10) can
sometimes be turned into the Monge–Ampère equation by an appropriate change
of variables, which does not seem to be the case here. At the moment, we do not
know how to solve (1.10), so we impose slightly weaker conditions on our function
B that result in a constant Cp,q,r which is not optimal. It would be interesting to find
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a Bellman function B that yields the optimal constant, or perhaps even the exact
abstract Bellman function B. Let us remark once again that this was achieved by
Bañuelos and Osękowski [3] in the endpoint case p =∞, f ≡ 1.

We have organized the remainder of the paper as follows. In the next section
we present the proof of Theorem 1.1. In Section 3 we apply Theorem 1.1 to re-
prove the well-known Lp estimates for martingale paraproducts and the heat flow
paraproducts.

2. PROOF OF THEOREM 1.1

The continuity of A on [0,∞)3 is obvious. Indeed, observe that all exponents
appearing in the definition of A are positive. Thus, A is clearly well-defined and
continuous on each of the six closed regions determined by the inequalities for
u, v, w and it is straightforward to verify that the six formulas are compatible on
the common boundaries.

To see thatA is continuously differentiable on the open octant (0,∞)3, we just
calculate the first order partial derivatives in the interior of each of the previously
mentioned regions. The formula for each of these derivatives inside any of the
regions continuously extends to the whole open octant. Moreover, these formulas
coincide on the boundaries of each of the two adjacent regions, so we can deduce
thatA really is of class C1 on (0,∞)3. For instance, both formulas for ∂A

∂u (u, v, w)
at the common boundary of the two adjacent open regions vq < up < wr and up <
vq < wr, which is a subset of up = vq, simplify to Apup−1. All other cases are
treated in the same manner.

Also, it is easy to see that the partial derivatives have limits at each point of
the boundary of [0,∞)3 and hence they can be continuously extended to [0,∞)3.
For example, if 0 < vq 6 wr 6 up, then the partial derivative of A with respect to
w equals

∂A

∂w
(u, v, w) =

B(q − r)

2
uv2w−r/q +

2Cr −B(q − r)

2
uwr/q.

Obviously, the only problematic points are the ones on the part of the boundary
lying on the plane w = 0, but since vq/wr 6 1, the limit as w → 0 still exists and
equals zero. The existence of the other limits can be shown in a similar way.

The estimate (B2) follows directly from the definitions of the functionsA and
B, since

(A2) 0 6 A(u, v, w) 6 Aup +Bvq + Cwr

as long as A,B,C > 0. This is easily seen by using Young’s inequality. The non-
negativity of B on D is guaranteed if Cp,q,r > Ap,Bq, Cr.

Observe that (B3) is equivalent to

(A3)
1

2
A(u1, v1, w1) +

1

2
A(u2, v2, w2)−A(u, v, w) > u

|v1 − v2|

2

|w1 − w2|

2
,
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where (u, v, w), (u1, v1, w1), and (u2, v2, w2) are in [0,∞)3 and such that

(2.1) (u, v, w) =
1

2
(u1, v1, w1) +

1

2
(u2, v2, w2),

while (B4) is equivalent to

A(u1, v1, w1) > A(u, v, w) + (dA)(u, v, w)(u1 − u, v1 − v, w1 − w)(A4)

+
2

3
u|v1 − v||w1 − w|,

where (u, v, w) and (u1, v1, w1) are in [0,∞)3. Instead of proving (A3) and (A4)
directly, we will reduce them conveniently to an inequality for quadratic forms.

Let (u, v, w) ∈ (0,∞)3 be a point that does not lie on any of the three crit-
ical surfaces (1.8). This means that A is of class C2 on an open ball around that
point. If we take (u1, v1, w1), (u2, v2, w2) from that open ball such that (2.1) holds,
then substituting u = (u1 + u2)/2,∆u = (u1 − u2)/2, etc., and adding Taylor’s
formulas at (u, v, w) for A(u ±∆u, v ±∆v, w ±∆w) gives us the infinitesimal
version of (A3):

(A3′) (d2A)(u, v, w)(∆u,∆v,∆w) > 2u|∆v||∆w|.

