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We present existence results for some boundary value problems defined on infinite intervals. In particular our
discussion includes a problem which arises in the theory of colloids.
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1 INTRODUCTION

In the theory of colloids [4, 7] it is possible to relate particle stability with the charge on the
colloidal particle. We model the particle and its attendant electrical double layer using
Poisson’s equation for a flat plate. If ¥ is the potential, p the charge density, D the dielectric
constant and y the displacement, then we have

& dmp
o2 D’

We assume the ions are point charged and their concentrations in the double layer satisfies the
Boltzmann distribution
* —z;e‘I’
¢ = ¢j exp| —

where ¢; is the concentration of ions of type i, ¢; = limy_,¢ ¢;, ¥ the Boltzmann constant,
T the absolute temperature, e the electrical charge, and z the valency of the ion. In the neutral
case, we have

=cyzretcz.e or p=ze(lcy —c_
+2+ +
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where z =z, —z_. Then we have using

—ze¥ zeV
Cy =C exp T and c_ =c exp ~7 )

that

ﬂ _ 8ncze sinh ze_‘l’
o2 D kT

where the potential initially takes some positive value ¥(0) = Wy and tends to zero as the
distance from the plate increases i.e. ¥(0c0) = 0. Using the transformation

_ze¥P(y) _ [Amcz?e?
o) =—7— and x=4—7 -,

the problem becomes

2

%}(22=ZSinh¢, O<x<oo

$(0) = 1 (1)
lim,, o ¢ (x) = 0,

where ¢; = zeWy/xT > 0. From a physical point of view we wish the solution ¢ in (1.1) to
also satisfy lim, , o ¢'(x) = 0.

In this paper using the notion of upper and lower solutions (see [1, 2, 6]) we establish
general existence results which guarantee the existence of BC[0, oo) solutions to

1 ;
;(5(170);/(0) =q@)f(t,y(t)), 0 <t<oo

—agy(0) + o limysoe p(OY (1) = co, @0 > 0, bp > 0 (1.2)
limt—moy(t) =0;

here BC[0, o) denotes the space of continuous, bounded functions from [0, co) to R. Our
theory not only complements some of the known results, e.g., [5, 8], but also automatically
produces the existence of a solution to (1.1). To establish these results we recall, for the
convenience of the reader, the existence principle [3] we will use in Section 2. Consider the
boundary value problem

1 '
I—)(Py/) =qf(t.y), O0<t<oo

~aqy(0) + bo limy o+ p(A)Y/()) = co, a0 >0, by >0 (1.3)
¥() bounded on [0, co).
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By an upper solution B to (1.3) we mean a function J e BC[0, c0) N C%(0, 00),
pB € C[0, co) with

%Wumm,wmw

—agB(0) + by im0+ p(t)'(¢) < co,
p(t) bounded on [0, co)

(1.4)

and by a lower solution o to (1.3) we mean a function a« e BC[0, 0o) N C*(0, c0),
pu’ € C[0, oo) with

l(m’)’ >qgf(t,n), 0<t<oo

—ao(0) + bg limy—, o+ p(H)o'(£) > o, (1.5)
a(f) bounded on [0, co).

THEOREM 1.1 [3] Let f: [0, 00) x R — R be continuous. Suppose the following conditions
are satisfied:

q € C(0, 00) with g > 0 on (0, 00) (1.6)
p € C[0, 00) N C1(0, 00) with p > 0 on (0, 00) (1.7)
4 ds i
J — < 00 and J Ps)g(s)ds < oo for any u > 0 (1.8)
0 P(s) 0

there exists o, f§ respectively lower and upper (1.9)
solutions of (1.3) with o(f) < B(¢) for t € [0, c0) )

and

{ there exists a constant M > 0 with |[f(t,u)] <M (1.10)

Jfor t € [0, 00) and u € [a(f), B(D)].
Then (1.3) has a solution y € BC[0, c0) N CX0, 00), py € C[0, 00) with a(f) < y(t) < B(?)
Jor t € [0, 00). Also there exist constants Ay and Ay with |p()y' ()] < Ao + Ay f(; p(s)q(s) ds
Jor t € (0, 00).
2 THE BOUNDARY CONDITION AT INFINITY

Motivated by the colloid example [4, 7] we discuss the boundary value problem

§thwm<kmw

—agy(0) + bo limyos p(OY (1) = co,  ap >0, by >0, co <0 @1
lim,, 00 (£) = 0.
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THEOREM 2.1 Let f:[0, 00) x R — R be continuous and suppose the following conditions
hold.

