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Introduction

In this monograph the theory of boundary triplets and their Weyl functions is
developed and applied to the analysis of boundary value problems for differential
equations and general operators in Hilbert spaces. Concrete illustrations by means
of weighted Sturm–Liouville differential operators, canonical systems of differential
equations, and multidimensional Schrödinger operators are provided. The abstract
notions of boundary triplets and Weyl functions have their roots in the theory of
ordinary differential operators; they appear in a slightly different context also in
the treatment of partial differential operators.

Before describing the contents of the monograph it may be helpful to explain
the ideas in this text by means of the following simple Sturm–Liouville differential
expression

L = − d2

dx2
+ V, (1)

where it is assumed that the potential V is a real measurable function. The context
in which this differential expression will be placed serves as an example as well as
a motivation. The first step is to associate with L some differential operators in
a suitable Hilbert space. Assume, e.g., that (1) is given on the positive half-line
R+ = (0,∞) and assume for simplicity that the real function V is bounded. Define
the linear space Dmax by

Dmax =
{
f ∈ L2(R+) : f, f ′ absolutely continuous, Lf ∈ L2(R+)

}
and define the minimal operator S associated with L by

Sf = −f ′′ + V f, domS =
{
f ∈ Dmax : f(0) = f ′(0) = 0

}
.

Then S is a closed densely defined symmetric operator L2(R+); in fact, it is the
closure of (the graph of) the restriction of S to C∞

0 (R+). It can be shown that the
adjoint operator S∗ is given by

S∗f = −f ′′ + V f, domS∗ = Dmax,

which is usually called the maximal operator associated with L. Roughly speaking,
S is a two-dimensional restriction of S∗ by means of the boundary conditions

© The Author(s) 2020
J. Behrndt et al., Boundary Value Problems, Weyl Functions,
and Differential Operators, Monographs in Mathematics 108,
https://doi.org/10.1007/978-3-030-36714-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36714-5_1&domain=pdf


2 Introduction

f(0) = 0 and f ′(0) = 0. Note that the maximal domain Dmax coincides with the
second-order Sobolev space H2(R+).

The notion of boundary triplet will now be explained in the present situation.
For this consider f, g ∈ domS∗ and observe that integration by parts leads to

(S∗f, g)L2(R+) − (f, S∗g)L2(R+) = −f ′(x)g(x)
∣∣∣∞
0
+f(x)g′(x)

∣∣∣∞
0

= f ′(0)g(0)− f(0)g′(0),

where it was used that the products f ′g and fg′ vanish at ∞. Inspired by the
above identity, define boundary mappings

Γ0,Γ1 : domS∗ → C, f �→ Γ0f := f(0) and f �→ Γ1f := f ′(0), (2)

so that for all f, g ∈ domS∗ one has

(S∗f, g)L2(R+) − (f, S∗g)L2(R+) = (Γ1f,Γ0g)C − (Γ0f,Γ1g)C, (3)

which is the so-called abstract Green identity in the definition of a boundary triplet;
note that on the right-hand side of (3) the scalar product in the (boundary) Hilbert
space C is used. This abstract Green identity is the key feature in the notion of
a boundary triplet and it is primarily responsible for the succesful functioning of
the whole theory. Note also that the combined boundary mapping

(Γ0,Γ1)
� : domS∗ → C2

is surjective, which is understood as a maximality condition in the sense that the
image space of the boundary maps is not unnecessarily large. Observe that one
has domS = ker Γ0 ∩ ker Γ1. The operator realizations A of the Sturm–Liouville
differential expression L which are intermediate extensions, that is, S ⊂ A ⊂ S∗,
can be described by boundary conditions expressed via the boundary maps. More
precisely, for τ ∈ C ∪ {∞} the operator Aτ is defined by

Aτf = S∗f, domAτ = ker (Γ1 − τΓ0), (4)

which in a more explicit form reads

Aτf = −f ′′ + V f, domAτ =
{
f ∈ Dmax : f ′(0) = τf(0)

}
;

the case τ =∞ is understood as the boundary condition ker Γ0, that is,

A∞f = −f ′′ + V f, domA∞ =
{
f ∈ Dmax : f(0) = 0

}
. (5)

In the definition (4) the quantity τ plays the role of a boundary parameter
that links the boundary values Γ0f = f(0) and Γ1f = f ′(0) of the functions
f ∈ domS∗, which determine the Dirichlet and Neumann boundary conditions,
respectively. The properties of the boundary parameter are directly connected with
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the properties of the corresponding operator Aτ ; in particular, the realization Aτ

is self-adjoint in L2(R+) if and only if τ ∈ R ∪ {∞}.
The next main goal is to motivate and illustrate the definition of the Weyl

function as an analytic object corresponding to a boundary triplet, which is indis-
pensable in the spectral theory of the intermediate extensions. For this, let λ ∈ C
and consider first the unique solutions ϕλ and ψλ of the boundary value problems

−ϕ′′
λ + V ϕλ = λϕλ, ϕλ(0) = 1, ϕ′

λ(0) = 0,

−ψ′′
λ + V ψλ = λψλ, ψλ(0) = 0, ψ′

λ(0) = 1,
(6)

and note that in general ϕλ, ψλ 	∈ L2(R+). It was shown by H. Weyl more than a
century ago that for λ ∈ C \ R there exists m(λ) ∈ C such that

x �→ fλ(x) = ϕλ(x) +m(λ)ψλ(x) ∈ L2(R+), (7)

and it turned out that the function m : C \ R → C is holomorphic and has a
positive imaginary part in the upper half-plane C+. This function and its interplay
with spectral theory were later studied extensively by E.C. Titchmarsh; hence the
frequently used terminology Titchmarsh–Weyl m-function. It plays a key role in
the spectral analysis of Sturm–Liouville differential operators. E.g., the (real) poles
of m coincide with the isolated eigenvalues of the self-adjoint Dirichlet operator
A∞ in (5) and the absolutely continuous spectrum of A∞ is, roughly speaking,
given by those λ ∈ R for which Imm(λ + i0) > 0. In a similar way one can
also characterize the continuous spectrum, the embedded eigenvalues, and exclude
singular continuous spectrum of A∞.

Observe that for each λ ∈ C \ R the function x �→ fλ(x) in (7) belongs to
domS∗ = Dmax and that, in fact, −f ′′

λ + V fλ = λfλ for λ ∈ C \ R; in other
words, fλ ∈ ker (S∗ − λ). Let {C,Γ0,Γ1} be the boundary triplet for S∗ with the
boundary mappings defined in (2). From the choice of ϕλ and ψλ in (6) it is clear
that

m(λ)Γ0fλ = m(λ)fλ(0) = m(λ) = Γ1fλ, fλ ∈ ker (S∗ − λ). (8)

In the general theory this identity is used as the definition of the Weyl function
corresponding to a boundary triplet. In other words, the Weyl function corre-
sponding to the boundary triplet {C,Γ0,Γ1} is defined as the function m that
satisfies (8) for all λ ∈ C \ R (and even for the possibly larger set of λ belonging
to the resolvent set of the self-adjoint Dirichlet operator A∞) and hence coincides
with the Titchmarsh–Weyl m-function introduced via (7). Here the Weyl function
maps Dirichlet boundary values of L2-solutions of the equation −f ′′

λ + V fλ = λfλ
onto the corresponding Neumann boundary values and therefore m(λ) acts for-
mally like a Dirichlet-to-Neumann map. Besides the Weyl function, one asso-
ciates to the boundary triplet {C,Γ0,Γ1} the so-called γ-field as the mapping
γ(λ) : C→ L2(R+) that assigns to a prescribed boundary value c ∈ C the solution
hλ ∈ domS∗ of the boundary value problem

−h′′
λ + V hλ = λhλ, Γ0hλ = hλ(0) = c.
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Since γ(λ)c = hλ = cfλ, it is clear that m(λ) = Γ1γ(λ). Moreover, one can show
with the help of the abstract Green identity that the adjoint γ(λ)∗ : L2(R+)→ C
is given by γ(λ)∗ = Γ1(A∞−λ)−1. The Weyl function and γ-field associated to the
boundary triplet {C,Γ0,Γ1} appear in the perturbation term in Krĕın’s formula

(Aτ − λ)−1 = (A∞ − λ)−1 + γ(λ)(τ −m(λ))−1γ(λ)∗,

where, for simplicity, it is assumed that Aτ is a self-adjoint realization of L as in (4)
corresponding to some boundary parameter τ ∈ R and λ ∈ ρ(Aτ )∩ρ(A∞). Krĕın’s
formula in this particular case provides a description of the resolvent difference of
Aτ and the fixed self-adjoint extension A∞. It is important to note that γ(λ) and
γ(λ)∗ in the perturbation term provide a link between the original Hilbert space
L2(R+) and the boundary space C, but do not affect the resolvents of A∞ and
Aτ . Therefore, if λ ∈ ρ(A0), then the singularities of the resolvent λ �→ (Aτ −λ)−1

are reflected in the singularities of the term λ �→ (τ −m(λ))−1 and vice versa. In
fact, the function λ �→ (τ −m(λ))−1 is connected with the spectrum of Aτ in the
same way as the function λ �→ m(λ) is connected with the spectrum of A∞.

There is another efficient technique to associate differential operators with the
differential expression L, which is based on the sesquilinear form t corresponding
to L,

t[f, g] = (f ′, g′)L2(R+) + (V f, g)L2(R+), (9)

defined on, e.g.,

D =
{
f ∈ L2(R+) : f absolutely continuous, f ′ ∈ L2(R+)

}
, (10)

and the first representation theorem for sesquilinear forms. In fact, one verifies
that t in (9)–(10) is a densely defined closed semibounded form in L2(R+), and
hence there exists a uniquely determined self-adjoint operator S1 with domS1 ⊂ D
such that

(S1f, g)L2(R+) = t[f, g], f ∈ domS1, g ∈ domD. (11)

Note that here the form domain D coincides with the first-order Sobolev space
H1(R+). It can be shown that the self-adjoint operator S1 is actually an extension
of the minimal operator S. Instead of the domain D in (10) one may consider
the sesquilinear form t on the smaller domain D0 = {f ∈ D : f(0) = 0}, which
also leads to a densely defined closed semibounded form in L2(R+). Again, via
the first representation theorem, there is a corresponding self-adjoint operator S0

with domS0 ⊂ D0 determined by

(S0f, g)L2(R+) = t[f, g], f ∈ domS0, g ∈ domD0. (12)

One verifies that the self-adjoint operator S1 in (11) coincides with the self-adjoint
realization of L determined by the boundary condition ker Γ1 and that the self-
adjoint operator S0 in (12) coincides with the self-adjoint realization of L deter-
mined by the boundary condition ker Γ0 in (4), that is, S1 corresponds to the
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boundary parameter τ = 0 and S0 is the Dirichlet operator corresponding to
the boundary parameter τ = ∞. Furthermore, in the situation discussed here
the self-adjoint operator S0 in (12) is the Friedrichs extension of the minimal (or
preminimal) operator associated to L.

The concept of boundary triplet is supplemented by the notion of boundary
pair, which is inspired by the form approach indicated above. More precisely, in
the present situation it turns out that {G,Λ}, where G = C and

Λ : D→ C, f �→ Λf := f(0), (13)

is a boundary pair for the minimal operator S (corresponding to S1). For this, one
has to ensure that the mapping Λ defined on the form domain of S1 is continuous
with respect to the Hilbert space topology generated by the closed form t on D,
and that kerΛ coincides with the form domain corresponding to the Friedrichs
extension of S. Note also that in the present situation the mapping Λ in (13) is an
extension of the boundary mapping Γ0 : domS∗ → C to the form domain D. With
the help of the boundary pair {C,Λ} one can parametrize all densely defined closed
semibounded forms corresponding to semibounded self-adjoint extensions of S via

tτ [f, g] = t[f, g] + (τΛf,Λg)C, f, g ∈ D, (14)

where τ ∈ R ∪ {∞}, and the case τ = ∞ corresponds to the boundary condition
Λf = 0 in D0. The boundary pair and the boundary triplet are connected via the
first Green identity

(S∗f, g)L2(R+) = t[f, g] + (Γ1f,Λg)C, f ∈ domS∗, g ∈ D.

The first Green identity makes it possible to identify the closed semibounded forms
in (14) with the corresponding self-adjoint operator realizations Aτ of L described
via boundary conditions in (4). For f ∈ domAτ and g ∈ D, the first Green identity
reduces to

(Aτf, g)L2(R+) = t[f, g] + (τΓ0f,Λg)C = t[f, g] + (τΛf,Λg)C,

and the expression (τΛf,Λg)C on the right-hand side can also be interpreted as a
sesquilinear form in the boundary space C. In this sense the theory of boundary
pairs for semibounded symmetric operators complements the theory of boundary
triplets in a natural way: it provides a description of the closed semibounded forms
corresponding to semibounded self-adjoint extensions of the minimal operator S.

Methods to treat Sturm–Liouville problems such as the one discussed above
go back to H. Weyl [758, 759, 760], whose papers on this topic appeared in
1910/1911; see also [761]. The interpretation of a Sturm–Liouville expression as an
operator in a Hilbert space can already be found in the 1932 book of M.H. Stone
[724]. In this monograph Stone gave an abstract treatment of operators in a Hilbert
space including the work of J. von Neumann [610, 611] from 1929 and 1932, who
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had also introduced the extension theory of densely defined symmetric operators
and found the formulas which carry his name: self-adjoint extensions correspond
to unitary mappings between the defect spaces. The von Neumann formulas are
abstract, since they are formulated in terms of the defect spaces of the symmetric
operator, and they needed to be related to concrete boundary value problems.
With this in mind another approach involving abstract boundary conditions was
developed by J.W. Calkin [187] in his 1937 Harvard doctoral dissertation, which
was written under the direction of Stone, who suggested the topic. Calkin was
also advised by von Neumann. Calkin’s work on boundary value problems did not
receive the attention it might have deserved. It seems that he never returned to
it; his later mathematical work was related to World War II and the Manhattan
project in Los Alamos.

Another way to deal with the self-adjoint extensions of a symmetric operator
is via Krĕın’s resolvent formula. The early background of this formula can be found
in the idea of perturbation of self-adjoint operators. Krĕın’s formula describes the
resolvent of a self-adjoint extension in terms of the resolvent of a fixed self-adjoint
extension and a perturbation term which involves a so-called Q-function and a
parameter describing the self-adjoint extension. The Q-function uniquely deter-
mines the underlying symmetry and the fixed self-adjoint extension, up to unitary
equivalence, and thus reflects their spectral properties. The original Krĕın formula
for equal finite defect numbers goes back to M.G. Krĕın [491, 492] in the middle
of the 1940s; only in 1965 it was finally established for the case of equal infinite
defect numbers by S.N. Saakyan [679]. In fact, the self-adjoint extensions were al-
lowed to be in a Hilbert space which contains the original Hilbert space as a closed
subspace. This type of extension appeared after 1940 in papers by M.G. Krĕın and
M.A. Năımark [605, 606, 607]. Later A.V. Štraus in the 1950s and 1960s described
such exit space extensions in the framework of the von Neumann formulas via holo-
morphic contractions between the defect spaces [731]. The Q-function in Krĕın’s
formula can be seen as an abstract analog of the Titchmarsh–Weyl function in the
above Sturm–Liouville example; it was extensively studied in the 1960s and 1970s
by M.G. Krĕın and H. Langer [497]–[504], also in the context of Pontryagin spaces.

From the early 1940s on E.C. Titchmarsh turned his attention to the singular
Sturm–Liouville equation. He put aside Weyl’s method of handling the Sturm–
Liouville problem on the basis of integral equations and also bypassed the use
of the general theory of linear operators in Hilbert spaces as in Stone’s book
[739]. Instead, Titchmarsh used contour integration and the Cauchy calculus of
residues, influenced by the work of E. Hilb [417, 418, 419], a contemporary of
Weyl. In this way he found a simple formula to determine the spectral measure;
this last formula was also discovered by K. Kodaira around the same time [469,
470]. A complete survey of the work of Titchmarsh, both for ordinary and partial
differential operators, is given in his two books on eigenfunction expansions [740,
741]. A different approach, followed by B.M. Levitan [541, 542], N. Levinson [539,
540], and K. Yosida [780, 781], is based on the fact that the resolvent operator of the
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self-adjoint realization of a singular differential operator can be approximated by
compact resolvents corresponding to Sturm–Liouville problems for proper closed
subintervals. Closely connected with this is an abstract approach to eigenfunction
expansions generated by differential operators that was introduced by Krĕın [495]
in the form of directing functionals.

Influenced by questions from mathematical physics, von Neumann posed the
following problem in the middle of the 1930s: can one extend a densely defined
semibounded symmetric operator to a self-adjoint operator with the same lower
bound? There were contributions by M.H. Stone [724] and K.O. Friedrichs [310]
(whose work was simplified by H. Freudenthal [309]). The Friedrichs extension
was the solution to von Neumann’s problem. For Sturm–Liouville operators the
Friedrichs extension was determined in various cases by K.O. Friedrichs [311] in
1935 and by F. Rellich [654] in 1950. Another semibounded extension, the so-called
Krĕın–von Neumann extension (going back to Stone) has particularly interesting
properties. It was Krĕın [493, 494] who established a complete theory of semi-
bounded extensions. In the middle of the 1950s this circle of ideas was carried
forward, and it inspired contributions by M.S. Birman [139], and also M.I. Vishik
[747], who was particularly interested in the case of elliptic partial differential
operators. Building on the work of J.L. Lions and E. Magenes [544] on Sobolev
spaces and trace mappings G. Grubb [352, 353] gave a characterization of all closed
extensions of a minimal elliptic operator by nonlocal boundary conditions in her
1966 Stanford doctoral dissertation, written under the direction of R.S. Phillips.

The context of symmetric operators which are densely defined was soon felt
to be too restrictive. Already in 1949 M.A. Krasnoselskĭı [490] described all self-
adjoint operator extensions of a not necessarily densely defined symmetric oper-
ator. The appearance of the work on linear relations by R. Arens [42] in 1961
made all the difference. B.C. Orcutt [619] in a 1969 dissertation written under
the direction of J. Rovnyak treated the spectral theory of canonical systems of
differential equations in terms of linear relations. Subsequently, E.A. Coddington
[202] in 1973 gave a description of all self-adjoint relation extensions of a sym-
metric relation. In fact, it turned out that many of the earlier results concerning
extensions of symmetric operators could be put in the framework of relations. The
new context made it also possible to consider nonstandard boundary conditions
(involving integrals, for instance). Furthermore, in terms of relations the Krĕın–
von Neumann extension of a semibounded relation could be simply expressed in
terms of the Friedrichs extension. There has been an abundance of papers devoted
to linear relations in Hilbert spaces, and later also to linear relations in indefinite
inner product spaces.

In the middle of the 1970s boundary triplets were introduced independently
by V.M. Bruk [176] and A.N. Kochubei [466] as a convenient tool for the descrip-
tion of boundary values of abstract Hilbert space operators; they applied them
to, e.g., Sturm–Liouville operators with an operator-valued potential. The main
feature is that under a given boundary triplet there is a natural correspondence
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between self-adjoint extensions of a symmetric operator and self-adjoint relations
in the parameter space. An overview of the theory with applications to differential
operators is contained in the 1984 book by M.L. Gorbachuk and V.I. Gorbachuk
[346]. Around the same time V.A. Derkach and M.M. Malamud [244, 246] con-
tinued the work on boundary triplets by associating the notion of Weyl function
to a boundary triplet; their later work was written in the context of symmetric
operators that are not necessarily densely defined. The Weyl function is a very
useful tool in spectral analysis; it turns out to be a special choice of a Q-function
(which is uniquely determined by the boundary triplet) and hence the analytic
properties and the limit behavior of the Weyl function towards the real line reflect
the spectral properties of the self-adjoint extensions. Broadly speaking, boundary
triplets and Weyl functions placed the work of Titchmarsh, and others, in a more
abstract setting while retaining the flavor of concrete boundary value problems.
The link to form methods and the Birman–Krĕın–Vishik approach to semibounded
self-adjoint extensions is made with the help of so-called boundary pairs. The ori-
gin of the concept of boundary pair lies in the work of Krĕın and Vishik; it was
formalized and studied by V.E. Lyantse and O.G. Storozh [552] in the early 1980s.
Its connection with boundary triplets was later established by Yu.M. Arlinskĭı [44].

It is the main objective of this monograph to present the theory of boundary
triplets and Weyl functions in an easily accessible and self-contained manner. The
exposition is detailed and kept as simple as possible; the reader is only assumed to
be familiar with the basic principles of functional analysis and some fundamentals
of the spectral theory of self-adjoint operators in Hilbert spaces. The monograph
is divided into the abstract part Chapters 1–5, the applied part Chapters 6–8, and
Appendices A–D. The heart of the monograph is Chapter 2 and it is complemented
by Chapter 5; for a rough idea on the general techniques the reader may first look
through these chapters and examine one of the applications (which may also be
read independently) afterwards: Sturm–Liouville operators, canonical systems, or
Schrödinger operators – up to personal taste and preferences.

The monograph opens in Chapter 1 with a detailed introduction to the theory
of linear operators and relations in Hilbert spaces. A large part of this material is
preparatory and may be used for reference purposes in the rest of the text.
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The heart of the matter in this book is contained in Chapter 2, where bound-
ary value problems are presented as extension problems of symmetric operators
or relations. Here the notions of boundary triplets and their Weyl functions are
introduced, and the fundamental properties of these objects are provided. Par-
ticular attention is paid to the question of existence and uniqueness of boundary
triplets. Closely connected with a boundary triplet is Krĕın’s resolvent formula for
canonical extensions and self-adjoint extensions in larger Hilbert spaces.

Chapter 3 is a continuation and further refinement of the techniques in the
previous chapter. Here the main objective is to give a detailed description of the
complete spectrum of the self-adjoint extensions of a symmetric relation in terms
of the Weyl function. The connection between the limit properties of the Weyl
function and the spectrum of the self-adjoint extension is explained via the Borel
transform of the spectral measure.

Most of the topics in Chapter 4 are supplementary to the main text as they
are concerned with a certain type of inverse problem. More precisely, it will be
shown that any (uniformly strict) operator-valued Nevanlinna function can be
realized as the Weyl function corresponding to a boundary triplet for a symmetric
relation in a reproducing kernel Hilbert model space. Of independent interest is
the discussion around the orthogonal coupling of boundary triplets with a view to
exit space extensions.

Another central theme in this monograph is presented in Chapter 5, where
the important case of semibounded symmetric relations is treated in more detail;
here the general methods from Chapter 2 are further developed. The chapter starts
with an introduction to closed semibounded forms and the corresponding represen-
tation theorems, and continues with the Friedrichs extension, the so-called Krĕın
type extensions, and the Krĕın–von Neumann extension. The ultimate result is a
description of the semibounded self-adjoint extensions of a semibounded relation
via the notions of a boundary triplet and a boundary pair; this establishes the
connection with the Krĕın–Birman–Vishik theory.

The general theory is applied to boundary value problems for differential
operators in Chapters 6–8 in three different situations. In each case the presen-
tation follows a similar scheme: After the necessary preparations to keep these
chapters mostly self-contained, explicit boundary triplets and Weyl functions for
the particular operators or relations under consideration, are provided. A further
spectral analysis, depending on the nature of problem is presented. The class of
Sturm–Liouville operators that is discussed in Chapter 6 covers also the example
given earlier in this introduction. A good deal of preparation is needed to construct
closed semibounded forms and corresponding boundary pairs in the singular situ-
ation. Chapter 7 deals with 2 × 2 canonical systems of differential equations and
also illustrates the role of linear relations in the analysis of such systems. Finally,
in Chapter 8 Schrödinger operators on bounded domains Ω ⊂ Rn are treated,
where one of the main challenges is to construct Dirichlet and Neumann traces on
the maximal domain.
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For the reader’s convenience a number of appendices have been added: they
contain material concerning Nevanlinna functions and some useful elementary ob-
servations on operators and subspaces in Hilbert spaces. At the end of the text a
few notes and some (historical) comments, as well as a list of recent and earlier
references, can be found. Here the reader is also referred to some recent literature
for topics that go beyond this monograph.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.



Chapter 1

Linear Relations in Hilbert Spaces

A linear relation from one Hilbert space to another Hilbert space is a linear sub-
space of the product of these spaces. In this chapter some material about such
linear relations is presented and it is shown how linear operators, whether densely
defined or not, fit in this context. The basic terminology is provided in Section 1.1
and afterwards the spectrum, resolvent set, the adjoint, and operator decompo-
sitions of linear relations are discussed in Section 1.2 and Section 1.3. Linear
relations with special properties, such as symmetric, self-adjoint, dissipative, and
accumulative relations, are investigated in Sections 1.4, 1.5, and 1.6. More details
on self-adjoint and semibounded relations can be found in Chapter 3 and Chap-
ter 5. Intermediate extensions and the classical von Neumann formulas describing
self-adjoint extensions of symmetric operators and relations can be found in Sec-
tion 1.7. In Section 1.8 it is shown that there is a natural indefinite inner product
by means of which the notion of adjoint relation corresponds to the notion of or-
thogonal companion. Strong graph convergence and strong resolvent convergence
of sequences of linear relations are discussed in Section 1.9 and parametric repre-
sentations of linear relations are studied in Section 1.10. Finally, in Section 1.11
some useful properties of a resolvent-type operator of a linear relation are given,
and in Section 1.12 the class of so-called Nevanlinna families, a natural extension
of the class of Nevanlinna functions (see Appendix A) is studied.

1.1 Elementary facts about linear relations

Let H and K be Hilbert spaces over C. The Hilbert space inner product and
the corresponding norm are usually denoted by (·, ·) and ‖ · ‖, respectively, and
sometimes a subindex will be used in order to avoid confusion. The inner product
is linear in the first entry and antilinear in the second entry. The orthogonal
complement will be denoted by ⊥, sometimes a subindex will be used to indicate
the relevant space. The product H × K will often be regarded as a Hilbert space
with the standard inner product (·, ·)H+(·, ·)K and all topological notions in H×K

© The Author(s) 2020
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are understood with respect to the topology induced by the corresponding norm.
The product space H × K will also be written as H ⊕ K, and H and K are then
regarded as closed linear subspaces in H⊕ K which are orthogonal to each other.

A linear subspace of H × K is called a linear relation from H to K. If H is
a linear relation from H to K the elements ĥ ∈ H will in general be written as
pairs {h, h′} with components h ∈ H and h′ ∈ K. If K = H one speaks simply of a
linear relation in H. After this introductory section the adjective linear is usually
omitted and one speaks of relations when linear relations are meant.

The domain, range, kernel, and multivalued part of a linear relation H from
H to K are defined by

domH =
{
h ∈ H : {h, h′} ∈ H for some h′ ∈ K

}
,

ranH =
{
h′ ∈ K : {h, h′} ∈ H for some h ∈ H

}
,

kerH =
{
h ∈ H : {h, 0} ∈ H

}
,

mulH =
{
h′ ∈ K : {0, h′} ∈ H

}
,

respectively. The closure of the linear space domH will be denoted by domH and,
likewise, the closure of the linear space ranH will be denoted by ranH. Note that
each linear operator H from H to K is a linear relation if the operator is identified
with its graph,

H =
{{h,Hh} : h ∈ domH

}
,

and that a linear relation H is (the graph of) an operator if and only if the
multivalued part of H is trivial, mulH = {0}. The inverse H−1 of a linear relation
H from H to K is defined by

H−1 =
{{h′, h} : {h, h′} ∈ H

}
,

so that H−1 is a linear relation from K to H. In the next lemma some obvious
facts concerning the inverse relation are collected.

Lemma 1.1.1. Let H be a linear relation from H to K. Then the following identities
hold:

domH−1 = ranH, ranH−1 = domH,

kerH−1 = mulH, mulH−1 = kerH.

There is a linear structure on the collection of linear relations from H to K.
For linear relations H and K from H to K the componentwise sum is the linear
relation from H to K defined by

H +̂ K =
{{h+ k, h′ + k′} : {h, h′} ∈ H, {k, k′} ∈ K

}
, (1.1.1)

while the product λH of H with a scalar λ ∈ C is the linear relation from H to K
defined by

λH =
{{h, λh′} : {h, h′} ∈ H

}
.
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Note that the componentwise sum H +̂ K is the linear span of the graphs of H
and K, and

dom (H +̂ K) = domH + domK, ran (H +̂ K) = ranH + ranK.

Likewise, if λ ∈ C, one has

domλH = domH and for λ 	= 0 ranλH = ranH.

Note that by definition 0H = OdomH , where OdomH stands for the zero operator
on domH. It is useful to note that

(H +̂ K)−1 = H−1 +̂ K−1, (λH)−1 =
1

λ
H−1, λ 	= 0.

Let H and K be linear relations from H to K. If H ⊂ K, then H is called a
restriction of K and K is an extension of H.

Proposition 1.1.2. Let H and K be linear relations from H to K and assume that
H ⊂ K. Then

domH = domK ⇔ K = H +̂
({0} ×mulK

)
, (1.1.2)

and, analogously,

ranH = ranK ⇔ K = H +̂
(
kerK +̂ {0}). (1.1.3)

Proof. Note that H ⊂ K is equivalent to H−1 ⊂ K−1. Hence, in order to prove
(1.1.3) one just applies (1.1.2) with H and K replaced by H−1 and K−1, respec-
tively. Thus it suffices to show (1.1.2). The implication (⇐) is trivial. To show
(⇒), observe that H ⊂ K yields H +̂ ({0} ×mulK) ⊂ K and hence it suffices to
show that K ⊂ H +̂ ({0} ×mulK). Let {h, h′} ∈ K. Since h ∈ domK = domH,
there exists an element k′ ∈ K such that {h, k′} ∈ H and from H ⊂ K it follows
that also {h, k′} ∈ K. Hence, with ϕ′ = h′ − k′ one has

{h, h′} = {h, k′}+ {0, ϕ′},

and thus {0, ϕ′} ∈ K, i.e., ϕ′ ∈ mulK. �

Corollary 1.1.3. Let H and K be linear relations from H to K and assume that
H ⊂ K. Then

domH = domK and mulH = mulK ⇔ H = K, (1.1.4)

and, analogously,

ranH = ranK and kerH = kerK ⇔ H = K. (1.1.5)
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Proof. It suffices to show (1.1.4), as (1.1.5) follows by taking inverses in (1.1.4).
Clearly, the implication (⇐) is trivial. For the implication (⇒) apply (1.1.2). Then
domH = domK and mulH = mulK give successively

K = H +̂
({0} ×mulK

)
= H +̂

({0} ×mulH
) ⊂ H,

which together with H ⊂ K implies H = K. �

Let H and K be linear relations from H to K. The usual (operatorwise) sum
H +K is defined by

H +K =
{{h, h′ + h′′} : {h, h′} ∈ H, {h, h′′} ∈ K

}
,

where dom (H+K) = domH ∩domK. Note that mul (H+K) = mulH+mulK.
If H is a linear relation in H, then for λ ∈ C the sum H +λI, where I denotes the
identity operator in H, is usually simply written as H + λ and has the form

H + λ =
{{h, h′ + λh} : {h, h′} ∈ H

}
,

with dom (H + λ) = domH. Note that mul (H + λ) = mulH.

Let H be a linear relation from H to K and let K be a linear relation from K
to G, where G is another Hilbert space. Then the product KH of K and H is the
linear relation from H to G defined by

KH =
{{h, h′′} : {h, h′} ∈ H, {h′, h′′} ∈ K

}
.

Note that for λ ∈ C the notation λH agrees with (λI)H, where I denotes the
identity operator in K. It is straightforward to check that (KH)−1 = H−1K−1.

The following lemma shows an important feature of sums and products of
linear relations. The notation IM stands for the identity operator on the linear
subspace M, while OM stands for the zero operator on M.

Lemma 1.1.4. Let H be a linear relation from H to K. Then

H + (−H) = OdomH +̂
({0} ×mulH

)
, (1.1.6)

where the sum is direct. Moreover, the identities

HH−1 = IranH +̂
({0} ×mulH

)
(1.1.7)

and
H−1H = IdomH +̂

({0} × kerH
)

(1.1.8)

hold, and both sums are direct.

Proof. First the identity (1.1.6) will be shown. For an element on the left-hand
side of (1.1.6) one has

{h, h′ − h′′} = {h, 0}+ {0, h′ − h′′},
where {h, h′}, {h, h′′} ∈ H, so that {h, 0} ∈ OdomH and {0, h′−h′′} ∈ {0}×mulH.
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Conversely, let {h, k} ∈ OdomH +̂ ({0}×mulH). Then {h, k} = {h, 0}+{0, k}
with h ∈ domH and k ∈ mulH. Hence, {h, h′} ∈ H for some h′ ∈ K so that also
{h, h′ − k} ∈ H. Consequently,

{h, k} = {h, h′ − (h′ − k)} ∈ H + (−H),

which completes the proof of (1.1.6).

The assertion (1.1.8) follows from (1.1.7) by replacing H with H−1. Hence,
only the identity in (1.1.7) has to be proved. By definition, the linear relation
HH−1 is given by

HH−1 =
{{h, h′′} : {h, h′} ∈ H−1, {h′, h′′} ∈ H

}
.

Therefore, if {h, h′′} ∈ HH−1 with some {h, h′} ∈ H−1 and {h′, h′′} ∈ H, then

{h, h′′} = {h, h}+ {0, h′′ − h}.

As {h′, h} ∈ H, it follows that h ∈ ranH and

{0, h′′ − h} = {h′, h′′} − {h′, h} ∈ H,

i.e., h′′ − h ∈ mulH. Thus, {h, h′′} ∈ IranH +̂ ({0} ×mulH).

Conversely, given an element {h, h} + {0, k} ∈ IranH +̂ ({0} × mulH) with
h ∈ ranH and k ∈ mulH, there exists h′ ∈ domH such that {h′, h} ∈ H or,
equivalently, {h, h′} ∈ H−1. Since {0, k} ∈ H it follows {h′, h + k} ∈ H, so that
{h, h+ k} ∈ HH−1. �

Thus far the Hilbert space structure of the spaces has not been used; only the
linear space structure played a role. Now an interpretation of the componentwise
sum H +̂ K in (1.1.1) will be given as an orthogonal componentwise sum. Let H1,
H2, K1, and K2 be Hilbert spaces and let H = H1⊕H2 and K = K1⊕K2. Here and
in the following H1 and H2 are viewed as closed linear subspaces of H, and K1 and
K2 are viewed as closed linear subspaces of K. Assume that H is a linear relation
from H1 to K1 and that K is a linear relation from H2 to K2. The orthogonal sum
H ⊕̂ K is defined as

H ⊕̂ K =
{{h+ k, h′ + k′} : {h, h′} ∈ H, {k, k′} ∈ K

}
.

In other words, H ⊕̂ K is just the componentwise sum H +̂ K of H and K, when
these linear relations H and K are interpreted as linear relations from H = H1⊕H2

to K = K1 ⊕ K2. If H = K and H1 = K1, H2 = K2, then this definition implies

(H ⊕̂ K)2 = H2 ⊕̂ K2. (1.1.9)

A linear relation H from H to K is called bounded if there is a constant
C ≥ 0 such that ‖h′‖K ≤ C‖h‖H for all {h, h′} ∈ H. In this case it is clear that
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mulH = {0}, so that H is a bounded operator. Thus, there is no distinction be-
tween bounded linear relations or bounded linear operators. The set of everywhere
defined bounded linear operators from H to K will be denoted by B(H,K). If H = K
the notation B(H) is used instead of B(H,H).

A linear relation from H to K is called closed if it is closed as a linear subspace
of H × K. The closure H of the linear relation H as a linear subspace of H × K
is itself a closed linear relation. It follows that mulH ⊂ mulH; if mulH = {0}
implies that mulH = {0}, then the operator H is called closable (as an operator).
The following useful observations are easily verified.

Lemma 1.1.5. Let H be a linear operator from H to K. Then the following state-
ments hold:

(i) Let H be closable. If domH is closed, then H is closed.

(ii) Let H be bounded. Then H is closable.

(iii) Let H be bounded. Then domH is closed if and only if H is closed.

A linear relation H from H to K is called contractive if ‖h′‖K ≤ ‖h‖H for
all {h, h′} ∈ H and it is called isometric if ‖h′‖K = ‖h‖H for all {h, h′} ∈ H. In
each case mulH = {0} and H is an operator which is bounded and thus closable;
cf. Lemma 1.1.5. Hence, there is no distinction between contractive relations or
operators. Likewise, there is no distinction between isometric relations or opera-
tors. Clearly, the closure of a contractive or isometric operator is again contractive
or isometric. Recall that a contraction H has the following useful property: if
‖Hk‖K = ‖k‖H for some k ∈ domH, then

(Hh,Hk)K = (h, k)H for all h ∈ domH. (1.1.10)

To see this, note that for all λ ∈ C

0 ≤ ‖h+ λk‖2H − ‖H(h+ λk)‖2K
= ‖h‖2H − ‖Hh‖2K − 2Re

(
λ [(Hh,Hk)K − (h, k)H]

)
,

which implies that (1.1.10) holds.

For many combinations of linear relations the closedness is preserved. For
instance, if H is a closed linear relation from H to K, then H−1 is a closed linear
relation from K to H. Likewise, for λ 	= 0 the product λH is closed. If H and K
are closed linear relations from H to K, then the componentwise sum H +̂ K is
not necessarily closed (see Appendix C), while the orthogonal componentwise sum
H ⊕̂ K of H and K is closed. The sum H + K of two closed linear relations H
and K is not necessarily closed. However, in the special case that H is closed and
K ∈ B(H,K) the sum

H +K =
{{h, h′ +Kh} : {h, h′} ∈ H

}
is also closed. In particular, the linear relation H in H is closed if and only if H+λ
is closed for some, and hence for all λ ∈ C. The product KH of closed linear
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relations K and H is not necessarily closed. However, in the special case that K
is closed and H ∈ B(H,K) the product

KH =
{{h, h′′} : {Hh, h′′} ∈ K

}
is also closed.

The above material will be used throughout the text. The rest of this section
will be devoted to two specific items, namely, a discussion of questions around the
so-called resolvent identity, and one involving Möbius transformations of linear
relations.

For a linear relation H in H and λ ∈ C, the resolvent relation is defined by
(H − λ)−1. Clearly, H is closed if and only if (H − λ)−1 is closed for some, and
hence for all λ ∈ C. The resolvent relation has a number of properties which will
now be explored. First the λ-independence of ker (H − λ)−1 and mul (H − λ) is
stated.

Lemma 1.1.6. Let H be a linear relation in H and let λ ∈ C. Then

ker (H − λ)−1 = mul (H − λ) = mulH.

For practical purposes it is worthwhile mentioning the analogs of (1.1.7) and
(1.1.8) for the resolvent relation of H. Using Lemma 1.1.6 one sees that

(H − λ)(H − λ)−1 = Iran (H−λ) +̂
({0} ×mulH

)
,

and, likewise,

(H − λ)−1(H − λ) = IdomH +̂
({0} × ker (H − λ)

)
.

In particular, when ker (H − λ) = {0} for some λ ∈ C, one has

(H − λ)−1(H − λ) = IdomH .

The resolvent identity in the next proposition involves a combination of the sum
and the product of the resolvent relations (H − λ)−1 and (H − μ)−1.

Proposition 1.1.7. Let H be a linear relation in H and let λ, μ ∈ C. Then

(H − λ)−1 − (H − μ)−1 = (H − λ)−1(λ− μ)(H − μ)−1. (1.1.11)

If ker (H − λ) = {0} and ker (H − μ) = {0}, then (H − λ)−1 and (H − μ)−1 are
linear operators defined on ran (H−λ) and ran (H−μ), respectively, with the same
kernel mulH. Moreover, if λ 	= μ, then (1.1.11) may be written as

(H − λ)−1 − (H − μ)−1 = (λ− μ)(H − λ)−1(H − μ)−1. (1.1.12)
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Proof. For the inclusion (⊂) in (1.1.11) let

{h, h′ − h′′} ∈ (H − λ)−1 − (H − μ)−1,

with {h, h′} ∈ (H − λ)−1 and {h, h′′} ∈ (H − μ)−1. This gives

{h′, h+ λh′} ∈ H and {h′′, h+ μh′′} ∈ H,

which shows {h′−h′′, λh′−μh′′} ∈ H, and thus {h′−h′′, (λ−μ)h′′} ∈ H −λ and{
(λ− μ)h′′, h′ − h′′} ∈ (H − λ)−1.

Since {h, h′′} ∈ (H − μ)−1, one sees that {h, (λ − μ)h′′} ∈ (λ − μ)(H − μ)−1, as
{h′′, (λ− μ)h′′} ∈ (λ− μ)I. Hence, the element {h, h′ − h′′} belongs to the linear
relation (H − λ)−1(λ− μ)(H − μ)−1, which shows the inclusion.

For the inclusion (⊃) in (1.1.11), let {h, h′} ∈ (H − λ)−1(λ− μ)(H − μ)−1. Then
by definition there exists k ∈ H such that

{h, k} ∈ (H − μ)−1 and {(λ− μ)k, h′} ∈ (H − λ)−1,

as {k, (λ − μ)k} ∈ (λ − μ)I. In addition, it is clear from {k, h} ∈ H − μ that
{k, h+ (μ− λ)k} ∈ H − λ and

{h+ (μ− λ)k, k} ∈ (H − λ)−1.

Thus, it follows that {h, h′ + k} ∈ (H − λ)−1. Hence, {h, h′} = {h, h′ + k − k}
belongs to (H − λ)−1− (H −μ)−1, which shows the inclusion. This completes the
proof of (1.1.11). If λ 	= μ this leads to (1.1.12).

The remaining statements follow directly from Lemma 1.1.6. �

Note that in general the identity in (1.1.12) is not valid for λ = μ. In this
case the right-hand side of (1.1.12) clearly equals Odom (H−λ)−2 , while by (1.1.6)

the left-hand side equals Odom (H−λ)−1 +̂ ({0}×mul (H−λ)−1). Hence, in (1.1.12)
the right-hand side is contained in the left-hand side.

The following result shows that every linear relation H can be represented by
means of a pair of operators expressed in terms of its resolvent operator (H−λ)−1.
This kind of representation of a linear relation will be considered in this text in
various situations.

Lemma 1.1.8. Let H be a linear relation in H and assume that ker (H − λ) = {0}
for some λ ∈ C. Then

H =
{{(H − λ)−1k, (I + λ(H − λ)−1)k} : k ∈ ran (H − λ)

}
, (1.1.13)

where the right-hand side is well defined since dom (H − λ)−1 = ran (H − λ).
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Proof. Denote the linear relation on the right-hand side of (1.1.13) by K. To see
that H ⊂ K, let {h, h′} ∈ H. Then {h′ − λh, h} ∈ (H − λ)−1 and from the
assumption mul (H − λ)−1 = ker (H − λ) = {0} it follows that

h = (H − λ)−1(h′ − λh).

Therefore,

{h, h′} = {h, h′ − λh+ λh
}

=
{
(H − λ)−1(h′ − λh), (I + λ(H − λ)−1)(h′ − λh)

}
,

where h′−λh ∈ ran (H−λ). Hence, {h, h′} ∈ K, so that H ⊂ K. Now the equality
follows from Corollary 1.1.3, since

domK = ran (H − λ)−1 = dom (H − λ) = domH,

while
mulK = ker (H − λ)−1 = mul (H − λ) = mulH.

This completes the proof. �

Another algebraic identity involving the resolvent relations (H − λ)−1 and
(H − μ)−1 is contained in the next lemma; see also Corollary 1.2.8 in the next
section. The formula in the lemma can also be checked via the Möbius transform
to be defined below.

Lemma 1.1.9. Let H be a linear relation in H and let λ, μ ∈ C. Then(
(I + (λ− μ)(H − λ)−1

)−1
= I + (μ− λ)(H − μ)−1. (1.1.14)

Proof. It is easy to see that

I + (λ− μ)(H − λ)−1 =
{{h′ − λh, h′ − μh} : {h, h′} ∈ H

}
,

and by symmetry

I + (μ− λ)(H − μ)−1 =
{{h′ − μh, h′ − λh} : {h, h′} ∈ H

}
.

This yields (1.1.14). �

Next, Möbius transformations of linear relations will be defined. For a Hilbert
space H and a 2× 2 matrix

M =

(
α β
γ δ

)
, α, β, γ, δ ∈ C, (1.1.15)

the scalar Möbius transform M in H2 = H× H is given by

M : H2 → H2, {h, h′} �→ {αh+ βh′, γh+ δh′}.
The meaning of M, either as a matrix or as a transformation, will be clear from
the context. The scalar Möbius transform of a linear relation is defined as follows.
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Definition 1.1.10. Let H be a linear relation in H and let M be a 2× 2 matrix as
in (1.1.15). Then the scalar Möbius transform of H is the linear relation M[H] in
H defined by

M[H] =
{{αh+ βh′, γh+ δh′} : {h, h′} ∈ H

}
. (1.1.16)

Note that the domain and range of the scalar Möbius transform M[H] are
given by

domM[H] =
{
αh+ βh′ : {h, h′} ∈ H

}
,

ranM[H] =
{
γh+ δh′ : {h, h′} ∈ H

}
.

If the 2× 2 matrix M in Definition 1.1.10 is multiplied by a constant η ∈ C \ {0},
then the corresponding Möbius transform M[H] and (ηM)[H] coincide.

Let M and N be 2× 2 matrices. Then the identity

N[M[H]] = (N ◦M)[H] (1.1.17)

holds for any linear relation H in H. If detM 	= 0, then

M−1 =
1

αδ − βγ

(
δ −β
−γ α

)
and the Möbius transform corresponding to M−1 is given by

M−1[H] =
{{δh− βh′,−γh+ αh′} : {h, h′} ∈ H

}
.

Thus, for any linear relation H one has

M−1[M[H]] = H = M[M−1[H]];

cf. (1.1.17). Note that in general M−1[H] and M[H]−1 are different relations. In
the case detM 	= 0 it clearly follows that

M[H] is closed if and only if H is closed. (1.1.18)

Observe that the linear relations λH, H − λ, H−1 correspond to the Möbius
transforms determined by the following matrices(

1 0
0 λ

)
,

(
1 0
−λ 1

)
,

(
0 1
1 0

)
,

respectively. Thus, for instance, the linear relations I + (λ − μ)(H − λ)−1 and
I + (μ − λ)(H − μ)−1 correspond to Möbius transforms of H determined by the
matrices (

1 0
1 1

)(
1 0
0 λ− μ

)(
0 1
1 0

)(
1 0
−λ 1

)
=

(−λ 1
−μ 1

)
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and (
1 0
1 1

)(
1 0
0 μ− λ

)(
0 1
1 0

)(
1 0
−μ 1

)
=

(−μ 1
−λ 1

)
,

respectively. This also confirms the identity (1.1.14).

For a 2× 2 matrix M as in (1.1.15) with detM 	= 0 define the function

λ �→M[λ] =
γ + λδ

α+ λβ
, α+ λβ 	= 0. (1.1.19)

Since the linear relation M[H]−M[λ] corresponds to the matrix(
1 0

−M[λ] 1

)(
α β
γ δ

)
=

(
α β

−λ detM
α+λβ

detM
α+λβ

)
,

one sees from (1.1.16) that for α+ λβ 	= 0,

M[H]−M[λ] =
{{

αh+ βh′, detM
α+λβ (h

′ − λh)
}
: {h, h′} ∈ H

}
.

This identity yields, in particular, for α+ βλ 	= 0, that

ker (H − λ) = ker
(
M[H]−M[λ]

)
,

ran (H − λ) = ran
(
M[H]−M[λ]

)
.

(1.1.20)

If, in addition, β 	= 0, then it follows from (1.1.16) that

mulM[H] = ker (H + αβ−1), mulH = ker
(
M[H]− δβ−1

)
,

and in the case β = 0 it is easy to see that mulM[H] = mulH.

Proposition 1.1.11. Let H be a linear relation in H and let M be a 2 × 2 matrix
as in (1.1.15) with detM 	= 0. Then for α+ λβ 	= 0(

M[H]−M[λ]
)−1

=
(α+ λβ)β

detM
+

(α+ λβ)2

detM
(H − λ)−1. (1.1.21)

Proof. Use the abbreviation Δ = detM. It suffices to see that the left-hand side
corresponds to the matrix(

0 1
1 0

)(
1 0

−M[λ] 1

)(
α β
γ δ

)
=

( −λΔ
α+λβ

Δ
α+λβ

α β

)
,

while the right-hand side corresponds to the matrix(
1 0

(α+λβ)β
Δ 1

)(
1 0

0 (α+λβ)2

Δ

)(
0 1
1 0

)(
1 0
−λ 1

)
=

( −λ 1
α(α+λβ)

Δ
β(α+λβ)

Δ

)
.

Since these matrices coincide up to a nonzero multiplicative constant the assertion
follows. �
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It is clear that the following useful consequence of Proposition 1.1.11 is ob-
tained by means of the special choice

M =

(
0 1
1 0

)
,

so that detM = −1, M[H] = H−1, and M[λ] = 1/λ, λ 	= 0.

Corollary 1.1.12. Let H be a linear relation in H and let λ ∈ C \ {0}. Then

(H−1 − λ−1)−1 = −λ− λ2 (H − λ)
−1

. (1.1.22)

Next the Cayley transform and inverse Cayley transform of a linear rela-
tion will be introduced. These special Möbius transforms will be used later in
Sections 1.5, 1.6, and 1.7.

Definition 1.1.13. LetH and V be linear relations in H and let μ ∈ C \ R. Then the
Cayley transform Cμ of H and the inverse Cayley transform Fμ of V are defined
by

Cμ[H] =
{{h′ − μh, h′ − μh} : {h, h′} ∈ H

}
,

Fμ[V ] =
{{k − k′, μk − μk′} : {k, k′} ∈ V

}
.

(1.1.23)

Notice that the domain and range of the Cayley transform Cμ and the inverse
Cayley transform Fμ are given by

domCμ[H] = ran (H − μ), ranCμ[H] = ran (H − μ),

domFμ[V ] = ran (I − V ), ranFμ[V ] = ran (μ− μV ).
(1.1.24)

It is clear that the Cayley transform Cμ and the inverse Cayley transform Fμ

are Möbius transforms corresponding to the matrices

Cμ =

(−μ 1
−μ 1

)
and Fμ =

(
1 −1
μ −μ

)
= (μ− μ)C−1

μ , (1.1.25)

where detCμ = μ− μ was used. Note also that

Cμ[λ] =
λ− μ

λ− μ
, λ 	= μ.

Thus, Proposition 1.1.11 leads to the following result.

Corollary 1.1.14. Let H be a linear relation in H and let μ ∈ C \ R. Then
(
Cμ[H]− Cμ[λ]

)−1
=

λ− μ

μ− μ
+

(λ− μ)2

μ− μ
(H − λ)−1, λ 	= μ. (1.1.26)
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1.2 Spectra, resolvent sets, and points of regular type

The resolvent set, spectrum, point, continuous, and residual spectrum, and the
points of regular type of a linear relation or operator are defined. A priori it is not
assumed that the linear relation is closed. Here and in the rest of the text linear
relations will be referred to simply as relations and linear subspaces as subspaces.

Definition 1.2.1. Let H be a relation in H. Then λ ∈ C is said to be a point of
regular type of H if (H − λ)−1 is a (in general not everywhere defined) bounded
operator. The set of points of regular type of H is denoted by γ(H).

Some straightforward consequences of Definition 1.2.1 are presented in the
next lemma.

Lemma 1.2.2. Let H be a relation in H. Then λ ∈ γ(H) if and only if there exists
a positive constant c, depending on λ, such that

‖h‖ ≤ c‖h′ − λh‖, {h, h′} ∈ H. (1.2.1)

Moreover, if γ(H) 	= ∅, then H is closed if and only if ran (H − λ) is closed for
some, and hence for all λ ∈ γ(H).

Proof. Assume that λ ∈ γ(H), so that (H − λ)−1 is a bounded operator. Let
{h, h′} ∈ H; then {h′ − λh, h} ∈ (H − λ)−1 and

‖h‖ = ‖(H − λ)−1(h′ − λh)‖ ≤ c‖h′ − λh‖,
which gives (1.2.1). Conversely, assume that (1.2.1) holds. To see that (H − λ)−1

is a bounded operator let {f, f ′} ∈ (H − λ)−1. Then {f, f ′} = {h′ − λh, h} for
some {h, h′} ∈ H and (1.2.1) shows ‖f ′‖ ≤ c‖f‖ for all {f, f ′} ∈ (H − λ)−1. This
implies that (H − λ)−1 is an operator that is bounded or, equivalently, λ ∈ γ(H).

Assume that H is closed, so that also (H − λ)−1 is closed. Then the relation
(H − λ)−1 is a closed and bounded operator for all λ ∈ γ(H). This immediately
implies that ran (H − λ) = dom (H − λ)−1 is closed; cf. Lemma 1.1.5. Conversely,
if ran (H − λ) = dom (H − λ)−1 is closed for some λ ∈ γ(H), then (H − λ)−1

is a bounded operator defined on a closed subspace. It follows that (H − λ)−1 is
closed, cf. Lemma 1.1.5, and hence H is closed. �

Definition 1.2.3. Let H be a relation in H. A point λ ∈ C is said to belong to the
resolvent set ρ(H) of H if (H − λ)−1 is a bounded operator and ran (H − λ) = H.
The spectrum σ(H) of H is the complement of ρ(H) in C. The spectrum σ(H)
decomposes into three disjoint components: the point spectrum σp(H), continuous
spectrum σc(H), and residual spectrum σr(H), defined by

σp(H) =
{
λ ∈ C : ker (H − λ) 	= {0}},

σc(H) =
{
λ ∈ C : ker (H − λ) = {0}, ran (H − λ) = H, λ 	∈ ρ(H)

}
,

σr(H) =
{
λ ∈ C : ker (H − λ) = {0}, ran (H − λ) 	= H

}
.
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Let H be a relation in H. It follows from Definition 1.2.1 and Definition 1.2.3
that ρ(H) ⊂ γ(H). Moreover, it follows from (1.2.1) that γ(H) = γ(H) and the
equivalence

ran (H − λ) = H ⇔ ran (H − λ) = H

implies ρ(H) = ρ(H).

The following state diagram is useful when discussing the spectral subsets
and the resolvent set of H. The top row shows all possibilities for the range of
H−λ. The first (second) rows show all possibilities for points λ such that (H−λ)−1

is a bounded (unbounded) operator and the bottom row shows all possibilities for
eigenvalues λ.

ran (H − λ) ran (H − λ) ran (H − λ)
= H dense, 	= H not dense

(H − λ)−1

ρ(H) ρ(H) γ(H) ∩ σr(H)
bounded operator

(H − λ)−1

σc(H) σc(H) σr(H)
unbounded operator

(H − λ)−1

σp(H) σp(H) σp(H)
not operator

Now assume that H is a closed relation. Then it follows with the help of the closed
graph theorem and Lemma 1.1.5 applied to the operator (H−λ)−1 that two cases
(marked by X below) in the above state diagram are not possible:

H ran (H − λ) ran (H − λ) ran (H − λ)
closed relation = H dense, 	= H not dense

(H − λ)−1

ρ(H) X γ(H) ∩ σr(H)
bounded operator

(H − λ)−1

X σc(H) σr(H)
unbounded operator

(H − λ)−1

σp(H) σp(H) σp(H)
not operator

In particular, for a closed relation the continuous spectrum is given by

σc(H) =
{
λ ∈ C : ker (H − λ) = {0}, ran (H − λ) = H, ran (H − λ) 	= H

}
.

Lemma 1.2.4. A relation H in H is closed if and only if ran (H−λ) = H for some,
and hence for all λ ∈ ρ(H). In this case the following statements hold:
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(i) ρ(H) =
{
λ ∈ C : (H − λ)−1 ∈ B(H)

}
;

(ii) H =
{{(H − λ)−1f, (I + λ(H − λ)−1)f} : f ∈ H

}
for λ ∈ ρ(H).

Proof. IfH is closed, then for all λ ∈ C also (H−λ)−1 is closed. Hence, if λ ∈ ρ(H),
then (H − λ)−1 is a bounded and closed operator, and therefore

dom (H − λ)−1 = ran (H − λ)

is closed and coincides with H; cf. Lemma 1.1.5. Conversely, if λ ∈ ρ(H) and
ran (H − λ) = H, then (H − λ)−1 is a bounded operator defined on H and hence
(H − λ)−1 is closed by Lemma 1.1.5. This implies that also H is closed. Assertion
(i) is now immediate and assertion (ii) follows from (1.1.13) in Lemma 1.1.8. �

In the next theorem the so-called defect of a relation H is studied. The proof
uses the notions of opening and gap of closed subspaces from Appendix C.

Theorem 1.2.5. Let H be a relation in H. Then the set γ(H) of points of regular
type of H is an open subset of C and the defect

nλ(H) := dim
(
ran (H − λ)

)⊥
(1.2.2)

of H is constant for all λ in a connected component of γ(H).

Proof. Step 1. Let μ ∈ γ(H) and let cμ > 0 be any positive constant such that

‖h‖ ≤ cμ‖h′ − μh‖, {h, h′} ∈ H; (1.2.3)

cf. Lemma 1.2.2. Hence, if λ ∈ C and |λ− μ|cμ < 1, then

|λ− μ|‖h‖ ≤ |λ− μ|cμ ‖h′ − μh‖ < ‖h′ − μh‖.
In this case h′ − λh = h′ − μh− (λ− μ)h yields

‖h′ − λh‖ ≥ ‖h′ − μh‖ − |λ− μ|‖h‖ > 0,

and together with (1.2.3) this leads to

cμ‖h′ − λh‖ ≥ cμ‖h′ − μh‖ − |λ− μ|cμ‖h‖
≥ ‖h‖ − |λ− μ|cμ‖h‖
=
(
1− |λ− μ|cμ

) ‖h‖.
Since all elements of (H − λ)−1 are of the form {h′ − λh, h} with {h, h′} ∈ H, it
follows from this inequality that (H−λ)−1 is a bounded operator. In fact, one has
for |λ− μ|cμ < 1

‖(H − λ)−1g‖ ≤ cμ
1− |λ− μ| cμ ‖g‖, g ∈ dom (H − λ)−1. (1.2.4)

In particular, it follows that λ ∈ γ(H) for |λ − μ|cμ < 1. Therefore, γ(H) is an
open subset of C.



26 Chapter 1. Linear Relations in Hilbert Spaces

Step 2. Let μ ∈ γ(H) and let Pμ be the orthogonal projection onto ran (H − μ).
For each f ∈ H one obtains

‖Pμf‖ = sup
g∈ran (H−μ)\{0}

|(Pμf, g)|
‖g‖ = sup

{h,h′}∈H\{0,0}

|(f, h′ − μh)|
‖h′ − μh‖ ,

since ran (H − μ) = {h′ − μh : {h, h′} ∈ H}. Now choose λ ∈ C and write

h′ − μh = h′ − λh+ (λ− μ)h.

If, in particular, f ∈ ran (H−λ)⊥, then |(f, h′−μh)| = |λ−μ||(f, h)| and it follows
that

‖Pμf‖ = |λ− μ| sup
{h,h′}∈H\{0,0}

|(f, h)|
‖h′ − μh‖

≤ |λ− μ| ‖f‖ sup
{h,h′}∈H\{0,0}

‖h‖
‖h′ − μh‖ .

Let cμ be as in Step 1, so that ‖h‖ ≤ cμ‖h′ − μh‖ for {h, h′} ∈ H; cf. (1.2.3).
Thus, for any λ ∈ C one has

‖Pμf‖ ≤ |λ− μ|cμ‖f‖, f ∈ ran (H − λ)⊥. (1.2.5)

Step 3. Let μ ∈ γ(H) and |λ − μ|cμ < 1. By Step 1, λ ∈ γ(H). Therefore, by
symmetry, one obtains from Step 2 that

‖Pλg‖ ≤ |λ− μ|cλ‖g‖, g ∈ ran (H − μ)⊥, (1.2.6)

where cλ is any positive constant such that

‖(H − λ)−1k‖ ≤ cλ‖k‖ for k ∈ dom (H − λ)−1.

Due to the estimate (1.2.4) one may take

cλ =
cμ

1− |λ− μ| cμ ,

and then one concludes from the estimate (1.2.6) that

‖Pλg‖ ≤ |λ− μ|cμ
1− |λ− μ|cμ ‖g‖, g ∈ ran (H − μ)⊥, (1.2.7)

for |λ− μ|cμ < 1.

Step 4. Let μ ∈ γ(H) and assume that |λ−μ|cμ < C for some number 0 < C < 1
2 .

Then λ ∈ γ(H) by Step 1, and

‖Pμf‖ ≤ C‖f‖, f ∈ ran (H − λ)⊥,

‖Pλg‖ ≤ C

1− C
‖g‖, g ∈ ran (H − μ)⊥,
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by (1.2.5) and (1.2.7) in Step 2 and Step 3. Therefore,

ω
(
ran (H − μ), ran (H − λ)⊥

)
= ‖Pμ(I − Pλ)‖ ≤ C < 1

and

ω
(
ran (H − λ), ran (H − μ)⊥

)
= ‖Pλ(I − Pμ)‖ ≤ C

1− C
< 1,

where ω stands for the opening between closed linear subspaces; cf. Definition C.5.
For the gap in DefinitionC.9 one obtains

g
(
ran (H − μ), ran (H − λ)

)
< 1

from Proposition C.10, and hence Theorem C.12 applied to the closed linear sub-
spaces M = ran (H − μ) and N = ran (H − λ)⊥ implies

dim
(
ran (H − λ)

)⊥
= dim

(
ran (H − μ)

)⊥
(1.2.8)

for μ ∈ γ(H) and |λ− μ|cμ < C for some 0 < C < 1
2 .

Step 5. Now let Γ be a connected open component of γ(H). Then Γ is arcwise
connected and each pair of points {λ1, λ2} in Γ can be connected by a (piecewise)
connected compact curve. Each point μ of the curve is the center of an open disc
such that (1.2.8) holds for all λ in the disc. By compactness, finitely many such
open discs form a cover of the curve and hence

dim
(
ran (H − λ1)

)⊥
= dim

(
ran (H − λ2)

)⊥
,

that is, the defect of H is constant in each connected component of γ(H). �

The next theorem is concerned with the properties of points in the resolvent
set of a relation. This leads to the resolvent identity.

Theorem 1.2.6. Let H be a relation in H. The resolvent set ρ(H) is an open subset
of C. The resolvent identity

(H − λ)−1 − (H − μ)−1 = (H − λ)−1(λ− μ)(H − μ)−1 (1.2.9)

holds for λ, μ ∈ ρ(H); here (H − λ)−1 and (H − μ)−1 are bounded operators
defined on ran (H − λ) and ran (H − μ), respectively. If, in addition, H is closed,
then (H − λ)−1, (H − μ)−1 ∈ B(H) for λ, μ ∈ ρ(H), and (1.2.9) can be written as

(H − λ)−1 − (H − μ)−1 = (λ− μ)(H − λ)−1(H − μ)−1 (1.2.10)

for all λ, μ ∈ ρ(H).

Proof. Recall that the inclusion ρ(H) ⊂ γ(H) holds. In fact, the resolvent set ρ(H)
of H is made up of the components of γ(H) where the defect nλ(H) in (1.2.2) is
zero. It follows in the same way as in Step 1 of the proof of Theorem 1.2.5 that
for μ ∈ ρ(H) and λ ∈ C such that |λ− μ|‖(H − μ)−1‖ < 1 one has λ ∈ ρ(H), and
hence ρ(H) is open. The identity (1.2.9) follows from Proposition 1.1.7. �
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Corollary 1.2.7. Let H be a closed relation in H and assume that μ ∈ ρ(H) and
|λ− μ|‖(H − μ)−1‖ < 1. Then λ ∈ ρ(H) and

(H − λ)−1 =
∞∑

n=0

(λ− μ)n(H − μ)−(n+1), (1.2.11)

where the series converges in B(H). In particular, the mapping

λ �→ (H − λ)−1

is holomorphic on ρ(H) and the limit

lim
λ→μ

(H − λ)−1 − (H − μ)−1

λ− μ
= (H − μ)−2

exists in B(H).

Proof. With the notation R(λ) = (H − λ)−1 it follows from the resolvent identity
(1.2.10) and induction that

R(λ) =
k∑

n=0

(λ− μ)nR(μ)n+1 + (λ− μ)k+1R(λ)R(μ)k+1. (1.2.12)

The last term on the right-hand side of (1.2.12) obeys the estimate

‖(λ− μ)k+1R(λ)R(μ)k+1‖ ≤ ‖R(λ)‖(|λ− μ|‖R(μ)‖)k+1
,

and hence the condition |λ − μ|‖R(μ)‖ < 1 implies that it tends to 0 in B(H) as
k → ∞. This implies (1.2.11) and the holomorphy of λ �→ (H − λ)−1. The last
assertion follows from (1.2.10). �

Corollary 1.2.8. Let H be a closed relation in H and let λ, μ ∈ ρ(H). Then the
operator I + (λ− μ)(H − λ)−1 ∈ B(H) is invertible and(

I + (λ− μ)(H − λ)−1
)−1

= I + (μ− λ)(H − μ)−1.

Proof. The formal identity in terms of relations follows from Lemma 1.1.9. Since
both I+(λ−μ)(H−λ)−1 and I+(μ−λ)(H−μ)−1 belong to B(H), the assertion
is clear. �

The resolvent identity in (1.2.10) characterizes the closed relation H in a
specific way.

Proposition 1.2.9. Let E ⊂ C be a nonempty set and assume that the mapping
λ �→ B(λ) from E to B(H) satisfies the identity

B(λ)−B(μ) = (λ− μ)B(λ)B(μ), λ, μ ∈ E. (1.2.13)

Then there exists a closed relation H in H such that E ⊂ ρ(H) and

B(λ) = (H − λ)−1, λ ∈ E.
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Proof. Define for λ ∈ E the relation H(λ) by

H(λ) = B(λ)−1 + λ.

Since B(λ) ∈ B(H), one sees that B(λ) and thus also B(λ)−1 are closed. Hence,
also the relation H(λ) is closed. Note that

ran (H(λ)− λ)) = ranB(λ)−1 = domB(λ) = H,

while

ker (H(λ)− λ)) = kerB(λ)−1 = mulB(λ) = {0},
so that λ ∈ ρ(H(λ)).

Now let λ, μ ∈ E and let {h, h′} ∈ H(λ). Then h = B(λ)(h′ − λh) and due
to the identity (1.2.13) (with μ and λ interchanged) one gets

h = B(λ)(h′ − λh)

= B(μ)(h′ − λh)− (μ− λ)B(μ)B(λ)(h′ − λh)

= B(μ)(h′ − μh).

This implies {h, h′} ∈ H(μ). Therefore, H(λ) ⊂ H(μ) which, by symmetry, leads
to H(λ) = H(μ). One concludes that H(λ) does not depend on λ ∈ E. Thus, one
sees that

(H − λ)−1 = B(λ) and λ ∈ ρ(H),

which completes the proof. �

Let again H be a relation in H, let M be a 2 × 2 matrix as in (1.1.15) such
that detM 	= 0, and let

M[H] =
{{αh+ βh′, γh+ δh′} : {h, h′} ∈ H

}
be the corresponding Möbius transform of H in Definition 1.1.10. The question is
how the spectrum of H behaves under the Möbius transformation. Let the function
M[λ] be defined by (1.1.19).

Proposition 1.2.10. Let H be a relation in H and let M be a 2 × 2 matrix as in
(1.1.15) with detM 	= 0. Then the following statements hold for α+ λβ 	= 0:

(i) λ ∈ ρ(H) if and only if M[λ] ∈ ρ(M[H]);

(ii) λ ∈ γ(H) if and only if M[λ] ∈ γ(M[H]);

(iii) λ ∈ σi(H) if and only if M[λ] ∈ σi(M[H]), where i = p, c, r.

If the relation H is closed and the equivalent assertions in (i) hold, then the oper-
ators in the identity (1.1.21) belong to B(H).
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Proof. (i) Assume that λ ∈ ρ(H), that is, ran (H−λ) is dense in H and (H−λ)−1 is
a bounded operator. Then the identities in (1.1.20) imply that ran (M[H]−M[λ])
is dense in H and that (M[H] −M[λ])−1 is an operator. It follows with (1.1.21)
that (M[H] −M[λ])−1 is a bounded operator. This shows M[λ] ∈ ρ(M[H]). The
converse statement follows by applying M−1.

(ii) and (iii) are now straightforward consequences from (1.1.20), (1.1.21), and the
above considerations. �

LetH be a relation in H and let λ ∈ C. Then it follows from Proposition 1.2.10
that for λ 	= 0

λ ∈ ρ(H) ⇔ λ−1 ∈ ρ(H−1), (1.2.14)

in which case the resolvent operators in (1.1.22) belong to B(H). Likewise, it
follows from Proposition 1.2.10 that for λ 	= μ

λ ∈ ρ(H) ⇔ Cμ[λ] ∈ ρ(Cμ[H]),

in which case the resolvent operators in (1.1.26) belong to B(H).

1.3 Adjoint relations

Here the adjoint of a relation will be introduced, again as a relation, which will be
automatically linear and closed. If the original relation is the graph of an operator,
its adjoint will be the graph of an operator precisely when the original operator is
densely defined.

Definition 1.3.1. Let H be a relation from H to K. The adjoint H∗ of H is defined
as a relation from K to H by

H∗ :=
{{f, f ′} ∈ K× H : (f ′, h)H = (f, h′)K for all {h, h′} ∈ H

}
.

Let J be the flip-flop operator from H× K to K× H defined by

J{f, f ′} = {f ′,−f}, {f, f ′} ∈ H× K. (1.3.1)

Then it is clear from Definition 1.3.1 that

H∗ = (JH)⊥ = JH⊥, (1.3.2)

where the orthogonal complements refer to the componentwise inner product in
K× H and H× K, respectively. Note that

K× H = JH ⊕ (JH)⊥ and H× K = H ⊕H⊥.

Clearly, if H and K are relations with H ⊂ K, then K∗ ⊂ H∗. It also follows from
(1.3.2) that H∗ is a closed linear relation from K to H. Note that (1.3.2) gives
J−1H∗ = H⊥, i.e.,

(J−1H∗)⊥ = H⊥⊥ = H.
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Since J−1 is the flip-flop operator from K×H to H×K, the left-hand side coincides
with H∗∗ and hence

H∗∗ = H,

so that the double adjoint of H gives the closure of H in H× K. As a byproduct,
one obtains H∗ = (H)∗. It follows directly from the definition that

(H∗)−1 = (H−1)∗, (1.3.3)

and sometimes the notation H−∗ := (H∗)−1 = (H−1)∗ will be used. These facts
and some further elementary properties of adjoint relations are collected in the
next proposition.

Proposition 1.3.2. Let H be a relation from H to K. Then the following statements
hold:

(i) H∗ is a closed linear relation, (H)∗ = H∗, and H = H∗∗;
(ii) (domH)⊥ = mulH∗ and (domH∗)⊥ = mulH;

(iii) kerH∗ = (ranH)⊥ and (kerH∗)⊥ = ranH.

It is a direct consequence of Proposition 1.3.2 that

domH = domH∗∗ and ranH = ranH∗∗.

The domain and range of the adjoint relation can be characterized as follows.

Lemma 1.3.3. Let H be a relation from H to K. Then domH∗ ⊂ K and ranH∗ ⊂ H
are characterized by

domH∗ =
{
f ∈ (mulH)⊥ : |(f, h′)| ≤Mf‖h‖ for all {h, h′} ∈ H

}
,

and

ranH∗ =
{
f ′ ∈ (kerH)⊥ : |(f ′, h)| ≤Mf ′‖h′‖ for all {h, h′} ∈ H

}
,

where Mf and Mf ′ are nonnegative constants depending on f and f ′, respectively.

Proof. The first identity will be proved; the second identity follows from the first
one by using H−1 instead of H, and (1.3.3). So let f ∈ domH∗. Then there exists
an element f ′ ∈ H with {f, f ′} ∈ H∗. For {0, h′} ∈ H there exists {hn, h

′
n} ∈ H

with {hn, h
′
n} → {0, h′}. Hence, it follows from

(f ′, hn) = (f, h′
n)

that (f, h′) = 0. Thus, f ⊥ mulH. Furthermore, for all {h, h′} ∈ H it follows that
|(f, h′)| = |(f ′, h)| ≤Mf‖h‖. Hence, domH∗ is contained in the right-hand side.

To prove the converse inclusion, let f belong to the right-hand side. Since
f ∈ (mulH)⊥, the linear relation from H to C given by

Φ =
{{h, (h′, f)} : {h, h′} ∈ H}}, domΦ = domH,
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is the graph of a linear functional, which is bounded because

|(h′, f)| ≤Mf‖h‖ for all {h, h′} ∈ H.

Its closure Φ is a bounded linear functional on domH, and by the Riesz represen-
tation theorem there exists an element f ′ ∈ domH such that

Φh = (h, f ′), h ∈ domH.

In particular, this shows that (h′, f) = (h, f ′) for all {h, h′} ∈ H, which means
that {f, f ′} ∈ H∗. �

Proposition 1.3.2 and Lemma 1.3.3 immediately yield the following corollary.

Corollary 1.3.4. Let H be a relation from H to K. Then the following statements
hold:

(i) H∗ is an operator if and only if domH is dense in H;

(ii) H is an operator if and only if domH∗ is dense in K;

(iii) if H ∈ B(H,K), then H∗ ∈ B(K,H).

Proof. Items (i) and (ii) are immediate from Proposition 1.3.2. To prove (iii),
assume H ∈ B(H,K). Since domH = H it follows that H∗ is a (closed) opera-
tor. Moreover, since mulH = {0} and H is bounded, Lemma 1.3.3 shows that
domH∗ = K. Now the closed graph theorem implies H∗ ∈ B(K,H). �

Occasionally the following situation comes up. Let M ⊂ H and N ⊂ K be
(not necessarily closed) linear subspaces and let H = M×N. Then

H∗ =
(
J(M×N)

)⊥
= (N×M)⊥ = N⊥ ×M⊥. (1.3.4)

Note that by the same argument H∗∗ = M⊥⊥×N⊥⊥ = M×N, which is of course
clear from H∗∗ = H.

Let H and K be closed linear relations from H to K. Then the componentwise
sum H +̂K is closed if and only if H⊥ +̂K⊥ is closed (see Theorem C.3). Since
H∗ = JH⊥ and K∗ = JK⊥, this implies

H +̂K closed ⇔ H∗+̂K∗ closed. (1.3.5)

The next theorem is a variant of the closed range theorem in the general context
of linear relations.

Theorem 1.3.5. Let H be a closed relation from H to K. Then the following state-
ments hold:

(i) domH is closed if and only if domH∗ is closed;

(ii) ranH is closed if and only if ranH∗ is closed.
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Proof. Since H and {0} × K are closed linear subspaces in H× K, it follows from
the equivalence (1.3.5) that

H +̂ ({0} × K) = domH × K

is closed if and only if

H∗ +̂ ({0} × H) = domH∗ × H

is closed; cf. (1.3.4). This implies that domH is closed if and only if domH∗ is
closed, that is, (i) holds. Assertion (ii) follows immediately by applying (i) to the
inverse H−1. �

An operator H from H to K is unitary if H is isometric and domH = H and
ranH = K. The next result gives criteria for a relation from H to K in terms of its
adjoint to be the graph of an isometric or unitary operator.

Lemma 1.3.6. Let H be a relation from H to K. Then the following statements
hold:

(i) H−1 ⊂ H∗ if and only if H is an isometric operator;

(ii) H−1 = H∗ if and only if H is a unitary operator.

Proof. (i) Assume that H−1 ⊂ H∗. For {h, h′} ∈ H one has {h′, h} ∈ H−1 ⊂ H∗

which implies ‖h‖ = ‖h′‖ for {h, h′} ∈ H. This shows that H is an isometric
operator. Conversely, let H be an isometric operator and {h′, h} ∈ H−1. Then
{h, h′} ∈ H and one has (h, k) = (h′, k′) for all {k, k′} ∈ H by polarization. This
implies {h′, h} ∈ H∗ and hence H−1 ⊂ H∗.

(ii) Assume that H−1 = H∗. Then H is closed and by (i) H is an isometric
operator. Therefore, domH is closed by Lemma 1.1.5, and

(domH)⊥ = mulH∗ = mulH−1 = kerH = {0}
implies domH = H. Note that H−1 satisfies (H−1)−1 = (H∗)−1 = (H−1)∗ and
hence by the above argument domH−1 = K. This implies ranH = K and it follows
that H is a unitary operator. Conversely, assume that the operator H is unitary.
Then H ∈ B(H,K), H−1 ∈ B(K,H), and H∗ ∈ B(K,H) by Corollary 1.3.4. Since
H is isometric, one has H−1 ⊂ H∗ by (i) and equality follows as both H−1 and
H∗ belong to B(K,H). �

Unitary operators are often used to identify different relations or Hilbert
spaces.

Definition 1.3.7. Let H be a relation in H and let K be a relation in K. Then
H and K are said to be unitarily equivalent if there exists a unitary operator
U ∈ B(H,K) such that K = UHU∗ or, equivalently,

K =
{{Uh,Uh′} : {h, h′} ∈ H

}
. (1.3.6)
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Assume that the relations H in H and K in K satisfy (1.3.6). Then one has
{k, k′} ∈ K∗ if and only if (U∗k′, h) = (U∗k, h′) for all {h, h′} ∈ H, that is,
{U∗k, U∗k′} ∈ H∗. By setting {k, k′} = {Uh,Uh′} it also follows from this that
{Uh,Uh′} ∈ K∗ if and only if {h, h′} ∈ H∗. Hence, one has

H∗ =
{{U∗k, U∗k′} : {k, k′} ∈ K∗}

and

K∗ =
{{Uh,Uh′} : {h, h′} ∈ H∗}. (1.3.7)

Lemma 1.3.8. Let H be a closed relation in H, let K be a closed relation in K,
assume that ρ(H) ∩ ρ(K) 	= ∅, and that U ∈ B(H,K) is unitary. Then H and K
are unitarily equivalent if and only if

(K − λ)−1 = U(H − λ)−1U∗ (1.3.8)

for some, and hence for all λ ∈ ρ(H) ∩ ρ(K).

Proof. Assume that K = UHU∗. Then for all λ ∈ ρ(H) ∩ ρ(K) one has

K − λ = U(H − λ)U∗.

Taking inverses yields (1.3.8). Conversely, assume that the identity (1.3.8) holds
for some λ ∈ ρ(H) ∩ ρ(K). Then

H =
{{(H − λ)−1f, (I + λ(H − λ)−1)f} : f ∈ H

}
and

K =
{{(K − λ)−1g, (I + λ(K − λ)−1)g} : g ∈ K

}
by Lemma 1.2.4. Therefore,

K =
{{(K − λ)−1Uf, (I + λ(K − λ)−1)Uf} : f ∈ H

}
=
{{U(H − λ)−1f, U(I + λ(H − λ)−1)f} : f ∈ H

}
=
{{Uh,Uh′} : {h, h′} ∈ H

}
= UHU∗,

which completes the argument. �

The next proposition concerns the adjoint of the sum and of the product of
relations in Hilbert spaces.

Proposition 1.3.9. Let H and K be relations from H to K, and let L be a relation
from K to G. Then the following statements hold:

(i) H∗ +K∗ ⊂ (H +K)∗, and if K ∈ B(H,K), then H∗ +K∗ = (H +K)∗;
(ii) H∗L∗ ⊂ (LH)∗, and if L ∈ B(K,G), then H∗L∗ = (LH)∗.
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Proof. (i) To show the inclusion H∗ +K∗ ⊂ (H +K)∗ assume that

{f, f ′ + g′} ∈ H∗ +K∗, where {f, f ′} ∈ H∗, {f, g′} ∈ K∗.