Here d2A denotes the second differential of A as a quadratic form, which we con-
sider at the point (u, v, w) and apply to the vector (∆u,∆v,∆w). Notice that (A3′)
does not hold on the whole domain of the functionA, which is [0,∞)3, but it does
hold on the interior of each of the six regions into which the three surfaces divide
(0,∞)3.

Conversely, (A3′) implies (A3), i.e. the two inequalities are equivalent for
continuously differentiable functions, which is enabled by the convexity of the
domain. To show the converse, first take a point (u, v, w) ∈ (0,∞)3 and a vector
(∆u,∆v,∆w) ∈ R

3 such that also (u±∆u, v ±∆v, w ±∆w) ∈ (0,∞)3. Now
define the function α : [−1, 1]→ R as

(2.2) α(t) := A(u+ t∆u, v + t∆v, w + t∆w).

This function is continuously differentiable on [−1, 1] since A is of class C1 on
(0,∞)3. Also, α is piecewise C2 on [−1, 1]. This follows from the facts that A is
of class C2 on (0,∞)3 outside the surfaces (1.8), it has bounded second deriva-
tives away from the coordinate planes u = 0, v = 0, and w = 0, and the segment
{(u+ t∆u, v + t∆v, w+ t∆w) : t ∈ [−1, 1]} intersects the three critical surfaces
at finitely many points. Using the integration by parts and the fundamental theorem
of calculus (both in the versions for absolutely continuous functions; see [9]) gives
us the equality

1

2
α(1) +

1

2
α(−1)− α(0) =

1

2

1
∫

−1
(1− |t|)α′′(t)dt.
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From the above identity we deduce

1

2
A(u+∆u, v +∆v, w +∆w) +

1

2
A(u−∆u, v −∆v, w −∆w)−A(u, v, w)

=
1

2

1
∫

−1
(1− |t|)(d2A)(u+ t∆u, v + t∆v, w + t∆w)(∆u,∆v,∆w)dt.

Finally, by (A3′) applied at all but finitely many points, the last expression is at
least

1

2

1
∫

−1
(1− |t|)2(u+ t∆u)|∆v||∆w|dt = u|∆v||∆w|,

which gives exactly (A3).
Moreover, (A3′) implies (A4). To verify this, we also take (u, v, w)∈(0,∞)3

and (∆u,∆v,∆w) ∈ R
3 such that (u + ∆u, v + ∆v, w + ∆w) ∈ (0,∞)3. We

define α : [0, 1] → R again by the formula (2.2). Integration by parts, the funda-
mental theorem of calculus, and (A3′) this time give

α(1) = α(0) + α′(0) +
1
∫

0

(1− t)α′′(t)dt,

and therefore,

A(u+∆u, v +∆v, w +∆w) > A(u, v, w) + (dA)(u, v, w)(∆u,∆v,∆w)

+
1
∫

0

(1− t)2(u+ t∆u)|∆v||∆w|dt.

Since u+ t∆u = (1− t)u+ t(u+∆u) > (1− t)u, the integral in t on the right-
hand side is at least (2/3)u|∆v||∆w|, which establishes (A4).

This way we proved that (A3′) implies (A3) and (A4), but only on (0,∞)3.
To see that these two also hold on [0,∞)3, we just have to extend the obtained
inequalities by the continuity ofA and dA. We have commented in the introduction
how we interpret dA at the boundary of the domain.

Now we are left with proving (A3′), which is equivalent to showing that the
two matrices

(2.3) A± =





∂2uA ∂u∂vA ∂u∂wA
∂u∂vA ∂2vA ∂v∂wA± u
∂u∂wA ∂v∂wA± u ∂2wA





are positive semi-definite on each of the six open regions into which the surfaces
(1.8) split (0,∞)3. To do so, we will use Sylvester’s criterion and verify that all
three principal minors are positive. More precisely, we will prove that the constants
A,B,C can be chosen so that this is fulfilled.
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We can simplify the calculations a bit by substituting t = vq/up, s = wr/up

and noting that

(2.4) A(u, v, w) = upγ(t, s),

where γ : (0,∞)2 → R is given by

γ(t, s)=























































A+Bt+ Cs, 1 6 s 6 t,
A(p−1)−C

p−1 +Bt+ Cp
p−1s

1−1/p, s 6 1 6 t,
A(p−1)−(B+C)

p−1 + Bp
p−1 t

1−1/p + Cp
p−1s

1−1/p, s 6 t 6 1,
A(p−1)−(B+C)

p−1 +Bq
2 t

2/qs1/r−1/q+ 2Cpr−Bp(q−r)
2r(p−1) s1−1/p, t 6 s 6 1,

2Ar(p−1)−B(q+r)
2r(p−1) + Bq2

2p(q−2) t
2/q + Bq(q−r)

