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Abstract: In this paper, we study boundary value problems of fractional integro-differential equations and

inclusions involving Hilfer fractional derivative. Existence and uniqueness results are obtained by using the

classical fixed point theorems of Banach, Krasnosel’skiĭ, and Leray-Schauder in the single-valued case,

while Martelli’s fixed point theorem, nonlinear alternative for multi-valued maps, and Covitz-Nadler fixed

point theorem are used in the inclusion case. Examples illustrating the obtained results are also presented.
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1 Introduction

In the last few decades, fractional differential equations with initial/boundary conditions have been studied

by many researchers. This is because, fractional differential equations describe many real-world processes

related to memory and hereditary properties of various materials more accurately as compared to classical

order differential equations. Therefore, the fractional-order models become more practical and realistic as

compared to the integer-order models. Fractional differential equations arise in lots of engineering and

clinical disciplines which include biology, physics, chemistry, economics, signal and image processing,

control theory, and so on; see the monographs in [1–8].

In the literature, there exist several different definitions of fractional integrals and derivatives, from the

most popular of them Riemann-Liouville and Caputo fractional derivatives to other less-known definitions

such as Hadamard fractional derivative, Erdelyi-Kober fractional derivative, and so on. A generalization

of derivatives of both Riemann-Liouville and Caputo was given by R. Hilfer in [9], known as the Hilfer

fractional derivative of order α and a type ∈ [ ]β 0, 1 , which can be reduced to the Riemann-Liouville and
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Caputo fractional derivatives when =β 0 and =β 1, respectively. Such a derivative interpolates between

the Riemann-Liouville and Caputo derivative. Some properties and applications of the Hilfer derivative are

given in [10,11] and references cited therein.

Initial value problems involving Hilfer fractional derivatives were studied by several authors, see for

example [12–14] and references therein. However, in the literature there are few papers on boundary value

problems of Hilfer fractional derivatives. Nonlocal boundary value problems of Hilfer fractional derivatives

were initiated by the authors in [15]. For some more recent work on boundary value problems with Hilfer

fractional derivatives we refer to the papers in [16–18].

Motivated by the research going on in this direction, in this paper, we study the existence and the

uniqueness of solutions for a new class of boundary value problems of Hilfer-type fractional differential

equations with nonlocal integro-multipoint boundary conditions of the form:
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where D α βH , is the Hilfer fractional derivative of order α, < <α1 2 and parameter β, ≤ ≤β0 1, [ ] ×f a b: ,

× →� � � is a continuous function, Iδ is the Riemann-Liouville fractional integral of order >δ 0, the

points < < <⋯< <−a θ θ θ bm1 2 2 , ≥a 0, and ∈ = … −μ ζ i m, , 1, 2, , 2i � are given constants.

We pay attention to the topic of nonlocal problems, because in many cases a nonlocal condition in this

kind of problem reflects physical phenomena more precisely than classical boundary conditions.

Existence and uniqueness results are proved by using classical fixed point theorems. We make use of

Banach’s fixed point theorem to obtain the uniqueness result, while nonlinear alternatives of Leray-

Schauder type [19] and Krasnosel’skiĭ’s fixed point theorem [20] are applied to obtain the existence results

for the problem (1).

Then we look at the corresponding multi-valued problem by studying the existence of solutions for a

new class of boundary value problems of Hilfer-type fractional differential inclusions with nonlocal integro-

multipoint boundary conditions of the form:
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(2)

where �[ ] × → ( )F a b: , 2
� � is a multi-valued map (�( )� is the family of all nonempty subjects of �).

Existence results for the problem (2)with convex and nonconvex valued maps are, respectively, derived

by applying Martelli’s fixed point theorem, the nonlinear alternative for Kakutani maps, and Covitz and

Nadler fixed point theorem for contractive maps.

The paper is organized as follows: Section 2 contains some preliminary concepts related to our problem.

We present our main work for the problem (1) in Section 3, while the main results for the problem (2) are

presented in Section 4. Our method of proof is standard, but its application in the framework of the present

problem is new. Examples are constructed to illustrate the main results. The work accomplished in this

paper is new and enrich the literature on boundary value problems of Hilfer-type fractional derivatives.

2 Preliminaries

In this section, we introduce some notations and definitions of fractional calculus and multi-valued ana-

lysis. We present first preliminary results from fractional calculus needed in our proofs later [3,6].
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Definition 2.1. The Riemann-Liouville fractional integral of order >α 0 of a continuous function [ ∞)u a: ,

→ � is defined by

∫( ) =
( )
( − ) ( )−I u t

α
t s u s s

1

Γ
d ,α
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t

α 1

provided the right-hand side exists on ( ∞)a, .