Next consider {h, h′ + k′} ∈ H + K, where {h, h′} ∈ H and {h, k′} ∈ K. Then
(f ′, h) = (f, h′) and (g′, h) = (f, k′), and hence

(f ′ + g′, h)− (f, h′ + k′) = (f ′, h)− (f, h′) + (g′, h)− (f, k′) = 0,

that is, {f, f ′+g′} ∈ (H+K)∗. Now it will be shown that K ∈ B(H,K) implies the
inclusion (H+K)∗ ⊂ H∗+K∗. Let {f, f ′} ∈ (H+K)∗. Then (f ′, h) = (f, h′+k′)
for all {h, h′} ∈ H and {h, k′} ∈ K. Since K ∈ B(H,K) and K∗ ∈ B(K,H), it
follows that k′ = Kh and

(f ′, h) = (f, h′) + (f,Kh) = (f, h′) + (K∗f, h),

and hence (f ′ − K∗f, h) = (f, h′) holds for all {h, h′} ∈ H. Therefore, one sees
{f, f ′ −K∗f} ∈ H∗ and {f, f ′} ∈ H∗ +K∗.

(ii) First the inclusion H∗L∗ ⊂ (LH)∗ will be shown. Let {f, f ′} ∈ H∗L∗, so
that {f, g′} ∈ L∗ and {g′, f ′} ∈ H∗ for some g′ ∈ K. Consider {h, l′} ∈ LH,
where {h, h′} ∈ H and {h′, l′} ∈ L for some h′ ∈ K. Then (g′, h′) = (f, l′) and
(f ′, h) = (g′, h′) and hence

(f ′, h)− (f, l′) = (g′, h′)− (g′, h′) = 0

for any {h, l′} ∈ LH. This shows {f, f ′} ∈ (LH)∗. Assume now that L ∈ B(K,G)
and hence L∗ ∈ B(G,K). In order to show the inclusion (LH)∗ ⊂ H∗L∗, let
{f, f ′} ∈ (LH)∗. For {h, h′} ∈ H one has {h, Lh′} ∈ LH and hence

(f ′, h) = (f, Lh′) = (L∗f, h′).

This implies {L∗f, f ′} ∈ H∗ and together with {f, L∗f} ∈ L∗ one concludes
{f, f ′} ∈ H∗L∗. �

Let H be a relation from H to K and λ ∈ C. The following consequences of
Proposition 1.3.9 will prove useful:

(λH)∗ = λH∗,

and for H = K,
(H − λ)∗ = H∗ − λ.

Hence, according to Proposition 1.3.2 (iii) one has

ker (H∗ − λ) =
(
ran (H − λ)

)⊥
and ran (H − λ) =

(
ker (H∗ − λ)

)⊥
. (1.3.9)

Furthermore, by (1.3.3), (
(H − λ)−1

)∗
= (H∗ − λ)−1.

In the next proposition the connection between the spectra of H and H∗ is
discussed.
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Proposition 1.3.10. Let H be a relation in H and let λ ∈ C. Then the following
statements hold:

(i) λ ∈ ρ(H) ⇔ λ ∈ ρ(H∗);
(ii) λ ∈ σ(H) ⇔ λ ∈ σ(H∗).

If, in addition, the relation H is closed, then

(iii) λ ∈ σp(H) and ran (H − λ) 	= H ⇔ λ ∈ σp(H
∗) and ran (H∗ − λ) 	= H;

(iv) λ ∈ σp(H) and ran (H − λ) = H ⇔ λ ∈ σr(H
∗);

(v) λ ∈ σc(H) ⇔ λ ∈ σc(H
∗).

Proof. (i) & (ii) If λ ∈ ρ(H), then (H − λ)−1 is a bounded operator with dense
domain ran (H − λ), and hence it admits a continuous extension

(H − λ)−1 = (H − λ)−1 ∈ B(H). (1.3.10)

Thus, also (H∗−λ)−1 = ((H−λ)−1)∗ ∈ B(H) and λ ∈ ρ(H∗) follows. Conversely,
for λ ∈ ρ(H∗) one has (H∗− λ)−1 ∈ B(H) since H∗ is closed. Hence, also (1.3.10)
holds and from this it is clear that (H − λ)−1 is a bounded operator with dense
domain ran (H − λ). This gives (i), and (ii) follows immediately from (i).

(iii)–(v) are direct consequences of (1.3.9). �

In the next lemma it turns out that the scalar Möbius transform in Def-
inition 1.1.10 behaves under adjoints as scalar multiplication does. In order to
formulate the result, let the conjugate of a 2 × 2 matrix M be defined by

M =

(
α β
γ δ

)
when M =

(
α β
γ δ

)
.

The scalar Möbius transform corresponding to M will be denoted by M. The
special case of the following lemma for the Cayley transform is particularly useful.

Lemma 1.3.11. Let H be a relation in H and let M be a 2×2 matrix as in (1.1.15),
and assume that M is invertible. Then

(M[H])∗ = M[H∗].

In particular, for any μ ∈ C \ R,

(Cμ[H])∗ = Cμ[H
∗].

Proof. First observe that (M[H])∗ ⊂ M[H∗]. To see this let, {f, f ′} ∈ (M[H])∗.
Then, by definition, one has for all {h, h′} ∈ H

0 = (f ′, αh+ βh′)− (f, γh+ δh′) = (−γf + αf ′, h)− (δf − βf ′, h′),
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which shows that (
δ −β
−γ α

)(
f
f ′

)
∈ H∗.

Multiplication by M leads to(
f
f ′

)
∈
(
α β
γ δ

)
[H∗] = M[H∗],

and so (M[H])∗ ⊂M[H∗].
To see the reverse inclusion M[H∗] ⊂ (M[H])∗, let {f, f ′} ∈ M[H∗], so that

for some {ϕ,ϕ′} ∈ H∗

{f, f ′} = {αϕ+ βϕ′, γϕ+ δϕ′}.
Then for all {h, h′} ∈ H one has that

(f ′, αh+ βh′)− (f, γh+ δh′) = (αδ − βγ)
[
(ϕ′, h)− (ϕ, h′)

]
= 0.

This implies that M[H∗] ⊂ (M[H])∗.
The statement about the Cayley transform follows with the special choice

α = −μ, γ = −μ, and β = δ = 1; cf. (1.1.25). �

The adjoint of the componentwise sum of linear relations is determined in
the following proposition. Here the notation closH is used for the closure of a
relation H. Recall that if H and K are closed, then H +̂K is closed if and only if
H∗ +̂K∗ is closed; cf. (1.3.5).

Proposition 1.3.12. Let H and K be relations from H to K. Then one has(
H +̂K

)∗
= H∗ ∩K∗ and clos

(
H +̂K

)
=
(
H∗ ∩K∗)∗. (1.3.11)

Proof. To verify the inclusion (H +̂K)∗ ⊂ H∗ ∩K∗, let {f, f ′} ∈ (H +̂K)∗. Then
for every {h, h′} ∈ H and {k, k′} ∈ K one has

(f ′, h+ k) = (f, h′ + k′).

In particular, (f ′, h) = (f, h′) for all {h, h′} ∈ H and (f ′, k) = (f, k′) for all
{k, k′} ∈ K. It follows that {f, f ′} ∈ H∗ ∩K∗. Conversely, if {f, f ′} ∈ H∗ ∩K∗,
then

(f ′, h) = (f, h′) and (f ′, k) = (f, k′)

hold for all {h, h′} ∈ H and {k, k′} ∈ K. Adding these two identities one obtains
(f ′, h+k) = (f, h′+k′) and hence {f, f ′} ∈ (H +̂K)∗. This shows the first identity
in (1.3.11). The second identity in (1.3.11) follows from the first identity by taking
adjoints. �

The adjoint of an orthogonal sum of relations behaves like the orthogonal
complement of a sum of orthogonal subspaces.
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Proposition 1.3.13. Let H be a relation from H1 to K1, let K be a relation from
H2 to K2, and let H ⊕̂ K be their orthogonal sum. Then

(H ⊕̂ K)∗ = H∗ ⊕̂ K∗,

where the adjoint in each case is taken in the corresponding Hilbert spaces.

Let H be a relation from H to K. Recall that the closure of H is given by H∗∗

and that H is a closable operator if and only if mulH∗∗ = {0}. The orthogonal
decomposition

K = domH∗ ⊕mulH∗∗

implies a related range decomposition of the relation H itself.

Theorem 1.3.14. Let H be a relation from H to K and let Q be the orthogonal
projection in K onto domH∗. Then H admits the sum decomposition

H = QH + (I −Q)H, (1.3.12)

where the relations QH and (I −Q)H have the following properties:

(i) QH is a closable operator;

(ii) clos ((I −Q)H) = domH ×mulH∗∗.

Proof. As to the decomposition (1.3.12) it is clear that H ⊂ QH + (I − Q)H.
For the converse, consider {h,Qh′ + (I − Q)h′′} for some {h, h′}, {h, h′′} ∈ H.
Observe that {0, h′ − h′′} ∈ H, i.e., h′ − h′′ ∈ mulH ⊂ mulH∗∗ = kerQ. Hence,
Q(h′ − h′′) = 0 and this leads to{

h,Qh′ + (I −Q)h′′} =
{
h,Q(h′ − h′′) + h′′} = {h, h′′} ∈ H.

Hence, also QH + (I −Q)H ⊂ H. Thus, (1.3.12) holds.

(i) By Corollary 1.3.4, it suffices to show that dom (QH)∗ is dense in K. Observe
that (QH)∗ = H∗Q by Proposition 1.3.9, and hence

dom (QH)∗ = domH∗Q = domH∗ ⊕ kerQ. (1.3.13)

To see the last identity in (1.3.13) first observe that h ∈ domH∗Q if and only
if Qh ∈ domH∗. Hence, if h ∈ domH∗Q, then h = Qh + (I − Q)h shows that
h ∈ domH∗ ⊕ kerQ. Conversely, if h ∈ domH∗ ⊕ kerQ, then h = f + g, where
f ∈ domH∗ and g ∈ kerQ. Hence, Qh = f ∈ domH∗ and thus h ∈ domH∗Q.
This shows the last identity in (1.3.13). Now observe that kerQ = (domH∗)⊥ and
the identity (1.3.13) takes the form

dom (QH)∗ = domH∗ ⊕ (domH∗)⊥,

which implies that dom (QH)∗ is dense in K.
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(ii) First it will be shown that

H∗(I −Q) = domH∗ ×mulH∗. (1.3.14)

For the inclusion (⊂), let {h, h′} ∈ H∗(I−Q). Then {(I−Q)h, h′} ∈ H∗ and since
(I−Q)h ∈ (domH∗)⊥, it follows that (I−Q)h = 0. Thus, h = Qh ∈ domH∗ and
h′ ∈ mulH∗. For the inclusion (⊃) in (1.3.14), let h ∈ domH∗ and h′ ∈ mulH∗.
Then (I − Q)h = 0 and hence {(I − Q)h, h′} = {0, h′} ∈ H∗. This implies that
{h, h′} ∈ H∗(I −Q).

It follows from Proposition 1.3.9 that ((I−Q)H)∗ = H∗(I−Q) and together
with (1.3.14) one obtains

clos
(
(I −Q)H

)
=
(
(I −Q)H

)∗∗
=
(
H∗(I −Q)

)∗
=
(
domH∗ ×mulH∗)∗

= (mulH∗)⊥ × (domH∗)⊥

= domH ×mulH∗∗;

here (1.3.4) was used in the last but one step. This completes the proof of (ii). �

The sum decomposition in (1.3.12) is called the Lebesgue decomposition of
the relation H into the regular part QH and the singular part (I − Q)H. The
closure of the regular part QH is (the graph of) an operator, while the closure of
the singular part (I −Q)H is a product of closed subspaces. This decomposition
is the abstract variant of the Lebesgue decomposition of a measure.

The Lebesgue decomposition (1.3.12) for a relation H from H to K gives rise
to a componentwise direct sum decomposition when mulH = mulH∗∗.

Theorem 1.3.15. Let H be a relation from H to K and let Q be the orthogonal
projection in K onto domH∗. Assume that

mulH = mulH∗∗, (1.3.15)

so that K can be decomposed as K = domH∗ ⊕ mulH. Then QH ⊂ H and the
relation H has the direct sum decomposition

H = QH +̂
({0} ×mulH

)
, (1.3.16)

where QH is a closable operator from H to K and {0} × mulH is a purely mul-
tivalued relation in mulH. Moreover, if the relation H is closed, then (1.3.15) is
automatically satisfied and the operator QH is closed.

Proof. Note that any element {h, h′} ∈ H can be written as

{h, h′} = {h,Qh′}+ {0, (I −Q)h′}. (1.3.17)
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Under the assumption (1.3.15) the orthogonal projection I −Q maps onto mulH
and hence the relation H is contained in the right-hand side of (1.3.16). The
identity (1.3.17) also implies QH ⊂ H and it follows that the right-hand side of
(1.3.16) is contained in H. According to Theorem 1.3.14, QH is a closable operator
and hence the sum in (1.3.16) is direct.

Now assume that the relation H is closed. In order to show that QH is closed,
let {hn, h

′
n} ∈ H be a sequence such that {hn, Qh′

n} → {ϕ,ψ}. Since QH ⊂ H,
it follows that {ϕ,ψ} ∈ H. Moreover, Qh′

n → ψ implies ψ = Qψ and hence
{ϕ,ψ} = {ϕ,Qψ} ∈ QH. �

According to the above theorem, the closable operator QH acts as an operator
part of the relation H in the direct sum decomposition (1.3.16). Note that

domQH = domH and ranQH ⊂ domH∗. (1.3.18)

The following theorem continues this line of thought in the special but useful
situation where K = H, i.e., when H is a relation in H. Recall from Theorem 1.3.15
that if the relation H is closed then actually the operator QH is closed.

Theorem 1.3.16. Let H be a relation in H, let Q be the orthogonal projection onto
domH∗, and assume mulH = mulH∗∗. Suppose, in addition, that

domH ⊂ domH∗ or, equivalently, mulH ⊂ mulH∗. (1.3.19)

Then the closable operator QH acts in the Hilbert space domH∗ and H has the
orthogonal sum decomposition

H = QH ⊕̂ ({0} ×mulH
)
. (1.3.20)

Moreover, QH is densely defined in domH∗ if and only if mulH = mulH∗.

Proof. Since the condition (1.3.15) is assumed, Theorem 1.3.15 applies, and so the
direct sum decomposition (1.3.16) holds, where QH is a closable operator in H
and {0} ×mulH is a purely multivalued relation in mulH.

Now the equivalence in (1.3.19) will be shown. If domH ⊂ domH∗, it follows
by taking orthogonal complements that mulH = mulH∗∗ ⊂ mulH∗. Conversely,
if mulH = mulH∗∗ ⊂ mulH∗, it follows by taking orthogonal complements that
domH∗∗ ⊂ domH∗ and, in particular, domH ⊂ domH∗.

The conditions (1.3.19) and (1.3.18) imply that the closable operator QH
acts in the Hilbert space domH∗ and hence the componentwise decomposition
of H in (1.3.16) is actually a componentwise orthogonal sum, i.e., (1.3.20) holds.
Furthermore, since domQH = domH by (1.3.18), it follows that the operator QH
is densely defined in domH∗ if and only if domH = domH∗, which is equivalent
to mulH = mulH∗. �
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The message of this theorem is that when mulH = mulH∗∗, the Hilbert
space decomposes in H = domH∗⊕mulH, and the regular part of the relation H
serves as a not necessarily densely defined (orthogonal) operator part of H in the
Hilbert space domH∗. In the rest of this text the following notation will be used:

Hop = domH∗, Hmul = mulH∗∗ = mulH,

and, similarly,
Hop = QH, Hmul = {0} ×mulH.

With these notations one has

H = Hop ⊕ Hmul , H = Hop ⊕̂ Hmul ;

cf. Theorem 1.4.11, Theorem 1.5.1, and Theorem 1.6.12. The relation Hmul is
purely multivalued and self-adjoint in the Hilbert space Hmul by (1.3.4), that is,

Hmul = (Hmul )
∗.

From Proposition 1.3.13 one then obtains

H∗ = (Hop )
∗ ⊕̂ Hmul

and hence the adjoint (Hop )
∗ of Hop in Hop satisfies

(Hop )
∗ = H∗ ∩ (Hop × Hop )

and its multivalued part in Hop is mulH∗ ∩ Hop . Note that

mulH∗ = mul (Hop )
∗ ⊕mulHmul =

(
mulH∗ ∩ Hop

)⊕mulH.

This section ends by introducing the Moore–Penrose inverse of a relation; cf.
Appendix D.

Definition 1.3.17. Let H be a relation from H to K. Then the Moore–Penrose
inverse H(−1) of H from K to H is defined as the relation

H(−1) = P(kerH)⊥H
−1 = P(mulH−1)⊥H

−1.

In fact, the Moore–Penrose inverse H(−1) of H is an operator. To see this, let
{0, k} ∈ H(−1). Then {0, h} ∈ H−1 and {h, k} ∈ P(kerH)⊥ for some h ∈ H. Since
k = P(kerH)⊥h and h ∈ kerH, it follows that k = 0. Furthermore, if H is closed,
then Theorem 1.3.15 applied to H−1 (in which case Q = P(kerH)⊥) shows that

H−1 = P(kerH)⊥H
−1 +̂

({0} × kerH
)
.

Hence, the Moore–Penrose inverse H(−1) coincides with the operator part of H−1.
Moreover, if H is closed then ranH is closed if and only if H(−1) takes ranH
boundedly into (kerH)⊥, in which case H(−1) ∈ B(ranH, (kerH)⊥). Note that for
H ∈ B(H,K) the Moore–Penrose inverse coincides with the usual Moore–Penrose
inverse, see Appendix D.
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Example 1.3.18. Let T be a closed relation in H and assume that λ ∈ ρ(T ). Then
H = (T − λ)−1 ∈ B(H) with kerH = mulT and ranH = domT , so that the
Moore–Penrose inverse of H is the operator given by

H(−1) = Top − λ,

which maps domT into (mulT )⊥.

1.4 Symmetric relations

Symmetric relations are the building stones of this text. Here the basic properties
of such relations will be developed. The special case of self-adjoint relations will
be treated in more detail in the next section.

Definition 1.4.1. A relation S in H is called symmetric if S ⊂ S∗, and self-adjoint
if S = S∗. A symmetric relation S in H is said to be maximal symmetric if every
symmetric extension S′ of S in H satisfies S′ = S.

It follows immediately from the definition of the adjoint relation that a rela-
tion S is symmetric if and only if

(f ′, g) = (f, g′) for all {f, f ′}, {g, g′} ∈ S. (1.4.1)

The following lemma provides a slightly stronger statement and an easily
verifiable condition for the symmetry of a relation.

Lemma 1.4.2. A relation S in H is symmetric if and only if

Im (f ′, f) = 0 for all {f, f ′} ∈ S. (1.4.2)

Proof. If S ⊂ S∗, then (1.4.1) implies (1.4.2). Conversely, assume that (1.4.2)
holds. Let {f, f ′}, {g, g′} ∈ S and let λ ∈ C. Then {f + λg, f ′ + λg′} ∈ S and it
follows from(

f ′ + λg′, f + λg
)
= (f ′, f) + λ(f ′, g) + λ(g′, f) + |λ|2(g′, g),

and the assumption Im (f ′ + λg′, f + λg) = 0 that

Im
[
λ(f ′, g) + λ(g′, f)

]
= 0.

By putting λ = 1 and λ = i, respectively, one obtains

Im (f ′, g) = −Im (g′, f), Re (f ′, g) = Re (g′, f),

which leads to the equality (f ′, g) = (g′, f) = (f, g′). Hence, the relation S is
symmetric by (1.4.1). �
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If S is symmetric, then clearly also S ⊂ S∗, since S∗ is closed. Hence, the
closure S is also symmetric. In particular, if S is maximal symmetric, then S is
closed. Thus, every self-adjoint relation is maximal symmetric.

Lemma 1.4.3. Let S be a symmetric relation in H. Then mulS ⊂ mulS∗. If S is
maximal symmetric, then mulS = mulS∗.

Proof. Let S be symmetric. Then it follows directly from Definition 1.4.1 that
mulS ⊂ mulS∗.

Now assume S is maximal symmetric. It suffices to show mul S∗ ⊂ mulS. If
k ∈ mulS∗ = (domS)⊥, then

S +̂ span {0, k} = {{h, h′ + k} : {h, h′} ∈ S
}

is a symmetric extension of S, as Im (h′+k, h) = Im (h′, h) = 0 for all {h, h′} ∈ S.
Since S is maximal symmetric, it follows that {0, k} ∈ S and k ∈ mulS. Thus,
mulS∗ ⊂ mulS. �

As an example consider the relation S defined by S = {0}×N, where N ⊂ H
is a linear subspace. It follows from (1.3.4) that S∗ = N⊥×H and S∗∗ = {0}×N.
Hence, S is symmetric, while

mulS = N, mulS = N, mulS∗ = H,

which shows that if S is closed the inclusion mulS ⊂ mulS∗ in Lemma 1.4.3 is
in general strict. Moreover, in the present example S is self-adjoint if and only if
N = H. If S is maximal symmetric then according to Lemma 1.4.3 one has N = H,
so that S is self-adjoint.

In the rest of this text the interest will often be in extensions that are closed;
in particular, in relations H that are self-adjoint extensions of a given symmetric
relation S,

S ⊂ H = H∗ ⊂ S∗.

Observe that H is a self-adjoint extension of S if and only if H is a self-adjoint
extension of the closure S. In that sense it will often be assumed without loss of
generality that S is closed; recall that γ(S) = γ(S).

Proposition 1.4.4. Let S be a symmetric relation in H. Then C \ R is contained in
γ(S) and, in particular, the defect nλ(S) = dim (ran (S − λ))⊥ is constant for all
λ ∈ C+ and all λ ∈ C−. Furthermore, σp(S) ∪ σc(S) ⊂ R and

‖(S − λ)−1h‖ ≤ 1

|Imλ| ‖h‖ (1.4.3)

for all h ∈ dom (S − λ)−1 = ran (S − λ) and λ ∈ C \ R.
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Proof. Let λ ∈ C \ R and {f, f ′} ∈ S, so that {f ′ − λf, f} ∈ (S − λ)−1. As S is
symmetric, one has Im (f ′, f) = 0 by Lemma 1.4.2, and hence

0 ≤ |Imλ|(f, f) = |Im (f ′ − λf, f)| ≤ ‖f ′ − λf‖‖f‖

and for f 	= 0 this implies

0 ≤ |Imλ|‖f‖ ≤ ‖f ′ − λf‖.

Therefore, (S−λ)−1 is an operator and (1.4.3) holds for all h ∈ dom (S−λ)−1 and
λ ∈ C \ R. This also shows C \ R ⊂ γ(S) and it follows from Theorem 1.2.5 that
the defect nλ(S) is constant on C+ and C−. It is clear that the point spectrum
σp(S) is contained in R, and since (S − λ)−1 is bounded for λ ∈ C \ R, also the
continuous spectrum σc(S) is contained in R. �

The defect numbers n±(S) of a symmetric relation S are defined as

n±(S) := dim
(
ran (S ∓ i)

)⊥
= dim

(
ker (S∗ ± i)

)
, (1.4.4)

where according to Proposition 1.4.4 the point ±i in (1.4.4) can be replaced by
any λ ∈ C±.

In the case where the symmetric relation S is bounded from below in the
sense of the next definition it follows that γ(S) ∩ R 	= ∅ and thus γ(S) consists
of one component only; cf. Proposition 1.4.6. In particular, the defect numbers
n+(S) and n−(S) coincide in this case.

Definition 1.4.5. Let S be a relation in H. Then S is said to be bounded from below
if there exists a number η ∈ R such that

(f ′, f) ≥ η(f, f) for all {f, f ′} ∈ S. (1.4.5)

The lower bound m(S) of S is the largest number η ∈ R for which (1.4.5) holds:

m(S) = inf

{
(f ′, f)
(f, f)

: {f, f ′} ∈ S, f 	= 0

}
.

The inequality (1.4.5) will be written as S ≥ ηI, which will be further abbreviated
to S ≥ η. If S ≥ 0, then S is called nonnegative (and S may have a positive lower
bound).

For a relation S that is bounded from below also the terminology semibounded
relation will be used. If S is bounded from below, then it follows directly from
Lemma 1.4.2 that S is symmetric. Moreover, if (1.4.5) is satisfied for all η ∈ R,
then η‖f‖2 ≤ ‖f ′‖‖f‖ for {f, f ′} ∈ S and η ∈ R shows that domS = {0} and
hence S is a purely multivalued relation.
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Proposition 1.4.6. Let S be a symmetric relation in H which is bounded from below
with lower bound m(S) ∈ R. Then C\[m(S),∞) is contained in γ(S) and the defect
nλ(S) = dim (ran (S − λ))⊥ is constant for all λ ∈ C \ [m(S),∞). Furthermore,
σp(S) ∪ σc(S) ⊂ [m(S),∞) and

‖(S − ν)−1h‖ ≤ 1

m(S)− ν
‖h‖ (1.4.6)

for all h ∈ dom (S − ν)−1 and ν < m(S).

Proof. For {f, f ′} ∈ S and ν < m(S) the assumption (f ′ −m(S)f, f) ≥ 0 implies

(m(S)− ν)(f, f) ≤ (f ′ −m(S)f + (m(S)− ν)f, f
)
= (f ′ − νf, f)

≤ ‖f ′ − νf‖‖f‖.
Hence, if f 	= 0 it follows that (m(S)− ν)‖f‖ ≤ ‖f ′− νf‖ holds for all {f, f ′} ∈ S
and ν < m(S). This shows that (S−ν)−1 is an operator and (1.4.6) holds. Recalling
Proposition 1.4.4, one has C \ [m(S),∞) ⊂ γ(S), and Theorem 1.2.5 implies that
the defect nλ(S) is constant on C \ [m(S),∞), and σp(S) ∪ σc(S) ⊂ [m(S),∞)
holds. �

Lemma 1.4.7. Let S be a closed symmetric relation in H and let λ ∈ γ(S). Then
ran (S∗ − λ) = H.

Proof. Let λ ∈ γ(S), then also λ ∈ γ(S) (for λ ∈ C \ R this follows from Propo-
sition 1.4.4). This implies that ran (S − λ) is closed according to Lemma 1.2.2.
Hence, ran (S∗ − λ) is closed by Theorem 1.3.5. Moreover, λ ∈ γ(S) implies
ker (S − λ) = {0} and therefore(

ran (S∗ − λ)
)⊥

= ker (S − λ) = {0},
that is, ran (S∗ − λ) is dense in H. It follows that ran (S∗ − λ) = H. �

In the next proposition the Cayley transform and the inverse Cayley trans-
form of symmetric relations are considered.

Proposition 1.4.8. Let μ ∈ C \ R and let Cμ and Fμ be the Cayley transform and
inverse Cayley transform in Definition 1.1.13. Let S and V be relations in H such
that V = Cμ[S] or, equivalently, S = Fμ[V ]. Then the following statements hold:

(i) S is a (closed ) symmetric relation if and only if V is a (closed ) isometric
operator;

(ii) S is a maximal symmetric relation if and only if V is an isometric operator
such that domV = H or ranV = H.

Proof. (i) Let S and V be relations such that V = Cμ[S] with μ ∈ C \ R. Then
(1.1.23), (1.1.25), and Lemma 1.3.11 show that

V −1 = Cμ[S] and V ∗ = Cμ[S
∗].
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These equalities and an application of the inverse Cayley transform give

V −1 ⊂ V ∗ ⇔ Cμ[S] ⊂ Cμ[S
∗] ⇔ S ⊂ S∗.

Now Lemma 1.3.6 shows that S is a symmetric relation if and only if V is an
isometric operator. Moreover, by (1.1.18), S is closed if and only if V −1 = Cμ[S]
is closed, which completes the proof of (i).

(ii) Let S be maximal symmetric and let V = Cμ[S]. Assume that V ′ is an isometric
extension of V in H. Then S′ = Fμ[V

′] is a symmetric extension of S and hence
S′ = S. This implies V ′ = V and hence domV = H or ranV = H. The converse
statement is proved by the same argument. �

It follows from Proposition 1.4.8 (ii) and (1.1.24) that a symmetric relation
S in H is maximal symmetric if and only if

ran (S − μ) = H (1.4.7)

for some, and hence for all μ ∈ C+ or for some, and hence for all μ ∈ C−.

Definition 1.4.9. Let S be a symmetric relation in H and let λ ∈ C. The spaces

Nλ(S
∗) := ker (S∗ − λ) and N̂λ(S

∗) =
{{fλ, λfλ} : fλ ∈ Nλ(S

∗)
}

are called defect subspaces of S at the point λ ∈ C.

Note that the defect numbers n±(S) in (1.4.4) satisfy

n±(S) = dimN∓i(S
∗) = dimNλ(S

∗), λ ∈ C∓.

Since the adjoint relation S∗ is closed by Proposition 1.3.2, the defect sub-
spaces Nλ(S

∗) ⊂ domS∗ and N̂λ(S
∗) ⊂ S∗ are closed subspaces of H and H2,

respectively. The notation in Definition 1.4.9 will be used throughout the text.
Besides the defect subspaces Nλ(S

∗) and N̂λ(S
∗) also the spaces

Nλ(S) := ker (S − λ) and N̂λ(S) :=
{{fλ, λfλ} : fλ ∈ Nλ(S)

}
for a symmetric relation S will be used. Moreover, let

N∞(S) := mulS and N̂∞(S) :=
{{0, f ′} : f ′ ∈ N∞(S)

}
.

Lemma 1.4.10. Let S be a closed symmetric relation in H and let H ⊂ S∗ be a
closed extension of S such that ρ(H) 	= ∅. Then for λ, μ ∈ ρ(H)

I + (λ− μ)(H − λ)−1 (1.4.8)

is boundedly invertible with inverse I + (μ − λ)(H − μ)−1. For μ ∈ ρ(H) the
mapping (1.4.8) is holomorphic in λ. Moreover, for λ, μ ∈ ρ(H) the operator in
(1.4.8) maps Nμ(S

∗) bijectively onto Nλ(S
∗).
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Proof. Let λ, μ ∈ ρ(H). Then the first assertion follows from Corollary 1.2.8. The
holomorphy of λ �→ I + (λ − μ)(H − λ)−1 follows from the holomorphy of the
resolvent; cf. Corollary 1.2.7. As to the defect spaces, it is first verified that for
fμ ∈ Nμ(S

∗) one has

fλ :=
(
I + (λ− μ)(H − λ)−1

)
fμ ∈ Nλ(S

∗) = ran (S − λ)⊥. (1.4.9)

To see this, let {g, g′} ∈ S and consider

(fλ, g
′ − λg) =

(
(I + (λ− μ)(H − λ)−1)fμ, g

′ − λg
)

=
(
fμ,
(
I + (λ− μ)(H∗ − λ)−1

)
(g′ − λg)

)
.

Since λ ∈ ρ(H∗) according to Proposition 1.3.10 and S ⊂ H∗ it follows that
(H∗ − λ)−1(g′ − λg) = g, and so

(fλ, g
′ − λg) = (fμ, g

′ − λg + (λ− μ)g) = (fμ, g
′ − μg) = 0.

Hence, (1.4.9) is clear. It follows that the operator in (1.4.8) maps Nμ(S
∗) to

Nλ(S
∗). The same reasoning with λ and μ interchanged shows that the map is in

fact onto. �

Closed symmetric relations can be written as orthogonal sums of closed sym-
metric operators and self-adjoint purely multivalued linear relations. This is a
straightforward consequence of Theorem 1.3.16.

Theorem 1.4.11. Let S be a closed symmetric relation in H. Decompose H as
H = Hop ⊕ Hmul , Hop := (mulS)⊥ and Hmul := mulS, and denote the orthog-
onal projection from H onto Hop by Pop . Then S is the direct orthogonal sum
Sop ⊕̂ Smul of the closed symmetric operator

Sop =
{{f, Pop f

′} : {f, f ′} ∈ S
}

in Hop and the self-adjoint purely multivalued relation

Smul =
{{0, f ′} : f ′ ∈ Hmul

}
=
{{0, (I − Pop )f

′} : {f, f ′} ∈ S
}

in Hmul . Moreover, the operator Sop is densely defined in Hop if and only if
mulS = mulS∗. If the relation S is maximal symmetric, then Sop is a densely
defined maximal symmetric operator in Hop .

Proof. By assumption the relation S is closed and symmetric, which implies that
mulS = mulS∗∗ and domS ⊂ domS∗. Thus, Theorem 1.3.16 applies and yields
the indicated decomposition and the criterion for the denseness of Sop follows.

If S is maximal symmetric, then mulS = mulS∗ by Lemma 1.4.3. Hence,
in this case the operator Sop is densely defined. Assume that S1 is a symmetric
extension of Sop in Hop . Then S1 ⊕̂ Smul is a symmetric extension of S and hence
coincides with S. This implies Sop = S1 and therefore Sop is a maximal symmetric
operator in Hop . �
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1.5 Self-adjoint relations

For self-adjoint relations there is always an orthogonal decomposition into a self-
adjoint operator and a self-adjoint purely multivalued part. This reduction allows
one to apply the spectral theory for self-adjoint operators in the present context,
see also Chapter 3. This section contains a brief introduction and a number of
consequences of this approach; in particular, nonnegative and semibounded self-
adjoint relations will be considered.

The following reduction result is a specialization of Theorem 1.4.11 for self-
adjoint relations.

Theorem 1.5.1. Let H be a self-adjoint relation in H. Decompose the space H as
H = Hop ⊕ H∞, where

Hop := domH = (mulH)⊥ and Hmul := mulH,

and denote the orthogonal projection from H onto Hop by Pop . Then H is the
direct orthogonal sum Hop ⊕̂ Hmul of the (densely defined ) self-adjoint operator

Hop =
{{f, Pop f

′} : {f, f ′} ∈ H
}

in Hop and the self-adjoint purely multivalued relation

Hmul =
{{0, f ′} : f ′ ∈ Hmul

}
=
{{0, (I − Pop )f

′} : {f, f ′} ∈ H
}

in Hmul .

Observe that for λ ∈ C \ R the resolvent of H in Theorem 1.5.1 admits the
matrix representation

(H − λ)−1 =

(
Pop (H − λ)−1ιop 0

0 0

)
=

(
(Hop − λ)−1 0

0 0

)
(1.5.1)

with respect to the space decomposition H = Hop ⊕ Hmul . Here ιop denotes the
canonical embedding of Hop in H.

In the following it is explained how the spectral theory and the functional
calculus for self-adjoint operators extend via Theorem 1.5.1 to self-adjoint rela-
tions. First of all it is clear that the finite (real) spectrum of a self-adjoint relation
H = Hop ⊕̂ Hmul is the same as that of the self-adjoint operator part Hop . Note
that ρ(Hmul ) = C and that σ(H−1

mul ) consists only of the eigenvalue 0. The es-
sential spectrum σess(H) and discrete spectrum σd(H) of a self-adjoint relation H
are defined as the essential spectrum and discrete spectrum of its operator part
Hop , respectively. Recall that the discrete spectrum consists of all isolated eigen-
values of finite multiplicity and the essential spectrum is the remaining part of
the spectrum; it consists of the continuous spectrum, eigenvalues embedded in the
continuous spectrum, and isolated eigenvalues of infinite multiplicity. It is useful
to observe that λ ∈ σd(H) if and only if dimker (H − λ) <∞ and ran (H − λ) is
closed.
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The spectral measure Eop (·) of the self-adjoint operatorHop is defined for the
Borel sets in R with orthogonal projections in Hop as values, and the corresponding
spectral function is defined as t �→ Eop((−∞, t)). Then one has

Hop f =

∫
R
t dEop (t)f,

domHop =

{
f ∈ Hop :

∫
R
t2 d(Eop (t)f, f) <∞

}
.

Furthermore, for a bounded measurable function h : R→ C the bounded operator
h(Hop ) ∈ B(Hop ) is defined via the functional calculus for self-adjoint operators
in Hop :

h(Hop ) =

∫
R
h(t) dEop (t). (1.5.2)

In particular, the spectral calculus leads to the formula

(Hop − λ)−1 =

∫
R

1

t− λ
dEop (t), λ ∈ ρ(Hop ). (1.5.3)

The spectral projection Eop ((a, b)) can be obtained with the help of the resolvent
of Hop and Stone’s formula

lim
ε→+0

lim
δ→+0

1

2πi

∫ b−ε

a+ε

((
Hop − (t+ iδ)

)−1 − (Hop − (t− iδ)
)−1)

dt, (1.5.4)

where the limits exist in the strong sense.

The spectral measure of a self-adjoint relation will be defined on R as the
orthogonal sum of the spectral measure of Hop and the zero operator in Hmul .

Definition 1.5.2. Let H = Hop ⊕̂ Hmul be a self-adjoint relation in the Hilbert
space H = Hop ⊕Hmul and denote the spectral measure of the self-adjoint operator
Hop in Hop by Eop (·). Then the spectral measure E(·) of H is defined as

E(·) =
(
Eop (·) 0

0 0

)
with respect to the decomposition H = Hop ⊕ Hmul .

Now the functional calculus for the self-adjoint operator Hop yields the func-
tional calculus for the self-adjoint relation H = Hop ⊕̂ Hmul . More precisely, for
a bounded measurable function h : R→ C one defines

h(H) =

∫
R
h(t) dE(t)

in accordance with (1.5.2). It follows directly from Definition 1.5.2 and (1.5.2) that

h(H) = h(Hop ) ⊕̂ OmulH (1.5.5)
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is an everywhere defined bounded operator in H. In particular, for the resolvent
of H in (1.5.1) one has

(H − λ)−1 =

∫
R

1

t− λ
dE(t), λ ∈ ρ(H); (1.5.6)

cf. (1.5.3). Note that the spectral projection E((a, b)) of H is also given by Stone’s
formula

lim
ε→+0

lim
δ→+0

1

2πi

∫ b−ε

a+ε

((
H − (t+ iδ)

)−1 − (H − (t− iδ)
)−1)

dt, (1.5.7)

which again follows from the decomposition of the resolvent of H in (1.5.1); as in
(1.5.4), the limits are understood in the strong sense. A proof of Stone’s formula
(in the weak sense) can also be found in Example A.1.4.

The next lemma on the strong convergence follows from the properties of the
functional calculus of self-adjoint operators; cf. [649, Theorem VIII.5] and (1.5.5).
It will be used in Chapter 3.

Lemma 1.5.3. Let hn : R → C be a sequence of bounded measurable functions
which converge pointwise to h such that ‖hn‖∞ is bounded. Then

lim
n→∞hn(Hop )f = h(Hop )f, f ∈ Hop ,

and

lim
n→∞hn(H)g = h(H)g, g ∈ H.

The next proposition on the Cayley transform of self-adjoint relations com-
plements Proposition 1.4.8.

Proposition 1.5.4. Let μ ∈ C \ R and let Cμ and Fμ be the Cayley transform and
inverse Cayley transform defined in (1.1.23). Let S and V be relations such that
V = Cμ[S] or, equivalently, S = Fμ[V ]. Then S is a self-adjoint relation if and
only if V is a unitary operator.

Proof. As in the proof of Proposition 1.4.8 one obtains for V = Cμ[S] and μ ∈ C\R
that

V −1 = V ∗ ⇔ Cμ[S] = Cμ[S
∗] ⇔ S = S∗,

and now the assertion follows from Lemma 1.3.6. �

The following theorem is useful when one needs to prove that a given relation
is self-adjoint. It is often easy to check that a relation is symmetric and hence it is
convenient to have equivalent conditions for a symmetric relation to be self-adjoint
available.

Theorem 1.5.5. Let S be a closed symmetric relation in H. Then the following
statements are equivalent:
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(i) S = S∗;

(ii) ker (S∗ − λ) = {0} = ker (S∗ − μ) for some, and hence for all λ ∈ C+ and
μ ∈ C−;

(iii) ran (S − λ) = H = ran (S − μ) for some, and hence for all λ ∈ C+ and
μ ∈ C−;

(iv) C \ R ⊂ ρ(S).

If the closed symmetric relation S is bounded from below by m(S) ∈ R or, more
generally, γ(S)∩R 	= ∅, then λ, μ in (ii) and (iii) can also be chosen in (−∞,m(S))
or γ(S) ∩R, respectively, such that λ = μ. In the case S ≥ m(S) item (iv) can be
replaced by C \ [m(S),∞) ⊂ ρ(S).

Proof. (i) ⇒ (ii) From Proposition 1.4.4 it follows that ker (S − λ) = {0} for
λ ∈ C \ R, and as S = S∗ one concludes (ii).

(ii) ⇔ (iii) follows from the identity (ran (S − λ))⊥ = ker (S∗ − λ) and the fact
that ran (S − λ) is closed for λ ∈ C \ R by Proposition 1.4.4 and Lemma 1.2.2.
Note also that ran (S − λ) = H for some λ ∈ C± implies ran (S − λ) = H for all
λ ∈ C± by Theorem 1.2.5 and C± ⊂ γ(S).

(iii)⇒ (iv) Since C \ R ⊂ γ(S) by Proposition 1.4.4 and ran (S−λ) = H, λ ∈ C \ R,
is closed, it follows that (S − λ)−1 ∈ B(H), λ ∈ C \ R. Now Lemma 1.2.4 implies
C \ R ⊂ ρ(S).

(iv) ⇒ (i) It suffices to show S∗ ⊂ S. For this let {f, f ′} ∈ S∗ and λ ∈ C \ R. As
λ ∈ ρ(S), there exists {g, g′} ∈ S such that

f ′ − λf = g′ − λg.

Hence, {f − g, λ(f − g)} = {f, f ′} − {g, g′} ∈ S∗ and

f − g ∈ ker (S∗ − λ) = (ran (S − λ))⊥.

Since with λ ∈ ρ(S) also λ ∈ ρ(S), it follows that f = g and hence f ′ = g′, that
is, {f, f ′} ∈ S.

If S is bounded from below with lower bound m(S), then C \ [m(S),∞) ⊂ γ(S)
by Proposition 1.4.6. Hence, if λ = μ < m(S), then ran (S − λ) = H implies
ran (S − λ) = H for all λ ∈ C \ [m(S),∞) by Theorem 1.2.5. It is also clear that
for λ = μ < m(S) one has (ran (S − λ))⊥ = ker (S∗ − λ), and that ran (S − λ) is
closed. This shows the equivalence of (ii) and (iii), and the argument remains true
in the more general situation γ(S) ∩ R 	= ∅. As above one concludes in the case
S ≥ m(S) from C \ [m(S),∞) ⊂ γ(S) that (iii) implies C \ [m(S),∞) ⊂ ρ(S). �

Note also that if a closed symmetric relation S is self-adjoint and bounded
from below with lower bound m(S) ∈ R, then one has σ(S) ⊂ [m(S),∞) by
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Theorem 1.5.5 (iv). In fact, one verifies with the help of the spectral measure of
S or of its operator part Sop that

m(S) = minσ(S).

In some cases it is useful to have the following variant of the equivalence of
(i) and (iii) in Theorem 1.5.5 in which S is not assumed to be closed.

Proposition 1.5.6. Let S be a symmetric relation in H. Then S is self-adjoint if
and only if ran (S − λ) = H = ran (S − μ) for some, and hence for all λ ∈ C+

and μ ∈ C−. If S is semibounded with lower bound m(S) or, more generally,
γ(S) ∩ R 	= ∅, then λ and μ can also be chosen in (−∞,m(S)) or γ(S) ∩ R,
respectively, such that λ = μ.

Proof. Note that by Lemma 1.2.2 the condition ran (S−λ) = H for some λ ∈ γ(S)
implies that S is closed. Now the assertions follow from Theorem 1.5.5. �

Let S be a symmetric relation in H. Then it is easy to see that

S +̂ N̂x(S
∗), x ∈ R, and S +̂ N̂∞(S∗)

are also symmetric relations in H. The next lemma provides a necessary and suffi-
cient condition for the self-adjointness of these relations, which applies, in partic-
ular, when γ(S) ∩ R 	= ∅.
Lemma 1.5.7. Let S be a symmetric relation in H and let x ∈ R.

(i) The symmetric relation S +̂ N̂x(S
∗) is self-adjoint if and only if

ran (S − x) = ran (S − x) ∩ ran (S∗ − x).

In particular, if ran (S − x) is closed, then S +̂ N̂x(S
∗) is self-adjoint.

(ii) The symmetric relation S +̂ N̂∞(S∗) is self-adjoint if and only if

domS = domS ∩ domS∗. (1.5.8)

In particular, if domS is closed, then S +̂ N̂∞(S∗) is self-adjoint.

Proof. (i) This assertion is a consequence of item (ii). In fact, consider the sym-
metric relation T = (S − x)−1, note that T ∗ = (S∗ − x)−1 and mulT ∗ = Nx(S

∗),
and observe that the following statements (a)–(c) are equivalent

(a) S +̂ N̂x(S
∗) is self-adjoint;

(b) (S − x) +̂
(
Nx(S

∗)× {0}) is self-adjoint;
(c) (S − x)−1 +̂

({0} ×Nx(S
∗)
)
= T +̂

({0} ×mulT ∗) is self-adjoint.
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Now (ii) shows that (a)–(c) are equivalent to

(d) domT = domT ∩ domT ∗;
(e) ran (S − x) = ran (S − x) ∩ ran (S∗ − x),

which implies (i).

(ii) Observe first that the relation S +̂ N̂∞(S∗) = S +̂ ({0}×mulS∗) is symmetric
and by Proposition 1.3.12 and (1.3.4) its adjoint is given by(

S +̂ N̂∞(S∗)
)∗

=
(
S +̂ ({0} ×mulS∗)

)∗
= S∗ ∩ (domS × H

)
. (1.5.9)

Now assume that S +̂ N̂∞(S∗) is self-adjoint. Then

S +̂
({0} ×mulS∗) = S∗ ∩ (domS × H

)
,

which implies (1.5.8). Conversely, assume that (1.5.8) holds. Since S +̂ N̂∞(S∗)
is symmetric, it suffices to show that

S∗ ∩ (domS × H
) ⊂ S +̂

({0} ×mulS∗); (1.5.10)

cf. (1.5.9). Let {f, f ′} belong to the left-hand side of (1.5.10). Then it follows
from (1.5.8) that f ∈ domS, so that {f, g} ∈ S ⊂ S∗ for some g ∈ H. Therefore,
{0, f ′ − g} = {f, f ′} − {f, g} ∈ S∗, so that f ′ − g ∈ mulS∗ and

{f, f ′} = {f, g}+ {0, f ′ − g} ∈ S +̂
({0} ×mulS∗).

This shows that (1.5.10) holds. Hence, S +̂ N̂∞(S∗) is self-adjoint. �

The rest of this section is devoted to self-adjoint relations that are semi-
bounded; cf. Chapter 5. In particular, the square root of a nonnegative self-adjoint
relation is constructed. The material presented here will play an essential role later
in the text.

Lemma 1.5.8. Let H be a closed relation from H to K. Then the relations H∗H
and HH∗ are nonnegative and self-adjoint in H and K, respectively.

Proof. In order to see that H∗H ≥ 0, let {h, h′} ∈ H∗H. Then {h, l} ∈ H and
{l, h′} ∈ H∗ for some l ∈ K, so that

(h′, h) = (l, l) ≥ 0.

Hence, H∗H is nonnegative and, in particular, symmetric.

In order to show that H∗H is self-adjoint in H it suffices to verify the identity
ran (H∗H + I) = H; cf. Proposition 1.5.6. For this let f ∈ H and note that
H×K = H⊕H×KH

⊥, asH is closed. It follows that there is a unique decomposition

{f, 0} = {h, h′}+ {k, k′}, {h, h′} ∈ H, {k, k′} ∈ H⊥.
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Hence,
f = h+ k, 0 = h′ + k′,

which leads to {−k, h′} = {−k,−k′} ∈ H⊥ and {h′, k} = J{−k, h′} ∈ JH⊥ = H∗,
where J is the flip-flop operator in (1.3.1). Thus, {h, h′} ∈ H and {h′, k} ∈ H∗

imply {h, k} ∈ H∗H and

{h, f} = {h, k + h} ∈ H∗H + I,

so that f ∈ ran (H∗H + I). Thus, ran (H∗H + I) = H.

Applying what was established above to H∗ (instead of H) and taking into
account Proposition 1.3.2 (i) one concludes that HH∗ = H∗∗H∗ is also nonnega-
tive and self-adjoint. �

In the next theorem it will be shown that a nonnegative self-adjoint relation
possesses a unique nonnegative square root.

Theorem 1.5.9. Let H be a nonnegative self-adjoint relation in H. Then there exists
a unique nonnegative self-adjoint relation K in H, denoted by K = H

1
2 , such that

K2 = H. Moreover, H
1
2 has the representation

H
1
2 = (Hop )

1
2 ⊕̂ Hmul . (1.5.11)

Proof. If H is a self-adjoint relation in H, then by Theorem 1.5.1 one has the
orthogonal decomposition

H = Hop ⊕̂ Hmul . (1.5.12)

Since H is assumed to be nonnegative, it follows that Hop is a nonnegative self-

adjoint operator in Hop which possesses a unique nonnegative square root (Hop )
1
2

in Hop . Now clearly K defined by the right-hand side of (1.5.11) is a nonnegative
self-adjoint relation with mulK = mulH. Since domHmul = {0}, it is clear that
(Hmul )

2 = Hmul . It follows from (1.1.9) that

K2 = ((Hop )
1
2 )2 ⊕̂ (Hmul )

2 = Hop ⊕̂ Hmul = H.

In order to show uniqueness, let K be a nonnegative self-adjoint relation in
H such that K2 = H. Then mulK = mulH. In fact, the inclusion mulK ⊂ mulH
is clear as {0, ϕ} ∈ K and {0, 0} ∈ K show {0, ϕ} ∈ K2 = H. To show that
mulH ⊂ mulK, let {0, ϕ} ∈ H = K2. Then {0, ψ} ∈ K and {ψ,ϕ} ∈ K for some
ψ ∈ H. As K is self-adjoint, (ψ,ψ) = (0, ϕ) = 0, that is, ψ = 0 and {0, ϕ} ∈ K, as
needed. Therefore,

mulK = mulH and domK = domH.

Decompose the self-adjoint relation K as in Theorem 1.5.1

K = Kop ⊕̂ Kmul , (1.5.13)
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whereKop is a nonnegative self-adjoint operator in domK = domH. Furthermore,
observe from (1.5.13) and (1.1.9) that

H = K2 = (Kop )
2 ⊕̂ (Kmul )

2 = (Kop )
2 ⊕̂ Kmul . (1.5.14)

Moreover, comparing (1.5.14) with (1.5.12) shows that

Hop = (Kop )
2, Hmul = Kmul ,

and since the square root of a nonnegative self-adjoint operator is uniquely deter-
mined, it follows that Kop = (Hop )

1
2 . �

LetH be a nonnegative self-adjoint relation in H. Since Theorem 1.5.9 implies
that mulH

1
2 = mulH, it follows that

(H
1
2 )op = (Hop )

1
2 ,

so that the notation H
1
2
op is unambiguous.

In the next lemma the square root of H − x for a semibounded relation H is
considered.

Lemma 1.5.10. Let H be a semibounded self-adjoint relation in H with lower bound
η = m(H) and let x ≤ η. Then the following statements hold:

(i) domHop is a core for the operator (Hop − x)
1
2 , that is, the closure of the

restriction
(Hop − x)

1
2 � domHop (1.5.15)

coincides with (Hop − x)
1
2 ;

(ii) dom (H − x)
1
2 = dom (H − η)

1
2 ;

(iii) for all h ∈ dom (H − x)
1
2 = dom (H − η)

1
2 ,

‖(Hop − x)
1
2h‖2 + x‖h‖2 = ‖(Hop − η)

1
2h‖2 + η‖h‖2. (1.5.16)

Proof. (i) First observe that Hop is a self-adjoint operator in Hop with the same
lower bound as H, and hence Hop − x, x ≤ η, is a nonnegative operator in Hop .
It suffices to show that the graph of the operator in (1.5.15) is dense in the graph

of the operator (Hop − x)
1
2 . Therefore, assume that for some k ∈ dom (Hop − x)

1
2

and all h ∈ domHop one has

0 = (h, k) +
(
(Hop − x)

1
2h, (Hop − x)

1
2 k
)
= (h, k) +

(
(Hop − x)h, k

)
.

Then k is orthogonal to ran ((Hop − x) + I) and as x − 1 < η, it follows that
ran ((Hop − x) + I) = Hop . Hence, k = 0. This implies (i).

(ii) & (iii) Note first that for h ∈ domH = domHop the identity

((Hop − x)h, h) + x(h, h) = ((Hop − η)h, h) + η(h, h)
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can be rewritten in the form

‖(Hop − x)
1
2h‖2 + x‖h‖2 = ‖(Hop − η)

1
2h‖2 + η‖h‖2, h ∈ domH, (1.5.17)

which coincides with (1.5.16) on domH.

In order to show the inclusion (⊂) in (ii), assume that

h ∈ dom (H − x)
1
2 = dom (Hop − x)

1
2 .

According to (i), there exists a sequence hn ∈ domHop such that

hn → h and (Hop − x)
1
2hn → (Hop − x)

1
2h. (1.5.18)

Therefore, it follows from (1.5.17) that (Hop − η)
1
2hn is a Cauchy sequence in

Hop . Since hn → h and the operator (Hop − η)
1
2 is closed, one concludes that

h ∈ dom (Hop − η)
1
2 = dom (H − η)

1
2 . The other inclusion in (ii) is shown in the

same way.

It remains to verify (1.5.16). Choose h ∈ dom (H −x)
1
2 = dom (H − η)

1
2 and

use (i) to get a sequence hn ∈ domHop as in (1.5.18). Then (1.5.17) shows that

(Hop − η)
1
2hn is a Cauchy sequence in Hop , and as (Hop − η)

1
2 is closed one has

(Hop − η)
1
2hn → (Hop − η)

1
2h, n→∞. (1.5.19)

From (1.5.17) applied with hn, together with (1.5.18) and (1.5.19) one obtains
(1.5.16). �

In the next proposition two semibounded self-adjoint relations are considered.
It turns out that the inclusion of the square root domains implies a strong norm
inequality for the operator parts.

Proposition 1.5.11. Let H1 and H2 be semibounded self-adjoint relations in H
with lower bounds m(H1) and m(H2) and let x < min {m(H1),m(H2)}. Then the
inclusion

dom (H2 − x)
1
2 ⊂ dom (H1 − x)

1
2 , (1.5.20)

together with the inequality

‖(H1,op − x)
1
2ϕ‖ ≤ ρ‖(H2,op − x)

1
2ϕ‖, ϕ ∈ dom (H2 − x)

1
2 , (1.5.21)

where ρ > 0, are equivalent to the inequality

(H2 − x)−1 ≤ ρ2(H1 − x)−1. (1.5.22)

Moreover, if the inclusion (1.5.20) holds, then there exists ρ > 0 for which the
inequality (1.5.21) is satisfied.
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Proof. Let x < min {m(H1),m(H2)}, so that

A = (H2 − x)−1 and B = (H1 − x)−1

are nonnegative operators in B(H). Note that their square roots are given by

A
1
2 = (H2 − x)−

1
2 and B

1
2 = (H1 − x)−

1
2 . Hence, the Moore–Penrose inverses of

A
1
2 and B

1
2 are given by

A(− 1
2 ) = (H2,op − x)

1
2 , B(− 1

2 ) = (H1,op − x)
1
2 ,

cf. Definition 1.3.17 and Example 1.3.18, where it was used that

kerA
1
2 = kerA = mulH2 and kerB

1
2 = kerB = mulH1.

In terms of the operators A and B, the statements in (1.5.20) and (1.5.21) mean
that

ranA
1
2 ⊂ ranB

1
2 and ‖B(− 1

2 )ϕ‖ ≤ ρ‖A(− 1
2 )ϕ‖, ϕ ∈ ranA

1
2 , (1.5.23)

while the statement in (1.5.22) means that

A ≤ ρ2B. (1.5.24)

The equivalence of (1.5.23) and (1.5.24) follows from Proposition D.8. Moreover,
Proposition D.8 also shows that (1.5.20) implies (1.5.21) for some ρ > 0, which
completes the proof. �

The next lemma characterizes the domain of the square root of a nonnegative
self-adjoint relation.

Lemma 1.5.12. Let H be a nonnegative self-adjoint relation in H and let ϕ ∈ H.
Then the function

x �→ ((H−1 − x)−1ϕ,ϕ
)
, x ∈ (−∞, 0),

is nondecreasing, and

lim
x ↑ 0

(
(H−1 − x)−1ϕ,ϕ

)
=

{
‖H 1

2
opϕ‖2, ϕ ∈ domH

1
2 ,

∞, otherwise.
(1.5.25)

Proof. Since H is a nonnegative self-adjoint relation, so is H−1, and each resolvent
operator in the identity

(H−1 − x)−1 = − 1

x
− 1

x2

(
H − 1

x

)−1

, x < 0, (1.5.26)
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belongs to B(H) by Corollary 1.1.12 and (1.2.14). Since ker (H−1/x)−1 = mulH,
it follows from (1.5.26) that for each x < 0 and ϕ ∈ H(

(H−1 − x)−1ϕ,ϕ
)
= − 1

x
‖(I − Pop )ϕ‖2 − 1

x
‖Popϕ‖2

− 1

x2

((
H − 1

x

)−1

Popϕ, Popϕ

)
,

(1.5.27)

where Pop is the orthogonal projection from H onto domH. Let E(·) be the
spectral measure of H, so that Hop =

∫∞
0

t dEop (t). Then the formula (1.5.27)
can be rewritten for each x < 0 and ϕ ∈ H as(

(H−1 − x)−1ϕ,ϕ
)
= − 1

x
‖(I − Pop )ϕ‖2

−
∫ ∞

0

t

tx− 1
d(Eop (t)Popϕ, Popϕ).

(1.5.28)

In particular, (1.5.28) shows that the function in (1.5.25) is nondecreasing for
x ∈ (−∞, 0).

Furthermore, by the nonnegativity of the terms in (1.5.28), the limit as x ↑ 0
of the left-hand side in (1.5.28) is finite if and only if the limit of each of the
terms on the right-hand side of (1.5.28) is finite. The first limit is finite if and
only if (I − Pop )ϕ = 0, i.e., Popϕ = ϕ and hence ϕ ∈ domH. By the monotone
convergence theorem, the limit of the second term is equal to

∫∞
0

t d(Eop (t)ϕ,ϕ),
which is finite and equal to

‖H 1
2
opϕ‖2

if and only if ϕ ∈ domH
1
2 . �

1.6 Maximal dissipative and accumulative relations

In this section the basic properties of dissipative and accumulative relations are
discussed. Of special interest are dissipative and accumulative relations which are
maximal with this property. Such relations admit an orthogonal decomposition
into a maximal dissipative or maximal accumulative operator and a self-adjoint
purely multivalued part.

Definition 1.6.1. A relation H in H is said to be dissipative (accumulative) if
Im (f ′, f) ≥ 0 ( Im (f ′, f) ≤ 0) for all {f, f ′} ∈ H. The relation H is said to
be maximal dissipative (maximal accumulative) if every dissipative (accumulative)
extension H ′ of H in H satisfies H ′ = H.

It is easy to see that if a relation H in H dissipative or accumulative, then so
is the closure H. Hence, maximal dissipative or maximal accumulative relations
are automatically closed.
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Note that a linear relation H is dissipative (maximal dissipative) if and only
if the relation −H is accumulative (maximal accumulative). Thus, it suffices to
state results for dissipative relations; the corresponding results for accumulative
relations follow immediately.

Lemma 1.6.2. Let H be a dissipative relation in H. Then mulH ⊂ mulH∗. If H
is maximal dissipative, then mulH = mulH∗.

Proof. Let k ∈ mulH and let {h, h′} ∈ H. Since {0, λk} ∈ H for every λ ∈ C, one
has {h, h′ + λk} ∈ H. Since H is dissipative one has

Im (h′, h) + Im
(
λ(k, h)

)
= Im (h′ + λk, h) ≥ 0, λ ∈ C.

In this inequality λ ∈ C is arbitrary and hence one concludes (k, h) = 0. Therefore,
mulH ⊂ (domH)⊥ = mulH∗.

If H is dissipative and k ∈ mulH∗ = (domH)⊥, then it follows that

H +̂ span {0, k}

is a dissipative extension of H. Hence, if H is maximal dissipative, then {0, k} ∈ H
and k ∈ mulH. �

The next proposition is the analog of Proposition 1.4.4. Its proof is almost
the same, and depends on the estimate

0 ≤ −Imλ(f, f) ≤ Im (f ′ − λf, f) ≤ ‖f ′ − λf‖‖f‖,

which is valid for λ ∈ C− and {f, f ′} ∈ H such that Im (f ′, f) ≥ 0.

Proposition 1.6.3. Let H be a dissipative relation in H. Then C− is contained in
γ(H) and, in particular, the defect nλ(H) = dim (ran (H − λ)⊥) is constant for
all λ ∈ C−. Furthermore,

‖(H − λ)−1h‖ ≤ 1

−Imλ
‖h‖

for all h ∈ dom (H − λ)−1 = ran (H − λ) and λ ∈ C−.

For dissipative relations Theorem 1.5.5 reads as follows.

Theorem 1.6.4. Let H be a closed dissipative relation in H. Then the following
statements are equivalent:

(i) H is maximal dissipative;

(ii) ker (H∗ − λ) = {0} for some, and hence for all λ ∈ C−;

(iii) ran (H − λ) = H for some, and hence for all λ ∈ C−;

(iv) C− ⊂ ρ(H).
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Proof. (ii) ⇔ (iii) ⇒ (iv) follow with the same arguments as in the proof of The-
orem 1.5.5.

(i)⇒ (iii) As H is closed, also ran (H−λ) is closed for all λ ∈ C− by Lemma 1.2.2
since C− ⊂ γ(H) by Proposition 1.6.3. Now assume that ran (H − λ) is a proper
subspace of H for some λ ∈ C− and define the relation H ′ in H by

H ′ :=
{{f + fλ, f

′ + λfλ} : {f, f ′} ∈ H, fλ ∈ Nλ(H
∗)
}
,

where Nλ(H
∗) = ker (H∗ − λ) = (ran (H − λ))⊥. Then clearly H ⊂ H ′, and as

ran (H ′ − λ) =
{
f ′ − λf + (λ− λ)fλ : {f, f ′} ∈ H, fλ ∈ Nλ(H

∗)
}

= ran (H − λ)⊕Nλ(H
∗) = H

and Nλ(H
∗) 	= {0}, it follows that H ′ is a proper extension of H in H, H 	= H ′.

Since fλ ∈ Nλ(H
∗) implies {fλ, λfλ} ∈ H∗, one sees that

(f ′, fλ) = (f, λfλ) = λ(f, fλ)

for all {f, f ′} ∈ H. Hence,(
f ′ + λfλ, f + fλ

)
= (f ′, f) + (f ′, fλ) + λ(fλ, f) + λ(fλ, fλ)

= (f ′, f) + 2Re
(
λ(f, fλ)

)
+ λ(fλ, fλ)

and from the assumptions that H is dissipative and λ ∈ C− one concludes that

Im
(
f ′ + λfλ, f + fλ

)
= Im (f ′, f) + Imλ(fλ, fλ) ≥ 0,

i.e., H ′ is a proper dissipative extension of H in H. Thus, H is not maximal
dissipative. This proves (iii) for all λ ∈ C−.

(iv) ⇒ (i) Suppose that H ′ is a dissipative extension of H, and let {f, f ′} ∈ H ′

and λ ∈ C−. As C− ⊂ ρ(H), there exists {g, g′} ∈ H such that

f ′ − λf = g′ − λg.

This implies {f − g, f ′ − g′} ∈ H ′ and hence f − g ∈ ker (H ′ − λ). As H ′ is
dissipative and λ ∈ C−, it follows from Proposition 1.6.3 that f = g, which also
gives f ′ = g′. This shows {f, f ′} ∈ H and hence H ′ = H. Therefore, H is maximal
dissipative. �

Corollary 1.6.5. Let H be a relation in H. Then the following statements hold:

(i) If H is maximal dissipative (maximal accumulative ), then (H−λ)−1 ∈ B(H)
is accumulative (dissipative ) for each λ ∈ C− (λ ∈ C+).

(ii) If H is closed, C− ⊂ ρ(H) (C+ ⊂ ρ(H)), and (H − λ)−1 ∈ B(H) is accumu-
lative (dissipative ) for all λ ∈ C− (λ ∈ C+), then H is maximal dissipative
(maximal accumulative ).
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Proof. (i) Assume that H is maximal dissipative, which implies C− ⊂ ρ(H). Let
{f, f ′} ∈ H. Then for λ ∈ C− the identity

Im
(
(H − λ)−1(f ′ − λf), f ′ − λf)

)
= Im (f, f ′ − λf)

= −Im (f ′ − λf, f)

= −Im (f ′, f) + Imλ(f, f)

(1.6.1)

shows that (H − λ)−1 ∈ B(H) is accumulative.

(ii) Assume that H is closed, C− ⊂ ρ(H), and (H − λ)−1 ∈ B(H) is accumulative
for all λ ∈ C−. Then (H − λ)−1(f ′− λf) = f for all {f, f ′} ∈ H and λ ∈ C−, and
hence the identity (1.6.1) shows that

Im (f ′, f) ≥ Imλ(f, f) for all λ ∈ C−.

This implies that H is dissipative and, since H is closed and C− ⊂ ρ(H), it follows
from Theorem 1.6.4 that H is maximal dissipative. �

In the next proposition the Cayley transform and the inverse Cayley trans-
form of accumulative, dissipative, maximal accumulative, and maximal dissipative
relations are considered. This proposition is the counterpart of Proposition 1.4.8
and Proposition 1.5.4.

Proposition 1.6.6. Let μ ∈ C \ R and let Cμ and Fμ be the Cayley transform and
inverse Cayley transform in Definition 1.1.13. Let H and V be relations in H such
that V = Cμ[H] or, equivalently, H = Fμ[V ]. Then the following statements hold:

(i) If μ ∈ C− (μ ∈ C+), then H is a dissipative (accumulative ) relation if and
only if V is a, in general not everywhere defined, contractive operator.

(ii) If μ ∈ C− (μ ∈ C+), then H is a maximal dissipative (maximal accumulative )
relation if and only if V is a contractive operator defined on H.

Proof. (i) Let H be dissipative or accumulative and for μ ∈ C \ R define

V = Cμ[H] =
{{f ′ − μf, f ′ − μf} : {f, f ′} ∈ H

}
. (1.6.2)

Then a straightforward computation shows that

‖f ′ − μf‖2 − ‖f ′ − μf‖2 = 2Re
(
(μ− μ)(f ′, f)

)
= 4(Imμ) Im (f ′, f)

for all {f, f ′} ∈ H. Hence, ‖f ′ − μf‖ ≤ ‖f ′ − μf‖ when μ ∈ C− and H is
dissipative, or when μ ∈ C+ and H is accumulative. This implies that V in (1.6.2)
is a contractive operator.

Conversely, let V be a contractive operator and for μ ∈ C \ R define

H = Fμ[V ] =
{{k − k′, μk − μk′} : {k, k′} ∈ V

}
. (1.6.3)
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Then a computation shows(
μk − μk′, k − k′

)
= μ(k, k)− 2Re

(
μ(k′, k)

)
+ μ(k′, k′),

and consequently

Im
(
μk − μk′, k − k′

)
= −Imμ

(‖k‖2 − ‖k′‖2). (1.6.4)

Since ‖k′‖ ≤ ‖k‖ for {k, k′} ∈ V , it follows from (1.6.4) that H in (1.6.3) is
dissipative for μ ∈ C− and accumulative for μ ∈ C+.

(ii) If H is maximal dissipative or maximal accumulative, then ran (H − μ) = H
for μ ∈ C− or μ ∈ C+, respectively; cf. Theorem 1.6.4. Hence, V in (1.6.2) satisfies
domV = H.

Conversely, if dom V = H, then (1.6.3) implies ran (H − μ) = H, and Theo-
rem 1.6.4 then implies thatH is maximal dissipative or maximal accumulative. �

The following result is sometimes useful.

Proposition 1.6.7. Let H be a closed relation in H. Then H is maximal dissipative
if and only if H∗ is maximal accumulative.

Proof. Let H be a maximal dissipative relation. Then Proposition 1.6.6 shows that
for μ ∈ C− the Cayley transform Cμ[H] is a contractive operator defined on H.
But then also the adjoint is a contractive operator defined on all of H. Observe
that by Lemma 1.3.11

(Cμ[H])∗ = Cμ[H
∗],

which, since μ ∈ C+, implies by Proposition 1.6.6 that H∗ is maximal accumula-
tive. The converse is proved in the same way. �

The next proposition is of a slightly different nature than the previous results
and complements Lemma 1.5.7. It shows that a closed symmetric relation always
admits maximal dissipative and maximal accumulative extensions.

Proposition 1.6.8. Let S be a closed symmetric relation in H, let λ ∈ C \ R, and
let

H = S +̂ N̂λ(S
∗). (1.6.5)

Then H is a closed extension of S and the sum is direct. Moreover,

(i) if λ ∈ C+, then H is maximal dissipative;

(ii) if λ ∈ C−, then H is maximal accumulative.

Proof. Since the eigenvalues of S are real, the sum in (1.6.5) is direct. In order to
verify (i) and (ii) note that a typical element in H is of the form {f +fλ, f

′+λfλ}
with {f, f ′} ∈ S and {fλ, λfλ} ∈ S∗. Therefore, as S is symmetric,

(f ′, fλ) = (f, λfλ).



1.6. Maximal dissipative and accumulative relations 63

Hence, the identity

(f ′ + λfλ, f + fλ) = (f ′, f) + 2Re
(
λ(fλ, f)

)
+ λ(fλ, fλ)

together with Im (f ′, f) = 0 shows that

Im (f ′ + λfλ, f + fλ) = (Imλ)(fλ, fλ).

Therefore, H is dissipative for λ ∈ C+ and accumulative for λ ∈ C−. Finally,
observe that (1.6.5) implies

ran (H − λ) = ran (S − λ)⊕ ker (S∗ − λ) = H,

and Theorem 1.6.4 shows that H is maximal dissipative for λ ∈ C+ and maximal
accumulative for λ ∈ C−. In particular, H is closed. �

The next proposition provides a direct sum decomposition of H based on the
construction in Proposition 1.6.8.

Proposition 1.6.9. Let S be a closed symmetric relation in H and let μ ∈ C \ R.
Then for λ in the same half-plane as μ there is the direct sum decomposition

H = ran (S − λ) + ker (S∗ − μ). (1.6.6)

Proof. Let the relation H(μ) be defined by H(μ) = S +̂ N̂μ(S
∗). A straightfor-

ward calculation involving the Cayley transform

Cμ[H(μ)] =
{{h′ − μh+ η, h′ − μh} : {h, h′} ∈ S, η ∈ Nμ(S

∗)
}

yields the identity

I − λ− μ

λ− μ
Cμ[H(μ)]

=

{{
h′ − μh+ η,

μ− μ

λ− μ
(h′ − λh) + η

}
: {h, h′} ∈ S, η ∈ Nμ(S

∗)
}
.

(1.6.7)

Note that the domain and the range of this relation are given by

ran (S − μ)⊕ ker (S∗ − μ) = H and ran (S − λ) + ker (S∗ − μ), (1.6.8)

respectively.

Now observe that by Proposition 1.6.8 the relation H(μ) is maximal dissi-
pative for μ ∈ C− or maximal accumulative for μ ∈ C+, and thus the Cayley
transform Cμ[H(μ)] is a contraction defined on H; cf. Proposition 1.6.6. Due to
the assumption about λ, one has |λ− μ| < |λ− μ| and hence the left-hand side of
(1.6.7) is a bijection from H onto H. Therefore, the decomposition (1.6.6) in the
lemma is now concluded from the second identity in (1.6.8). To see that the de-
composition (1.6.6) is direct, assume that the second component on the right-hand
side of (1.6.7) is zero. Then the first component must be zero, so that h′ = μh and
η = 0. Since S is symmetric, it follows from {h, h′} ∈ S and h′ = μh that h = 0
and h′ = 0. Thus, indeed, the sum in (1.6.6) is direct. �



64 Chapter 1. Linear Relations in Hilbert Spaces

The next assertion is a special case of Lemma 1.4.10 for maximal dissipative
and maximal accumulative extensions.

Lemma 1.6.10. Let S be a closed symmetric relation in H and let H ⊂ S∗ be a
maximal dissipative (maximal accumulative ) extension of S. Then for λ, μ ∈ C−

(λ, μ ∈ C+)
I + (λ− μ)(H − λ)−1 (1.6.9)

is boundedly invertible with inverse I + (μ − λ)(H − μ)−1. For fixed μ ∈ C−

(μ ∈ C+), the mapping (1.6.9) is holomorphic in λ ∈ C− (λ ∈ C+). Moreover, the
operator in (1.6.9) maps Nμ(S

∗) bijectively onto Nλ(S
∗).

The following useful fact about the closed span (denoted by span ) of the
defect spaces of a symmetric relation will be used in Chapter 3.

Lemma 1.6.11. Let S be a closed symmetric relation in H. Let U− ⊂ C− be a set
which has an accumulation point in C−, and let U+ ⊂ C+ be a set which has an
accumulation point in C+. Then

span
{
Nλ(S

∗) : λ ∈ U−} = span
{
Nλ(S

∗) : λ ∈ C−} (1.6.10)

and
span

{
Nλ(S

∗) : λ ∈ U+
}
= span

{
Nλ(S

∗) : λ ∈ C+
}
. (1.6.11)

Proof. The equality (1.6.10) will be shown, the proof of (1.6.11) is analogous. Note
also that the inclusion (⊂) in (1.6.10) is clear and hence it remains to verify the
inclusion (⊃) in (1.6.10). It is sufficient to show that(

span {Nλ(S
∗) : λ ∈ U−})⊥ ⊂ (span {Nλ(S

∗) : λ ∈ C−})⊥ (1.6.12)

holds. Fix a maximal dissipative extension H of S, see Proposition 1.6.8, and
assume that f ∈ H belongs to the left-hand side of (1.6.12). Then for all λ ∈ U−

and fλ ∈ Nλ(S
∗) one has (fλ, f) = 0. By Lemma 1.6.10, for μ ∈ C− the mapping

λ �→ I + (λ− μ)(H − λ)−1 (1.6.13)

is holomorphic in C− and the operator in (1.6.13) maps Nμ(S
∗) bijectively onto

Nλ(S
∗). Fix μ ∈ C− and fμ ∈ Nμ(S

∗), and consider the element

fλ = (I + (λ− μ)(H − λ)−1)fμ.

Then for all λ ∈ U− one has(
(I + (λ− μ)(H − λ)−1)fμ, f

)
= (fλ, f) = 0.

Since the function λ �→ ((I + (λ− μ)(H − λ)−1)fμ, f) = (fλ, f) is holomorphic on
C− and vanishes on U−, one must have for all λ ∈ C−(

(I + (λ− μ)(H − λ)−1)fμ, f
)
= (fλ, f) = 0.



1.7. Intermediate extensions and von Neumann’s formulas 65

Since fμ ∈ Nμ(S
∗) was arbitrary and (1.6.13) maps Nμ(S

∗) bijectively onto
Nλ(S

∗) it follows that (fλ, f) = 0 for all fλ ∈ Nλ(S
∗) and all λ ∈ C−. Therefore,

f belongs to the right-hand side of (1.6.12). �

Here is a variant of the decomposition in Theorem 1.3.16 for closed dissipative
(accumulative) relations; cf. Theorem 1.4.11 and Theorem 1.5.1.

Theorem 1.6.12. Let H be a closed dissipative (accumulative ) relation in H and
decompose H as H = Hop ⊕ Hmul , Hop := (mulH)⊥ and Hmul := mulH, and
denote the orthogonal projection from H onto Hop by Pop . Then H is the direct
orthogonal sum Hop ⊕̂ Hmul of the closed dissipative (accumulative ) operator

Hop =
{{f, Pop f

′} : {f, f ′} ∈ H
}

in Hop and the self-adjoint purely multivalued relation

Hmul =
{{0, f ′} : f ′ ∈ Hmul

}
=
{{0, (I − Pop )f

′} : {f, f ′} ∈ H
}

in Hmul . Moreover, the operator Hop is densely defined in Hop if and only if
mulH = mulH∗. If the relation H is maximal dissipative (maximal accumulative ),
then Hop is a densely defined maximal dissipative (maximal accumulative ) oper-
ator in Hop .

Proof. The proof follows the proof of Theorem 1.4.11 for symmetric relations.
In order to apply Theorem 1.3.16 now one has to recall that mulH = mulH∗∗

and the inclusion mulH ⊂ mulH∗ holds by Lemma 1.6.2. The assertion about
maximality follows from Lemma 1.6.2. �

1.7 Intermediate extensions and
von Neumann’s formulas

In this section intermediate extensions of a symmetric relation will be studied, with
special attention paid to disjoint and transversal extensions. Furthermore, some
important decompositions of intermediate extensions and the adjoint relation will
be discussed. In particular, these investigations lead to the von Neumann formulas
in the context of relations, which provide a description of accumulative, dissipa-
tive, symmetric, and self-adjoint extensions in terms of contractive, isometric, and
unitary operators between the defect spaces of the symmetric relation.

The first result is a decomposition of a relation in a Hilbert space which has a
closed restriction with nonempty resolvent set. As in Definition 1.4.9, the following
notations are associated with the eigenspace of a relation T at λ ∈ C:

Nλ(T ) = ker (T − λ) and N̂λ(T ) =
{{fλ, λfλ} : fλ ∈ Nλ(T )

}
.
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Theorem 1.7.1. Let T be a relation in H and let the relation H be a restriction of
T . If ran (H − λ) = H for some λ ∈ C, then

T = H +̂ N̂λ(T ) and H ∩ N̂λ(T ) = N̂λ(H). (1.7.1)

Assume, in addition, that H is closed and λ ∈ ρ(H). Then the decomposition in
(1.7.1) holds, the sum is direct, and

T is closed if and only if Nλ(T ) is closed.

Proof. Since N̂λ(T ) ⊂ T , one has the inclusion H +̂ N̂λ(T ) ⊂ T . To see the
opposite inclusion, let {f, f ′} ∈ T . Since ran (H − λ) = H, there exists an element
{h, h′} ∈ H ⊂ T such that f ′ − λf = h′ − λh. It follows that

{f, f ′} − {h, h′} = {f − h, f ′ − h′} = {f − h, λ(f − h)} ∈ N̂λ(T ),

which shows that {f, f ′} ∈ H +̂ N̂λ(T ) and thus T ⊂ H +̂ N̂λ(T ). The statement

H ∩ N̂λ(T ) = N̂λ(H) is immediate.

Now assume that the relation H is closed and λ ∈ ρ(H). Then the conditions
ran (H − λ) = H and ker (H − λ) = {0} are satisfied and hence the decomposition
in (1.7.1) holds and the sum is direct. If T is closed, then clearly Nλ(T ) is closed.
To prove the converse implication consider the linear mapping B : H × H → H
defined by B{f, f ′} = f ′ − λf . Clearly, B is a bounded operator with ranB = H
and

kerB =
{{f, λf} : f ∈ H

}
.

Consider the relation H as a closed subspace of H× H. Then

BH = ran (H − λ) = H and H ∩ kerB = N̂λ(H) = {0}
since λ ∈ ρ(H). Hence, BH is closed, which implies that the sum H +̂ kerB is
closed by Lemma C.4. Moreover, the sum H +̂ kerB is direct. By assumption,
N̂λ(T ) is a closed subspace of kerB, which implies that also H +̂ N̂λ(T ) = T is
closed; cf. Corollary C.7. �

The next preliminary lemma contains some useful observations.