2r(q−2) t
2/qs1−2/q

+2Cr−B(q−r)
2r s, t 6 1 6 s,

A+ Bq
p(q−2) t+

Bq(q−r)
2r(q−2) t

2/qs1−2/q + 2Cr−B(q−r)
2r s, 1 6 t 6 s.

After plugging (2.4) into (2.3) and multiplying from both sides with the diag-
onal matrix diag(u1−p/2, up/q−p/2, up/r−p/2), we obtain the matrices M = [mij ],
where

m11 = p(p− 1)γ(t, s)− p(p− 1)t∂tγ(t, s)− p(p− 1)s∂sγ(t, s)

+ 2p2ts∂t∂sγ(t, s) + p2t2∂2t γ(t, s) + p2s2∂2sγ(t, s),

m12 = m21 = −pqt
1−1/qs∂t∂sγ(t, s)− pqt

2−1/q∂2t γ(t, s),

m13 = m31 = −prts
1−1/r∂t∂sγ(t, s)− prs

2−1/r∂2sγ(t, s),

m22 = q(q − 1)t1−2/q∂tγ(t, s) + q2t2−2/q∂2t γ(t, s),

m23 = m32 = qrt1−1/qs1−1/r∂t∂sγ(t, s)± 1,

m33 = r(r − 1)s1−2/r∂sγ(t, s) + r2s2−2/r∂2sγ(t, s),

and the problem is reduced to verifying that these matrices are positive definite on
the interior of each of the six regions determined by the inequalities for t and s.
First, we will calculate the three principal minors of the above matrices for each
region, and then we will explain why we can choose the constants A,B,C such
that all of them are positive.

The following expressions were calculated using Mathematica [26].

Region 1: 1 < s < t. Minor 1× 1: Ap(p− 1)

Minor 2× 2: ABp(p− 1)q(q − 1)t1−2/q

Determinants (with ±):

ABCp(p− 1)q(q − 1)r(r − 1)t1−2/qs1−2/r −Ap(p− 1)
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Region 2: s < 1 < t. Minor 1× 1: p
(

A(p− 1)− C
)

Minor 2× 2: Bp
(

A(p− 1)− C
)

q(q − 1)t1−2/q

Determinants (with ±):

BCp
(

A(p− 1)− C
)

(q − 1)r2t1−2/qs1/q−1/r

−BC2q(q − 1)r2t1−2/qs2/q − p
(

A(p− 1)− C
)

Region 3: s < t < 1. Minor 1× 1: p
(

A(p− 1)−B − C
)

Minor 2× 2:
Bp

(

A(p− 1)−B − C
)

q2

r
t1/r−1/q −B2q2t2/r

Determinants (with ±):

BCp
(

Ap(q + r)− qr(B + C)
)

t1/r−1/qs1/q−1/r −B2Cqr2t2/rs1/q−1/r

−BC2q2rt1/r−1/qs2/q − p
(

A(p− 1)−B − C
)

± 2BCqrt1/rs1/q

Region 4: t < s < 1. Minor 1× 1: p
(

A(p− 1)−B − C
)

Minor 2× 2: Bp
(

A(p− 1)−B − C
)

qs1/r−1/q −B2q2t2/qs2/r−2/q

Determinants (with ±):
(

A(p− 1)−B − C
)(

Bpr
(

2Cr −B(q − r)
)

− 2p
)

2

±B2q(q − r)t3/qs1/r−2/q

∓ 2Bp
(

A(p− 1)−B−C
)

(q − r)t1/qs−1/q+
B3q(q − r)(3q − r)

4
t4/qs1/r−3/q

−
B2p

(

A(p− 1)−B − C
)