Definition 2.2. The Riemann-Liouville fractional derivative of order >α 0 of a continuous function u is

defined by
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where = [ ] +n α 1, [ ]α denotes the integer part of real number α, provided the right-hand side is point-wise

defined on ( ∞)a, .

Definition 2.3. The Caputo fractional derivative of order >α 0 of a continuous function u is defined as
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provided the right-hand side is point-wise defined on ( ∞)a, .

In [9] (see also [11]), another new definition of the fractional derivative was suggested. The generalized

Riemann-Liouville fractional derivative is defined as follows.

Definition 2.4. The generalized Riemann-Liouville fractional derivative or the Hilfer fractional derivative of

order α and parameter β of a function is defined by

( ) = ( )( − ) ( − )( − )D u t I D I u t ,α βH β n α n β n α, 1

where − < <n α n1 , ≤ ≤β0 1, >t a, =Dn
t

d

d

n

n .

Remark 2.1. In Definition 2.4, type β allows Dα β, to interpolate continuously between the classical

Riemann-Liouville fractional derivative and the Caputo fractional derivative. When =β 0 the Hilfer frac-

tional derivative corresponds to the Riemann-Liouville fractional derivative

( ) = ( )−D u t D I u t ,αH n n α,0

while when =β 1 the Hilfer fractional derivative corresponds to the Caputo fractional derivative

( ) = ( )−D u t I D u t .αH n α n,1

In the following lemma, we present the compositional property of the Riemann-Liouville fractional

integral operator with the Hilfer fractional derivative operator.

Lemma 2.1. [11] Let ∈ ( )f L a b, , − < ≤ ∈n α n n1 , ,� ≤ ≤β0 1, ∈ [ ]( − )( − )I f AC a b, .n α β k1 Then
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Let ([ ] )C a b, , � denote the Banach space of continuous functions from [ ]a b, into � with the norm ∥ ∥ =f

{| ( )| ∈ [ ]}f t t a bsup : , . ([ ] )L a b, ,1
� denotes the Banach space of functions [ ] →y a b: , � which are Lebesgue

integrable normed by

∫∥ ∥ = | ( )|y y t td .L

a

b
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For each ∈ ([ ] )y C a b, , � , we define the set of selections of the multi-valued map F as

= { ∈ ([ ] ) ( ) ∈ ( ) ∈ [ ]}S f L a b f t F t y t a b, , : , for a.e. , .F y,
1

�

In the following by �p we denote the set of all nonempty subsets of X which have the property “p”,

where “p” will be bounded (b), closed (cl), convex (c), compact (cp), etc. Thus, � �( ) = { ∈ ( )X Y X Y: iscl

}closed ,� �( ) = { ∈ ( ) }X Y X Y: is bounded ,b � �( ) = { ∈ ( ) }X Y X Y: is compact ,cp � �( ) = { ∈ ( )X Y X Y: iscp,c

}compact and convex , and � �( ) = { ∈ ( ) }X Y X Y: is bounded, closed and convexb,cl,c .

For more details on multi-valued maps and the proof of the known results cited in this section, we refer

interested reader to the books by Castaing and Valadier [21], Deimling [22], Gorniewicz [23], and Hu and

Papageorgiou [24].

3 Main results

The following lemma deals with a linear variant of the boundary value problem (1).

Lemma 3.1. Let ≥a 0, < <α1 2, = + −γ α β αβ2 , ∈ ([ ] )h C a b, , � , and
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Then the function ∈ ([ ] )x C a b, , � is a solution of the boundary value problem

( ) = ( ) ∈ [ ] < < ≤ ≤D x t h t t a b α β, , , 1 2, 0 1,α βH , (4)
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(6)

Proof. Assume that x is a solution of the nonlocal boundary value problem (4) and (5). Operating fractional

integral Iα on both sides of equation (4) and using Lemma 2.1, we obtain
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since ( − )( − ) = −β α γ1 2 2 , where c0 and c1 are some real constants.

From the first boundary condition ( ) =x a 0 we can obtain =c 0,0 since ( − ) = ∞→ −t alim .t a
γ 2 Then we
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Substituting the values of c1 in (7), we obtain the solution (6). The converse follows by direct computa-

tion. This completes the proof. □
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In view of Lemma 2.4, we define an operator � ([ ] ) → ([ ] )C a b C a b: , , , ,� � by
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It should be noted that problem (1) has solution if and only if the operator � has fixed points.