Lemma 1.7.2. Let H and K be closed relations in H. Then, for all λ ∈ ρ(H)∩ρ(K),

ran
(
(H ∩K)− λ

)
= ker

(
(K − λ)−1 − (H − λ)−1

)
and

ker
(
(H +̂ K)− λ

)
= ran

(
(K − λ)−1 − (H − λ)−1

)
.

Proof. In order to prove the first equality let λ ∈ ρ(H) ∩ ρ(K) and assume that
g ∈ ran ((H ∩K)− λ). Then g = h′ − λh for some {h, h′} ∈ H ∩K and it follows
that

(H − λ)−1(h′ − λh) = h and (K − λ)−1(h′ − λh) = h.
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Hence, ((K − λ)−1 − (H − λ)−1)g = 0 and this shows the inclusion

ran
(
(H ∩K)− λ

) ⊂ ker
(
(K − λ)−1 − (H − λ)−1

)
.

To prove the opposite inclusion, let g ∈ ker ((K − λ)−1 − (H − λ)−1). Then with
k = (H − λ)−1g = (K − λ)−1g it follows that {k, g+ λk} ∈ H ∩K. Consequently,
g ∈ ran ((H ∩K)− λ) and therefore

ker
(
(K − λ)−1 − (H − λ)−1

) ⊂ ran
(
(H ∩K)− λ

)
.

As to the second equality, let λ ∈ ρ(H) ∩ ρ(K) and {f, f ′} ∈ H +̂ K. Then
according to Lemma 1.2.4 one has the representation

{f, f ′} = {(K − λ)−1h, h+ λ(K − λ)−1h
}

+
{
(H − λ)−1)k, k + λ(H − λ)−1)k

}
for some h, k ∈ H. Clearly, {f, λf} ∈ H +̂ K if and only if h + k = 0 or, equiv-
alently, f = (K − λ)−1h − (H − λ)−1h for some h ∈ H. This proves the second
equality. �

Let H and K be closed relations in H. Then the intersection H ∩K is closed,
but the componentwise sum H +̂ K is in general not closed; cf. Proposition 1.3.12
and (1.3.5). An application of Theorem 1.7.1 and Lemma 1.7.2 gives the following
characterization.

Theorem 1.7.3. Let H and K be closed relations in H such that ρ(H)∩ ρ(K) 	= ∅.
Then the sum H +̂ K is closed if and only if

ran
(
(K − λ)−1 − (H − λ)−1

)
is closed for some, and hence for all λ ∈ ρ(H) ∩ ρ(K).

Proof. Let λ ∈ ρ(H) ∩ ρ(K). Then by Lemma 1.7.2

ran
(
(K − λ)−1 − (H − λ)−1

)
is closed if and only if ker (H +̂ K − λ) is closed. Now note that the relation
H is closed, that λ ∈ ρ(H), and that H is a restriction of H +̂ K, so that by
Theorem 1.7.1

H +̂ K = H +̂ N̂λ(H +̂ K).

Moreover, it follows from Theorem 1.7.1 that ker (H +̂ K−λ) is closed if and only
if H +̂ K is closed. �

Next follow some consequences of Theorem 1.7.1 and Theorem 1.7.3 in the
context of closed symmetric relations. They are stated in terms of intermediate
extensions.
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Definition 1.7.4. Let S be a closed symmetric relation in H. A relation H is said
to be an intermediate extension of S if S ⊂ H ⊂ S∗.

For instance, H defined in (1.6.5) is an intermediate extension of S. In gen-
eral, an extension H of S need not be a restriction of S∗. However, if H is sym-
metric, then H ⊂ H∗, and it follows from S ⊂ H and H∗ ⊂ S∗ that S ⊂ H ⊂ S∗.
Hence, symmetric and self-adjoint extensions of S are intermediate.

For intermediate extensions with nonempty resolvent set one obtains the
following decomposition from Theorem 1.7.1.

Corollary 1.7.5. Let S be a closed symmetric relation in H. If H is a closed inter-
mediate extension of S such that ρ(H) 	= ∅, then

S∗ = H +̂ N̂λ(S
∗) (1.7.2)

for all λ ∈ ρ(H), and the sum in the decomposition (1.7.2) is direct. Furthermore,
if H ∈ B(H), then

S∗ = H +̂ N̂∞(S∗), (1.7.3)

and the sum in the decomposition (1.7.3) is direct.

Proof. The direct sum decomposition (1.7.2) follows from Theorem 1.7.1. In order
to prove (1.7.3), note that the inclusion (⊃) is clear. For the inclusion (⊂) take
{f, f ′} ∈ S∗. Then {f,Hf} ∈ H ⊂ S∗ and hence {0, f ′ − Hf} ∈ S∗. Thus,

{f, f ′} = {f,Hf}+ {0, f ′ −Hf} ∈ H +̂ N̂∞(S∗). �

Next the notions of disjointness and transversality of two intermediate ex-
tensions are defined.

Definition 1.7.6. Let S be a closed symmetric relation in H. If H and K are closed
intermediate extensions of S, then they are called disjoint if H ∩ K = S, and they
are called transversal if they are disjoint and H +̂ K = S∗.

Let H and K be closed intermediate extensions of S. By Proposition 1.3.12,
(H ∩ K)∗ = clos (H∗ +̂ K∗) and hence H and K are disjoint if and only if
S∗ = clos (H∗ +̂ K∗). In the next lemma self-adjoint intermediate extensions are
considered.

Lemma 1.7.7. Let S be a closed symmetric relation in H and let H and K be
self-adjoint extensions of S. Then the following statements hold:

(i) H and K are disjoint if and only if S∗ = clos (H +̂ K);

(ii) H and K are transversal if and only if S∗ = H +̂ K.

Consequently, if H and K are disjoint, then they are transversal if and only if
H +̂ K is closed.
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Proof. (i) follows from the discussion before the lemma and the assumption that
H and K are self-adjoint.

(ii) The implication (⇒) is clear and hence only the implication (⇐) has to be
checked. But if S∗ = H +̂ K, then Proposition 1.3.12 implies

S =
(
H +̂ K

)∗
= H∗ ∩K∗ = H ∩K,

and hence H and K are disjoint. Together with S∗ = H +̂ K this shows that H
and K are transversal. �

The next theorem provides useful criteria for disjointness and transversality
of self-adjoint extensions.

Theorem 1.7.8. Let S be a closed symmetric relation in H and let H and K be
self-adjoint extensions of S. Then the following statements hold:

(i) H and K are disjoint if and only if

ran (S − λ) = ker
(
(K − λ)−1 − (H − λ)−1

)
(1.7.4)

for some, and hence for all λ ∈ ρ(H) ∩ ρ(K);

(ii) H and K are transversal if and only if

ker (S∗ − λ) = ran
(
(K − λ)−1 − (H − λ)−1

)
(1.7.5)

for some, and hence for all λ ∈ ρ(H) ∩ ρ(K).

Proof. (i) If S = H∩K, then (1.7.4) holds for all λ ∈ ρ(H)∩ρ(K) by Lemma 1.7.2.
Conversely, if (1.7.4) holds for some λ ∈ ρ(H) ∩ ρ(K), then Lemma 1.7.2 shows
that

ran (S − λ) = ran
(
(H ∩K)− λ

)
.

Since λ ∈ ρ(H) and both H ∩K and S are restrictions of H, one has

ker
(
(H ∩K)− λ

)
= {0} = ker (S − λ).

Clearly, S − λ ⊂ (H ∩K)− λ and now the equality S − λ = (H ∩K)− λ follows
from Corollary 1.1.3. This implies S = H ∩K.

(ii) If S∗ = H +̂ K, then (1.7.5) holds for all λ ∈ ρ(H) ∩ ρ(K) by Lemma 1.7.2.
Conversely, assume that (1.7.5) holds for some λ ∈ ρ(H) ∩ ρ(K) and let

T = H +̂ K.

Since H ⊂ S∗ and H ⊂ T , it follows from Theorem 1.7.1 that

S∗ = H +̂ N̂λ(S
∗) and T = H +̂ N̂λ(T ).

By Lemma 1.7.2, the assumption (1.7.5) means that ker (S∗ − λ) = ker (T − λ).

Therefore, N̂λ(S
∗) = N̂λ(T ) and S∗ = T = H +̂ K. Now Lemma 1.7.7 (ii) implies

that H and K are transversal. �
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In the next result a closed intermediate extension H with ρ(H) 	= ∅ of S is
decomposed into the direct sum of S and another closed subspace in H. Recall
that in Proposition 1.6.8 it was shown that there always exist closed intermediate
extensions with this property.

Proposition 1.7.9. Let S be a closed symmetric relation in H and let λ ∈ C \ R.
Let H be a closed intermediate extension of S with λ ∈ ρ(H). Then

H = S +̂
{{(H − λ)−1fλ, (I + λ(H − λ)−1)fλ} : fλ ∈ Nλ(S

∗)
}

(1.7.6)

and the sum is direct.

Proof. In order to show (1.7.6) observe that by Lemma 1.2.4 and S ⊂ H the
right-hand side is contained in H. To see the opposite inclusion, let {h, h′} ∈ H.
Since λ ∈ C \ R, one has

H = ran (S − λ)⊕ ker (S∗ − λ) = ran (S − λ)⊕Nλ(S
∗).

Due to this decomposition, there exist {f, f ′} ∈ S and fλ ∈ Nλ(S
∗) such that

h′ − λh = f ′ − λf + fλ.

Hence, it follows from {h− f, h′ − f ′} ∈ H that {h− f, fλ} ∈ H − λ,

h− f = (H − λ)−1fλ, and h′ − f ′ = fλ + λ(H − λ)−1fλ,

and therefore

{h, h′} − {f, f ′} = {h− f, h′ − f ′} = {(H − λ)−1fλ, (I + λ(H − λ)−1fλ
}
.

Thus, {h, h′} belongs to the right-hand side of (1.7.6).

In order to show that the sum in (1.7.6) is direct, assume that{
(H − λ)−1fλ, (I + λ(H − λ)−1)fλ

} ∈ S

for some fλ ∈ Nλ(S
∗). Then since {fλ, λfλ} ∈ S∗ it follows that(

(I + λ(H − λ)−1)fλ, fλ
)
=
(
(H − λ)−1fλ, λfλ

)
,

which leads to fλ = 0. �

The next statement is a consequence of Corollary 1.7.5 and Proposition 1.7.9.

Corollary 1.7.10. Let S be a closed symmetric relation in H and let λ ∈ C \ R. Let
H be a closed intermediate extension of S with λ ∈ ρ(H). Then

S∗ = S +̂
{ {(H − λ)−1fλ, (I + λ(H − λ)−1fλ} : fλ ∈ Nλ(S

∗)
}
+̂ N̂λ(S

∗)

and all sums are direct.
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The following result is von Neumann’s first formula, stated in the context of
a closed symmetric relation S. This decomposition of S∗ into the direct sum of
S and two defect subspaces corresponding to two points in the upper and lower
half-plane can be viewed as a consequence of Corollary 1.7.5 and Proposition 1.6.8.

Theorem 1.7.11. Let S be a closed symmetric relation in H and let λ, μ ∈ C \ R
be in the same half-plane. Then

S∗ = S +̂ N̂λ(S
∗) +̂ N̂μ(S

∗), direct sums. (1.7.7)

The sums are orthogonal in H2 when λ = μ = ±i.
Proof. Assume that λ, μ ∈ C+. By Proposition 1.6.8, the relation

H = S +̂ N̂μ(S
∗)

is a maximal accumulative intermediate extension of S, and the sum is direct.
Since C+ ⊂ ρ(H) by Theorem 1.6.4 and λ ∈ C+, it follows from Corollary 1.7.5

that S∗ = H +̂ N̂λ(S
∗) and the sum is direct. Hence, (1.7.7) follows. The case

where λ, μ ∈ C− is completely similar.

It is a simple calculation to show that N̂i(S
∗) and N̂−i(S

∗) are orthogonal

in H2. The orthogonality of S and N̂±i(S
∗) in H2 follows from

(f, f±i) + (f ′,±if±i) = (f, f±i)∓ i(f ′, f±i) = (f, f±i)∓ i(f,±if±i) = 0,

where it was used that {f, f ′} ∈ S and N̂±i(S
∗) ⊂ S∗. �

The next result is von Neumann’s second formula, stated in the context of a
closed symmetric relation S. It describes all symmetric extensions of S in terms
of isometric operators between the defect spaces Nμ(S

∗) and Nμ(S
∗) appearing

in Theorem 1.7.11. The following notation will be useful. Let λ ∈ C \ R and let

Mλ be a closed linear subspace of Nλ(S
∗). Then M̂λ denotes the closed linear

subspace of N̂λ(S
∗) defined by

M̂λ =
{{fλ, λfλ} ∈ S∗ : fλ ∈Mλ

}
.

Now let μ ∈ C \ R and let W be a bounded linear mapping from a closed linear

subspace Mμ of Nμ(S
∗) to Nμ(S

∗). Then W induces a linear mapping Ŵ from

M̂μ to N̂μ(S
∗) by

Ŵ{fμ, μfμ} = {Wfμ, μWfμ}.
Clearly, Ŵ is bounded and ‖Ŵ‖ = ‖W‖. In fact, every bounded linear mapping

from M̂μ to N̂μ(S
∗) is of this form. To see this, it suffices to observe that if

Ŵ{fμ, μfμ} = {gμ, μgμ}, then the mapping fμ ∈ Mμ �→ gμ ∈ Nμ(S
∗) is linear.

Moreover, this mapping is also bounded since√
1 + |μ|2 ‖gμ‖ ≤ ‖Ŵ‖

√
1 + |μ|2 ‖fμ‖,

thanks to the boundedness of Ŵ and the structure of the standard inner product.
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Theorem 1.7.12. Let S be a closed symmetric relation in H and let μ ∈ C \ R. Then
H is a closed symmetric extension of S if and only if there exists an isometric
operator W mapping a closed subspace Mμ ⊂ Nμ(S

∗) onto a closed subspace
Mμ ⊂ Nμ(S

∗), such that

H = S +̂ (I − Ŵ )M̂μ. (1.7.8)

The closed symmetric extension H is maximal if and only if Mμ = Nμ(S
∗) or

Mμ = Nμ(S
∗) holds. Furthermore, the extension H is self-adjoint if and only if

Mμ = Nμ(S
∗) and Mμ = Nμ(S

∗) hold.

Let Mμ ⊂ Nμ(S
∗) and Mμ ⊂ Nμ(S

∗) be closed subspaces and observe that
isometric operators W from Mμ onto Mμ exist if and only if the dimensions of
the spaces Mμ and Mμ coincide. This implies the following statement.

Corollary 1.7.13. Let S be a closed symmetric relation in H. Then S admits self-
adjoint extensions H in H if and only if

dimNμ(S
∗) = dimNμ(S

∗)

for some, and hence for all μ ∈ C \ R.
Proof of Theorem 1.7.12. (⇒) Let H be a closed symmetric extension of S, let
μ ∈ C \ R, and consider the Cayley transforms

V := Cμ[S] =
{{f ′ − μf, f ′ − μf} : {f, f ′} ∈ S

}
and

U := Cμ[H] =
{{h′ − μh, h′ − μh} : {h, h′} ∈ H

}
of S and H, respectively. According to Proposition 1.4.8, V is a closed isometric
operator from the closed subspace ran (S−μ) onto the closed subspace ran (S−μ),
and U is an isometric extension of V from the closed subspace ran (H − μ) onto
the closed subspace ran (H − μ). It follows that there exist closed subspaces

Mμ ⊂ Nμ(S
∗) = ran (S − μ)⊥ and Mμ ⊂ Nμ(S

∗) = ran (S − μ)⊥,

such that

ran (H − μ) = ran (S − μ)⊕Mμ and ran (H − μ) = ran (S − μ)⊕Mμ.

Let W be the restriction of U to Mμ. Then W maps Mμ isometrically onto Mμ

and

U =

(
V 0
0 W

)
:

(
ran (S − μ)

Mμ

)
→
(
ran (S − μ)

Mμ

)
. (1.7.9)

Taking the inverse Cayley transform leads to

H = Fμ[U ] = Fμ[V ] +̂ Fμ[W ]

= S +̂
{{(I −W )fμ, (μ− μW )fμ} : fμ ∈Mμ

}
= S +̂

{{fμ, μfμ} − {Wfμ, μWfμ} : fμ ∈Mμ

}
,
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which implies (1.7.8). In the case where the closed symmetric extension H is
maximal, ran (H − μ) = H or ran (H − μ) = H by (1.4.7), and hence one has
Mμ = Nμ(S

∗) or Mμ = Nμ(S
∗), respectively. If H is self-adjoint, then it is clear

that ran (H−μ) = H = ran (H−μ) by Theorem 1.5.5 and therefore Mμ = Nμ(S
∗)

and Mμ = Nμ(S
∗).

(⇐) Let μ ∈ C \ R, assume that W is an isometric operator from a closed subspace
Mμ ⊂ Nμ(S

∗) onto a closed subspace Mμ ⊂ Nμ(S
∗), and consider the relation

H = S +̂ (I − Ŵ )M̂μ. Let V be the Cayley transform of S, define the operator U
as in (1.7.9), and note that

H = S +̂ (I − Ŵ )M̂μ = Fμ[V ] +̂ Fμ[W ] = Fμ[U ]

holds. Since U is isometric and closed, it follows from Proposition 1.4.8 that H
is a closed symmetric relation. If Mμ = Nμ(S

∗) or Mμ = Nμ(S
∗), then one has

domU = H or ranU = H, respectively, and therefore one sees that ran (H−μ) = H
or ran (H − μ) = H, respectively, so that H is a maximal symmetric relation.
Finally, if Mμ = Nμ(S

∗) and Mμ = Nμ(S
∗), then U is unitary and hence H is

self-adjoint; cf. Proposition 1.4.8. �

The second von Neumann formula in Theorem 1.7.12 has a natural exten-
sion, which describes all accumulative (dissipative) extensions of S in terms of
contractive operators between the defect spaces.

Theorem 1.7.14. Let S be a closed symmetric relation in H. Then H is a closed
accumulative (closed dissipative ) extension of S if and only if for some μ ∈ C+

(μ ∈ C−), there exists a contraction W mapping a closed subspace Mμ ⊂ Nμ(S
∗)

to Nμ(S
∗), such that

H = S +̂ (I − Ŵ )M̂μ. (1.7.10)

The closed accumulative (closed dissipative ) extension H is maximal if and only
if Mμ = Nμ(S

∗) holds for μ ∈ C+ (μ ∈ C−).

Proof. (⇒) Let H be a closed accumulative extension of S and let μ ∈ C+. Define
the Cayley transform V = Cμ[S] of S, so that V is a closed isometry from the closed
subspace ran (S−μ) onto the closed subspace ran (S−μ). By Proposition 1.6.6 and
(1.1.18), the Cayley transform U = Cμ[H] of H is a closed contractive extension
of V from the closed subspace ran (H − μ) onto the subspace ran (H − μ). Then
there exists a closed subspace Mμ ⊂ Nμ(S

∗) such that

ran (H − μ) = ran (S − μ)⊕Mμ.

Let W be the restriction of U to Mμ. It will be shown that U is of the form

U =

(
V 0
0 W

)
:

(
ran (S − μ)

Mμ

)
→
(
ran (S − μ)
Nμ(S

∗)

)
. (1.7.11)
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For this it suffices to verify that the contractive operator W is a mapping from
Mμ to Nμ(S

∗) = ker (S∗ − μ). To see this, note that the restriction V of U is
isometric. Hence, by (1.1.10),

(V ϕ,Uψ) = (ϕ,ψ), ϕ ∈ domV ⊂ domU, ψ ∈ domU. (1.7.12)

Observe that if ψ ∈Mμ, then (ϕ,ψ) = 0 for all ϕ ∈ domV . Thus, (1.7.12) implies
that Wψ = Uψ ∈ (ranV )⊥ = Nμ(S

∗). This yields (1.7.11).
Taking the inverse Cayley transform of U in (1.7.11) leads (in the same way

as in the proof of Theorem 1.7.12) to

H = Fμ[U ] = Fμ[V ] +̂ Fμ[W ]

= S +̂
{{fμ, μfμ} − {Wfμ, μWfμ} : fμ ∈Mμ

}
,

which implies (1.7.10). If H is maximal accumulative, then ran (H − μ) = H and
hence Mμ = Nμ(S

∗).

(⇐) Let μ ∈ C+ and assume that W is a contractive operator from a closed

subspace Mμ ⊂ Nμ(S
∗) to Nμ(S

∗) and consider the relation H = S +̂ (I−Ŵ )M̂μ.
Let V be the Cayley transform of S, define the operator U as in (1.7.11), and note
that

H = S +̂ (I − Ŵ )M̂μ = Fμ[V ] +̂ Fμ[W ] = Fμ[U ].

Since U is a closed contractive operator, it follows from Proposition 1.6.6 and
(1.1.18) that H is a closed accumulative extension of S. If Mμ = Nμ(S

∗), then
domU = H and hence ran (H − μ) = H, so that H is maximal accumulative. �

1.8 Adjoint relations and indefinite inner products

The adjoint of a relation in a Hilbert space H has a natural interpretation in
terms of a certain indefinite inner product [[·, ·]]H2 on the product space H× H. It
will be shown that surjective operators which are isometric with respect to such
indefinite inner products and have a closed domain are automatically bounded.
Furthermore, some geometric transformation properties of operator-valued Möbius
transformations which are unitary with respect to indefinite inner products will
be studied.

Let H be a relation in H. The adjoint relation H∗ in Definition 1.3.1 satisfies
H∗ = (JH)⊥ = JH⊥, where J is the flip-flop operator in (1.3.1) and the orthog-
onal complement refers to the componentwise inner product in the product space
H × H; cf. (1.3.2). Define the operator J on the product space H2 as J = −iJ ,
where J is the flip-flop operator:

J := −i
(

0 IH
−IH 0

)
=

(
0 −iIH
iIH 0

)
. (1.8.1)
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Sometimes the notation JH is used to indicate the underlying Hilbert space.
Clearly, the operator J in (1.8.1) has the properties

J = J∗ = J−1 ∈ B(H2),

so that J is unitary and self-adjoint. The operator J gives rise to an inner product
[[·, ·]] on H2 as follows[[

ĥ, k̂
]]
:=
(
Jĥ, k̂

)
H2 , ĥ =

(
h
h′

)
, k̂ =

(
k
k′

)
∈ H2, (1.8.2)

where for convenience ĥ and k̂ are written in vector notation. In the following
sometimes an index is used to indicate in which space the indefinite inner product
is defined, e.g., [[·, ·]]H2 . Explicitly the new inner product is given by[[

ĥ, k̂
]]
= −i((h′, k)− (h, k′)

)
, ĥ =

(
h
h′

)
, k̂ =

(
k
k′

)
∈ H2, (1.8.3)

and note that [[
ĥ, ĥ
]]
= 2 Im (h′, h), ĥ =

(
h
h′

)
∈ H2. (1.8.4)

This shows that the new inner product on H2 is indefinite; and, in fact, (H2, [[·, ·]])
is a so-called Krĕın space. It follows from (1.8.2) that the inner product [[·, ·]] is
continuous: if ĥn → ĥ and k̂m → k̂ in H2 in the usual sense, then clearly[[

ĥn, k̂m
]]→ [[ ĥ, k̂ ]], as m,n→∞.

For a linear subspace H of H2, the [[·, ·]]-orthogonal companion is given by

H [[⊥]] =
{
ĥ ∈ H2 :

[[
ĥ, k̂
]]
= 0 for all k̂ ∈ H

}
.

Hence, it follows from (1.8.3) that the adjoint H∗ (with respect to the standard
inner product) of the relation H in H coincides with the orthogonal companion
H [[⊥]] (with respect to the indefinite inner product [[·, ·]]) of the subspace H in H2:

H∗ = H [[⊥]]. (1.8.5)

The indefinite inner product [[·, ·]] on H2 provides an appropriate tool to
describe certain fundamental notions and identities. A linear subspace H in the
space (H2, [[·, ·]]) is said to be

(i) nonnegative if [[ĥ, ĥ]] ≥ 0 for all ĥ ∈ H;

(ii) nonpositive if [[ĥ, ĥ]] ≤ 0 for all ĥ ∈ H;

(iiii) neutral if [[ĥ, ĥ]] = 0 for all ĥ ∈ H or, equivalently, H ⊂ H [[⊥]];

(iv) hypermaximal neutral if H = H [[⊥]];

the equivalence in (iii) follows from (1.8.4), (1.8.5), and Lemma 1.4.2. A linear
subspace H in the space (H2, [[·, ·]]) is maximal nonnegative, maximal nonpositive,
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or maximal neutral if the existence of a linear subspace with H ⊂ H ′, where H ′

is nonnegative, nonpositive, or neutral, respectively, implies that H ′ = H.

By considering a relation H as a subspace of H2 with the usual inner product
or as a subspace of H2 with the inner product [[·, ·]], the following correspondence
is an immediate consequence of (1.8.4) and (1.8.5):

(i) H is a (maximal) dissipative relation in H if and only if H is a (maximal)
nonnegative subspace of (H2, [[·, ·]]);

(ii) H is a (maximal) accumulative relation in H if and only if H is a (maximal)
nonpositive subspace of (H2, [[·, ·]]);

(iii) H is a (maximal) symmetric relation in H if and only if H is a (maximal)
neutral subspace of (H2, [[·, ·]]);

(iv) H is a self-adjoint relation in H if and only if H is a hypermaximal neutral
subspace of (H2, [[·, ·]]).

Let U be a linear operator from H2 to K2. Then U is said to be isometric
from (H2, [[·, ·]]) to (K2, [[·, ·]]) if[[

Uĥ, Uk̂
]]
K2 =

[[
ĥ, k̂
]]
H2 for all ĥ, k̂ ∈ domU. (1.8.6)

In addition, U is said to be unitary from (H2, [[·, ·]]) to (K2, [[·, ·]]) if U is isometric
from (H2, [[·, ·]]) to (K2, [[·, ·]]) and domU = H2 and ranU = K2.

Lemma 1.8.1. Let H and K be Hilbert spaces and let U be an isometric operator
from (H2, [[·, ·]]) to (K2, [[·, ·]]). Assume that domU is closed and that U is surjective.
Then U is bounded.

Proof. To see that the operator U is bounded, it suffices to show that U is closed
and to apply the closed graph theorem. Let (ĥn) be a sequence in domU such that

ĥn → ĥ, Uĥn → ϕ̂

for some ĥ ∈ H2 and ϕ̂ ∈ K2. Since domU is closed, it follows that ĥ ∈ domU .
As U is surjective, one can choose for each ψ̂ ∈ K2 an element k̂ ∈ domU such
that Uk̂ = JKψ̂; here JK is defined in the same way as in (1.8.1) and is a unitary
and self-adjoint operator in K2. Then it follows from the identity (1.8.6) and the
continuity of [[·, ·]]H2 that

( ϕ̂, ψ̂ )K2 = lim
n→∞

(
Uĥn, J

−1
K Uk̂

)
K2= lim

n→∞
[[
Uĥn, Uk̂

]]
K2 = lim

n→∞
[[
ĥn, k̂

]]
H2

=
[[
ĥ, k̂
]]
H2 =

[[
Uĥ, Uk̂

]]
K2 =

[[
Uĥ, JKψ̂

]]
K2 = (Uĥ, ψ̂ )K2 .

Since ψ̂ ∈ K2 is arbitrary, this gives ϕ̂ = Uĥ. It follows that the operator U is
closed, and since domU is closed, one sees that U is bounded. �

Proposition 1.8.2. Let H and K be Hilbert spaces and let U be an operator from
H2 to K2. Then the following statements are equivalent:
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(i) U is unitary from (H2, [[·, ·]]) to (K2, [[·, ·]]);
(ii) U ∈ B(H2,K2) satisfies the identities

U∗JKU = JH and UJHU
∗ = JK; (1.8.7)

(iii) U ∈ B(H2,K2) is surjective and U∗JKU = JH holds.

Proof. (i) ⇒ (ii) It follows from Lemma 1.8.1 that the operator U is bounded and
hence U ∈ B(H2,K2). Moreover, (1.8.6) implies(

U∗JKUϕ̂, ψ̂
)
H2 =

[[
Uϕ̂, Uψ̂

]]
K2 =

[[
ϕ̂, ψ̂

]]
H2 =

(
JHϕ̂, ψ̂

)
H2 (1.8.8)

for all ϕ̂, ψ̂ ∈ H2, which yields the first identity in (1.8.7). To prove the second

identity in (1.8.7), let ϕ̂, ψ̂ ∈ K2 and choose η̂ ∈ H2 such that ϕ̂ = JKUη̂, which
is possible as U is surjective. It follows from the first identity in (1.8.7), and the
identities JH = J−1

H and JK = J−1
K , that(

UJHU
∗ϕ̂, ψ̂

)
K2 =

(
UJHU

∗JKUη̂, ψ̂
)
K2 =

(
Uη̂, ψ̂

)
K2 =

(
JKϕ̂, ψ̂

)
K2 .

This implies the second identity in (1.8.7).

(ii) ⇒ (iii) The second identity in (1.8.7) yields that U is surjective, and hence
(iii) holds.

(iii)⇒ (i) The identity U∗JKU = JH and the reasoning in (1.8.8) show that (1.8.6)
holds, and hence U is isometric from (H2, [[·, ·]]) to (K2, [[·, ·]]). As U is surjective, it
follows that U is unitary from (H2, [[·, ·]]) to (K2, [[·, ·]]). �

An important feature of operators which are isometric or unitary in the
present sense is the way they transform certain classes of subspaces. Let H be a
linear subspace of (H2, [[·, ·]]) which is nonnegative, nonpositive, or neutral. If U is a
linear operator from H2 to K2 which is isometric from (H2, [[·, ·]]) to (K2, [[·, ·]]), then
it follows directly from the definition that U maps H ∩ domU into a nonnegative,
nonpositive, or neutral subspace of (K2, [[·, ·]]), respectively.
Lemma 1.8.3. Let U be a unitary operator from (H2, [[·, ·]]) to (K2, [[·, ·]]). Then U
provides a one-to-one correspondence between (maximal ) nonnegative, (maximal )
nonpositive, (maximal ) neutral, and hypermaximal neutral subspaces in (H2, [[·, ·]])
and (K2, [[·, ·]]), respectively.
Proof. Only the statement about hypermaximal neutral subspaces needs atten-
tion. For it, one observes that for any subspace H of H2 one has

(UH)[[⊥]] = U(H [[⊥]]).

Thus, H = H [[⊥]] if and only if UH = U(H [[⊥]]) = (UH)[[⊥]]. �

Let H and K be Hilbert spaces and let W ∈ B(H×H,K×K) have the matrix
decomposition

W =

(
W11 W12

W21 W22

)
. (1.8.9)
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In much the same way as the scalar Möbius transform in Definition 1.1.10, the
operator W induces the transformation

W : H× H→ K× K, {h, h′} �→ {W11h+W12h
′,W21h+W22h

′}.
The meaning of W, either as a matrix of operators or as a transformation, will be
clear from the context.

Definition 1.8.4. Let W ∈ B(H × H,K × K) have the matrix decomposition as
in (1.8.9) and let H be a relation in H. Then the Möbius transform of H is the
relation W[H] in K defined by

W[H] =
{{W11h+W12h

′,W21h+W22h
′} : {h, h′} ∈ H

}
.

Note that the domain and range of the Möbius transform are given by

domW[H] =
{
W11h+W12h

′ : {h, h′} ∈ H
}
,

ranW[H] =
{
W21h+W22h

′ : {h, h′} ∈ H
}
.

Moreover, if G is a further Hilbert space and V ∈ B(K× K,G×G), then one has
V[W[H]] = (V ◦W)[H]. For the case where H = K and W−1 ∈ B(H×H) it follows
that the inverse Möbius transform exists and is given by the inverse of W. In this
case it also follows that

W[H] is closed if and only if H is closed. (1.8.10)

If W in Definition 1.8.4 is unitary with respect to the indefinite inner prod-
ucts [[·, ·]] in H2 and K2 (see Proposition 1.8.2), then the corresponding Möbius
transform has useful additional geometric properties.

Theorem 1.8.5. Let W ∈ B(H×H,K×K) have the matrix decomposition in (1.8.9)
and assume that W satisfies the identities

W∗JKW = JH and WJHW
∗ = JK. (1.8.11)

Then W provides a one-to-one correspondence between (maximal ) dissipative,
(maximal ) accumulative, (maximal ) symmetric, and self-adjoint relations in H
and (maximal ) dissipative, (maximal ) accumulative, (maximal ) symmetric, and
self-adjoint relations in K, respectively.

Proof. By Proposition 1.8.2, the operator W is unitary from (H2, [[·, ·]]) to
(K2, [[·, ·]]). Recall that the notions of (maximal) dissipative, (maximal) accumu-
lative, (maximal) symmetric, and self-adjoint relations correspond to the notions
of (maximal) nonnegative, (maximal) nonpositive, (maximal) neutral, and hyper-
maximal neutral relations, respectively. Therefore, the asserted results follow from
Lemma 1.8.3. �

Note that in the case where W ∈ B(H×H,K×K) satisfies (1.8.11) the inverse
W−1 ∈ B(K× K,H× H) is given by

W−1 =

(
W ∗

22 −W ∗
12

−W ∗
21 W ∗

11

)
.
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1.9 Convergence of sequences of relations

This section is devoted to the convergence of sequences of relations in a Hilbert
space. There are two notions to be discussed: strong graph convergence and strong
resolvent convergence. It will be shown via the uniform boundedness principle
that under certain circumstances these notions are equivalent. In particular, the
equivalence holds for sequences of self-adjoint or maximal accretive (dissipative)
relations.

First recall the following well-known result for bounded linear operators.
Let Hn ∈ B(H,K) be a sequence of bounded linear operators and assume that
limn→∞ Hnh exists in K for all h ∈ H. An application of the uniform bounded-
ness principle shows that there is a uniform bound: ‖Hn‖ ≤ C for some C ≥ 0.
Moreover,

H∞h = lim
n→∞Hnh, h ∈ H, (1.9.1)

defines an operator H∞ ∈ B(H,K) and ‖H∞‖ ≤ C. A sequence of operators
Hn ∈ B(H,K) is said to converge strongly to H∞ ∈ B(H,K) if Hnh → H∞h for
all h ∈ H; in this case there is a uniform bound ‖Hn‖ ≤ C for some C ≥ 0. These
results will be used frequently in this section. In the special case K = H the limit
result (1.9.1) leads to the identity

(H∞h, h) = lim
n→∞(Hnh, h), h ∈ H. (1.9.2)

Hence, if all Hn ∈ B(H) are self-adjoint (dissipative, accumulative), then (1.9.2)
shows H∞ ∈ B(H) is self-adjoint (dissipative, accumulative, respectively).

Also recall the following situation. Let Hn be a nondecreasing sequence of
nonnegative operators in B(H) bounded above by H ′ ∈ B(H):

0 ≤ (Hmh, h) ≤ (Hnh, h) ≤ (H ′h, h), h ∈ H, n > m. (1.9.3)

Then clearly ‖Hn‖ ≤ ‖H ′‖ and it follows from the Cauchy–Schwarz inequality for
the nonnegative inner product ((Hn −Hm)·, ·) that

‖(Hn −Hm)h‖2 ≤ ‖Hn −Hm‖((Hn −Hm)h, h)

≤ 2‖H ′‖((Hn −Hm)h, h)
(1.9.4)

for all h ∈ H. Consequently, there exists an operator H∞ ∈ B(H) such that
0 ≤ Hn ≤ H∞ ≤ H ′ and Hnh → H∞h for all h ∈ H as n → ∞. Note that a
similar observation is valid for a nonincreasing sequence of nonnegative operators
in B(H).

Now one introduces two notions of convergence for relations from H to K:
strong graph convergence and strong resolvent convergence. First one defines the
notion of strong graph limit.
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Definition 1.9.1. Let Hn be a sequence of relations from H to K. The strong graph
limit is the linear relation H∞ consisting of all {h, h′} ∈ H × K for which there
exists a sequence {hn, h

′
n} ∈ Hn such that {hn, h

′
n} → {h, h′} in H × K. The

sequence Hn is said to converge to H∞ in the strong graph sense if H∞ is the
strong graph limit of Hn.

By definition, the strong graph limit H∞ always exists, it is a uniquely de-
termined relation from H to K, and H∞ is closed. In fact, let {h, h′} be the limit
of {kn, k′n} ∈ H∞. Then for each n ∈ N there exist elements {hn, h

′
n} ∈ Hn with

‖{kn, k′n} − {hn, h
′
n}‖ ≤

1

n
.

Clearly, {hn, h
′
n} → {h, h′} and it follows that {h, h′} ∈ H∞. Thus, H∞ is closed.

A similar argument shows that the strong graph limits of a sequence Hn and its
closures Hn coincide. Note also that the strong graph limit may coincide with the
zero set {0, 0} in H×K. Furthermore, if H∞ is the strong graph limit of Hn, then
(H∞)−1 is the strong graph limit of (Hn)

−1. Finally, note that if H∞ ∈ B(H,K)
is the strong limit of Hn ∈ B(H,K), then (the graph of) H∞ is the strong graph
limit of Hn

In general, the strong graph convergenceHn → H∞ does not imply the strong
graph convergence of the adjoints (Hn)

∗ to (H∞)∗. But there is the following
observation.

Lemma 1.9.2. Let Hn and H∞ be relations from H to K. Assume that Hn converges
to H∞ in the strong graph sense. Let K be the strong graph limit in K× H of the
sequence (Hn)

∗. Then
K ⊂ (H∞)∗.

Proof. Assume that {f, f ′} ∈ K. Then there exist {fn, f ′
n} ∈ (Hn)

∗ such that
{fn, f ′

n} → {f, f ′}. Now let {h, h′} ∈ H∞, so that there exist {hn, h
′
n} ∈ Hn such

that {hn, h
′
n} → {h, h′}. In particular, one sees that (f ′

n, hn) = (fn, h
′
n), which in

the limit gives

(f ′, h) = (f, h′), {h, h′} ∈ H∞.

In other words, {f, f ′} ∈ (H∞)∗ and thus K ⊂ (H∞)∗. �

In order to define strong resolvent convergence of a sequence of relations Hn

in H to a relation H∞ in H the following set is needed:

ρ∞ = ρ(H∞) ∩
∞⋂

n=1

ρ(Hn),

and, whenever it is used, it is tacitly assumed that it is nonempty. Next the notion
of strong resolvent limit is defined.
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Definition 1.9.3. A sequence of closed relations Hn in H is said to converge to a
closed linear relation H∞ in H in the strong resolvent sense at the point λ ∈ ρ∞
if for all h ∈ H

(Hn − λ)−1h→ (H∞ − λ)−1h. (1.9.5)

In the case of strong resolvent convergence there is also an interplay between
the convergence of Hn and that of (Hn)

−1. Let the closed relations Hn converge
in the strong resolvent sense to the closed relation H∞ at the point λ ∈ ρ∞. Then
it follows from (1.2.14) that for λ 	= 0

1

λ
∈ ρ
(
(H∞)−1

) ∩ ∞⋂
n=1

ρ
(
(Hn)

−1
)
,

and Corollary 1.1.12 implies that (Hn)
−1 converges to (H∞)−1 in the strong resol-

vent sense at 1/λ. Of course, when λ ∈ ρ∞ and λ = 0 the operators (Hn)
−1 ∈ B(H)

converge strongly to (H∞)−1 ∈ B(H).

Strong graph convergence and strong resolvent convergence are closely related
in the presence of a uniform bound, as described below.

Theorem 1.9.4. Let Hn and H∞ be closed linear relations in H. Then the following
statements hold:

(i) Assume that Hn converges to H∞ in the strong resolvent sense at the point
λ ∈ ρ∞. Then Hn converges to H∞ in the strong graph sense and there exists
Cλ > 0 such that for all n ∈ N

‖(Hn − λ)−1‖ ≤ Cλ. (1.9.6)

(ii) Assume that Hn converges to H∞ in the strong graph sense. Let λ ∈ ρ∞ be
any point for which there exists Cλ > 0 such that (1.9.6) holds for all n ∈ N.
Then Hn converges to H∞ in the strong resolvent sense at the point λ.

Proof. (i) Assume that (1.9.5) holds for some λ ∈ ρ∞. In particular, then one has
(Hn − λ)−1 ∈ B(H). Recall that (1.9.5) implies that the uniform estimate (1.9.6)
holds, via the uniform boundedness principle.

Let Γ be the strong graph limit of the sequence Hn. Let {h, h′} ∈ H∞. Then
the sequence{

(Hn − λ)−1(h′ − λh), (I + λ(Hn − λ)−1)(h′ − λh)
} ∈ Hn

converges to{
(H∞ − λ)−1(h′ − λh), (I + λ(H∞ − λ)−1)(h′ − λh)

}
= {h, h′}.

Hence, {h, h′} ∈ Γ, which shows that H∞ ⊂ Γ.
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Conversely, let {h, h′} ∈ Γ and let {hn, h
′
n} ∈ Hn be a sequence such that

{hn, h
′
n} → {h, h′}. Then
(H∞ − λ)−1(h′

n − λhn)− hn

= (H∞ − λ)−1(h′
n − λhn)− (Hn − λ)−1(h′

n − λhn)

=
[
(H∞ − λ)−1 − (Hn − λ)−1

](
(h′

n − λhn)− (h′ − λh)
)

+
[
(H∞ − λ)−1 − (Hn − λ)−1

]
(h′ − λh),

and the terms on the right-hand side tend to 0 as n → ∞ due to the pointwise
bound ‖(Hn−λ)−1‖ ≤ Cλ and the strong resolvent convergence. Hence, it follows
that

(H∞ − λ)−1(h′ − λh) = h,

so that {h, h′} ∈ H∞. This shows that Γ ⊂ H∞.

(ii) Assume that H∞ is the strong graph limit of the sequence Hn. Let λ ∈ ρ∞
and let h ∈ H. Then, since λ ∈ ρ(H∞), there is an element {f, f ′} ∈ H∞ with
f ′ − λf = h, so that

(H∞ − λ)−1h = (H∞ − λ)−1(f ′ − λf) = f.

Since H∞ is the strong graph limit of the sequence Hn, there exists a sequence
{fn, f ′

n} ∈ Hn with the property that {fn, f ′
n} → {f, f ′}. Then

(Hn − λ)−1h− (H∞ − λ)−1h

= (Hn − λ)−1
(
(f ′ − λf)− (f ′

n − λfn)
)

+ (Hn − λ)−1(f ′
n − λfn)− (H∞ − λ)−1(f ′ − λf)

= (Hn − λ)−1
(
(f ′ − λf)− (f ′

n − λfn)
)
+ fn − f,

and, since for λ ∈ ρ∞ there is the bound (1.9.6), the right-hand side tends to 0 as
n→∞. Hence, Hn converges to H∞ in the strong resolvent sense at λ. �

The following result is a useful consequence of Theorem 1.9.4.

Corollary 1.9.5. Let Hn and H∞ be closed relations in H and let Hn satisfy the
uniform bound

‖(Hn − λ)−1‖ ≤ Cλ (1.9.7)

for some λ ∈ ρ∞. Assume that the relation H is a restriction of H∞ which satisfies

(i) ran (H − λ) is dense in H;

(ii) for each {h, h′} ∈ H there exists h′
n ∈ H such that {h, h′

n} ∈ Hn and h′
n → h′

in H.

Then H is dense in H∞ and Hn converges to H∞ in the strong graph sense or,
equivalently, in the strong resolvent sense at λ ∈ ρ∞.
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Proof. Let {h, h′} ∈ H ⊂ H∞ and {h, h′
n} ∈ Hn such that h′

n → h′. Then for
λ ∈ ρ∞ one has

{h′ − λh, h} ∈ (H∞ − λ)−1 and {h′
n − λh, h} ∈ (Hn − λ)−1,

so that

(H∞ − λ)−1(h′ − λh) = (Hn − λ)−1(h′
n − λh).

Consequently,

(Hn − λ)−1(h′ − λh)− (H∞ − λ)−1(h′ − λh)

= (Hn − λ)−1(h′ − λh)− (Hn − λ)−1(h′
n − λh)

= (Hn − λ)−1(h′ − h′
n),

and therefore, by the uniform bound,

‖(Hn − λ)−1(h′ − λh)− (H∞ − λ)−1(h′ − λh)‖ ≤ Cλ‖h′ − h′
n‖

for all {h, h′} ∈ H. Since ran (H−λ) is dense in H, it follows from (1.9.7) that Hn

converges to H∞ in the strong resolvent sense at λ ∈ ρ∞, and hence also in the
strong graph sense.

It remains to show that H is dense in H∞. Observe that H ⊂ H∞ implies
(H − λ)−1 ⊂ (H∞ − λ)−1. Since λ ∈ ρ∞ and ran (H − λ) is dense in H, it follows
that (H − λ)−1 is a densely defined bounded operator in H. Thus, its closure
coincides with (H∞ − λ)−1, which gives H = H∞. �

Let Hn and H∞ be closed relations in H. When all these relations are self-
adjoint or maximal dissipative (accumulative), then there is automatically a uni-
form bound of the form (1.9.6).

Corollary 1.9.6. Let Hn and H∞ be relations in H. Then the following statements
hold:

(i) Assume that Hn and H∞ are self-adjoint. Then Hn converges to H∞ in the
strong resolvent sense for some, and hence for all λ ∈ C \ R if and only if
Hn converges to H∞ in the strong graph sense.

(ii) Assume that Hn and H∞ are semibounded and self-adjoint in H and assume
that γ is a common lower bound. Then Hn converges to H∞ in the strong
resolvent sense for some, and hence for all λ ∈ C \ [γ,∞) if and only if Hn

converges to H∞ in the strong graph sense.

(iii) Assume that Hn and H∞ are maximal dissipative (maximal accumulative ).
Then Hn converges to H∞ in the strong resolvent sense for some, and hence
for all λ ∈ C− (λ ∈ C+) if and only if Hn converges to H∞ in the strong
graph sense.
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Proof. The proof follows from Theorem 1.9.4 when one recalls that in case (i) one
has

‖(Hn − λ)−1‖ ≤ 1

|Imλ| , λ ∈ C \ R,

while in case (ii) one has in addition

‖(Hn − λ)−1‖ ≤ 1

γ − λ
, λ < γ;

cf. Proposition 1.4.4 and Proposition 1.4.6. In case (iii) with maximal dissipative
relations Hn one has

‖(Hn − λ)−1‖ ≤ 1

−Imλ
, λ ∈ C−;

cf. Proposition 1.6.3. The case of maximal accumulative relations is analogous. �

In the definition of convergence in strong resolvent sense the limit relation is
included. There are situations when the limit is not known beforehand.

Theorem 1.9.7. Let Hn be a sequence of closed relations. Let

E ⊂
∞⋂

n=1

ρ(Hn) (1.9.8)

be a nonempty set such that for all λ ∈ E and all h ∈ H the sequence (Hn−λ)−1h
converges. Then there is a closed relation H∞ with E ⊂ ρ(H∞) such that Hn

converges to H∞ in the strong resolvent sense for each λ ∈ E.

Proof. Let λ ∈ E, so that the sequence (Hn − λ)−1h converges for all h ∈ H.
Since (Hn − λ)−1 ∈ B(H), it follows from (1.9.1) (with Hn in (1.9.1) replaced by
(Hn − λ)−1) that there exists an operator B(λ) ∈ B(H) such that for all h ∈ H

(Hn − λ)−1h→ B(λ)h.

Define the relation H∞(λ) by

H∞(λ) = B(λ)−1 + λ.

Then H∞(λ) is closed, B(λ) = (H∞(λ) − λ)−1, and λ ∈ ρ(H∞(λ)). In other
words, Hn in H converges to H∞(λ) in H in the strong resolvent sense at the point
λ ∈ E. By Theorem 1.9.4, H∞(λ) is the strong graph limit of Hn. Hence, H∞(λ)
is independent of the choice of λ ∈ E. �

Theorem 1.9.7 gives rise to the following weakening of Corollary 1.9.6.

Corollary 1.9.8. Let Hn be a sequence of relations in H. Then the following state-
ments hold:
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(i) Assume that all Hn are self-adjoint and that for some λ = λ+ ∈ C+ and for
some λ = λ− ∈ C− and all h ∈ H the sequence (Hn−λ)−1h converges. Then
there exists a self-adjoint relation H∞ such that Hn converges to H∞ in the
strong resolvent sense on C \ R.

(ii) Assume that all Hn are semibounded and self-adjoint with lower bound γ,
and that for some λ ∈ C \ [γ,∞) and all h ∈ H the sequence (Hn − λ)−1h
converges. Then there exists a semibounded self-adjoint relation H∞ bounded
below by γ such that Hn converges to H∞ in the strong resolvent sense on
C \ [γ,∞).

(iii) Assume that all Hn are maximal dissipative (maximal accumulative ) and
that for some λ ∈ C− (λ ∈ C+) and all h ∈ H the sequence (Hn − λ)−1h
converges. Then there exists a maximal dissipative (maximal accumulative )
relation H∞ such that Hn converges to H∞ in the strong resolvent sense on
C− (C+).

Proof. Let Hn be any sequence of closed relations in H such that for all h ∈ H
the sequence (Hn − λ)−1h converges for each λ ∈ E, where E is a nonempty set
satisfying (1.9.8). According to Theorem 1.9.7, there is a closed relation H∞, which
is the limit of Hn in the strong resolvent sense on E, such that

ran (H∞ − λ) = H, λ ∈ E. (1.9.9)

If there is a uniform bound as in (1.9.6), then Theorem 1.9.4 implies that the
limit H∞ is also the strong graph limit of Hn. Hence, every {h, h′} ∈ H∞ can be
approximated by {hn, h

′
n} ∈ Hn, which implies that

(h′, h) = lim
n→∞(h′

n, hn), (1.9.10)

and thus also
Im (h′, h) = lim

n→∞ Im (h′
n, hn). (1.9.11)

(i) Assume that all Hn are self-adjoint. Then the set E = {λ+, λ−} with some
λ± ∈ C± satisfies (1.9.8) and since all Hn are symmetric, it follows from (1.9.11)
that the closed relation H∞ is symmetric. Hence, (1.9.9) with E = {λ+, λ−} shows
that H∞ is self-adjoint; cf. Theorem 1.5.5. Due to Corollary 1.9.6, one sees that
Hn converges to H∞ in the strong resolvent sense on C \ R.
(ii) Assume that all Hn are semibounded and self-adjoint with common lower
bound γ. Then the set E = {λ} with some λ ∈ C \ [γ,∞) satisfies (1.9.8) and,
since (h′

n, hn) ≥ γ(hn, hn) for {hn, hn′} ∈ Hn, it follows from (1.9.10) that the
closed relation H∞ is bounded below with lower bound γ. Hence, (1.9.9) shows
that H∞ is self-adjoint; cf. Theorem 1.5.5. In view of Corollary 1.9.6, Hn converges
to H∞ in the strong resolvent sense on C \ [γ,∞).

(iii) Assume that all Hn are maximal dissipative. Then the set E = {λ} with
some λ ∈ C− satisfies (1.9.8) and since all Hn are dissipative it follows from
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(1.9.11) that the closed relation H∞ is dissipative. Hence, (1.9.9) shows that H∞
is maximal dissipative; cf. Theorem 1.6.4. Due to Corollary 1.9.6, one sees that
Hn converges to H∞ in the strong resolvent sense on C−. The case where Hn is
maximal accumulative is treated analogously. �

The following result is an illustration of the methods involving convergence
in the graph sense and in the resolvent sense. In Chapter 5 this result will be used
extensively.

Proposition 1.9.9. Let Hn be a sequence of semibounded self-adjoint relations with
common lower bound γ in H. Assume that for m > n and some λ < γ

0 ≤ (Hm − λ)−1 ≤ (Hn − λ)−1. (1.9.12)

Then there exists a semibounded self-adjoint relation H∞ with lower bound γ such
that Hn converges to H∞ in the strong resolvent sense on C \ [γ,∞), and

0 ≤ (H∞ − λ)−1 ≤ (Hn − λ)−1. (1.9.13)

Proof. Let λ < γ and let h ∈ H. By (1.9.12),

0 ≤ ((Hm − λ)−1h, h
) ≤ ((Hn − λ)−1h, h

)
form > n and now it follows in the same way as in (1.9.3)–(1.9.4) that the sequence
(Hn − λ)−1h converges for h ∈ H. Then by Corollary 1.9.8 there is a self-adjoint
relation H∞ bounded below by γ, such that Hn converges to H∞ in the strong
resolvent sense on C \ [γ,∞). It follows from (1.9.12) that (1.9.13) holds. �

Before moving to a corollary of Proposition 1.9.9, recall the following simple
antitonicity result. Let A,B ∈ B(H) satisfy 0 ≤ A ≤ B and let A be boundedly
invertible. Then B is boundedly invertible, 0 ≤ B−1, and B−1 ≤ A−1. To see
the last inequality, note that (A·, ·) is a nonnegative semi-inner product, thus one
obtains for any ϕ,ψ ∈ H:

|(Aϕ,ψ)|2 ≤ (Aϕ,ϕ)(Aψ,ψ) ≤ (Aϕ,ϕ)(Bψ,ψ).

Let h ∈ H and choose ϕ = A−1h and ψ = B−1h. Then this inequality leads to
0 ≤ B−1 ≤ A−1.

The following corollary deals with the situation from the beginning of this
section. However, now the nondecreasing sequence of self-adjoint operators in B(H)
does not necessarily have an upper bound.

Corollary 1.9.10. Let Hn ∈ B(H) be a sequence of self-adjoint operators which is
nondecreasing, i.e., for all h ∈ H

(Hnh, h) ≤ (Hmh, h), n < m, (1.9.14)
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and let γ ∈ R be the lower bound of H1. Then there exists a semibounded self-
adjoint relation H∞, bounded below by γ, such that Hn converges to H∞ in the
strong resolvent sense on C \ [γ,∞), and

0 ≤ (H∞ − λ)−1 ≤ (Hn − λ)−1, λ < γ. (1.9.15)

Proof. Let γ ∈ R be the lower bound for H1. Then γ is a common lower bound
for all Hn, i.e., γ(h, h) ≤ (Hnh, h) for all h ∈ H. Furthermore, (1.9.14) gives for
n < m:

0 ≤ ((Hn − λ)h, h) ≤ ((Hm − λ)h, h), λ < γ.

Since Hn − λ with λ < γ is boundedly invertible for all n ∈ N, this implies by
antitonicity that (1.9.12) holds. Thus, (1.9.15) follows from Proposition 1.9.9. �

1.10 Parametric representations for relations

The discussion in this section is centered on the question when a relation from H
to K can be seen as the range of a bounded column operator or as the kernel of
a bounded row operator. The results will be used in the description of boundary
value problems in Chapter 2.

Let H, K, and E be Hilbert spaces and let A ∈ B(E,H), B ∈ B(E,K). Then
H defined by

H =
{{Ae,Be} : e ∈ E

}
(1.10.1)

is a relation from H to K. The representation of the relation H in (1.10.1) is
called a parametric representation and is denoted by H = {A,B}. It is sometimes
convenient to rewrite (1.10.1) as

H = ran

(
A

B

)
, (1.10.2)

that is, H is the range of the corresponding bounded column operator from E to
H×K. Not all relations from H to K can be represented in the form (1.10.1); below
the ones that do will be characterized.

An interesting feature of parametric representations is how they show up in
adjoints. Namely, if H is given by (1.10.1) or, equivalently, by (1.10.2), then the
adjoint H∗ of H satisfies

H∗ =
{{f, f ′} ∈ K× H : B∗f = A∗f ′}, (1.10.3)

or, equivalently,
H∗ = ker (B∗ −A∗),

that is,H∗ can be written as the kernel of the corresponding bounded row operator
from K× H to E.
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The following theorem uses the notion of operator range. An operator range
R in a Hilbert space X is defined as the range of a bounded everywhere defined
operator from some Hilbert space Y to X.

Theorem 1.10.1. A relation H from H to K is of the form (1.10.1) with A ∈ B(E,H)
and B ∈ B(E,K) if and only if H is an operator range. In particular, every closed
relation H from H to K is of the form (1.10.1).

Proof. Let H be given by (1.10.1) and define the column operator R by

R =

(
A

B

)
: E→

(
H
K

)
,

where the column on the right stands for the Hilbert space H×K. Then R belongs
to B(E,H×K) and clearly ranR coincides with (the graph of) the relation H; i.e.,
H is an operator range in H× K.

Conversely, assume that H is an operator range in H×K, so that (the graph
of) H coincides with ranR for some R ∈ B(E,H × K). Let PH and PK be the
orthogonal projections from H× K onto H and K, respectively. Then

A = PHR and B = PKR

define a pair of bounded operators A ∈ B(E,H) and B ∈ B(E,K) such that

H =
{
Rf : f ∈ E

}
=
{{Af,Bf} : f ∈ E

}
.

Hence, H has the form (1.10.1).

Finally, every closed relation H from H to K is of the form (1.10.1), since it
coincides with the range of the orthogonal projection from H×K onto (the closed
graph of) H. �

In the general operator representation (1.10.1) there clearly exists some re-
dundancy: the closed linear subspace

ker

(
A

B

)
= kerA ∩ kerB ⊂ E

does not contribute to H. Thus, one can restrict the operators A and B to the
orthogonal complement of kerA∩kerB in E. The representing pair H = {A,B} is
called tight if kerA∩ kerB = {0}. All tight representations H = {A,B} are easily
characterized.

Lemma 1.10.2. Let Hj, j = 1, 2, be relations from H to K. Assume that the repre-
sentations

Hj =
{{Aje,Bje} : e ∈ Ej

}
, j = 1, 2,

where Aj ∈ B(Ej ,H), Bj ∈ B(Ej ,K), and Ej are Hilbert spaces, are tight. Then
the equality H1 = H2 holds if and only if there exists a bounded bijective operator
X ∈ B(E1,E2) such that

A1 = A2X, B1 = B2X.
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Proof. Since the representations of Hj , j = 1, 2, are tight, one has

ran

(
A1

B1

)∗
=

(
ker

(
A1

B1

))⊥
= E1 and ran

(
A2

B2

)∗
=

(
ker

(
A2

B2

))⊥
= E2.

Now assume that H1 = H2, so that

ran

(
A1

B1

)
= ran

(
A2

B2

)
.

Then Corollary D.4 and the discussion preceding it show that there exists a bound-
edly invertible operator X ∈ B(E1,E2) such that(

A1

B1

)
=

(
A2

B2

)
X.

The converse is clear. �

The question comes up when relations of the form (1.10.1) are closed. The
following result gives a necessary and sufficient condition.

Proposition 1.10.3. Let H be a relation from H to K of the form (1.10.1) with
A ∈ B(E,H) and B ∈ B(E,K). Then H is closed if and only if

E′ = ran (A∗A+B∗B)

is closed in E. In this case there exists a tight representation {A′,B′} of H, where
A′ ∈ B(E′,H), B′ ∈ B(E′,K), such that

(A′)∗A′ + (B′)∗B′ = IE′ .

Proof. The identity

ran

(
A

B

)∗(
A

B

)
= ran (A∗A+B∗B)

together with Lemma D.1 and Lemma D.2 shows that ran (A∗A+B∗B) is closed
if and only if

H = ran

(
A

B

)
is closed. Now assume that H is closed or, equivalently, that ran (A∗A+ B∗B) is
closed. Since A∗A+B∗B is self-adjoint the space E has the orthogonal decompo-
sition

E = ran (A∗A+B∗B)⊕ ker (A∗A+B∗B).

It follows from the identity

ker (A∗A+B∗B) = ker

(
A

B

)∗(
A

B

)
= ker

(
A

B

)
,
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that the restrictions A0 and B0 of A and B to E′ = ran (A∗A+B∗B) form a tight
representation of H. Moreover, it can be seen that A∗

0A0 + B∗
0B0 coincides with

the restriction of A∗A+B∗B onto E′ and hence it follows that A∗
0A0 +B∗

0B0 is a
bounded bijective nonnegative operator in E′. Now define

X = (A∗
0A0 +B∗

0B0)
− 1

2 ∈ B(E′),

and set A′ = A0X ∈ B(E′,H), B′ = B0X ∈ B(E′,K). Then it follows that H can
be represented in the form

H =
{{A′e,B′e} : e ∈ E′},

where the pair {A′,B′} is normalized by

(A′)∗A′ + (B′)∗B′ = X∗(A∗
0A0 +B∗

0B0

)
X = IE′ .

Since the representing pair H = {A0,B0} is tight, so is the representing pair
H = {A′,B′}. �

A direct by-product of Theorem 1.10.1 is the following representation of a
relation in terms of the kernel of a bounded row operator.

Proposition 1.10.4. A relation H from H to K is of the form

H =
{{f, f ′} ∈ H× K : Mf = Nf ′}, (1.10.4)

where M ∈ B(H,F), N ∈ B(K,F), and F is a Hilbert space if and only if H is
closed. In this case the Hilbert space F can be chosen such that

F = span
{
ranM, ranN

}
, (1.10.5)

where M and N are uniquely determined up to left-multiplication by a bounded
bijective operator.

Proof. Note first that for any relation H from H to K the adjoint H∗ is a closed
relation from K to H. Hence, by Theorem 1.10.1, there exist a Hilbert space F and
a pair C ∈ B(F,K) and D ∈ B(F,H), such that

H∗ =
{{Ce,De} : e ∈ F

}
.

Then it follows from (1.10.3) that

H∗∗ =
{{f, f ′} ∈ H× K : D∗f = C∗f ′}.

Now assume thatH is a closed relation from H to K. ThenH = H∗∗ and hence
(1.10.4) is valid with M = D∗ ∈ B(H,F) and N = C∗ ∈ B(K,F). For the converse
assume that H has the form (1.10.4), where M ∈ B(H,F) and N ∈ B(K,F). Then
it follows directly that H is closed.
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If H is given by (1.10.4), then it follows that H∗ has the representation

H∗ =
{{N∗e,M∗e} : e ∈ F

}
with N∗ ∈ B(F,K) and M∗ ∈ B(F,H). By Proposition 1.10.3, this representation
can be assumed to be tight. Then one has

{0} = ker

(
N∗

M∗

)
=

(
ran

(
N∗

M∗

)∗)⊥
=
(
ran (N M)

)⊥
,

which gives (1.10.5).

Likewise, assume that H is given by

H =
{{f, f ′} ∈ H× K : M1f = N1f

′},
where F1 is a Hilbert space, M1 ∈ B(H,F1), and N1 ∈ B(K,F1), and that the
condition F1 = span {ranM1, ranN1} holds. Then H∗ also has the following tight
representation

H∗ =
{{(N1)

∗e, (M1)
∗e} : e ∈ F1

}
.

By Lemma 1.10.2, there exists a bounded bijective operator X ∈ B(F1,F) such
that

(M1)
∗ = (M)∗X, (N1)

∗ = (N)∗X,

or

M1 = X∗M, N1 = X∗N,

with X∗ ∈ B(F,F1) is bijective. This completes the proof. �

Let H be a closed relation from H to K. Then it has a representation as
in (1.10.1) and a representation as in (1.10.4). The interest is now in explicitly
connecting these representations. The first main result concerns the case when the
resolvent set of the relation is nonempty.

Theorem 1.10.5. The relation H in H is closed with μ ∈ ρ(H) if and only if H
has a representation

H =
{{Ae,Be} : e ∈ H

}
(1.10.6)

with A,B ∈ B(H), such that (B−μA)−1 ∈ B(H). This representation is automat-
ically tight. Moreover, in this case the pair {A,B} may be chosen such that H∗

has the tight representation

H∗ =
{{A∗e,B∗e} : e ∈ H

}
, (1.10.7)

so that H can also be written as

H =
{{f, f ′} ∈ H× H : Bf = Af ′}. (1.10.8)
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Proof. Let H be the relation in (1.10.6) and assume that (B − μA)−1 ∈ B(H).
Then it is clear that

(H − μ)−1 =
{{(B− μA)e,Ae} : e ∈ H

}
= A(B− μA)−1,

which implies that μ ∈ ρ(H) and that H is closed. The representation is tight,
since Ae = 0 and Be = 0 imply (B− μA)e = 0, and hence e = 0.

Conversely, letH be closed and assume that μ ∈ ρ(H). Then, by Lemma 1.2.4,
H has the representation

H =
{{(H − μ)−1f, (I + μ(H − μ)−1)f} : f ∈ H

}
.

Hence, one gets (1.10.6) by taking A = (H − μ)−1 and B = I + μ(H − μ)−1, in
which case B− μA = I is boundedly invertible. Since μ ∈ ρ(H∗), one also has, by
Lemma 1.2.4,

H∗ =
{{(H∗ − μ)−1g, (I + μ(H − μ)−1)g} : g ∈ H

}
,

which then leads to (1.10.7). It also follows that this representation is tight. The
assertion (1.10.8) follows from (1.10.7), (1.10.3), and H = H∗∗. �

Note that a possible choice for (1.10.6) and (1.10.7) (and hence also (1.10.8))
to hold is given by

A = (H − μ)−1 and B = I + μ(H − μ)−1, μ ∈ ρ(H). (1.10.9)

In the next statement, starting from an arbitrary representing pair {A,B} for H
in (1.10.6) a representing pair {X−∗A∗, X−∗B∗} for H∗ as in (1.10.7) is obtained.
In fact, Corollary 1.10.6 is an immediate consequence of (1.10.9), Lemma 1.10.2
and Theorem 1.10.5.

Corollary 1.10.6. Let H be a closed relation in H with μ ∈ ρ(H) given in the form
(1.10.6) with A,B ∈ B(H), such that (B− μA)−1 ∈ B(H). Then

A = (H − μ)−1X, B =
(
I + μ(H − μ)−1

)
X,

for some bijective X ∈ B(H), and the pair {X−∗A∗, X−∗B∗} represents the adjoint
H∗ as in (1.10.7). In particular, H is given by

H =
{{f, f ′} ∈ H : BX−1f = AX−1f ′}.

For a given representation H = {A,B} as in (1.10.6) and some bijective
operator X ∈ B(H), Lemma 1.10.2 shows that also

A′ = AX, B′ = BX,
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is a tight representation of H. With {A,B} in (1.10.9) and X = μ − μ, where
μ ∈ ρ(H)∩C \R, one gets the following representing pair {A′,B′} for H in terms
of the Cayley transform in Definition 1.1.13:

A′ = (μ− μ)(H − μ)−1 = I − Cμ[H],

B′ = (μ− μ)
(
I + μ(H − μ)−1

)
= μ− μCμ[H].

(1.10.10)

The next proposition is also closely related to Theorem 1.10.5.

Proposition 1.10.7. Let H be a closed relation in H of the form

H =
{{f, f ′} ∈ H× H : Mf = Nf ′}, (1.10.11)

where F is a Hilbert space and M,N ∈ B(H,F), and assume that (1.10.5) is satis-
fied. Then μ ∈ ρ(H) if and only if M− μN ∈ B(H,F) is bijective. In this case H
has the parametrization (1.10.6) with

{A,B} = {(M− μN)−1N, (M− μN)−1M
}
. (1.10.12)

Proof. Assume that μ ∈ ρ(H), so that also μ ∈ ρ(H∗) and hence one has the
parametrization H∗ = {(H∗ − μ)−1, I + μ(H∗ − μ)−1}. Define the relation K in
H by

K =
{{N∗e,M∗e} : e ∈ F

}
.

Then it follows from (1.10.3) that H = K∗. Furthermore, one sees that the rep-
resentation of K = H∗ is tight due to (1.10.5). Hence, there exists a bijective
operator X ∈ B(F,H) such that

N∗ = (H∗ − μ)−1X and M∗ =
(
I + μ(H∗ − μ)−1

)
X,

and therefore

M = X∗(I + μ(H − μ)−1
)

and N = X∗(H − μ)−1. (1.10.13)

It follows that

M− μN = X∗, (1.10.14)

and hence M− μN ∈ B(H,F) is bijective.

Conversely, assume that M − μN ∈ B(H,F) is bijective. It follows from
(1.10.11) that

H − μ =
{{f, f ′ − μf} ∈ H× H : Mf = Nf ′}.

Then it is clear that ker (H − μ) = {0}. To show that ran (H − μ) = H, let h ∈ H
and define

f = (M− μN)−1Nh and f ′ = μf + h.
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From this definition one sees that

Nf ′ = μNf +Nh = μNf + (M− μN)f = Mf,

which shows {f, f ′} ∈ H. Furthermore one sees that f ′ − μf = h, which then
implies that ran (H − μ) = H. Hence, μ ∈ ρ(H).

It remains to show the parametrization (1.10.12) if μ ∈ ρ(H) or, equivalently,
(M−μN)−1 ∈ B(F,H). For this note that H = {(H −μ)−1, I +μ(H −μ)−1}, and
that (1.10.13) and (1.10.14) imply

(H − μ)−1 = (M− μN)−1N and I + μ(H − μ)−1 = (M− μN)−1M.

This gives (1.10.12). �

In the next corollary the self-adjoint, maximal dissipative, and maximal ac-
cumulative relations are treated.

Corollary 1.10.8. Let H be a relation in H. Then the following statements hold:

(i) H is self-adjoint if and only if there exist A,B ∈ B(H), such that

H =
{{Ae,Be} : e ∈ H

}
(1.10.15)

holds with
Im (A∗B) = 0 and (B− μA)−1 ∈ B(H)

for some, and hence for all μ ∈ C+ and for some, and hence for all μ ∈ C−.
(ii) H is maximal dissipative if and only if there exist A,B ∈ B(H), such that

(1.10.15) holds with

Im (A∗B) ≥ 0 and (B− μA)−1 ∈ B(H)

for some, and hence for all μ ∈ C−.
(iii) H is maximal accumulative if and only if there exist A,B ∈ B(H), such that

(1.10.15) holds with

Im (A∗B) ≤ 0 and (B− μA)−1 ∈ B(H)

for some, and hence for all μ ∈ C+.

If A,B ∈ B(H) are chosen such that also (1.10.7) is satisfied, then H has the
representation

H =
{{f, f ′} ∈ H× H : Bf = Af ′}.

Proof. It has been shown in Theorem 1.10.5 that a relation H is closed with
μ ∈ ρ(H) if and only if it admits the representation (1.10.15) with A,B ∈ B(H)
such that (B − μA)−1 ∈ B(H). Note that when H is given in this way, then
{f, f ′} ∈ H if and only if {f, f ′} = {Ae,Be} for some e ∈ H. The identity

(f ′, f) = (Be,Ae) = (A∗Be, e)
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shows that H is dissipative, accumulative, or symmetric if and only if

Im (A∗B) ≥ 0, Im (A∗B) ≤ 0, or Im (A∗B) = 0, respectively.

Furthermore, it is clear that H is maximal dissipative if μ ∈ C−, maximal accu-
mulative if μ ∈ C+, and self-adjoint if μ ∈ C+ and μ ∈ C−. �

The next corollary provides a special representing pair {A,B} for a self-
adjoint relation H.

Corollary 1.10.9. Let H be a relation in H. Then H is self-adjoint if and only if
there exist A,B ∈ B(H) such that

A∗B = B∗A, AB∗ = BA∗, A∗A+B∗B = I = AA∗ +BB∗. (1.10.16)

Proof. Assume that H is self-adjoint and define

A =
1

2

(
I − C−i[H]

)
and B =

1

2

(
i+ iC−i[H]

)
,

where C−i[H] denotes the Cayley transform of H (with respect to the point
μ = −i) in Definition 1.1.13. A straightforward calculation using the identity
(C−i[H])−1 = Ci[H] = (C−i[H])∗ (see Lemma 1.3.11) shows that the properties in
(1.10.16) are satisfied.

Conversely, it suffices to remark that for μ = ±i

(B+ μA)∗(B+ μA) = I = (B+ μA)(B+ μA)∗

follows from (1.10.16). This shows (B+ μA)−1 ∈ B(H) for μ = ±i. Furthermore,
the first condition in (1.10.16) shows Im (A∗B) = 0 and now Corollary 1.10.8 (i)
implies that H is self-adjoint. �

In Theorem 1.10.5 and afterwards special attention was paid to representa-
tions of H of the form (1.10.6) and (1.10.8) under the assumption that ρ(H) 	= ∅.
In the next proposition this assumption is dropped.

Proposition 1.10.10. Let the relation H = {A,B} from H to K be given by (1.10.1)
with A ∈ B(E,H), B ∈ B(E,K), and assume that

A∗A+B∗B = I. (1.10.17)

Then the adjoint H∗ from K to H has the parametrization

H∗ =
{{(I −BB∗)ϕ+BA∗ψ, AB∗ϕ+ (I −AA∗)ψ} : ϕ ∈ K, ψ ∈ H

}
.

Consequently, H is given by all {f, f ′} ∈ H× K for which

(I −AA∗)f = AB∗f ′, BA∗f = (I −BB∗)f ′. (1.10.18)
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Proof. The assumption (1.10.17) and Proposition 1.10.3 imply that the relation
H = {A,B} is closed. Let J{h, k} = {k,−h} be the flip-flop operator from H× K
to K×H in (1.3.1). Then JH = {B,−A} is a closed relation from K to H. It follows
from (1.10.17) that(

B

−A
)∗(

B

−A
)

= I, and hence ran

(
B

−A
)∗

= E.

This implies that the orthogonal projection PJH in K× H onto JH has the form

PJH =

(
B

−A
)(

B

−A
)∗

=

(
BB∗ −BA∗

−AB∗ AA∗

)
.

Since H∗ = (JH)⊥ by (1.3.2), the orthogonal projection onto H∗ is given by

PH∗ = I − PJH =

(
I −BB∗ BA∗

AB∗ I −AA∗

)
,

and this leads to the form of H∗ in the proposition. It then follows from (1.10.3)
that H∗∗ = H consists of all {f, f ′} ∈ H× K for which (1.10.18) holds. �

1.11 Resolvent operators with respect
to a bounded operator

Many of the results in this chapter are phrased for (H−λ)−1, where H is a relation
in H and λ ∈ C. In the rest of this text there will be several occasions to use similar
results phrased for (H −R)−1 when R ∈ B(H). A brief survey is offered.

For a relation H in H recall that the difference H−R is a well-defined relation
in H given by

H −R =
{{h, h′ −Rh} : {h, h′} ∈ H

}
,

and that H −R is closed whenever H is closed. It is clear that

ker (H −R)−1 = mul (H −R) = mulH. (1.11.1)

The next lemma is a variant of Lemma 1.1.8 in the present context. The
proof is not repeated.

Lemma 1.11.1. Let H be a relation in H. If R ∈ B(H) and ker (H − R) = {0},
then

H =
{{(H −R)−1f, (I +R(H −R)−1)f} : f ∈ ran (H −R)

}
.

The next proposition is concerned with the resolvent identity as in Proposi-
tion 1.1.7, but in the present context.
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Lemma 1.11.2. Let H be a relation in H and let R,S ∈ B(H). Then

(H −R)−1 − (H − S)−1 = (H −R)−1(R− S)(H − S)−1. (1.11.2)

If ker (H −R) = {0} and ker (H − S) = {0}, then (H −R)−1 and (H − S)−1 are
linear operators with the same kernel mulH.

Proof. For the inclusion (⊂), let {h, h′ − h′′} ∈ (H − R)−1 − (H − S)−1 with
{h, h′} ∈ (H −R)−1 and {h, h′′} ∈ (H − S)−1. This gives

{h′, h+Rh′} ∈ H and {h′′, h+ Sh′′} ∈ H,

which shows that {h′ − h′′, Rh′ − Sh′′} ∈ H, and thus

{(R− S)h′′, h′ − h′′} ∈ (H −R)−1.

Since {h, h′′} ∈ (H − S)−1 and {h′′, (R − S)h′′} ∈ R − S, one concludes that
{h, (R − S)h′′} ∈ (R − S)(H − S)−1. Hence, the element {h, h′ − h′′} belongs to
the relation (H −R)−1(R− S)(H − S)−1, which shows the inclusion.

For the inclusion (⊃), let {h, h′} ∈ (H − R)−1(R − S)(H − S)−1. Then by
definition there exists k ∈ H such that

{h, k} ∈ (H − S)−1 and {(R− S)k, h′} ∈ (H −R)−1,

as {k, (R− S)k} ∈ R− S. It is clear from {k, h} ∈ H − S that

{h+ (S −R)k, k} ∈ (H −R)−1.

Thus, it follows that {h, h′ + k} ∈ (H − R)−1. Hence, {h, h′} = {h, h′ + k − k}
belongs to (H −R)−1 − (H − S)−1, which shows the inclusion.

The last statements follow directly from (1.11.1). �

Observe that if (H−R)−1 and (H−S)−1 belong to B(H), then the resolvent
identity (1.11.2) involves only operators from B(H) defined on all of H. Hence, the
following lemma can be verified by direct computation.

Lemma 1.11.3. Let H be a closed relation in H, let R,S ∈ B(H), and assume that

(H −R)−1 and (H − S)−1 ∈ B(H).

Then the operator I + (H − R)−1(R − S) ∈ B(H) is boundedly invertible, with
inverse given by[

I + (H −R)−1(R− S)
]−1

= I − (H − S)−1(R− S). (1.11.3)

Likewise, the operator I − (R− S)(H − S)−1 ∈ B(H) is boundedly invertible, with
inverse given by[

I − (R− S)(H − S)−1
]−1

= I + (R− S)(H −R)−1. (1.11.4)
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Under the conditions of Lemma 1.11.3 it follows by rewriting the resolvent
identity (1.11.2) that

(H −R)−1 =
[
I + (H −R)−1(R− S)

]
(H − S)−1 (1.11.5)

and

(H −R)−1
[
I − (R− S)(H − S)−1

]
= (H − S)−1; (1.11.6)

here the factors are bounded and boundedly invertible by Lemma 1.11.3. Hence,
the identities (1.11.3) and (1.11.4) lead to the following useful result, expressing
the resolvent difference (H1−R)−1−(H2−R)−1 in terms of the resolvent difference
(H1 − S)−1 − (H2 − S)−1.

Lemma 1.11.4. Let H1 and H2 be closed relations in H, and let R and S be op-
erators in B(H). For i = 1, 2 assume that (Hi − R)−1 and (Hi − S)−1 belong to
B(H). Then the bounded operators

I − (H1 − S)−1(R− S), I − (R− S)(H2 − S)−1

are boundedly invertible, and

(H1 −R)−1 − (H2 −R)−1

=
[
I − (H1 − S)−1(R− S)

]−1[
(H1 − S)−1 − (H2 − S)−1

][
I − (R− S)(H2 − S)−1

]−1
.

Proof. It follows from the identities (1.11.5)–(1.11.6) and Lemma 1.11.3 that

(H1 −R)−1 =
[
I − (H1 − S)−1(R− S)

]−1
(H1 − S)−1

and

(H2 −R)−1 = (H2 − S)−1
[
I − (R− S)(H2 − S)−1

]−1
.

Subtracting these identities yields the desired result. �

The question arises for what relations H in H and R ∈ B(H) one can conclude
that (H −R)−1 ∈ B(H). The following lemma presents some sufficient conditions.