q € C(0, co) with ¢ > 0 on (0, ) 2.2)
p € C[0, 00) N C(0, 00) with p > 0 on (0, 00) and rog =00 2.3)
o p(s)
" s d ’ ds 0 24
JOE)—(—S—)<00 an Jop(s)q(s) < 0o for any pu > 2.4)
f(£,0) <0 for t € (0,00) 2.5)
Iro > _a—c" with £(t, 70) > 0 for t € (0, 50) 2.6)
0
AM >0 with |[f(t,u)l <M fort €[0,00) and u € [0, ro] 2.7)
3 a constant m > 0 with gOP*OLf (¢, u) — f(t, 0)] = mu 2.8)
Jor t € (0, 00) and u € [0, ry] )
Joo §263) exp(——m Jx g)q(x)lf (x, 0)]dx < o0 2.9)
0 oP(s)
tl_igopz(t)q(t) f(6,0)=0 (2.10)
and
. O | fds\
|hmt—)oo(30f”]_761#m dde+COJu@> =00 @.11)
Jor any constants By > 0,Cy € R and 11 > 0.

Then (2.1) has a solution y € C[0, 00) N C(0, 00) with py’ € C[0, o) and 0 < y(f) < ry for
t € [0, co).

Proof Now Theorem 1.1 (with « = 0 and = ry) guarantees that

})(pﬂ)’ = g0 (t.3), 0<t<oo

—ap(0) + bg lim,— o+ p(£)y/'(£) = ¢
y(t) bounded on [0, o0)

2.12)
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has a solution y € C[0, 0c0) N C*(0, o0), py’ € C[0, 00) and 0 < ¥(t) < ry for ¢ € [0, 0o0). Let
8(x) = g(x)f (x, 0) and notice that

— oxof —m [ 95 \[_(=c0)
W) = eXp< " Jop(S)) [ao + bom

(a() - b()m) o * ds
* 2m(ag + bom) J 0 P exp(— J P(S))g(x) dx]

1 Cds\ [ * ds
~gnon(n] ) | oee(on [ s Jewes
1 Cds [ % ds
‘271"’"”(_ JOP(S)) J, e e"p( g ))g( )&
s\ () by [ s
_exp< mJoP(S)) [a0+b0m a0+b0mjo p(x)exp( Jop( )) (x)dx]

Lo () ([ rose(on [ )s0e)

is a nonnegative solution of

m?
(p )—p()w g, O0<t<oo

2.13
—apw(0) + bo limys s AW () = co @.13)
lim—, oo w(#) = 0.

Notice (2.10) and I’Hopital’s rule guarantees that w(co) =
Now let

o) = y(2) — wl®).

We first show » cannot have a local positive maximum on [0, 00). Suppose » has a local
positive maximum at ¢y € [0, 00).

Case (i) ty €[0,00).
For ¢ > 0 notice from assumption (2.8) that

2

1 N .
I—)(pr Y@ = q@lf (2. (1)) — f(, 0)] - )

AWt = —— ( ) [y(t) w(t)]. (2.14)

We also have #'(¢) = 0 and r”(to) < 0. However (2.14) yields

Y'(t0) = —— ('Y (o) = (1) — w(to)] > 0,

() - 2(t)

a contradiction.
Case (ii) 1 =0.

Of course if by = 0 we have a contradiction immediately. So suppose by # 0. Then

lim p()r'(€) = 32 [(0) = wlO)]. 2.15)
t—> 0
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Now since y(0) — w(0) > 0 there exists & > 0 with y(¢) — w(f) > 0 for ¢t € (0, ). Then (2.14)
implies (pr) > 0 on (0, &) and this together with (2.15) (i.e. lim,,o+ p(£)y’(t) > 0) implies
p¥ > 0 on (0, §), a contradiction.

Thus #(¢) cannot have a local positive maximum on [0, §). We now claim that #(f) < 0 on
[0, c0). If #(£) £ 0 on [0, co) then there exists a ¢; > 0 with #(c;) > 0. Now since #(¢) cannot
have a positive local maximum on [0, 0o) it follows that () > #(#;) for all &, > #; > ¢y;
otherwise r(f) would have a local positive maximum on [0, £]. Thus () is strictly increasing
for ¢ > ¢;. Since both y(f) and w(¢f) are bounded on [0, 0o) and lim;_, o w(z) = 0 then

Jim y(#) = lim [W(2) — w(t)] = x € (0, ro}. (2.16)

Now there exists ¢; > ¢; with y(f) > x/2 for t > ¢,. The differential equation and (2.8) imply
that for ¢ > 0 that we have

@y ®) = pOa@)f ¢, y(®) = p(OgOIf (1. y@®) — (¢, 0)] + p(H)a(O)f (2, 0)

m?
> my(t) +p(0q()f (2, 0).