(q − r)(2q − r)

2
t2/qs−2/q

±Bq
(

2Cr −B(q − r)
)

t1/qs1/r

−
Bq

(

2Cr −B(q − r)
)2

4
s1/q+1/r

+
B2q

(

2Cr −B(q − r)
)

(q − 2r)

2
t2/qs1/r−1/q

Region 5: t < 1 < s. Minor 1× 1:

p
(

2Ar(p− 1)−B(q + r)
)

2r
+
Bp(q − r)

2r
t2/q
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Minor 2× 2:

Bpq(q − r)
(

2Ar(p− 1)−B(q + r)
)

2r2(q − 2)
s1−2/q −

B2q2(pq + q − 2p)

2p(q − 2)
t2/q

+
B2pq(q − r)2

2r2(q − 2)
t2/qs1−2/q +

✎

✍

☞

✌

Bq2
(

2Ar(p− 1)−B(q + r)
)

2r(q − 2)

Determinants (with ±):

B(q − r)(p+ q)
(

2Ar(p− 1)−B(q + r)
)(

2Cr −B(q − r)
)

4r(q − 2)
s2/p

+

✎

✍

☞

✌

B
(

2Ar(p− 1)−B(q + r)
)(

2Cr −B(q − r)
)

q2(r − 1)

4r(q − 2)
s1−2/r

−
p
(

2Ar(p− 1)−B(q + r)
)

2r

+
B2pq(q − r)2(r − 1)

(

2Cr −B(q − r)
)

4r2(q − 2)
t2/qs2/p

−
B2q2(pq − 2p+ q)(r − 1)

(

2Cr −B(q − r)
)

4p(q − 2)
t2/qs1−2/r −

Bp(q − r)

2r
t2/q

∓
B2p(q − r)2

r
t3/qs1/p−1/q

+
B2q(q − r)(q − p)

(

2Ar(p− 1)−B(q + r)
)

4p(q − 2)
t2/qs2/p−1

−
B3p(q − r)3(qr − 2r + q)

4r2(q − 2)
t4/qs2/p−2/q

−
B3qr(pq − 2p+ q)(q − r)(q − p)

4p2(q − 2)
t4/qs2/p−1

∓
Bp(q − r)

(

2Ar(p− 1)−B(q + r)
)

r
t1/qs1/p−1/q

−
B2(q − r)2

(

2Ar(p− 1)−B(q + r)
)

(2pq − 3p− q)

4r(q − 2)
t2/qs2/p−2/q

Region 6: 1 < t < s. Minor 1× 1: Ap(p− 1)

Minor 2× 2:

ABpq(p− 1)(q − r)

r(q − 2)
s1−2/q +

✎

✍

☞

✌
ABq2(p− 1)(q − 1)

q − 2
t1−2/q

Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS
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Determinants (with ±):

AB
(

2Cr −B(q − r)
)

(p− 1)(q − r)(p+ q)

2(q − 2)
s2/p

−
AB2qr(p− 1)(q − 1)(q − r)(p− q)

2p(q − 2)
ts2/p−1

+

✎

✍

☞

✌

AB
(

2Cr −B(q − r)
)

qr(p− 1)(q − 1)(p+ q)

2p(q − 2)
t1−2/qs1−2/r −Ap(p− 1)

−
AB2(p− 1)(q − r)2(2pq − 3p− q)

2(q − 2)
t2/qs2/p−2/q

∓ 2ABp(p− 1)(q − r)t1/qs1/p−1/q

In each of the expressions there is a unique dominant term (regarding the ex-
ponents of t and s) and it is double framed. We choose B arbitrarily (say B = 1),
then takeC large enough (depending on p, q, r, B), and finally takeA large enough
(depending on p, q, r, B,C). While doing so, we take care that the coefficient of the
double framed term is greater than the sum of the absolute values of coefficients
of the terms that are neither framed nor circled. We can do so because by taking
C large enough the expression multiplying A in the coefficient of the dominant
term can be made larger than the sum of the absolute values of the corresponding
expressions in other non-circled terms that contain A. Consequently, the coeffi-
cient of the dominant term grows faster than the sum of the absolute values of the
coefficients in the other terms as A tends to infinity. This means that we can take
A large enough so that the dominant term actually dominates the sum of all other
non-framed and non-circled terms in each expression. Another way of phrasing
the argument that sufficiently large A and C make six considered determinantal
expressions positive is to observe that each dominant term contains the product
AC, as opposed to any other non-circled term.