In the following, for the sake of convenience, we set a constant
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In the next subsections, we prove existence, as well as existence and uniqueness results, for the bound-

ary value problem (1) by using classical fixed point theorems.

3.1 Existence and uniqueness result

Our first result is an existence and uniqueness result, based on Banach’s fixed point theorem [22].

Theorem 3.1. Assume that:

(H1) there exists a constant >L 0 such that

| ( ) − ( )| ≤ (| − | + | − |)f t x x f t y y L x y x y, , , ,1 2 1 2 1 1 2 2

for each ∈ [ ]t a b, and ∈ =x y i, , 1, 2i i � .
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on [ ]a b, .

Proof.We transform the boundary value problem (1) into a fixed point problem, �=x x, where the operator

� is defined as in (8). Observe that the fixed points of the operator� are solutions of problem (1). Applying

the Banach contraction mapping principle, we shall show that � has a unique fixed point.
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Now, we show that � ⊂B Br r, where = { ∈ ([ ] ) ∥ ∥ ≤ }B x C a b x r, , :r � . By using Assumption ( )H1 , we have
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which implies that � ⊂B Br r.

Next, we let �∈x y, . Then for ∈ [ ]t a b, , we have

� �

∫

∑

∑

|( )( ) − ( )( )| ≤ ( − )
| |

| | | ( ( ) ( )) − ( ( ) ( ))|( )

+ | ( ( ) ( )) − ( ( ) ( ))|

+ | ( ( ) ( )) − ( ( ) ( ))|( )

≤ ( − )
| |

| | ( − )
( + )

+ ( − )
( + )

+ ( − )
( + )

∥ − ∥

= ∥ − ∥

−

=

−

−

=

− +

x t y t
b a

ζ I f s x s I x s f s y s I y s θ

I f s x s I x s f s y s I y s s

I f s x s I x s f s y s I y s b

LL
b a

ζ
θ a

α

b a

α

b a

α
x y

LL x y

Λ
, , , ,

, , , , d

, , , ,

Λ Γ 1 Γ 2 Γ 1

Ω ,

γ

i

m

i
α δ δ

i

a

b

α δ δ

α δ δ

γ

i

m

i
i

α α α

1

1

2

1

1

1

2 1

1























































which implies that � �∥ − ∥ ≤ ∥ − ∥x y LL x yΩ1 . As <LL Ω 11 , � is a contraction. Therefore, we deduce by

the Banach contraction mapping principle that � has a fixed point which is the unique solution of the

boundary value problem (1). The proof is complete. □

Example 3.1. Consider the boundary value problem of Hilfer fractional integro-differential equation with

nonlocal integro-multipoint boundary condition of the form:
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Here = /α 3 2, = /β 1 3, = /δ 1 4, = /a 1 8, = /b 9 8, = /μ 3 2, =m 4, = /ζ 2 31 , = /ζ 3 42 , = /θ 3 81 , and = /θ 5 82 .

From these settings, we compute constants as ≈γ 1.66667, ≈ −Λ 0.13704, ≈Ω 4.86106, and ≈L 2.103261 . Let
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Condition (10) is fulfilled by setting = /L 1 11, since ≈ <LL Ω 0.92946 11 . Therefore, by the benefit of Theorem

3.1, the problem (12) has a unique solution ( )x t on [ / / ]1 8, 9 8 .
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3.2 Existence results

In this subsection, we present two existence results. The first existence result is based on the well-known

Krasnosel’skiĭ’s fixed point theorem [20].

Theorem 3.2. Let [ ] × × →f a b: , � � � be a continuous function satisfying ( )H1 . In addition, we assume

that:

(H2) | ( )| ≤ ( ) ∀( ) ∈ [ ] × ×f t x y φ t t x y a b, , , , , , � � , and ∈ ([ ] )+φ C a b, , � .
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This shows that � �+ ∈x y B .ρ1 2 It is easy to see, using (13), that �2 is a contraction mapping.

Continuity of f implies that the operator �1 is continuous. Also, �1 is uniformly bounded on Bρ as

�∥ ∥ ≤ ( − )
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∥ ∥x

b a

α
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which is independent of x and tends to zero as − →t t 0.2 1 Thus, �1 is equicontinuous. So �1 is relatively

compact on Bρ. Hence, by the Arzelá-Ascoli theorem, �1 is compact on Bρ. Thus, all the assumptions of

Krasnosel’skiĭ’s fixed point theorem are satisfied. So its conclusion implies that the boundary value problem

(1) has at least one solution on [ ]a b, . □

The Leray-Schauder nonlinear alternative [19] is used for proving our second existence result.