Lemma 1.11.5. Let H be a closed relation in H and let R ∈ B(H) with ImR ≥ ε
for some ε > 0. Then the following statements hold:

(i) if H is maximal accumulative, then (H −R)−1 ∈ B(H) is dissipative;

(ii) if H is maximal dissipative, then (H −R∗)−1 ∈ B(H) is accumulative;

(iii) if H is self-adjoint, then (H − R)−1 ∈ B(H) and (H − R∗)−1 ∈ B(H) are
accumulative and dissipative, respectively.
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Proof. (i) Since the relation H is maximal accumulative, it follows that H is
closed, which implies that the relation (H −R)−1 is closed. In order to show that
(H−R)−1 is a bounded operator, let {f, f ′} ∈ (H−R)−1. Then {f ′, f+Rf ′} ∈ H
and, since H is accumulative and ImR ≥ ε, this shows that

Im (f, f ′) + ε‖f ′‖2 ≤ Im (f, f ′) + ((ImR)f ′, f ′) = Im (f +Rf ′, f ′) ≤ 0, (1.11.7)

which leads to

ε‖f ′‖2 ≤ −Im (f, f ′) = Im (f ′, f) ≤ ‖f ′‖ ‖f‖.
This implies that the closed relation (H −R)−1 is a bounded operator. Note also
that (1.11.7) implies Im (f, f ′) ≤ 0 for {f, f ′} ∈ (H −R)−1. Hence, Im (f ′, f) ≥ 0
and (H −R)−1 is dissipative.

To show that (H−R)−1 ∈ B(H) it therefore suffices to verify that ran (H−R)
is dense in H. Note that (ran (H −R))⊥ = ker (H∗−R∗) by Proposition 1.3.2 and
Proposition 1.3.9. Now observe that ker (H∗ − R∗) = {0}. To see this, assume
that f ∈ ker (H∗ − R∗) or, equivalently, {f,R∗f} ∈ H∗. Since H∗ is maximal
dissipative by Proposition 1.6.7 one obtains that

0 ≤ Im (R∗f, f) = Im (f,Rf) = −((ImR)f, f) ≤ −ε‖f‖2,
which gives f = 0.

(ii) & (iii) The proofs are similar. �

Let H be a closed relation in H and let A ∈ B(E,H), B ∈ B(E,H) be a tight
representing pair for H, that is,

H =
{{Ae,Be} : e ∈ E

}
(1.11.8)

and kerA ∩ kerB = {0}; cf. Theorem 1.10.1 and Proposition 1.10.3. Note that
if for some μ ∈ C one has (B − μA)−1 ∈ B(E), then the tightness condition
kerA ∩ kerB = {0} is automatically satisfied.

Lemma 1.11.6. Let H be a closed relation in H and assume that H has the tight
representation (1.11.8), where A,B ∈ B(E,H). Then for any R ∈ B(H) one has
that

(H −R)−1 ∈ B(H) ⇔ (B−RA)−1 ∈ B(H,E), (1.11.9)

in which case
(H −R)−1 = A(B−RA)−1. (1.11.10)

Proof. One sees by the definition of H −R that

H −R =
{{Ae, (B−RA)e} : e ∈ E

}
, (1.11.11)

and thus it follows directly that

ran (H −R) = ran (B−RA) and ker (H −R) = A ker (B−RA).
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Furthermore, it is clear that in general

ker (B−RA) = {0} ⇒ ker (H −R) = {0}.

Moreover, under the assumption kerA ∩ kerB = {0} one concludes that

ker (H −R) = {0} ⇒ ker (B−RA) = {0}.

To see this, let h ∈ ker (B−RA), which means that Bh = RAh. Due to

ker (H −R) = A ker (B−RA)

one has Ah ∈ ker (H − R) = {0} and thus also Bh = 0. The tightness condition
now implies that h = 0.

In order to prove the equivalence (1.11.9), assume that H has the tight rep-
resentation (1.11.8). Then it is clear that ker (H −R) = {0} and ran (H −R) = H
if and only if ker (B − RA) = {0} and ran (B − RA) = H. This implies (1.11.9).
Moreover, (1.11.11) yields (1.11.10). �

1.12 Nevanlinna families and their representations

Let H be a Hilbert space and let N : C \ R → B(H) be a holomorphic function.
Then N is a Nevanlinna function (or B(H)-valued Nevanlinna function) if

(Imλ)(ImN(λ)) ≥ 0, λ ∈ C \ R, (1.12.1)

and N satisfies the symmetry condition N(λ) = N(λ)∗ for all λ ∈ C \ R; see Def-
inition A.4.1. If, in addition, the imaginary part ImN(λ) is boundedly invertible
for some, and hence for all λ ∈ C \ R, then the Nevanlinna function N is said to
be uniformly strict; cf. Definition A.4.7. Observe that by (1.12.1) the operators
N(λ) ∈ B(H) are dissipative (accumulative) for λ ∈ C+ (λ ∈ C−). In this section
the notion of a Nevanlinna function is extended to a so-called Nevanlinna family,
that is, a family of relations Z(λ), λ ∈ C \ R, in H which are maximal dissipative
or maximal accumulative for λ ∈ C+ or C−, respectively, and satisfy a symmetry
condition and a holomorphy condition.

Definition 1.12.1. A family of relations Z(λ), λ ∈ C \ R, in H is called a Nevanlinna
family if the following conditions are satisfied:

(i) Z(λ) is maximal dissipative (maximal accumulative) for λ ∈ C+ (λ ∈ C−);

(ii) Z(λ) = Z(λ)∗, λ ∈ C \ R;
(iii) there exists μ ∈ C+ such that λ �→ (Z(λ) + μ)−1 is holomorphic on C+ and

λ �→ (Z(λ) + μ)−1 is holomorphic on C−.
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Note that condition (i) in this definition and Theorem 1.6.4 ensure that

C− ⊂ ρ(Z(λ)), λ ∈ C+, and C+ ⊂ ρ(Z(λ)), λ ∈ C−. (1.12.2)

In particular, one has (Z(λ)+μ)−1 ∈ B(H) in (iii). The condition Z(λ) = Z(λ)∗ in
(ii) leads to the following conclusions. First of all, it follows from Proposition 1.6.7
that Z(λ) is maximal accumulative for λ ∈ C− if and only if Z(λ) is maximal
dissipative for λ ∈ C+. Secondly, λ �→ (Z(λ) + μ)−1 is holomorphic on C− if
and only if λ �→ (Z(λ) + μ)−1 is holomorphic on C+; this follows from the fact
that for a B(H)-valued function H one has that λ �→ H(λ) is holomorphic if and
only if λ �→ H(λ)∗ is holomorphic. Furthermore, each element Z(λ) is a closed
relation in H and therefore it has a tight operator representation by Theorem 1.10.1
and Proposition 1.10.3. In particular, one has the following general representation
result.

Proposition 1.12.2. Let Z(λ), λ ∈ C \ R, be a Nevanlinna family in H. Then Z(λ)
has the tight representation

Z(λ) =
{{A(λ)h,B(λ)h} : h ∈ H

}
, λ ∈ C \ R. (1.12.3)

Here {A,B} is a pair of B(H)-valued functions on C \ R which satisfies:

(a) the mappings λ �→ A(λ) and λ �→ B(λ) are holomorphic on C \ R;
(b) (Imλ) Im (A(λ)∗B(λ)) ≥ 0, λ ∈ C \ R;
(c) A(λ)∗B(λ) = B(λ)∗A(λ), λ ∈ C \ R;
(d) there exists μ ∈ C+ such that (B(λ) + μA(λ))−1 ∈ B(H) for λ ∈ C+ and

(B(λ) + μA(λ))−1 ∈ B(H) for λ ∈ C−.

If the pair {C,D} is another tight representation of the Nevanlinna family Z(λ),
λ ∈ C \ R, with the above properties, then there exists a bounded and boundedly
invertible holomorphic operator family X(λ), λ ∈ C \ R, such that

C(λ) = A(λ)X(λ), D(λ) = B(λ)X(λ), λ ∈ C \ R. (1.12.4)

Proof. Let Z(λ), λ ∈ C \ R, be a Nevanlinna family, choose μ ∈ C+ as in Defini-
tion 1.12.1, and define A(λ) and B(λ) by

A(λ) =

{
(Z(λ) + μ)−1, λ ∈ C+,

(Z(λ) + μ)−1, λ ∈ C−,
(1.12.5)

and

B(λ) =

{
I − μ(Z(λ) + μ)−1, λ ∈ C+,

I − μ(Z(λ) + μ)−1, λ ∈ C−.
(1.12.6)

Then it follows from (1.12.2) that A(λ) and B(λ) belong toB(H), and Lemma 1.2.4
shows that Z(λ) has the representation (1.12.3). Definition 1.12.1 (iii) implies
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that the mappings λ �→ A(λ) and λ �→ B(λ) are holomorphic, which shows (a).
Furthermore, it follows from (1.12.5) and (1.12.6) that B(λ)+μA(λ) = I, λ ∈ C+,
and B(λ) + μA(λ) = I, λ ∈ C−, which shows (d). Since by (i) Z(λ) is dissipative
(accumulative) for λ ∈ C+ (λ ∈ C−) it follows from

Im
(
A(λ)∗B(λ)h, h

)
= Im

(
B(λ)h,A(λ)h

)
, λ ∈ C \ R, h ∈ H, (1.12.7)

that (b) holds. It is a direct consequence of (1.12.3) that

Z(λ)∗ =
{{k, k′} ∈ H× H : B(λ)∗k = A(λ)∗k′

}
;

cf. (1.10.2) and (1.10.3). Since by (ii) Z(λ) = Z(λ)∗ it follows from (1.12.3) that
(c) holds.

The representation in (1.12.3) with A(λ) and B(λ) in (1.12.5)–(1.12.6) is
tight for each λ ∈ C \ R, that is,

kerA(λ) ∩ kerB(λ) = {0}, λ ∈ C \ R.
In order to see this, assume that A(λ)g = 0 and B(λ)g = 0 for some λ ∈ C+

with some g ∈ H. Then (B(λ) + μA(λ))g = 0 and hence (d) implies that g = 0.
Likewise, the same conclusion holds when λ ∈ C−.

Now assume that {C,D} is another tight representation of the same Nevan-
linna family Z(λ), λ ∈ C \ R, i.e., assume that Z(λ) is also given by

Z(λ) =
{{C(λ)h,D(λ)h} : h ∈ H

}
.

It follows from Lemma 1.10.2 that there exist bounded bijective operators X(λ),
λ ∈ C \ R, such that (1.12.4) holds. In particular, for λ ∈ C+ one has

D(λ) + μC(λ) =
(
B(λ) + μA(λ)

)
X(λ)

and hence the function

λ �→ X(λ) =
(
B(λ) + μA(λ)

)−1
(D(λ) + μC(λ)

)
, λ ∈ C+,

is holomorphic on C+. Similarly, on C− the function X has the form

λ �→ X(λ) =
(
B(λ) + μA(λ)

)−1
(D(λ) + μC(λ)

)
, λ ∈ C−,

and is holomorphic. �

Definition 1.12.3. Let {A,B} be a pair of B(H)-valued functions on C \ R. Then
{A,B} is called a Nevanlinna pair if it satisfies the properties (a), (b), (c), and
(d) in Proposition 1.12.2.

Hence, by Proposition 1.12.2 each Nevanlinna family is represented by a
Nevanlinna pair. The converse is also true: each Nevanlinna pair defines a Nevan-
linna family.
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Proposition 1.12.4. Let {A,B} be a Nevanlinna pair in H. Then Z(λ), λ ∈ C \ R,
defined by (1.12.3) is a Nevanlinna family in H.

Proof. Let {A,B} be a Nevanlinna pair and define the family Z(λ), λ ∈ C \ R,
by (1.12.3). Then (b) implies that Z(λ) is dissipative (accumulative) for λ ∈ C+

(λ ∈ C−); cf. (1.12.7). It follows from (d) and the definition of Z(λ) that one has

(Z(λ) + μ)−1 = A(λ)
(
B(λ) + μA(λ)

)−1 ∈ B(H), λ ∈ C+,

(Z(λ) + μ)−1 = A(λ)
(
B(λ) + μA(λ)

)−1 ∈ B(H), λ ∈ C−,
(1.12.8)

for some μ ∈ C+. With (a) this shows that the holomorphy condition (iii) is
satisfied. Moreover, from (1.12.8) and Theorem 1.6.4 it is now clear that Z(λ) is
maximal dissipative (maximal accumulative) for λ ∈ C+ (λ ∈ C−), which is (i).
From (c) one concludes

A(λ)∗
(
B(λ) + μA(λ)

)
=
(
B(λ)∗ + μA(λ)∗

)
A(λ), λ ∈ C \ R.

For λ ∈ C+ and μ ∈ C+ this reads(
B(λ)∗ + μA(λ)∗

)−1
A(λ)∗ = A(λ)

(
B(λ) + μA(λ)

)−1
,

so that

(Z(λ) + μ)−∗ =
(
B(λ)∗ + μA(λ)∗

)−1
A(λ)∗

= A(λ)
(
B(λ) + μA(λ)

)−1
= (Z(λ) + μ)−1.

However, the left-hand side is equal to (Z(λ)∗ + μ)−1, and hence it follows that
Z(λ)∗ = Z(λ) for λ ∈ C+. A similar reasoning is valid for λ ∈ C−. Hence, (ii)
follows and therefore Z(λ), λ ∈ C \ R, defined by (1.12.3) is a Nevanlinna family
in H. �

In the next lemma it turns out that the conditions (iii) in the definition of
a Nevanlinna family and the conditions (d) in the definition of a Nevanlinna pair
hold for all μ ∈ C \ R.
Lemma 1.12.5. Let Z(λ), λ ∈ C \ R, be a Nevanlinna family in H and let {A,B}
be a Nevanlinna pair in H. Then the following statements hold:

(i) for all μ ∈ C+ the mapping λ �→ (Z(λ)+μ)−1 is holomorphic on C+ and for
all μ ∈ C− the mapping λ �→ (Z(λ) + μ)−1 is holomorphic on C−;

(ii) for all μ ∈ C+ one has (B(λ) + μA(λ))−1 ∈ B(H) on C+ and for all μ ∈ C−

one has (B(λ) + μA(λ))−1 ∈ B(H) on C−.

Proof. (i) Assume that Z(λ) satisfies (i) in Definition 1.12.1, so that, (1.12.2)
holds. Fix ν, μ in the same half-plane as λ ∈ C \ R. Then one has −ν ∈ ρ(Z(λ))
and −μ ∈ ρ(Z(λ)) According to the resolvent formula one has

(Z(λ) + μ)−1 − (Z(λ) + ν)−1 = (ν − μ)(Z(λ) + ν)−1(Z(λ) + μ)−1

= (ν − μ)(Z(λ) + μ)−1(Z(λ) + ν)−1.
(1.12.9)
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Assume that for some μ ∈ C+ the mapping λ �→ (Z(λ) + μ)−1 is holomorphic on
C+. Let ν ∈ C+. Then it follows from the resolvent formula (1.12.9) that

(Z(λ) + μ)−1 =
(
I + (ν − μ)(Z(λ) + μ)−1

)
(Z(λ) + ν)−1.

The factor I + (ν − μ)(Z(λ) + μ)−1 is holomorphic in λ ∈ C+ and according to
Lemma 1.6.10 it is boundedly invertible. Hence, its inverse is also holomorphic in
λ ∈ C+ and one obtains for λ ∈ C+

(Z(λ) + ν)−1 =
(
I + (ν − μ)(Z(λ) + μ)−1

)−1
(Z(λ) + μ)−1.

Hence, λ �→ (Z(λ)+ ν)−1 is holomorphic on C+. The corresponding statement for
the half-plane C− follows from the symmetry of the Nevanlinna family.

(ii) Assume that for some μ ∈ C+ one has (B(λ) + μA(λ))−1 ∈ B(H). Define
Z(λ), λ ∈ C+, by (1.12.3), and note that this representation is tight. Then Z(λ),
λ ∈ C+, is maximal dissipative and hence (Z(λ) + μ)−1 ∈ B(H) for all μ ∈ C+.
Now Lemma 1.11.6 yields (B(λ) + μA(λ))−1 ∈ B(H) for all μ ∈ C+. A similar
reasoning holds for μ ∈ C−. �

Now the conditions (iii) in Definition 1.12.1 and, likewise, the conditions (d)
in Definition 1.12.3 will be further relaxed in a useful way.

Proposition 1.12.6. Let Z(λ), λ ∈ C \ R, be a Nevanlinna family and let {A,B}
be a Nevanlinna pair in H such that the representation (1.12.3) holds. Let N be a
uniformly strict Nevanlinna function with values in B(H). Then the conditions in
(iii) in Definition 1.12.1 may be replaced by

λ �→ (Z(λ) +N(λ)
)−1

is holomorphic on C \ R with values in B(H).

Moreover, the conditions in (d) in Definition 1.12.3 may be replaced by(
B(λ) +N(λ)A(λ)

)−1 ∈ B(H), λ ∈ C \ R.
In particular, the choice N(λ) = λ is allowed for these statements. Moreover,

− (Z(λ) +N(λ)
)−1

= −A(λ)
(
B(λ) +N(λ)A(λ)

)−1
, λ ∈ C \ R, (1.12.10)

defines a Nevanlinna function with values in B(H).

Proof. The proof will be given in three steps. In Step 1 it is shown how condition
(iii) in Definition 1.12.1 and condition (d) in Definition 1.12.3 give rise to the
stated conditions in the proposition. In Step 2 and Step 3 the reverse direction is
traversed for Nevanlinna families and Nevanlinna pairs, respectively.

Step 1. Let Z(λ) be a Nevanlinna family in H and let {A,B} be a Nevanlinna pair
in H as in Definition 1.12.1 and Definition 1.12.3, respectively, such that (1.12.3)
holds. Then for λ ∈ C \ R(

Z(λ) +N(λ)
)−1 ∈ B(H) and

(
B(λ) +N(λ)A(λ)

)−1 ∈ B(H), (1.12.11)
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and the identity (1.12.10) holds and defines a Nevanlinna function with val-
ues in B(H). In fact, for λ ∈ C+ the first assertion in (1.12.11) follows from
Lemma 1.11.5 (i) with H = −Z(λ) and R = N(λ). Similarly, for λ ∈ C−

Lemma 1.11.5 (ii) yields the first assertion in (1.12.11). The second assertion in
(1.12.11) and the identity in (1.12.10) follow from Lemma 1.11.6. Since the func-
tions A, B, and N are holomorphic, the identity in (1.12.10) defines a holomorphic
function and Lemma 1.11.5 implies

(Imλ) Im
(−(Z(λ) +N(λ))−1h, h

) ≥ 0, λ ∈ C \ R, h ∈ H.

Furthermore, for λ ∈ C \ R one has −(Z(λ) + N(λ))−∗ = −(Z(λ) + N(λ))−1 by
Definition 1.12.1 (ii) and the fact that N is a Nevanlinna function. Now it follows
that the function in (1.12.10) is a Nevanlinna function with values in B(H).

Step 2. Let Z(λ), λ ∈ C \ R, satisfy (i) and (ii) of Definition 1.12.1, and assume
that

λ �→ (Z(λ) +N(λ)
)−1

is holomorphic with values in B(H).

Define A(λ) and B(λ) for λ ∈ C \ R by

A(λ) =
(
Z(λ) +N(λ)

)−1
and B(λ) = I −N(λ)

(
Z(λ) +N(λ)

)−1
;

then it follows from Lemma 1.2.4 that the family Z(λ), λ ∈ C \ R, has the repre-
sentation (1.12.3). Note that by assumption A(λ) and B(λ) belong to B(H) and
that each of the mappings λ �→ A(λ) and λ �→ B(λ) is holomorphic. Since Z(λ) is
maximal dissipative (maximal accumulative) for λ ∈ C+ (λ ∈ C−) it follows from
Lemma 1.11.6 that for μ ∈ C+ the operator (B(λ) + μA(λ))−1 belongs to B(H)
when λ ∈ C+, the operator (B(λ)+μA(λ))−1 belongs to B(H) when λ ∈ C−, and

(Z(λ) + μ)−1 = A(λ)
(
B(λ) + μA(λ)

)−1
, λ ∈ C+,

(Z(λ) + μ)−1 = A(λ)
(
B(λ) + μA(λ)

)−1
, λ ∈ C−.

Since λ �→ A(λ) and λ �→ B(λ) are holomorphic, it follows that the mapping
λ �→ (Z(λ) + μ)−1 is holomorphic on C+ with values in B(H) and the mapping
λ �→ (Z(λ) + μ)−1 is holomorphic on C− with values in B(H). Hence, (iii) in
Definition 1.12.1 is satisfied.

Step 3. Let {A,B} satisfy (a), (b), and (c) of Definition 1.12.3, and assume that(
B(λ) +N(λ)A(λ)

)−1 ∈ B(H).

Define the family Z(λ), λ ∈ C \ R, by (1.12.3). It will be shown first that Z(λ),
λ ∈ C \ R, is a Nevanlinna family. In fact, it follows from the definition that(

Z(λ) +N(λ)
)−1

= A(λ)
(
B(λ) +N(λ)A(λ)

)−1 ∈ B(H),
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and via (a) one sees that

λ �→ (Z(λ) +N(λ)
)−1

is holomorphic with values in B(H). (1.12.12)

Note that (b) shows that Z(λ) is dissipative (accumulative) for λ ∈ C+ (λ ∈ C−).
In fact, Z(λ) is maximal dissipative (maximal accumulative) for λ ∈ C+ (λ ∈ C−).
To see this, let Z ′(λ) be an extension of Z(λ) which is dissipative for λ ∈ C+. Then
clearly (

Z(λ) +N(λ)
)−1 ⊂ (Z ′(λ) +N(λ)

)−1
, (1.12.13)

the left-hand side is an operator in B(H), and the right-hand side defines an
operator. In fact, if {0, k} ∈ (Z ′(λ) + N(λ))−1, then {k,−N(λ)k} ∈ Z ′(λ) and
as Z ′(λ) is dissipative, it follows that Im (−N(λ)k, k) ≥ 0. On the other hand,
one has Im (N(λ)k, k) ≥ 0 as N is a Nevanlinna function. Hence, k = 0 and
(Z ′(λ) + N(λ))−1 is an operator. It follows that the inclusion in (1.12.13) is an
equality and therefore Z ′(λ) = Z(λ) for λ ∈ C+. Thus, Z(λ) is maximal dissipative
for λ ∈ C+. A similar argument shows that Z(λ) is maximal accumulative for
λ ∈ C−. Hence, (i) in Definition 1.12.1 has been shown. It clearly follows from (c)
that Z(λ) ⊂ Z(λ)∗, which implies that(

Z(λ) +N(λ)
)−1 ⊂ (Z(λ)∗ +N(λ)

)−1
=
(
Z(λ) +N(λ)

)−∗
,

where in the last step it was used that N(λ) = N(λ)∗. The above inclusion is in
fact an equality, since the operators on the left and on the right belong to B(H).
Therefore, Z(λ) = Z(λ)∗, and hence (ii) in Definition 1.12.1 holds. Now it follows
from (1.12.12) and Step 2 of this lemma that also (iii) in Definition 1.12.1 holds.
Therefore, one concludes that Z(λ), λ ∈ C \ R, defined by (1.12.3) is a Nevanlinna
family.

Now it follows from Proposition 1.12.2 that {A,B} is a Nevanlinna pair and
thus, in particular, condition (d) holds. �
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Chapter 2

Boundary Triplets and Weyl Functions

The basic properties of boundary triplets for closed symmetric operators or re-
lations in Hilbert spaces are presented. These triplets give rise to a parametriza-
tion of the intermediate extensions of symmetric relations, in particular of the
self-adjoint extensions. Closely related is the Krĕın formula which describes the
resolvent operators of such intermediate extensions. The introduction of bound-
ary triplets and a discussion of corresponding boundary value problems can be
found in Section 2.1 and Section 2.2. Associated with a boundary triplet are the
γ-field and the Weyl function, and these analytic objects are treated in Section 2.3.
The existence and construction of boundary triplets is discussed in Section 2.4;
their transformations are the contents of Section 2.5. Section 2.6 on Krĕın’s resol-
vent formula for canonical extensions and a description of their spectra is central
in this chapter. Furthermore, a discussion of self-adjoint exit space extensions,
Štraus families, and the Krĕın–Năımark formula can be found Section 2.7. Some
related perturbation problems are treated in Section 2.8.

2.1 Boundary triplets

The following definition introduces a boundary triplet, one of the key objects in
this text. It is based on the well-known Green or Lagrange formula together with
an additional maximality condition.

Definition 2.1.1. Let S be a closed symmetric relation in a Hilbert space H. Then
{G,Γ0,Γ1} is a boundary triplet for S∗ if G is a Hilbert space and Γ0,Γ1 : S∗ → G

are linear mappings such that the mapping Γ : S∗ → G× G defined by

Γf̂ = {Γ0f̂ ,Γ1f̂}, f̂ = {f, f ′} ∈ S∗,

is surjective and the identity

(f ′, g)H − (f, g′)H = (Γ1f̂ ,Γ0ĝ)G − (Γ0f̂ ,Γ1ĝ)G (2.1.1)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗.
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Note that a symmetric relation S is densely defined if and only if S∗ is an
operator. In this case the boundary mappings Γ0 and Γ1 can be defined on domS∗

instead of (the graph of) S∗. More precisely, if {G,Γ0,Γ1} is a boundary triplet for
S∗, then one defines boundary mappings Γ0 and Γ1 on domS∗ by the following
identifications

Γ0f = Γ0f̂ , Γ1f = Γ1f̂ , f̂ = {f, f ′} ∈ S∗.

In the following treatment whenever S is a densely defined operator, boundary
mappings defined on S∗ and on domS∗ will be identified in this sense. After this
identification (2.1.1) turns into

(S∗f, g)H − (f, S∗g)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G, (2.1.2)

where f, g ∈ domS∗. This formalism will be used in Chapter 6 and Chapter 8 in
the treatment of ordinary and partial differential operators.

The identity (2.1.1) or the identity (2.1.2) is sometimes called the abstract
Green identity or the abstract Lagrange identity; in this text mostly the terminology
abstract Green identity will be used. This identity has a geometric interpretation
which is best expressed in terms of the indefinite inner products[[ ·, · ]]

H2 :=
(
JH·, ·

)
H2 , JH =

(
0 −iIH
iIH 0

)
,

[[ ·, · ]]
G2 :=

(
JG·, ·

)
G2 , JG =

(
0 −iIG
iIG 0

)
,

(2.1.3)

where JH = J∗H = J−1
H ∈ B(H2) and JG = J∗G = J−1

G ∈ B(G2); cf. Section 1.8. By
means of these inner products, the identity (2.1.1) can be rewritten as[[

f̂ , ĝ
]]
H2 =

[[
Γf̂ ,Γĝ

]]
G2 (2.1.4)

for f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗. Later the scalar products in (2.1.1), (2.1.2), and
(2.1.4) will be used without indices H and G, respectively, when there is no danger
of confusion. Recall that the adjoint A∗ of a relation A in H can be written as an
orthogonal complement with respect to the inner product [[·, ·]], that is A∗ = A[[⊥]];
cf. Section 1.8.

Some elementary but important properties of the boundary mappings are
collected in the following proposition.

Proposition 2.1.2. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} is a boundary triplet for S∗. Then the following statements hold:

(i) the mappings Γ : S∗ → G × G and Γ0,Γ1 : S∗ → G are surjective and
continuous;

(ii) ker Γ = S.



2.1. Boundary triplets 109

Proof. (i) The continuity of Γ : S∗ → G×G is essentially a consequence of the fact
that Γ is isometric in the sense of (2.1.4). More precisely, by definition the mapping
Γ is surjective, and since domΓ = S∗ is closed it follows from Lemma 1.8.1 that Γ
is continuous. Clearly, the mappings Γ0 and Γ1 are also surjective and continuous.

(ii) In order to show that ker Γ ⊂ S, let f̂ ∈ ker Γ. Then it follows from (2.1.4) that

[[f̂ , ĝ]] = [[Γf̂ ,Γĝ]] = 0 for all ĝ ∈ S∗, which implies f̂ ∈ (S∗)[[⊥]] = S∗∗ = S, since

S is closed. Hence, ker Γ ⊂ S has been shown. To show that S ⊂ ker Γ, let f̂ ∈ S.
Since Γ is surjective, for arbitrary fixed ϕ̂ ∈ G× G one can choose ĝ ∈ S∗ = S[[⊥]]

such that Γĝ = JGϕ̂, with JG as in (2.1.3). Since f̂ ∈ S and ĝ ∈ S∗ it follows from
(2.1.4) that

(Γf̂ , ϕ̂)G2 =
(
Γf̂ , J−1

G Γĝ
)
G2 =

[[
Γf̂ ,Γĝ

]]
G2 =

[[
f̂ , ĝ
]]
H2 = 0

for all ϕ̂ ∈ G2, which leads to Γf̂ = 0. Thus, S ⊂ ker Γ has been shown. �

By means of a boundary triplet {G,Γ0,Γ1} for S∗ the intermediate exten-
sions of S defined in Section 1.7 can be described via relations in the space G. In
particular, the one-to-one correspondence in the next theorem preserves adjoints,
which is a consequence of the abstract Green identity (2.1.4).

Theorem 2.1.3. Let S be a closed symmetric relation in H and let {G,Γ0,Γ1} be a
boundary triplet for S∗. Then the following statements hold:

(i) there is a bijective correspondence between the set of intermediate extensions
AΘ of S and the set of relations Θ in G, via

AΘ :=
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
; (2.1.5)

(ii) AΘ = AΘ and, in particular, the relation AΘ is closed if and only if the
relation Θ is closed;

(iii) AΘ = ker
(
Γ1 −ΘΓ0

)
;

(iv) (AΘ)
∗ = AΘ∗ for every relation Θ in G;

(v) AΘ ⊂ AΘ′ if and only if Θ ⊂ Θ′, when Θ and Θ′ are relations in G;

(vi) AΘ is an operator if and only if S is an operator and

Θ ∩ Γ
({0} ×mulS∗) = {0, 0}. (2.1.6)

Proof. (i) & (ii) The relation S∗ ⊂ H2 is equipped with the Hilbert space inner
product of H2. Now let M ⊂ H2 be the orthogonal complement of S in S∗, so that
S ⊕ M = S∗. Since ker Γ = S, the restriction Γ′ of Γ to M is an isomorphism
between M and G × G. Hence Γ′ gives a one-to-one correspondence between the
subspaces H ′ of M and the subspaces Θ of G× G via

Θ = Γ′H ′ or, equivalently, (Γ′)−1Θ = H ′. (2.1.7)
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Clearly, this gives rise to a one-to-one correspondence between all intermediate
extensions H of S and all subspaces H ′ of M via H = S ⊕ H ′, which is expressed
in (2.1.5). Moreover, since Γ′ is an isomorphism it also follows from (2.1.7) that
Θ = Γ′H ′ = Γ′H ′ and hence the closure H of H corresponds to the closure Θ of
Θ. This implies via (2.1.5) that AΘ = AΘ.

(iii) Let AΘ be defined by (2.1.5). It will be verified that

AΘ = ker
(
Γ1 −ΘΓ0

)
(2.1.8)

holds for any relation Θ in G. Note that (2.1.8) is clear in the special case that Θ

is an operator, since Γf̂ = {Γ0f̂ ,Γ1f̂} ∈ Θ means that ΘΓ0f̂ = Γ1f̂ . Now assume
that Θ is a relation.

First the inclusion (⊂) in (2.1.8) will be shown. For this consider f̂ ∈ AΘ.

Hence, f̂ ∈ S∗ and {Γ0f̂ ,Γ1f̂} ∈ Θ. Then {f̂ ,Γ0f̂} ∈ Γ0 gives {f̂ ,Γ1f̂} ∈ ΘΓ0.

Since {f̂ ,Γ1f̂} ∈ Γ1 one finds {f̂ , 0} ∈ Γ1−ΘΓ0. In other words f̂ ∈ ker (Γ1−ΘΓ0).

For the inclusion (⊃) in (2.1.8) consider f̂ ∈ ker (Γ1 − ΘΓ0). Then one has

{f̂ , 0} ∈ Γ1 −ΘΓ0 and hence there exists an element ψ̂ such that {f̂ , ψ̂} ∈ Γ1 and

{f̂ , ψ̂} ∈ ΘΓ0. Thus {f̂ , ϕ̂} ∈ Γ0 and {ϕ̂, ψ̂} ∈ Θ for some ϕ̂. Since both Γ0 and

Γ1 are operators, one has ψ̂ = Γ1f̂ and ϕ̂ = Γ0f̂ , and therefore {Γ0f̂ ,Γ1f̂} ∈ Θ,

that is, f̂ ∈ AΘ.

(iv) To show that (AΘ)
∗ ⊂ AΘ∗ , let ĝ ∈ (AΘ)

∗. Let ϕ̂ ∈ Θ and choose f̂ ∈ AΘ

such that Γf̂ = ϕ̂. Then one has[[
ϕ̂,Γĝ

]]
G2 =

[[
Γf̂ ,Γĝ

]]
G2 =

[[
f̂ , ĝ
]]
H2 = 0,

which implies Γĝ ∈ Θ∗, that is, ĝ ∈ AΘ∗ . One concludes (AΘ)
∗ ⊂ AΘ∗ . Since AΘ∗

is closed by (ii), the inclusion AΘ∗ ⊂ (AΘ)
∗ follows together with (ii) from

AΘ∗ = (AΘ∗)∗∗ ⊂ (AΘ∗∗)∗ = (AΘ)
∗ = (AΘ)

∗ = (AΘ)
∗.

(v) This assertion is obvious from the correspondence in (2.1.5).

(vi) Let AΘ be an operator. Then clearly S is an operator. Assume that Γf̂ ∈ Θ

for some element f̂ = {0, f ′} ∈ S∗. Then f̂ ∈ AΘ and hence f ′ = 0, so that (2.1.6)
holds.

Conversely, assume now that S is an operator and that (2.1.6) holds. If

f̂ = {0, f ′} ∈ AΘ, then f ′ ∈ mulS∗ and Γ{0, f ′} ∈ Θ. Hence, Γ{0, f ′} = {0, 0}
and as S = ker Γ, it follows that {0, f ′} ∈ S. This implies f ′ = 0. Therefore, AΘ

is an operator. �

Due to the abstract Green identity (2.1.1), (2.1.2), or (2.1.4) some properties
of intermediate extensions are preserved in the corresponding relations in G.
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Corollary 2.1.4. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let AΘ be the extension of S in H corresponding to
the relation Θ in G via (2.1.5). Then the following statements hold:

(i) AΘ is dissipative (accumulative) if and only if Θ is dissipative (accumulative);

(ii) AΘ is maximal dissipative (maximal accumulative) if and only if Θ is maximal
dissipative (maximal accumulative);

(iii) AΘ is symmetric if and only if Θ is symmetric;

(iv) AΘ is maximal symmetric if and only if Θ is maximal symmetric;

(v) AΘ is self-adjoint if and only if Θ is self-adjoint.

Proof. (i) This assertion follows immediately from the identity (see (1.8.4))

Im (f ′, f) =
1

2

[[
f̂ , f̂

]]
H2 =

1

2

[[
Γf̂ ,Γf̂

]]
G2 = Im (Γ1f̂ ,Γ0f̂ ),

where f̂ = {f, f ′} ∈ S∗, and (2.1.5).

(ii) According to Theorem 2.1.3 (v), for any two extensions AΘ and AΘ′ of S one
has AΘ ⊂ AΘ′ if and only if Θ ⊂ Θ′ holds. Therefore, if AΘ is maximal dissipative,
then Θ is dissipative because of (i) and if Θ′ is a dissipative extension of Θ in G,
then AΘ′ is a dissipative extension of AΘ, so that AΘ = AΘ′ . Hence, Θ = Θ′ and
Θ is maximal dissipative. The converse direction is proved in exactly the same
way. The statement for maximal accumulative extensions follows analogously.

(iii)–(v) These assertions follow from the previous items, and the fact that a re-
lation is symmetric (self-adjoint) if and only if it is (maximal) dissipative and
(maximal) accumulative. �

Let H and H ′ be two closed intermediate extensions of S in H. Recall that
H and H ′ are disjoint if H ∩H ′ = S, and that H and H ′ are transversal if they
are disjoint and H +̂ H ′ = S∗; cf. Definition 1.7.6. If, in addition, the extensions
H and H ′ are self-adjoint, then disjointness implies

S∗ = clos (H +̂ H ′);

and in this case H and H ′ are transversal if and only if H +̂ H ′ is closed; cf.
Lemma 1.7.7. In a similar way the closed relations Θ and Θ′ in G, as intermediate
extensions of the trivial symmetric relation {0, 0}, are disjoint if Θ ∩ Θ′ = {0, 0}
and transversal if they are disjoint and Θ +̂ Θ′ = G2.

Lemma 2.1.5. Let S be a closed symmetric relation in H and let {G,Γ0,Γ1} be a
boundary triplet for S∗. Let Θ and Θ′ be relations in G. Then

AΘ ∩AΘ′ = AΘ∩Θ′ (2.1.9)

and

AΘ +̂ AΘ′ = AΘ+̂Θ′ . (2.1.10)
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In particular, if AΘ and AΘ′ are closed or, equivalently, Θ and Θ′ are closed, then
the following statements hold:

(i) AΘ and AΘ′ are disjoint if and only if Θ and Θ′ are disjoint;

(ii) AΘ and AΘ′ are transversal if and only if Θ and Θ′ are transversal.

Proof. The identity (2.1.9) follows from

AΘ ∩AΘ′ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

} ∩ {f̂ ∈ S∗ : Γf̂ ∈ Θ′}
=
{
f̂ ∈ S∗ : Γf̂ ∈ Θ ∩Θ′}

= AΘ∩Θ′ ,

while the identity (2.1.10) follows from

Γ(AΘ +̂ AΘ′) = Γ(AΘ) +̂ Γ(AΘ′) = Θ +̂ Θ′.

In particular, (2.1.9) together with S = ker Γ shows that AΘ ∩ AΘ′ = S if and
only if Θ ∩ Θ′ = {0, 0}, while (2.1.9) and (2.1.10) show that AΘ ∩ AΘ′ = S and
AΘ +̂ AΘ′ = S∗ if and only if Θ ∩ Θ′ = {0, 0} and Θ +̂ Θ′ = G2. This completes
the proof. �

Corollary 2.1.6. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ and assume that dimG < ∞. If AΘ and AΘ′ are self-
adjoint extensions of S which are disjoint, then they are transversal.

Let S be a closed symmetric relation in H and let {G,Γ0,Γ1} be a boundary
triplet for S∗. There are two special extensions of S which will be frequently used
in the following; they are defined by

A0 := ker Γ0 and A1 := ker Γ1. (2.1.11)

It is clear that A0 and A1 are self-adjoint extensions of S, since they correspond
to the self-adjoint parameters Θ in G in (2.1.5) given by

Θ = {0} × G and Θ = G× {0}, (2.1.12)

respectively. Furthermore, the representations in (2.1.12) show that the self-adjoint
extensions A0 and A1 are transversal; cf. Lemma 2.1.5. Note also in this context
that a boundary triplet {G,Γ0,Γ1} for S∗ can only exist if the defect numbers of
the closed symmetric relation S coincide (since it admits the self-adjoint extensions
A0 and A1 in (2.1.11)); a more detailed discussion on the existence and uniqueness
of boundary triplets will be provided in Section 2.4 and Section 2.5.

As S = ker Γ, it follows from von Neumann’s decomposition Theorem 1.7.11
that Γ is an isomorphism from N̂λ(S

∗) +̂ N̂λ(S
∗), λ ∈ C \ R, onto G2. Due to the

definitions in (2.1.11) a similar observation can be made for the components Γ0

and Γ1.
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Lemma 2.1.7. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let A0 = ker Γ0 and A1 = ker Γ1. Then the adjoint
S∗ admits the direct sum decompositions

S∗ = A0 +̂ N̂λ(S
∗), λ ∈ ρ(A0),

S∗ = A1 +̂ N̂λ(S
∗), λ ∈ ρ(A1).

(2.1.13)

In particular, the restrictions Γ0� N̂λ(S
∗) and Γ1� N̂λ(S

∗) are isomorphisms from

N̂λ(S
∗) onto G for λ ∈ ρ(A0) and λ ∈ ρ(A1), respectively.

Proof. As A0 and A1 are self-adjoint, the direct sum decompositions (2.1.13) hold
by Corollary 1.7.5. Since Γ0 and Γ1 map S∗ onto G, and A0 and A1 are their
respective kernels, it is clear that the restrictions Γ0� N̂λ(S

∗) and Γ1� N̂λ(S
∗) are

isomorphisms from N̂λ(S
∗) onto G. �

In the rest of the text the self-adjoint extension A0 = ker Γ0 will often serve
as a point of reference due to the corresponding representation {0} × G in the
parameter space G. In the next proposition it is shown that A0 and a given closed
extension AΘ are disjoint (transversal) if and only if the parameter Θ is a (bounded
everywhere defined) operator.

Proposition 2.1.8. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be
a boundary triplet for S∗, let A0 = ker Γ0, and let AΘ be the closed intermediate
extension of S in H corresponding to the closed relation Θ in G via (2.1.5). Then
the following statements hold:

(i) AΘ ∩A0 = S if and only if Θ is a closed operator in G;

(ii) AΘ ∩A0 = S and AΘ+̂A0 = S∗ if and only if Θ ∈ B(G).

Proof. Apply Lemma 2.1.5 to the self-adjoint extension A0 = ker Γ0 that corre-
sponds to {0} × G.

(i) AΘ and A0 are disjoint if and only if Θ∩ ({0}×G) = {0, 0}, which is the same
as saying that mulΘ = {0}.
(ii) AΘ and A0 are transversal if and only if

Θ ∩ ({0} × G) = {0, 0} and Θ +̂ ({0} × G) = G× G,

which is the same as saying that mulΘ = {0} and domΘ = G. By the closed graph
theorem, the last two conditions are equivalent to Θ ∈ B(G). �

Let S be a closed symmetric relation in H with equal defect numbers and letH
be a self-adjoint extension of S. Later it will be shown that there exists a boundary
triplet {G,Γ0,Γ1} for S∗ such that ker Γ0 concides with H; cf. Theorem 2.4.1.
Furthermore, it will be shown that for a pair of self-adjoint extensions of S which
are transversal, there exists a boundary triplet {G,Γ0,Γ1} for S∗ such that ker Γ0
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and ker Γ1 coincide with this pair; cf. Theorem 2.5.9. The notion of boundary
triplet is not unique; in fact, a parametrization of all possible boundary triplets
will be provided in Section 2.5.

The following theorem is of a different nature. It can be used to prove that
a given relation T is the adjoint of a symmetric relation S.

Theorem 2.1.9. Let T be a relation in H, let G be a Hilbert space, and assume that

Γ =

(
Γ0

Γ1

)
: T → G× G

is a linear mapping such that the following conditions are satisfied:

(i) ker Γ0 contains a self-adjoint relation A0;

(ii) ranΓ = G× G;

(iii) for all f̂ , ĝ ∈ T ,

(f ′, g)H − (f, g′)H = (Γ1f̂ ,Γ0ĝ)G − (Γ0f̂ ,Γ1ĝ)G.

Then S := ker Γ is a closed symmetric relation in H such that S∗ = T and
{G,Γ0,Γ1} is a boundary triplet for S∗ with A0 = ker Γ0.

Proof. First note that condition (iii) implies that ker Γ0 is symmetric. To see this,

let f̂ , ĝ ∈ ker Γ0. Then, by condition (iii),[[
f̂ , ĝ
]]
=
[[
Γf̂ ,Γĝ

]]
= 0,

and hence ker Γ0 is a symmetric relation in H. Then (i) gives A0 = A∗
0 ⊂ ker Γ0,

which implies
ker Γ0 ⊂ (ker Γ0)

∗ ⊂ A∗
0 = A0 ⊂ ker Γ0.

Therefore, ker Γ0 = A0 is self-adjoint in H. Moreover, S := ker Γ ⊂ ker Γ0 is a
symmetric relation in H.

It will be shown that
S = T ∗, (2.1.14)

so that, in particular, S is closed. To see (⊂) in (2.1.14), let f̂ ∈ S = ker Γ. For

any ĝ ∈ T one has [[f̂ , ĝ]] = [[Γf̂ ,Γĝ]] = 0, so that f̂ ∈ T ∗. To see (⊃) in (2.1.14),

let f̂ ∈ T ∗. Since A0 is self-adjoint and A0 ⊂ T , it follows that T ∗ ⊂ A0 = ker Γ0,
so that Γ0f̂ = 0. For arbitrary ĝ ∈ T it therefore follows that

0 =
[[
f̂ , ĝ
]]
=
[[
Γf̂ ,Γĝ

]]
= −i(Γ1f̂ ,Γ0ĝ).

From condition (ii) one concludes ranΓ0 = G and this leads to Γ1f̂ = 0. Hence,

f̂ ∈ ker Γ0 ∩ ker Γ1 = S. Therefore, (2.1.14) is proved.
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It follows from S = T ∗ that S∗ = T ∗∗ = T . Hence, it remains to show
that T is closed. Let (f̂n) be a sequence in T converging to f̂ . It suffices to show

that f̂ ∈ T . Let ψ̂ ∈ G2 and let ĝ ∈ T be such that ψ̂ = J−1
G Γĝ (here condition

(ii) is being used). Using the continuity of the indefinite inner product [[·, ·]] (see
Section 1.8) one obtains

(Γf̂n, ψ̂) =
(
Γf̂n, J

−1
G Γĝ

)
=
[[
Γf̂n,Γĝ

]]
=
[[
f̂n, ĝ

]]→ [[ f̂ , ĝ ]]. (2.1.15)

This shows that Γf̂n is a weak Cauchy sequence in G, hence weakly bounded and
thus bounded. It follows that there exists a subsequence, again denoted by Γf̂n,
which converges weakly to some ϕ̂ ∈ G × G. Now let ĥ ∈ T be such that Γĥ = ϕ̂
(again condition (ii) is being used). Choose ĝ ∈ T and let, as above, ψ̂ = J−1

G Γĝ,
so that (2.1.15) remains valid. Then (2.1.15) implies[[

f̂ , ĝ
]]
= lim

n→∞(Γf̂n, ψ̂) = (ϕ̂, ψ̂) =
(
Γĥ, J−1

G Γĝ
)
=
[[
Γĥ,Γĝ

]]
=
[[
ĥ, ĝ
]]
,

and therefore [[f̂ − ĥ, ĝ ]] = 0. Since ĝ ∈ T , one concludes that f̂ − ĥ ∈ T ∗ = S ⊂ T .

Now ĥ ∈ T implies that f̂ ∈ T . Therefore, T is closed and it follows that S∗ = T .

By conditions (ii) and (iii) {G,Γ0,Γ1} is a boundary triplet for S∗. Above it
was also shown that A0 = ker Γ0. �

2.2 Boundary value problems

Let S be a closed symmetric relation in H and let {G,Γ0,Γ1} be a boundary triplet
for S∗. Due to Theorem 2.1.3 one may think of the intermediate extensions of S
being parametrized by the relations in the space G; for this reason the space G

will often be called the boundary space or parameter space associated with the
boundary triplet. Let Θ be a closed relation in G and let AΘ be the corresponding
closed extension of S in H via (2.1.5):

AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
= ker

(
Γ1 −ΘΓ0

)
. (2.2.1)

Recall from Section 1.10 that any closed relation Θ in G has a parametric repre-
sentation of the form Θ = {A,B}, i.e.,

Θ =
{{Ae,Be} : e ∈ E

}
(2.2.2)

with some operators A,B ∈ B(E,G) and a Hilbert space E. Likewise, since Θ∗ is
closed, it has a representation of the form

Θ∗ =
{{Ce′,De′} : e′ ∈ E′} (2.2.3)

with some operators C,D ∈ B(E′,G) and a Hilbert space E′. Thus, (2.2.3) gives

Θ =
{{ϕ,ϕ′} ∈ G× G : D∗ϕ = C∗ϕ′}. (2.2.4)
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Therefore, it follows that AΘ in (2.2.1) can be written as

AΘ =
{
f̂ ∈ S∗ : D∗Γ0f̂ = C∗Γ1f̂

}
. (2.2.5)

In the following it will be shown how the pair {C,D} in (2.2.3) and (2.2.5) can
be expressed in terms of the original pair {A,B} in (2.2.2). The main result is
contained in the next proposition.

Recall that the condition that Θ = {A,B} is closed with some A,B ∈ B(E,G)
is equivalent to the condition that ran (A∗A + B∗B) is closed in E; cf. Proposi-
tion 1.10.3. In fact, in the case where Θ is closed one may assume that the rep-
resenting pair {A,B} satisfies the normalization condition A∗A + B∗B = I; cf.
Proposition 1.10.3.

Proposition 2.2.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let AΘ be the closed extension of S in H corresponding
to the closed relation Θ in G via (2.1.5). Assume that Θ has the representation
Θ = {A,B} with A,B ∈ B(E,G) such that

A∗A+B∗B = I. (2.2.6)

Then the intermediate extension AΘ in (2.2.1) can be described as

AΘ =

{
f̂ ∈ S∗ :

(
BA∗

I −AA∗

)
Γ0f̂ =

(
I −BB∗

AB∗

)
Γ1f̂

}
. (2.2.7)

Proof. By Proposition 1.10.10, condition (2.2.6) implies that the relation Θ is
given by

Θ =

{
{ϕ,ϕ′} ∈ G2 :

(
BA∗

I −AA∗

)
ϕ =

(
I −BB∗

AB∗

)
ϕ′
}
.

Then (2.2.7) follows from (2.1.5). �

In the next proposition it will be assumed, in addition, that ρ(Θ) 	= ∅. The
following result is a reformulation of Theorem 1.10.5 and formula (2.1.5).

Proposition 2.2.2. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let AΘ be the closed extension of S in H corresponding
to the closed relation Θ in G via (2.1.5). Then μ ∈ ρ(Θ) if and only if Θ has the
representation Θ = {A,B} with A,B ∈ B(G) such that (B − μA)−1 ∈ B(G).
Moreover, the pair {A,B} may be chosen such that Θ∗ = {A∗,B∗}. In this case
the intermediate extension AΘ in (2.2.1) can be described as

AΘ =
{
f̂ ∈ S∗ : BΓ0f̂ = AΓ1f̂

}
. (2.2.8)

For μ ∈ ρ(Θ) it follows from (1.10.9) that in Proposition 2.2.2 one can choose

A = (Θ− μ)−1 and B = I + μ(Θ− μ)−1. (2.2.9)
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In the case that μ ∈ C \ R one may also choose

A = I − Cμ[Θ] and B = μ− μCμ[Θ] (2.2.10)

by (1.10.10), where Cμ denotes the Cayley transform.

The next corollary is a translation of Corollary 2.1.4 and Corollary 1.10.8.
In each of the cases in this corollary one may apply Proposition 2.2.2 by choosing
the pair {A,B} as in (2.2.9) or (2.2.10) with μ ∈ C \ R, μ ∈ C+, or μ ∈ C−,
respectively.

Corollary 2.2.3. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let AΘ be the closed extension of S in H corresponding
to the closed relation Θ in G via (2.1.5). Assume that Θ = {A,B}. Then the
following statements hold:

(i) AΘ is self-adjoint if and only if

Im (A∗B) = 0 and (B− μA)−1 ∈ B(G)

for some, and hence for all μ ∈ C+ and for some, and hence for all μ ∈ C−;
(ii) AΘ is maximal dissipative if and only if

Im (A∗B) ≥ 0 and (B− μA)−1 ∈ B(G)

for some, and hence for all μ ∈ C−;
(iii) AΘ is maximal accumulative if and only if

Im (A∗B) ≤ 0 and (B− μA)−1 ∈ B(G)

for some, and hence for all μ ∈ C+.

In the case that the representation Θ = {A,B} is chosen so that Θ∗ = {A∗,B∗},
the extension AΘ is given by (2.2.8).

Now the converse question will be addressed. Let A be a closed extension of
S given in terms of boundary conditions. The problem is to determine a corre-
sponding parameter Θ in G such that A = AΘ.

Proposition 2.2.4. Let S be a closed symmetric relation in H, and let {G,Γ0,Γ1}
be a boundary triplet for S∗. Assume that F is a Hilbert space, M,N ∈ B(G,F),
and that, without loss of generality, the space F is minimal:

F = span
{
ranM, ranN

}
.

Furthermore, assume that M − μN ∈ B(G,F) is bijective for some μ ∈ C and let
A be an intermediate extension of S of the form

A =
{
f̂ ∈ S∗ : MΓ0f̂ = NΓ1f̂

}
. (2.2.11)

Then A is closed and A = AΘ, where the parameter Θ = {A,B} is given by

{A,B} = {(M− μN)−1N, (M− μN)−1M
}
.
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Proof. First observe that the intermediate extension A in (2.2.11) is closed since
M,N ∈ B(G,F). Moreover, A corresponds to the closed relation Θ in G given by

Θ =
{{ϕ,ϕ′} ∈ G× G : Mϕ = Nϕ′}.

Now the assertion follows from Proposition 1.10.7. �

Let again Θ be a closed relation in G and let AΘ be the corresponding closed
extension in H via (2.1.5). Assume, in addition, that Θ admits an orthogonal
decomposition

Θ = Θop ⊕̂Θmul, G = Gop ⊕ Gmul,

into a (not necessarily densely defined) operator part Θop acting in the Hilbert
space Gop = domΘ∗ = (mulΘ)⊥ and a multivalued part Θmul = {0} ×mulΘ in
the Hilbert space Gmul = mulΘ; cf. Theorem 1.3.16 and the discussion following it.
Recall from Theorem 1.4.11, Theorem 1.5.1, and Theorem 1.6.12 that any closed
symmetric, self-adjoint, (maximal) dissipative, or (maximal) accumulative relation
Θ in G gives rise to such a decomposition. If Pop denotes the orthogonal projection
in G onto Gop, then the closed extension AΘ in (2.1.5) has the form

AΘ =
{
f̂ ∈ S∗ : ΘopPopΓ0f̂ = PopΓ1f̂ , (IG − Pop)Γ0f̂ = 0

}
. (2.2.12)

Note that this abstract boundary condition also requires PopΓ0f̂ ∈ domΘop.

2.3 Associated γ-fields and Weyl functions

Let S be a closed symmetric relation in the Hilbert space H and let {G,Γ0,Γ1}
be a boundary triplet for S∗. Recall from Lemma 2.1.7 that Γ0 maps N̂λ(S

∗)
bijectively onto G when λ ∈ ρ(A0). Hence, the inverse mapping

γ̂(λ) :=
(
Γ0 �N̂λ(S

∗)
)−1

, λ ∈ ρ(A0),

maps G bijectively onto N̂λ(S
∗). Let π1 be the orthogonal projection from H× H

onto H× {0}. Then π1 maps N̂λ(S
∗) bijectively onto Nλ(S

∗).

Definition 2.3.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let A0 = ker Γ0. Then

ρ(A0) � λ �→ γ(λ) =
{{Γ0f̂λ, fλ} : f̂λ ∈ N̂λ(S

∗)
}

(2.3.1)

or, equivalently,

ρ(A0) � λ �→ γ(λ) = π1γ̂(λ) = π1

(
Γ0 �N̂λ(S

∗)
)−1

,

is called the γ-field associated with the boundary triplet {G,Γ0,Γ1}.
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The main properties of the γ-field will now be discussed.

Proposition 2.3.2. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let A0 = ker Γ0. Then the following statements hold
for the corresponding γ-field γ:

(i) γ(λ) ∈ B(G,H) for all λ ∈ ρ(A0) and, in fact, γ(λ) maps G isomorphically
onto Nλ(S

∗) ⊂ H;

(ii) for all λ, μ ∈ ρ(A0) the operators γ(λ) and γ(μ) are connected via

γ(λ) =
(
I + (λ− μ)(A0 − λ)−1

)
γ(μ);

(iii) the operator function γ : ρ(A0) → B(G,H), λ �→ γ(λ), is holomorphic, i.e.,
the limit

d

dμ
γ(μ) = lim

λ→μ

γ(λ)− γ(μ)

λ− μ

exists for all μ ∈ ρ(A0) in B(G,H);

(iv) for all λ ∈ ρ(A0) the operator γ(λ)∗ ∈ B(H,G) is given by

γ(λ)∗h = Γ1

{
(A0 − λ)−1h,

(
I + λ(A0 − λ)−1

)
h
}
, h ∈ H, (2.3.2)

and ker γ(λ)∗ = (Nλ(S
∗))⊥ = ran (S − λ) holds. Moreover, one has

Γ
{
(A0 − λ)−1h,

(
I + λ(A0 − λ

)−1
)h
}
= {0, γ(λ)∗h}, h ∈ H. (2.3.3)

Proof. (i) Let λ ∈ ρ(A0). Since the restriction of Γ0 to N̂λ(S
∗) is an isomor-

phism from N̂λ(S
∗) onto G (see Lemma 2.1.7), while π1 is an isomorphism from

N̂λ(S
∗) onto Nλ(S

∗), it follows from Definition 2.3.1 that the mapping γ(λ) is an
isomorphism from G onto Nλ(S

∗). From this it is also clear that γ(λ) ∈ B(G,H).

(ii) Let λ, μ ∈ ρ(A0) and let ϕ ∈ G. Then there exists f̂μ = {fμ, μfμ} ∈ N̂μ(S
∗)

such that ϕ = Γ0f̂μ and hence fμ = γ(μ)ϕ. Due to S∗ = A0 +̂ N̂λ(S
∗) there exist

ĥ ∈ A0 and f̂λ = {fλ, λfλ} ∈ N̂λ(S
∗) such that

f̂μ = ĥ+ f̂λ.

Observe that f̂λ− f̂μ = −ĥ ∈ A0, which gives Γ0f̂λ = Γ0f̂μ, so that Γ0f̂λ = ϕ and
fλ = γ(λ)ϕ. Moreover, this observation also shows that for some g ∈ H

{fλ, λfλ} = {fμ, μfμ}+
{
(A0 − λ)−1g,

(
I + λ(A0 − λ)−1

)
g
}
.

Hence, {fλ, 0} = {fμ, (μ − λ)fμ} + {(A0 − λ)−1g, g}, so that g = (λ − μ)fμ.
Therefore, fλ = fμ + (λ− μ)(A0 − λ)−1fμ, which implies

γ(λ)ϕ =
(
I + (λ− μ)(A0 − λ)−1

)
γ(μ)ϕ.
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(iii) Fix some μ ∈ ρ(A0). Then it follows from (ii) and the fact that the mapping
λ �→ (A0 − λ)−1 is a holomorphic operator function with values in B(H) that
λ �→ γ(λ) is a holomorphic operator function on ρ(A0) with values in B(G,H).

(iv) Fix λ ∈ ρ(A0) and let h ∈ H. Then there exists k̂ = {k, k′} ∈ A0 with
h = k′ − λk. Let ϕ ∈ G; then γ(λ)ϕ = fλ for some fλ ∈ Nλ(S

∗). Hence, with the

abstract Green identity for k̂ = {k, k′} and f̂λ = {fλ, λfλ} it follows from Γ0k̂ = 0
that

(ϕ, γ(λ)∗h) =
(
γ(λ)ϕ, k′ − λk

)
= (fλ, k

′ − λk)

= −((λfλ, k)− (fλ, k
′)
)

= −((Γ1f̂λ,Γ0k̂)− (Γ0f̂λ,Γ1k̂)
)

= (Γ0f̂λ,Γ1k̂)

= (ϕ,Γ1k̂),

which implies

γ(λ)∗h = Γ1k̂ = Γ1

{
(A0 − λ)−1h,

(
I + λ(A0 − λ

)−1
)h
}
.

The identity ker γ(λ)∗ = (Nλ(S
∗))⊥ follows from ran γ(λ) = Nλ(S

∗). Further-
more, the identity (Nλ(S

∗))⊥ = ran (S − λ) is clear and (2.3.3) follows from
(2.3.2) and {

(A0 − λ)−1h,
(
I + λ(A0 − λ)−1

)
h
} ∈ A0 = ker Γ0.

This completes the proof. �

In the case where the symmetric relation S is a densely defined symmetric
operator and {G,Γ0,Γ1} is a boundary triplet for S∗ with boundary mappings Γ0

and Γ1 defined on domS∗ (see the text below Definition 2.1.1 and (2.1.2)) the
formula for the adjoint γ(λ)∗ of the corresponding γ-field in Proposition 2.3.2 (iv)
has the simpler form

γ(λ)∗h = Γ1(A0 − λ)−1h, λ ∈ ρ(A0), h ∈ H.

According to Proposition 2.3.2 (iv), the action of Γ1 on a general element
of A0 is expressed in terms of the operator γ(λ)∗. The form of this action is
particularly simple on eigenelements of A0.

Corollary 2.3.3. Let λ ∈ ρ(A0) and assume that {h, xh} ∈ A0 with x ∈ R. Then

Γ1{h, xh} = (x− λ)γ(λ)∗h.

If {0, h} ∈ A0, then
Γ1{0, h} = γ(λ)∗h.
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Proof. Let λ ∈ ρ(A0) and let {h, xh} ∈ A0 with x ∈ R. Then

h = (A0 − λ)−1(x− λ)h,

which together with Proposition 2.3.2 (iv) leads to

(x− λ)γ(λ)∗h = (x− λ)Γ1

{
(A0 − λ)−1h,

(
I + λ(A0 − λ

)−1
)h
}

= Γ1{h, xh}.
If {0, h} ∈ A0, then h ∈ ker (A0 − λ)−1 and the expression for Γ1{0, h} follows
directly from Proposition 2.3.2 (iv). �

The definition and properties of the γ-field now give rise to the notion of
Weyl function. It is defined, as in the case of the γ-field, for a closed symmetric
relation S in terms of the boundary triplet for S∗ and the eigenspaces of S∗.

Definition 2.3.4. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let A0 = ker Γ0. Then

ρ(A0) � λ �→M(λ) =
{{Γ0f̂λ,Γ1f̂λ} : f̂λ ∈ N̂λ(S

∗)
}

(2.3.4)

or, equivalently,

ρ(A0) � λ �→M(λ) = Γ1γ̂(λ) = Γ1

(
Γ0 �N̂λ(S

∗)
)−1

,

is called the Weyl function associated with the boundary triplet {G,Γ0,Γ1}.
Here is a simple example of a Weyl function for a trivial symmetric relation

S in H. Note that in this example one has G = H, i.e., the corresponding boundary
triplet maps onto H×H; this situation is not typical in standard applications; cf.
Chapters 6, 7, and 8.

Example 2.3.5. Let S = {0, 0} be the trivial symmetric relation in H. It is clear
that S∗ = H× H and Nλ(S

∗) = H for λ ∈ C. Now define

Γ0f̂ = f ′ and Γ1f̂ = −f, f̂ = {f, f ′} ∈ S∗,

so that Γ : S∗ → H× H is surjective and (2.1.1) is satisfied. Hence, {H,Γ0,Γ1} is
a boundary triplet for S∗. Note that

A0 = ker Γ0 = H× {0}
is a self-adjoint extension of S with ρ(A0) = C\{0}, σ(A0) = {0}, andN0(A0) = H.
It follows from Definition 2.3.1 and Definition 2.3.4 that the γ-field and the Weyl
function are given by γ(λ) = (1/λ)I and M(λ) = −(1/λ)I, respectively.

Next some elementary properties of the Weyl function are discussed. Recall
that the real part and imaginary part of a bounded operator T ∈ B(G) are defined
as ReT = 1

2 (T + T ∗) and ImT = 1
2i (T − T ∗), respectively.

Proposition 2.3.6. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let A0 = ker Γ0. Then the following statements hold
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for the corresponding γ-field γ and Weyl function M :

(i) M(λ) ∈ B(G) for all λ ∈ ρ(A0);

(ii) for all λ ∈ ρ(A0) one has M(λ)Γ0f̂λ = Γ1f̂λ for every f̂λ ∈ N̂λ(S
∗) or,

equivalently, one has

Γγ̂(λ)ϕ =
{
Γ0γ̂(λ)ϕ,Γ1γ̂(λ)ϕ

}
= {ϕ,M(λ)ϕ},

for every ϕ ∈ G;

(iii) for all λ, μ ∈ ρ(A0) the identity

M(λ)−M(μ)∗ = (λ− μ)γ(μ)∗γ(λ)

holds, and, in particular, the symmetry condition M(λ)∗ = M(λ) holds for
all λ ∈ ρ(A0);

(iv) ImM(λ) ∈ B(G) is a nonnegative (nonpositive ) self-adjoint operator for all
λ ∈ C+ (λ ∈ C−) and 0 ∈ ρ(ImM(λ)) for all λ ∈ C \ R;

(v) for any fixed λ0 ∈ ρ(A0) and all λ ∈ ρ(A0) the resolvent of A0 and the
function M are connected via

M(λ) = ReM(λ0) + γ(λ0)
∗[λ− Reλ0 + (λ− λ0)(λ− λ0)(A0 − λ)−1

]
γ(λ0);

(vi) the identity

γ(μ)∗(A0 − λ)−1γ(ν) =
M(λ)

(λ− ν)(λ− μ)
+

M(μ)

(μ− λ)(μ− ν)
+

M(ν)

(ν − λ)(ν − μ)

holds for λ, μ, ν ∈ ρ(A0) such that λ 	= ν, λ 	= μ, and ν 	= μ.

Proof. (i) Let λ ∈ ρ(A0). By Lemma 2.1.7, the restriction of Γ0 to N̂λ(S
∗) is an

isomorphism between N̂λ(S
∗) and G. Hence, the inverse γ̂(λ) is an isomorphism

between G and N̂λ(S
∗), and since the operator Γ1 : S∗ → G is continuous by

Proposition 2.1.2 (i), it follows from Definition 2.3.4 that M(λ) = Γ1γ̂(λ) ∈ B(G).

(ii) It is clear from (i) and the definition of M(λ) that M(λ)Γ0f̂λ = Γ1f̂λ for every

f̂λ ∈ N̂λ(S
∗). Now γ̂(λ)ϕ belongs to N̂λ(S

∗) for ϕ ∈ G, so that{
Γ0γ̂(λ)ϕ,Γ1γ̂(λ)ϕ

}
=
{
Γ0γ̂(λ)ϕ,M(λ)Γ0γ̂(λ)ϕ

}
= {ϕ,M(λ)ϕ}.

Conversely, assume that {Γ0γ̂(λ)ϕ,Γ1γ̂(λ)ϕ} = {ϕ,M(λ)ϕ} for all ϕ ∈ G and let

f̂λ ∈ N̂λ(S
∗). Then f̂λ = γ̂(λ)ϕ for some ϕ ∈ G and hence{

Γ0f̂λ,Γ1f̂λ
}
=
{
Γ0γ̂(λ)ϕ,Γ1γ̂(λ)ϕ

}
= {ϕ,M(λ)ϕ}

yields M(λ)Γ0f̂λ = Γ1f̂λ.

(iii) Let λ, μ ∈ ρ(A0). For given ϕ,ψ ∈ G one can choose

ĥλ = {hλ, λhλ} ∈ N̂λ(S
∗) and k̂μ = {kμ, μkμ} ∈ N̂μ(S

∗),
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such that ϕ = Γ0ĥλ and ψ = Γ0k̂μ. Clearly, γ(λ)ϕ = hλ, γ(μ)ψ = kμ, and the

abstract Green identity applied to ĥλ and k̂μ shows that(
(M(λ)−M(μ)∗)ϕ,ψ

)
= (M(λ)ϕ,ψ)− (ϕ,M(μ)ψ)

=
(
M(λ)Γ0ĥλ,Γ0k̂μ

)− (Γ0ĥλ,M(μ)Γ0k̂μ
)

= (Γ1ĥλ,Γ0k̂μ)− (Γ0ĥλ,Γ1k̂μ)

= (λhλ, kμ)− (hλ, μkμ)

= (λ− μ)(hλ, kμ)

=
(
(λ− μ)γ(λ)ϕ, γ(μ)ψ

)
.

Thus, one has the identity M(λ) −M(μ)∗ = (λ − μ)γ(μ)∗γ(λ). Setting μ = λ it
follows that M(λ) = M(λ)∗ and therefore M(λ)∗ = M(λ), λ ∈ ρ(A0).

(iv) The assertion (iii) gives for λ ∈ C \ R
(ImM(λ)ϕ,ϕ)

Imλ
= (γ(λ)∗γ(λ)ϕ,ϕ) = ‖γ(λ)ϕ‖2, ϕ ∈ G.

Hence, for λ ∈ C+ or λ ∈ C− the operator ImM(λ) is nonnegative or nonpositive,
respectively. As γ(λ) is an isomorphism from G onto Nλ(S

∗) it follows that for all
λ ∈ C \ R the operator ImM(λ) is boundedly invertible.

(v) Let λ0 ∈ ρ(A0) be fixed. Then assertion (iii) implies

ImM(λ0) = (Imλ0)γ(λ0)
∗γ(λ0),

while γ(λ) = (I+(λ−λ0)(A0−λ)−1)γ(λ0), λ ∈ ρ(A0), by Proposition 2.3.2. Using
(iii) this leads to

M(λ) = M(λ0)
∗ + (λ− λ0)γ(λ0)

∗γ(λ)

= ReM(λ0)− i ImM(λ0) + (λ− λ0)γ(λ0)
∗[I + (λ− λ0)(A0 − λ)−1

]
γ(λ0)

= ReM(λ0) + γ(λ0)
∗[(λ− Reλ0) + (λ− λ0)(λ− λ0)(A0 − λ)−1

]
γ(λ0)

for all λ ∈ ρ(A0).

(vi) It follows from item (iii) and γ(λ) = (I + (λ− ν)(A0 − λ)−1)γ(ν) in Proposi-
tion 2.3.2 (ii) that

γ(μ)∗(A0 − λ)−1γ(ν) = γ(μ)∗
γ(λ)− γ(ν)

λ− ν

=
1

λ− ν

(
γ(μ)∗γ(λ)− γ(μ)∗γ(ν)

)
=

1

λ− ν

(
M(λ)−M(μ)∗

λ− μ
− M(ν)−M(μ)∗

ν − μ

)
,

and a simple calculation using M(μ)∗ = M(μ) then yields the assertion. �
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In the next corollary it turns out that the Weyl function M is a uniformly
strict Nevanlinna function; cf. Definition A.4.1 and Definition A.4.7.

Corollary 2.3.7. The Weyl function M in Definition 2.3.4 is a uniformly strict
B(G)-valued Nevanlinna function. Its values M(λ) are maximal dissipative (max-
imal accumulative) operators for λ ∈ C+ (λ ∈ C−), and −λ ∈ ρ(M(λ)) for all
λ ∈ C \ R.
Proof. According to Proposition 2.3.2 (iii), the function λ �→ γ(λ) is holomorphic
on ρ(A0). Hence, it follows from Proposition 2.3.6 (iii) with fixed μ ∈ ρ(A0) that
the function λ �→ M(λ) is holomorphic on ρ(A0) and hence, in particular, on the
possibly smaller subset C \ R. Clearly, according to Proposition 2.3.6 (iii) and (iv)
one has M(λ)∗ = M(λ) and (Imλ)(ImM(λ)) ≥ 0 for λ ∈ C \ R, and hence M is
a B(G)-valued Nevanlinna function. It follows from Proposition 2.3.6 (iv) that M
is uniformly strict. �

Corollary 2.3.8. Let M be the Weyl function in Definition 2.3.4. Then the following
statements hold:

(i) if x ∈ ρ(A0) ∩ R, then M(x) ∈ B(G) is self-adjoint;

(ii) if x ∈ ρ(A0) ∩ R, then the derivative M ′(x) ∈ B(G) is a nonnegative self-
adjoint operator and 0 ∈ ρ(M ′(x));

(iii) if (a, b) ⊂ R belongs to ρ(A0), then for all ϕ ∈ G the function

x �→ (M(x)ϕ,ϕ)

is nondecreasing on (a, b);

(iv) if (a, b) ⊂ R belongs to ρ(A0), then there exist self-adjoint relations M(a)
and M(b) in G such that

M(b) = lim
x ↑ b

M(x) and M(a) = lim
x ↓ a

M(x)

in the strong graph sense or, equivalently, in the strong resolvent sense on
C \ R.

Proof. (i) It follows from M(λ)∗ = M(λ), λ ∈ ρ(A0), that for x ∈ ρ(A0) ∩ R one
has that M(x)∗ = M(x), i.e., M(x) ∈ B(G) is self-adjoint.

(ii) Since M is holomorphic on ρ(A0), it is clear that the derivative M ′(x) ∈ B(G)
exists. Moreover, for all ϕ ∈ G and y 	= x Proposition 2.3.6 (iii) shows that

(M ′(x)ϕ,ϕ) = lim
y→x

(M(x)ϕ,ϕ)− (M(y)ϕ,ϕ)

x− y

= lim
y→x

(γ(x)ϕ, γ(y)ϕ) = ‖γ(x)ϕ‖2

and henceM ′(x) ≥ 0 is self-adjoint. Since γ(x) maps G isomorphically ontoNx(S
∗)

it also follows that 0 ∈ ρ(M ′(x)).
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(iii) If (a, b) ⊂ R belongs to ρ(A0), then for all ϕ ∈ G the mapping x �→ (M(x)ϕ,ϕ)
is differentiable and (ii) implies that x �→ (M(x)ϕ,ϕ) is nondecreasing on (a, b).

(iv) For a < y < x < b it follows from (iii) that (M(y)ϕ,ϕ) ≤ (M(x)ϕ,ϕ) for
all ϕ ∈ G. If γy is a lower bound for M(y), then Corollary 1.9.10 implies that
there exists a semibounded self-adjoint relation M(b) such that M(x) converges
in the strong resolvent sense to M(b) on C \ [γy,∞) when x tends to b. According
to Corollary 1.9.6 (i), this is equivalent to strong graph convergence of M(x) to
M(b).

The same considerations as above show that (−M(y)ϕ,ϕ) ≤ (−M(x)ϕ,ϕ)
for a < x < y < b and ϕ ∈ G, and hence −M(x) converges in the strong resolvent
sense to a semibounded self-adjoint relation −M(a) on C \ [γy,∞) when x tends
to a; here γy is a lower bound for −M(y). This implies that M(x) tends to M(a)
in the strong graph sense and in the strong resolvent sense. �

It is known that every isolated spectral point of a self-adjoint operator or
relation A0 is an eigenvalue and a pole of first order of the resolvent λ �→ (A0−λ)−1.
As a consequence of Proposition 2.3.6 (v), the isolated singularities of the Weyl
function M are poles of first order. This is formulated in the next corollary, which
can also be regarded as a simple example of the connection between the properties
of the Weyl function M and the spectrum of A0. The full connection between these
objects is studied in detail in Section 3.5 and Section 3.6.

Corollary 2.3.9. If x ∈ R is an isolated singularity of M and Bx is a disc centered
at x such that M is holomorphic in Bx \ {x}, then M admits a norm convergent
Laurent series expansion of the form

M(λ) =
M−1

λ− x
+

∞∑
k=0

Mk(λ− x)k, M−1,M0,M1, . . . ∈ B(G).

In particular,

lim
λ→x

(λ− x)M(λ) = M−1 =
1

2πi

∫
C

M(λ) dλ,

where C denotes the boundary of Bx.

In the next remark it is explained that a self-adjoint part of a symmetric
relation has, roughly speaking, no influence on the corresponding boundary triplet,
γ-field, and Weyl function.

Remark 2.3.10. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let A0 = ker Γ0. Assume that H admits an orthogonal
decomposition H = H′ ⊕ H′′ and that S has the orthogonal decomposition

S = S′ ⊕̂ A, (2.3.5)
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where S′ is a closed symmetric relation in H′ and A is a self-adjoint relation in
H′′. Then it follows from (2.3.5) and Proposition 1.3.13 that

S∗ = (S′)∗ ⊕̂ A, (2.3.6)

where (S′)∗ stands for the adjoint of S′ in the space H′. Observe that according
to (2.3.6) every element {f, f ′} ∈ S∗ has the decomposition

{f, f ′} = {h, h′}+ {k, k′}, {h, h′} ∈ (S′)∗, {k, k′} ∈ A. (2.3.7)

Since A ⊂ S, (2.3.7) shows that

Γ0{f, f ′} = Γ0{h, h′} and Γ1{f, f ′} = Γ1{h, h′}.
Hence, if Γ′

0 and Γ′
1 denote the restrictions of Γ0 and Γ1 to (S′)∗, then it is easily

seen that {G,Γ′
0,Γ

′
1} is a boundary triplet for (S′)∗ such that

A′
0 = ker Γ′

0, A0 = ker Γ0 = A′
0 ⊕̂ A.

Moreover, note that (2.3.6) shows

N̂λ(S
∗) = N̂λ((S

′)∗), λ ∈ ρ(A0) = ρ(A′
0) ∩ ρ(A),

which implies that the Weyl function M ′ and the γ-field γ′ satisfy

M ′(λ) = M(λ), γ′(λ) = γ(λ), λ ∈ ρ(A0).

For completeness observe that if H is a closed intermediate extension of S and
H ′ = H ∩ (S′)∗, then S′ ⊂ H ′ ⊂ (S′)∗ and H = H ′ ⊕̂ A. Hence, one may discard
the self-adjoint part A in H′′ without disturbing the boundary triplet structure.

2.4 Existence and construction of boundary triplets

Here the existence and possible constructions of boundary triplets based on de-
compositions in Section 1.7 are addressed. Recall first from Corollary 1.7.13 that
a closed symmetric relation S in a Hilbert space H admits self-adjoint extensions
in H if and only if the defect numbers

dim N̂λ(S
∗) and dim N̂μ(S

∗) (2.4.1)

of S are equal for some, and hence for all λ ∈ C+ and some, and hence for all
μ ∈ C−. Since any boundary triplet for S∗ induces two self-adjoint extensions A0

and A1 of S it is clear that a boundary triplet can only exist if the defect numbers
are equal. It turns out that this condition is also sufficient.

The following main result makes explicit how to construct a boundary triplet
in terms of a given self-adjoint extension of a closed symmetric relation S (which
exists if and only if the defect numbers in (2.4.1) coincide). The following notation
will be used. For μ ∈ C the natural embedding of Nμ(S

∗) into H is denoted by
ιNμ(S∗) and its adjoint is the orthogonal projection PNμ(S∗) from H onto Nμ(S

∗).
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Theorem 2.4.1. Let S be a closed symmetric relation in H and assume that H is
a self-adjoint extension of S in H. Fix μ ∈ ρ(H) and decompose S∗ as

S∗ = H +̂ N̂μ(S
∗), direct sum. (2.4.2)

Let f̂ = {f, f ′} ∈ S∗ have the corresponding decomposition

f̂ = f̂0 + f̂μ, (2.4.3)

with f̂0 = {f0, f ′
0} ∈ H and f̂μ = {fμ, μfμ} ∈ N̂μ(S

∗). Then

Γ0f̂ := fμ and Γ1f̂ := PNμ(S∗)(f
′
0 − μf0 + μfμ) (2.4.4)

define a boundary triplet {Nμ(S
∗),Γ0,Γ1} for S∗ such that H = ker Γ0. Moreover,

for λ ∈ ρ(H) the corresponding γ-field γ is given by

γ(λ) =
(
I + (λ− μ)(H − λ)−1

)
ιNμ(S∗) (2.4.5)

and the corresponding Weyl function M is given by

M(λ) = λ+ (λ− μ)(λ− μ)PNμ(S∗)(H − λ)−1ιNμ(S∗). (2.4.6)

Proof. Since H is a self-adjoint extension of S, the direct sum decomposition
(2.4.2) with μ ∈ ρ(H) follows from Corollary 1.7.5. Hence, for every f̂ ∈ S∗

there is a unique decomposition as in (2.4.3). Let ĝ ∈ S∗ have a corresponding
decomposition

ĝ = ĝ0 + ĝμ, (2.4.7)

where ĝ0 = {g0, g′0} ∈ H and ĝμ = {gμ, μgμ} ∈ N̂μ(S
∗). Then it follows directly

from the decompositions (2.4.3), (2.4.7), and (f ′
0, g0) = (f0, g

′
0) that

(f ′, g)− (f, g′) =
(
f ′
0 + μfμ, g0 + gμ

)− (f0 + fμ, g
′
0 + μgμ

)
= (f ′

0 + μfμ, gμ) + (μfμ, g0)− (fμ, g
′
0 + μgμ)− (f0, μgμ)

=
(
f ′
0 − μf0 + μfμ, gμ

)− (fμ, g′0 − μg0 + μgμ
)
.