The only problematic terms that we cannot dominate with the dominant term
are the circled ones, because of their uncontrollable growth in A. However, just by
taking

C > B(q − r)/(2r) and A > B(q + r)/
(

2r(p− 1)
)

we make sure that all of them are non-negative, so they only contribute to the
positivity of the expressions.

To explain how the values of the coefficientsA,B, andC in Theorem 1.1 were
obtained, let us consider Region 4 as a representative example. The other regions
are treated similarly.

First, notice that the double framed term really is the dominant one, since
t < s < 1 implies

t
3
q s

1
r
− 2

q , t
1
q s
− 1

q , t
4
q s

1
r
− 3

q t
2
q s
− 2

q , t
1
q s

1
r , s

1
q
+ 1

r , t
2
q s

1
r
− 1

q < 1 = t0s0.
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We can choose B = 1 and then take C large enough such that

r(2Cr − q + r) > max{28(q − r) + 2, 7(q − r)(2q − r) + 2}.

Clearly, C = 11q3r/
(

(r − 1)(q − r)
)

satisfies the above condition. This way the
expression multiplying A in the coefficient of the dominant term is seven times
larger than the expressions multiplying A in the coefficients of the two non-framed
terms that contain A. Now we just have to take A large enough such that

(

A(p− 1)− C − 1
)(

pr(2Cr − q + r)− 2p
)

is at least

max

{

7

2
q(2Cr − q + r)2, 14q(2Cr − q + r), 7q(2Cr − q + r)|q − 2r|,

14q(q − r),
7

2
q(q − r)(3q − r)

}

.

It is easy to see that A = 88q4r/
(

(p− 1)(r − 1)(q − r)
)

is one possible choice.
Now the dominant term is more than seven times larger than the absolute value of
any other term, which means that the dominant term dominates the sum of all other
terms.

This way we accomplish the positivity of each of the expressions, which is
exactly what we needed and the proof of (A3′) is completed. This also completes
the proof of Theorem 1.1.

In the next section, it will sometimes be more convenient to use the infinitesi-
mal version of (B3):
(B3′)
− (d2B)(u, v, w, U, V,W )(∆u,∆v,∆w,∆U,∆V,∆W ) > 2u|△v||△w|.

Again, (B3′) holds only for points (u, v, w, U, V,W ) at which the second differen-
tial of B is well defined, i.e. for the points such that (u, v, w) does not lie on any
of the three critical surfaces. The equivalence of (B3′) and (B3) follows from the
equivalence of (A3′) and (A3).

3. APPLICATIONS

Here we present several applications of the existence of the Bellman func-
tion from Theorem 1.1. We need to emphasize that the following problems are
quite classical and can be solved using more standard tools. We only provide quite
straightforward solutions based on Theorem 1.1. Moreover, only the existence of
the Bellman function with properties (B1)–(B3) is needed, even though (B4) is
quite convenient in Subsection 3.1. This existence can also follow if bounded-
ness of the dyadic paraproduct is established in some other way, as commented in
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the introduction. However, our goal is to illustrate how several classical problems
become methodologically simple once we explicitly construct the function as in
Theorem 1.1.

For two non-negative quantitiesA andB we will writeA .P B if there exists
a finite constant CP > 0 depending on a set of parameters P such that A 6 CPB.

3.1. Discrete-time martingales. Let us consider two martingales X =
(Xn)

∞
n=0 and Y = (Yn)

∞
n=0 with respect to the same filtration (Fn)

∞
n=0. Their

paraproduct is a stochastic process
(

(X · Y )n
)∞
n=0

defined as

(3.1) (X · Y )0 := 0, (X · Y )n :=
n
∑

k=1

Xk−1(Yk − Yk−1) for n > 1.