Theorem 3.3. Let [ ] × × →f a b: , � � � be a continuous function. Assume that:

(H3) there exist a continuous, nondecreasing, subhomogeneous (i.e., ( ) ≤ ( )ψ kx kψ x for all ≥k 1 and ∈ +x � )

function [ ∞) → ( ∞)ψ : 0, 0, and a function ∈ ([ ] )+p C a b, , � such that

| ( )| ≤ ( ) (| | + | |) ( ) ∈ [ ] × ×f t u v p t ψ u v for each t u v a b, , , , , ;� �

(H4) there exists a constant >K 0 such that

( )∥ ∥ + (( − ) | |)/| |
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1

where Ω is defined by (9).

Then the boundary value problem (1) has at least one solution on [ ]a b, .

Proof. Let the operator � be defined by (8). First, we shall show that � maps bounded sets (balls) into

bounded set in �. For a number >r 0, let = { ∈ ([ ] ) ∥ ∥ ≤ }B x C a b x r, , :r � be a bounded ball in ([ ] )C a b, , � .

Then for ∈ [ ]t a b, we have
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and consequently,
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Next, we will show that� maps bounded sets into equicontinuous sets of ([ ] )C a b, , .� Let ∈ [ ]τ τ a b, ,1 2

with <τ τ1 2 and ∈x B .r Then we have
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As − →τ τ 0,2 1 the right-hand side of the aforementioned inequality tends to zero independently of ∈x B .r
Therefore, by the Arzelá-Ascoli theorem, the operator� ([ ] ) → ([ ] )C a b C a b: , , , ,� � is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative [19] once we have proved the

boundedness of the set of all solutions to equations �=x λ x for ∈ ( )λ 0, 1 .

Let x be a solution. Then, for ∈ [ ]t a b, , and following the similar computations to that in the first step,

we have

| ( )| ≤ (∥ ∥)∥ ∥ + ( − )
| |
| |
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,
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In view of ( )H4 , there exists K such that ∥ ∥ ≠x K. Let us set

= { ∈ ([ ] ) ∥ ∥ < }U x C a b x K, , : .�

We see that the operator� → ([ ] )U C a b: ¯ , , � is continuous and completely continuous. From the choice of

U, there is no ∈ ∂x U such that �=x λ x for some ∈ ( )λ 0, 1 . Consequently, by the nonlinear alternative of

Leray-Schauder type, we deduce that� has a fixed point ∈x Ū , which is a solution of the boundary value

problem (1). This completes the proof. □

Example 3.2. Consider the boundary value problem of Hilfer fractional integro-differential equation with

nonlocal integro-multipoint boundary condition of the form:
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(15)

Here = /α 4 3, = /β 1 4, = /δ 1 2, = /a 1 3, = /b 7 3, = /μ 2 5, =m 5, = /ζ 1 41 , = /ζ 1 22 , = /ζ 3 43 , = /θ 2 31 ,

= /θ 4 32 , = /θ 5 33 , and M is a given constant. Next, we can find that =γ 1.50000, ≈Λ 0.62891, ≈Ω 9.32772,

≈L 2.595771 , and
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where =y I x
1
2 , we obtain

| ( ) − ( )| ≤ (| − | + | − |)f t x y f t x y M x x y y, , , , ,1 1 2 2 1 2 1 2

for ∈x x y y, , ,1 2 1 2 �, and
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t
, ,
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1
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,

which satisfy the conditions ( )H ,1 ( )H2 , respectively. Then we can conclude that if ∈ ( ( /( ))) ≈M L0, 1 Ω1

( )0, 0.04130 , then the problem (15) has a unique solution by Theorem 3.1. If ∈ [( /( )) ( /( ))) ≈M L L1 Ω , 1 Ω1 1
⁎

[ )0.04130, 0.05342 , then the problem (15) has at least one solution on [ / / ]1 3, 7 3 by applying Theorem 3.2.
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Example 3.3. Consider the boundary value problem of Hilfer fractional integro-differential equation with

nonlocal integro-multipoint boundary condition of the form:
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(16)

Put = /α 5 4, = /β 1 5, = /δ 3 2, = /a 1 4, = /b 11 4, = /μ 3 7, =m 5, = /ζ 1 51 , = /ζ 2 52 , = /ζ 3 53 , = /θ 3 41 ,