(2.4.8)

Moreover, it follows from the definition (2.4.4) applied to f̂ and ĝ that

(Γ1f̂ ,Γ0ĝ)Nμ(S∗) − (Γ0f̂ ,Γ1ĝ)Nμ(S∗)

=
(
PNμ(S∗)(f

′
0 − μf0 + μfμ), gμ

)
Nμ(S∗)

− (fμ, PNμ(S∗)(g
′
0 − μg0 + μgμ)

)
Nμ(S∗)

=
(
f ′
0 − μf0 + μfμ, gμ

)− (fμ, g′0 − μg0 + μgμ
)
.

(2.4.9)

A combination of (2.4.8) and (2.4.9) shows that the abstract Green identity (2.1.1)
holds.
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It will now be verified that Γ = (Γ0,Γ1)
� : S∗ → Nμ(S

∗)×Nμ(S
∗) is surjec-

tive. To see this, let ϕ,ϕ′ ∈ Nμ(S
∗). Since μ ∈ ρ(H), one can choose {f0, f ′

0} ∈ H
such that

f ′
0 − μf0 = ϕ′ − μϕ. (2.4.10)

It is clear from (2.4.2) that

f̂ := {f0, f ′
0}+ {ϕ, μϕ} ∈ S∗,

and therefore (2.4.4) shows that

Γ0f̂ = ϕ, Γ1f̂ = PNμ(S∗)(f
′
0 − μf0 + μϕ) = ϕ′,

where (2.4.10) was used in the last equality. Hence, ranΓ = Nμ(S
∗)×Nμ(S

∗) and
thus {Nμ(S

∗),Γ0,Γ1} is a boundary triplet for S∗. It follows from the definition
of Γ0 and the decomposition (2.4.2) that H = ker Γ0.

Now (2.4.5) and (2.4.6) will be verified. Let f̂μ = {fμ, μfμ} ∈ N̂μ(S
∗). Then

(2.4.4) gives

Γ0f̂μ = fμ and Γ1f̂μ = μfμ.

Therefore, Definition 2.3.1 leads to

γ(μ) =
{{Γ0f̂μ, fμ} : f̂μ ∈ N̂μ(S

∗)
}
=
{{fμ, fμ} : f̂μ ∈ N̂μ(S

∗)
}

or, equivalently, γ(μ) : Nμ(S
∗)→ H acts as fμ �→ fμ. Thus, γ(μ) is the canonical

embedding of Nμ(S
∗) into H,

γ(μ) = ιNμ(S∗), (2.4.11)

and γ(μ)∗ : H → Nμ(S
∗) is the orthogonal projection onto Nμ(S

∗), that is,
γ(μ)∗ = PNμ(S∗). Proposition 2.3.2 (ii) and (2.4.11) imply that the γ-field of
{Nμ(S

∗),Γ0,Γ1} is of the required form. Furthermore, Definition 2.3.4 leads to

M(μ) =
{{Γ0f̂μ,Γ1f̂μ} : f̂μ ∈ N̂μ(S

∗)
}
=
{{fμ, μfμ} : f̂μ ∈ N̂μ(S

∗)
}

or, equivalently,

M(μ) = μ.

Hence, Proposition 2.3.6 (v) with λ0 = μ gives the desired result. �

It is interesting to see what Theorem 2.4.1 means in the simple case when
the underlying symmetric relation is trivial; cf. Example 2.3.5, which is opposite
in the sense that there ker Γ0 = H×{0} and M(λ) = −(1/λ)I. Again this example
is not typical, since in standard applications G 	= H; cf. Chapters 6, 7, and 8.
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Example 2.4.2. Let S = {0, 0} be the trivial symmetric relation in H. Note that

H = {0} × H

is a self-adjoint extension of S with 0 ∈ ρ(H). It is clear that S∗ = H×H and that

N̂0(S
∗) = H× {0}. Therefore, one has the direct sum decomposition

S∗ = H +̂ N̂0(S
∗)

and any f̂ ∈ S∗ has the corresponding decomposition

f̂ = {f, f ′} = {0, f ′}+ {f, 0}, {0, f ′} ∈ H, {f, 0} ∈ N̂0(S
∗).

According to (2.4.4), one sees that

Γ0f̂ = f and Γ1f̂ = f ′, f̂ = {f, f ′} ∈ S∗,

defines a boundary triplet {H,Γ0,Γ1} for S∗ with ker Γ0 = H. Note that ρ(H) = C
and that for every λ ∈ C the resolvent (H − λ)−1 is the zero operator. Hence, the
γ-field is given by γ(λ) = I and the Weyl function is given by M(λ) = λI.

There is an addendum to Theorem 2.4.1 when the decomposition (2.4.2) is
replaced by a decomposition involving

N̂∞(S∗) =
{{0, f ′} : f ′ ∈ mulS∗}.

In fact, the following result may be seen as a limit result obtained from (2.4.2)
with μ → ∞. The embedding of N∞(S∗) = mulS∗ into H is denoted by ιN∞(S∗)
and its adjoint is the orthogonal projection PN∞(S∗) from H onto N∞(S∗). The
proof of Proposition 2.4.3 is straightforward. Observe that Example 2.3.5 is an
illustration of the following proposition.

Proposition 2.4.3. Let S be a closed symmetric operator in H and assume that H
is a self-adjoint extension of S which belongs to B(H). Then S∗ can be decomposed
as

S∗ = H +̂ N̂∞(S∗), direct sum. (2.4.12)

Let f̂ = {f, f ′} ∈ S∗ have the corresponding decomposition

f̂ = f̂0 + f̂∞,

with f̂0 = {f0, Hf0} ∈ H and f̂∞ = {0, f∞} ∈ N̂∞(S∗). Then

Γ0f̂ := f∞ and Γ1f̂ := −PN∞(S∗)f0 (2.4.13)

define a boundary triplet {N∞(S∗),Γ0,Γ1} for S∗ such that H = ker Γ0. Moreover,
for λ ∈ ρ(H) the corresponding γ-field γ is given by

γ(λ) = −(H − λ)−1ιN∞(S∗),

and the corresponding Weyl function M is given by

M(λ) = PN∞(S∗)(H − λ)−1ιN∞(S∗).
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Remark 2.4.4. Let S be a closed symmetric operator in H and let H ∈ B(H) be a
self-adjoint extension of S as in Proposition 2.4.3. Then S is bounded and hence
domS is closed. Decompose H = domS ⊕N∞(S∗) and note that

S =

(
S11

S21

)
: domS →

(
domS
N∞(S∗)

)
,

and in a similar way

H =

(
H11 H∗

21

H21 H22

)
:

(
domS
N∞(S∗)

)
→
(

domS
N∞(S∗)

)
.

It follows that H11 = S11, H21 = S21, and H∗
21 = S∗

21. Relative to the decomposi-
tion (2.4.12) of S∗, the boundary triplet in (2.4.13) can be written as

Γ0f̂ = f∞ and Γ1f̂ = −f2, where f̂ =

{(
f1
f2

)
,

(
f ′
1

f ′
2

)}
∈ S∗.

Let Θ be a closed relation in G = N∞(S∗). Then the corresponding extension AΘ

of S is given by

AΘ =

{{(
f1
f2

)
,

(
S11f1 + S∗

21f2
S21f1 +H22f2 + f∞

)}
: {f∞,−f2} ∈ Θ

}
,

which can formally be written as

AΘ =

(
S11 S∗

21

S21 H22 −Θ−1

)
.

Therefore, the extensions of S may be interpreted as solutions of the completion
problem posed by the incomplete 2× 2 operator matrix(

S11 S∗
21

S21 ∗
)
.

Theorem 2.4.1 has some variations when the self-adjoint extension H in
(2.4.2) is further decomposed; cf. Section 1.7. The most straightforward results
are presented in the following corollaries. In the next result the direct sum decom-
position from Corollary 1.7.10 (with μ = λ) is used.

Corollary 2.4.5. Let S be a closed symmetric relation in H, assume that H is a
self-adjoint extension of S in H, and fix μ ∈ C \ R. Then

S∗ = S +̂
{{(H − μ)−1k, (I + μ(H − μ)−1)k} : k ∈ Nμ(S

∗)
}
+̂ N̂μ(S

∗),

where the sums are direct. Let f̂ = {f, f ′} ∈ S∗ have the corresponding decompo-
sition

{f, f ′} = {h, h′}+ {(H − μ)−1k,
(
I + μ(H − μ)−1

)
k
}
+ {fμ, μfμ}, (2.4.14)
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where ĥ = {h, h′} ∈ S, k ∈ Nμ(S
∗), and fμ ∈ Nμ(S

∗). Then

Γ0f̂ := fμ and Γ1f̂ := k + μfμ (2.4.15)

define a boundary triplet {Nμ(S
∗),Γ0,Γ1} for S∗ such that H = ker Γ0. The cor-

responding γ-field and Weyl function are given by (2.4.5) and (2.4.6).

Proof. It follows from Corollary 1.7.10 that every f̂ = {f, f ′} ∈ S∗ can be writ-
ten as

{f, f ′} = {f0, f ′
0}+ {fμ, μfμ},

where {f0, f ′
0} ∈ H, {fμ, μfμ} ∈ N̂μ(S

∗), and

{f0, f ′
0} = {h, h′}+ {(H − μ)−1k,

(
I + μ(H − μ)−1

)
k
}
,

with {h, h′} ∈ S and k ∈ Nμ(S
∗). The boundary mappings in Theorem 2.4.1 then

have the form Γ0f̂ = fμ and

Γ1f̂ = PNμ(S∗)(f
′
0 − μf0 + μfμ)

= PNμ(S∗)
(
h′ − μh+ k + μfμ

)
= k + μfμ,

where h′ − μh ∈ ran (S − μ) = Nμ(S
∗)⊥ and k + μfμ ∈ Nμ(S

∗) was used in the
last step. This shows that the mappings in (2.4.15) form a boundary triplet with
the same γ-field and Weyl function as in Theorem 2.4.1. �

In Theorem 2.4.1, Proposition 2.4.3, and Corollary 2.4.5 the boundary triplets
were based on decompositions of S∗ in Section 1.7. The following result gives
a boundary triplet for a decomposition of S∗ which is a mixture of the above
decompositions.

Corollary 2.4.6. Let S be a closed symmetric relation in H, assume that H is a
self-adjoint extension of S in H, and fix μ ∈ C \ R. Every f̂ = {f, f ′} ∈ S∗ has
the unique decomposition

{f, f ′} = {h, h′}+ {(I + μ(H − μ)−1
)
ψ,
(
μ+ μ+ μ2(H − μ)−1

)
ψ
}

+
{
(H − μ)−1ϕ,

(
I + μ(H − μ)−1

)
ϕ
}
,

with ĥ = {h, h′} ∈ S and ψ,ϕ ∈ Nμ(S
∗). Then

Γ0f̂ = ψ and Γ1f̂ = ϕ+ 2(Reμ)ψ (2.4.16)

define a boundary triplet {Nμ(S
∗),Γ0,Γ1} for S∗ such that H = ker Γ0. The cor-

responding γ-field and Weyl function are given by (2.4.5) and (2.4.6).
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Proof. Let f̂ = {f, f ′} ∈ S∗. Then according to (2.4.14) there is the decomposition

{f, f ′} = {h, h′}+ {(H − μ)−1k,
(
I + μ(H − μ)−1

)
k
}
+ {ψ, μψ},

where ĥ = {h, h′} ∈ S, k ∈ Nμ(S
∗), and ψ ∈ Nμ(S

∗) are uniquely determined.
Define the element ϕ by k = μψ + ϕ, so that ϕ ∈ Nμ(S

∗) and the right-hand side
of the above decomposition can be rewritten as

{h, h′}+ {(H − μ)−1(μψ + ϕ),
(
I + μ(H − μ)−1

)
(μψ + ϕ)

}
+ {ψ, μψ}.

This yields the decomposition for {f, f ′} in the statement. The boundary triplet
in (2.4.15) now reads as (2.4.16); the corresponding γ-field and Weyl function are
given by (2.4.5) and (2.4.6). �

By von Neumann’s second formula (see Theorem 1.7.12) one can describe
the self-adjoint extension H in Theorem 2.4.1 by means of an isometric operator
from Nμ(S

∗) onto Nμ(S
∗). This observation also gives rise to the construction of

a boundary triplet, where the parameter space is given by Nμ(S
∗).

Theorem 2.4.7. Let S be a closed symmetric relation in H, let H be a self-adjoint
extension of S, and fix some μ ∈ C \ R. Let W be the isometric mapping from
Nμ(S

∗) onto Nμ(S
∗) such that

H = S +̂ (I − Ŵ )N̂μ(S
∗) = S +̂

{
fμ −Wfμ, μfμ − μWfμ

}
(2.4.17)

and decompose f̂ = {f, f ′} ∈ S∗ according to von Neumann’s first formula:

f̂ = {h, h′}+ {fμ, μfμ}+ {fμ, μfμ}, (2.4.18)

where ĥ = {h, h′} ∈ S, f̂μ = {fμ, μfμ} ∈ N̂μ(S
∗), and f̂μ = {fμ, μfμ} ∈ N̂μ(S

∗).
Then

Γ0f̂ = fμ +Wfμ and Γ1f̂ = μfμ + μWfμ (2.4.19)

define a boundary triplet {Nμ(S
∗),Γ0,Γ1} for S∗ such that H = ker Γ0. The cor-

responding γ-field and the Weyl function are given by (2.4.5) and (2.4.6).

Proof. Let f̂ = {f, f ′} ∈ S∗ be decomposed as in (2.4.18) and let ĝ = {g, g′} ∈ S∗

be decomposed in the analogous form

ĝ = {k, k′}+ {gμ, μgμ}+ {gμ, μgμ},

where k̂ = {k, k′} ∈ S, ĝμ = {gμ, μgμ} ∈ N̂μ(S
∗), and ĝμ = {gμ, μgμ} ∈ N̂μ(S

∗).
Since {h, h′}, {k, k′} ∈ S, one has (h′, k) = (h, k′),

(h′, gμ + gμ)− (h, μgμ + μgμ) = 0,

(μfμ + μfμ, k)− (fμ + fμ, k
′) = 0,
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and therefore

(f ′, g)− (f, g′) =
(
h′ + μfμ + μfμ, k + gμ + gμ

)− (h+ fμ + fμ, k
′ + μgμ + μgμ

)
=
(
μfμ + μfμ, gμ + gμ

)− (fμ + fμ, μgμ + μgμ
)

= (μ− μ)(fμ, gμ) + (μ− μ)(fμ, gμ)

= (μ− μ)(fμ, gμ)Nμ(S∗) + (μ− μ)(Wfμ,Wgμ)Nμ(S∗).

On the other hand it follows from (2.4.19) that

(Γ1f̂ ,Γ0ĝ )Nμ(S∗) − (Γ0f̂ ,Γ1ĝ )Nμ(S∗)

=
(
μfμ + μWfμ, gμ +Wgμ

)
Nμ(S∗) −

(
fμ +Wfμ, μgμ + μWgμ

)
Nμ(S∗)

= (μ− μ)(fμ, gμ)Nμ(S∗) + (μ− μ)(Wfμ,Wgμ)Nμ(S∗),

i.e., the abstract Green identity (2.1.1) holds.

In order to see that Γ = (Γ0,Γ1)
� : S∗ → Nμ(S

∗) × Nμ(S
∗) is surjective

consider ϕ,ψ ∈ Nμ(S
∗) and define f̂ = {fμ, μfμ}+ {fμ, μfμ} ∈ S∗ by

f̂ =
1

μ− μ

{
μϕ− ψ, μ(μϕ− ψ)

}
+

1

μ− μ

{
W ∗(μϕ− ψ), μW ∗(μϕ− ψ)

}
.

Then

Γ0f̂ = fμ +Wfμ = ϕ and Γ1f̂ = μfμ + μWfμ = ψ,

and therefore Γ = (Γ0,Γ1)
� maps onto Nμ(S

∗) × Nμ(S
∗). This implies that

{Nμ(S
∗),Γ0,Γ1} is a boundary triplet for S∗. Note that f̂ in (2.4.18) is in ker Γ0

if and only if fμ = −Wfμ and from (2.4.17) it then follows that H = ker Γ0.

Finally, to describe the γ-field and the Weyl function, consider the decom-
position

S∗ = H +̂ N̂μ(S
∗) = ker Γ0 +̂ N̂μ(S

∗)

and note that if f̂ in (2.4.18) belongs to N̂μ(S
∗), then f̂ = f̂μ = {fμ, μfμ}. Hence,

(2.4.19) gives

Γ0f̂μ = fμ and Γ1f̂μ = μfμ.

In the same way as in the proof of Theorem 2.4.1 one concludes that γ(μ) = ιNμ(S∗)
and M(μ) = μ. Now Proposition 2.3.2 (ii) yields (2.4.5) and Proposition 2.3.6 (v)
implies (2.4.6). �

Note that the strategy in the proof of Theorem 2.4.7 is different from the
strategy in the two previous results. The connection will be sketched now. In
Theorem 2.4.7 the isometric mapping W from Nμ(S

∗) onto Nμ(S
∗) determines

the boundary triplet {Nμ(S
∗),Γ0,Γ1} for S∗ in (2.4.19). The self-adjoint exten-

sion H of S determined by W in (2.4.17) then satisfies H = ker Γ0. Now apply
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Theorem 2.4.1 with this particular self-adjoint extension. Hence, f̂ ∈ S∗ in Theo-
rem 2.4.1 is decomposed in the form

f̂ = {f0, f ′
0}+ {ϕμ, μϕμ}, (2.4.20)

where {f0, f ′
0} ∈ H and {ϕμ, μϕμ} ∈ N̂μ(S

∗). Making use of the decomposition
(2.4.17) of H it follows that

{f0, f ′
0} = {h, h′}+ {−Wψμ,−μWψμ}+ {ψμ, μψμ} (2.4.21)

with {h, h′} ∈ S and ψμ ∈ Nμ(S
∗). Therefore, f̂ in (2.4.20) is given by

f̂ = {h, h′}+ {fμ, μfμ}+ {fμ, μfμ},
where {fμ, μfμ} = {ϕμ −Wψμ, μϕμ − μWψμ} and {fμ, μfμ} = {ψμ, μψμ}. Now
the identity

ϕμ = fμ +Wψμ = fμ +Wfμ

shows that the boundary maps Γ0 in Theorem 2.4.1 and Theorem 2.4.7 coincide.
Moreover, as PNμ(S∗)(h

′ − μh) = 0, the identity

PNμ(S∗)
(
f ′
0 − μf0 + μϕμ

)
= −μWψμ + μWψμ + μϕμ = μfμ + μWfμ

follows from (2.4.21), and shows that the boundary maps Γ1 in Theorem 2.4.1 and
Theorem 2.4.7 are the same.

2.5 Transformations of boundary triplets

Let S be a closed symmetric relation in H with equal defect numbers. Then S
admits self-adjoint extensions in H and each self-adjoint extension gives rise to
a boundary triplet as in Theorem 2.4.1. Hence, boundary triplets for S∗ are not
uniquely determined, with the exception of the trivial case S = S∗. A complete
description of all boundary triplets for S∗ will be given with the help of block
operator matrices that are unitary with respect to the indefinite inner products
in Section 1.8; cf. (2.1.3). The transformation properties of the corresponding
boundary parameters, γ-fields, and Weyl functions are discussed afterwards.

The main result on the description of all boundary triplets for S∗ is the
following theorem. It describes the transformation of boundary triplets.

Theorem 2.5.1. Let S be a closed symmetric relation in H, assume that {G,Γ0,Γ1}
is a boundary triplet for S∗, and let G′ be a Hilbert space. Then the following
statements hold:

(i) Let W ∈ B(G× G,G′ × G′) satisfy

W∗JG′W = JG and WJGW
∗ = JG′ , (2.5.1)
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and define (
Γ′
0

Γ′
1

)
= W

(
Γ0

Γ1

)
=

(
W11 W12

W21 W22

)(
Γ0

Γ1

)
. (2.5.2)

Then {G′,Γ′
0,Γ

′
1} is a boundary triplet for S∗.

(ii) Let {G′,Γ′
0,Γ

′
1} be a boundary triplet for S∗. Then there exists a unique op-

erator W ∈ B(G× G,G′ × G′) satisfying (2.5.1) such that (2.5.2) holds.

Proof. (i) Note that the operator W ∈ B(G×G,G′×G′) is unitary from (G2, [[·, ·]]G2)

to (G′2, [[·, ·]]G′2); cf. Proposition 1.8.2. Hence, for f̂ , ĝ ∈ S∗ one has[[
Γ′f̂ ,Γ′ĝ

]]
G′2 =

[[
WΓf̂ ,WΓĝ

]]
G′2 =

[[
Γf̂ ,Γĝ

]]
G2 =

[[
f̂ , ĝ
]]
H2 .

Therefore, Γ′
0 and Γ′

1 satisfy the abstract Green identity (2.1.1); cf. (2.1.4). Since
W is surjective by Proposition 1.8.2, Γ′ = WΓ is also surjective thanks to the
surjectivity of Γ. It follows that {G′,Γ′

0,Γ
′
1} is a boundary triplet for S∗.

(ii) Assume that {G′,Γ′
0,Γ

′
1} is a boundary triplet for S∗ and define a linear relation

W ⊂ G2 × G′2 by
W :=

{{Γf̂ ,Γ′f̂} : f̂ ∈ S∗}. (2.5.3)

It follows from Proposition 2.1.2 (ii) that W is an operator. Indeed, if Γf̂ = 0,

then f̂ ∈ S and thus Γ′f̂ = 0. For the operator W one has domW = G × G and
ranW = G′ × G′ since ranΓ = G× G and ranΓ′ = G′ × G′.

Define the inner product [[·, ·]]G′2 on G′2 as in (2.1.3). Let ϕ̂, ψ̂ ∈ G × G and

let f̂ , ĝ ∈ S∗ be such that Γf̂ = ϕ̂ and Γĝ = ψ̂. Then one has[[
Wϕ̂,Wψ̂

]]
G′2 =

[[
WΓf̂ ,WΓĝ

]]
G′2 =

[[
Γ′f̂ ,Γ′ĝ

]]
G′2

=
[[
f̂ , ĝ
]]
H2 =

[[
Γf̂ ,Γĝ

]]
G2 =

[[
ϕ̂, ψ̂

]]
G2 ,

and hence W is an isometric operator from (G2, [[·, ·]]G2) to (G′2, [[·, ·]]G′2). This
implies that the first identity in (2.5.1) is satisfied and from Lemma 1.8.1 it follows
that W ∈ B(G × G,G′ × G′). Furthermore, as W is surjective, Proposition 1.8.2
implies that also the second identity in (2.5.1) holds.

By the definition (2.5.3) of the operator W, the boundary triplets {G,Γ0,Γ1}
and {G′,Γ′

0,Γ
′
1} are connected via (2.5.2). Moreover, the operator W is unique.

Indeed, if Γ′ = WΓ and Γ′ = W̃Γ, then (W − W̃)Γf̂ = 0 for all f̂ ∈ S∗ and as

ranΓ = G× G it follows that W = W̃. �

The transformation of a boundary triplet {G,Γ0,Γ1} in Theorem 2.5.1 in-
duces a transformation of the closed relations in the parameter space. Assume
that W ∈ B(G×G,G′×G′) satisfies the identities in (2.5.1) and let {G′,Γ′

0,Γ
′
1} be

the corresponding transformed boundary triplet in (2.5.2). Let Θ be a relation in
G and define Θ′ in G′ as a Möbius transform of Θ by

Θ′ = W[Θ] =
{{W11ϕ+W12ϕ

′,W21ϕ+W22ϕ
′} : {ϕ,ϕ′} ∈ Θ

}
; (2.5.4)
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cf. Definition 1.8.4. As W is bijective, it follows that Θ′ = W[Θ] is closed in G′ if
and only if Θ is closed in G; cf. (1.8.10).

Proposition 2.5.2. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} and {G′,Γ′

0,Γ
′
1} are boundary triplets for S∗ connected via Γ′ = WΓ

in Theorem 2.5.1. Let Θ be a closed relation in G and let Θ′ be defined by (2.5.4).
Then the closed intermediate extensions

AΘ = ker (Γ1 −ΘΓ0) and A′
Θ′ = ker (Γ′

1 −Θ′Γ′
0)

coincide, that is, for f̂ ∈ S∗ one has

Γ′f̂ ∈ Θ′ ⇔ Γf̂ ∈ Θ.

Proof. Let f̂ ∈ S∗. Then the transformation formulas (2.5.2), (2.5.4), and the fact
that W is bijective imply

Γ′f̂ ∈ Θ′ ⇔ WΓf̂ ∈W[Θ] ⇔ Γf̂ ∈ Θ.

Hence, ker (Γ1 −ΘΓ0) and ker (Γ′
1 −Θ′Γ′

0) coincide; cf. Theorem 2.1.3 (iii). �

Likewise, the transformation of the boundary triplet leads to a transformation
of the γ-field and the Weyl function.

Proposition 2.5.3. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} and {G′,Γ′

0,Γ
′
1} are boundary triplets for S∗ connected via Γ′ = WΓ

in Theorem 2.5.1. Let A0 = ker Γ0, A
′
0 = ker Γ′

0, and let γ, γ′ and M,M ′ be the
γ-fields and Weyl functions corresponding to {G,Γ0,Γ1} and {G′,Γ′

0,Γ
′
1}, respec-

tively. Then for all λ ∈ ρ(A0) ∩ ρ(A′
0) the operator

W11 +W12M(λ)

is an isomorphism from G onto G′, and the identities

γ′(λ) = γ(λ)
(
W11 +W12M(λ)

)−1
(2.5.5)

and
M ′(λ) =

(
W21 +W22M(λ)

)(
W11 +W12M(λ)

)−1
(2.5.6)

hold.

Proof. For λ ∈ ρ(A0) and f̂λ ∈ N̂λ(S
∗) one has

Γ′
0f̂λ = W11Γ0f̂λ +W12Γ1f̂λ =

(
W11 +W12M(λ)

)
Γ0f̂λ,

which leads to

Γ′
0� N̂λ(S

∗) =
(
W11 +W12M(λ)

)(
Γ0� N̂λ(S

∗)
)
. (2.5.7)
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If, in addition, λ ∈ ρ(A0) ∩ ρ(A′
0), then, by Lemma 2.1.7, Γ0 and Γ′

0 are isomor-

phisms from N̂λ(S
∗) onto G and G′, respectively. Hence, it follows from (2.5.7)

that W11 +W12M(λ) is an isomorphism from G onto G′, and therefore(
Γ′
0� N̂λ(S

∗)
)−1

=
(
Γ0� N̂λ(S

∗)
)−1(

W11 +W12M(λ)
)−1

.

If one applies the orthogonal projection π1 from H×H onto H×{0} to both sides,
then (2.5.5) follows. Similarly, for λ ∈ ρ(A0) ∩ ρ(A′

0) one finds that(
W21 +W22M(λ)

)(
W11 +W12M(λ)

)−1
Γ′
0f̂λ =

(
W21 +W22M(λ)

)
Γ0f̂λ

= W21Γ0f̂λ +W22Γ1f̂λ

= Γ′
1f̂λ,

which yields (2.5.6). �

Next some special transformations of boundary triplets and Weyl functions
will be discussed. In the first corollary the boundary mappings are interchanged
via a flip-flop, which leads to the Weyl function −M−1.

Corollary 2.5.4. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} is a boundary triplet for S∗ with γ-field γ and Weyl function M , and
define

Γ′
0 = Γ1 and Γ′

1 = −Γ0.

Then {G,Γ′
0,Γ

′
1} is a boundary triplet for S∗ and ker Γ′

0 = ker Γ1. Moreover, for
λ ∈ ρ(A0)∩ρ(A1) the corresponding γ-field γ′ and the Weyl function M ′ are given
by

γ′(λ) = γ(λ)M(λ)−1 and M ′(λ) = −M(λ)−1,

respectively.

Proof. The operator

W =

(
0 I
−I 0

)
∈ B(G× G)

satisfies both identities in (2.5.1). Now the assertions follow from Theorem 2.5.1
and Proposition 2.5.3. �

The second corollary treats the situation in which a bijective operator D
dilates the Weyl function M and a self-adjoint operator P produces a shift of the
dilated Weyl function D∗MD.

Corollary 2.5.5. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} is a boundary triplet for S∗ with γ-field γ and Weyl function M . Let
G′ be a Hilbert space, let D ∈ B(G′,G) be boundedly invertible, let P ∈ B(G′) be
self-adjoint, and define

Γ′
0 = D−1Γ0 and Γ′

1 = D∗Γ1 + PD−1Γ0.
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Then {G′,Γ′
0,Γ

′
1} is a boundary triplet for S∗ and ker Γ′

0 = ker Γ0. Moreover, for
λ ∈ ρ(A0) the corresponding γ-field γ′ and the Weyl function M ′ are given by

γ′(λ) = γ(λ)D and M ′(λ) = D∗M(λ)D + P, (2.5.8)

respectively.

Proof. It is not difficult to check that the operator

W =

(
D−1 0
PD−1 D∗

)
∈ B(G× G,G′ × G′)

satisfies both identities in (2.5.1). Now the assertions follow from Theorem 2.5.1
and Proposition 2.5.3. �

The next corollary complements Corollary 2.5.5.

Corollary 2.5.6. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} and {G′,Γ′

0,Γ
′
1} are boundary triplets for S∗ such that

ker Γ0 = ker Γ′
0.

Then there exist a boundedly invertible operator D ∈ B(G′,G) and a self-adjoint
operator P ∈ B(G′) such that

Γ′
0 = D−1Γ0 and Γ′

1 = D∗Γ1 + PD−1Γ0. (2.5.9)

In particular, the γ-fields and Weyl functions corresponding to the boundary trip-
lets {G,Γ0,Γ1} and {G,Γ′

0,Γ
′
1} satisfy (2.5.8).

Proof. It follows from Theorem 2.5.1 that there exists W ∈ B(G×G,G′×G′) with
the properties (2.5.1) such that(

Γ′
0

Γ′
1

)
= W

(
Γ0

Γ1

)
=

(
W11 W12

W21 W22

)(
Γ0

Γ1

)
. (2.5.10)

The assumption ker Γ0 = ker Γ′
0 implies W12 = 0. In fact, if f̂ ∈ ker Γ0 = ker Γ′

0,

then W12Γ1f̂ = 0 by (2.5.10) and hence Proposition 2.1.2 (i) implies W12 = 0.
Therefore, the first identity W∗JG′W = JG in (2.5.1) means that

W ∗
11W22 = IG, W ∗

22W11 = IG, W ∗
11W21 = W ∗

21W11.

Likewise, the second equality WJGW
∗ = JG′ in (2.5.1) means that

W11W
∗
22 = IG′ , W22W

∗
11 = IG′ , W21W

∗
22 = W22W

∗
21.

It follows that D := W ∗
22 ∈ B(G′,G) is boundedly invertible with D−1 = W11, the

operator P := W21D ∈ B(G′) is self-adjoint and (2.5.9) is satisfied. �
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A combination of Corollary 2.5.5 with G = G′, D = I, P = −Θ, and Corol-
lary 2.5.4 leads to the followings statement.

Corollary 2.5.7. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} is a boundary triplet for S∗ with γ-field γ and Weyl function M . Let
Θ ∈ B(G) be self-adjoint, and define

Γ′
0 = Γ1 −ΘΓ0 and Γ′

1 = −Γ0.

Then {G,Γ′
0,Γ

′
1} is a boundary triplet for S∗ and ker Γ′

0 = ker (Γ1 − ΘΓ0) = AΘ

holds. Moreover, for λ ∈ ρ(A0)∩ ρ(AΘ) the corresponding γ-field γ′ and the Weyl
function M ′ are given by

γ′(λ) = −γ(λ)(Θ−M(λ))−1 and M ′(λ) = (Θ−M(λ))−1,

respectively.

The following statement is also a direct consequence of Corollary 2.5.5.

Corollary 2.5.8. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} is a boundary triplet for S∗ with γ-field γ and Weyl function M . Let
Q(λ) ∈ B(G), λ ∈ C \ R, be a family of operators which satisfy

Q(λ)−Q(μ)∗

λ− μ
= γ(μ)∗γ(λ), λ, μ ∈ C \ R. (2.5.11)

Let λ0 ∈ C \ R and define the self-adjoint operator P ∈ B(G) by

P = ReQ(λ0)− ReM(λ0).

Then Q is the Weyl function corresponding to the boundary triplet {G,Γ′
0,Γ

′
1},

where
Γ′
0 = Γ0 and Γ′

1 = Γ1 + PΓ0,

and Q(λ) = M(λ) + P holds for all λ ∈ ρ(A0).

Proof. Due to Proposition 2.3.6 (iii) it follows from the identity (2.5.11) that

Q(λ)−Q(λ0)
∗ = M(λ)−M(λ0)

∗, λ, λ0 ∈ C \ R,
and, in particular, ImQ(λ0) = ImM(λ0). Hence, one obtains

Q(λ)−M(λ) = Q(λ0)
∗ −M(λ0)

∗ = ReQ(λ0)− ReM(λ0) = P.

With the choice D = I and P as above, the result follows from Corollary 2.5.5. �

Now it will be shown that a pair of transversal self-adjoint extensions in-
duces a boundary triplet {G,Γ0,Γ1} which determines these extensions via the
boundary conditions ker Γ0 and ker Γ1. The following theorem is a consequence of
Theorem 2.4.1 and Corollary 2.5.5.
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Theorem 2.5.9. Let S be a closed symmetric relation in H and assume that H and
H ′ are transversal self-adjoint extensions of S in H, that is,

S∗ = H +̂ H ′

holds; cf. Lemma 1.7.7. Then there exists a boundary triplet {G,Γ0,Γ1} for S∗

such that

H = ker Γ0 and H ′ = ker Γ1. (2.5.12)

Proof. As H is a self-adjoint extension of S, there is a boundary triplet {G,Υ0,Υ1}
for S∗ such that H = kerΥ0; cf. Theorem 2.4.1. Since H ′ is a self-adjoint extension
of S it follows from Corollary 2.1.4 (v) that there exists a self-adjoint relation Θ
in G such that

H ′ = ker (Υ1 −ΘΥ0).

Furthermore, since H ′ and H are transversal, it follows from Proposition 2.1.8 (ii)
that Θ ∈ B(G). Now define(

Γ0

Γ1

)
=

(
I 0
−Θ I

)(
Υ0

Υ1

)
,

so that {G,Γ0,Γ1} is a boundary triplet for S∗ by Corollary 2.5.5. By construction,
the boundary triplet {G,Γ0,Γ1} has the properties (2.5.12). �

Corollary 2.5.10. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} is a boundary triplet for S∗. Let AΘ = ker (Γ1−ΘΓ0) be a self-adjoint
extension of S corresponding to the self-adjoint relation Θ in G via (2.1.5). Then
there exists a boundary triplet {G,Γ′

0,Γ
′
1} such that

ker Γ′
0 = ker

(
Γ1 −ΘΓ0

)
and ker Γ′

1 = ker
(
Γ1 +Θ−1Γ0

)
, (2.5.13)

that is, A′
0 = AΘ and A′

1 = A−Θ−1 .

Proof. Recall that Θ∗ = (JΘ)⊥, where J denotes the flip-flop operator in G2 from
(1.3.1). Since Θ is self-adjoint it follows that Θ = (JΘ)⊥ or, in other words,

G2 = Θ⊕ JΘ.

In particular, one sees that Θ and JΘ = −Θ−1 are transversal in G. Therefore,
the self-adjoint extensions ker (Γ1 − ΘΓ0) and ker (Γ1 + Θ−1Γ0) are transversal;
cf. Lemma 2.1.5 (ii). Now the assertion follows from Theorem 2.5.9. �

Corollary 2.5.10 is concerned with the existence of the boundary triplet
{G,Γ′

0,Γ
′
1} with the properties (2.5.13). In fact, it is possible to explicitly con-

struct such a boundary triplet via the choice of an appropriate operator W such
that Γ′ = WΓ; cf. Corollary 2.5.7 for the special case Θ ∈ B(G).
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Corollary 2.5.11. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} is a boundary triplet for S∗. Let Θ be a self-adjoint relation in G and
choose A,B ∈ B(G) such that

Θ =
{{Aϕ,Bϕ} : ϕ ∈ G

}
and the identities

A∗B = B∗A, AB∗ = BA∗, A∗A+B∗B = I = AA∗ +BB∗, (2.5.14)

hold; cf. Corollary 1.10.9. Then {G,Γ′
0,Γ

′
1}, where

Γ′
0 = B∗Γ0 −A∗Γ1 and Γ′

1 = A∗Γ0 +B∗Γ1, (2.5.15)

is a boundary triplet for S∗ such that both identities in (2.5.13) hold, that is,
A′

0 = AΘ and A′
1 = A−Θ−1 .

Proof. It is not difficult to check that

W =

(
B∗ −A∗

A∗ B∗

)
∈ B(G× G) (2.5.16)

satisfies (2.5.1) and it is clear from (2.5.15) that {G,Γ′
0,Γ

′
1} and {G,Γ0,Γ1} are

connected via W as in Theorem 2.5.1 (i). Hence, {G,Γ′
0,Γ

′
1} is a boundary triplet

for S∗. It follows from (2.5.14) that

W[Θ] =
{{B∗Aϕ−A∗Bϕ,A∗Aϕ+B∗Bϕ} : {Aϕ,Bϕ} ∈ Θ

}
= {0} × G,

and since −Θ−1 = {{Bϕ,−Aϕ} : ϕ ∈ G}, it follows in the same way that

W[−Θ−1] =
{{B∗Bϕ+A∗Aϕ,A∗Bϕ−B∗Aϕ} : {Bϕ,−Aϕ} ∈ −Θ−1

}
= G× {0}.

Recall from Proposition 2.5.2 that

Γ′f̂ ∈W[Ξ] ⇔ Γf̂ ∈ Ξ, f̂ ∈ S∗,

holds for any closed relation Ξ in G. With Ξ = Θ and Ξ = −Θ−1 one then has

Γ′f̂ ∈ {0} × G ⇔ Γf̂ ∈ Θ, f̂ ∈ S∗,

and
Γ′f̂ ∈ G× {0} ⇔ Γf̂ ∈ −Θ−1, f̂ ∈ S∗,

respectively. Now (2.1.11)–(2.1.12) imply

A′
0 = ker Γ′

0 = ker
(
Γ1 −ΘΓ0

)
= AΘ

and
A′

1 = ker Γ′
1 = ker

(
Γ1 +Θ−1Γ0

)
= A−Θ−1 . �
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Assume that the boundary triplets {G,Γ0,Γ1} and {G,Γ′
0,Γ

′
1} are as in Corol-

lary 2.5.11 and let γ and M , and γ′ and M ′, be the corresponding γ-fields and
Weyl functions, respectively. Then it follows from Proposition 2.5.3 that for all
λ ∈ ρ(A0) ∩ ρ(A′

0) one has

γ′(λ) = γ(λ)
(
B∗ −A∗M(λ)

)−1
(2.5.17)

and
M ′(λ) =

(
A∗ +B∗M(λ)

)(
B∗ −A∗M(λ)

)−1
. (2.5.18)

In the special case where the defect numbers of S are (1, 1) one may choose

A =
1√

s2 + 1
and B =

s√
s2 + 1

, s ∈ R ∪ {∞},

where A = 0 and B = 1 if s = ∞; this interpretation will be used also in the
following. With this choice of A and B the operator in (2.5.16) reduces to the
2× 2-matrix

W =
1√

s2 + 1

(
s −1
1 s

)
, s ∈ R ∪ {∞}.

In this case

Γ′
0 =

1√
s2 + 1

(sΓ0 − Γ1), Γ′
1 =

1√
s2 + 1

(Γ0 + sΓ1), s ∈ R ∪ {∞}, (2.5.19)

and for λ ∈ ρ(A0) ∩ ρ(A′
0) the corresponding γ-field and Weyl function are given

by

γ′(λ) =
√
s2 + 1

s−M(λ)
γ(λ) and M ′(λ) =

1 + sM(λ)

s−M(λ)
, s ∈ R ∪ {∞}. (2.5.20)

Now let S be a closed symmetric relation in H and assume that {G,Γ0,Γ1} is
a boundary triplet for S∗. Consider a closed symmetric extension S′ of S with the
property S′ ⊂ A0 = ker Γ0. Then the boundary triplet {G,Γ0,Γ1} can be restricted
to (S′)∗ ⊂ S∗ and A0 coincides with the kernel of the restriction of Γ0. The Weyl
function corresponding to this restricted boundary triplet is a compression of the
original Weyl function onto a subspace of G. In the following proposition this is
made precise from the point of view of an orthogonal decomposition of G.

Proposition 2.5.12. Let S be a closed symmetric relation in H and assume that
{G,Γ0,Γ1} is a boundary triplet for S∗ with A0 = ker Γ0, and corresponding γ-
field γ and Weyl function M . Assume that G has the orthogonal decomposition

G = G′ ⊕ G′′ (2.5.21)

with corresponding orthogonal projections P ′ and P ′′ and canonical embedding ι′.
Then the following statements hold:
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(i) The relation

S′ =
{
f̂ ∈ S∗ : Γ0f̂ = 0, P ′Γ1f̂ = 0

}
(2.5.22)

is closed and symmetric with S ⊂ S′ ⊂ A0.

(ii) The adjoint (S′)∗ of S′ is given by

(S′)∗ =
{
f̂ ∈ S∗ : P ′′Γ0f̂ = 0

}
.

(iii) The triplet {G′,Γ′
0,Γ

′
1}, where

Γ′
0 = Γ0� (S

′)∗ and Γ′
1 = P ′Γ1� (S

′)∗,

is a boundary triplet for (S′)∗ such that A0 = ker Γ′
0.

(iv) The γ-field γ′ and Weyl function M ′ corresponding to the boundary triplet
{G′,Γ′

0,Γ
′
1} are given by

γ′(λ) = γ(λ)ι′ and M ′(λ) = P ′M(λ)ι′, λ ∈ ρ(A0).

Moreover, for every closed symmetric extension S′ with S ⊂ S′ ⊂ A0 there exists
an orthogonal decomposition (2.5.21) of G such that (2.5.22) holds.

Proof. (i) & (ii) It is clear from the definition that S ⊂ S′ ⊂ A0 and that S′ can
be written as

S′ =
{
f̂ ∈ S∗ : Γf̂ ∈ {0} × G′′}.

Hence, S′ = AΘ when Θ = {0} × G′′. It follows that S′ is closed, and by (1.3.4)
one has Θ∗ = G′ × G, so that Theorem 2.1.3 (iv) shows

(S′)∗ =
{
f̂ ∈ S∗ : Γf̂ ∈ G′ × G

}
=
{
f̂ ∈ S∗ : P ′′Γ0f̂ = 0

}
.

(iii) With the choice f̂ , ĝ ∈ (S′)∗ one has Γ0f̂ = P ′Γ0f̂ and Γ0ĝ = P ′Γ0ĝ. Then
(2.1.1) yields

(f ′, g)H − (f, g′)H = (Γ1f̂ ,Γ0ĝ)G − (Γ0f̂ ,Γ1ĝ)G

= (Γ1f̂ , P
′Γ0ĝ)G′ − (P ′Γ0f̂ ,Γ1ĝ)G′

= (Γ′
1f̂ ,Γ

′
0ĝ)G′ − (Γ′

0f̂ ,Γ
′
1ĝ)G′ .

(2.5.23)

It follows from the surjectivity of Γ and the identity Γ0f̂ = P ′Γ0f̂ when f̂ ∈ (S′)∗,
that

Γ′ =
(

Γ0� (S′)∗

P ′Γ1� (S′)∗

)
=

(
P ′Γ0� (S′)∗

P ′Γ1� (S′)∗

)
: (S′)∗ →

(
G′

G′

)
maps (S′)∗ onto G′ × G′. Together with (2.5.23) this shows that {G′,Γ′

0,Γ
′
1} is a

boundary triplet for (S′)∗. It is clear that A0 = ker Γ′
0 holds.
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(iv) Since Γ0 maps N̂λ(S
∗), λ ∈ ρ(A0), one-to-one onto G, the restriction Γ′

0 maps

N̂λ((S
′)∗), λ ∈ ρ(A0), one-to-one onto G′. Hence, (2.3.1) implies that

ρ(A0) � λ �→ γ′(λ) =
{{Γ′

0f̂λ, fλ} : f̂λ ∈ N̂λ((S
′)∗)
}

and therefore γ′(λ) = γ(λ)ι′. It follows from (2.3.4) that

ρ(A0) � λ �→M ′(λ) =
{{Γ′

0f̂λ,Γ
′
1f̂λ} : f̂λ ∈ N̂λ((S

′)∗)
}
,

which shows that M ′(λ) = P ′M(λ)ι′.

Finally, if S′ is a closed symmetric extension of S with the property S′ ⊂ A0,
then S′ = AΘ for some closed symmetric relation Θ in G such that Θ ⊂ {0} × G

by Theorem 2.1.3 (v). As Θ is closed, there exists a closed subspace G′′ ⊂ G such
that Θ = {0}×G′′. With G′ = (G′′)⊥ it is clear that the orthogonal decomposition
(2.5.21) of G holds and S′ is of the form (2.5.22). �

In the situation of Proposition 2.5.12 the intermediate extensions of S′ can
also be interpreted as intermediate extensions of S. In the next corollary the
connection between these extensions relative to the appropriate boundary triplets
is explained.

Corollary 2.5.13. Assume that the parameter space G has the orthogonal decompo-
sition (2.5.21)and let S′ be as in Proposition 2.5.12. Let Θ′ be a closed relation in
G′ and let Θ be the closed linear relation in G defined by

Θ = Θ′ ⊕̂ ({0} × G′′). (2.5.24)

For the intermediate extensions induced by Θ and Θ′ one has{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
=
{
f̂ ∈ (S′)∗ : Γ′f̂ ∈ Θ′} (2.5.25)

or, equivalently, ker (Γ1 −ΘΓ0) = ker (Γ′
1 −Θ′Γ′

0).

Proof. It is clear that the relation Θ defined in (2.5.24) is a closed relation in G.
The identity in (2.5.25) now follows from{

f̂ ∈ S∗ : Γf̂ ∈ Θ
}
=
{
f̂ ∈ S∗ : Γf̂ ∈ Θ′ ⊕̂ ({0} × G′′)

}
=
{
f̂ ∈ S∗ : {P ′Γ0f̂ , P

′Γ1f̂} ∈ Θ′, P ′′Γ0f̂ = 0
}

=
{
f̂ ∈ (S′)∗ : {Γ0f̂ , P

′Γ1f̂} ∈ Θ′}
=
{
f̂ ∈ (S′)∗ : Γ′f̂ ∈ Θ′},

where (2.5.24) has been used in conjunction with the boundary triplet in Propo-
sition 2.5.12. �
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Let S and S′ be closed symmetric relations in H and H′ which are unitarily
equivalent, and let {G,Γ0,Γ1} and {G′,Γ′

0,Γ
′
1} be boundary triplets for S∗ and

(S′)∗, respectively. The notion of unitary equivalence for these boundary triplets
will now be introduced which leads to unitary equivalence of the corresponding
extensions, γ-fields and Weyl functions.

Let H and H′ be Hilbert spaces and let U ∈ B(H,H′) be a unitary oper-
ator from H onto H′. Let S and S′ be closed symmetric relations in H and H′,
respectively, such that they are unitarily equivalent by means of U , that is,

S′ =
{{Uf, Uf ′} : {f, f ′} ∈ S

}
(2.5.26)

in the sense of Definition 1.3.7. It follows from (1.3.7) that this assumption is
equivalent to S∗ and (S′)∗ being equivalent under U ,

(S′)∗ =
{{Uf, Uf ′} : {f, f ′} ∈ S∗}.

Then U maps Nλ(S
∗) unitarily onto Nλ((S

′)∗), and hence

N̂λ((S
′)∗) =

{{Ufλ, λUfλ} : {f, λfλ} ∈ S∗}.
Furthermore, let V ∈ B(G,G′) be a unitary mapping from G onto G′. Then the
closed relations Θ in G and Θ′ in G′ are unitarily equivalent if

Θ′ =
{{V f, V f ′} : {f, f ′} ∈ Θ

}
. (2.5.27)

The notion of unitary equivalence of two boundary triplets involves not only the
unitary equivalence between H and H′, but also the unitary equivalence between
G and G′.

Definition 2.5.14. Let S and S′ be closed symmetric relations in H and H′, and
let {G,Γ0,Γ1} and {G′,Γ′

0,Γ
′
1} be boundary triplets for S∗ and (S′)∗, respectively.

Then {G,Γ0,Γ1} and {G′,Γ′
0,Γ

′
1} are said to be unitarily equivalent if there exist

a unitary operator U ∈ B(H,H′) and a unitary operator V ∈ B(G,G′) such that

(i) S and S′ are unitarily equivalent by means of U as in (2.5.26);

(ii) {G,Γ0,Γ1} and {G′,Γ′
0,Γ

′
1} are connected via

Γ′
0{Uf, Uf ′} = V Γ0{f, f ′} and Γ′

1{Uf, Uf ′} = V Γ1{f, f ′} (2.5.28)

for all {f, f ′} ∈ S∗.

In the next proposition it will be shown that for unitarily equivalent bound-
ary triplets the corresponding closed extensions, γ-fields, and Weyl functions are
unitarily equivalent.

Proposition 2.5.15. Let S and S′ be closed symmetric relations in H and H′, and
let {G,Γ0,Γ1} and {G′,Γ′

0,Γ
′
1} be boundary triplets for S∗ and (S′)∗, respectively,

which are unitarily equivalent by means of the unitary operators U ∈ B(H,H′) and
V ∈ B(G,G′). Then the following statements hold:
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(i) For all closed relations Θ in G and Θ′ in G′ connected via (2.5.27) the closed
extensions

AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
and A′

Θ′ =
{
ĥ ∈ (S′)∗ : Γ′ĥ ∈ Θ′}

are unitarily equivalent by means of U ∈ B(H,H′), that is,

A′
Θ′ =

{{Uf, Uf ′} : {f, f ′} ∈ AΘ

}
.

(ii) The γ-fields γ and γ′ corresponding to {G,Γ0,Γ1} and {G′,Γ′
0,Γ

′
1} are related

by

γ′(λ) = Uγ(λ)V −1, λ ∈ ρ(A0) = ρ(A′
0).

(iii) The Weyl functions M and M ′ corresponding to {G,Γ0,Γ1} and {G′,Γ′
0,Γ

′
1}

are related by

M ′(λ) = VM(λ)V −1, λ ∈ ρ(A0) = ρ(A′
0).

Proof. (i) It follows from the definition that

AΘ =
{{f, f ′} ∈ S∗ : Γ{f, f ′} ∈ Θ

}
and

A′
Θ′ =

{{g, g′} ∈ (S′)∗ : Γ′{g, g′} ∈ Θ′}.
Since S and S′ are unitarily equivalent, so are S∗ and (S′)∗, and hence one has
{g, g′} ∈ (S′)∗ if and only if {g, g′} = {Uf, Uf ′} for some {f, f ′} ∈ S∗. Thus, by
the unitary equivalence of the boundary triplets one obtains

A′
Θ′ =

{{Uf, Uf ′} : {f, f ′} ∈ S∗,
{
Γ′
0{Uf, Uf ′},Γ′

1{Uf, Uf ′}} ∈ Θ′}
=
{{Uf, Uf ′} : {f, f ′} ∈ S∗,

{
V Γ0{f, f ′}, V Γ1{f, f ′}} ∈ Θ′}

=
{{Uf, Uf ′} : {f, f ′} ∈ S∗,

{
Γ0{f, f ′},Γ1{f, f ′}} ∈ Θ

}
=
{{Uf, Uf ′} : {f, f ′} ∈ AΘ

}
.

(ii) By item (i), the self-adjoint relations A0 = ker Γ0 and A′
0 = ker Γ′

0 are unitarily
equivalent by means of U , which implies that ρ(A0) = ρ(A′

0), and hence the γ-fields
γ and γ′ are defined on the same subset of C. For λ ∈ ρ(A0) one computes

γ′(λ) =
{{Γ′

0{gλ, λgλ}, gλ} : {gλ, λgλ} ∈ N̂λ((S
′)∗)
}

=
{{Γ′

0{Ufλ, λUfλ}, Ufλ} : {fλ, λfλ} ∈ N̂λ(S
∗)
}

=
{{V Γ0{fλ, λfλ}, Ufλ} : {fλ, λfλ} ∈ N̂λ(S

∗)
}

= Uγ(λ)V −1.
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(iii) Since ρ(A0) = ρ(A′
0), the Weyl functions M and M ′ are defined on the same

subset of C. Fix λ ∈ ρ(A0), let ψ ∈ G′ and choose {fλ, λfλ} ∈ N̂λ(S
∗) such

that Γ′
0{Ufλ, λUfλ} = ψ. Since {Ufλ, λUfλ} ∈ N̂λ((S

′)∗), it follows from the
definition of the Weyl function and (2.5.28) that

M ′(λ)ψ = M ′(λ)Γ′
0{Ufλ, λUfλ}

= Γ′
1{Ufλ, λUfλ}

= V Γ1{fλ, λfλ}
= VM(λ)Γ0{fλ, λfλ}
= VM(λ)V −1Γ′

0{Ufλ, λUfλ}
= VM(λ)V −1ψ.

This yields M ′(λ) = VM(λ)V −1 for all λ ∈ ρ(A0). �

Let S and S′ be closed symmetric relations in H and H′ with boundary triplets
{G,Γ0,Γ1} and {G′,Γ′

0,Γ
′
1} that are unitarily equivalent by means of a unitary op-

erator U ∈ B(H,H′) and a unitary operator V ∈ B(G,G′) as in Proposition 2.5.15.
Then according to Proposition 2.5.15 one has that

A′
0 =

{{Uf, Uf ′} : {f, f ′} ∈ A0

}
;

cf. (2.5.28). In particular, this implies that the multivalued parts of A0 and A′
0 are

connected by

mulA′
0 = U(mulA0),

and since U is unitary it also follows that

domA′
0 = U(domA0).

The following corollary is an immediate consequence of Proposition 2.5.15 (ii) and
Proposition 2.3.2 (ii).

Corollary 2.5.16. Let P and P ′ be the orthogonal projections in H and H′ onto
(mulA0)

⊥ and (mulA′
0)

⊥, respectively. Then(
P ′γ′(λ)

(I − P ′)γ′(λ)

)
= U

(
Pγ(λ)

(I − P )γ(λ)

)
V −1, λ ∈ ρ(A0) = ρ(A′

0),

where (I − P )γ(λ) = (I − P )γ(λ0) and (I − P ′)γ′(λ) = (I − P ′)γ′(λ0) are parts
that do not depend on λ.

In Theorem 4.2.6 it will be shown that if S and S′ are simple (see Section 3.4)
and their Weyl functions are unitarily equivalent, then in fact the corresponding
boundary triplets are unitarily equivalent.
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2.6 Krĕın’s formula for intermediate extensions

Let S be a closed symmetric relation in a Hilbert space H and assume that
{G,Γ0,Γ1} is a boundary triplet for S∗. According to Theorem 2.1.3, the map-
ping Γ = (Γ0,Γ1)

� induces a bijective correspondence between the set of (closed)
intermediate extensions AΘ of S and the set of (closed) relations Θ in G, via

Θ �→ AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
= ker

(
Γ1 −ΘΓ0

)
;

and A0 = ker Γ0 corresponds to Θ = {0}×G. For λ ∈ ρ(A0) the relation (AΘ−λ)−1

will be regarded as a perturbation of the resolvent of the self-adjoint extension A0

of S. This fact is expressed by the formula provided in Theorem 2.6.1 and some
variants under the additional assumption λ ∈ ρ(AΘ) are discussed afterwards. In
the special case λ ∈ ρ(AΘ) one has (AΘ−λ)−1 ∈ B(H) and the resolvent difference,
and hence also the perturbation term, are bounded operators. Moreover, it is shown
later how the different types of spectral points λ ∈ σ(AΘ) which are contained in
ρ(A0) are related to the Weyl function and the parameter Θ. A more in-depth
treatment of the connection of the spectrum and the Weyl function can be found
in Chapter 3.

In the next theorem the difference of (AΘ−λ)−1 and (A0−λ)−1, λ ∈ ρ(A0),
is expressed in a perturbation term which involves the Weyl function M and the
parameter Θ. This results in a general version of Krĕın’s formula for intermediate
extensions.

Theorem 2.6.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, A0 = ker Γ0, and let γ and M be the corresponding γ-field
and Weyl function, respectively. Moreover, let Θ be a closed relation in G and let

AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
(2.6.1)

be the corresponding extension via (2.1.5). Then for all λ ∈ ρ(A0) one has the
equality

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗, (2.6.2)

where the inverses in the first and the last term are taken in the sense of relations.
Moreover, if λ ∈ ρ(A0) ∩ ρ(AΘ), then (Θ−M(λ))−1 ∈ B(G) and (2.6.2) holds in
the sense of bounded linear operators.

Proof. Assume that λ ∈ ρ(A0). In order to establish the identity (2.6.2) it must
be shown that the relations on the left-hand side and right-hand side coincide.

First the inclusion (⊂) in (2.6.2) will be shown. For this purpose, consider
{g, g′} ∈ (AΘ − λ)−1 so that, equivalently, ĝΘ = {g′, g + λg′} ∈ AΘ. Moreover,
denote

ĝ0 =
{
(A0 − λ)−1g, (I + λ(A0 − λ)−1)g

} ∈ A0.
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Then
ĝΘ − ĝ0 =

{
g′ − (A0 − λ)−1g, λ(g′ − (A0 − λ)−1g)

}
,

and hence ĝΘ − ĝ0 ∈ N̂λ(S
∗). Since γ̂(λ) maps G onto N̂λ(S

∗) there exists an
element ϕ ∈ G such that

ĝΘ = ĝ0 + γ̂(λ)ϕ. (2.6.3)

By Proposition 2.3.6 (ii) one has Γγ̂(λ)ϕ = {ϕ,M(λ)ϕ} and, moreover, Proposi-
tion 2.3.2 (iv) shows that Γĝ0 = {0, γ(λ)∗g}. Since ĝΘ ∈ AΘ, an application of Γ
to (2.6.3) yields

{0, γ(λ)∗g}+ {ϕ,M(λ)ϕ} = Γĝ0 + Γγ̂(λ)ϕ = ΓĝΘ ∈ Θ,

see (2.6.1). Thus, {ϕ, γ(λ)∗g + M(λ)ϕ} ∈ Θ and {ϕ, γ(λ)∗g} ∈ Θ − M(λ) or,
equivalently, {g, ϕ} ∈ (Θ−M(λ))−1γ(λ)∗, which implies that

{g, γ(λ)ϕ} ∈ γ(λ)(Θ−M(λ))−1γ(λ)∗. (2.6.4)

Now consider the first component g′ = (A0−λ)−1g+γ(λ)ϕ in the identity (2.6.3).
Then one has

{g, g′} = {g, (A0 − λ)−1g + γ(λ)ϕ
}
, (2.6.5)

and due to {g, (A0 − λ)−1g} ∈ (A0 − λ)−1 and (2.6.4) it follows from (2.6.5) that

{g, g′} ∈ (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗,

and hence the inclusion (⊂) in (2.6.2) holds.

Next the inclusion (⊃) in (2.6.2) will be shown. For this purpose, let

{g, g′} ∈ (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗.

By the definition of the sum of relations, this means that

g′ = (A0 − λ)−1g + h, where {g, h} ∈ γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗.

Recall from Proposition 2.3.2 (i) that γ(λ) ∈ B(G,H), since λ ∈ ρ(A0). Hence,
h = γ(λ)ϕ, where {γ(λ)∗g, ϕ} ∈ (Θ − M(λ))−1. Consequently, it is clear that
{ϕ, γ(λ)∗g +M(λ)ϕ} ∈ Θ. Next observe that

{g′, g + λg′} = {(A0 − λ)−1g, (I + λ(A0 − λ)−1)g
}
+
{
γ(λ)ϕ, λγ(λ)ϕ

}
,

which implies that

Γ{g′, g + λg′} = {0, γ(λ)∗g}+ {ϕ,M(λ)ϕ} ∈ Θ

or {g′, g + λg′} ∈ AΘ. Thus, {g, g′} ∈ (AΘ − λ)−1 and therefore

(A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗ ⊂ (AΘ − λ)−1.

Hence, the inclusion (⊃) in (2.6.2) has been shown.
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To prove the last assertion in the theorem, assume that λ ∈ ρ(A0)∩ρ(AΘ). It
is first shown that ker (Θ−M(λ)) = {0}. To see this, let ϕ ∈ ker (Θ−M(λ)). Then

clearly {ϕ,M(λ)ϕ} ∈ Θ. Define f̂λ = γ̂(λ)ϕ, so that f̂λ = {fλ, λfλ} ∈ N̂λ(S
∗) and

Γf̂λ = {Γ0f̂λ,Γ1f̂λ} = {Γ0f̂λ,M(λ)Γ0f̂λ} = {ϕ,M(λ)ϕ} ∈ Θ.

Thus, f̂λ ∈ AΘ and fλ = γ(λ)ϕ ∈ ker (AΘ − λ). Since λ ∈ ρ(AΘ), one concludes
that γ(λ)ϕ = 0 and ϕ = 0. Hence, ker (Θ−M(λ)) = {0}.

Next it is shown that (Θ −M(λ))−1 ∈ B(G). Since λ ∈ ρ(A0), the identity
(2.6.2) holds and as it is assumed that λ ∈ ρ(AΘ), one has dom (AΘ − λ)−1 = H.
Therefore,

dom
[(
Θ−M(λ)

)−1
γ(λ̄)∗

]
= dom

[
γ(λ)

(
Θ−M(λ)

)−1
γ(λ̄)∗

]
= H, (2.6.6)

where the first identity is clear since γ(λ) ∈ B(G,H). As ran γ(λ)∗ = G, one
concludes from (2.6.6) that dom (Θ −M(λ))−1 = G. By assumption, Θ is closed
and then M(λ) ∈ B(G) implies that Θ−M(λ) is closed. Then (Θ−M(λ))−1 is a
closed operator and by the closed graph theorem (Θ −M(λ))−1 ∈ B(G). �

Assume that λ ∈ ρ(A0). In Theorem 2.6.1 it is shown that then λ ∈ ρ(AΘ)
leads to (Θ − M(λ))−1 ∈ B(G). In fact, there is a one-to-one correspondence
between the part of the spectrum of AΘ contained in ρ(A0) and the spectrum
of Θ − M(λ) contained in ρ(A0). The following theorem and its corollary are
direct consequences of the Krĕın formula (2.6.2). A complete description of the
spectrum of self-adjoint extensions AΘ in terms of the singularities of the function
λ �→ (Θ−M(λ))−1 is given in Section 3.8.

Theorem 2.6.2. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, A0 = ker Γ0, and let γ and M be the corresponding γ-field
and Weyl function, respectively. Moreover, let Θ be a closed relation in G and let

AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
be the corresponding extension via (2.1.5). Then the following statements hold for
all λ ∈ ρ(A0):

(i) λ ∈ σp(AΘ) ⇔ 0 ∈ σp(Θ−M(λ)), and in this case

ker (AΘ − λ) = γ(λ) ker (Θ−M(λ)); (2.6.7)

(ii) λ ∈ σr(AΘ) ⇔ 0 ∈ σr(Θ−M(λ));

(iii) λ ∈ σc(AΘ) ⇔ 0 ∈ σc(Θ−M(λ));

(iv) λ ∈ ρ(AΘ) ⇔ 0 ∈ ρ(Θ−M(λ)).
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Proof. Assume that λ ∈ ρ(A0) and consider the right-hand side of (2.6.2) as the
sum of the operator (A0 − λ)−1 ∈ B(H) and the relation

γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗

in H. Hence, the domain of the right-hand side of (2.6.2) is given by

dom
[
γ(λ)

(
Θ−M(λ)

)−1
γ(λ)∗

]
= dom

[(
Θ−M(λ)

)−1
γ(λ)∗

]
,

where it was used that γ(λ) ∈ B(G,H). Thus, it follows from (2.6.2) that

dom (AΘ − λ)−1 = dom
(
Θ−M(λ)

)−1
γ(λ)∗. (2.6.8)

Due to the definition of the sum of relations and mul (A0 − λ)−1 = {0} the multi-
valued part of the right-hand side of (2.6.2) is given by

mul
[
γ(λ)

(
Θ−M(λ)

)−1
γ(λ)∗

]
= mul

[
γ(λ)

(
Θ−M(λ)

)−1]
= γ(λ)mul

(
Θ−M(λ)

)−1
.

Thus, it follows from (2.6.2) that

mul (AΘ − λ)−1 = γ(λ)mul
(
Θ−M(λ)

)−1
. (2.6.9)

The proof of the theorem is based on the identities (2.6.8) and (2.6.9).

For the interpretation of (2.6.8) recall that γ(λ), λ ∈ ρ(A0), maps G isomor-
phically onto Nλ(S

∗); see Proposition 2.3.2 (i). This implies that the restriction

γ(λ)∗ : Nλ(S
∗)→ G is an isomorphism.

In particular, γ(λ)∗ is a bijection between closed or dense subspaces in Nλ(S
∗)

and closed or dense subspaces in G, respectively. Now assume that V is a closed
relation in G. Since ker γ(λ)∗ = (Nλ(S

∗))⊥, it follows that

domV γ(λ)∗ is closed in H ⇔ domV is closed in G, (2.6.10)

and
domV γ(λ)∗ is dense in H ⇔ domV is dense in G. (2.6.11)

(i) The identity (2.6.7) follows from (2.6.9). It is clear that (2.6.7) implies the
equivalence λ ∈ σp(AΘ) ⇔ 0 ∈ σp(Θ−M(λ)).

(iii) It follows from (2.6.8) that ran (AΘ − λ) is a dense nonclosed subspace of
H if and only if dom (Θ −M(λ))−1γ(λ)∗ is a dense nonclosed subspace of H. By
(2.6.10) and (2.6.11) with V = (Θ−M(λ))−1, this is equivalent to ran (Θ−M(λ))
being a dense nonclosed subspace of G. In addition, it follows from (i) that AΘ−λ
is injective if and only if Θ −M(λ) is injective. This proves the assertion.
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(iv) The implication (⇒) holds by Theorem 2.6.1. The implication (⇐) is easy to
see. Indeed, assume that 0 ∈ ρ(Θ−M(λ)). Then (Θ−M(λ))−1 ∈ B(G) and since
γ(λ) ∈ B(G,H) and γ(λ)∗ ∈ B(H,G) for λ ∈ ρ(A0), one concludes from (2.6.2)
that (AΘ − λ)−1 ∈ B(H), i.e., λ ∈ ρ(AΘ).

(ii) This assertion is a consequence of (i), (iii), and (iv). �

The Krĕın formula (2.6.2) was formulated above in terms of the closed rela-
tion Θ in the Hilbert space G. Now the form of the Krĕın formula will be given
when a tight parametric representation of Θ is chosen; cf. Section 1.10.

Corollary 2.6.3. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, A0 = ker Γ0, and let γ and M be the corresponding γ-
field and Weyl function, respectively. Let the closed relation Θ have the parametric
representation

Θ =
{{Ae,Be} : e ∈ E

}
, (2.6.12)

where E is a Hilbert space and A,B ∈ B(E,G), and assume that this representation
of Θ is tight, i.e., kerA ∩ kerB = {0} holds. Then for all λ ∈ ρ(A0) one has

λ ∈ ρ(AΘ) ⇔ (
B−M(λ)A

)−1 ∈ B(G,E),

and in this case

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)A
(
B−M(λ)A

)−1
γ(λ)∗. (2.6.13)

Proof. According to Theorem 2.6.2, for λ ∈ ρ(A0) one has

λ ∈ ρ(AΘ) ⇔ 0 ∈ ρ(Θ−M(λ)),

that is, λ ∈ ρ(AΘ) if and only if (Θ −M(λ))−1 ∈ B(G). Due to the tightness of
the representation (2.6.12), Lemma 1.11.6 shows that(

Θ−M(λ)
)−1 ∈ B(G) ⇔ (

B−M(λ)A
)−1 ∈ B(G,E),

as for all λ ∈ ρ(A0) one has that M(λ) ∈ B(G). In this case it follows that
(Θ −M(λ))−1 = A(B −M(λ)A)−1. Furthermore, the resolvent formula (2.6.13)
follows from (2.6.2). �

Let again Θ be a closed relation in G and assume, in the same way as at the
end of Section 2.2, that Θ admits an orthogonal decomposition

Θ = Θop ⊕̂Θmul, G = Gop ⊕ Gmul, (2.6.14)

into a (not necessarily densely defined) operator part Θop acting in the Hilbert
space Gop = domΘ∗ = (mulΘ)⊥ and a multivalued part Θmul = {0} × mulΘ
in the Hilbert space Gmul = mulΘ; cf. Section 1.3. Recall that, in particular,
closed symmetric, self-adjoint, (maximal) dissipative, and (maximal) accumulative
relations Θ in G admit such a decomposition.
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Corollary 2.6.4. Assume that the closed relation Θ in Theorem 2.6.1 has the or-
thogonal decomposition (2.6.14), let Pop be the orthogonal projection onto Gop, and
denote the canonical embedding of Gop into G by ιop. Let

AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
be the intermediate extension of S via (2.2.12). Then for all λ ∈ ρ(A0) ∩ ρ(AΘ)
one has (Θop − PopM(λ)ιop)

−1 ∈ B(Gop) and

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)ιop
(
Θop − PopM(λ)ιop

)−1
Popγ(λ)

∗.

Proof. In view of (2.6.14), one sees that for λ ∈ ρ(A0) ∩ ρ(AΘ)

Θ−M(λ) =

{{(
ϕ
0

)
,

(
Θopϕ− PopM(λ)ιopϕ
ψ − (I − Pop)M(λ)ιopϕ

)}
:
ϕ ∈ domΘop,

ψ ∈ Gmul

}
,

and hence(
Θ−M(λ)

)−1
=

{{(
Θopϕ− PopM(λ)ιopϕ

χ

)
,

(
ϕ
0

)}
:
ϕ ∈ domΘop,

χ ∈ Gmul

}
.

Since (Θ−M(λ))−1 ∈ B(G), one has

ker
(
Θop − PopM(λ)ιop

)
= {0} and ran

(
Θop − PopM(λ)ιop

)
= Gop.

This shows that Θop − PopM(λ)ιop is a bijective closed operator in Gop. Hence,
(Θop − PopM(λ)ιop)

−1 ∈ B(Gop) and so

(
Θ−M(λ)

)−1
=

(
(Θop − PopM(λ)ιop)

−1 0
0 0

)
with respect to the decomposition (2.6.14). Now the identity(

Θ−M(λ)
)−1

= ιop
(
Θop − PopM(λ)ιop

)−1
Pop

is an immediate consequence. This together with Theorem 2.6.1 implies the state-
ment. �

If the closed relation Θ in G admits a decomposition of the form

Θ = Θ′ ⊕̂ ({0} × G′′) (2.6.15)

as in Corollary 2.5.13, where Θ′ is a closed relation in the Hilbert space G′ and
G = G′⊕G′′, then Krĕın’s formula can also be interpreted in the context of the inter-
mediate symmetric extension S′ of S in Proposition 2.5.12 and the corresponding
restriction of the boundary triplet {G,Γ0,Γ1}. More precisely, if Θ is of the form
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(2.6.15) and S′ and the boundary triplet {G′,Γ′
0,Γ

′
1} are as in Proposition 2.5.12

with corresponding γ-field γ′ and Weyl function M ′, and

AΘ′ =
{
f̂ ∈ (S′)∗ : Γ′f̂ ∈ Θ′} = ker (Γ′

1 −Θ′Γ′
0),

then AΘ′ = ker (Γ1 − ΘΓ0) = AΘ and A′
0 = ker Γ′

0 = ker Γ0 = A0 hold by
Corollary 2.5.13 and Proposition 2.5.12, respectively. Moreover, by Theorem 2.6.1
one has (Θ′ −M ′(λ))−1 ∈ B(G′) for all λ ∈ ρ(AΘ′) ∩ ρ(A′

0) and

(AΘ′ − λ)−1 = (A′
0 − λ)−1 + γ′(λ)

(
Θ′ −M ′(λ)

)−1
γ′(λ)∗.

In the special case where Θ′ = Θop and {0} × G′′ = Θmul as in (2.6.14) one has

M ′(λ) = PopM(λ)ιop and γ′(λ) = γ(λ)ιop,

so that Krĕın’s formula in Corollary 2.6.4 can be rewritten in the form

(AΘop − λ)−1 = (A′
0 − λ)−1 + γ′(λ)

(
Θop −M ′(λ)

)−1
γ′(λ)∗.

The behavior of Krĕın’s formula under transformations of boundary triplets
will be discussed next. To this end suppose that S is a closed symmetric relation
in H, let {G,Γ0,Γ1} be a boundary triplet for S∗, A0 = ker Γ0, and let γ and M
be the corresponding γ-field and Weyl function, respectively. Consider a closed
extension

AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
= ker

(
Γ1 −ΘΓ0

)
corresponding to a closed relation Θ in G. Then for all λ ∈ ρ(AΘ)∩ ρ(A0) one has

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗

according to Theorem 2.6.1. Let G′ be a further Hilbert space and assume that
W ∈ B(G × G,G′ × G′) satisfies the identities in (2.5.1). Let {G′,Γ′

0,Γ
′
1} be the

corresponding transformed boundary triplet in (2.5.2) with γ-field γ′ and Weyl
function M ′ specified in Proposition 2.5.3. Let A′

0 = ker Γ′
0 and define the closed

relation Θ′ in G′ by Θ′ = W[Θ]; cf. (2.5.4). By Proposition 2.5.2, one has

AΘ = ker
(
Γ1 −ΘΓ0

)
= ker

(
Γ′
1 −Θ′Γ′

0

)
= A′

Θ′ ,

and hence for all λ ∈ ρ(AΘ) ∩ ρ(A′
0) Krĕın’s formula in Theorem 2.6.1 has the

form

(AΘ − λ)−1 = (A′
0 − λ)−1 + γ′(λ)

(
Θ′ −M ′(λ)

)−1
γ′(λ)∗ = (A′

Θ′ − λ)−1.

In this sense Krĕın’s formula is invariant under transformations of boundary
triplets.

Next, Theorem 2.6.2 will be complemented for the case where the extensions
are self-adjoint. Recall from Section 1.5 that for a self-adjoint relation H a spectral
point λ ∈ R belongs to the discrete spectrum σd(H) if λ is an eigenvalue with finite
multiplicity which is an isolated point in σ(H). It will be used that λ ∈ σd(H) if
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and only if

dimker (H − λ) <∞ and ran (H − λ) = ran (H − λ). (2.6.16)

The complement of the discrete spectrum of H in σ(H) is the essential spectrum,
denoted by σess(H).

Theorem 2.6.5. Let S be a closed symmetric relation, let {G,Γ0,Γ1} be a boundary
triplet for S∗, A0 = ker Γ0, and let M be the corresponding Weyl function. Let Θ
be a self-adjoint relation in G and let

AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
be the corresponding self-adjoint extension via (2.1.5). Then the following state-
ments hold for all λ ∈ ρ(A0):

(i) λ ∈ σd(AΘ) ⇔ 0 ∈ σd(Θ−M(λ));

(ii) λ ∈ σess(AΘ) ⇔ 0 ∈ σess(Θ−M(λ)).

Proof. Here one relies on the observations made in the proof of Theorem 2.6.2.
Assume that λ ∈ ρ(A0).

(i) It follows from Theorem 2.6.2 (i) that

0 < dimker (AΘ − λ) <∞ ⇔ 0 < dimker (Θ−M(λ)) <∞,

and it follows from (2.6.8) and (2.6.10) with V = (Θ−M(λ))−1 that

ran (AΘ − λ) closed ⇔ ran (Θ−M(λ)) closed.

Now assertion (i) is a consequence of the above equivalences and the characteri-
zation (2.6.16) of discrete eigenvalues of self-adjoint relations.

(ii) Note that λ ∈ σ(AΘ) if and only if 0 ∈ σ(Θ − M(λ)) by Theorem 2.6.2.
Hence, this assertion is a consequence of item (i), σess(AΘ) = σ(AΘ) \ σd(AΘ),
and σess(Θ−M(λ)) = σ(Θ−M(λ)) \ σd(Θ−M(λ)). �

2.7 Krĕın’s formula for exit space extensions

The Krĕın formula in Theorem 2.6.1 holds for intermediate extensions of a sym-
metric relation S in a Hilbert space H. In particular, these intermediate extensions
contain maximal dissipative, maximal accumulative, and self-adjoint extensions.
Now consider larger Hilbert spaces K which contain H as a closed subspace and
self-adjoint relations Ã in K which extend S as studied by Krĕın and Năımark. It
will be shown that such self-adjoint extensions induce families of relations in H
which also extend S. For these families of relations there is a version of the Krĕın
formula, which will also be called Krĕın–Năımark formula in this text.
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The following notions are useful. Let H and H′ be Hilbert spaces and let Ã be
a self-adjoint relation in the Hilbert space H⊕H′. The Štraus family T (λ), λ ∈ C,
in H corresponding to the self-adjoint relation Ã in H⊕ H′ is defined by

T (λ) =

{
{f, f ′} ∈ H× H :

{(
f
h

)
,

(
f ′

h′

)}
∈ Ã, h′ = λh

}
. (2.7.1)

Here a vector notation is used for the elements(
f
h

)
∈ dom Ã ⊂ H⊕ H′ and

(
f ′

h′

)
∈ ran Ã ⊂ H⊕ H′,

where f, f ′ ∈ H and h, h′ ∈ H′. This notation will be frequently used in the rest
of this section. Closely associated with the Štraus family T (λ) is the compressed

resolvent R(λ) ∈ B(H) of the self-adjoint relation Ã in H⊕ H′, defined by

R(λ) = PH(Ã− λ)−1ιH, λ ∈ ρ(Ã); (2.7.2)

here PH : H⊕ H′ → H denotes the orthogonal projection from H⊕ H′ onto H and
ιH : H→ H⊕ H′ is the canonical embedding of H into H⊕ H′.

Lemma 2.7.1. Let Ã be a self-adjoint relation in H⊕H′. Then the following state-
ments holds for the Štraus family T (λ) in (2.7.1):

(i) T (λ) is maximal accumulative (maximal dissipative) for λ ∈ C+ (λ ∈ C−);

(ii) T (λ) = T (λ)∗, λ ∈ C \ R;
(iii) λ �→ (T (λ)− λ)−1 is holomorphic on C \ R with values in B(H).