This process can be regarded as a particular case of Burkholder’s martingale trans-
form [5] of the martingale Y with respect to the shifted adapted process X . We
have also imposed the martingale property on X , since we want to treat X and Y
symmetrically and since this is required by the existence of the Lp estimates in the
interior of the Banach triangle in Figure 1. We want to prove that for the exponents
p, q, r satisfying (1.4) the estimate

(3.2) ∥(X · Y )n∥Lr′ .p,q,r ∥Xn∥Lp∥Yn∥Lq

holds uniformly in the positive integer n, where r′ is the conjugate exponent of r.
Instead of proving (3.2) directly, we will rather show the estimate for the dualized
form, i.e. that for an arbitrary random variable Z ∈ Lr the inequality

(3.3)
∣

∣E
(

(X · Y )nZ
)
∣

∣ .p,q,r ∥Xn∥Lp∥Yn∥Lq∥Z∥Lr

holds. This inequality is trivial unless all norms on the right-hand side are finite.
Let us introduce the third martingale (Zn)

∞
n=0 with Zn := E(Z|Fn). By split-

ting Z = Zk−1 + (Zk − Zk−1) + (Z − Zk) and using the martingale property in
the form of E(Yk − Yk−1|Fk−1) = 0 and E(Z − Zk|Fk) = 0, we can write

E
(

(X · Y )nZ
)

=
n
∑

k=1

E
(

Xk−1(Yk − Yk−1)Z
)

=
n
∑

k=1

E
(

Xk−1(Yk − Yk−1)(Zk − Zk−1)
)

.

The estimate (3.3) is now a clear consequence of the Cauchy–Schwarz, Hölder,
Doob and Burkholder–Gundy inequalities. Again, we will give a more direct proof
using the Bellman function (1.7).

It is enough to consider the times k = 0, 1, . . . , n, but we need to show the
estimate that is uniform in n. We can assume that Xk, Yk, Zk > 0 for 0 6 k 6 n,
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as otherwise we split the variables Xn, Yn, Zn into positive and negative parts, and
introduce three new martingales (for a fixed n):

Uk := E(Xp
n|Fk), Vk := E(Y q

n |Fk), Wk := E(Zr
n|Fk).

If we write Xk = (Xk, Yk, Zk, Uk, Vk,Wk), then property (B4) of the Bellman
function B gives us

B(Xk−1) + (dB)(Xk−1)(Xk −Xk−1)

> B(Xk) +
2

3
Xk−1|Yk − Yk−1||Zk − Zk−1|,

from which we deduce

B(Xk−1) > E
(

B(Xk)
∣

∣Fk−1
)

+
2

3
E
(

Xk−1|Yk − Yk−1||Zk − Zk−1|
∣

∣Fk−1
)

,

by taking the conditional expectation with respect toFk−1 and using the martingale
property. Finally, taking the expectation of the above inequality, summing over
k = 1, . . . , n, telescoping, and using (B2) gives

2

3

n
∑

k=1

E(Xk−1|Yk − Yk−1||Zk − Zk−1|) 6 EB(X0)− EB(Xn)

6 Cp,q,rE

(

1

p
U0+

1

q
V0+

1

r
W0

)

= Cp,q,r

(

1

p
∥Xn∥

p
Lp +

1

q
∥Yn∥

q
Lq +

1

r
∥Zn∥

r
Lr

)

.

Homogenizing the above inequality, we get the desired estimate (3.3) and hence
also (3.2).

3.2. Continuous-time martingales. LetX = (Xt)t>0 and Y = (Yt)t>0 be two
continuous-time càdlàg martingales with respect to the filtration (Ft)t>0 that sat-
isfies the “usual hypotheses” [22]. In this case the martingale paraproduct is also
a stochastic process

(

(X · Y )t
)

t>0
, but now defined via the stochastic integral

(3.4) (X · Y )t :=
t
∫

0+

Xs−dYs.

Since we are allowed to choose dense subspaces on which the initial definition
makes sense (and later extend by continuity), we can conveniently assume that X
is bounded in L∞ and Y is bounded in L2. We want to prove that (3.4) satisfies the
same Lp estimates as (3.1). To do so, we take (πm)∞m=1 to be a refining sequence
of partitions

0 = t
(m)
0 < t

(m)
1 < t

(m)
2 < . . . < t

(m)
n(m) = t
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such that limm→∞mesh(πm) = 0. We can calculate (3.4) as the limit of the Rie-
mann sums in the following way:

(3.5)
t
∫

0+

Xs−dYs = lim
m→∞

n(m)
∑

k=1

X
t
(m)
k−1

(Y
t
(m)
k

− Y
t
(m)
k−1

).