Consequently for ¢ > ¢; we have

2 2
V0 g+ pOa0,0 = o= [+ 00|

Assumption (2.10) implies that there is a constant ¢3 > ¢, with
2

N mK
(Py)(t)Zw for t > cs.

Two integrations together with the fact that y > 0 on [0, co) yields
T ds mie " 1 [ 1

y0 zpepe | [ [

W ap® 4 1o p@ ] p@

(not also from Theorem 1.1 that there exist constants 4y and A4; with
POy @) < 4o+ 4 f(; p(s)g(s)ds for ¢t € (0, oo)). Now assumption (2.11) implies that y is
unbounded on [0, co), a contradiction. Thus #(#) < 0 on [0, 00) and the result follows. B

Notice in Theorem 3.1 that the solution y of (2.1) satisfies »(f) < 0 for ¢ € [0, 00), and so
y(#) < w(?) for ¢ € [0, o).

COROLLARY 2.2 Let f:[0,00) x R — R be continuous and suppose (2.2)—(2.11) hold.
Then (2.1) has a solution y € C[0, 00) N C%(0, co) with py € C[0, o) and 0 < y(£) < w(f)
for t € [0, co), with w given in Theorem 2.1.

The colloid [4, 7] example motivates our next result.

THEOREM 2.3 Let f:[0,00) x R — R be continuous and suppose (2.2)-(2.11) hold. In
addition assume the following conditions hold:

ft,u) =0 fort €[0,00) and u€[0,w(t)]; here wis as in Theorem 2.1  (2.17)



THEORY OF COLLOIDS 149

and

tl_iglop(t) € (0, oo]. (2.18)

Then (2.1) has a solution y € C[0, 0c0) N C2(0, co) with py € C[0, 00), 0 < y(£) < w(?) for
t € [0, 00) and limy_, ¥/ (£) = 0.

Proof From Corollary 2.2 we know that there exists a solution y € C[0, 0o) N C%(0, o),
py € C[0, 00) and 0 < p(¢) < w(¢) for ¢ € [0, c0), to (2.1). Also (2.17) and the differential
equation yields

@) (1) = p)q()f (¢, y(#)) = 0 for t > 0, (2.19)

so py' is nondecreasing on (0, 00), and lim,, o p()y/(f) € [—00, ).
Suppose there exists #; € [0, 00) with p(#;)y'(#,) > 0. Then

p®Y () = ap =p(t)y' (1) fort>n,

and so
't ds
y(#) = p(t) +ao L 70 fort>1. (2.20)
That is
y(t) = ap r is_ fort>1 (2.21)
1 P(s)

(notice (2.3) implies that the right hand side of (2.21) goes to co as ¢ — 00). This contradicts
0 < y(t) < ry for t € [0, 00). Thus p(£)y'(#) < 0 for ¢ € (0, o0), and so

tlitgp(t)y’(t) =K €[-00,0] and tgrgoy(t) € [—00, 0]. 2.22)

In fact k € (—oo0, 0] from (2.19). Finally if « < 0 then there exists £, > 0 with p(£)y/(¢) < k/2
for ¢t > t,. Integrate from , to ¢ (¢ = 1) to get

D) < pn) + ;L 1% <7+ gjt 1% . (2.23)

Now (2.23) together with (2.3) contradicts y > 0 on [0, 00). Consequently lim,_,q p(f)
V' (#) = 0, and this together with (2.18) gives lim,, o y/'(¢) = limy, oo p(£)y’ (£)/p(f) = 0.
Example 2.1 (Colloid problem {4, 7]).
The boundary value problem
y' =2sinhy, 0<t<oo0

y0)=c>0 (2.24)
limy_, 00 (t) = 0
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has a solution y € C[0, 00) N C%(0, o) with
0 <y(@®) <ce’! fortel0,00). (2.25)
To see this we will apply Corollary 2.2 with
pr=1, g=1, ap=1, ¢g=—c, by =0 and ry =c.

Clearly (2.1)-(2.7), (2.8) since f (¢, u) — f(¢,0) = sinhu > u for u > 0, (2.9)—(2.11) hold.
Corollary 2.2 guarantees that (2.24) has a solution y e C[0, 00) N C?(0, 00) with
0 < y(t) < w(r) for t € [0, 00). It is immediate from (2.13) (since g = 0) that

w(f) = ce™

for t € [0, o0).
Finally we remark that the solution y satisfies lim,_, o, y/(f) = 0. To see this we need only
check that (2.17)—(2.18) hold, but these are immediate.
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