Moreover, the following statements hold for the compressed resolvent R(λ) ∈ B(H)
in (2.7.2):

(iv) λ �→ R(λ) is holomorphic on C \ R with values in B(H);

(v) R(λ) = R(λ)∗, λ ∈ C \ R;
(vi) for all λ ∈ C \ R,

ImR(λ)

Imλ
−R(λ)R(λ)∗ ≥ 0. (2.7.3)

Furthermore, the Štraus family T (λ) in (2.7.1) and the compressed resolvent in
(2.7.2) are related via

R(λ) = (T (λ)− λ)−1, λ ∈ C \ R. (2.7.4)

Proof. It is clear from (2.7.1) that for λ ∈ C the Štraus family T (λ) satisfies

(T (λ)− λ)−1 =

{
{f ′ − λf, f} ∈ H× H :

{(
f
h

)
,

(
f ′

h′

)}
∈ Ã, h′ = λh

}
.
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On the other hand, it is clear that

(Ã− λ)−1 =

{{(
f ′ − λf
h′ − λh

)
,

(
f
h

)}
:

{(
f
h

)
,

(
f ′

h′

)}
∈ Ã

}
,

so that the compressed resolvent of Ã in (2.7.2) is given for λ ∈ ρ(Ã) by

R(λ) = PH(Ã− λ)−1ιH

=

{
{f ′ − λf, f} ∈ H× H :

{(
f
h

)
,

(
f ′

h′

)}
∈ Ã, h′ = λh

}
.

Comparison of the above identities shows that (2.7.4) holds.

(iv) & (v) follow immediately from (2.7.2).

(i) Let {f, f ′} ∈ T (λ). Then there exists a pair {h, h′} such that{(
f
h

)
,

(
f ′

h′

)}
∈ Ã and h′ = λh.

Since Ã is self-adjoint, it follows that

0 = Im
(
(f ′, f) + (h′, h)

)
= Im (f ′, f) + (Imλ)(h, h)

and this implies that T (λ) is accumulative (dissipative) for λ ∈ C+ (λ ∈ C−). The
maximality follows from (2.7.4) since ran (T (λ)− λ) = H; cf. Theorem 1.6.4.

(ii) It follows from (v) and (2.7.4) that

(T (λ)− λ)−1 = (T (λ)− λ)−∗,

and this implies T (λ) = T (λ)∗.

(iii) This is clear from (iv) and (2.7.4).

(vi) Let ϕ ∈ H and ϕ′ = R(λ)ϕ. Then (2.7.4) implies {ϕ′, ϕ + λϕ′} ∈ T (λ). For
λ ∈ C+ the relation T (λ) is maximal accumulative and hence (v) implies

0 ≥ Im (ϕ+ λϕ′, ϕ′) = Im (ϕ,R(λ)ϕ) + (Imλ)‖R(λ)ϕ‖2
= Im (R(λ)ϕ,ϕ)− (Imλ)‖R(λ)∗ϕ‖2.

Thus, it follows for λ ∈ C+ and ϕ ∈ H that

Im (R(λ)ϕ,ϕ)

Imλ
− (R(λ)R(λ)∗ϕ,ϕ) ≥ 0,

which implies (2.7.3) on C−. A similar reasoning leads to (2.7.3) on C+. �

In Chapter 4 it will be shown how the properties of the Štraus family and the
compressed resolvent in Lemma 2.7.1 determine the space H′ and the self-adjoint
relation Ã in H⊕ H′.
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In the present context the Štraus family and the compressed resolvent appear
when one considers self-adjoint extensions of a closed symmetric relation S in a
Hilbert spaces H. Let the Hilbert space H ⊕ H′ be an extension of H, where the
Hilbert space H′ is an exit space. Assume that the self-adjoint relation Ã in H⊕H′

is an extension of the symmetric relation S in H, i.e., S ⊂ Ã. The Štraus family
and the compressed resolvent of Ã consist of relations in the closed subspace H
that extend S in the following sense.

Proposition 2.7.2. Let S be a closed symmetric relation in H and let Ã be a self-
adjoint extension of S in H⊕H′. Then the Štraus family T (λ) in (2.7.1) satisfies

S ⊂ T (λ) ⊂ S∗, λ ∈ C \ R, (2.7.5)

and the compressed resolvent R(λ) in (2.7.2) satisfies

R(λ)� ran (S−λ) = (S − λ)−1, λ ∈ C \ R. (2.7.6)

Proof. In order to prove (2.7.5), let {f, f ′} ∈ S. Then one has{(
f
0

)
,

(
f ′

0

)}
∈ Ã,

and hence {f, f ′} ∈ T (λ) for all λ ∈ C \ R. This shows S ⊂ T (λ) for all λ ∈ C \ R
and making use of Lemma 2.7.1 (ii) one concludes that T (λ) = T (λ)∗ ⊂ S∗. The
identity (2.7.6) follows from the inclusion S ⊂ T (λ) and (2.7.4). �

Assume in the context of Proposition 2.7.2, that {G,Γ0,Γ1} is a boundary
triplet for S∗. Then each relation T (λ), λ ∈ C \ R, in (2.7.5), being an intermediate
extension of S, can be described by the relation Γ(T (λ)) in the parameter space
G. It follows from Lemma 2.7.1 and Proposition 1.12.6 that the family −T (λ),
λ ∈ C \ R, is a Nevanlinna family in H in the sense of Definition 1.12.1. Note
that for the holomorphy condition in Definition 1.12.1 it is necessary to apply
Proposition 1.12.6. A similar reasoning will also be used in the proof of the next
theorem, which relates a Nevanlinna family in G to the Štraus family T (λ).

Theorem 2.7.3. Let S be a closed symmetric relation in H and let {G,Γ0,Γ1} be a

boundary triplet for S∗. Let Ã be a self-adjoint extension of S in H ⊕ H′ and let
T (λ), λ ∈ C \ R, be the corresponding Štraus family in (2.7.1). Then

T (λ) =
{
f̂ ∈ S∗ : Γf̂ ∈ −τ(λ)} = ker

(
Γ1 + τ(λ)Γ0

)
, (2.7.7)

where τ(λ), λ ∈ C \ R, is a Nevanlinna family in G.

Proof. It follows from Lemma 2.7.1 and Proposition 2.7.2 that T (λ) is a closed
extension of S for each λ ∈ C \ R. According to Theorem 2.1.3, the extension T (λ)
of S can be written in the form (2.7.7), where τ(λ) = −Γ(T (λ)).

It will be shown that τ(λ), λ ∈ C \ R, is a Nevanlinna family in G. Since T (λ)
is maximal accumulative (maximal dissipative) for λ ∈ C+ (λ ∈ C−) it follows
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from Corollary 2.1.4 (ii) that τ(λ) is maximal dissipative (maximal accumulative)
for λ ∈ C+ (λ ∈ C−). The property T (λ) = T (λ)∗ and Theorem 2.1.3 imply
τ(λ) = τ(λ)∗. Denote the γ-field and the Weyl function corresponding to the
boundary triplet {G,Γ0,Γ1} by γ and M . Then for λ ∈ C± and μ ∈ C± it follows
from Lemma 1.11.5 that (−τ(λ)−M(μ))−1 ∈ B(G) and

(T (λ)− μ)−1 = (A0 − μ)−1 − γ(μ)
(
τ(λ) +M(μ)

)−1
γ(μ)∗ (2.7.8)

holds by Theorem 2.6.1. According to Lemma 2.7.1, the mapping λ �→ (T (λ)−λ)−1

is holomorphic and hence by Proposition 1.12.6 it follows that also the mapping
λ �→ (T (λ)− μ)−1 is holomorphic. Now (2.7.8) shows that λ �→ (τ(λ) +M(μ))−1

is holomorphic and another application of Proposition 1.12.6 finally gives that
λ �→ (τ(λ)+μ)−1 is also holomorphic. Therefore, τ(λ), λ ∈ C \ R, is a Nevanlinna
family. �

The Krĕın–Năımark formula in the following theorem is now an immediate
consequence.

Theorem 2.7.4. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, A0 = ker Γ0, and let γ and M be the corresponding γ-
field and Weyl function, respectively. Let Ã be a self-adjoint extension of S in
H⊕H′. Then with the Nevanlinna family τ in G from Theorem 2.7.3 the compressed
resolvent R(λ) in (2.7.2) of Ã is given by the Krĕın–Năımark formula

R(λ) = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)∗, λ ∈ C \ R. (2.7.9)

Proof. As in the proof of Theorem 2.7.3, it follows from Theorem 2.6.1 that for
λ ∈ C \ R one has

(T (λ)− λ)−1 = (A0 − λ)−1 − γ(λ)
(
τ(λ) +M(λ)

)−1
γ(λ)∗.

Hence, the formula (2.7.9) follows from (2.7.4). �

In Chapter 4 the converse of Theorem 2.7.4 will be proved: for every Nevan-
linna family in G there exists a self-adjoint exit space extension Ã of S such that
(2.7.9) holds for the compressed resolvent of Ã.

Just as in the case of Corollary 2.6.3, there is now a formulation of the
Krĕın formula for exit space extensions in terms of a parametric representation
of the Nevanlinna family τ . Assume that the Nevanlinna pair {A,B} is a tight
representation of the Nevanlinna family τ ; cf. Section 1.12. Then the next corollary
can be shown in the same way as Corollary 2.6.3 by applying Proposition 1.12.6.

Corollary 2.7.5. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, A0 = ker Γ0, and let γ and M be the corresponding γ-field
and Weyl function, respectively. Let the Nevanlinna family τ in Theorem 2.7.4
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have the tight representation τ = {A,B} with the Nevanlinna pair {A,B}. Then
the compressed resolvent R(λ) of Ã has the form

R(λ) = (A0 − λ)−1 − γ(λ)A(λ)
(
B(λ) +M(λ)A(λ)

)−1
γ(λ)∗, λ ∈ C \ R.

The Štraus family in Theorem 2.7.3 can also be described in terms of a
representing Nevanlinna pair {A,B}.
Corollary 2.7.6. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let T (λ), λ ∈ C \ R, be the Štraus family in Theo-
rem 2.7.3. Let the corresponding Nevanlinna family τ have the tight representation
τ = {A,B} with the Nevanlinna pair {A,B}. Then

T (λ) =
{
f̂ ∈ S∗ : B(λ)∗Γ0f̂ = −A(λ)∗Γ1f̂

}
. (2.7.10)

Proof. By assumption τ(λ), λ ∈ C \ R, is given as

τ(λ) =
{{A(λ)ϕ,B(λ)ϕ} : ϕ ∈ G

}
,

with a Nevanlinna pair {A,B} and this representation is tight. The symmetry
property τ(λ)∗ = τ(λ) implies that

τ(λ)∗ =
{{A(λ)ϕ,B(λ)ϕ} : ϕ ∈ G

}
,

so that τ(λ) can also be written as

τ(λ) =
{{ϕ,ϕ′} ∈ G2 : B(λ)∗ϕ = A(λ)∗ϕ′},

and hence
−τ(λ) = {{ϕ,ϕ′} ∈ G2 : B(λ)∗ϕ = −A(λ)∗ϕ′};

cf. (2.2.3) and (2.2.4). Thus, (2.7.10) follows from (2.7.7). �

In the following a particular self-adjoint exit space extension of S will be
studied. Here the exit space is the parameter space G.

Proposition 2.7.7. Let S be a closed symmetric relation in H and let {G,Γ0,Γ1}
be a boundary triplet for S∗. Then

Ã =

{{(
f

Γ0f̂

)
,

(
f ′

−Γ1f̂

)}
: f̂ = {f, f ′} ∈ S∗

}
(2.7.11)

is a self-adjoint extension of S in H ⊕ G. The corresponding Štraus family T (λ),
λ ∈ C \ R, in H has the form

T (λ) =
{
f̂ ∈ S∗ : −Γ1f̂ = λΓ0f̂

}
= ker

(
Γ1 + λΓ0

)
(2.7.12)

and the compressed resolvent R(λ) onto H is given by

R(λ) = (A0 − λ)−1 − γ(λ)
(
M(λ) + λ

)−1
γ(λ)∗.
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Proof. Observe that S ⊂ Ã. Indeed, for f̂ = {f, f ′} ∈ S one has Γ0f̂ = Γ1f̂ = 0
by Proposition 2.1.2 (ii) and hence{(

f
0

)
,

(
f ′

0

)}
∈ Ã.

It follows from the abstract Green identity (2.1.1) and the definition of Ã in (2.7.11)

that the relation Ã is symmetric, that is, Ã ⊂ (Ã)∗. Now let the element{(
g
α

)
,

(
g′

α′

)}
, g, g′ ∈ H, α, α′ ∈ G, (2.7.13)

belong to (Ã)∗. Then for all f̂ = {f, f ′} ∈ S∗ one has((
f ′

−Γ1f̂

)
,

(
g
α

))
=

((
f

Γ0f̂

)
,

(
g′

α′

))
or, equivalently,

(f ′, g)− (f, g′) = (Γ1f̂ , α) + (Γ0f̂ , α
′). (2.7.14)

In particular, since ker Γ = S, it follows from (2.7.14) that if f̂ ∈ S, then ĝ ∈ S∗.
Therefore, the abstract Green identity (2.1.1) together with (2.7.14) imply

(Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ) = (Γ1f̂ , α) + (Γ0f̂ , α
′)

for all f̂ ∈ S∗. By definition, the mapping Γ : S∗ → G × G is surjective, and
consequently

α = Γ0ĝ and α′ = −Γ1ĝ.

Thus, the element in (2.7.13) belongs to Ã. Hence, Ã is a self-adjoint extension of
S in H⊕ G.

The Štraus family T (λ), λ ∈ C, in H corresponding to the self-adjoint relation

Ã in (2.7.11) has the form

T (λ) =

{
f̂ = {f, f ′} ∈ S∗ :

{(
f

Γ0f̂

)
,

(
f ′

−Γ1f̂

)}
∈ Ã, −Γ1f̂ = λΓ0f̂

}
,

and hence is given by (2.7.12). The statement concerning the compressed resolvent

of Ã onto H follows from the Krĕın–Năımark formula in Theorem 2.7.4. �

Finally, the Štraus family and the compressed resolvent of the self-adjoint
relation Ã in H⊕H′ can be regarded from a slightly different point of view. Thus
far, the Štraus family and the compressed resolvent were given as notions in the
Hilbert space H; more structure was added by considering a closed symmetric
relation S in H and assuming that Ã is a self-adjoint extension of S in H ⊕ H′.
Now the role of the original space and the exit space will be interchanged and
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a self-adjoint relation Ã in H ⊕ H′ will be viewed as a self-adjoint extension of
the trivial symmetric relation S′ in H′. The Štraus family T ′(λ), λ ∈ C, in H′

corresponding to Ã in H⊕ H′ is defined by

T ′(λ) =
{
{h, h′} ∈ H′ × H′ :

{(
f
h

)
,

(
f ′

h′

)}
∈ Ã, f ′ = λf

}
and the corresponding compressed resolvent R′(λ) ∈ B(H′) is given by

PH′(Ã− λ)−1ιH′ = (T ′(λ)− λ)−1, λ ∈ ρ(Ã); (2.7.15)

here PH′ : H ⊕ H′ → H′ denotes the orthogonal projection from H ⊕ H′ onto H′

and ιH′ : H′ → H⊕ H′ is the canonical embedding of H′ into H⊕ H′. The adjoint
of the trivial symmetric relation S′ = {0, 0} in H′ is (S′)∗ = H′ × H′ and

Γ′
0ĥ = h and Γ′

1ĥ = h′, ĥ = {h, h′} ∈ (S′)∗,

defines a boundary triplet {H′,Γ′
0,Γ

′
1} for (S′)∗. Then A′

0 = {0} × H′, so that
(A′

0 − λ)−1 = 0, λ ∈ C, and the γ-field and the Weyl function are given by

γ′(λ) = I and M ′(λ) = λI;

cf. Example 2.4.2. In this situation the Štraus family T ′(λ), λ ∈ C \ R, in H′

induces a Nevanlinna family τ(λ), λ ∈ C \ R, in the same space H′ as in (2.7.7)
via

T ′(λ) = ker (Γ′
1 + τ(λ)Γ′

0),

so that τ(λ) = −T ′(λ). Then the compressed resolvent (2.7.15) takes the form

PH′(Ã− λ)−1ιH′ = −(τ(λ) + λ)−1, (2.7.16)

which can be viewed as the Krĕın–Năımark formula in H′ for the extension Ã of S′.
For the self-adjoint relation Ã in Proposition 2.7.7 it turns out in this new

context that the corresponding Štraus family in G is given by the function −M .

Proposition 2.7.8. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, and let M be the corresponding Weyl function. Consider
the self-adjoint relation

Ã =

{{(
f

Γ0f̂

)
,

(
f ′

−Γ1f̂

)}
: f̂ = {f, f ′} ∈ S∗

}
in H⊕ G. Then the corresponding Štraus family in G is given by{{

Γ0f̂ ,−Γ1f̂
} ∈ G× G :

{(
f

Γ0f̂

)
,

(
f ′

−Γ1f̂

)}
∈ Ã, f̂ ∈ N̂λ(S

∗)
}

(2.7.17)
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and coincides with −M(λ), λ ∈ C \ R. Furthermore, the compressed resolvent of

Ã to G is given by

PG(Ã− λ)−1ιG = −(M(λ) + λ)−1, λ ∈ C \ R; (2.7.18)

here PG : H ⊕ G → G denotes the orthogonal projection from H ⊕ G onto G and
ιG : G→ H⊕ G is the canonical embedding of G into H⊕ G.

Proof. It follows from the definition of the Štraus family in (2.7.1) that the Štraus

family corresponding to Ã in the Hilbert space G has the form (2.7.17). Since

{Γ0f̂ ,−Γ1f̂} belongs to (2.7.17) if and only if f̂ ∈ N̂λ(S
∗), it is also clear that

for all λ ∈ C \ R the Štraus family coincides with the values −M(λ) of the Weyl
function corresponding to the boundary triplet {G,Γ0,Γ1}. The formula (2.7.18)
follows from (2.7.16) in this special case. �

2.8 Perturbation problems

Let A be a self-adjoint relation in the Hilbert space H, let V ∈ B(H) be a bounded
self-adjoint operator in H, and consider the self-adjoint relation

B = A+ V. (2.8.1)

For λ ∈ ρ(A) ∩ ρ(B) one can rewrite (2.8.1) in the form

(B − λ)−1 − (A− λ)−1 = −(B − λ)−1V (A− λ)−1;

this follows from Lemma 1.11.2 with H = A, R = λ−V and S = λ. In particular,
if V in (2.8.1) belongs to some left-sided or right-sided operator ideal, then the
same is true for the difference of the resolvents of A and B. From this point of
view perturbation problems in the resolvent sense are more general than additive
perturbations of the form (2.8.1). Such perturbation problems embed naturally in
the framework of the extension theory that has been discussed in this chapter.

In the next theorem the particularly simple case of finite-rank perturbations
is treated.

Theorem 2.8.1. Let A and B be self-adjoint relations in H and assume that

dim ran
(
(B − λ0)

−1 − (A− λ0)
−1
)
= n <∞ (2.8.2)

for some, and hence for all λ0 ∈ ρ(A)∩ρ(B). Then S = A∩B is a closed symmetric
relation in H and there exists a boundary triplet {Cn,Γ0,Γ1} for S∗ such that

A = ker Γ0 and B = ker Γ1. (2.8.3)
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If γ and M are the γ-field and the Weyl function, respectively, corresponding to
{Cn,Γ0,Γ1}, then

(B − λ)−1 − (A− λ)−1 = −γ(λ)M(λ)−1γ(λ)∗ (2.8.4)

for all λ ∈ ρ(A) ∩ ρ(B). Moreover, if λ ∈ ρ(A), then λ ∈ σp(B) if and only if
0 ∈ σp(M(λ)), and the multiplicities are at most n and coincide.

Proof. Let λ0 ∈ ρ(A) ∩ ρ(B) be such that (2.8.2) holds and consider the closed
symmetric relation S = A ∩ B in H. By construction, A and B are disjoint self-
adjoint extensions of S, and hence

ran (S − λ0) = ker
(
(B − λ0)

−1 − (A− λ0)
−1
)

by Theorem 1.7.8. This leads to

ker (S∗ − λ0) =
(
ran (S − λ0)

)⊥
= ran

(
(B − λ0)

−1 − (A− λ0)
−1
)
,

where (2.8.2) was used in the last equality. Now Theorem 1.7.8 implies that A
and B are transversal self-adjoint extensions of S. Theorem 2.5.9 shows that there
exists a boundary triplet {Cn,Γ0,Γ1} such that (2.8.3) holds, and the formula
(2.8.4) follows from Theorem 2.6.1. One also concludes from (2.8.4) and the fact
that M(λ) is bijective for λ ∈ ρ(A)∩ρ(B) (see Corollary 2.5.4) that the difference
of the resolvents in (2.8.2) is of rank n for all λ ∈ ρ(A)∩ ρ(B). The last statement
on the eigenvalues of B follows from Theorem 2.6.2 (i). �

The following result is a generalization of Theorem 2.8.1 that applies to non-
self-adjoint intermediate extensions B.

Theorem 2.8.2. Let A be a self-adjoint relation in H and let B be a closed relation
in H such that ρ(B) 	= ∅. Then S = A ∩ B is a closed symmetric relation in H
and there exist a boundary triplet {G,Γ0,Γ1} for S∗ and a closed operator Θ in G

such that
A = ker Γ0 and B = ker (Γ1 −ΘΓ0).

If γ and M are the γ-field and the Weyl function, respectively, corresponding to
{G,Γ0,Γ1}, then

(B − λ)−1 − (A− λ)−1 = γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗

for all λ ∈ ρ(A)∩ ρ(B). Moreover, for all λ ∈ ρ(A) one has λ ∈ σi(B) if and only
if 0 ∈ σi(Θ−M(λ)), i = p, c, r, and for i = p the geometric multiplicities coincide.

Proof. It is clear that S = A ∩ B is a closed symmetric relation and hence there
exists a boundary triplet {G,Γ0,Γ1} for S∗ such that A = ker Γ0; cf. Theorem 2.4.1.
Since B is a closed extension of S, there exists a closed relation Θ in G such that
B = ker (Γ1−ΘΓ0). By construction, the relations A and B are disjoint and hence
it follows from Proposition 2.1.8 (i) that Θ is a closed operator in G. The resolvent
formula and the assertion on the spectrum of B are immediate consequences of
Theorem 2.6.1 and Theorem 2.6.2. �
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Let K and L be Hilbert spaces and let T ∈ B(K,L) be a compact operator.
Recall that the singular values sk(T ), k ∈ N, of T are defined as the eigenvalues of
the nonnegative compact operator (T ∗T )1/2 ∈ B(K) (enumerated in nonincreasing
order). The Schatten–von Neumann ideal Sp(K,L), 1 ≤ p < ∞, consists of all
compact operators T ∈ B(K,L) such that the singular values are p-summable,
that is,

∞∑
k=1

(sk(T ))
p <∞.

If K = L the notation Sp(K) is used instead of Sp(K,K). Observe that the nonzero
singular values of T coincide with the nonzero singular values of the restriction of
T to (kerT )⊥ as the corresponding restriction of T ∗T is a nonnegative compact
operator in the Hilbert space (ker T )⊥. This fact will be used in the proof of the
following theorem.

Theorem 2.8.3. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let AΘ1 and AΘ2 be closed extensions of S corresponding to
closed relations Θ1 and Θ2 in G via (2.1.5), and assume that ρ(AΘ1

)∩ρ(AΘ2
) 	= ∅

and ρ(Θ1) ∩ ρ(Θ2) 	= ∅. Then
(AΘ1 − λ)−1 − (AΘ2 − λ)−1 ∈ Sp(H) (2.8.5)

for some, and hence for all λ ∈ ρ(AΘ1) ∩ ρ(AΘ2) if and only if

(Θ1 − ξ)−1 − (Θ2 − ξ)−1 ∈ Sp(G) (2.8.6)

for some, and hence for all ξ ∈ ρ(Θ1) ∩ ρ(Θ2).

Proof. Let A0 = ker Γ0 and let γ and M be the γ-field and the Weyl function
corresponding to the boundary triplet {G,Γ0,Γ1}. Then one has

(AΘ1
− λ)−1 = (A0 − λ)−1 + γ(λ)

(
Θ1 −M(λ)

)−1
γ(λ)∗,

(AΘ2
− λ)−1 = (A0 − λ)−1 + γ(λ)

(
Θ2 −M(λ)

)−1
γ(λ)∗,

for all λ ∈ ρ(AΘ1
) ∩ ρ(AΘ2

) ∩ ρ(A0), and hence

(AΘ1
− λ)−1 − (AΘ2

− λ)−1

= γ(λ)
[(
Θ1 −M(λ)

)−1 − (Θ2 −M(λ)
)−1
]
γ(λ)∗.

(2.8.7)

It will be shown that (2.8.5) holds if and only if(
Θ1 −M(λ)

)−1 − (Θ2 −M(λ)
)−1 ∈ Sp(G). (2.8.8)

In fact, it is clear that if (2.8.8) holds, then so does (2.8.5). Conversely, if (2.8.5)
holds, then

γ(λ)
[(
Θ1 −M(λ)

)−1 − (Θ2 −M(λ)
)−1
]
γ(λ)∗ ∈ Sp(H) (2.8.9)
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follows directly from (2.8.7). Since γ(λ) is an isomorphism from G onto Nλ(S
∗)

and ker γ(λ)∗ = Nλ(S
∗)⊥, it follows that the restriction of γ(λ)∗ to Nλ(S

∗) is
an isomorphism onto G. Hence, the operator in (2.8.9) may also be viewed as
a bounded operator from Nλ(S

∗) to Nλ(S
∗) and thus belongs to the Schatten–

von Neumann ideal Sp(Nλ(S
∗),Nλ(S

∗)). In this context γ(λ) : G→ Nλ(S
∗) and

γ(λ)∗ : Nλ(S
∗) → G are boundedly invertible and hence it follows that (2.8.8)

holds. Therefore, if λ ∈ ρ(AΘ1) ∩ ρ(AΘ2) ∩ ρ(A0), then (2.8.5) is equivalent to
(2.8.8). Note that if (2.8.5) holds for some λ ∈ ρ(AΘ1

) ∩ ρ(AΘ2
), then it holds for

all λ ∈ ρ(AΘ1) ∩ ρ(AΘ2) by Lemma 1.11.4.

It remains to show that for all λ ∈ ρ(AΘ1)∩ ρ(AΘ2)∩ ρ(A0) (2.8.8) is equiv-
alent to (2.8.6). By Lemma 1.11.4,(

Θ1 −M(λ)
)−1 − (Θ2 −M(λ)

)−1

=
[
I − (Θ1 − ξ)−1(M(λ)− ξ)

]−1[
(Θ1 − ξ)−1 − (Θ2 − ξ)−1

][
I − (M(λ)− ξ)(Θ2 − ξ)−1

]−1

and since the factors around (Θ1 − ξ)−1 − (Θ2 − ξ)−1 on the right-hand side are
boundedly invertible by Lemma 1.11.3, this establishes the equivalence of (2.8.8)
and (2.8.6). �

If Θ1 and Θ2 in Theorem 2.8.3 are bounded operators in G the condition
ρ(Θ1) ∩ ρ(Θ2) 	= ∅ is automatically satisfied and the identity

(Θ1 − ξ)−1 − (Θ2 − ξ)−1 = (Θ1 − ξ)−1
(
Θ2 −Θ1

)
(Θ2 − ξ)−1

shows that (Θ1 − ξ)−1 − (Θ2 − ξ)−1 ∈ Sp(G) for ξ ∈ ρ(Θ1) ∩ ρ(Θ2) if and only if
Θ1 −Θ2 ∈ Sp(G). This leads to the following corollary.

Corollary 2.8.4. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be
a boundary triplet for S∗, let AΘ1 and AΘ2 be closed extensions of S which
correspond to bounded operators Θ1,Θ2 ∈ B(G) via (2.1.5), and assume that
ρ(AΘ1

) ∩ ρ(AΘ2
) 	= ∅. Then

(AΘ1
− λ)−1 − (AΘ2

− λ)−1 ∈ Sp(H)

for some, and hence for all λ ∈ ρ(AΘ1) ∩ ρ(AΘ2) if and only if

Θ1 −Θ2 ∈ Sp(G).

The following proposition is an addendum to Theorem 2.8.2 in the special
case where B is an Sp-perturbation of A in the resolvent sense.

Proposition 2.8.5. Let A be a self-adjoint relation in H, let B be a closed relation
in H with ρ(B) 	= ∅, assume that

(B − λ0)
−1 − (A− λ0)

−1 ∈ Sp(H) (2.8.10)
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for some λ0 ∈ ρ(A) ∩ ρ(B) and that (2.8.10) is not a finite-rank operator. Let
S = A ∩B and {G,Γ0,Γ1} be a boundary triplet for S∗ as in Theorem 2.8.2 such
that

A = ker Γ0 and B = ker (Γ1 −ΘΓ0)

for some closed operator Θ in G. If ρ(Θ) 	= ∅, then Θ is an unbounded closed
operator and (Θ− ξ)−1 ∈ Sp(G) for all ξ ∈ ρ(Θ).

Proof. Assume that (2.8.10) holds and that ρ(Θ) 	= ∅. As Θ0 = {0} × G is the
self-adjoint relation in G which corresponds to A = ker Γ0 and (Θ0 − ξ)−1 = 0 for
ξ ∈ C, one concludes from Theorem 2.8.3 and (2.8.10) that

(Θ− ξ)−1 = (Θ− ξ)−1 − (Θ0 − ξ)−1 ∈ Sp(G), ξ ∈ ρ(Θ).

Together with the assumption that (2.8.10) is of infinite rank, this implies that Θ
is an unbounded closed operator in G. �
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Chapter 3

Spectra, Simple Operators,
and Weyl Functions

In this chapter the spectrum of a self-adjoint operator or relation will be com-
pletely characterized in terms of the analytic behavior and the limit properties
of the Weyl function. In order to be able to treat the different parts of the spec-
trum, a short introduction to finite Borel measures on R and the corresponding
Borel transforms will be given in Section 3.1 and Section 3.2. The notions and some
properties of the absolutely continuous, singular continuous, pure point, and other
spectral subsets of a self-adjoint relation are recalled in Section 3.3. Moreover, the
concepts of simplicity (or complete non-self-adjointness) and local simplicity of
symmetric operators and relations will be explained in detail in Section 3.4. For a
boundary triplet {G,Γ0,Γ1} with corresponding Weyl function M , the spectrum of
the self-adjoint extension A0 = ker Γ0 is then characterized. An analytic descrip-
tion for the point spectrum of A0 in terms of M is given in Section 3.5, the rest
of the spectrum and its different parts, namely absolutely continuous, singular,
and continuous spectrum are studied in Section 3.6 under the additional condition
that the underlying symmetric relation S is simple or locally simple. The limit
properties of the Weyl function are also connected with defect elements belonging
to the domain or range of A0. This is discussed in Section 3.7. Finally, it is shown
with the help of tranformation properties of boundary triplets and Weyl functions
in Section 3.8 how the earlier results in this chapter extend to a description of the
spectrum of an arbitrary self-adjoint extension AΘ.

3.1 Analytic descriptions of minimal supports
of Borel measures

A Borel measure on R can be decomposed with respect to the Lebesgue measure
into an absolutely continuous measure and a singular measure. The minimal sup-
ports of the measure and its parts can be described by means of the derivative of
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the measure. The present interest is in an analytic description of these minimal
supports in terms of the Borel transform. For the convenience of the reader, a brief
review on Borel measures on R and some properties of their Borel transforms are
recalled.

In the following let μ be a regular Borel measure on R and denote the
Lebesgue measure on R by m. Recall that any Borel measure on R which is fi-
nite on compact sets is automatically regular. Associated with the regular Borel
measure μ is the nondecreasing, left-continuous function

νμ(x) =

⎧⎪⎨⎪⎩
μ([0, x)), x > 0,

0, x = 0,

−μ([x, 0)), x < 0,

(3.1.1)

on R. Observe that νμ is bounded if and only if μ is a finite measure, that the
derivative ν′μ of the nondecreasing function νμ exists m-almost everywhere, and
that

μ([x, y)) = νμ(y)− νμ(x), x < y. (3.1.2)

It is important to note that via (3.1.2) the function νμ induces a Lebesgue-Stieltjes
measure on R, which is a complete measure that coincides with the completion of
μ. In the following it is often more convenient to work with this completion, which
will also be denoted by μ, and the corresponding μ-measurable subsets of R.

The regular Borel measure μ has a Lebesgue decomposition with respect to
the Lebesgue measure m:

μ = μac + μs,

where the measure μac is absolutely continuous and the measure μs is singular,
each with respect to the Lebesgue measure. The singular measure μs is further
decomposed into the singular continuous part μsc and the pure point part μp, so
that

μ = μac + μsc + μp.

The corresponding nondecreasing, left-continuous functions νμac , νμsc , and νμp

defined via (3.1.1), are absolutely continuous, continuous with ν′μsc
= 0 m-almost

everywhere, and a step function, respectively, and

νμ = νμac
+ νμsc

+ νμp
.

Furthermore,

μac(B) =

∫
B

ν′μ(x) dm(x) (3.1.3)

for all Borel sets B, and hence the derivative ν′μ coincides with the Radon–
Nikodým derivative of μac m-almost everywhere.
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For x ∈ R the derivative μ′(x) of the Borel measure μ with respect to the
Lebesgue measure m is defined by

μ′(x) = lim
m(Ix) ↓ 0

{
μ(Ix)

m(Ix)
: Ix an interval containing x

}
, (3.1.4)

whenever the limit exists and takes values in [0,∞]. It can be shown that the sets

E0 =
{
x ∈ R : μ′(x) exists finitely

}
(3.1.5)

and

E =
{
x ∈ R : μ′(x) exists finitely or infinitely

}
(3.1.6)

are Borel sets, and for the set R \ E0 on which the derivative μ′ does not exist
finitely one has that

m(R \ E0) = 0, (3.1.7)

while for the set R\E on which the derivative μ′ does not exist finitely or infinitely
one has that

m(R \ E) = 0 and μ(R \ E) = 0; (3.1.8)

note that R \ E ⊂ R \ E0. Recall also that the derivative ν′μ of the function νμ
in (3.1.2) and the derivative μ′ in (3.1.4) of the measure μ coincide m-almost
everywhere.

A μ-measurable set S ⊂ R is called a support of μ if μ(R \ S) = 0. In
particular, this implies that μ(A) = μ(A ∩S) for all μ-measurable sets A ⊂ R. A
support S ⊂ R of μ is called minimal if for subsets S0 ⊂ S that are μ-measurable
and m-measurable, μ(S0) = 0 implies m(S0) = 0. A minimal support is not
uniquely defined. The next auxiliary lemma provides some useful properties of
minimal supports.

Lemma 3.1.1. Let μ be a Borel measure on R and let S,S′ ⊂ R be sets that are
measurable with respect to μ and m.

(i) If S and S′ are minimal supports for μ, then the symmetric difference SΔS′

satisfies μ(SΔS′) = 0 and m(SΔS′) = 0.

(ii) If S is a minimal support for μ while μ(S\S′) = 0 and m(S′ \S) = 0, then
S′ is a minimal support of μ. In particular, if S is a minimal support for μ
and S ⊂ S′ is such that m(S′ \S) = 0, then S′ is a minimal support of μ.

Proof. (i) Since SΔS′ ⊂ ((R \S)∪ (R \S′)) and both S and S′ are supports for
μ, one has

μ(SΔS′) ≤ μ(R \S) + μ(R \S′) = 0.

In particular, μ(S \S′) = 0. Now S \S′ ⊂ S is μ-measurable and m-measurable,
and sinceS is a minimal support, it follows thatm(S\S′) = 0. A similar argument
shows that m(S′ \S) = 0. Hence, m(SΔS′) = 0.



172 Chapter 3. Spectra, Simple Operators, and Weyl Functions

(ii) From R \S′ = ((R \S) ∪ (S \S′)) \ (S′ \S) one concludes that

μ(R \S′) ≤ μ(R \S) + μ(S \S′).

Since S is a support of μ and it is assumed that μ(S \ S′) = 0, it follows that
μ(R \S′) = 0. Hence, S′ is a support of μ.

To prove that S′ is a minimal support for μ, let S0 ⊂ S′ be μ-measurable
and m-measurable, and assume that m(S0) > 0. Since

S0 = (S0 ∩S) ∪ (S0 ∩ (S′ \S)
)

(3.1.9)

and m(S′ \S) = 0 by assumption, it follows that m(S0 ∩S) = m(S0) > 0. As S
is a minimal support for μ, this implies μ(S0 ∩S) > 0. Therefore, (3.1.9) leads to

μ(S0) = μ(S0 ∩S) + μ
(
S0 ∩ (S′ \S)

) ≥ μ(S0 ∩S) > 0.

Thus, S′ is a minimal support for μ. �

Minimal supports for the parts of the spectrum in the Lebesgue decompo-
sition can be expressed in terms of the behavior of the derivative μ′; cf. [335,
Lemma 4] (see also [676, 682]).

Theorem 3.1.2. Let μ be a regular Borel measure on R. Then the following sets

(i) {x ∈ E : 0 < μ′(x) ≤ ∞};
(ii) {x ∈ E : 0 < μ′(x) <∞};
(iii) {x ∈ E : μ′(x) =∞};
(iv) {x ∈ E : μ′(x) =∞, μ({x}) = 0};
(v) {x ∈ E : μ′(x) =∞, μ({x}) > 0},
are minimal supports for μ, μac, μs, μsc, and μp, respectively.

For practical reasons the attention is now restricted to finite Borel measures
on R. The properties of such measures are reflected by the boundary behavior of
their so-called Borel transform in a sense to be made precise; cf. Appendix A.

Definition 3.1.3. Let μ be a finite Borel measure on R. Then the Borel transform
F of μ is the function F defined by

F (λ) =

∫
R

1

t− λ
dμ(t), λ ∈ C \ R. (3.1.10)

If for some x ∈ R the limit limy ↓ 0 F (x+ iy) exists and takes values in [0,∞],
it will be denoted by F (x + i0). The set of points in R where the limit of the
imaginary part of F exists and takes values in [0,∞] is denoted by

F =
{
x ∈ R : ImF (x+ i0) exists finitely or infinitely

}
. (3.1.11)
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It follows from the integral representation (3.1.10) that

yReF (x+ iy) =

∫
R

(t− x)y

(t− x)2 + y2
dμ(t),

y ImF (x+ iy) =

∫
R

y2

(t− x)2 + y2
dμ(t),

and hence, by dominated convergence,

lim
y ↓ 0

yReF (x+ iy) = 0 and lim
y ↓ 0

y ImF (x+ iy) = μ({x}) (3.1.12)

for all x ∈ R; cf. Lemma A.2.6. In particular,

lim
y ↓ 0

y F (x+ iy) = lim
y ↓ 0

iy ImF (x+ iy) (3.1.13)

for all x ∈ R. Note also that the Borel transform F is a Nevanlinna function (see
Definition A.2.3) and μ(R) = supy>0 y ImF (iy). Conversely, every Nevanlinna
function F with

sup
y>0

y ImF (iy) <∞ and lim
y→∞F (iy) = 0

is the Borel transform of a finite Borel measure μ as in (3.1.10); cf. Proposi-
tion A.5.3.

An important observation concerning the boundary values ImF (x + i0) is
contained in the following theorem, which is formulated in terms of the symmetric
derivative

(Dμ)(x) = lim
ε ↓ 0

μ((x− ε, x+ ε))

2ε
(3.1.14)

of μ. Here the limit is assumed to take values in [0,∞]. Note that if for some x ∈ R
the derivative μ′(x) in (3.1.4) exists with values in [0,∞], then the same is true
for the symmetric derivative (Dμ)(x).

Theorem 3.1.4. Let μ be a finite Borel measure on R, let F be its Borel transform,
and let x ∈ R. If the symmetric derivative (Dμ)(x) exists with values in [0,∞],
then also ImF (x+ i0) exists with values in [0,∞] and

ImF (x+ i0) = π(Dμ)(x) (∈ [0,∞]). (3.1.15)

In particular, the following statements hold:

(i) ImF (x+ i0) and (Dμ)(x) exist simultaneously finitely m-almost everywhere
and (3.1.15) holds;

(ii) ImF (x+ i0) and (Dμ)(x) exist simultaneously finitely or infinitely μ-almost
everywhere and m-almost everywhere and (3.1.15) holds.

Proof. Assume first that the symmetric derivative (Dμ)(x) exists in [0,∞) for
some x ∈ R and choose c−, c+ ∈ R with c− < (Dμ)(x) < c+. From the definition
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(3.1.14) it follows that there exists δ > 0 such that

2c−ε ≤ μ(Iε) ≤ 2c+ε, Iε := (x− ε, x+ ε), (3.1.16)

holds for all ε ∈ (0, δ]. In the following set Ky(s) :=
y

s2+y2 for y > 0 and s ∈ R.
Then one has

ImF (x+ iy) =

∫
R

y

(x− t)2 + y2
dμ(t)

=

∫
R
Ky(x− t) dμ(t)

=

∫
Iδ

Ky(x− t) dμ(t) +

∫
R\Iδ

Ky(x− t) dμ(t)

(3.1.17)

for y > 0. First one estimates the second term on the right-hand side in (3.1.17).
Since t ∈ R \ Iδ, one has |t − x| ≥ δ, so that 0 ≤ Ky(t − x) ≤ Ky(δ). Then it is
clear that

0 ≤
∫
R\Iδ

Ky(x− t) dμ(t) ≤ Ky(δ)μ(R)→ 0 (3.1.18)

for y ↓ 0. In order to estimate the first integral on the right-hand side in (3.1.17)
one uses the identity∫

Iδ

Ky(t− x) dμ(t) = μ(Iδ)Ky(δ)−
∫ δ

0

K ′
y(ε)μ(Iε) dε. (3.1.19)

To prove (3.1.19), observe that∫ δ

0

K ′
y(ε)μ(Iε) dε =

∫ δ

0

∫ x+ε

x−ε

K ′
y(ε) dμ(t) dε

=

∫ x

x−δ

∫ δ

x−t

K ′
y(ε) dε dμ(t) +

∫ x+δ

x

∫ δ

t−x

K ′
y(ε) dε dμ(t)

= μ(Iδ)Ky(δ)−
∫ x+δ

x−δ

Ky(t− x) dμ(t),

where Fubini’s theorem on the triangle in the (t, ε)-plane given by ε = t − x,
ε = x − t, with 0 ≤ ε ≤ δ, was used. Now integration by parts, the fact that
(3.1.16), −K ′

y(ε) ≥ 0 for ε, y > 0, and (3.1.19) give the estimate

2c− arctan(δ/y) = 2c−
∫ δ

0

Ky(ε) dε

= 2c−δKy(δ) + 2c−
∫ δ

0

(−εK ′
y(ε)) dε

≤ μ(Iδ)Ky(δ)−
∫ δ

0

K ′
y(ε)μ(Iε) dε

=

∫
Iδ

Ky(t− x) dμ(t).
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In the same way one verifies the estimate∫
Iδ

Ky(t− x) dμ(t) ≤ 2c+ arctan(δ/y).

It follows that

πc− ≤ lim inf
y ↓ 0

∫
Iδ

Ky(t− x) dμ(t) ≤ lim sup
y ↓ 0

∫
Iδ

Ky(t− x) dμ(t) ≤ πc+.

Now (3.1.18) and (3.1.17) imply

πc− ≤ lim inf
y ↓ 0

ImF (x+ iy) ≤ lim sup
y ↓ 0

ImF (x+ iy) ≤ πc+.

Letting c− ↑ (Dμ)(x) and c+ ↓ (Dμ)(x), one obtains

lim
y ↓ 0

ImF (x+ iy) = π(Dμ)(x).

Next the case where the symmetric derivative (Dμ)(x) exists and equals ∞
for some x ∈ R is discussed. In this situation the above reasoning leads to

πc− ≤ lim inf
y ↓ 0

ImF (x+ iy)

for all c− > 0. This yields limy↓0 ImF (x+ iy) =∞.

It remains to show assertions (i) and (ii). Recall that if μ′(x) exists at some
point x ∈ R, then so does the symmetric derivative (Dμ)(x) and

μ′(x) = (Dμ)(x),

with equality in [0,∞]. For (ii) the above reasoning implies that the set E in (3.1.6)
is contained in the set F in (3.1.11) and hence μ(R \ F) = 0 and m(R \ F) = 0 by
(3.1.8). Assertion (i) follows in the same way from (3.1.5) and (3.1.7). �

It follows from Theorem 3.1.4 and (3.1.12) that Theorem 3.1.2 has a coun-
terpart expressing minimal supports in terms of the Borel transform of μ.

Theorem 3.1.5. Let μ be a finite Borel measure and let F be its Borel transform.
Then the sets

(i) {x ∈ F : 0 < ImF (x+ i0) ≤ ∞};
(ii) {x ∈ F : 0 < ImF (x+ i0) <∞};
(iii) {x ∈ F : ImF (x+ i0) =∞};
(iv) {x ∈ F : ImF (x+ i0) =∞, limy↓0 y ImF (x+ iy) = 0};
(v) {x ∈ F : ImF (x+ i0) =∞, limy↓0 y ImF (x+ iy) > 0},
are minimal supports for μ, μac, μs, μsc, and μp, respectively.
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Proof. Only statement (i) will be proved. The proofs of the other statements are
similar. Let

M =
{
x ∈ E : 0 < μ′(x) ≤ ∞},

and note that M is a Borel set. Recall that, by Theorem 3.1.2 (i), M is a minimal
support for μ. Now introduce the set

M′ =
{
x ∈ F : 0 < ImF (x+ i0) ≤ ∞},

which is also a Borel set, as ImF (x + iy), y > 0, and hence ImF (x + i0) are
Borel measurable functions in x. Then Theorem 3.1.4 shows that M ⊂ M′ and
furthermore one has

M′ \M ⊂ R \ E.
Since m(R\E) = 0 according to (3.1.8), it follows that m(M′\M) = 0 and as

M ⊂M′, and M is a minimal support for μ, one concludes from Lemma 3.1.1 (ii)
that M′ is a minimal support for μ. �

Most of the results in this section have been stated in the context of finite
Borel measures on R and their Borel transforms. They will be applied to study the
spectrum of self-adjoint relations and operators in Section 3.6. However, it is also
useful for later references to have similar results in the more general context of
scalar Nevanlinna functions and the corresponding spectral functions; cf. Chapter 6
and Chapter 7. Let N be a scalar Nevanlinna function of the form

N(λ) = α+ βλ+

∫
R

(
1

t− λ
− t

t2 + 1

)
dτ(t), λ ∈ C \ R, (3.1.20)

where α ∈ R, β ≥ 0, and τ is a Borel measure on R which satisfies∫
R

1

t2 + 1
dτ(t) <∞; (3.1.21)

cf. Theorem A.2.5. Then the last condition implies that μ defined by

dμ(t) =
dτ(t)

t2 + 1
(3.1.22)

is a finite Borel measure on R. Let F be the Borel transform of μ:

F (λ) =

∫
R

1

t− λ
dμ(t), λ ∈ C \ R. (3.1.23)

The connection between N and F is given in the following lemma.

Lemma 3.1.6. The Nevanlinna function N in (3.1.20) and the Borel transform F
in (3.1.23) are connected by

N(λ) = a+ bλ+ (λ2 + 1)F (λ), λ ∈ C \ R, (3.1.24)
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where a, b ∈ R. If x ∈ R, then the limits ImN(x + i0) and ImF (x + i0) exist
simultaneously with values in [0,∞], and in that case

ImN(x+ i0) = (x2 + 1)ImF (x+ i0) (∈ [0,∞]). (3.1.25)

Moreover, for each x ∈ R,

lim
y ↓ 0

yReN(x+ iy) = 0 (3.1.26)

and
lim
y ↓ 0

y ImN(x+ iy) = (x2 + 1) lim
y ↓ 0

y ImF (x+ iy). (3.1.27)

Proof. It is an immediate consequence of the integral representation (3.1.20) that
N can be rewritten as

N(λ) = α+ λ

(
β +

∫
R
dμ(t)

)
+ (λ2 + 1)

∫
R

1

t− λ
dμ(t), λ ∈ C \ R;

cf. Theorem A.2.4. This leads to (3.1.24). Note that for λ = x+ iy one has

N(x+ iy) = a+ b(x+ iy) + ((x+ iy)2 + 1)F (x+ iy),

whence

ImN(x+ iy) = by + (x2 + 1− y2)ImF (x+ iy) + 2xyReF (x+ iy).

Now observe that for each x ∈ R one has limy↓0 yReF (x + iy) = 0 by (3.1.12).
Together with the previous identity this proves the assertion in (3.1.25). Further-
more, now one sees (3.1.27) directly; cf. (3.1.12). Finally, note that

ReN(x+ iy) = a+ bx+ (x2 + 1− y2)ReF (x+ iy)− 2xyImF (x+ iy),

which together with (3.1.12) leads to the identity (3.1.26). �

The next corollary deals with the existence of the limit limε↓0 N(x + iε) for
any scalar Nevanlinna function N .

Corollary 3.1.7. Let N be a scalar Nevanlinna function. Then the limit N(x+ i0)
exists finitely m-almost everywhere.

Proof. It is clear from (3.1.25) and Theorem 3.1.4 that limε ↓ 0 ImN(x+ iε) exists
finitely m-almost everywhere. Hence, it suffices to show that

lim
ε ↓ 0

ReN(x+ iε) (3.1.28)

exists finitely m-almost everywhere. Denote by
√· the branch of the square root

fixed by Im
√
λ > 0 for λ ∈ C\ [0,∞) and

√
λ ≥ 0 for λ ∈ [0,∞). Then it is easy to
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see that Im
√
N(λ) ≥ 0 and Im (i

√
N(λ)) ≥ 0 for λ ∈ C+ and hence λ �→√N(λ)

and λ �→ i
√
N(λ) are scalar Nevanlinna functions when they are extended to C−

by symmetry. It follows from (3.1.25) and Theorem 3.1.4 that the limits

lim
ε ↓ 0

Im
√

N(x+ iε) and lim
ε ↓ 0

Re
√

N(x+ iε) = lim
ε ↓ 0

Im
(
i
√

N(x+ iε)
)

exist finitely m-almost everywhere. Since

ReN(x+ iε) =
(
Re
√
N(x+ iε)

)2 − (Im√N(x+ iε)
)2

it follows that the limit in (3.1.28) exists finitely m-almost everywhere. �

Let τ be the Borel measure on R in (3.1.20) which satisfies the condition
(3.1.21). It has the Lebesgue decomposition

τ = τac + τs, τs = τsc + τp,

where τac is absolutely continuous, τs is singular, τsc is singular continuous, and
τp is pure point. In the next corollary, which is a consequence of Theorem 3.1.5,
(3.1.22), and (3.1.25), minimal supports for these measures are expressed in terms
of the boundary behavior of N .

Corollary 3.1.8. Let N be a Nevanlinna function with the integral representation
(3.1.20). Then the sets

(i) {x ∈ F : 0 < ImN(x+ i0) ≤ ∞};
(ii) {x ∈ F : 0 < ImN(x+ i0) <∞};
(iii) {x ∈ F : ImN(x+ i0) =∞};
(iv) {x ∈ F : ImN(x+ i0) =∞, limy↓0 y ImN(x+ iy) = 0};
(v) {x ∈ F : ImN(x+ i0) =∞, limy↓0 y ImN(x+ iy) > 0},
are minimal supports for τ , τac, τs, τsc, and τp, respectively.

3.2 Growth points of finite Borel measures

Let μ be a finite Borel measure on R. In this section the set of its growth points
σ(μ), defined by

σ(μ) =
{
x ∈ R : μ

(
(x− ε, x+ ε)

)
> 0 for all ε > 0

}
, (3.2.1)

is studied. The growth points σ(μ) and the growth points σ(μac), σ(μs), and
σ(μsc) of the absolutely continuous, singular, and singular continuous part of μ
will be located by means of the minimal supports expressed in terms of the Borel
transform of μ.

There is an intimate connection between the set of growth points σ(μ) and
supports for μ.
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Lemma 3.2.1. Let μ be a finite Borel measure on R. Then the following statements
hold:

(i) If S ⊂ R is a support of μ, then σ(μ) ⊂ S.

(ii) The set σ(μ) is closed and it is a support of μ.

Proof. (i) Let S be a support of μ, so that μ(R \S) = 0. Assume that x ∈ σ(μ),
so that for any ε > 0 one has μ((x − ε, x + ε)) > 0. Since S is a support of μ, it
follows that

0 < μ
(
(x− ε, x+ ε)

)
= μ
(
(x− ε, x+ ε) ∩S

)
,

which implies that for any ε > 0 the set (x − ε, x + ε) ∩ S is nonempty. Hence,
there exists a sequence xn ∈ (x − 1/n, x + 1/n) ∩S converging to x from inside
S. This shows that σ(μ) ⊂ S.

(ii) In order to show that σ(μ) is closed, let xn ∈ σ(μ) converge to x ∈ R. Assume
that x 	∈ σ(μ). Then there is ε > 0 such that μ((x− ε, x+ ε)) = 0. For this ε there
exist n0 ∈ N and ε0 > 0 with (xn0

− ε0, xn0
+ ε0) ⊂ (x− ε, x+ ε), and hence

μ
(
(xn0

− ε0, xn0
+ ε0)

) ≤ μ
(
(x− ε, x+ ε)

)
= 0,

a contradiction, since xn0 ∈ σ(μ). Therefore, x ∈ σ(μ) and σ(μ) is closed.

Next it will be verified that σ(μ) is a support for μ. For each x ∈ R \ σ(μ)
there is εx > 0 such that μ((x − εx, x + εx)) = 0. Since the set σ(μ) is closed, it
follows that the open intervals (x−εx, x+εx), x ∈ R\σ(μ), form an open cover for
R \ σ(μ). Then there is a countable subcover of open intervals In with μ(In) = 0
for R \ σ(μ). It follows that

μ(R \ σ(μ)) ≤
∑
n

μ(In) = 0

and hence μ(R \ σ(μ)) = 0, that is, σ(μ) is a support for μ. �

For completeness it is noted that in general the set σ(μ) is not a minimal
support of μ. Observe also that, by Lemma 3.2.1, the set of growth points σ(μ)
has the following minimality property: each closed support S ⊂ R of μ satisfies
σ(μ) ⊂ S. Therefore, one has the next corollary.

Corollary 3.2.2. Let μ be a finite Borel measure on R. Then σ(μ) is the smallest
closed support of μ.

The set of growth points of μ will now be described by means of the Borel
transform of μ.

Theorem 3.2.3. Let μ be a finite Borel measure on R and let F be its Borel trans-
form. Then

σ(μ) =
{
x ∈ R : 0 < lim inf

y ↓ 0
ImF (x+ iy)

}
.
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Proof. With the notation

N =
{
x ∈ R : 0 < lim inf

y ↓ 0
ImF (x+ iy)

}
it will be proved that σ(μ) = N. Recall first that, by Theorem 3.1.5 (i), the set

M′ =
{
x ∈ F : 0 < ImF (x+ i0) ≤ ∞}

is a (minimal) support for μ. Since M′ ⊂ N, it follows that N is also a support
for μ. Hence, Lemma 3.2.1 (i) yields σ(μ) ⊂ N. For the inclusion N ⊂ σ(μ) it
suffices to show N ⊂ σ(μ), since σ(μ) is closed; cf. Lemma 3.2.1 (ii). Assume that
x 	∈ σ(μ). Then there exists ε > 0 such that μ((x − ε, x + ε)) = 0 and it follows
from

ImF (x+ iy) =

∫
R\(x−ε,x+ε)

y

(t− x)2 + y2
dμ(t)

that ImF (x+ i0) = 0. This implies x 	∈ N and hence N ⊂ σ(μ). �

Analogous to Theorem 3.2.3 there are also results for the parts of the finite
Borel measure μ on R in its Lebesgue decomposition. In order to describe these
results one needs the following notions of closure.

Definition 3.2.4. Let B ⊂ R be a Borel set. The absolutely continuous closure (or
essential closure) of B is defined by

closac(B) :=
{
x ∈ R : m

(
(x− ε, x+ ε) ∩B

)
> 0 for all ε > 0

}
.

The continuous closure of B is defined by

closc(B) :=
{
x ∈ R : (x− ε, x+ ε) ∩B is not countable for all ε > 0

}
.

In general, B is not a subset of closac(B) since, e.g., isolated points in B
are not contained in closac(B). Moreover, if B ⊂ B′ and m(B′ \ B) = 0, then
closac(B) = closac(B

′).

Lemma 3.2.5. Let B ⊂ R be a Borel set. Then the sets closac(B) and closc(B) are
both closed and

closac(B) ⊂ closc(B) ⊂ B. (3.2.2)

Moreover, the following statements hold:

(i) closac(B) = ∅ if and only if m(B) = 0;

(ii) closc(B) = ∅ if and only if B is countable.

Proof. First it will be shown that for any Borel set B ⊂ R both sets closac(B)
and closc(B) are closed.

In order to show that closac(B) is closed, let xn ∈ closac(B) converge to
x ∈ R. Assume that x 	∈ closac(B). Then there is ε > 0 such that

m
(
(x− ε, x+ ε) ∩B

)
= 0. (3.2.3)
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For this ε there is n0 ∈ N and ε0 > 0 with (xn0 − ε0, xn0 + ε0) ⊂ (x− ε, x+ ε). One
then concludes from (3.2.3) that m((xn0

− ε0, xn0
+ ε0) ∩B) = 0, a contradiction

as xn0
∈ closac(B). Therefore, x ∈ closac(B) and closac(B) is closed.

To show that closc(B) is closed, let xn ∈ closc(B) converge to x ∈ R. Assume
that x 	∈ closc(B). Then there is ε > 0 such that the set (x − ε, x + ε) ∩ B is
countable. For this ε there exist n0 ∈ N and ε0 > 0 with

(xn0 − ε0, xn0 + ε0) ⊂ (x− ε0, x+ ε0),

so that (
(xn0 − ε0, xn0 + ε0) ∩B

) ⊂ ((x− ε, x+ ε) ∩B
)

is countable, a contradiction, as xn0
∈ closc(B). Therefore, x ∈ closc(B) and

closc(B) is closed.

To see the first inclusion in (3.2.2) assume that x ∈ closac(B). Then one has
m((x−ε, x+ε)∩B) > 0 for all ε > 0 and hence for all ε > 0 the set (x−ε, x+ε)∩B
is not countable. This implies closac(B) ⊂ closc(B). Likewise, to see the second
inclusion assume that x ∈ closc(B) and that x 	∈ B. Then there is ε > 0 such that
(x− ε, x+ ε) ∩B = ∅, a contradiction. Hence, closc(B) ⊂ B.

(i) (⇒) Assume that closac(B) = ∅. This implies that for all x ∈ R there exists
εx > 0 such that m((x−εx, x+εx)∩B) = 0. First assume that B is compact. Then
for all x ∈ B the open sets (x− εx, x+ εx) form an open cover for B. Therefore,
there exists a finite subcover (xi − εi, xi + εi) of B such that

B ⊂
n⋃

i=1

(xi − εi, xi + εi) ∩B,

and hence

m(B) ≤
n∑

i=1

m
(
(xi − εi, xi + εi) ∩B

)
= 0.

For arbitrary Borel sets B the (inner) regularity of the Lebesgue measure implies
m(B) = 0.

(⇐) If m(B) = 0, then m((x − ε, x + ε) ∩ B) = 0 for all x ∈ R and all ε > 0.
Therefore, closac(B) = ∅.
(ii) (⇒) Assume that closc(B) = ∅. This implies that for all x ∈ R there exists
εx > 0 such that (x− εx, x+ εx) ∩B is countable; in particular, this holds for all
rational xi. The countable many open sets (xi − εxi , xi + εxi) form an open cover
for B and this implies that B is countable.

(⇐) If B is countable, then (x − ε, x + ε) ∩B is countable for all x ∈ R and all
ε > 0. Therefore, closc(B) = ∅. �

Here is the promised treatment of the absolutely continuous, singular, and
singular continuous parts of the Borel measure μ.
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Theorem 3.2.6. Let μ be a finite Borel measure on R and let F be its Borel trans-
form. Then the following statements hold:

(i) σ(μac) = closac
({x ∈ F : 0 < ImF (x+ i0) <∞});

(ii) σ(μs) ⊂ {x ∈ F : ImF (x+ i0) =∞};
(iii) σ(μsc) ⊂ closc

({x ∈ F : ImF (x+ i0) =∞, limy↓0 yF (x+ iy) = 0}).
Proof. (i) Let

M′
ac :=

{
x ∈ F : 0 < ImF (x+ i0) <∞}

and note that M′
ac is a Borel set. It is claimed that

σ(μac) = closac(M
′
ac). (3.2.4)

To verify the inclusion (⊂) in (3.2.4), assume that x 	∈ closac(M
′
ac). Then there

exists ε > 0 such that
m
(
(x− ε, x+ ε) ∩M′

ac

)
= 0.

As μac is absolutely continuous with respect to the Lebesgue measure m, also

μac

(
(x− ε, x+ ε) ∩M′

ac

)
= 0. (3.2.5)

Furthermore, by Theorem 3.1.5 (ii), the set M′
ac is a minimal support for μac and,

in particular, μac(R \M′
ac) = 0. Hence,

μac

(
(x− ε, x+ ε) \M′

ac

)
= 0 (3.2.6)

and from (3.2.5)–(3.2.6) one obtains μac((x − ε, x + ε)) = 0. Hence, x 	∈ σ(μac).
Thus, the inclusion (⊂) in (3.2.4) has been shown.

For the converse inclusion (⊃), let x 	∈ σ(μac). Then there exists ε > 0 such
that

0 = μac

(
(x− ε, x+ ε)

)
=

∫
(x−ε,x+ε)

(Dμ)(t) dm(t),

where in the last equality the Radon–Nikodým theorem was used; cf. (3.1.3) and
note that ν′μ = μ′ = Dμ m-almost everywhere. Due to Theorem 3.1.4 and the fact
that ImF (t+ i0) ≥ 0 for all t ∈ F, one concludes that

0 =
1

π

∫
(x−ε,x+ε)

ImF (t+ i0) dm(t)

=
1

π

∫
(x−ε,x+ε)∩M′

ac

ImF (t+ i0) dm(t).

This implies m((x−ε, x+ε)∩M′
ac) = 0 since ImF (t+i0) is positive on M′

ac. Hence,
x 	∈ closac(M

′
ac). Thus, the inclusion (⊃) in (3.2.4) has been shown. Therefore, the

equality (3.2.4) has been established, which gives the assertion (i).
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(ii) According to Theorem 3.1.5 (iii) the set {x ∈ F : ImF (x + i0) = ∞} is a
minimal support for the singular part μs of μ. Since σ(μs) is contained in the
closure of this set by Lemma 3.2.1 (i), the assertion follows.

(iii) By Theorem 3.1.5 (iv) and (3.1.13), the Borel set

M′
sc :=

{
x ∈ F : ImF (x+ i0) =∞, lim

y ↓ 0
yF (x+ iy) = 0

}
is a minimal support for μsc and hence, in particular, μsc(R \ M′

sc) = 0. Let
closc(M

′
sc) be the continuous closure of M′

sc, which is a Borel set, as it is closed;
cf. Lemma 3.2.5. It will be shown that closc(M

′
sc) is a support for μsc, that is,

μsc

(
R \ closc(M′

sc)
)
= 0, (3.2.7)

since this implies that σ(μsc) ⊂ closc(M
′
sc); cf. Lemma 3.2.1 (i) and Lemma 3.2.5.

In fact, for x ∈ R \ closc(M′
sc) by definition there exists ε > 0 such that

(x − ε, x + ε) ∩M′
sc is countable; thus μsc((x − ε, x + ε) ∩M′

sc) = 0, as μsc is
continuous. Consequently,

μsc((x− ε, x+ ε)) ≤ μsc

(
(x− ε, x+ ε) ∩M′

sc

)
+ μsc(R \M′

sc) = 0.

This yields μsc(K) = 0 for each compact set K ⊂ R \ closc(M′
sc) and hence, by

the (inner) regularity of the finite measure μsc, (3.2.7) follows. �

3.3 Spectra of self-adjoint relations

The spectrum of a self-adjoint relation or operator in a Hilbert space will be
studied in terms of its spectral measure. In particular, a division of the spectrum
into absolutely continuous and singular spectra will be introduced based on the
Lebesgue decomposition of a finite Borel measure; cf. Section 3.1.

Let A be a self-adjoint relation in the Hilbert space H. Then σ(A) ⊂ R by
Theorem 1.5.5 and σr(A) = ∅, and hence σ(A) = σp(A) ∪ σc(A); cf. Proposi-
tion 1.4.4. The spectral measure E(·) of A satisfies

(A− λ)−1 =

∫
R

1

t− λ
dE(t), λ ∈ C \ R,

cf. (1.5.6). First the parts σp(A) and σc(A) of the spectrum σ(A) will be charac-
terized in terms of the spectral measure E(·). These results will play an important
role in the further development; cf. Section 3.5 and Section 3.6. The facts in Propo-
sition 3.3.1 are immediate consequences of the orthogonal decomposition

H = Hop ⊕ Hmul , A = Aop ⊕̂ Amul , (3.3.1)

where Hop = domA and Hmul = mulA, of the self-adjoint relation A (see Theo-
rem 1.5.1) and the properties of the spectral measure of Aop.



184 Chapter 3. Spectra, Simple Operators, and Weyl Functions

Proposition 3.3.1. Let A be a self-adjoint relation in H with spectral measure E(·).
Then the following statements hold:

(i) λ ∈ ρ(A) ∩ R if and only if E((λ− ε, λ+ ε)) = 0 for some ε > 0;

(ii) λ ∈ σp(A) if and only if E({λ}) 	= 0, in which case Nλ(A) = ranE({λ}) and

N̂λ(A) =
{{E({λ})h, λE({λ})h} : h ∈ H

}
;

(iii) λ ∈ σc(A) if and only if E({λ}) = 0 and E((λ− ε, λ+ ε)) 	= 0 for all ε > 0.

A further subdivision of the spectrum will be introduced analogous to the
Lebesgue decomposition of a finite Borel measure on R; cf. Section 3.1. This re-
quires another description of the spectrum via the introduction of a collection of
finite Borel measures induced by the spectral function. Let A be a self-adjoint
relation in H with spectral measure E(·). For each h ∈ H, define μh by

μh = (E(·)h, h) = (Eop(·)Poph, Poph
)
, (3.3.2)

so that μh is a regular Borel measure on R. Note that μh = 0 for h ∈ Hmul . The
set of growth points σ(μh) of μh is given by

σ(μh) =
{
x ∈ R : μh((x− ε, x+ ε)) > 0 for all ε > 0

}
.

It will be shown that the spectrum of A is made up of the growth points of μh

for a dense set of elements h ∈ H. Furthermore, the statement in the following
proposition is in a local sense, namely, it concerns the spectrum of A relative to
an open interval Δ ⊂ R; cf. Definition 3.4.9.

Proposition 3.3.2. Let A be a self-adjoint relation in H, let Δ ⊂ R be an open
interval, and assume that DΔ is a subset of the closed subspace E(Δ)H such that

spanDΔ = E(Δ)H.

Then the following identities hold:

σ(A) ∩Δ =
⋃

h∈E(Δ)H

σ(μh) =
⋃

h∈DΔ

σ(μh). (3.3.3)

Proof. First it will be shown that

σ(A) ∩Δ ⊃
⋃

h∈E(Δ)H

σ(μh) ⊃
⋃

h∈DΔ

σ(μh). (3.3.4)

For this purpose assume that x /∈ σ(A) ∩Δ. Then there exists ε > 0 such that
(x− ε, x+ ε) ∩Δ contains no spectrum of A. By Proposition 3.3.1 (i), this yields

E
(
(x− ε, x+ ε) ∩Δ

)
= 0
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and for h ∈ E(Δ)H one obtains

μh

(
(x− ε, x+ ε)

)
=
(
E
(
(x− ε, x+ ε)

)
h, h
)

=
(
E
(
(x− ε, x+ ε)

)
E(Δ)h, h

)
=
(
E
(
(x− ε, x+ ε) ∩Δ

)
h, h
)

= 0.

Therefore, (x− ε, x+ ε) ∩ σ(μh) = ∅ for all h ∈ E(Δ)H, and thus

x 	∈
⋃

h∈E(Δ)H

σ(μh).

Hence, the inclusions (3.3.4) follow. Next it will be shown that⋃
h∈DΔ

σ(μh) ⊃ σ(A) ∩Δ,

which, together with (3.3.4), yields (3.3.3). For this purpose, assume that

x 	∈
⋃

h∈DΔ

σ(μh).

Then there exists ε > 0 such that (x− ε, x+ ε) ⊂ R\σ(μh) for all h ∈ DΔ, that is,∥∥E((x− ε, x+ ε)
)
h
∥∥2 = μh

(
(x− ε, x+ ε)

)
= 0 (3.3.5)

for all h ∈ DΔ, and hence for all h ∈ spanDΔ. Since by assumption spanDΔ is
dense in E(Δ)H, it follows that (3.3.5) holds for all h ∈ E(Δ)H and hence again
by Proposition 3.3.1 (i),

E
(
(x− ε, x+ ε) ∩Δ

)
h = E

(
(x− ε, x+ ε)

)
E(Δ)h = 0

for all h ∈ H. This shows that (x− ε, x+ ε) ∩Δ does not contain spectrum of A,
in particular, x /∈ σ(A) ∩Δ. �

The collection of Borel measures μh, h ∈ H, as defined in (3.3.2), is now used
to introduce a number of subspaces of H.

Definition 3.3.3. Let A be a self-adjoint relation in H. The pure point subspace, the
absolutely continuous subspace, and the singular continuous subspace correspond-
ing to Aop are defined by

Hp(Aop) =
{
h ∈ H : μh is pure point

}
,

Hac(Aop) =
{
h ∈ H : μh is absolutely continuous

}
,

Hsc(Aop) =
{
h ∈ H : μh is singular continuous

}
,

respectively.

In conjunction with the orthogonal decomposition (3.3.1), these subspaces
span the original Hilbert space and lead to invariant parts of the self-adjoint
relation, see, e.g., [649, Theorem VII.4] or [691, Proposition 9.3].
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Theorem 3.3.4. Let A be a self-adjoint relation in H. Then Hp(Aop), Hac(Aop),
and Hsc(Aop) are mutually orthogonal closed subspaces of H and

H = Hp(Aop)⊕ Hac(Aop)⊕ Hsc(Aop)⊕ Hmul .

Each of the Hilbert spaces Hp(Aop), Hac(Aop), and Hsc(Aop) is invariant for the
operator Aop, and the restrictions

Ap
op = Aop � Hp(Aop),

Aac
op = Aop � Hac(Aop),

Asc
op = Aop � Hsc(Aop),

are self-adjoint operators in Hp(Aop), Hac(Aop), and Hsc(Aop), respectively.

By means of these subspaces one defines, in analogy with the case of finite
Borel measures, the singular subspace and the continuous subspace corresponding
to Aop by

Hs(Aop) = Hp(Aop)⊕ Hsc(Aop) and Hc(Aop) = Hac(Aop)⊕ Hsc(Aop),

respectively. The restrictions of Aop to these subspaces are denoted by As
op and

Ac
op, respectively, and it follows that

As
op = Ap

op ⊕̂Asc
op and Ac

op = Aac
op ⊕̂Asc

op.

Definition 3.3.5. Let A be a self-adjoint relation in H. The absolutely continu-
ous spectrum σac(A), the singular continuous spectrum σsc(A), and the singular
spectrum σs(A) of A are defined by

σac(A) = σ
(
Aac

op

)
, σsc(A) = σ

(
Asc

op

)
, and σs(A) = σ

(
As

op

)
,

respectively.

Note that for the pure point part Ap
op one only has σp(A) = σ(Ap

op). The
spectral measures of the self-adjoint operators Aac

op, A
sc
op, and As

op in the Hilbert
spaces Hac(Aop), Hsc(Aop), and Hs(Aop), are given by the corresponding restric-
tions of the spectral measure E(·) of A. These spectral measures will be denoted
by Eac(·), Esc(·), and Es(·), respectively.

The following corollary relates the absolutely continuous, singular continuous,
and singular spectrum of A in an open interval Δ with the growth points of the
absolutely continuous, singular continuous, and singular parts of the measures μh.

Corollary 3.3.6. Let A be a self-adjoint relation in H, let Δ ⊂ R be an open
interval, and assume that DΔ is a subset of the closed subspace E(Δ)H such that

spanDΔ = E(Δ)H.
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Denote by μh,ac, μh,sc, and μh,s the absolutely continuous, singular continuous, and
singular part in the Lebesgue decomposition of the Borel measure μh in (3.3.2).
Then the following identity holds:

σi(A) ∩Δ =
⋃

h∈DΔ

σ(μh,i), i = ac, sc, s.

Proof. Observe first that the absolutely continuous, singular continuous, and sin-
gular part of the Borel measure μh, h ∈ H, are given by

μh,ac = μPach, μh,sc = μPsch, and μh,s = μPsh, (3.3.6)

respectively, where Pi denote the orthogonal projections onto the corresponding
Hilbert spaces Hi(Aop), i = ac, sc, s. This follows from the uniqueness of the
Lebesgue decomposition and Theorem 3.3.4. If μi

hi
= (Ei(·)hi, hi), hi ∈ Hi(Aop),

is the Borel measure defined with the help of the spectral measures Ei(·) of Ai
op,

i = ac, sc, s, then Definition 3.3.5, Proposition 3.3.2 and (3.3.6) yield

σi(A) ∩Δ =
⋃

hi∈PiDΔ

σ(μi
hi
) =

⋃
h∈DΔ

σ(μPih) =
⋃

h∈DΔ

σ(μh,i)

for i = ac, sc, s. Here it was also used that the linear span of the set PiDΔ is dense
in Ei(Δ)Hi(Aop) = PiE(Δ)H. �

Example 3.3.7. Let μ be a Borel measure on R and consider the maximal multi-
plication operator by the independent variable in L2

μ(R), given by

(Af)(t) = tf(t), domA =
{
f ∈ L2

μ(R) : t �→ tf(t) ∈ L2
μ(R)

}
.

The operator A is self-adjoint in L2
μ(R) and for every Borel set B ⊂ R the spectral

measure of A is given by

E(B)h = χBh, h ∈ L2
μ(R),

where χB denotes the characteristic function of B. For h ∈ L2
μ(R) the Borel

measure in (3.3.2) satisfies

μh(B) = (E(B)h, h)L2
μ(R) =

∫
B

|h(t)|2 dμ(t)

for all Borel sets B ⊂ R. It is not difficult to check that σ(A) = σ(μ). Furthermore,
the Lebesgue decomposition μ = μac + μs, where μs = μsc + μp, gives rise to the
orthogonal decompositions

L2
μ(R) = L2

μac
(R)⊕ L2

μs
(R) and L2

μs
(R) = L2

μsc
(R)⊕ L2

μp
(R).

For the spectral subspaces of A in Definition 3.3.3 one has Hi(A) = L2
μi
(R),

i = ac, sc, s, and this implies

σac(A) = σ(μac), σsc(A) = σ(μsc), and σs(A) = σ(μs).
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3.4 Simple symmetric operators

It will be shown that any closed symmetric relation in a Hilbert space can be
decomposed into the orthogonal componentwise sum of a closed simple, i.e., com-
pletely non-self-adjoint, symmetric operator, and a self-adjoint relation. Criteria
for the absence of the self-adjoint relation in this decomposition will be given, and
a local version of simplicity will be studied.

First some attention is paid to the notions of invariance and reduction. These
notions appeared already in the self-adjoint case in the previous section when
subdividing the spectrum, and are also important in the description of self-adjoint
extensions of symmetric relations. Let S be a closed symmetric relation in the
Hilbert space H. Decompose H as H = H′ ⊕ H′′, let P ′ and P ′′ be the orthogonal
projections onto H′ and H′′, and define

P̂ ′{f, g} = {P ′f, P ′g} and P̂ ′′{f, g} = {P ′′f, P ′′g}, f, g ∈ H.

The closed symmetric relation S gives rise to the restrictions

S′ = S ∩ (H′)2 ⊂ P̂ ′S and S′′ = S ∩ (H′′)2 ⊂ P̂ ′′S, (3.4.1)

which are closed symmetric relations and

S′ ⊕̂ S′′ ⊂ S. (3.4.2)

In order to describe when S′ and S′′ span S the following notions are useful.
The subspaces H′ and H′′ are called invariant under the symmetric relation S if
S′ = P̂ ′S or S′′ = P̂ ′′S, respectively. Clearly, the spaces H′ or H′′ are invariant
under S if

P̂ ′S ⊂ S or P̂ ′′S ⊂ S,

respectively. In the next lemma it turns out that H′ is invariant under S if and
only if H′′ is invariant under S; in which case S′ and S′′ can be orthogonally split
off from S, i.e., S = S′ ⊕̂ S′′.

Lemma 3.4.1. Let S be a closed symmetric relation in H = H′⊕H′′ and let S′ and
S′′ be as in (3.4.1). Then the following statements hold:

(i) S′ = P̂ ′S or, equivalently, S′′ = P̂ ′′S implies that S = S′ ⊕̂ S′′.

(ii) If S′ is self-adjoint in H′ or S′′ is self-adjoint in H′′, then S′ = P̂ ′S and

S′′ = P̂ ′′S.

Assume, in addition, that S is self-adjoint. Then

(iii) S′ = P̂ ′S or, equivalently, S′′ = P̂ ′′S implies that S′ and S′′ are self-adjoint
in H′ and H′′, respectively.
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Proof. (i) Assume that S′ = P̂ ′S. Since S′ ⊕̂ S′′ ⊂ S by (3.4.2), it suffices to
show that S ⊂ S′ ⊕̂ S′′. Let {f, f ′} ∈ S and decompose {f, f ′} with respect to
H = H′ ⊕ H′′ as

{f, f ′} = {h, h′}+ {k, k′}, h, h′ ∈ H′, k, k′ ∈ H′′.

Then {h, h′} ∈ P̂ ′S = S′ ⊂ S and therefore {k, k′} ∈ S ∩ (H′′)2 = S′′. Hence,
S = S′ ⊕̂ S′′, which implies that S′′ = P̂ ′′S.

(ii) Assume that S′ is self-adjoint in H′. To show that P̂ ′S ⊂ S′, let {f, f ′} ∈ S and

consider {P ′f, P ′f ′} ∈ P̂ ′S. Since S is symmetric it follows for all {h, h′} ∈ S′ ⊂ S
that

(P ′f ′, h)H′ − (P ′f, h′)H′ = (f ′, h)H − (f, h′)H = 0.

The assumption that S′ is self-adjoint in H′ implies {P ′f, P ′f ′} ∈ S′. Therefore,
P̂ ′S ⊂ S′. This implies S′ = P̂ ′S and (i) yields S′′ = P̂ ′′S.

(iii) According to (i), either of the conditions S′ = P̂ ′S or S′′ = P̂ ′′S implies that
S = S′ ⊕̂ S′′. Since S is self-adjoint, this shows that S′ is self-adjoint in H′ and
that S′′ is self-adjoint in H′′. �

Before introducing the notion of simplicity in Definition 3.4.3 below, the
following lemma on symmetric and self-adjoint extensions of symmetric relations
that contain a self-adjoint part is discussed.

Lemma 3.4.2. Let S be a closed symmetric relation in H whose defect numbers are
not necessarily equal and assume that there are orthogonal decompositions

H = H′ ⊕ H′′, S = S′ ⊕̂ S′′, (3.4.3)

such that S′ is closed and symmetric in H′ and S′′ is self-adjoint in H′′. Then every
closed symmetric (self-adjoint ) extension A of S in H admits the decomposition

A = A′ ⊕̂ S′′,

where A′ is a closed symmetric (self-adjoint ) extension of S′ in H′.

Proof. Observe that the inclusion S ⊂ A and the decomposition (3.4.3) imply that

S′′ = S ∩ (H′′)2 ⊂ A ∩ (H′′)2.