= /θ 7 42 , and = /θ 9 43 . Then we obtain =γ 1.40000, ≈Λ 1.16254, ≈Ω 8.98278, and ≈L 3.973541 . By setting
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we obtain

| ( )| ≤
+
((| | + | |) + )f t x y

t
x y, ,

4

4 479
1 ,2

which satisfies ( )H3 with ( ) = /( + )p t t4 4 479 and ( ) = +ψ u u 12 . Furthermore, we can find that there exists a

constant ∈ ( )K 1.48699, 1.87496 satisfying condition ( )H4 . Therefore, applying the conclusion of Theorem

3.3, the nonlocal boundary value problem (16) has at least one solution on [ / / ]1 4, 11 4 .

4 Existence results for the problem (2)

Before stating and proving our main existence results for problem (2), we will give the definition of its

solution.

Definition 4.1. A function ∈ ([ ] )x AC a b, , � is said to be a solution of the problem (2) if there exists a fun-

ction ∈ ( )v L J,1
� with ∈ ( )v F t x, a.e. for ∈ [ ]t a b, such that x satisfies the differential equation ( ) = ( )D x t v tα

for ∈ [ ]t a b, and the boundary conditions ∫( ) = ( ) + = ∑ ( )=
−

x a x s s μ ζ x θ0, d .
a

b

i
m

i i1

2

4.1 The upper semicontinuous case

Consider first the case when F has convex values and we give an existence result based on Martelli’s fixed

point theorem, which is applicable to completely continuous operators. For convenience of the reader we

include this lemma.

Lemma 4.1. (Martelli fixed point theorem) [25] Let X be a Banach space, and �→ ( )T X X: b cl c, , be a com-

pletely continuous multi-valued map. If the set = { ∈ ∈ ( ) > }ε x X λx T x λ: , 1 is bounded, then T has a fixed

point.

Theorem 4.1. Assume that the following hypotheses hold:

(A1) �[ ] × × → ( )F a b: , � � � is L1-Carathéodory, i.e.,

(i) ↦ ( )t F t x y, , is measurable for each ( ) ∈ ×x y, � �;

(ii) ( ) ↦ ( )x y F t x y, , , is u.s.c. for almost all ∈ [ ]t a b, ;
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(iii) for each >r 0, there exists ∈ ([ ] )+ϕ L a b, ,r
1

� such that

∥ ( )∥ = {| | ∈ ( )} ≤ ( )F t x y v v F t x y ϕ t, , sup : , , r

for all ∈x y, � with ∥ ∥ ∥ ∥ ≤x y r, and for a.e. ∈ [ ]t a b, ;

(A2) there exists a function ∈ ([ ] )q C a b, , � such that

∥ ( )∥ ≤ ( ) ∈ [ ] ∈F t x y q t for a.e. t a b and each x y, , , , , .�

Then the problem (2) has at least one solution on [ ]a b, .

Proof. In order to transform the problem (2) into a fixed point problem, we consider the multi-valued map:
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It is clear that fixed points of N are solutions of problem (2). In turn, we need to show that the operator N

satisfies all conditions of Lemma 4.1. The proof is constructed in several steps.

Step 1. ( )N x is convex for each ∈ ([ ] )x C a b, , .�

Indeed, if h h,1 2 belong to ( )N x , then there exist ∈v v S, F x1 2 , such that for each ∈ [ ]t a b, , we have
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Since F has convex values, that is, SF x, is convex, we have

+ ( − ) ∈ ( )θh θ h N x1 .1 2

Step 2. ( )N x maps bounded sets (balls) into bounded sets in ([ ] )C a b, , .�

For a positive number r, let = { ∈ ([ ] ) ∥ ∥ ≤ }B x C a b x r, , :r � be a bounded ball in ([ ] )C a b, , � . Then for each
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and consequently,

∥ ( )∥ ≤ ∥ ∥ + ( − )
| |
| |
−

N x q
b a

μΩ
Λ

.
γ 1

Nonlocal Hilfer fractional boundary value problems  1889



Step 3. ( )N x maps bounded sets into equicontinuous sets of ([ ] )C a b, , .�

Let x be any element in Br and ∈ ( )h N x , then there exists a function ∈v SF x, such that, for each ∈ [ ]t a b, ,

we have
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The right-hand side of the aforementioned inequality clearly tends to zero independently of ∈x Br as →t t1 2.