The above limit is interpreted as the convergence in probability; for more details
see [22]. Notice that the right-hand side of (3.5) is actually a limit of discrete-time
martingale paraproducts (3.1). By passing to an a.s. convergent subsequence, using
Fatou’s lemma, and applying (3.2), we get the desired estimate for (3.4):

∥(X · Y )t∥Lr′ ¬ sup
m

∥

∥

n(m)
∑

k=1

X
t
(m)
k−1

(Y
t
(m)
k

− Y
t
(m)
k−1

)
∥

∥

Lr′ .p,q,r ∥Xt∥Lp∥Yt∥Lq

for the exponents p, q, r satisfying (1.4).
As a special case we can consider martingales with respect to the augmented

filtration of the one-dimensional Brownian motion (Bt)t>0. If we also assume that
Y0 = 0, then

(3.6) (X · Y )t =
t
∫

0

XsdYs,

because (Xt)t>0 and (Yt)t>0 now a.s. have continuous paths. We remark that (3.6)
are the martingale paraproducts studied by Bañuelos and Bennett in [2] and they
established Lp, Hp, and BMO estimates for (3.6). Their proof of the Lp estimates
uses Doob’s inequality and the Burkholder–Gundy inequality.

Yet another short proof of the Lp estimates in this particular case can be given
by applying Itô’s formula in combination with (B2) and (B3′), instead of approxi-
mating by discrete-time processes. However, for that purpose our Bellman function
should be of class C2 on the whole domain. This is achieved by shrinking the do-
main slightly and passing to Bε as in the next section; we omit the details.

3.3. Heat flow paraproducts. In order to be able to use the constructed Bell-
man function in relationship with the heat equation, we should first “smoothen it
up”. Let us fix a non-negative even C∞ function φ supported in (−1, 1)3 with in-
tegral one. For any ε > 0 we define the function Aε : (ε,∞)3 → R by the formula

Aε(u, v, w) :=
∫

(−ε,ε)3
ε−3φ(ε−1a, ε−1b, ε−1c)A(u− a, v − b, w − c)dadbdc.

In words, the function Aε is the convolution of A with the L1-normalized dila-
tion of φ. The newly obtained function is clearly of class C∞. We integrate (A3)
translated by (a, b, c) and multiplied by ε−3φ(ε−1a, ε−1b, ε−1c), and then “sym-
metrize” in (a, b, c) and use the fact that φ is even. That way we conclude that
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Aε still satisfies the condition (A3) and consequently also (A3′) at every point of
its domain. By the formula (1.7) with Aε in the place of A we can define a C∞

function Bε satisfying property (B3′) for any u, v, w > ε and U > up, V > vq,
W > wr. Moreover, property (A2) is retained up to an additional loss by the fac-
tor max{2p, 2q, 2r}, which in turn guarantees (B2) for some (sufficiently large)
constant Cp,q,r independent of ε.

Now suppose that f, g, h are compactly supported C∞ functions on R. Also,
let k(x, t) := 1√

2πt
exp

(

−x2/(2t)
)

be the heat kernel on the real line and u be the
heat extension of f :

u(x, t) :=
∫

R

f(y)k(x− y, t)dy.

Note that u is the solution of the heat equation ∂tu = 1
2∂

2
xu with the initial condi-

tion limt→0+ u(x, t) = f(x). Analogously we define v and w to be the heat exten-
sions of g and h.

We can define the heat paraproduct, i.e. the paraproduct with respect to the
heat semigroup as a trilinear form

(3.7) Λ(f, g, h) :=
∫

R

∞
∫

0

u(x, t) ∂xv(x, t) ∂xw(x, t) dt dx.

If we define

φs(x) := k(x, s2), ψs(x) := −2
1/2s ∂xk(x, s

2)

and substitute t = s2, we get a more familiar expression:

(3.8) Λ(f, g, h) =
∫

R

∞
∫

0

(f ∗ φs)(x) (g ∗ ψs)(x) (h ∗ ψs)(x)
ds

s
dx.