Therefore, the assumption that S′′ is self-adjoint in H′′ shows that the closed
symmetric relation A∩(H′′)2 is actually self-adjoint in H′′ and that S′′ = A∩(H′′)2.
Hence, by Lemma 3.4.1 (i)–(ii) the relation A decomposes as A = A′ ⊕̂ S′′, where
A′ = A ∩ (H′)2 is a symmetric extension of S′ in H′. Therefore,

S′ ⊕̂ S′′ ⊂ A′ ⊕̂ S′′.

If A is self-adjoint in H, then Lemma 3.4.1 (iii) implies that A′ = A ∩ (H′)2 is a
self-adjoint extension of S′ in H′. This completes the proof. �
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The notion of simplicity or complete non-self-adjointness is defined next.

Definition 3.4.3. Let S be a closed symmetric relation in H whose defect numbers
are not necessarily equal. Then S is simple if there is no orthogonal decomposition

S = S′ ⊕̂ S′′, where H = H′ ⊕ H′′, (3.4.4)

such that H′′ 	= {0} and S′′ is self-adjoint in H′′.

Every closed symmetric relation S in H has the orthogonal componentwise de-
composition S = Sop ⊕̂ Smul , where Smul is a purely multivalued self-adjoint rela-
tion in the closed subspace Hmul = mulS; cf. Theorem 1.4.11. Hence, a closed sim-
ple symmetric relation is necessarily an operator. A similar argument shows that a
closed simple symmetric relation does not have any eigenvalues; cf. Lemma 3.4.7.

Any closed symmetric relation S in H has a decomposition as in (3.4.4),
where S′ is simple in H′ and S′′ is self-adjoint in H′′. To see this, define the closed
subspace R ⊂ H by

R :=
⋂

λ∈C\R
ran (S − λ), (3.4.5)

and the closed subspace K = R⊥, so that

K = span
{
Nλ(S

∗) : λ ∈ C \ R}, Nλ(S
∗) = ker (S∗ − λ). (3.4.6)

It follows from Lemma 1.6.11 that the set C \ R in (3.4.6), and hence in the
intersection in (3.4.5), can be replaced by any subset of C \ R which has an accu-
mulation point in C+ and an accumulation point in C−.

Theorem 3.4.4. Let S be a closed symmetric relation in H whose defect numbers
are not necessarily equal. Let H be decomposed as H = K ⊕ R, where the closed
subspaces K and R are defined as in (3.4.5) and (3.4.6), and denote

S′ = S ∩ K2 and S′′ = S ∩R2. (3.4.7)

Then the relation S admits the orthogonal decomposition

S = S′ ⊕̂ S′′, (3.4.8)

where S′ is a closed simple symmetric operator in K and S′′ is a self-adjoint
relation in R.

Proof. Step 1. First it will be shown that R satisfies the following invariance
property: for any λ0 ∈ C \ R

(S − λ0)
−1R ⊂ R. (3.4.9)

To see this, let h ∈ R and h′ = (S − λ0)
−1h. Hence, {h′, h+ λ0h

′} ∈ S and thus

(h+ λ0h
′, fλ) = (h′, λfλ), {fλ, λfλ} ∈ S∗, λ ∈ C \ R.
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Since h ∈ ran (S − λ) = (ker (S∗ − λ))⊥, λ ∈ C \ R, and fλ ∈ ker (S∗ − λ), this
implies

0 = (h, fλ) = (λ− λ0)(h
′, fλ),

that is, h′ ⊥ fλ for all λ ∈ C \ R, λ 	= λ0. Hence, h′ ∈ ran (S−λ) for all λ ∈ C \ R,
λ 	= λ0, and it follows from Lemma 1.6.11 that

h′ ∈
⋂

λ∈C\R, λ =λ0

ran (S − λ) =
⋂

λ∈C\R
ran (S − λ) = R,

which proves the inclusion in (3.4.9).

Step 2. Next it will be shown that the relation S ∩ R2 is self-adjoint. Fix some
λ0 ∈ C \ R and define the relation S′′ first by

S′′ =
{{(S − λ0)

−1h, (I + λ0(S − λ0)
−1)h} : h ∈ R

}
. (3.4.10)

It follows from (3.4.5) that R ⊂ ran (S − λ0), and hence Lemma 1.1.8 implies
S′′ ⊂ S, so that in particular S′′ is symmetric in H. It follows from (3.4.9) that
S′′ ⊂ R2. Therefore, S′′ ⊂ S ∩ R2. Next S ∩ R2 ⊂ S′′ will be verified. Let
{f, f ′} ∈ S ∩R2, so that by Lemma 1.1.8

{f, f ′} = {(S − λ0)
−1h, (I + λ0(S − λ0)

−1)h}
for some h ∈ ran (S − λ0). Since {f, f ′} ∈ R2, it follows that

(S − λ0)
−1h ∈ R and (I + λ0(S − λ0)

−1)h ∈ R.

Therefore, h ∈ R and hence {f, f ′} ∈ S′′, so that S ∩R2 ⊂ S′′. This leads to the
equality S′′ = S ∩R2 in (3.4.7); in particular, S′′ in (3.4.10) does not depend on
the choice of λ0 ∈ C \ R.

From S′′ ⊂ S it follows that S′′ is symmetric and from (3.4.10) one obtains
that ran (S′′−λ0) = R. Since S′′ is independent of the choice of λ0, it follows that
ran (S′′ − λ) = R holds for every λ ∈ C \ R. Hence, S′′ = S ∩R2 is a self-adjoint
relation in R by Theorem 1.5.5. Now Lemma 3.4.1 (i)–(ii) imply (3.4.8).

Step 3. In order to show that S′ = S ∩K2 is simple in the Hilbert space K, assume
that there is an orthogonal decomposition K = K1 ⊕ K2 and a corresponding
orthogonal decomposition S′ = S1 ⊕̂ S2 such that S2 is self-adjoint in K2. Then
ran (S2 − λ) = K2 for all λ ∈ C \ R and thus

K2 = ran (S2 − λ) ⊂ ran (S′ − λ) ⊂ ran (S − λ), λ ∈ C \ R.
According to (3.4.5), this implies K2 ⊂ R while K2 ⊂ K = R⊥. Thus, K2 = {0},
so that S′ is simple. �

Corollary 3.4.5. Let S be a closed symmetric relation in H. Then S is simple if
and only if

H = span
{
Nλ(S

∗) : λ ∈ C \ R}. (3.4.11)
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The set C \ R on the right-hand side can be replaced by any set U which has an
accumulation point in C+ and in C−.

Proof. It follows from Theorem 3.4.4 and the definition of K in (3.4.6) that the
equality (3.4.11) holds if and only if S is simple. The last assertion in the corollary
follows from Lemma 1.6.11. �

Corollary 3.4.6. Let S be a closed symmetric relation in H. Then the following
statements are equivalent:

(i) H = span
{
Nλ(S

∗) : λ ∈ C \ R}⊕mulS;

(ii) Sop is a closed simple symmetric operator in Hop = H�mulS.

The set C \ R on the right-hand side in (i) can be replaced by any set U which has
an accumulation point in C+ and in C−.

Proof. (i) ⇒ (ii) The assumption implies in the context of Theorem 3.4.4 that
R = mulS, so that

S′′ = S ∩R2 = {0} ×mulS,

which is a self-adjoint relation in mulS. Hence, by the decomposition S = S′ ⊕̂ S′′

in Theorem 3.4.4 it follows that S′ = Sop in Hop = H�mulS.

(ii) ⇒ (i) Recall that H = Hop ⊕ Hmul . By Corollary 3.4.5 one has

Hop = span
{
Nλ(S

∗
op ) : λ ∈ C \ R}.

From the decomposition S = Sop ⊕̂ ({0} × mulS) and Proposition 1.3.13 one
concludes that S∗ = S∗

op ⊕̂ ({0} × mulS). Hence, Nλ(S
∗) = Nλ(S

∗
op ), which

yields (i). �

Lemma 3.4.7. Let S be a closed simple symmetric relation in H. Then S is an
operator and it has no eigenvalues.

Proof. Indeed, it follows from Definition 3.4.3 that also S−x and (S−x)−1, x ∈ R,
are closed simple symmetric relations in H. In particular, (S−x)−1 is an operator;
cf. the discussion following Definition 3.4.3. This implies ker (S − x) = {0} for all
x ∈ R and hence S has no eigenvalues. �

In certain situations the assertion in Lemma 3.4.7 has a converse.

Proposition 3.4.8. Let S be a closed symmetric relation in H and assume that there
exists a self-adjoint extension A of S in H such that σ(A) = σp(A). If σp(S) = ∅,
then the operator part Sop of S is a closed simple symmetric operator in the Hilbert
space Hop = (mulS)⊥.

Proof. By Lemma 3.4.2 and Theorem 1.4.11, it suffices to consider the case where
S is a closed symmetric operator and A is a self-adjoint extension of S. Now assume
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that S is not simple, so that by Theorem 3.4.4 there are nontrivial decompositions
H = H′ ⊕ H′′ and S = S′ ⊕̂ S′′ with S′ closed, simple and symmetric in H′, and
S′′ self-adjoint in H′′. Then A decomposes accordingly as A = A′ ⊕̂ S′′ with A′

self-adjoint in H′ by Lemma 3.4.2. Now σ(A) = σp(A) implies that S′′ and thus S
has a nontrivial point spectrum, which gives a contradiction. �

The notion of simplicity of a closed symmetric relation S in H will now be
specified in a local sense. This will be done relative to a Borel set Δ ⊂ R and by
means of a self-adjoint extension A of S and its spectral measure E(·). Then H
admits the orthogonal decomposition

H = E(Δ)H⊕ (I − E(Δ))H,

which leads to the orthogonal componentwise decomposition of A into self-adjoint
components:

A =
[
A ∩ (E(Δ)H

)2] ⊕̂ [A ∩ ((I − E(Δ))H
)2]

.

Note that A∩ (E(Δ)H)2 is a self-adjoint operator in E(Δ)H which coincides with
Aop � Eop (Δ)Hop ; cf. Section 1.5.

Definition 3.4.9. Let S be a closed symmetric relation in H and let A be a self-
adjoint extension of S with spectral measure E(·). Let Δ ⊂ R be a Borel set. Then
S is said to be simple with respect to Δ ⊂ R and the self-adjoint extension A if

E(Δ)H = span
{
E(Δ)k : k ∈ Nλ(S

∗), λ ∈ C \ R}. (3.4.12)

In the next proposition this local notion and some of its consequences are
discussed.

Proposition 3.4.10. Let S be a closed symmetric relation in H and let A be a self-
adjoint extension of S with spectral measure E(·). Assume that S is simple with
respect to the Borel set Δ ⊂ R and the self-adjoint extension A. Then the following
statements hold:

(i) For every Borel set Δ′ ⊂ Δ one has

E(Δ′)H = span
{
E(Δ′)k : k ∈ Nλ(S

∗), λ ∈ C \ R}. (3.4.13)

(ii) There is no point spectrum of S in Δ:

Δ ∩ σp(S) = ∅.
(iii) If U is a subset of ρ(A) with an accumulation point in each connected com-

ponent of ρ(A), then

E(Δ)H = span
{
E(Δ)k : k ∈ Nλ(S

∗), λ ∈ U
}
. (3.4.14)

Proof. (i) First note that the inclusion (⊃) in (3.4.13) holds. To see the converse
inclusion, let f ∈ E(Δ′)H. As Δ′ ⊂ Δ, one has

E(Δ′)H ⊂ E(Δ)H,
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and hence f ∈ E(Δ)H. By assumption, the identity (3.4.12) holds and so, in the
linear span of {

E(Δ)k : k ∈ Nλ(S
∗), λ ∈ C \ R}

there exists a sequence (fn), that converges to f . Then (E(Δ′)fn) is a sequence
in the linear span of {

E(Δ′)k : k ∈ Nλ(S
∗), λ ∈ C \ R}

which converges to E(Δ′)f = f . This shows the inclusion (⊂) in (3.4.13).

(ii) Assume that {f, xf} ∈ S for some x ∈ Δ. Since S ⊂ A, it follows that
f ∈ E(Δ)H. Observe that for k ∈ Nλ(S

∗) with λ ∈ C \ R one has {k, λk} ∈ S∗

and hence (λk, f) = (k, xf). As x ∈ R and λ ∈ C \ R, it follows that (k, f) = 0.
Further, since f ∈ E(Δ)H, one concludes that

0 = (k, f) = (k,E(Δ)f) = (E(Δ)k, f)

for all k ∈ Nλ(S
∗) and λ ∈ C \ R. Hence, (3.4.12) implies that f ∈ E(Δ)H is

orthogonal to E(Δ)H, which shows that f = 0. Thus, S does not possess any
eigenvalues in Δ.

(iii) The inclusion (⊃) in (3.4.14) is clear. In order to prove the identity, fix μ ∈ U

and recall from Lemma 1.4.10 that the operator I+(λ−μ)(A−λ)−1 maps Nμ(S
∗)

bijectively onto Nλ(S
∗) for all λ ∈ C \ R. It suffices to verify that the vectors

E(Δ)k, k ∈ Nλ(S
∗), λ ∈ U, span a dense set in E(Δ)H. Suppose that E(Δ)f is

orthogonal to this set, that is,

0 =
(
E(Δ)(I + (λ− μ)(A− λ)−1)gμ, E(Δ)f

)
(3.4.15)

for all gμ ∈ Nμ(S
∗) and all λ ∈ U. Since for each gμ ∈ Nμ(S

∗) the function

λ �→ (E(Δ)(I + (λ− μ)(A− λ)−1)gμ, E(Δ)f
)

is analytic on ρ(A), it follows from (3.4.15) and the assumption that U has an
accumulation point in each connected component of ρ(A) that this function is
identically equal to zero. Hence, (E(Δ)k,E(Δ)f) = 0 for all k ∈ Nλ(S

∗) and
λ ∈ C \ R. Now (3.4.12) yields E(Δ)f = 0 and (iii) follows. �

The connection with the global notion of simplicity is given in the following
corollary.

Corollary 3.4.11. Let S be a closed symmetric relation in H and let A be a self-
adjoint extension of S with spectral measure E(·). Then S is simple if and only if
S is simple with respect to any Borel set Δ ⊂ R and the self-adjoint extension A.

Proof. Assume that S is simple. Then (3.4.11) holds and hence (3.4.12) holds with
Δ = R. Then Proposition 3.4.10 (i) implies that S is simple with respect to any
Borel set Δ ⊂ R and the self-adjoint extension A. Conversely, if (3.4.12) holds for
any Borel set Δ ⊂ R, then (3.4.12) also holds for Δ = R, and hence reduces to
(3.4.11), that is, S is simple. �
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In the following lemma the eigenspace of A corresponding to an eigenvalue
x is described in the case where x is not an eigenvalue of S. In particular, this
observation leads to a characterization of local simplicity if the Borel set Δ ⊂ R
in Definition 3.4.9 is a singleton; cf. Corollary 3.4.13.

Lemma 3.4.12. Let S be a closed symmetric relation in H, let A be a self-adjoint
extension of S with spectral measure E(·), and let x ∈ R. Then

E({x})H = E({x})Nλ(S
∗) (3.4.16)

for some, and hence for all λ ∈ C \ R, if and only if x 	∈ σp(S).

Proof. Assume first that (3.4.16) holds for some fixed λ ∈ C \ R. Assume that
{f, xf} ∈ S, which implies {f, xf} ∈ A and hence f ∈ E({x})H. Moreover, one
has (xf, kλ) = (f, λkλ) for all kλ ∈ Nλ(S

∗) as {kλ, λkλ} ∈ S∗. It follows that(
xf,E({x})kλ

)
= (xf, kλ) = (f, λkλ) =

(
f, λE({x})kλ

)
and hence (f,E({x})kλ) = 0 for all kλ ∈ Nλ(S

∗). Now (3.4.16) and f ∈ E({x})H
yield f = 0, which implies x 	∈ σp(S).

Conversely, assume that x 	∈ σp(S) and let λ ∈ C \ R. The inclusion (⊃) in
(3.4.16) is clear and since both subspaces in (3.4.16) are closed, it suffices to verify
that E({x})Nλ(S

∗) is dense in E({x})H. Suppose that there exists f ∈ E({x})H
such that (

f,E({x})kλ
)
= 0, kλ ∈ Nλ(S

∗).

As f ∈ E({x})H, this implies (f, kλ) = 0 and hence f ∈ ran (S − λ). Choose
{g, g′} ∈ S such that g′ − λg = f . Then

g = (S − λ)−1f = (A− λ)−1f =
1

x− λ
f

and

g′ = f + λg = f +
λ

x− λ
f =

x

x− λ
f,

and it follows that {f, xf} ∈ S. Since x 	∈ σp(S) by assumption this yields f = 0.
Hence, E({x})Nλ(S

∗) is dense in E({x})H and therefore (3.4.16) holds. �

The above lemma together with Proposition 3.4.10 (ii) implies that S is
simple with respect to a point x ∈ R if and only if x is not an eigenvalue of S.

Corollary 3.4.13. Let S be a closed symmetric relation in H, let A be a self-adjoint
extension of S with spectral measure E(·), and let x ∈ R. Then

E({x})H = span
{
E({x})k : k ∈ Nλ(S

∗), λ ∈ C \ R}
holds if and only if x 	∈ σp(S).
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3.5 Eigenvalues and eigenspaces

Let S be a closed symmetric relation in a Hilbert space H and let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0, and corresponding γ-field γ and Weyl
function M . The purpose of the present section is to characterize eigenvalues
and the associated eigenspaces of the self-adjoint relation A0 by means of the
corresponding Weyl function M .

Recall that the Weyl function M can be expressed in terms of the γ-field and
the resolvent of the self-adjoint relation A0; cf. Proposition 2.3.6 (v). In particular,
for λ = x+ iy, y > 0, and λ0 ∈ ρ(A0) one has

M(x+ iy) = ReM(λ0) + γ(λ0)
∗[(x+ iy − Reλ0)

+ (x+ iy − λ0)(x+ iy − λ0)
(
A0 − (x+ iy)

)−1]
γ(λ0).

(3.5.1)

This formula will be used to study the behavior of the Weyl function M at a point
x ∈ R. In the next proposition it turns out that the strong limit of iyM(x + iy),
y ↓ 0, is closely connected with the eigenspace of A0 at x. Here the spectral measure
E of A0 is not used explicitly in the assertion; the orthogonal projection onto the
eigenspace Nx(A0) = ker (A0 − x) is denoted by PNx(A0) instead of E({x}).
Proposition 3.5.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, let M and γ be the corresponding Weyl
function and γ-field, and let x ∈ R. Then for each λ0 ∈ ρ(A0) and all ϕ ∈ G one
has

lim
y ↓ 0

iyM(x+ iy)ϕ = −|x− λ0|2γ(λ0)
∗PNx(A0) γ(λ0)ϕ. (3.5.2)

Proof. For x ∈ R and λ0 ∈ ρ(A0), it follows from (3.5.1) that

iyM(x+ iy) = iyReM(λ0) + iyγ(λ0)
∗(x+ iy − Reλ0)γ(λ0)

+ iy γ(λ0)
∗(x+ iy − λ0)(x+ iy − λ0)

(
A0 − (x+ iy)

)−1
γ(λ0).

As the first and second terms on the right-hand side tend to 0 as y ↓ 0, one obtains
lim
y ↓ 0

iyM(x+ iy)ϕ = |x− λ0|2γ(λ0)
∗[ lim

y ↓ 0
iy
(
A0 − (x+ iy)

)−1 ]
γ(λ0)ϕ (3.5.3)

for all ϕ ∈ G. Since x ∈ R is fixed and y ↓ 0, one has that

iy

t− (x+ iy)
→ −1x(t), t ∈ R,

where the approximating functions are uniformly bounded by 1. The spectral
calculus for the self-adjoint relation A0 in Lemma 1.5.3 yields

lim
y ↓ 0

iy
(
A0 − (x+ iy)

)−1
γ(λ0)ϕ = −PNx(A0)γ(λ0)ϕ, ϕ ∈ G.

Now the assertion follows from (3.5.3). �
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Definition 3.5.2. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M be the corresponding Weyl
function. For x ∈ R the operator Rx : G→ G is defined as the strong limit

Rxϕ = lim
y ↓ 0

iyM(x+ iy)ϕ, ϕ ∈ G.

Observe that Rx in Definition 3.5.2 is a well-defined operator in B(G); indeed,
this is clear from the identity (3.5.2). It also follows from (3.5.2) that Rx = 0 when
x ∈ ρ(A0) ∩ R.

Remark 3.5.3. If x ∈ R is an isolated singularity of the function M , then x is
a pole of first order of M ; cf. Corollary 2.3.9. Moreover, in a sufficiently small
punctured disc Bx \ {x} centered at x such that M is holomorphic in Bx \ {x},
one has a norm convergent Laurent series expansion of the form

M(λ) =
M−1

λ− x
+

∞∑
k=0

Mk(λ− x)k, M−1,M0,M1, . . . ∈ B(G).

It follows that Rx coincides with the residue of M at x, i.e.,

Rx =
1

2πi

∫
C

M(λ) dλ = M−1,

where C denotes the boundary of Bx.

In the following let x ∈ R and recall that the corresponding eigenspaces of S
and A0 are given by

N̂x(S) =
{{f, xf} : f ∈ Nx(S)

}
, Nx(S) = ker (S − x),

and
N̂x(A0) =

{{f, xf} : f ∈ Nx(A0)
}
, Nx(A0) = ker (A0 − x).

The main interest will be in the closed linear subspace N̂x(A0) � N̂x(S), which is

the orthogonal complement of N̂x(S) in N̂x(A0). Similarly, the orthogonal com-
plement of Nx(S) in Nx(A0) is denoted by Nx(A0) � Nx(S).

Lemma 3.5.4. Let λ0 ∈ ρ(A0), let x ∈ R, and let Px be the orthogonal projection
from H onto Nx(A0) � Nx(S). Then the operator Rx has the representation

Rxϕ = (λ0 − x)Γ1

{
Pxγ(λ0)ϕ, xPxγ(λ0)ϕ

}
, ϕ ∈ G. (3.5.4)

Proof. First, recall from Corollary 2.3.3 that for x ∈ R and {h, xh} ∈ A0 one has

Γ1{h, xh} = (x− λ0)γ(λ0)
∗h, λ ∈ ρ(A0).

Now let ϕ ∈ G and consider

h = (λ0 − x)PNx(A0) γ(λ0)ϕ ∈ ker (A0 − x).
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According to Proposition 3.5.1 and Definition 3.5.2,

Rxϕ = −|x− λ0|2γ(λ0)
∗PNx(A0) γ(λ0)ϕ

= (x− λ0)γ(λ0)
∗h

= Γ1{h, xh}
= (λ0 − x)Γ1

{
PNx(A0)γ(λ0)ϕ, xPNx(A0)γ(λ0)ϕ

}
.

(3.5.5)

Now observe that for ϕ ∈ G

PNx(A0)γ(λ0)ϕ = Pxγ(λ0)ϕ+ PNx(S)γ(λ0)ϕ.

Since {PNx(S)γ(λ0)ϕ, xPNx(S)γ(λ0)ϕ} ∈ S and S = ker Γ0 ∩ ker Γ1 by Proposi-
tion 2.1.2 (ii), it follows that

Γ1

{
PNx(S)γ(λ0)ϕ, xPNx(S)γ(λ0)ϕ

}
= 0

and hence (3.5.5) leads to (3.5.4). �

In the following theorem the eigenvalue x ∈ R and the corresponding eigen-
space of A0 are characterized by means of the Weyl function M and the operator
Rx. Later it will be shown how to distinguish between isolated and embedded
eigenvalues of A0; cf. Theorem 3.6.1.

Theorem 3.5.5. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, let M and γ be the corresponding Weyl
function and γ-field, and let x ∈ R. Then the mapping

τ : N̂x(A0)� N̂x(S)→ ranRx, f̂ �→ Γ1f̂ , (3.5.6)

is an isomorphism. In particular,

x ∈ σp(A0) and N̂x(A0)� N̂x(S) 	= {0} ⇔ Rx 	= 0.

Proof. Let x ∈ R and define Kx = N̂x(A0)� N̂x(S). The mapping Γ1 : S∗ → G is
continuous and, in particular, its restriction to Kx ⊂ S∗ is continuous. The proof
consists of three steps. In Step 1 it will be shown that the restriction of Γ1 to Kx

is injective and in Step 2 it will be shown that it has closed range. Then it follows
from Step 3 that τ in (3.5.6) is an isomorphism.

Step 1. The restriction of the mapping Γ1 to Kx is injective. Indeed, let f̂ ∈ Kx

with Γ1f̂ = 0. The assumption f̂ ∈ Kx implies that f̂ ∈ A0 and hence Γ0f̂ = 0.
Therefore, f̂ ∈ ker Γ0 ∩ ker Γ1 = S. Since f̂ = {f, xf} ∈ N̂x(A0) � N̂x(S), this

implies f̂ = 0.

Step 2. The range of the restriction of Γ1 to Kx is closed. In fact, let (ϕn) be a
sequence in ran (Γ1 � Kx) such that ϕn → ϕ ∈ G. Then there exists a sequence
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(f̂n) in Kx such that Γ1f̂n = ϕn and as f̂n ∈ A0 one has Γ0f̂n = 0. Therefore,

Γf̂n = {0, ϕn} → {0, ϕ}. Recall from Proposition 2.1.2 that the restriction of Γ

to S∗ � S is an isomorphism onto G × G. It follows that f̂n converge to some
element f̂ , which belongs to the closed subspace Kx. This yields Γ1f̂ = ϕ and
hence ran (Γ1 � Kx) is closed.

Step 3. The linear space{{Pxγ(λ0)ϕ, xPxγ(λ0)ϕ} : ϕ ∈ G
}

is dense in the Hilbert space Kx = N̂x(A0) � N̂x(S). To see this, let f̂ ∈ Kx

be orthogonal to all {Pxγ(λ0)ϕ, xPxγ(λ0)ϕ}, ϕ ∈ G. Then, since f̂ = {f, xf},
Corollary 2.3.3 shows that for all ϕ ∈ G one has

0 =
(
f̂ , {Pxγ(λ0)ϕ, xPxγ(λ0)ϕ}

)
= (f, Pxγ(λ0)ϕ) + (xf, xPxγ(λ0)ϕ)

= (1 + x2)(f, γ(λ0)ϕ)

= (1 + x2)(γ(λ0)
∗f, ϕ)

= (1 + x2)(x− λ0)
−1(Γ1f̂ , ϕ),

so that Γ1f̂ = 0, and hence f̂ = 0 by Step 1.

Step 4. The mapping in (3.5.6) is an isomorphism. To see this, observe that

ranRx ⊂ ran (Γ1 � Kx) ⊂ ranRx. (3.5.7)

The first inclusion in (3.5.7) follows directly from (3.5.4). From the same identity
one also sees that

Γ1

{
Pxγ(λ0)ϕ, xPxγ(λ0)ϕ

}
=

1

λ0 − x
Rxϕ ∈ ranRx ⊂ ranRx.

Hence, the second inclusion in (3.5.7) follows from Step 3 and the boundedness of
Γ1. It is clear from (3.5.7) and Step 2 that

ran (Γ1 � Kx) = ranRx,

and hence, due to Step 1, the mapping in (3.5.6) is an isomorphism. �

The statement of Theorem 3.5.5 can be simplified if x is not an eigenvalue of
the symmetric relation S, that is, S satisfies a local simplicity condition at x ∈ R;
cf. Corollary 3.4.13.

Corollary 3.5.6. Assume that x is not an eigenvalue of the closed symmetric rela-
tion S in Theorem 3.5.5. Then

x ∈ σp(A0) ⇔ Rx 	= 0.
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Now the behavior of M at ∞ will be considered and the multivalued part of
A0 will be described. First recall that the self-adjoint relation A0 is decomposed
into the orthogonal sum

A0 = A0,op ⊕̂ A0,mul, (3.5.8)

where A0,op is a self-adjoint operator in the Hilbert space

Hop = (mulA0)
⊥ = domA0 (3.5.9)

and A0,mul is the purely multivalued self-adjoint relation in Hmul = mulA0. Then
the resolvent of A0 has the form

(A0 − λ)−1 =

(
(A0,op − λ)−1 0

0 0

)
, λ ∈ ρ(A0), (3.5.10)

with respect to the decomposition H = Hop ⊕ Hmul ; cf. (1.5.1).

The representation (3.5.1) of M in terms of A0 gives for λ0 ∈ ρ(A0) and
x = 0 that

M(iy) = ReM(λ0)

+ γ(λ0)
∗[iy − Reλ0 + (iy − λ0)(iy − λ0)(A0 − iy)−1

]
γ(λ0).

(3.5.11)

In order to use this formula for large y decompose the term γ(λ0)
∗γ(λ0) as

γ(λ0)
∗γ(λ0) = γ(λ0)

∗(I − Pop)γ(λ0) + γ(λ0)
∗ιopPopγ(λ0),

where Pop denotes the orthogonal projection from H onto Hop, ιop is the canonical
embedding of Hop into H, and I −Pop is viewed as an orthogonal projection in H.
From the representation of the resolvent of A0 in terms of the resolvent of A0,op

in (3.5.10) it follows that (3.5.11) may be rewritten as

M(iy) = ReM(λ0) + (iy − Reλ0) γ(λ0)
∗(I − Pop)γ(λ0)

+ γ(λ0)
∗ιop
[
iy − Reλ0 + (iy − λ0)(iy − λ0)(A0,op − iy)−1

]
Popγ(λ0)

(3.5.12)

for all y > 0. This formula will be used to study the behavior of M at ∞. It
turns out that the strong limit 1

iyM(iy), y → +∞, is closely connected with the
multivalued part of A0.

Proposition 3.5.7. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Then for each λ0 ∈ ρ(A0) and ϕ ∈ G one has

lim
y→+∞

1

iy
M(iy)ϕ = γ(λ0)

∗(I − Pop)γ(λ0)ϕ. (3.5.13)
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Proof. It follows from (3.5.12) with λ0 ∈ ρ(A0) that

1

iy
M(iy) =

1

iy
ReM(λ0) +

iy − Reλ0

iy
γ(λ0)

∗(I − Pop)γ(λ0)

+
1

iy
γ(λ0)

∗ιop
[
iy − Reλ0 + (iy − λ0)(iy − λ0)(A0,op − iy)−1

]
Popγ(λ0).

It suffices to show that the first and the third term on the right-hand side converge
to 0 strongly. This is obvious for the first term on the right-hand side. For the third
term note that for y → +∞ one has

iy − Reλ0

iy
+

(iy − λ0)(iy − λ0)

iy

1

t− iy
→ 0, t ∈ R,

and hence the spectral calculus for A0,op shows that for y → +∞
1

iy
γ(λ0)

∗ιop
[
iy − Reλ0 + (iy − λ0)(iy − λ0)(A0,op − iy)−1

]
Popγ(λ0)ϕ

tends to zero for all ϕ ∈ G; cf. Lemma 1.5.3. This leads to (3.5.13). �

Definition 3.5.8. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M be the corresponding Weyl
function. The operator R∞ : G→ G is defined as the strong limit

R∞ϕ = lim
y→+∞

1

iy
M(iy)ϕ, ϕ ∈ G.

It follows from Proposition 3.5.7 that R∞ ∈ B(G). For the following proper-
ties of R∞ recall the notations

N̂∞(S) =
{{0, f} : f ∈ N∞(S)

}
, N∞(S) = mulS,

and
N̂∞(A0) =

{{0, f} : f ∈ N∞(A0)
}
, N∞(A0) = mulA0.

The next lemma can be viewed as a variant of Lemma 3.5.4 for x =∞. Here the
main interest is in the closed subspace N̂∞(A0) � N̂∞(S), that is, the orthogonal

complement of N̂∞(S) in N̂∞(A0).

Lemma 3.5.9. Let λ0 ∈ ρ(A0) and let P∞ be the orthogonal projection from H onto
N∞(A0) � N∞(S). Then the operator R∞ has the representation

R∞ϕ = Γ1

{
0, P∞γ(λ0)ϕ

}
, ϕ ∈ G. (3.5.14)

Proof. First recall from Corollary 2.3.3 that for {0, h′} ∈ A0 one has

Γ1{0, h′} = γ(λ0)
∗h′, λ0 ∈ ρ(A0).
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Now let ϕ ∈ G and consider h′ = (I − Pop)γ(λ0)ϕ ∈ mulA0. According to Propo-
sition 3.5.7,

R∞ϕ = γ(λ0)
∗(I − Pop)γ(λ0)ϕ = γ(λ0)

∗h′ = Γ1{0, h′}
= Γ1

{
0, (I − Pop)γ(λ0)ϕ

}
.

(3.5.15)

Now observe that for ϕ ∈ G

(I − Pop)γ(λ0)ϕ = P∞γ(λ0)ϕ+ PN∞(S)γ(λ0)ϕ.

Since {0, PN∞(S)γ(λ0)ϕ} ∈ S and S = ker Γ0 ∩ ker Γ1 by Proposition 2.1.2 (ii), it
follows that

Γ1

{
0, PN∞(S)γ(λ0)ϕ

}
= 0

and hence (3.5.15) leads to (3.5.14). �

In the next theorem the multivalued part of A0 is characterized by means of
the Weyl function M and the operator R∞.

Theorem 3.5.10. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Then the mapping

τ : N̂∞(A0)� N̂∞(S)→ ranR∞, f̂ �→ Γ1f̂ , (3.5.16)

is an isomorphism. In particular,

mulA0 �mulS 	= {0} ⇔ R∞ 	= 0.

Proof. The proof follows a strategy similar to the one used in the proof of Theo-
rem 3.5.5. To simplify notation, set

K∞ := N̂∞(A0)� N̂∞(S) =
{{0, f ′} : f ′ ∈ mulA0 �mulS

}
.

The mapping Γ1 : S∗ → G is continuous and, in particular, its restriction to
K∞ ⊂ S∗ is continuous.

Step 1. The restriction of the mapping Γ1 to K∞ is injective. Indeed, let f̂ ∈ K∞
with Γ1f̂ = 0. The assumption f̂ ∈ K∞ implies that f̂ ∈ A0 and hence Γ0f̂ = 0.
Therefore, f̂ ∈ ker Γ0 ∩ ker Γ1 = S. Since f̂ = {0, f ′} ∈ N̂∞(A0) � N̂∞(S), this

implies f̂ = 0.

Step 2. The range of the restriction of Γ1 to K∞ is closed. In fact, let (ϕn) be a

sequence in ran (Γ1 � K∞) such that ϕn → ϕ ∈ G. Then there exist (f̂n) in K∞ such

that Γ1f̂n = ϕn and as f̂n ∈ A0 one has Γ0f̂n = 0. Thus, Γf̂n = {0, ϕn} → {0, ϕ},
and since the restriction of Γ to S∗ � S is an isomorphism onto G× G, it follows
that f̂n converge to some element f̂ , which belongs to the closed subspace K∞.
Therefore, Γ1f̂ = ϕ and hence ran (Γ1 � K∞) is closed.
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Step 3. The linear space {{0, P∞γ(λ0)ϕ} : ϕ ∈ G
}

is dense in the Hilbert space K∞ = N̂∞(A0)� N̂∞(S). To see this, let f̂ ∈ K∞ be

orthogonal to all elements {0, P∞γ(λ0)ϕ}, ϕ ∈ G. Then it follows from f̂ = {0, f ′}
and Corollary 2.3.3 that for all ϕ ∈ G one has

0 =
(
f̂ , {0, P∞γ(λ0)ϕ}

)
= (f ′, P∞γ(λ0)ϕ) = (γ(λ0)

∗f ′, ϕ) = (Γ1f̂ , ϕ),

so that Γ1f̂ = 0, and hence f̂ = 0 by Step 1.

Step 4. The mapping in (3.5.16) is an isomorphism. To see this, observe that

ranR∞ ⊂ ran (Γ1 � K∞) ⊂ ranR∞. (3.5.17)

The first inclusion in (3.5.17) follows from (3.5.14). From the same identity one
also sees that

Γ1{0, P∞γ(λ0)ϕ} = R∞ϕ ∈ ranR∞ ⊂ ranR∞.

Hence, the second inclusion in (3.5.17) follows from Step 3 and the boundedness
of Γ1. It is clear from (3.5.17) and Step 2 that

ran (Γ1 � K∞) = ranR∞,

and hence, due to Step 1, the mapping in (3.5.16) is an isomorphism. �

Corollary 3.5.11. Assume that the closed symmetric relation S in Theorem 3.5.10
is an operator. Then A0 is an operator if and only if R∞ = 0.

An equivalent statement is that A0 is an operator if and only if for all ϕ ∈ G

lim
y→+∞

1

iy
M(iy)ϕ = 0. (3.5.18)

3.6 Spectra and local minimality

As in Section 3.5, let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0, and corresponding γ-field γ and Weyl
function M . The spectrum of the self-adjoint extension A0 and its division into
absolutely continuous and singular spectra (cf. Section 3.3) will now be discussed
in detail in terms of the boundary behavior of M . For this purpose it is assumed
that S either is simple or satisfies a local simplicity condition with respect to an
open interval Δ ⊂ R and the self-adjoint extension A0; see Definition 3.4.9 for the
notion of local simplicity.

The following theorem describes the point spectrum and the continuous spec-
trum of A0 in terms of the boundary behavior of the Weyl function M ; cf. Propo-
sition 3.3.1.
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Theorem 3.6.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0, let M and γ be the corresponding Weyl
function and γ-field, and let Rx = limy↓0 iyM(x + iy), x ∈ R, be the operator in
Definition 3.5.2. Let Δ ⊂ R be an open interval and assume that the condition

E(Δ)H = span
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
(3.6.1)

is satisfied, where E(·) is the spectral measure of A0. Then the following statements
hold for each x ∈ Δ:

(i) x ∈ ρ(A0) if and only if M can be continued analytically to x;

(ii) x ∈ σc(A0) if and only if Rx = 0 and M cannot be continued analytically to
x;

(iii) x is an eigenvalue of A0 if and only if Rx 	= 0;

(iv) x is an isolated eigenvalue of A0 if and only if x is a pole (of first order ) of
M ; in this case Rx is the residue of M at x.

Proof. (i) Recall first that by Proposition 2.3.6 (iii) or (v) the function λ �→M(λ)
is holomorphic on ρ(A0), which proves the implication (⇒). In order to verify the
other implication assume that M can be continued analytically to some x ∈ Δ.
Then there exists an open neighborhood O of x in C with O ∩ R ⊂ Δ to which
M can be continued analytically. Choose a, b ∈ R with x ∈ (a, b), [a, b] ⊂ O, and
a, b /∈ σp(A0). The spectral projection E((a, b)) of A0 corresponding to the interval
(a, b) is given by Stone’s formula (1.5.7)

E((a, b)) = lim
δ ↓ 0

1

2πi

∫ b

a

(
(A0 − (t+ iδ))−1 − (A0 − (t− iδ))−1

)
dt,

where the integral on the right-hand side is understood in the strong sense. For
ν ∈ C \ R and ϕ ∈ G this implies

‖E((a, b))γ(ν)ϕ‖2 =
(
γ(ν)∗E((a, b))γ(ν)ϕ,ϕ

)
= lim

δ ↓ 0

1

2πi

∫ b

a

((
γ(ν)∗(A0 − (t+ iδ))−1γ(ν)ϕ,ϕ

)
− (γ(ν)∗(A0 − (t− iδ))−1γ(ν)ϕ,ϕ

))
dt

(3.6.2)

and the identities

γ(ν)∗
(
A0 − (t± iδ)

)−1
γ(ν)

=
M(t± iδ)

|t± iδ − ν|2 +
M(ν)

(ν − (t± iδ))(ν − ν)
+

M(ν)

(ν − (t± iδ))(ν − ν)

from Proposition 2.3.6 (vi) (with λ = t ± iδ and μ = ν) together with the holo-
morphy of M in O yield that the integral on the right-hand side of (3.6.2) is zero.
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Hence, E((a, b))γ(ν)ϕ = 0 for all ν ∈ C \ R and ϕ ∈ G. On the other hand, since
(a, b) ⊂ Δ, the assumption (3.6.1) and Proposition 3.4.10 (i) yield

E((a, b))H = span
{
E((a, b))γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
,

and hence one concludes from E((a, b))γ(ν)ϕ = 0 for ν ∈ C \ R and ϕ ∈ G that
E((a, b)) = 0. In particular, x ∈ ρ(A0) by Proposition 3.3.1 (i).

(ii)–(iii) According to Proposition 3.4.10 (ii), the condition (3.6.1) implies that S
does not have eigenvalues in Δ. Hence, items (ii) and (iii) follow immediately from
item (i) and Corollary 3.5.6.

(iv) Assume that x ∈ Δ is an isolated eigenvalue of A0. Then by Proposition 2.3.6
(iii) or (v) there exists an open neighborhood O of x such thatM is holomorphic on
O \ {x}. Since x 	∈ σp(S) by Proposition 3.4.10 (ii), it follows from Corollary 3.5.6
that there exists ϕ ∈ G such that

Rxϕ = lim
y ↓ 0

iyM(x+ iy)ϕ 	= 0. (3.6.3)

This implies that M has a pole at x, which is of first order; cf. Corollary 2.3.9. By
Remark 3.5.3 the residue of M at x is given by Rx. Conversely, if M has a pole
(of first order) at x, then (3.6.3) holds for some ϕ ∈ G. Thus, x is an eigenvalue
of A0 by Corollary 3.5.6 and from item (i) it follows that there exists an open
neighborhood O of x in C such that O\{λ} ⊂ ρ(A0). Hence, x is an isolated point
in the spectrum of A0. �

Under the condition that S is simple the spectrum of A0 can be described
completely in terms of the Weyl function M .

Corollary 3.6.2. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Assume that S is simple. Then the assertions (i)–(iv)
in Theorem 3.6.1 hold for all x ∈ R.

To describe the absolutely continuous, singular, and singular continuous parts
of the spectrum of A0 in terms of the boundary behavior of the Weyl function M ,
some preliminary lemmas are needed.

Lemma 3.6.3. Let λ0 ∈ ρ(A0), x ∈ R, and ϕ ∈ G. Then the (possibly improper )
limits

Im (M(x+ i0)ϕ,ϕ) and Im
(
(A0 − (x+ i0))−1γ(λ0)ϕ, γ(λ0)ϕ

)
exist simultaneously, and they satisfy

Im (M(x+ i0)ϕ,ϕ) = |x− λ0|2 Im
(
(A0 − (x+ i0))−1γ(λ0)ϕ, γ(λ0)ϕ

)
.
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Proof. It is no restriction to assume that x 	= λ0, as otherwise λ �→ M(λ) and
λ �→ (A0 − λ)−1 are both holomorphic at x = λ0 ∈ ρ(A0) ∩ R, so that the above
limits are zero and the identities hold.

For x 	= λ0 it follows from (3.5.1) that

Im (M(x+ iy)ϕ,ϕ) = y‖γ(λ0)ϕ‖2

+
(|x− λ0|2 − y2

)
Im
((
A0 − (x+ iy)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
+ 2(x− Reλ0) yRe

((
A0 − (x+ iy)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
.

The first term on the right-hand side clearly goes to 0 as y ↓ 0. For the third term
on the right-hand side, observe that for y ↓ 0 one has

yRe

(
1

t− (x+ iy)

)
=

y(t− x)

(t− x)2 + y2
→ 0, t ∈ R,

and since the approximating functions are uniformly bounded, the spectral calcu-
lus for A0 (see Lemma 1.5.3) yields

lim
y ↓ 0

yRe
(
(A0 − (x+ iy))−1γ(λ0)ϕ, γ(λ0)ϕ

)
= 0.

Hence, also the third term on the right-hand side goes to 0 as y ↓ 0. Furthermore,
|x− λ0|2 − y2 → |x− λ0|2 > 0 as y ↓ 0. Therefore, Im (M(x+ iy)ϕ,ϕ) converges
as y ↓ 0 if and only if

Im
(
(A0 − (x+ iy))−1γ(λ0)ϕ, γ(λ0)ϕ

)
converges as y ↓ 0. In addition, it is clear that the identity in the lemma for the
limits is satisfied. �

Recall that the self-adjoint extension A0 generates a collection of finite Borel
measures on R: for each h ∈ H the finite Borel measure μh in (3.3.2) is defined by
μh = (E(·)h, h), where E is the spectral measure of A0. Now the interest is in the
Borel transform Fh of μh = (E(·)h, h), that is

Fh(λ) =

∫
R

1

t− λ
d(E(t)h, h), λ ∈ C \ R;

cf. Definition 3.1.3. In particular, if λ = x+ iy, where x ∈ R and y > 0, then one
has

ImFh(x+ iy) = Im
(
(A0 − (x+ iy))−1h, h

)
(3.6.4)

and
yFh(x+ iy) = y

(
(A0 − (x+ iy))−1h, h

)
. (3.6.5)

By means of Lemma 3.6.3 the boundary values of the Borel transform Fh for
a class of elements h ∈ H are expressed in terms of the boundary values of the
Weyl function M .
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Lemma 3.6.4. Let Δ ⊂ R be an open interval and let λ0 ∈ C \ R. Then for elements
of the form h = E(Δ)γ(λ0)ϕ, ϕ ∈ G, the following statements hold:

(i) If x ∈ Δ, then the (possibly improper ) limits

ImFh(x+ i0) and Im (M(x+ i0)ϕ,ϕ)

exist simultaneously, and

ImFh(x+ i0) = |x− λ0|−2Im (M(x+ i0)ϕ,ϕ).

(ii) If x 	∈ Δ, then ImFh(x+ i0) = |x− λ0|−2Im (M(x+ i0)ϕ,ϕ) = 0.

Proof. It follows from (3.6.4) that for all h ∈ H the (possibly improper) limits
ImFh(x + i0) and Im ((A0 − (x + i0))−1h, h) exist simultaneously and coincide.
For the choice h = γ(λ0)ϕ, ϕ ∈ G, it follows from Lemma 3.6.3 that the (possibly
improper) limits ImFh(x+ i0) and Im (M(x+ i0)ϕ,ϕ) exist simultaneously, and

ImFh(x+ i0) = Im
((
A0 − (x+ i0)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
= |x− λ0|−2 Im (M(x+ i0)ϕ,ϕ).

If h = E(Δ)γ(λ0)ϕ, ϕ ∈ G, then for x ∈ Δ the spectral calculus implies

ImFh(x+ i0) = Im
((
A0 − (x+ i0)

)−1
E(Δ)γ(λ0)ϕ,E(Δ)γ(λ0)ϕ

)
= Im

((
A0 − (x+ i0)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
= |x− λ0|−2 Im (M(x+ i0)ϕ,ϕ),

while for x 	∈ Δ it follows that

ImFh(x+ i0) = Im
((
A0 − (x+ i0)

)−1
E(Δ)γ(λ0)ϕ,E(Δ)γ(λ0)ϕ

)
= 0.

This shows the assertions in (i) and (ii). �

Now the absolutely continuous spectrum, the singular spectrum, and the sin-
gular continuous spectrum (cf. Section 3.3) of A0 can be described in terms of the
boundary behavior of the Weyl function M , still under the assumption of local sim-
plicity. The results are essentially consequences of Theorem 3.2.3, Theorem 3.2.6,
and Corollary 3.3.6.

Theorem 3.6.5. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ with let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Let Δ ⊂ R be an open interval and assume that the
condition

E(Δ)H = span
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
(3.6.6)
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is satisfied, where E(·) is the spectral measure of A0. Then the absolutely contin-
uous spectrum of A0 in Δ is given by

σac(A0) ∩Δ =
⋃
ϕ∈G

closac
({

x ∈ Δ : 0 < Im (M(x+ i0)ϕ,ϕ) <∞}). (3.6.7)

If S is simple, then (3.6.7) holds for every open interval Δ, including Δ = R.

Proof. By assumption, the span of the set

DΔ :=
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
is dense in E(Δ)H and hence Corollary 3.3.6 implies the identity

σac(A0) ∩Δ =
⋃

h∈DΔ

σ(μh,ac).

According to Theorem 3.2.6 (i) (where the set F was replaced by R),

σ(μh,ac) = closac
({x ∈ R : 0 < ImFh(x+ i0) <∞}),

which for h = E(Δ)γ(ν)ϕ ∈ DΔ is equivalent to

σ(μh,ac) = closac
({

x ∈ Δ : 0 < Im (M(x+ i0)ϕ,ϕ) <∞}
by Lemma 3.6.4. This yields (3.6.7). �

The next corollary gives a necessary and sufficient condition for the absence
of absolutely continuous spectrum.

Corollary 3.6.6. Let A0 and M be as in Theorem 3.6.5 and let Δ ⊂ R be an open
interval such that the condition (3.6.6) is satisfied. Then

σac(A0) ∩Δ = ∅
if and only if for all ϕ ∈ G and for almost all x ∈ Δ

Im (M(x+ i0)ϕ,ϕ) = 0.

If S is simple, then the assertion holds for every open interval Δ, including Δ = R.

Proof. Since closac(B) = ∅ if and only if m(B) = 0 for any Borel set B ⊂ R by
Lemma 3.2.5 (i), it is clear that for ϕ ∈ G

closac
({

x ∈ Δ : 0 < Im (M(x+ i0)ϕ,ϕ) <∞}) = ∅ (3.6.8)

if and only if

m
({

x ∈ Δ : 0 < Im (M(x+ i0)ϕ,ϕ) <∞}) = 0. (3.6.9)

Assume first that σac(A0) ∩Δ = ∅. Then (3.6.7) yields (3.6.8) for all ϕ ∈ G, and
hence (3.6.9) holds for all ϕ ∈ G. Moreover, for h = γ(λ0)ϕ, λ0 ∈ C \ R, and x ∈ R



3.6. Spectra and local minimality 209

one has

Im (M(x+ i0)ϕ,ϕ) = |x− λ0|2ImFh(x+ i0)

by Lemma 3.6.4 (with Δ = R), and according to Theorem 3.1.4 (i) this limit exists
and is finite for m-almost all x ∈ R. Hence, (3.6.9) implies Im (M(x+ i0)ϕ,ϕ) = 0
for all ϕ ∈ G and m-almost all x ∈ Δ. For the converse implication assume that
Im (M(x + i0)ϕ,ϕ) = 0 for all ϕ ∈ G and for m-almost all x ∈ Δ. Then (3.6.9)
and hence also (3.6.8) hold for all ϕ ∈ G. Thus, (3.6.7) yields σac(A0)∩Δ = ∅. �

The next lemma is of similar nature as Lemma 3.6.4. Here the limits exist
for all x ∈ R by (3.1.12)–(3.1.13) and Proposition 3.5.1.

Lemma 3.6.7. Let Δ ⊂ R be an open interval and let λ0 ∈ C \ R. Then for elements
of the form h = E(Δ)γ(λ0)ϕ, ϕ ∈ G, one has

lim
y ↓ 0

yFh(x+ iy) =

{
|x− λ0|−2 limy↓0 y(M(x+ iy)ϕ,ϕ), x ∈ Δ,

0, x 	∈ Δ.

Proof. For h = γ(λ0)ϕ, ϕ ∈ G, it follows from (3.6.5) and (3.5.1) (cf. (3.5.3) in the
proof of Proposition 3.5.1) that

lim
y ↓ 0

yFh(x+ iy) = lim
y ↓ 0

y
((
A0 − (x+ iy)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
= |x− λ0|−2 lim

y ↓ 0
y(M(x+ iy)ϕ,ϕ)

for all x ∈ R. If h = E(Δ)γ(λ0)ϕ, ϕ ∈ G, then for x ∈ Δ the spectral calculus
shows that

lim
y ↓ 0

yFh(x+ iy) = lim
y ↓ 0

y
((
A0 − (x+ iy)

)−1
E(Δ)γ(λ0)ϕ,E(Δ)γ(λ0)ϕ

)
= lim

y ↓ 0
y
((
A0 − (x+ iy)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
= |x− λ0|−2 lim

y ↓ 0
y(M(x+ iy)ϕ,ϕ),

while for x 	∈ Δ one has

lim
y ↓ 0

yFh(x+ iy) = lim
y ↓ 0

y
((
A0 − (x+ iy)

)−1
E(Δ)γ(λ0)ϕ,E(Δ)γ(λ0)ϕ

)
= 0.

This completes the proof. �

Next some inclusions for the singular and singular continuous spectra of A0

will be shown.

Theorem 3.6.8. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0, and let M and γ be the correspond-
ing Weyl function and γ-field. Let Δ ⊂ R be an open interval and assume that
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the condition

E(Δ)H = span
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
(3.6.10)

is satisfied, where E(·) is the spectral measure of A0. Then the following statements
hold:

(i) The singular spectrum of A0 in Δ satisfies(
σs(A0) ∩Δ

) ⊂ ⋃
ϕ∈G

{
x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) =∞}.

(ii) The singular continuous spectrum of A0 in Δ, i.e., σsc(A0)∩Δ, is contained
in the set⋃
ϕ∈G

closc
({

x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) =∞, lim
y ↓ 0

y(M(x+ iy)ϕ,ϕ) = 0
})

.

If S is simple, then (i) and (ii) hold for every open interval Δ, including Δ = R.

Proof. By assumption, the span of the set

DΔ :=
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
is dense in E(Δ)H.

(i) Recall that by Corollary 3.3.6 one has

σs(A0) ∩Δ =
⋃

h∈DΔ

σ(μh,s) (3.6.11)

and according to Theorem 3.2.6 (ii) (with F replaced by R)

σ(μh,s) ⊂ {x ∈ R : ImFh(x+ i0) =∞}.
For h = E(Δ)γ(ν)ϕ ∈ DΔ this gives, via Lemma 3.6.4,

σ(μh,s) ⊂
{
x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) =∞}.

Hence, the set σs(A0) ∩Δ in (3.6.11) is contained in⋃
h∈DΔ

{
x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) =∞}

=
⋃

h∈DΔ

{
x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) =∞},

which yields the assertion in (i).

(ii) Likewise, Corollary 3.3.6 implies

σsc(A0) ∩Δ =
⋃

h∈DΔ

σ(μh,sc). (3.6.12)
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By Theorem 3.2.6 (iii) (again with F replaced by R),

σ(μh,sc) ⊂ closc
({

x ∈ R : ImFh(x+ i0) =∞, lim
y ↓ 0

yFh(x+ iy) = 0
})

,

and for h = E(Δ)γ(ν)ϕ ∈ DΔ this gives, via Lemma 3.6.4 and Lemma 3.6.7, that
σ(μh,sc) is contained in

closc
({

x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) =∞, lim
y ↓ 0

y(M(x+ iy)ϕ,ϕ) = 0
})

.

Hence, the assertion follows from (3.6.12). �

An immediate corollary of the previous theorem and Lemma 3.2.5 (ii) is a
sufficient condition for the absence of the singular continuous spectrum in terms
of the limit behavior of the function M .

Corollary 3.6.9. Let A0 and M be as in Theorem 3.6.8 and let Δ ⊂ R be an open
interval such that the condition (3.6.10) is satisfied. Assume that for each ϕ ∈ G

there exist at most countably many x ∈ Δ such that

Im (M(x+ iy)ϕ,ϕ)→∞ and y(M(x+ iy)ϕ,ϕ)→ 0 as y ↓ 0.

Then

σsc(A0) ∩Δ = ∅.
If S is simple, then the assertion holds for every open interval Δ, including Δ = R.

As a further corollary of the theorems of this section sufficient conditions
are provided for the spectrum of A0 to be purely absolutely continuous or purely
singularly continuous, respectively, in some set.

Corollary 3.6.10. Let A0 and M be as in Theorem 3.6.5 or Theorem 3.6.8 and let
Δ ⊂ R be an open interval such that the condition (3.6.6) or (3.6.10) is satisfied.
Assume that for all ϕ ∈ G and all x ∈ Δ

lim
y ↓ 0

yM(x+ iy)ϕ = 0. (3.6.13)

Then the following statements hold:

(i) If for each ϕ ∈ G there exist at most countably many x ∈ Δ such that
Im (M(x+ i0)ϕ,ϕ) =∞, then σ(A0) ∩Δ = σac(A0) ∩Δ.

(ii) If Im (M(x + i0)ϕ,ϕ) = 0 holds for all ϕ ∈ G and almost all x ∈ Δ, then
σ(A0) ∩Δ = σsc(A0) ∩Δ.

If S is simple and Δ is an open interval such that (3.6.13) holds for all ϕ ∈ G and
all x ∈ Δ, then (i) and (ii) are satisfied.
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Proof. Note first that the assumption (3.6.13) yields σp(A0) ∩Δ = ∅; this follows
immediately from Corollary 3.5.6 and the fact that the condition (3.6.6) or (3.6.10)
implies σp(S) ∩ Δ = ∅; cf. Proposition 3.4.10 (ii). The assumption in (i) and
Corollary 3.6.9 imply σsc(A0) ∩ Δ = ∅ and hence σ(A0) ∩ Δ = σac(A0) ∩ Δ.
Similarly, the assumption in (ii) and Corollary 3.6.6 imply σac(A0) ∩Δ = ∅ and
hence σ(A0) ∩Δ = σsc(A0) ∩Δ follows. �

3.7 Limit properties of Weyl functions

Let S be a closed symmetric relation in a Hilbert space H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M be the corresponding Weyl
function. The aim of this section is to relate limit properties of the imaginary part
ImM of the Weyl function with defect elements in domA0 and dom |A0| 12 , and
ran (A0 − x) and ran |A0 − x| 12 , x ∈ R, respectively, where

A0 = A0,op ⊕̂ A0,mul and |A0| = |A0,op | ⊕̂ A0,mul (3.7.1)

with respect to the usual decomposition H = Hop ⊕ Hmul . This also leads to
necessary and sufficient conditions for S to be a densely defined operator in terms
of the Weyl function.

The first result connects limit properties of the Weyl function at ∞ with
elements in domA0 ∩ ker (S∗ − λ) and dom |A0| 12 ∩ ker (S∗ − λ) for λ ∈ ρ(A0).

Although the decomposition S∗ = A0 +̂ N̂λ(S
∗) is direct for all λ ∈ ρ(A0), it

may happen that domA0 ∩ ker (S∗ − λ) 	= {0} if S∗ is multivalued. In fact, if
f ∈ domA0 ∩ ker (S∗ − λ), f 	= 0, then {f, f ′} ∈ A0 for some f ′ and hence
{0, f ′ − λf} ∈ S∗. Since λ ∈ ρ(A0), this yields mulS∗ 	= {0}.

The representation (3.5.12) of the Weyl function M in terms of the extension
A0 = ker Γ0 will now be used; cf. (3.5.8)–(3.5.9). For simplicity one takes λ0 = i
in (3.5.12), which leads to the representation

M(iy) = ReM(i) + iy γ(i)∗(I − Pop)γ(i)

+ γ(i)∗ιop
[
iy + (1− y2)(A0,op − iy)−1

]
Popγ(i)

(3.7.2)

for all y > 0. The spectral calculus for the self-adjoint operator A0,op applied to
(3.7.2) shows that for ϕ ∈ G and y > 0

Im (M(iy)ϕ,ϕ) = y‖(I − Pop)γ(i)ϕ‖2

+ y

∫
R

t2 + 1

t2 + y2
d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
.

(3.7.3)

Proposition 3.7.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Then the following statements hold for ϕ ∈ G:



3.7. Limit properties of Weyl functions 213

(i) γ(λ)ϕ ∈ domA0 for some, and hence for all λ ∈ ρ(A0) if and only if

lim
y→+∞ y Im (M(iy)ϕ,ϕ) <∞;

(ii) γ(λ)ϕ ∈ dom |A0| 12 for some, and hence for all λ ∈ ρ(A0) if and only if∫ ∞

1

Im (M(iy)ϕ,ϕ)

y
dy <∞. (3.7.4)

Proof. (i) It suffices to prove the assertion for λ = i, since by Proposition 2.3.2 (ii)

γ(λ) =
(
I + (λ− i)(A0 − λ)−1

)
γ(i),

γ(i) =
(
I + (i− λ)(A0 − i)−1

)
γ(λ)

(3.7.5)

for λ ∈ ρ(A0) and hence γ(i)ϕ ∈ domA0 if and only if γ(λ)ϕ ∈ domA0. Note first
that (3.7.3) yields

yIm (M(iy)ϕ,ϕ) = y2‖(I − Pop)γ(i)ϕ‖2

+

∫
R

y2(t2 + 1)

t2 + y2
d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
.

(3.7.6)

It is clear that the left-hand side of (3.7.6) has a finite limit for y → +∞ if and
only if (I − Pop)γ(i)ϕ = 0 and∫

R
t2 d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
<∞,

which follows from the monotone convergence theorem. In other words, the left-
hand side of (3.7.6) has a finite limit for y → +∞ if and only if γ(i)ϕ ∈ domA0.

(ii) As in the proof of (i), it suffices to verify the assertion for λ = i. In fact, if

γ(i)ϕ ∈ dom |A0| 12 , then γ(i)ϕ = (|A0| 12 − μ)−1g for some μ ∈ C \ R and g ∈ H.
The first identity in (3.7.5) and the functional calculus for the self-adjoint operator
A0,op or self-adjoint relation A0 (see Section 1.5) show

γ(λ)ϕ =
(
I + (λ− i)(A0 − λ)−1

)
(|A0| 12 − μ)−1g

= (|A0| 12 − μ)−1
(
I + (λ− i)(A0 − λ)−1

)
g ∈ dom |A0| 12 .

The same argument and the second identity in (3.7.5) show that γ(λ)ϕ∈dom|A0| 12
implies γ(i)ϕ ∈ dom |A0| 12 .

It follows from (3.7.3) that

Im (M(iy)ϕ,ϕ)

y
= ‖(I − Pop)γ(i)ϕ‖2

+

∫
R

t2 + 1

t2 + y2
d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
.
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Hence, (3.7.4) holds if and only if (I − Pop)γ(i)ϕ = 0 and∫ ∞

1

(∫
R

t2 + 1

t2 + y2
d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

))
dy <∞.

Change the order of integration in the last integral, note that

(t2 + 1)

∫ ∞

1

1

t2 + y2
dy = (t2 + 1)

1

|t|
(
π

2
− arctan

1

|t|
)
, t 	= 0,

and observe that for large |t| one has

(t2 + 1)
1

|t|
(
π

2
− arctan

1

|t|
)
∼ |t|

and that on compact subsets of R the function

t �→ (t2 + 1)
1

|t|
(
π

2
− arctan

1

|t|
)

is bounded. Hence, (3.7.4) holds if and only if (I − Pop)γ(i)ϕ = 0 and∫
R
|t| d(Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
<∞.

In other words, (3.7.4) holds if and only if γ(i)ϕ ∈ dom |A0| 12 . �

The following result is essentially a consequence of Proposition 3.7.1 (i).

Corollary 3.7.2. Let S, A0, and M be as in Proposition 3.7.1. Then domS is dense
in domA0 if and only if

lim
y→+∞ y Im (M(iy)ϕ,ϕ) =∞ for all ϕ ∈ G, ϕ 	= 0.

Proof. Let λ ∈ ρ(A0) and note that f ∈ (domS)⊥ if and only if for all {h, h′} ∈ S

0 = (f, h) =
(
f, (A0 − λ)−1(h′ − λh)

)
=
(
(A0 − λ)−1f, h′ − λh

)
.

Hence, f ∈ (domS)⊥ if and only if (A0 − λ)−1f ∈ ker (S∗ − λ) = ran γ(λ).
Furthermore, (A0 − λ)−1f 	= 0 if and only if f 	∈ mulA0 = (domA0)

⊥.
Now assume that domS is not dense in domA0. Then there exists a nontrivial

f ∈ domA0 such that f ∈ (domS)⊥, and hence

(A0 − λ)−1f ∈ ker (S∗ − λ).

Since f ∈ domA0 it follows that (A0−λ)−1f = γ(λ)ϕ for a nontrivial ϕ ∈ G. This
means γ(λ)ϕ ∈ domA0, and hence

lim
y→+∞ y Im (M(iy)ϕ,ϕ) <∞ (3.7.7)



3.7. Limit properties of Weyl functions 215

by Proposition 3.7.1 (i). Conversely, if (3.7.7) holds for some nontrivial ϕ ∈ G,
then by Proposition 3.7.1 (i) it follows that γ(λ)ϕ ∈ domA0. Hence, there exists
a nontrivial f ∈ domA0 such that γ(λ)ϕ = (A0 − λ)−1f . Therefore, one sees that
f ∈ (domS)⊥ and hence domS is not dense in domA0. �

Corollary 3.7.3. Let S, A0, and M be as in Proposition 3.7.1. Then S is a densely
defined operator if and only if the following conditions hold:

(i) lim
y→+∞

1

iy
(M(iy)ϕ,ϕ) = 0 for all ϕ ∈ G;

(ii) limy→+∞ y Im (M(iy)ϕ,ϕ) =∞ for all ϕ ∈ G, ϕ 	= 0.

In this case, S∗ is an operator and all intermediate extensions of S are operators.

Proof. Note that Proposition 3.5.7 and the fact that γ(λ0)
∗(I − Pop )γ(λ0) in

(3.5.13) is a nonnegative operator in G show that condition (i) is equivalent to the
condition

lim
y→+∞

1

iy
M(iy)ϕ = 0, ϕ ∈ G.

By (3.5.18), this condition is necessary and sufficient for A0 to be an operator,
which is the case if and only if domA0 = H. Moreover, according to Corollary 3.7.2,
the condition (ii) is necessary and sufficient for the equality domS = domA0 to
hold. Therefore, domS = H if and only if conditions (i) and (ii) hold. �

In the next result, which is parallel to Proposition 3.7.1, the limit properties
of the Weyl function at x ∈ R will be connected with elements in

ker (S∗ − λ) ∩ ran (A0 − x) and ker (S∗ − λ) ∩ ran |A0 − x| 12 .
For this reason the representation (3.5.1) expressing the Weyl function M in terms
of the self-adjoint relation A0 = ker Γ0 will be used. For simplicity one takes
λ0 ∈ C \ R such that Reλ0 = x in (3.5.1), which leads to

M(x+ iy) = ReM(λ0)

+ γ(λ0)
∗[iy + (|Imλ0|2 − y2)

(
A0 − (x+ iy)

)−1]
γ(λ0).

(3.7.8)

It follows by means of the spectral calculus applied to (3.7.8) that for x ∈ R and
ϕ ∈ G one has

Im (M(x+ iy)ϕ,ϕ)

y
= ‖γ(λ0)ϕ‖2

+
(|Imλ0|2 − y2

) ∫
R

1

(t− x)2 + y2
d(E(t)γ(λ0)ϕ, γ(λ0)ϕ).

(3.7.9)

Proposition 3.7.4. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0 be decomposed as in (3.7.1), and let M and
γ be the corresponding Weyl function and γ-field. Then the following statements
hold for x ∈ R and ϕ ∈ G:
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(i) γ(λ)ϕ ∈ ran (A0 − x) for some, and hence for all λ ∈ ρ(A0) if and only if

lim
y ↓ 0

Im (M(x+ iy)ϕ,ϕ)

y
<∞; (3.7.10)

(ii) Popγ(λ)ϕ ∈ ran |A0,op − x| 12 for some, and hence for all λ ∈ ρ(A0) if and
only if ∫ 1

0

Im (M(x+ iy)ϕ,ϕ)

y
dy <∞. (3.7.11)

Proof. (i) It will first be shown that for λ, λ0 ∈ ρ(A0) one has γ(λ)ϕ ∈ ran (A0−x)
if and only if γ(λ0)ϕ ∈ ran (A0 − x). Assume that γ(λ0)ϕ ∈ ran (A0 − x). Then
there is {f, f ′} ∈ A0 such that γ(λ0)ϕ = f ′ − xf . As{

f ′ − xf, (A0 − λ)−1(f ′ − xf)
} ∈ (A0 − λ)−1,

it follows that{
(A0 − λ)−1(f ′ − xf), f ′ − xf + (λ− x)(A0 − λ)−1(f ′ − xf)

} ∈ A0 − x.

Hence, f ′ − xf + (λ− x)(A0 − λ)−1(f ′ − xf) ∈ ran (A0 − x) and

(A0 − λ)−1(f ′ − xf) ∈ ran (A0 − x).

From the identity γ(λ) = (I + (λ − λ0)(A0 − λ)−1)γ(λ0), established in Proposi-
tion 2.3.2 (ii), one finds that

γ(λ)ϕ = f ′ − xf + (λ− λ0)(A0 − λ)−1(f ′ − xf) ∈ ran (A0 − x).

Thus, γ(λ0)ϕ ∈ ran (A0 − x) implies that γ(λ)ϕ ∈ ran (A0 − x). Since λ0 and λ in
the above argument can be interchanged, it is clear that γ(λ)ϕ ∈ ran (A0 − x) if
and only if γ(λ0)ϕ ∈ ran (A0 − x).

To verify the remaining assertion in (i) with λ = λ0, note first that the limit
as y ↓ 0 in (3.7.10) is finite if and only if the limit of the integral in the second term
in (3.7.9) is finite. An application of the monotone convergence theorem shows that
the limit as y ↓ 0 of the integral in the second term in (3.7.9) is finite if and only
if ∫

R

1

(t− x)2
d(E(t)γ(λ0)ϕ, γ(λ0)ϕ) <∞,

that is, if and only if∫
R

1

(t− x)2
d(Eop (t)Pop γ(λ0)ϕ, Pop γ(λ0)ϕ) <∞,

where the definition of the spectral measure E(·) of A0 via the spectral measure
Eop (·) of A0,op was used. Therefore, the limit as y ↓ 0 in (3.7.10) is finite if and
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only if Pop γ(λ0)ϕ ∈ dom (A0,op − x)−1 = ran (A0,op − x), that is, if and only if
γ(λ0)ϕ ∈ ran (A0 − x).

(ii) As in (i), it will first be shown that Popγ(λ)ϕ ∈ ran |A0,op − x| 12 if and only if

Popγ(λ0)ϕ ∈ ran |A0,op − x| 12 for λ, λ0 ∈ ρ(A0). Assume that

Popγ(λ0)ϕ = |A0,op − x| 12 f
for some f ∈ dom |A0,op − x| 12 . It follows from the functional calculus for un-
bounded self-adjoint operators that

(A0,op − λ)−1|A0,op − x| 12 = |A0,op − x| 12 (A0,op − λ)−1

= |A0,op − x| 12 (A0,op − λ)−1

and hence, since γ(λ) = (I + (λ− λ0)(A0 − λ)−1)γ(λ0), one has that

Popγ(λ)ϕ = Popγ(λ0)ϕ+ (λ− λ0)(A0,op − λ)−1Popγ(λ0)ϕ

= |A0,op − x| 12 f + (λ− λ0)(A0,op − λ)−1|A0,op − x| 12 f
= |A0,op − x| 12 f + (λ− λ0)|A0,op − x| 12 (A0,op − λ)−1f,

that is, Popγ(λ)ϕ ∈ ran |A0,op − x| 12 . Thus, Popγ(λ0)ϕ ∈ ran |A0,op − x| 12 im-

plies Popγ(λ)ϕ ∈ ran |A0,op − x| 12 . Since λ0 and λ in the above argument can be

interchanged, it is clear that Popγ(λ0)ϕ ∈ ran |A0,op − x| 12 holds if and only if

Popγ(λ)ϕ ∈ ran |A0,op − x| 12 holds.

To verify the remaining assertion in (ii), it is convenient to fix λ = λ0 ∈ C \ R
such that |Imλ0| > 1. One then concludes from (3.7.9) that the integral in (3.7.11)
converges if and only if the integral∫ 1

0

(∫
R

1

(t− x)2 + y2
d(E(t)γ(λ0)ϕ, γ(λ0)ϕ)

)
dy

converges. Changing the order of integration in the last integral and observing
that ∫ 1

0

1

(t− x)2 + y2
dy =

1

|t− x| arctan
1

|t− x| , t 	= x,

one sees that the integral in (3.7.11) converges if and only if∫
R

1

|t− x| arctan
1

|t− x| d(E(t)γ(λ0)ϕ, γ(λ0)ϕ) <∞. (3.7.12)

Since the integrand in (3.7.12) is bounded on R \ (x− 1, x+1), it follows that the
integral in (3.7.11) converges if and only∫ x+1

x−1

1

|t− x| d(E(t)γ(λ0)ϕ, γ(λ0)ϕ) <∞,
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which is equivalent to∫
R

1

|t− x| d(E(t)γ(λ0)ϕ, γ(λ0)ϕ) <∞

and to ∫
R

1

|t− x| d(Eop (t)Pop γ(λ0)ϕ, Pop γ(λ0)ϕ) <∞.

Therefore, (3.7.11) holds if and only if

Pop γ(λ0)ϕ ∈ dom |A0,op − x|− 1
2 = ran |A0,op − x| 12 ,

that is, if and only if γ(λ0)ϕ ∈ ran |A0 − x| 12 . �

3.8 Spectra and local minimality for
self-adjoint extensions

In this section the results on eigenvalues, eigenspaces, continuous, absolutely con-
tinuous and singular continuous spectra from Section 3.5 and Section 3.6 will be
explicitly formulated for arbitrary self-adjoint extensions of a symmetric relation.

Let S be a closed symmetric relation in H and let {G,Γ0,Γ1} be a boundary
triplet for S∗ with γ-field γ and Weyl function M . Consider a self-adjoint extension

AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
= ker

(
Γ1 −ΘΓ0

)
(3.8.1)

of S in H, where Θ = Θ∗ is a self-adjoint relation in G. Recall from Corollary 1.10.9
that there exist operators A,B ∈ B(G) with the properties

A∗B = B∗A, AB∗ = BA∗, A∗A+B∗B = I = AA∗ +BB∗,

such that

Θ =
{{Aϕ,Bϕ} : ϕ ∈ G

}
=
{{ψ,ψ′} ∈ G2 : A∗ψ′ = B∗ψ

}
.

According to Section 2.2, the self-adjoint extensions AΘ in (3.8.1) can also be
written in the form

AΘ =
{
f̂ ∈ S∗ : A∗Γ1f̂ = B∗Γ0f̂

}
.

In order to describe the spectrum of AΘ consider the boundary triplet {G,Γ′
0,Γ

′
1},

where (
Γ′
0

Γ′
1

)
=

(
B∗ −A∗

A∗ B∗

)(
Γ0

Γ1

)
; (3.8.2)

cf. Corollary 2.5.11. Then one has

AΘ = ker Γ′
0, (3.8.3)
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and the corresponding Weyl function and γ-field will be denoted by MΘ and γΘ.
For λ ∈ ρ(AΘ) ∩ ρ(A0) they are given by

MΘ(λ) =
(
A∗ +B∗M(λ)

)(
B∗ −A∗M(λ)

)−1
(3.8.4)

and
γΘ(λ) = γ(λ)

(
B∗ −A∗M(λ)

)−1
,

respectively; cf. (2.5.17) and (2.5.18). From (3.8.3) it is clear that the spectrum
of AΘ can be described by means of the Weyl function MΘ. Therefore, the earlier
results expressing the spectrum of A0 in terms of the Weyl function M (and the
γ-field γ) can now be simply translated to the present context. The main results
will be listed below; it is left to the reader to formulate analogs of the results in
Section 3.7 in the present setting.

First the analogs of Theorem 3.5.5 and Theorem 3.5.10 will be described. For
this purpose define the operators RΘ

x , x ∈ R, and RΘ
∞ similar to Definition 3.5.2

and Definition 3.5.8:

RΘ
x ϕ = lim

y ↓ 0
iyMΘ(x+ iy)ϕ, ϕ ∈ G,

and

RΘ
∞ϕ = lim

y→+∞
1

iy
MΘ(iy)ϕ, ϕ ∈ G.

As in Section 3.5, one has that RΘ
x ,R

Θ
∞ ∈ B(G). In terms of the boundary triplet

{G,Γ′
0,Γ

′
1} in (3.8.2) and the corresponding Weyl function MΘ in (3.8.4), Theo-

rem 3.5.5 and Corollary 3.5.6 read as follows.

Corollary 3.8.1. Let S, AΘ, and MΘ be as above and let x ∈ R. Then the mapping

τ : N̂x(AΘ)� N̂x(S)→ ranRΘ
x , f̂ �→ A∗Γ0f̂ +B∗Γ1f̂ ,

is an isomorphism. In particular,

x ∈ σp(AΘ) and N̂x(AΘ)� N̂x(S) 	= {0} ⇔ RΘ
x 	= 0,

and if x 	∈ σp(S), then x ∈ σp(AΘ) if and only if RΘ
x 	= 0.

Similarly, Theorem 3.5.10 and Corollary 3.5.11 take the following form.

Corollary 3.8.2. Let S, AΘ, and MΘ be as above. Then the mapping

τ : N̂∞(AΘ)� N̂∞(S)→ ranRΘ
∞, f̂ �→ A∗Γ0f̂ +B∗Γ1f̂ ,

is an isomorphism. In particular,

mulAΘ �mulS 	= {0} ⇔ RΘ
∞ 	= 0,

and if mulS = {0}, then AΘ is an operator if and only if RΘ
∞ = 0.
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For the next results the local simplicity condition appearing in many of the
results in Section 3.6 has to be reformulated with respect to AΘ. According to
Definition 3.4.9, the closed symmetric relation S is simple with respect to Δ ⊂ R
and the self-adjoint extension AΘ if

EΘ(Δ)H = span
{
EΘ(Δ)γΘ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
, (3.8.5)

where EΘ(·) is the spectral measure of AΘ.

Then Theorem 3.6.1 yields the following statement.

Corollary 3.8.3. Let S, AΘ, and MΘ be as above, let Δ ⊂ R be an open interval, and
assume that the local simplicity condition (3.8.5) is satisfied. Then the following
statements hold for each x ∈ Δ:

(i) x ∈ ρ(AΘ) if and only if MΘ can be continued analytically to x;

(ii) x ∈ σc(AΘ) if and only if RΘ
x = 0 and MΘ cannot be continued analytically

to x;

(iii) x is an eigenvalue of AΘ if and only if RΘ
x 	= 0;

(iv) x is an isolated eigenvalue of AΘ if and only if x is a pole (of first order ) of
MΘ; in this case RΘ

x is the residue of MΘ at x.

If S is simple, then the statements (i)–(iv) hold for all x ∈ R.

Finally, the corresponding results for the absolutely continuous, singular, and
singular continuous spectra will be formulated; it is left to the reader to state the
analogs of Corollaries 3.6.6, 3.6.9, and 3.6.10.

In the present situation Theorem 3.6.5 reads as follows.

Corollary 3.8.4. Let S, AΘ, and MΘ be as above, let Δ ⊂ R be an open interval, and
assume that the local simplicity condition (3.8.5) is satisfied. Then the absolutely
continuous spectrum of AΘ in Δ is given by

σac(AΘ) ∩Δ =
⋃
ϕ∈G

closac
({

x ∈ Δ : 0 < Im (MΘ(x+ i0)ϕ,ϕ) <∞}). (3.8.6)

If S is simple, then (3.8.6) holds for every open interval Δ, including Δ = R.

For the singular and singular continuous spectra one obtains the following
version of Theorem 3.6.8.

Corollary 3.8.5. Let S, AΘ, and MΘ be as above, let Δ ⊂ R be an open interval, and
assume that the local simplicity condition (3.8.5) is satisfied. Then the following
statements hold:

(i) The singular spectrum of AΘ in Δ satisfies(
σs(AΘ) ∩Δ

) ⊂ ⋃
ϕ∈G

{
x ∈ Δ : Im (MΘ(x+ i0)ϕ,ϕ) =∞}.
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(ii) The singular continuous spectrum of AΘ in Δ, σsc(AΘ) ∩Δ, is contained in
the set⋃
ϕ∈G

closc
({

x ∈ Δ : Im (MΘ(x+ i0)ϕ,ϕ) =∞, lim
y ↓ 0

y(MΘ(x+ iy)ϕ,ϕ) = 0
})

.

If S is simple, then (i) and (ii) hold for every open interval Δ, including Δ = R.