As a consequence of Steps 1–3 together with the Arzelá-Ascoli theorem, we conclude that ([ ] ) →N C a b: , , �

�( ([ ] ))C a b, , � is completely continuous.

Next, we show that the operator N is upper semi-continuous. In order to do so, it is enough to establish

that N has a closed graph, because from [22, Proposition 1.2] we know that if an operator is completely

continuous and has a closed graph, then it is upper semi-continuous.

Step 4. N has a closed graph.

Let →x xn ⁎, ∈ ( )h N xn n , and →h hn ⁎. We need to show that ∈ ( )h N x⁎ ⁎ . Now ∈ ( )h N xn n implies that there

exists ∈v Sn F x, n
such that for each ∈ [ ]t a b, ,
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We must show that there exists ∈v SF x⁎ , ⁎
such that for each ∈ [ ]t a b, ,
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Consider the continuous linear operator ([ ] ) → ([ ])L a b C a bΘ : , , ,1
� by

∫∑→ ( )( ) = ( ) + ( − ) ( ) − ( ) − ∈ [ ]
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Observe that∥ − ∥ →h h 0n ⁎ as → ∞n , and thus, it follows from a closed graph Lemma [26] that ∘Θ SF x,

is a closed graph operator. Moreover, we have

∈ ( )h SΘ .n F x, n

Since →x xn ⁎, the closed graph Lemma [26] implies that
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for some ∈v SF x⁎ , ⁎
.

Hence, we conclude that N is a compact multivalued map, u.s.c. with convex closed values.

Step 5. We show that the set � = { ∈ ([ ] ) ∈ ( ) > }x C a b λx N x λ, , : , 1� is bounded.

Let �∈x , then ∈ ( )λx N x for some >λ 1 and there exists a function ∈v SF x, such that
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For each ∈ [ ]t a b, , we have from Step 2 that
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Hence, the set � is bounded. As a consequence of Lemma 4.1, we deduce that N has at least one fixed

point which implies that the problem (2) has a solution on [ ]a b, . □

Our second existence result in this subsection is based on the Leray-Schauder nonlinear alternative for

multivalued maps.

Theorem 4.2. Assume that ( )A1 holds. In addition, we assume that:

(A3) there exist a continuous, nondecreasing, subhomogeneous function [ ∞) → ( ∞)ψ : 0, 0, and a function

∈ ([ ] )+p C a b, , � such that

�∥ ( )∥ ≔ {| | ∈ ( )} ≤ ( ) (| | + | |) ( )F t x y y y F t x p t ψ x y for each t x y, , sup : , , , ∈ [ ] × ×a b, ;� �

(A4) there exists a constant >M 0 such that
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>−

M
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1.

γ
1

1

Then the boundary value problem (2) has at least one solution on [ ]a b, .

Proof. Consider the operator N defined in the proof of Theorem 4.1. Let ∈ ( )x λN x for some ∈ ( )λ 0, 1 . We

show that there exists an open set ⊆ ([ ] )U C a b, , � with ∉ ( )x N x for any ∈ ( )λ 0, 1 and all ∈ ∂x U. Let

∈ ( )λ 0, 1 and ∈ ( )x λN x . Then there exists ∈ ([ ] )v L a b, ,1
� with ∈v SF x, such that, for ∈t J , we have

∫∑( ) = ( ) + ( − ) ( ) − ( ) − ∈ [ ]
−

=

−
x t I v t

t a
ζ I v θ I v s s μ t a b

Λ
d , , .α

γ

i

m

i
α

i

a

b

α
1

1

2













In view of ( )A ,3 we have for each ∈ [ ]t a b, , as in Theorem 3.3 that

| ( )| ≤ (∥ ∥)∥ ∥ + ( − )
| |
| |
−

x t L ψ x p
b a

μΩ
Λ

,
γ

1

1

which leads to

∥ ∥
(∥ ∥)∥ ∥ + (( − ) | |)/| |

≤−
x

L ψ x p b a μΩ Λ
1.

γ
1

1

In view of ( )A4 , there exists M such that ∥ ∥ ≠x M . Let us set

= { ∈ ( ) ∥ ∥ < }U x C J x M, : .�
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Proceeding as in the proof of Theorem 4.1, we claim that the operator �→ ( ([ ] ))N U C a b: ¯ , , � is a compact,

upper semi-continuous multi-valued map with convex closed values. From the choice of U, there is no

∈ ∂x U such that ∈ ( )x λN x for some ∈ ( )λ 0, 1 . Consequently, by the nonlinear alternative of Leray-

Schauder type [19], we deduce that N has a fixed point ∈x Ū , which is a solution of the boundary value

problem (2). This completes the proof. □

4.2 The Lipschitz case

In this subsection, we prove the existence of solutions for the boundary value problem (2)with a nonconvex

valued right hand side by applying a fixed point theorem for multivalued maps due to Covitz and

Nadler [27].