Smooth paraproducts like (3.8) appear naturally in the proof of the T1 theorem
(see [10]), although one usually needs to be more flexible when choosing a bump
function φs and a mean zero bump function ψs.

Again, we want to prove some Lp estimates for (3.7), i.e.

|Λ(f, g, h)| .p,q,r ∥f∥Lp(R)∥g∥Lq(R)∥h∥Lr(R),

where p, q, r are exponents satisfying (1.4). To do so we will imitate the “heating”
technique by Nazarov and Volberg [19] or Petermichl and Volberg [21].

Assume that f, g, h are non-negative and that none of them is identically zero.
Fix R > 0, δ > 0, T > 2δ, and observe that u(x, t), v(x, t), w(x, t) > ε whenever
x ∈ [−R,R], t ∈ [δ, T − δ] for some sufficiently small ε > 0 depending onR, δ, T ,
and the functions f, g, h. We introduce U, V,W as the heat extensions of fp, gq, hr

respectively and define

b(x, t) := Bε
(

u(x, t), v(x, t), w(x, t), U(x, t), V (x, t),W (x, t)
)

,
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where Bε is as above. It is easy to calculate that
(

∂t −
1
2∂

2
x

)

b(x, t) = (∇Bε)(u, v, w, U, V,W ) ·
(

∂t −
1
2∂

2
x

)

(u, v, w, U, V,W )

− 1
2(d

2Bε)(u, v, w, U, V,W )(∂xu, ∂xv, ∂xw, ∂xU, ∂xV, ∂xW ).

(We have omitted writing the variables x, t on the right-hand side.) Since u, v, w,
U, V,W all satisfy the heat equation, the first term on the right-hand side is zero
and by (B3′) we get

(

∂t −
1
2∂

2
x

)

b(x, t) > ±u(x, t) ∂xv(x, t) ∂xw(x, t).

It remains to integrate this inequality over [−R,R]× [δ, T − δ] with an appropriate
weight, use Green’s formula, and then let δ → 0, R, T →∞. We omit the details
and refer to [19] and [21].

Let us emphasize once again that the previous trick of “smoothing” the Bell-
man function was already used in [19] and [21] and no explicit formula is needed
for its application.
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10000 Zagreb, Croatia
E-mail: kskreb@grad.hr

Received on 22.9.2016;
revised version on 3.7.2017

Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS



Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS



CONTENTS OF VOLUME 38

S. Abbasi and M. H. Alamatsaz, Preservation properties of

stochastic orders by transformation to Harris family . . . . . . . . 441–458

A. Adler and P. Matuła, On exact strong laws of large numbers

under general dependence conditions . . . . . . . . . . . . . . . . . 103–121

N. Akbari Ghalesary, see M. Azimmohseni, A. R. Soltani,
M. Khalafi, and N. Akbari Ghalesary

M. H. Alamatsaz, see S. Abbasi and M. H. Alamatsaz

M. Amin, see Y. Dong, L. Song, M. Wang, and M. Amin

M. Azimmohseni , A. R. Sol tani , M. Khalafi , and N. Ak-
bar i Ghalesary, A consistent estimator for spectral density

matrix of a discrete time periodically correlated process . . . . . . 225–242

S. Bahadır and E. Ceyhan, On the number of reflexive and

shared nearest neighbor pairs in one-dimensional uniform data . . 123–137

M. Ben Chrouda, K. El Mabrouk, and K. Hassine,
Boundary value problems for the Dunkl Laplacian . . . . . . . . . 249–269

E. Ceyhan, see S. Bahadır and E. Ceyhan
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Probability and Mathematical Statistics 38, z. 2, 2018 

© for this edition by CNS



482 Contents of volume 38

Y. Jiao, see D. Zhou, W. Li, and Y. Jiao

M. Kawecki, see R. Różański, G. Chłapiński, M. Hławka,
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mial and Pólya processes . . . . . . . . . . . . . . . . . . . . . . . 77–101

M. Wang, see Y. Dong, L. Song, M. Wang, and M. Amin
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