Theorem 4.3. Assume that the following conditions hold:

(A4) �[ ] × × → ( )F a b: , cp� � � is such that �(⋅ ) [ ] → ( )F x y a b, , : , cp � is measurable for each ∈x y, ;�

(A5) ( ( ) ( )) ≤ ( )(| − | + | − |)H F t x y F t x y m t x x y y, , , , ¯, ¯ ¯ ¯d for almost all ∈ [ ]t a b, and ∈x y x y, , ¯, ¯ � with ∈m

([ ] )+C a b, , � and ( ( )) ≤ ( )d F t m t0, , 0, 0 for almost all ∈ [ ]t a b, .

Then the boundary value problem (2) has at least one solution on [ ]a b, if

∥ ∥ <L mΩ 1.1

Proof.We transform the boundary value problem (2) into a fixed point problem by considering the operator

�([ ] ) → ( ([ ] ))N C a b C a b: , , , ,� � defined at the beginning of the proof of Theorem 4.1. We show that the

operator N satisfies the assumptions of Lemma of Covitz and Nadler [27] in two steps.

Step I. N is nonempty and closed for every ∈v S .F x,

Note that since the set-valued map (⋅ (⋅))F x, is measurable by the measurable selection theorem (e.g., [21,

Theorem III.6]) and it admits a measurable selection [ ] →v a b: , � . Moreover, by Assumption ( )A ,5 we have

| ( )| ≤ ( ) + ( )(| ( )| + | ( )|) ≤ ( ) + ( )| ( )|v t m t m t x t I x t m t L m t x t ,δ
1

i.e., ∈ ([ ] )v L a b, ,1
� and hence F is integrably bounded. Therefore, ≠ ∅SF x, . Moreover, �( ) ∈ ( ([ ] ))N x C a b, ,cl �

for each ∈ ([ ] )x C a b, , � . Let { } ∈ ( )≥u N xn n 0 be such that →  ( →∞)u u nn in ([ ] )C a b, , .� Then ∈ ([ ] )u C a b, , �

and there exists ∈v Sn F x, n
such that, for each ∈ [ ]t a b, ,

∫∑( ) = ( ) + ( − ) ( ) − ( ) −
−

=

−
u t I v t

t a
ζ I v θ I v s s μ

Λ
d .n

α
n

γ

i

m

i
α
n i

a

b

α
n

1

1

2













As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn converges to v in

([ ] )L a b, , .1
� Thus, ∈v SF x, and for each ∈ [ ]t a b, , we have

∫∑( ) → ( ) = ( ) + ( − ) ( ) − ( ) −
−

=

−
u t v t I v t

t a
ζ I v θ I v s s μ

Λ
d .n

α
γ

i

m

i
α

i

a

b

α
1

1

2













Hence, ∈ ( )u N x .

Step II. Next, we show that there exists < <θ0 1 ( = ∥ ∥)θ L mΩ1 such that

( ( ) ( )) ≤ ∥ − ∥ ∈ ( )H N x N x θ x x x x AC J, ¯ ¯ for each , ¯, , .d �

Let ∈ ([ ] )x x AC a b, ¯ , , � and ∈ ( )h N x1 . Then there exists ( ) ∈ ( ( ) ( ))v t F t x t y t, ,1 such that, for each ∈ [ ]t a b, ,

∫∑( ) = ( ) + ( − ) ( ) − ( ) −
−

=

−
h t I v t

t a
ζ I v θ I v s s μ

Λ
d .α

γ

i

m

i
α

i

a

b

α
1 1

1

1

2

1 1
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By ( )A5 , we have

( ( ) ( )) ≤ ( )(| ( ) − ( )| + | ( ) − ( )|)H F t x y F t x y m t x t x t y t y t, , , , ¯, ¯ ¯ ¯ .d

So, there exists ( ) ∈ ( ( ) ( ))w t F t x t y t, ¯ , ¯ such that

| ( ) − | ≤ ( )(| ( ) − ( )| + | ( ) − ( )|)    ∈ [ ]v t w m t x t x t y t y t t a b¯ ¯ , , .1

Define �→ ( )U J: � by

( ) = { ∈ | ( ) − | ≤ ( )(| ( ) − ( )| + | ( ) − ( )|)}U t w v t w m t x t x t y t y t: ¯ ¯ .1�

Since the multivalued operator ( ) ∩ ( ( ) ( ))U t F t x t y t, ¯ , ¯ is measurable [21, Proposition III.4], there exists a func-

tion ( )v t2 , which is a measurable selection for U. So ( ) ∈ ( ( ) ( ))v t F t x t y t, ¯ , ¯2 and for each ∈ [ ]t a b, , we have

| ( ) − ( )| ≤ ( )(| ( ) − ( )| + | ( ) − ( )|)v t v t m t x t x t y t y t¯ ¯1 2 .

For each ∈ [ ]t a b, , let us define

∫∑( ) = ( ) + ( − ) ( ) − ( ) −
−

=

−
h t I v t

t a
ζ I v θ I v s s μ

Λ
d .α

γ

i

m

i
α

i

a

b

α
2 2

1

1

2

2 2















Thus,

∫∑

∑

| ( ) − ( )| = | ( ) − ( )| + ( − ) | ( ) − ( )| + | ( ) − ( )|

≤ ( − )
( + )

+ ( − )
| |

| | ( − )
( + )

+ ( − )
( + )

∥ ∥ ∥ − ∥

−

=

−

−

=

− +

h t h t I v t v t
t a

ζ I v θ v θ I v s v s s

b a

α

b a
ζ

θ a

α

b a

α
m L x x

Λ
d

Γ 1 Λ Γ 1 Γ 2
¯ .

α
γ

i

m

i
α

i

a

b

α

α γ

i

m

i
i

α α

1 2 2 1

1

1

2

2 1 2 1

1

1

2 1

1





































Hence,

∥ − ∥ ≤ ∥ ∥ ∥ − ∥h h m L x xΩ ¯ .1 2 1

Analogously, interchanging the roles of x and x̄, we obtain

( ( ) ( )) ≤ ∥ ∥ ∥ − ∥H N x N x m L x x, ¯ Ω ¯ .d 1

Since N is a contraction, it follows by Lemma of Covitz and Nadler [27] that N has a fixed point x, which is

a solution of (2). This completes the proof. □

Example 4.1. Consider the boundary value problem of Hilfer fractional integro-differential inclusion with

nonlocal integro-multipoint boundary condition of the form:

∫

( ) ∈ ( ( ) ( )) ∈

= ( ) + = + + +

D x t F t x t I x t t

x x s s x x x x

, , ,
1

5
,
16

5
,

1

5
0, d

4

5

2

7

8

5

3

7

11

5

4

7

13

5

5

7

14

5
,

H ,6
5

1
6

5
2

1
5

16
5

        

















































(17)

where

( ( ) ( )) =
+ | ( )| + ( )
( + ) +

+ | ( )| +
( )

+ ( )

−

F t x t I x t
x t I x t

t t
x t

I x t

I x t
, ,

5 1 tan

8 100
,

5

5 749
1 sin

1
.

1
5
2

5
2

5
2

5
2









































Take = /α 6 5, = /β 1 6, = /δ 5 2, = /a 1 5, = /b 16 5, = /μ 4 5, =m 6, = /ζ 2 71 , = /ζ 3 72 , = /ζ 4 73 , = /ζ 5 74 ,

= /θ 8 51 , = /θ 11 52 , = /θ 13 53 , and = /θ 14 54 . Then we have ≈γ 1.33333, ≈Λ 0.63821, ≈Ω 24.70353, and

≈L 5.690581 . Let =y I x
5
2 . It is obvious that ( )F t x y, , is measurable for each ∈x y, �. Next we can find that
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( ( ) ( )) ≤
+
(| − | + | − |) ∈ ∈H F t x y F t x y

t
x x y y x x y y t, , , , ¯, ¯

5

5 749
¯ ¯ , , ¯, , ¯ ,

1

5
,
16

5
.d 













�

By setting the function ( ) = ( /( + ))m t t5 5 749 , we get ∥ ∥ = /m 1 150 and we also obtain ( ( )) ≤ ( )d F t m t0, , 0, 0

for all ∈ [ / / ]t 1 5, 16 5 . Hence, we can compute that ∥ ∥ ≈ <L mΩ 0.93718 11 . Thus, the problem (17) has at least

one solution on [ / / ]1 5, 16 5 by applying Theorem 4.3.
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