Finally, the special case where the self-adjoint relation Θ in (3.8.1) is a
bounded self-adjoint operator will be briefly discussed. In this situation there is
a more natural choice of the transformed boundary triplet {G,Γ′

0,Γ
′
1} above. In

fact, if S is a closed symmetric relation, {G,Γ0,Γ1} is a boundary triplet for S∗

with γ-field γ and Weyl function M , and Θ ∈ B(G) is self-adjoint, then, by Corol-
lary 2.5.7, the mappings

Γ′
0 = Γ1 −ΘΓ0 and Γ′

1 = −Γ0

lead to a boundary triplet {G,Γ′
0,Γ

′
1} for S∗ such that

ker Γ′
0 = ker

(
Γ1 −ΘΓ0

)
= AΘ.

For λ ∈ ρ(A0) ∩ ρ(AΘ) the corresponding γ-field γΘ and the Weyl function MΘ

are given by

γΘ(λ) = −γ(λ)
(
Θ−M(λ)

)−1
and MΘ(λ) =

(
Θ−M(λ)

)−1
, (3.8.7)

respectively. Then the above results in Corollaries 3.8.1–3.8.5 remain valid with
the functionMΘ in (3.8.7) and the mapping f̂ �→ A∗Γ0f̂+B∗Γ1f̂ in Corollary 3.8.1

and Corollary 3.8.2 replaced by f̂ �→ −Γ0f̂ .
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Chapter 4

Operator Models for
Nevanlinna Functions

The classes of Weyl functions and more generally of Nevanlinna functions will be
studied from the point of view of reproducing kernel Hilbert spaces. It is clear
from Chapter 2 that every Weyl function is a uniformly strict Nevanlinna func-
tion and it is one of the main objectives here to show that also the converse is
true: every uniformly strict Nevanlinna function is a Weyl function. The model
space is built as a reproducing kernel Hilbert space of holomorphic functions. A
brief introduction to reproducing kernel Hilbert spaces is given in Section 4.1.
Using the Nevanlinna kernel in Section 4.2 multiplication operators by the inde-
pendent variable are studied and a boundary triplet whose Weyl function is the
original Nevanlinna function is constructed. For scalar Nevanlinna functions an
alternative model in an L2-space is given in Section 4.3. The uniqueness of these
constructions will also be discussed in detail. An extension of the operator model in
Section 4.2 to Nevanlinna functions which are not necessarily uniformly strict, and
to Nevanlinna families is provided in Section 4.4. This also includes a discussion
of generalized resolvents, and as a byproduct one obtains the Sz.-Nagy dilation
theorem. The connection with extension theory is given via the compressed re-
solvents of self-adjoint relations in the Krĕın–Năımark formula in Section 4.5. It
will be shown that for every Nevanlinna family there is a self-adjoint exit space
extension whose compressed resolvent is parametrized by the Nevanlinna family.
Closely connected is the discussion about the orthogonal coupling of two boundary
triplets in Section 4.6, which also complements the considerations in Section 2.7.

4.1 Reproducing kernel Hilbert spaces

The following discussion of reproducing kernel Hilbert spaces is focused on what
is needed in this text. Within these bounds there is a complete treatment for
the reader’s convenience. In the first definition one restricts attention to open
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sets, as the emphasis will be on reproducing kernel Hilbert spaces of holomorphic
functions.

Definition 4.1.1. Let Ω ⊂ C be an open set and let G be a Hilbert space. A mapping

K(·, ·) : Ω× Ω→ B(G) (4.1.1)

is called a B(G)-valued kernel on Ω. The kernel K(·, ·), the kernel K for short, is
said to be

(i) nonnegative, if for any finite set of points λ1, . . . , λn ∈ Ω and any choice of
vectors ϕ1, . . . , ϕn ∈ G the n× n matrix(

(K(λi, λj)ϕj , ϕi)G
)n
i,j=1

is nonnegative;

(ii) symmetric, if K(λ, μ)∗ = K(μ, λ) for all λ, μ ∈ Ω;

(iii) holomorphic on Ω, if the mapping λ �→ K(λ, μ) is holomorphic on Ω for each
μ ∈ Ω;

(iv) uniformly bounded on compact subsets of Ω, if for any compact set K ⊂ Ω
one has supλ∈K ‖K(λ, λ)‖ <∞.

Note that the first two items in this definition are not independent. Nonneg-
ativity is the stronger condition.

Lemma 4.1.2. Let K(·, ·) be a B(G)-valued kernel on Ω as in (4.1.1). If K(·, ·) is
nonnegative, then K(·, ·) is symmetric.

Proof. Let ϕ,ψ ∈ G and λ, μ ∈ Ω. According to (i), the 2× 2 matrix(
(K(λ, λ)ϕ,ϕ)G (K(λ, μ)ψ,ϕ)G
(K(μ, λ)ϕ,ψ)G (K(μ, μ)ψ,ψ)G

)
is nonnegative, and, hence hermitian. In particular, this implies that

(K(λ, μ)ψ,ϕ)G = (K(μ, λ)ϕ,ψ)G = (ψ,K(μ, λ)ϕ)G

for all ϕ,ψ ∈ G. This gives K(λ, μ)∗ = K(μ, λ), so that the kernel K(·, ·) is sym-
metric. �

The kernels described in Definition 4.1.1 form the basis of the theory of
reproducing kernel Hilbert spaces. They arise naturally in the following context.
Let Ω ⊂ C be an open set and let (H, 〈·, ·〉) be a Hilbert space of functions defined
on Ω with values in a Hilbert space G. The Hilbert space H is called a reproducing
kernel Hilbert space if for all μ ∈ Ω the operation of point evaluation

f ∈ H �→ f(μ) ∈ G
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is bounded. In other words, for each μ ∈ Ω the linear operator E(μ) : H → G,
defined by E(μ)f = f(μ), belongs to B(H,G).

In the next theorem a kernel is related to a Hilbert space of functions in
which point evaluation is bounded.

Theorem 4.1.3. Let G be a Hilbert space and assume that (H, 〈·, ·〉) is a Hilbert
space of G-valued functions on an open set Ω ⊂ C such that point evaluation is
bounded for all μ ∈ Ω. Define the corresponding kernel K(·, ·) by

K(λ, μ) = E(λ)E(μ)∗ ∈ B(G), λ, μ ∈ Ω.

Then the following statements hold:

(i) For f ∈ H one has the reproducing kernel property

〈f,K(·, μ)ϕ〉 = (f(μ), ϕ)G, ϕ ∈ G, μ ∈ Ω. (4.1.2)

(ii) The identity
〈K(·, ν)η,K(·, μ)ϕ〉 = (K(μ, ν)η, ϕ)G

is valid for all ν, μ ∈ Ω and η, ϕ ∈ G.

(iii) K(·, ·) is nonnegative and symmetric.

(iv) H = span {K(·, μ)ϕ : μ ∈ Ω, ϕ ∈ G}.
(v) If the G-valued functions in H are holomorphic on Ω, then K(·, ·) is holomor-

phic and uniformly bounded on compact subsets of Ω.

Proof. (i) & (ii) Note that for f ∈ H, ϕ ∈ G, and μ ∈ Ω one has

(f(μ), ϕ)G = (E(μ)f, ϕ)G = 〈f,E(μ)∗ϕ〉

and observe that E(μ)∗ϕ is a function in H whose value at λ ∈ Ω is given by

(E(μ)∗ϕ)(λ) = E(λ)E(μ)∗ϕ = K(λ, μ)ϕ.

This implies that K(·, ·) has the reproducing kernel property (4.1.2). The identity
in (ii) follows with the special choice f(·) = K(·, ν)η.
(iii) To see that K(·, ·) is a nonnegative kernel it suffices to observe that the matrix(

(K(λi, λj)ϕj , ϕi)G
)n
i,j=1

=
(
(E(λi)E(λj)

∗ϕj , ϕi)G
)n
i,j=1

=
(〈E(λj)

∗ϕj , E(λi)
∗ϕi〉

)n
i,j=1

is nonnegative. Lemma 4.1.2 implies that K(·, ·) is symmetric.

(iv) In order to see that the subspace span {K(·, μ)ϕ : μ ∈ Ω, ϕ ∈ G} is dense in
H, assume that there is an element f ∈ H such that 〈f,K(·, μ)ϕ〉 = 0 for all ϕ ∈ G



226 Chapter 4. Operator Models for Nevanlinna Functions

and μ ∈ Ω. But then (f(μ), ϕ)G = 0 for all ϕ ∈ G and μ ∈ Ω. Hence, f(μ) = 0 for
all μ ∈ G, i.e., f is the null function, which completes the argument.

(v) To see that K(·, ·) is uniformly bounded on compact subsets of Ω, note first
that

‖K(λ, λ)‖ = ‖E(λ)E(λ)∗‖ = ‖E(λ)‖2. (4.1.3)

Now observe that for all f ∈ H and ϕ ∈ G,

(E(λ)f, ϕ)G = (f(λ), ϕ)G.

Since by assumption the function λ �→ f(λ) from Ω to G is holomorphic, it follows
that the mapping λ �→ E(λ) from Ω to B(H,G) is holomorphic, which implies
that λ �→ ‖E(λ)‖ is continuous. Hence, for any compact set K ⊂ Ω there is some
M ′ ≥ 0 such that

sup
λ∈K

‖E(λ)‖ ≤M ′.

Therefore, (4.1.3) shows that the kernel K(·, ·) is uniformly bounded on compact
subsets of Ω. �

It has been shown in Theorem 4.1.3 that a Hilbert space of G-valued func-
tions in which point evaluation is bounded gives rise to a nonnegative kernel that
possesses the reproducing kernel property in (4.1.2). Now it will be shown, con-
versely, that any nonnegative kernel K(·, ·) gives rise to such a reproducing kernel
Hilbert space. Assume that K(·, ·) is some nonnegative kernel on Ω with values
in B(G). Then K(·, ·) is automatically symmetric by Lemma 4.1.2. Consider the
linear space of functions from Ω into G generated by K(·, ·) via

H̊(K) := span
{
λ �→ K(λ, μ)ϕ : μ ∈ Ω, ϕ ∈ G

}
. (4.1.4)

Define the form 〈·, ·〉 on generating elements by

〈K(·, ν)η,K(·, μ)ϕ〉 := (K(μ, ν)η, ϕ)G, ν, μ ∈ Ω, η, ϕ ∈ G, (4.1.5)

and extend it to a form on H̊(K) by〈∑n

j=1
αjK(·, νj)ϕj ,

∑m

i=1
βiK(·, μi)ψi

〉
=

n,m∑
i,j=1

(
K(μi, νj)αjϕj , βiψi

)
G
, (4.1.6)

where αj , βi ∈ C, νj , μi ∈ Ω, and ϕj , ψi ∈ G for j = 1, . . . , n, i = 1, . . . ,m.

In particular, one has by (4.1.5) for all f ∈ H̊(K)

〈f,K(·, μ)ϕ〉 = (f(μ), ϕ)G, μ ∈ Ω, ϕ ∈ G. (4.1.7)

Thus, the definition of the form 〈·, ·〉 in (4.1.6) implies the reproducing kernel
property in (4.1.7); the kernel K(·, ·) is called a reproducing kernel, relative to the

linear space H̊(K) in (4.1.4). It will now be shown that the form defined by (4.1.5)
or (4.1.6) is actually a scalar product.
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Lemma 4.1.4. Let Ω ⊂ C be an open set, let G be a Hilbert space, and let the kernel
K(·, ·) in (4.1.1) be nonnegative. Define the space H̊(K) by (4.1.4) and define the

form 〈·, ·〉 on H̊(K) as in (4.1.5) and (4.1.6). Then H̊(K) is a pre-Hilbert space with
the scalar product 〈·, ·〉.
Proof. A straightforward calculation shows that 〈·, ·〉 is a well-defined sesquilinear

form on H̊(K). By Lemma 4.1.2, the kernel K(·, ·) is symmetric and this yields that

〈·, ·〉 is symmetric. In order to show that 〈·, ·〉 is nonnegative on H̊(K), observe that〈∑n

j=1
αjK(·, νj)ϕj ,

∑n

i=1
αiK(·, νi)ϕi

〉
=

n∑
i,j=1

(
K(νi, νj)αjϕj , αiϕi

)
G

=
n∑

i,j=1

((
K(νi, νj)ϕj , ϕi

)
G
αj , αi

)
,

(4.1.8)

for all ν1, . . . , νn ∈ Ω, ϕ1, . . . , ϕn ∈ G, and α1, . . . , αn ∈ C. Clearly, the last term
is equal to⎛⎜⎝

⎛⎜⎝(K(ν1, ν1)ϕ1, ϕ1)G · · · (K(ν1, νn)ϕn, ϕ1)G
...

...
(K(νn, ν1)ϕ1, ϕn)G · · · (K(νn, νn)ϕn, ϕn)G

⎞⎟⎠
⎛⎜⎝α1

...
αn

⎞⎟⎠ ,

⎛⎜⎝α1

...
αn

⎞⎟⎠
⎞⎟⎠ .

The assumption that the kernel K(·, ·) is nonnegative means that the n×n matrix[
(K(νi, νj)ϕj , ϕi)G

]n
i,j=1

is nonnegative. Thus for a typical element

f =
n∑

j=1

αjK(·, νj)ϕj ∈ H̊(K)

one sees that 〈f, f〉 ≥ 0 and hence 〈·, ·〉 is a nonnegative symmetric sesquilinear

form on H̊(K). In particular, 〈·, ·〉 satisfies the Cauchy–Schwarz inequality. This

implies that 〈·, ·〉 is positive definite. In fact, if 〈f, f〉 = 0 for some f ∈ H̊(K), then

|〈f, g〉|2 ≤ 〈f, f〉〈g, g〉 = 0 for all g ∈ H̊(K).

Hence, with g = K(·, μ)ψ, μ ∈ Ω, ψ ∈ G, the reproducing kernel property (4.1.7)
shows that

0 = 〈f,K(·, μ)ψ〉 = (f(μ), ψ)G.

Thus, f(μ) = 0 for all μ ∈ Ω and so f = 0 ∈ H̊(K).

Summing up, it has been shown that 〈·, ·〉 is a positive definite symmetric

sesquilinear form on H̊(K), that is, 〈·, ·〉 is a scalar product and (H̊(K), 〈·, ·〉) is a
pre-Hilbert space. �
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In the following theorem it is shown that a nonnegative kernel K(·, ·) on Ω

produces a Hilbert space H(K), as a completion of H̊(K), of functions on Ω for which
point evaluation is a continuous map. Moreover, if the kernel is holomorphic and
uniformly bounded on compact subsets of Ω, then the functions in the resulting
Hilbert space are holomorphic.

Theorem 4.1.5. Let G be a Hilbert space, let K(·, ·) be a nonnegative kernel on the

open set Ω ⊂ C, and let the form 〈·, ·〉 on H̊(K) be defined as in (4.1.5) and (4.1.6).
Then the following statements hold:

(i) The completion H(K) of the pre-Hilbert space (H̊(K), 〈·, ·〉) can be identified
with a Hilbert space of G-valued functions defined on Ω.

(ii) For f ∈ H(K) one has the reproducing kernel property

〈f,K(·, μ)ϕ〉 = (f(μ), ϕ)G, μ ∈ Ω, ϕ ∈ G.

(iii) For λ ∈ Ω the point evaluation E(λ) : H(K) → G, f �→ E(λ)f = f(λ) is a
continuous linear mapping and

K(λ, μ) = E(λ)E(μ)∗, λ, μ ∈ Ω.

(iv) If the kernel K(·, ·) is holomorphic and uniformly bounded on every compact
subset of Ω, then the functions in H(K) are holomorphic on Ω.

Proof. (i) Let (H(K), 〈·, ·〉) be the Hilbert space that is obtained when one com-

pletes the pre-Hilbert space (H̊(K), 〈·, ·〉). It will be shown that the elements in
H(K) can be identified with G-valued functions on Ω. For this let f ∈ H(K) and
fix some λ ∈ Ω. Consider the functional

Ψf,λ : G→ C, ϕ �→ 〈K(·, λ)ϕ, f〉.

Then an application of the Cauchy–Schwarz inequality shows that

|Ψf,λ(ϕ)|2 = |〈K(·, λ)ϕ, f〉|2
≤ ‖K(·, λ)ϕ‖2‖f‖2
= 〈K(·, λ)ϕ,K(·, λ)ϕ〉‖f‖2
= (K(λ, λ)ϕ,ϕ)G‖f‖2
≤ ‖K(λ, λ)‖‖f‖2‖ϕ‖2G,

and hence Ψf,λ is continuous. By the Riesz representation theorem, there is a
unique vector ψf,λ ∈ G such that

(ϕ,ψf,λ)G = Ψf,λ(ϕ) = 〈K(·, λ)ϕ, f〉, ϕ ∈ G.
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Let F(Ω,G) be the space of all G-valued functions defined on Ω, and consider the
mapping

ι : H(K)→ F(Ω,G), f �→ ι(f), where ι(f)(λ) := ψf,λ. (4.1.9)

It follows from the definition of ι and ψf,λ that(
ι(f)(λ), ϕ

)
G
= (ψf,λ, ϕ)G = 〈f,K(·, λ)ϕ〉, (4.1.10)

and this equality also shows that ι is a linear mapping.

The mapping ι in (4.1.9) is injective. To see this, assume that ι(f) = 0
for some f ∈ H(K). This means ι(f)(λ) = 0 for all λ ∈ Ω, and (4.1.10) implies
〈f,K(·, λ)ϕ〉 = 0 for all λ ∈ Ω and ϕ ∈ G. Since the linear span of the functions

K(·, λ)ϕ forms the dense subspace H̊(K) of H(K), it follows that f = 0, that is, ι
is injective.

Observe that for f ∈ H̊(K) it follows from (4.1.10) and the reproducing kernel
property (4.1.7) that(

ι(f)(λ), ϕ
)
G
= 〈f,K(·, λ)ϕ〉 = (f(λ), ϕ)G, ϕ ∈ G,

for all λ ∈ Ω, and hence ι(f) = f for f ∈ H̊(K). In other words, ι restricted to the

dense subspace H̊(K) is the identity, so that ι(H̊(K)) = H̊(K).

Finally, item (i) follows when the subspace ran ι of F(Ω,G) is equipped with
the scalar product induced by H(K), that is, for f̃ , g̃ ∈ ran ι define

〈f̃ , g̃〉∼ := 〈ι−1f̃ , ι−1g̃〉.

Then ι is a unitary mapping from the Hilbert space (H(K), 〈·, ·〉) onto the Hilbert
space (ran ι, 〈·, ·〉∼).
(ii) After identifying ι(f) and f ∈ H(K) as in (i), the reproducing kernel property
is immediate from (4.1.10).

(iii) With the identification from (ii) observe that for all λ ∈ Ω and ϕ ∈ G the
mapping

f �→ (f(λ), ϕ)G (4.1.11)

is continuous on H(K). In fact, this follows from (ii) and the computation

|(f(λ), ϕ)G|2 = |〈f,K(·, λ)ϕ〉|2
≤ 〈f, f〉〈K(·, λ)ϕ,K(·, λ)ϕ〉
= (K(λ, λ)ϕ,ϕ)G‖f‖2.

For a fixed λ ∈ Ω the mapping

E(λ) : H(K)→ G, f �→ E(λ)f = f(λ),
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is closed. To see this, suppose that fn → f in H(K) and E(λ)fn → ψ in G. As
domE(λ) = H(K), it follows that f ∈ domE(λ) and the continuity of (4.1.11)
then yields

(ψ,ϕ)G = lim
n→∞(E(λ)fn, ϕ)G = lim

n→∞(fn(λ), ϕ)G

= (f(λ), ϕ)G = (E(λ)f, ϕ)G

for all ϕ ∈ G. This shows E(λ)f = ψ and hence E(λ) is a closed operator. Since
domE(λ) = H(K), the closed graph theorem implies that E(λ) is continuous.

It remains to check the identity K(λ, μ) = E(λ)E(μ)∗ for λ, μ ∈ Ω. For this
let ϕ,ψ ∈ G, λ, μ ∈ Ω, and note that E(μ)∗ϕ ∈ H(K) is a function in the variable
λ. Hence, E(λ)E(μ)∗ϕ = (E(μ)∗ϕ)(λ), the reproducing kernel property, and the
symmetry of the kernel K(·, ·) imply

(E(λ)E(μ)∗ϕ,ψ)G = ((E(μ)∗ϕ)(λ), ψ)G
= 〈E(μ)∗ϕ,K(·, λ)ψ〉
= (ϕ,E(μ)K(·, λ)ψ)G
= (ϕ,K(μ, λ)ψ)G

= (K(λ, μ)ϕ,ψ)G,

which shows that K(λ, μ) = E(λ)E(μ)∗.

(iv) Let f ∈ H(K) and choose a sequence fn ∈ H̊(K) such that fn → f in H(K).
By assumption, the functions K(·, μ)ϕ are holomorphic on Ω, and hence so are the
functions fn. Now let K ⊂ Ω be a compact set and let supλ∈K ‖K(λ, λ)‖ = MK .
Then for λ ∈ K one gets

|(f(λ)− fn(λ), ϕ)G| = |〈f − fn,K(·, λ)ϕ〉|
≤ ‖f − fn‖‖K(·, λ)ϕ‖
≤ ‖f − fn‖(K(λ, λ)ϕ,ϕ)1/2G

≤M
1/2
K ‖f − fn‖‖ϕ‖G,

and hence (fn(·), ϕ)G → (f(·), ϕ)G uniformly on K for all ϕ ∈ G. As K is an
arbitrary compact subset of Ω, it follows that the function λ �→ (f(λ), ϕ)G is
holomorphic on Ω for all ϕ ∈ G. This implies that f is holomorphic. �

If the kernel K(·, ·) is holomorphic and uniformly bounded on every compact
subset of Ω, then the elements in the reproducing kernel Hilbert space H(K) can
be described as holomorphic functions from Ω to G which satisfy an additional
boundedness condition involving the kernel K(·, ·).
Theorem 4.1.6. Let G be a Hilbert space, assume that K(·, ·) is a nonnegative
holomorphic kernel on the open set Ω ⊂ C which is uniformly bounded on every
compact subset of Ω, and let (H(K), 〈·, ·〉) be the associated reproducing kernel
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Hilbert space. Then f ∈ H(K) with ‖f‖ ≤ γ if and only if f : Ω→ G is holomorphic
and the n× n matrix

γ2
[
(K(νi, νj)ϕj , ϕi)G

]n
i,j=1

− [(f(νi), ϕi)G(f(νj), ϕj)G
]n
i,j=1

(4.1.12)

is nonnegative for all n ∈ N, ν1, . . . , νn ∈ Ω, and ϕ1, . . . , ϕn ∈ G.

Proof. In order to prove the necessary and sufficient conditions it is helpful to note
that the formulation of the condition (4.1.12) is based on the following identities.
For the reproducing kernel K(·, ·) one has, as in (4.1.8),

n∑
i,j=1

((
K(νi, νj)ϕj , ϕi

)
G
αj , αi

)
=
∥∥∥∑n

j=1
αjK(·, νj)ϕj

∥∥∥2 (4.1.13)

for all ν1, . . . , νn ∈ Ω, ϕ1, . . . , ϕn ∈ G, and α1, . . . , αn ∈ C. Furthermore, for a
function f : Ω→ G which is holomorphic one has

n∑
i,j=1

(
(f(νi), ϕi)G(f(νj), ϕj)G αj , αi

)
=

n∑
i,j=1

(f(νi), αiϕi)G(f(νj), αjϕj)G

=

( n∑
i=1

(f(νi), αiϕi)G

)( n∑
j=1

(f(νj), αjϕj)G

)

=

∣∣∣∣ n∑
j=1

(f(νj), αjϕj)G

∣∣∣∣2

=

∣∣∣∣ n∑
j=1

(αjϕj , f(νj))G

∣∣∣∣2

(4.1.14)

for all ν1, . . . , νn ∈ Ω, ϕ1, . . . , ϕn ∈ G, and α1, . . . , αn ∈ C.
Assume that the function f : Ω → G is holomorphic and there exists γ > 0

such that the n×n matrix (4.1.12) is nonnegative for all n ∈ N, ν1, . . . , νn ∈ Ω, and
ϕ1, . . . , ϕn ∈ G. Together with (4.1.13) and (4.1.14), this implies that the relation
from H(K) to C, spanned by the elements{

n∑
j=1

αjK(·, νj)ϕj ,
n∑

j=1

(αjϕj , f(νj))G

}
,

where ν1, . . . , νn ∈ Ω, ϕ1, . . . , ϕn ∈ G, and α1, . . . , αn ∈ C, is a bounded func-
tional with bound γ. Furthermore, it is densely defined on H(K), so that it admits
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a uniquely defined bounded linear extension defined on all of H(K). This func-
tional is represented by a unique element F ∈ H(K) with ‖F‖ ≤ γ via the Riesz
representation theorem. In particular this means that

(ϕ, f(ν))G = 〈K(·, ν)ϕ, F 〉, ν ∈ Ω, ϕ ∈ G,

whereas by the reproducing kernel property one has

〈K(·, ν)ϕ, F 〉 = 〈F,K(·, ν)ϕ〉 = (F (ν), ϕ)G = (ϕ, F (ν))G , ν ∈ Ω, ϕ ∈ G.

Combining the last two identities one concludes that f = F , which gives that
f ∈ H(K) and ‖f‖ ≤ γ.

For the converse statement, assume that f ∈ H(K) and ‖f‖ ≤ γ. Then the
function f : Ω→ G is holomorphic and for all ν1, . . . , νn ∈ Ω, ϕ1, . . . , ϕn ∈ G, and
α1, . . . , αn ∈ C one has by means of (4.1.14) and the fact that f ∈ H(K)

n∑
i,j=1

(
(f(νi), ϕi)G(f(νj), ϕj)G αj , αi

)
=

∣∣∣∣ n∑
j=1

(f(νj), αjϕj)G

∣∣∣∣2

=

∣∣∣∣ n∑
j=1

〈f, αjK(·, νj)ϕj〉
∣∣∣∣2

=

∣∣∣∣〈f, n∑
j=1

αjK(·, νj)ϕj

〉∣∣∣∣2

≤ ‖f‖2
∥∥∥∥ n∑
j=1

αjK(·, νj)ϕj

∥∥∥∥2.
Together with (4.1.13) and ‖f‖ ≤ γ this gives (4.1.12). �

Due to the holomorphy it is sometimes convenient to consider a set of func-
tions λ �→ K(λ, μ)ϕ, ϕ ∈ G, on a determining set of points μ ∈ Ω.

Corollary 4.1.7. Let K(·, ·) be a nonnegative holomorphic kernel on an open set
Ω ⊂ C which is uniformly bounded on every compact subset of Ω, and let H(K) be
the associated reproducing kernel Hilbert space. Let D ⊂ Ω be a set of points which
has an accumulation point in each connected component of Ω. Then

H(K) = span
{
λ �→ K(λ, μ)ϕ : μ ∈ D, ϕ ∈ G

}
.

Proof. The inclusion (⊃) is obvious from (4.1.4). To show the inclusion (⊂), it
suffices to verify that the linear space

span
{
λ �→ K(λ, μ)ϕ : μ ∈ D, ϕ ∈ G

}
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is dense in H(K). Therefore, let f ∈ H(K) be orthogonal to this set. Then

0 = 〈f,K(·, μ)ϕ〉 = (f(μ), ϕ)G

for all μ ∈ D and ϕ ∈ G, and hence f(μ) = 0 for all μ ∈ D. Since f ∈ H(K) is
holomorphic on Ω, the assumption on D now implies that f(λ) = 0 for all λ ∈ Ω.
Hence, f = 0 and the proof is complete. �

Let K(·, ·) be a nonnegative holomorphic kernel on an open set Ω. If Ω′ ⊂ C
is an open set such that Ω ⊂ Ω′ and if K′(·, ·) is a nonnegative holomorphic kernel
on Ω′ extending K(·, ·), then the functions in the reproducing kernel Hilbert space
H(K) may be seen as restrictions to Ω of the functions in the reproducing kernel
Hilbert space H(K′).

Proposition 4.1.8. Let K(·, ·) be a nonnegative holomorphic kernel on an open
set Ω ⊂ C which is uniformly bounded on every compact subset of Ω. Assume
that Ω′ ⊂ C is an open set such that Ω ⊂ Ω′ and that K′(·, ·) is a nonnegative
holomorphic kernel on Ω′ which is uniformly bounded on every compact subset of
Ω′ and which is equal to K(·, ·) on Ω. Then

H(K) =
{
f |Ω : f ∈ H(K′)

}
.

Proof. Consider the linear space of functions from Ω′ into G generated by K′(·, ·)
via

H̊(K′) := span
{
λ �→ K′(λ, μ)ϕ : μ ∈ Ω′, ϕ ∈ G

}
.

It is clear that the analogous linear space

H̊(K) := span
{
λ �→ K(λ, μ)ϕ : μ ∈ Ω, ϕ ∈ G

}
is contained in H̊(K′) in the sense that each function λ �→ K(λ, μ)ϕ with μ ∈ Ω is
the restriction to Ω of the function λ �→ K′(λ, μ)ϕ. Hence, a continuity argument
shows the inclusion

H(K) ⊂ {f |Ω : f ∈ H(K′)
}
.

For the opposite inclusion consider f |Ω : Ω→ C for some f ∈ H(K′), and set
γ = ‖f‖. Then, by Theorem 4.1.6, the matrix

γ2
[
(K′(νi, νj)ϕj , ϕi)G

]n
i,j=1

− [ (f(νi), ϕi)G (f(νj), ϕj)G
]n
i,j=1

is nonnegative for all n ∈ N, ν1, . . . , νn ∈ Ω′, and ϕ1, . . . , ϕn ∈ G. In particular,

γ2
[
(K(νi, νj)ϕj , ϕi)G

]n
i,j=1

− [ (f(νi), ϕi)G (f(νj), ϕj)G
]n
i,j=1

is nonnegative for all n ∈ N, ν1, . . . , νn ∈ Ω, and ϕ1, . . . , ϕn ∈ G. Another applica-
tion of Theorem 4.1.6 implies f |Ω ∈ H(K). �

Under suitable circumstances multiplication of a given reproducing kernel
by an operator function gives rise to a new reproducing kernel. In the follow-
ing proposition this fact and the relation between the corresponding reproducing
kernel Hilbert spaces are explained.
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Proposition 4.1.9. Let G be a Hilbert space, assume that K(·, ·) is a nonnegative
kernel on Ω, and let (H(K), 〈·, ·〉) be the associated reproducing kernel Hilbert space.
Let Φ : Ω→ B(G) be such that 0 ∈ ρ(Φ(λ)) for all λ ∈ Ω. Then

KΦ(λ, μ) = Φ(λ)K(λ, μ)Φ(μ)∗ (4.1.15)

is a nonnegative kernel on Ω and the corresponding reproducing Hilbert space
(H(KΦ), 〈·, ·〉Φ) is unitarily equivalent to H(K) via the mapping

MΦ : H(K)→ H(KΦ), f �→ Φf.

Moreover, if K(·, ·) is holomorphic and uniformly bounded on every compact sub-
set of Ω, and Φ is holomorphic, then also KΦ(·, ·) is holomorphic and uniformly
bounded on every compact subset of Ω.

Proof. The definition (4.1.15) leads to the identity(
(KΦ(λi, λj)ϕj , ϕi)G

)n
i,j=1

=
(
(K(λi, λj)Φ(λj)

∗ϕj ,Φ(λi)
∗ϕi)G

)n
i,j=1

.

Hence, the nonnegativity of K(·, ·) implies that KΦ(·, ·) is a nonnegative kernel.
Moreover, (4.1.15) shows that for all μ ∈ Ω and ϕ ∈ G

Φ(·)K(·, μ)ϕ = Φ(·)K(·, μ)Φ(μ)∗Φ(μ)−∗ϕ = KΦ(·, μ)Φ(μ)−∗ϕ.

Hence, MΦ maps H̊(K) onto H̊(KΦ). The identity〈
Φ(·)K(·, μ)ϕ,Φ(·)K(·, ν)ψ〉

Φ
=
〈
KΦ(·, μ)Φ(μ)−∗ϕ,KΦ(·, ν)Φ(ν)−∗ψ

〉
Φ

=
(
KΦ(ν, μ)Φ(μ)

−∗ϕ,Φ(ν)−∗ψ
)
G

=
(
Φ(ν)K(ν, μ)ϕ,Φ(ν)−∗ψ

)
G

=
(
K(ν, μ)ϕ,ψ

)
G

=
〈
K(·, μ)ϕ,K(·, ν)ψ〉,

which is valid for all μ, ν ∈ Ω and all ϕ,ψ ∈ G, shows that the mapping MΦ

from H̊(K) onto H̊(KΦ) is an isometry. Its unique bounded linear extension gives
a unitary mapping from H(K) onto H(KΦ). In order to see that this extension MΦ

acts as multiplication by Φ on all functions in H(K), let f ∈ H(K) and choose

a sequence fn ∈ H̊(K) such that fn → f in H(K). By isometry, the sequence
MΦfn converges to MΦf in H(KΦ). Observe that the approximating sequence
(fn) satisfies for all ϕ ∈ G〈

(MΦfn)(·),KΦ(·, μ)ϕ
〉
Φ
=
〈
Φ(·)fn(·),KΦ(·, μ)ϕ

〉
Φ

= (Φ(μ)fn(μ), ϕ)G

=
(
fn(μ),Φ(μ)

∗ϕ
)
G

=
〈
fn(·),K(·, μ)Φ(μ)∗ϕ

〉
.
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Hence, taking limits one sees that〈
(MΦf)(·),KΦ(·, μ)ϕ

〉
Φ
=
〈
f(·),K(·, μ)Φ(μ)∗ϕ〉,

and therefore (
(MΦf)(μ), ϕ

)
G
=
〈
(MΦf)(·),KΦ(·, μ)ϕ

〉
Φ

=
〈
f(·),K(·, μ)Φ(μ)∗ϕ〉

=
(
f(μ),Φ(μ)∗ϕ

)
G

=
(
Φ(μ)f(μ), ϕ

)
G

for all ϕ ∈ G. This shows (MΦf)(μ) = Φ(μ)f(μ) for all μ ∈ Ω.

The last assertion on the holomorphy and uniform boundedness of KΦ(·, ·)
on compact subsets of Ω is clear. �

4.2 Realization of uniformly strict Nevanlinna functions

The aim of this section is to show that every operator-valued uniformly strict
Nevanlinna function can be realized as the Weyl function corresponding to a
boundary triplet. The reproducing kernel Hilbert space associated with a given
uniformly strict Nevanlinna function will serve as a model space. The uniqueness
of the model is discussed as well.

Let G be a Hilbert space and let M be a B(G)-valued Nevanlinna function.
The associated Nevanlinna kernel

NM (·, ·) : Ω× Ω→ B(G)

with Ω = C \ R is defined by

NM (λ, μ) :=
M(λ)−M(μ)∗

λ− μ
, λ, μ ∈ C \ R, λ 	= μ, (4.2.1)

and NM (λ, λ) = M ′(λ), λ ∈ C \ R. Then clearly the kernel NM is symmetric. The
kernel NM is holomorphic, since

λ �→ NM (λ, μ)

is holomorphic for each μ ∈ C \ R. Moreover, from the definition of NM one sees
immediately that

NM (λ, λ) =
ImM(λ)

Imλ
, λ ∈ C \ R,

and hence NM (λ, λ) ≥ 0, λ ∈ C \ R. In the next theorem it turns out that the
kernel NM is, in fact, nonnegative on C \ R. Note also that the kernel NM is
uniformly bounded on compact subsets of C \ R since

‖NM (λ, λ)‖ ≤ ‖M(λ)‖
|Imλ| , λ ∈ C \ R.
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Theorem 4.2.1. Let M be a B(G)-valued Nevanlinna function. Then the kernel
NM in (4.2.1) is nonnegative.

Proof. The function M has the integral representation

M(λ) = α+ λβ +

∫
R

(
1

t− λ
− t

1 + t2

)
dΣ(t), λ ∈ C \ R, (4.2.2)

with self-adjoint operators α, β ∈ B(G), β ≥ 0, and a nondecreasing self-adjoint
operator function Σ : R→ B(G) such that∫

R

dΣ(t)

1 + t2
∈ B(G),

where the integral in (4.2.2) converges in the strong topology; cf. Theorem A.4.2.
For any n ∈ N, points λ1, . . . , λn ∈ C \ R, and elements ϕ1, . . . , ϕn ∈ G it follows
from (4.2.2) that(

(NM (λi, λj)ϕj , ϕi)G
)n
i,j=1

=
(
(βϕj , ϕi)G

)n
i,j=1

+

(((∫
R

1

t− λi

1

t− λj

dΣ(t)

)
ϕj , ϕi

)
G

)n

i,j=1

.
(4.2.3)

The first matrix on the right-hand side in (4.2.3) is nonnegative as for any vector
(x1, . . . , xn)

� ∈ Cn and ϕ =
∑

xiϕi the nonnegativity of the operator β implies⎛⎜⎝
⎛⎜⎝(βϕ1, ϕ1)G · · · (βϕn, ϕ1)G

...
...

(βϕ1, ϕn)G · · · (βϕn, ϕn)G

⎞⎟⎠
⎛⎜⎝x1

...
xn

⎞⎟⎠ ,

⎛⎜⎝x1

...
xn

⎞⎟⎠
⎞⎟⎠ =

(
βϕ, ϕ

)
G
≥ 0.

To see that the second matrix on the right-hand side in (4.2.3) is also nonnegative,
first use Proposition A.3.7 and Proposition A.3.4 to obtain⎛⎜⎝(((∫

R

1

t− λi

1

t− λj

dΣ(t)

)
ϕj , ϕi

)
G

)n

i,j=1

⎛⎜⎝x1

...
xn

⎞⎟⎠ ,

⎛⎜⎝x1

...
xn

⎞⎟⎠
⎞⎟⎠

= lim
a→−∞ lim

b→∞

n∑
i,j=1

∫ b

a

1

t− λi

1

t− λj

d
(
Σ(t)xjϕj , xiϕi

)
G
.

(4.2.4)

It is clear that for any finite partition a = t0 < t1 < · · · < tk = b of a finite interval
[a, b] one has

k∑
l=1

n∑
i,j=1

1

tl − λi

1

tl − λj

(
(Σ(tl)− Σ(tl−1))xjϕj , xiϕi

)
G

=
k∑

l=1

((
Σ(tl)− Σ(tl−1)

) n∑
j=1

xjϕj

tl − λj

,
n∑

i=1

xiϕi

tl − λi

)
G

≥ 0
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and when max |tl − tl−1| tends to zero these finite Riemann–Stieltjes sums con-
verge to

n∑
i,j=1

∫ b

a

1

t− λi

1

t− λj

d
(
Σ(t)xjϕj , xiϕi

)
G
≥ 0.

Hence, also (4.2.4) is nonnegative; thus, both matrices on the right-hand side in
(4.2.3) are nonnegative, and so is their sum, i.e., the kernel NM is nonnegative. �

According to Theorem 4.1.5, the nonnegative kernel NM gives rise to a Hilbert
space of holomorphic G-valued functions, which will be denoted by H(NM ), with
inner product 〈·, ·〉; cf. Section 4.1. Recall that the reproducing kernel property

〈f,NM (·, μ)ϕ〉 = (f(μ), ϕ)G, ϕ ∈ G, μ ∈ C \ R, (4.2.5)

holds for all functions f ∈ H(NM ). The main results in this section concern a
Nevanlinna function M and the construction of a self-adjoint relation which rep-
resents M in a sense to be explained. The construction will involve the associated
reproducing kernel space H(NM ).

Let M be a (not necessarily uniformly strict) B(G)-valued Nevanlinna func-
tion. The first main objective in this section is the contruction of a minimal model
in which the function

λ �→ −(M(λ) + λ)−1

is realized as the compressed resolvent of a self-adjoint relation. The uniqueness of
the construction will be discussed after the theorem. Note that the definition of the
self-adjoint relation involves multiplication by the independent variable; however,
the resulting functions do not necessarily belong to H(NM ).

Theorem 4.2.2. Let M be a B(G)-valued Nevanlinna function and let H(NM ) be the
associated reproducing kernel Hilbert space. Denote by PG the orthogonal projection
from H(NM )⊕G onto G and let ιG be the canonical embedding of G into H(NM )⊕G.
Then

Ã =

{{(
f
ϕ

)
,

(
f ′

−ϕ′

)}
:

f, f ′ ∈ H(NM ), ϕ, ϕ′ ∈ G,
f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′

}
(4.2.6)

is a self-adjoint relation in the Hilbert space H(NM )⊕G and the compressed resol-

vent of Ã onto G is given by

PG(Ã− λ)−1ιG = −(M(λ) + λ)−1, λ ∈ C \ R. (4.2.7)

Furthermore, the self-adjoint relation Ã satisfies the following minimality condi-
tion:

H(NM )⊕ G = span
{
G, ran (Ã− λ)−1ιG : λ ∈ C \ R}. (4.2.8)
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Proof. Step 1. The relation Ã in (4.2.6) contains an essentially self-adjoint relation.
Indeed, define the relation B in H(NM )⊕ G by

B = span

{{(
NM (·, μ)ϕ
−ϕ

)
,

(
μNM (·, μ)ϕ
M(μ)ϕ

)}
: ϕ ∈ G, μ ∈ C \ R

}
.

It follows from the definition of NM in (4.2.1) that

μNM (ξ, μ)ϕ− ξNM (ξ, μ)ϕ = M(μ)ϕ−M(ξ)ϕ, ϕ ∈ G.

Therefore, one sees from (4.2.6) that B ⊂ Ã. It remains to show that B is essen-
tially self-adjoint.

The symmetry of B is easily verified: it follows from the definition in (4.2.1)
and the reproducing kernel property (4.2.5) that((

μNM (·, μ)ϕ
M(μ)ϕ

)
,

(
NM (·, ν)ψ
−ψ

))
−
((

NM (·, μ)ϕ
−ϕ

)
,

(
νNM (·, ν)ψ
M(ν)ψ

))
= 〈μNM (·, μ)ϕ,NM (·, ν)ψ〉 − (M(μ)ϕ,ψ)G

− 〈NM (·, μ)ϕ, νNM (·, ν)ψ〉+ (ϕ,M(ν)ψ)G

= (μ− ν)(NM (ν, μ)ϕ,ψ)G − (M(μ)ϕ,ψ)G + (ϕ,M(ν)ψ)G = 0

for all ϕ,ψ ∈ G and all μ, ν ∈ C \ R. This identity implies that B is symmetric in
H(NM )⊕ G.

To see that B is essentially self-adjoint, it now suffices to establish that
ran (B − λ0) is dense in H(NM ) ⊕ G for arbitrary λ0 ∈ C \ R. Observe that it
follows from the definition that

ran (B − λ0) = span

{(
(μ− λ0)NM (·, μ)ϕ
(M(μ) + λ0)ϕ

)
: ϕ ∈ G, μ ∈ C \ R

}
.

The choice μ = λ0 together with the fact −λ0 ∈ ρ(M(λ0)) (see Definition A.4.1)
imply that ran (M(λ0) + λ0) = G and hence

{0} ⊕ G ⊂ ran (B − λ0). (4.2.9)

Therefore, also the elements of the form(
NM (·, μ)ϕ

0

)
, ϕ ∈ G, μ ∈ C \ R, μ 	= λ0, (4.2.10)

belong to ran (B − λ0). Moreover, since the set

span
{
NM (·, μ)ϕ : ϕ ∈ G, μ ∈ C \ R, μ 	= λ0

}
is dense in H(NM ), see Corollary 4.1.7, it follows from (4.2.9) and (4.2.10) that
ran (B − λ0) is dense in H(NM )⊕ G for all λ0 ∈ C \ R.
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Now let B be the closure of the symmetric relation B. It is clear that B is
symmetric and that ran (B−λ0) is closed (see Proposition 1.4.4 and Lemma 1.2.2).
Hence, it follows from the above considerations that ran (B − λ0) = H(NM ) ⊕ G,
and Theorem 1.5.5 yields that B is self-adjoint in H(NM )⊕ G.

Step 2. The relation Ã is self-adjoint. To prove this, it suffices to establish that
the closure of B coincides with the relation Ã.

First one shows that the relation Ã is closed. To see this, let{(
fn
ϕn

)
,

(
f ′
n

−ϕ′
n

)}
→
{(

f
ϕ

)
,

(
f ′

−ϕ′

)}
in

(
H(NM )

G

)
×
(
H(NM )

G

)
,

where the sequence on the left-hand side belongs to Ã, so that

f ′
n(ξ)− ξfn(ξ) = M(ξ)ϕn − ϕ′

n, ξ ∈ C \ R.
Then taking limits in the last identity and using the continuity of point evaluation
in H(NM ), see Theorem 4.1.5, leads to the identity

f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′, ξ ∈ C \ R.

Therefore, the relation Ã is closed.

Since B ⊂ Ã and Ã is closed, one has B ⊂ Ã. Hence, to see that Ã = B
it suffices to prove the inclusion Ã ⊂ B. As B is self-adjoint, it suffices to show
Ã ⊂ B∗. For this let {(

f
ϕ

)
,

(
f ′

−ϕ′

)}
∈ Ã.

Then f, f ′ ∈ H(NM ), ϕ,ϕ′ ∈ G, and

f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′, ξ ∈ C \ R. (4.2.11)

For an element in B of the form{(
NM (·, μ)ψ
−ψ

)
,

(
μNM (·, μ)ψ
M(μ)ψ

)}
with ψ ∈ G and some μ ∈ C \ R it follows that((

f ′

−ϕ′

)
,

(
NM (·, μ)ψ
−ψ

))
−
((

f
ϕ

)
,

(
μNM (·, μ)ψ
M(μ)ψ

))
=
(
f ′(μ)− μf(μ) + ϕ′ −M(μ)ϕ,ψ

)
G

=
(
M(μ)ϕ− ϕ′ + ϕ′ −M(μ)ϕ,ψ

)
G
= 0,

where (4.2.11) with ξ = μ was used. This implies Ã ⊂ B∗ and thus Ã = B. Hence,

Ã is self-adjoint in H(NM )⊕ G.
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Step 3. It remains to establish the identities (4.2.7) and (4.2.8). Both are direct
consequences of (4.2.6). In fact, let λ ∈ C \ R and note that

(Ã− λ)−1 =

{{(
f ′ − λf
−ϕ′ − λϕ

)
,

(
f
ϕ

)}
:

f, f ′ ∈ H(NM ), ϕ, ϕ′ ∈ G,
f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′

}
and hence

(Ã− λ)−1ιG =

{{
−ϕ′ − λϕ,

(
f
ϕ

)}
:
f ′ = λf, f ∈ H(NM ), ϕ, ϕ′ ∈ G,
f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′

}
.

The condition f ′ = λf yields (λ − ξ)f(ξ) = M(ξ)ϕ − ϕ′, ξ ∈ C \ R, and setting
ξ = λ one obtains ϕ′ = M(λ)ϕ. Conversely, if (λ − ξ)f(ξ) = (M(ξ) −M(λ))ϕ
and ϕ′ = M(λ)ϕ and f ′ = λf , then f ′(ξ) − ξf(ξ) = M(ξ)ϕ − ϕ′ for ξ ∈ C \ R.
Therefore,

(Ã− λ)−1ιG =

{{
−(M(λ) + λ)ϕ,

(
f
ϕ

)}
:

f ∈ H(NM ), ϕ ∈ G,
(λ− ξ)f(ξ) = (M(ξ)−M(λ))ϕ

}
and this yields PG(Ã − λ)−1ιG = −(M(λ) + λ)−1; recall that −λ ∈ ρ(M(λ)) for
all λ ∈ C \ R. Hence, (4.2.7) is shown. Moreover, from (4.2.1) it follows that

ranPH(NM )(Ã− λ)−1ιG =
{
f ∈ H(NM ) : (λ− ξ)f(ξ) = (M(ξ)−M(λ))ϕ,ϕ ∈ G

}
=
{−NM (ξ, λ)ϕ : ϕ ∈ G, ξ ∈ C \ R, ξ 	= λ

}
and hence

span
{
ranPH(NM )(Ã− λ)−1ιG : λ ∈ C \ R} = H(NM )

by Theorem 4.1.5 and Corollary 4.1.7. This implies (4.2.8). �

The model and the self-adjoint relation in Theorem 4.2.2 are unique up to
unitary equivalence. This is a consequence of the following general equivalence
result.

Theorem 4.2.3. Let G, H, and H′ be Hilbert spaces and let Ã and Ã′ be self-adjoint
relations in the product spaces H⊕ G and H′ ⊕ G, respectively. Denote by PG and
P ′
G the orthogonal projections from H⊕ G and H′ ⊕ G onto G, respectively, and let

ιG and ι′G be the corresponding canonical embeddings. Assume that Ã satisfies the
minimality condition

H⊕ G = span
{
G, ran (Ã− λ)−1ιG : λ ∈ C \ R} (4.2.12)

and that Ã′ satisfies the minimality condition

H′ ⊕ G = span
{
G, ran (Ã′ − λ)−1ι′G : λ ∈ C \ R}. (4.2.13)
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Furthermore, assume that

PG(Ã− λ)−1ιG = P ′
G(Ã

′ − λ)−1ι′G, λ ∈ C \ R. (4.2.14)

Then Ã and Ã′ are unitarily equivalent, that is, there exists a unitary operator
U ∈ B(H⊕ G,H′ ⊕ G) such that Ã′ = UÃU∗.

Proof. Note that the elements of the form

n∑
j=1

(
αjϕj + βj(Ã− λj)

−1ψj

)
, (4.2.15)

where ϕj , ψj ∈ G, αj , βj ∈ C, λj ∈ C \ R for j = 1, . . . , n, and n ∈ N are arbitrarily
chosen, form a dense subspace of the Hilbert space H ⊕ G by the assumption
(4.2.12). Likewise, the elements of the form

n′∑
j=1

(
α′
jϕ

′
j + β′

j(Ã
′ − λ′

j)
−1ψ′

j

)
, (4.2.16)

where ϕ′
j , ψ

′
j ∈ G, α′

j , β
′
j ∈ C, λ′

j ∈ C \ R for j = 1, . . . , n′, and n′ ∈ N are
arbitrarily chosen, form a dense subspace of the Hilbert space H′ ⊕ G by the
assumption (4.2.13).

Define the linear relation U from H ⊕ G to H′ ⊕ G as the linear span of all
pairs of the form⎧⎨⎩

n∑
j=1

(
αjϕj + βj(Ã− λj)

−1ψj

)
,

n∑
j=1

(
αjϕj + βj(Ã

′ − λj)
−1ψj

)⎫⎬⎭ ,

where ϕj , ψj ∈ G, αj , βj ∈ C, λj ∈ C \ R for j = 1, . . . , n, and n ∈ N are arbitrarily
chosen. Then according to (4.2.15) and (4.2.16) the relation U has a dense domain
and a dense range. To show that the relation U is isometric, i.e., ‖h′‖ = ‖h‖ for
all {h, h′} ∈ H, one has to verify that⎛⎝ n∑

j=1

(
αjϕj + βj(Ã

′ − λj)
−1ψj

)
,

n∑
i=1

(
αiϕi + βi(Ã

′ − λi)
−1ψi

)⎞⎠
=

⎛⎝ n∑
j=1

(
αjϕj + βj(Ã− λj)

−1ψj

)
,

n∑
i=1

(
αiϕi + βi(Ã− λi)

−1ψi

)⎞⎠ .

To see this, it suffices to observe that (4.2.14) implies(
(Ã′ − λj)

−1ψj , ϕi

)
G
=
(
P ′
G(Ã

′ − λj)
−1ψj , ϕi

)
G

=
(
PG(Ã− λj)

−1ψj , ϕi

)
G

=
(
(Ã− λj)

−1ψj , ϕi

)
G
,
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and, likewise, by symmetry,(
ϕj , (Ã

′ − λi)
−1ψi

)
G
=
(
ϕj , (Ã− λi)

−1ψi

)
G
.

Moreover, using the resolvent identity, one sees that for λj 	= λi (4.2.14) implies(
(Ã′ − λj)

−1ψj , (Ã
′ − λi)

−1ψi

)
G

=
(
(Ã′ − λj)

−1(Ã′ − λi)
−1ψj , ψi

)
G

= (λj − λi)
−1
[(
(Ã′ − λj)

−1ψj , ψi

)
G
− ((Ã′ − λi)

−1ψj , ψi

)
G

]
= (λj − λi)

−1
[(
(Ã− λj)

−1ψj , ψi

)
G
− ((Ã− λi)

−1ψj , ψi

)
G

]
=
(
(Ã− λj)

−1(Ã− λi)
−1ψj , ψi

)
G

=
(
(Ã− λj)

−1ψj , (Ã− λi)
−1ψi

)
G
,

and a limit argument together with the continuity of the resolvent shows that the
same is true in the case λj = λi. Thus, the relation U is isometric; hence it is
a well-defined isometric operator and the closure of U , denoted again by U , is a
unitary operator from H⊕ G onto H′ ⊕ G.

Next it will be shown that Ã and Ã′ are unitarily equivalent under U . To see
this, one needs to show

U(Ã− λ)−1 = (Ã′ − λ)−1U (4.2.17)

for some λ ∈ C \ R; cf. Lemma 1.3.8. Since all operators involved are bounded, it
suffices to check this identity on a dense set of H ⊕ G; thus, in fact, it suffices to
check this only for the elements in (4.2.15). Observe that for elements in (4.2.15)

with λ 	= λj and γj :=
βj

λj−λ one has, again by the resolvent identity,

U(Ã− λ)−1
(
αjϕj + βj(Ã− λj)

−1ψj

)
= U

(
(Ã− λ)−1 (αjϕj − γjψj) + γj(Ã− λj)

−1ψj

)
= (Ã′ − λ)−1 (αjϕj − γjψj) + γj(Ã

′ − λj)
−1ψj

= (Ã′ − λ)−1
(
αjϕj + βj(Ã

′ − λj)
−1ψj

)
= (Ã′ − λ)−1U

(
αjϕj + βj(Ã− λj)

−1ψj

)
,

and by the continuity of the resolvent the same relation holds also for λ = λj .
Thus, (4.2.17) has been established. �

The second main result in this section concerns a minimal model for uniformly
strict Nevanlinna functions. By means of Theorem 4.2.2 it will be shown that every
uniformly strict Nevanlinna function M is the Weyl function corresponding to a
boundary triplet of a simple symmetric operator in the Hilbert space H(NM ). After
this result it will be shown that every boundary triplet producing the same Weyl
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function is unitarily equivalent to the boundary triplet in this construction. Note
that the description of (SM )∗ involves functions which do not necessarily belong to
H(NM ); however the definition of SM concerns functions which remain in H(NM )
after multiplication by the independent variable.

Theorem 4.2.4. Let M be a uniformly strict B(G)-valued Nevanlinna function and
let H(NM ) be the associated reproducing kernel Hilbert space. Then

SM =
{{f, f ′} ∈ H(NM )2 : f ′(ξ) = ξf(ξ)

}
(4.2.18)

is a closed simple symmetric operator in H(NM ) and its adjoint is given by

(SM )∗ =
{{f, f ′} ∈ H(NM )2 : f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′, ϕ, ϕ′ ∈ G

}
. (4.2.19)

Moreover, the mappings

Γ0f̂ = ϕ and Γ1f̂ = ϕ′, f̂ ∈ (SM )∗, (4.2.20)

are well defined and {G,Γ0,Γ1} is a boundary triplet for (SM )∗. The corresponding
γ-field is given by

γ(λ)ϕ = −NM (·, λ)ϕ (4.2.21)

and the corresponding Weyl function is given by M .

Proof. By Theorem 4.2.2, the relation

Ã =

{{(
f
ϕ

)
,

(
f ′

−ϕ′

)}
:

f, f ′ ∈ H(NM ), ϕ, ϕ′ ∈ G,
f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′

}
is self-adjoint in H(NM )⊕ G. The relations in (4.2.18) and (4.2.19) are defined in
the component space H(NM ); the condition that M is uniformly strict makes it

possible to connect them with Ã.

Step 1. The relation SM in (4.2.18) is a closed symmetric operator with adjoint
(SM )∗ given by (4.2.19). First observe that the relation SM in (4.2.18) satisfies

SM = Ã ∩
((

H(NM )
{0}

)
×
(
H(NM )
{0}

))
, (4.2.22)

when the space H(NM ) × {0} is identified with H(NM ). Since Ã is self-adjoint,
(4.2.22) implies that SM is closed and symmetric, and it is clear from (4.2.18)
that SM is an operator. In order to find the adjoint of SM , let the relation TM be
defined by

TM =
{{f, f ′} ∈ H(NM )2 : f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′, ϕ, ϕ′ ∈ G

}
.

Observe that

{g, g′} ∈ (TM )∗ ⇔
{(

g
0

)
,

(
g′

0

)}
∈ Ã∗ = Ã ⇔ {g, g′} ∈ SM ,
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which leads to
(TM )∗∗ = (SM )∗.

Hence, to conclude (4.2.19), it suffices to show that TM is closed. To see this,
assume that {fn, f ′

n} ∈ TM converges in H(NM )2 to {f, f ′}. Then there exists a
sequence {ϕn, ϕ

′
n} ∈ G2 such that

f ′
n(ξ)− ξfn(ξ) = M(ξ)ϕn − ϕ′

n, ξ ∈ C \ R.
By Theorem 4.1.5 (iii), the point evaluation is continuous, so that

fn(ξ)→ f(ξ) and f ′
n(ξ)→ f ′(ξ).

Hence,
M(ξ)ϕn − ϕ′

n → f ′(ξ)− ξf(ξ)

for all ξ ∈ C \ R. Taking ξ = λ0 and ξ = λ0 with λ0 ∈ C \ R one sees that(
M(λ0)−M(λ0)

)
ϕn → f ′(λ0)− λ0f(λ0)−

(
f ′(λ0)− λ0f(λ0)

)
and using that ImM(λ0) is boundedly invertible (since M is assumed to be uni-
formly strict), it follows that

ϕn → ϕ and hence also ϕ′
n → ϕ′

for some ϕ,ϕ′ ∈ G. Therefore,

f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′, ξ ∈ C \ R.
In other words, {f, f ′} ∈ TM , and hence TM is closed.

Step 2. The mappings in (4.2.20) form a boundary triplet for (SM )∗. First note
that they are single-valued. Indeed, assume that {f, f ′} ∈ (SM )∗ is the trivial
element, then M(ξ)ϕ − ϕ′ = 0 for the corresponding elements ϕ,ϕ′ ∈ G and all
ξ ∈ C \ R. Taking ξ = λ0 and ξ = λ0 with λ0 ∈ C \ R and using the fact that
ker (ImM(λ0)) = {0}, one concludes that ϕ = 0 and ϕ′ = 0.

To verify the abstract Green identity, let f̂ = {f, f ′}, ĝ = {g, g′} ∈ (SM )∗.
Then

f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′ and g′(ξ)− ξg(ξ) = M(ξ)ψ − ψ′

for some ϕ,ϕ′, ψ, ψ′ in G and some ξ ∈ C \ R; moreover it is clear that{(
f
ϕ

)
,

(
f ′

−ϕ′

)}
,

{(
g
ψ

)
,

(
g′

−ψ′

)}
∈ Ã.

Since Ã is self-adjoint and thus symmetric, one sees that

〈f ′, g〉 − 〈f, g′〉 = (ϕ′, ψ)G − (ϕ,ψ′)G = (Γ1f̂ ,Γ0ĝ)G − (Γ0f̂ ,Γ1ĝ)G.
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Thus, the abstract Green identity is satisfied. It remains to show that Γ maps onto
G2, which then implies that {G,Γ0,Γ1} is a boundary triplet for (SM )∗.

First, it will be shown that ranΓ is dense in G2. Suppose that {α′, α} ∈ G2

is orthogonal to ranΓ, that is,

(α′, ϕ) + (α,ϕ′) = 0 for all {ϕ,ϕ′} ∈ ranΓ.

It follows that {(
0
α

)
,

(
0
α′

)}
∈ Ã∗ = Ã

and hence M(ξ)α + α′ = 0 for all ξ ∈ C \ R. Now as above one concludes that
α = 0 and α′ = 0. Therefore, ranΓ is dense in G2.

Next, it will be shown that ranΓ is closed. For this consider again the self-
adjoint relation Ã as a subspace of (H(NM )⊕ G)2 and define the orthogonal pro-
jections P and I − P by

P :

((
H(NM )

G

)
×
(
H(NM )

G

))
→
((

H(NM )
{0}

)
×
(
H(NM )
{0}

))
and

I − P :

((
H(NM )

G

)
×
(
H(NM )

G

))
→
(({0}

G

)
×
({0}

G

))
,

respectively. Then PÃ = TM = (SM )∗ is closed and hence, by Lemma C.4,

Ã +̂ kerP = Ã +̂

(({0}
G

)
×
({0}

G

))
is closed. Since Ã is self-adjoint, it follows from this and (1.3.5) that

Ã +̂

((
H(NM )
{0}

)
×
(
H(NM )
{0}

))
= Ã +̂ ker (I − P )

is closed. By Lemma C.4, the relation (I − P )Ã is closed. Observe that (I − P )Ã
is given by{{ϕ,−ϕ′} ∈ G2 : f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′, f, f ′ ∈ H(NM )

}
(4.2.23)

and hence (4.2.23) is closed. In other words, ran (Γ0,−Γ1)
� is closed or, equiva-

lently, ran (Γ0,Γ1)
� is closed.

Step 3. The γ-field and Weyl function corresponding to the boundary triplet
(4.2.20) are given by γ in (4.2.21) and M , respectively, and the symmetric op-
erator SM in (4.2.18) is simple.

To establish the assertion about M being the Weyl function, fix λ ∈ C \ R
and let f̂λ ∈ N̂λ((SM )∗). Then f ′

λ(ξ) = λfλ(ξ) for all ξ ∈ C \ R, and by (4.2.19)

(λ− ξ)fλ(ξ) = M(ξ)ϕλ − ϕ′
λ, ξ ∈ C \ R, (4.2.24)
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where ϕλ = Γ0f̂λ and ϕ′
λ = Γ1f̂λ. The choice ξ = λ in (4.2.24) showsM(λ)ϕλ = ϕ′

λ

and hence
M(λ)Γ0f̂λ = Γ1f̂λ.

As this is true for all f̂λ ∈ N̂λ((SM )∗) and all λ ∈ C \ R, one concludes that M is
the Weyl function corresponding to the boundary triplet (4.2.20).

To compute the γ-field and to show that SM is simple, assume again that
f̂λ ∈ N̂λ((SM )∗). Then (4.2.24) with ξ 	= λ implies that

fλ(ξ) =
M(ξ)ϕλ − ϕ′

λ

λ− ξ
= −M(ξ)−M(λ)

ξ − λ
ϕλ = −NM (ξ, λ)ϕλ.

Hence, the γ-field corresponding to the boundary triplet (4.2.20) is given by
(4.2.21), and since the elements fλ(·) = NM (·, λ)ϕλ ∈ ker ((SM )∗ − λ) form a
dense set in the Hilbert space H(NM ) (see Theorem 4.1.5 and Corollary 4.1.7), it
follows from Corollary 3.4.5 that SM is simple. �

Corollary 4.2.5. Let {G,Γ0,Γ1} be the boundary triplet from Theorem 4.2.4 for
(SM )∗. Then

A0 = ker Γ0 =
{{f, f ′} ∈ H(NM )2 : f ′(ξ)− ξf(ξ) = ϕ′, ϕ′ ∈ G

}
and

A1 = ker Γ1 =
{{f, f ′} ∈ H(NM )2 : f ′(ξ)− ξf(ξ) = M(ξ)ϕ, ϕ ∈ G

}
are self-adjoint relations in H(NM ).

It follows from Theorem 4.2.4 that mul (SM )∗ is the linear space spanned
by all linear combinations M(·)ϕ − ϕ′, ϕ,ϕ′ ∈ G, which belong to the Hilbert
space H(NM ). Likewise, it follows from Corollary 4.2.5 that mulA0 consists of
all constant functions in H(NM ), while mulA1 consists of all linear combinations
M(·)ϕ, ϕ ∈ G, which belong to the Hilbert space H(NM ).

The construction of the boundary triplet in Theorem 4.2.4 is unique up to
unitary equivalence. More precisely, if S is a simple symmetric operator in a Hilbert
space H and there is a boundary triplet for S∗ with the same Weyl function M as
in Theorem 4.2.4, then the boundary triplets are unitarily equivalent in the sense
of Definition 2.5.14 (where G = G′). This is a consequence of the following general
equivalence result, which is a further specification of Theorem 4.2.3.

Theorem 4.2.6. Let S and S′ be closed simple symmetric operators in Hilbert
spaces H and H′, respectively. Let {G,Γ0,Γ1} and {G,Γ′

0,Γ
′
1} be boundary triplets

for S∗ and (S′)∗ with γ-fields γ and γ′, respectively. Assume that the corresponding
Weyl functions M and M ′ coincide. Then the boundary triplets {G,Γ0,Γ1} and
{G,Γ′

0,Γ
′
1} are unitarily equivalent by means of a unitary operator U : H → H′

which is determined by the property

Uγ(λ) = γ′(λ), λ ∈ C \ R. (4.2.25)
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Proof. The basic idea of the proof follows the proof of Theorem 4.2.3. By as-
sumption, the Weyl functions M and M ′ of the boundary triplets {G,Γ0,Γ1} and
{G,Γ′

0,Γ
′
1} coincide. It follows from Proposition 2.3.6 (iii) that the corresponding

γ-fields γ and γ′ satisfy the identity

γ(μ)∗γ(λ) =
M(λ)−M(μ)∗

λ− μ

=
M ′(λ)−M ′(μ)∗

λ− μ
= γ′(μ)∗γ′(λ)

(4.2.26)

for all λ, μ ∈ C \ R, λ 	= μ, and γ(λ)∗γ(λ) = γ′(λ)∗γ′(λ) follows by continuity.
Define the linear relation U from H to H′ as the linear set of all pairs of the form⎧⎨⎩

n∑
j=1

αjγ(λj)ϕj ,
n∑

j=1

αjγ
′(λj)ϕj

⎫⎬⎭ ,

where ϕj ∈ G, αj ∈ C, λj ∈ C \ R for j = 1, . . . , n, and n ∈ N are arbitrarily
chosen. It is clear from the definition of U that its domain is given by

domU = span
{
ran γ(λ) : λ ∈ C \ R}

= span
{
ker ((S)∗ − λ) : λ ∈ C \ R},

and its range is given by

ranU = span
{
ran γ′(λ) : λ ∈ C \ R}

= span
{
ker ((S′)∗ − λ) : λ ∈ C \ R},

which are dense in H and H′, respectively, since S and S′ are both simple by
assumption; cf. Definition 3.4.3 and Corollary 3.4.5. From (4.2.26) it follows that
the relation U is isometric; hence, it is a well-defined isometric operator. Therefore,
U extends by continuity to a unitary operator from H to H′, denoted again by U .
From

Uγ(λ)ϕ = γ′(λ)ϕ, λ ∈ C \ R, ϕ ∈ G, (4.2.27)

it follows that for each λ ∈ C \ R the restriction U : ker (S∗−λ)→ ker ((S′)∗−λ)
is unitary. Thus, (4.2.27) implies by Proposition 2.3.6 (ii) that

Γ
{
γ(λ)ϕ, λγ(λ)ϕ

}
= {ϕ,M(λ)ϕ}
= {ϕ,M ′(λ)ϕ}
= Γ′{γ′(λ)ϕ, λγ′(λ)ϕ

}
= Γ′{Uγ(λ)ϕ, λUγ(λ)ϕ

}
,

and, in particular,

Γ0

{
γ(λ)ϕ, λγ(λ)ϕ

}
= Γ′

0

{
Uγ(λ)ϕ, λUγ(λ)ϕ

}
,

Γ1

{
γ(λ)ϕ, λγ(λ)ϕ

}
= Γ′

1

{
Uγ(λ)ϕ, λUγ(λ)ϕ

}
,

(4.2.28)

for all λ ∈ C \ R and ϕ ∈ G.
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Now let A0 = ker Γ0 and A′
0 = ker Γ′

0. Then the property (4.2.27) and Propo-
sition 2.3.2 (ii) imply

U
(
I + (λ− μ)(A0 − λ)−1

)
γ(μ) = Uγ(λ)

= γ′(λ)

=
(
I + (λ− μ)(A′

0 − λ)−1
)
γ′(μ)

=
(
I + (λ− μ)(A′

0 − λ)−1
)
Uγ(μ)

for all λ, μ ∈ C \ R, and hence

U(A0 − λ)−1γ(μ) = (A′
0 − λ)−1Uγ(μ), λ, μ ∈ C \ R.

Since S is simple, one sees that span {ran γ(μ) : μ ∈ C \ R} is a dense subspace of
H and hence

U(A0 − λ)−1 = (A′
0 − λ)−1U, λ ∈ C \ R,

and
U(A0 − λ)−1U∗ = (A′

0 − λ)−1, λ ∈ C \ R, (4.2.29)

follow. Therefore, by Lemma 1.3.8, the self-adjoint relations A′
0 and A0 are uni-

tarily equivalent, that is,

A′
0 =

{{Uf, Uf ′} : {f, f ′} ∈ A0

}
. (4.2.30)

This immediately yields

Γ′
0{Uf, Uf ′} = 0 and Γ0{f, f ′} = 0, {f, f ′} ∈ A0. (4.2.31)

Furthermore, each {f, f ′} ∈ A0 can be written as

{f, f ′} = {(A0 − λ)−1U∗g,
(
I + λ(A0 − λ)−1

)
U∗g
}

for some g ∈ H′, so that by means of (4.2.29), Proposition 2.3.2 (iv), and (4.2.27)
one obtains that

Γ′
1{Uf, Uf ′} = Γ′

1

{
U(A0 − λ)−1U∗g, U

(
I + λ(A0 − λ)−1

)
U∗g
}

= Γ′
1

{
(A′

0 − λ)−1g,
(
I + λ(A′

0 − λ)−1
)
g
}

= γ′(λ)∗g

= γ(λ)∗U∗g

= Γ1

{
(A0 − λ)−1U∗g,

(
I + λ(A0 − λ)−1

)
U∗g
}
.

Therefore,
Γ′
1{Uf, Uf ′} = Γ1{f, f ′}, {f, f ′} ∈ A0. (4.2.32)

To see that the boundary triplets are unitarily equivalent, first recall that A0

and A′
0 are unitarily equivalent, see (4.2.30), and that

N̂λ((S
′)∗) =

{{Ufλ, λUfλ} : {fλ, λfλ} ∈ S∗};
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cf. (4.2.27). The direct sum decompositions

(S′)∗ = A′
0 +̂ Nλ((S

′)∗) and S∗ = A0 +̂ Nλ(S
∗) (4.2.33)

for λ ∈ ρ(A0) = ρ(A′
0) from Theorem 1.7.1 now show that

(S′)∗ =
{{Uf, Uf ′} : {f, f ′} ∈ S∗}, (4.2.34)

so that S∗ and (S′)∗ are unitarily equivalent. It follows from (4.2.33) and the
equalities (4.2.28), (4.2.31), and (4.2.32) that

Γ′
0{Uf, Uf ′} = Γ0{f, f ′} and Γ′

1{Uf, Uf ′} = Γ1{f, f ′}, {f, f ′} ∈ S∗.

Together with (4.2.34) this shows that the boundary triplets are unitarily equiva-
lent. �

Let M be a uniformly strict B(G)-valued Nevanlinna function and consider
the corresponding model in Theorem 4.2.4. Denote the boundary triplet (4.2.20)
for (SM )∗ in this model by {G, (ΓM )0, (ΓM )1}:

(ΓM )0f̂ = ϕ and (ΓM )1f̂ = ϕ′, f̂ = {f, f ′} ∈ (SM )∗. (4.2.35)

According to Theorem 2.5.1 and Proposition 2.5.3 every operator matrix

W =

(
W11 W12

W21 W22

)
∈ B(G× G,G× G) (4.2.36)

with the properties (2.5.1) gives rise to a boundary triplet {G, (ΓM )′0, (ΓM )′1} for
(SM )∗ via (ΓM )′ = WΓM , that is,(

(ΓM )′0
(ΓM )′1

)
=

(
W11 W12

W21 W22

)(
(ΓM )0
(ΓM )1

)
, (4.2.37)

and the corresponding γ-field and Weyl function are then given by

γ′(λ) = γ(λ)
(
W11 +W12M(λ)

)−1
(4.2.38)

and
M ′(λ) =

(
W21 +W22M(λ)

)(
W11 +W12M(λ)

)−1
. (4.2.39)

The function M ′ = W[M ] in (4.2.39), being a Weyl function, is a uniformly
strict B(G)-valued Nevanlinna function. Let H(NM ′) be the associated reproducing
kernel Hilbert space. Then according to Theorem 4.2.4

SM ′ =
{{F, F ′} ∈ H(NM ′)2 : F ′(ξ) = ξF (ξ)

}
is a closed simple symmetric operator in H(NM ′) and its adjoint is given by

(SM ′)∗ =
{{F, F ′} ∈ H(NM ′)2 : F ′(ξ)− ξF (ξ) = M ′(ξ)ψ − ψ′, ψ, ψ′ ∈ G

}
.

(4.2.40)
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The corresponding boundary triplet {G, (ΓM ′)0, (ΓM ′)1} is given by

(ΓM ′)0F̂ = ψ, (ΓM ′)1F̂ = ψ′, F̂ = {F, F ′} ∈ (SM ′)∗, (4.2.41)

and according to Theorem 4.2.4 the corresponding Weyl function is M ′. In the
next proposition it will explained how this model for M ′ is connected with the
space H(NM ) and the transformed boundary triplet {G, (ΓM )′0, (ΓM )′1} for (SM )∗

in (4.2.37). The unitary map Φ in (4.2.43) below provides the unitary equivalence
between the boundary triplets in the sense of Theorem 4.2.6.

Proposition 4.2.7. Let M be the Weyl function in Theorem 4.2.4 with boundary
triplet {G, (ΓM )0, (ΓM )1} and let W be of the form (4.2.36) with the properties in
(2.5.1) so that {G, (ΓM )′0, (ΓM )′1} in (4.2.37) is a boundary triplet for (SM )∗ with
corresponding Weyl function M ′. Then the kernels NM and NM ′ are connected via

NM ′(λ, μ) = Φ(λ)NM (λ, μ)Φ(μ)∗, (4.2.42)

where Φ : C \ R→ B(G) is a holomorphic function given by

Φ(λ) =
(
W ∗

11 +M(λ)W ∗
12

)−1
. (4.2.43)

Furthermore, f̂ = {f, f ′} ∈ (SM )∗ if and only if F̂ = {Φf,Φf ′} ∈ (SM ′)∗, and the
boundary triplets in (4.2.37) and (4.2.41) are connected via

(Γ′
M )0f̂ = (ΓM ′)0F̂ and (Γ′

M )1f̂ = (ΓM ′)1F̂ (4.2.44)

for f̂ ∈ (SM )∗ and F̂ = {Φf,Φf ′} ∈ (SM ′)∗.

Proof. To establish (4.2.42), note that

NM ′(λ, μ) =
M ′(λ)−M ′(μ)∗

λ− μ
=

M ′(μ)−M ′(λ)∗

μ− λ
= γ′(λ)∗γ′(μ),

and hence, in view of (4.2.38) and (4.2.43),

NM ′(λ, μ) =
(
W ∗

11 +M(λ)W ∗
12

)−1
γ(λ)∗γ(μ)

(
W11 +W12M(μ)

)−1

= Φ(λ)γ(λ)∗γ(μ)Φ(μ)∗

= Φ(λ)NM (λ, μ)Φ(μ)∗

for all λ, μ ∈ C \ R.
Therefore, according to Proposition 4.1.9, each {F, F ′} ∈ H(NM ′)2 is of the

form
{F, F ′} = {Φf,Φf ′}, {f, f ′} ∈ H(NM )2, (4.2.45)

and conversely. Let {F, F ′} ∈ H(NM ′)2 and {f, f ′} ∈ H(NM )2 be connected by
(4.2.45), then

F ′(ξ)− ξF (ξ) = M ′(ξ)ψ − ψ′ ⇔ f ′(ξ)− ξf(ξ) = M(ξ)ϕ− ϕ′, (4.2.46)
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where ϕ,ϕ′ ∈ G and ψ,ψ′ ∈ G are related by(
ϕ
ϕ′

)
= W−1

(
ψ
ψ′

)
=

(
W ∗

22 −W ∗
12

−W ∗
21 W ∗

11

)(
ψ
ψ′

)
. (4.2.47)

In fact, if F ′(ξ)−ξF (ξ) = M ′(ξ)ψ−ψ′, then it follows from (4.2.45), (4.2.39), and
(4.2.43) that

f ′(ξ)− ξf(ξ) = Φ(ξ)−1
(
F ′(ξ)− ξF (ξ)

)
= Φ(ξ)−1(M ′(ξ)ψ − ψ′)

= Φ(ξ)−1(M ′(ξ)∗ψ − ψ′)

= Φ(ξ)−1
(
(W ∗

11 +M(ξ)W ∗
12)

−1(W ∗
21 +M(ξ)W ∗

22)ψ − ψ′)
= (W ∗

21 +M(ξ)W ∗
22)ψ − (W ∗

11 +M(ξ)W ∗
12)ψ

′

= M(ξ)(W ∗
22ψ −W ∗

12ψ
′)− (−W ∗

21ψ +W ∗
11ψ

′)
= M(ξ)ϕ− ϕ′,

where (4.2.47) was used in the last equality. Conversely, if {f, f ′} ∈ H(NM )2 and
f ′(ξ) − ξf(ξ) = M(ξ)ϕ − ϕ′, then a similar computation shows that {F, F ′} in
(4.2.45) satisfy F ′(ξ)− ξF (ξ) = M ′(ξ)ψ − ψ′ with ψ,ψ′ from (4.2.47).

Comparing (4.2.19) and (4.2.40), it follows from the equivalence (4.2.46) that

(SM ′)∗ =
{{Φf,Φf ′} : {f, f ′} ∈ (SM )∗

}
.

Moreover, from (4.2.35) and the model in Theorem 4.2.4 one then concludes

(ΓM )0f̂ = ϕ = W ∗
22ψ −W ∗

12ψ
′ and (ΓM )1f̂ = ϕ′ = −W ∗

21ψ +W ∗
11ψ

′

for f̂ ∈ (SM )∗, that is,(
(ΓM )0f̂

(ΓM )1f̂

)
=

(
W ∗

22 −W ∗
12

−W ∗
21 W ∗

11

)(
ψ
ψ′

)
, f̂ ∈ (SM )∗,

or, equivalently,(
W11 W12

W21 W22

)(
(ΓM )0f̂

(ΓM )1f̂

)
=

(
ψ
ψ′

)
, f̂ ∈ (SM )∗;

cf. (2.5.1). The result (4.2.44) now follows from (4.2.37) and (4.2.41). �

Finally, note that in Theorem 4.2.2 a model was constructed for a B(G)-
valued Nevanlinna function M . Under the extra condition that the Nevanlinna
function M is uniformly strict, Theorem 4.2.4 provides by means of this model a
boundary triplet for (SM )∗ for which M is the Weyl function. Observe that with

this boundary triplet the self-adjoint relation Ã in Theorem 4.2.2 in the Hilbert
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space H(NM )⊕G can be written by means of (4.2.19) and (4.2.20) in the alternative
way

Ã =

{{(
f

Γ0f̂

)
,

(
f ′

−Γ1f̂

)}
: f̂ = {f, f ′} ∈ (SM )∗

}
.

This representation is in fact the counterpart of the observations concerning Weyl
functions in Proposition 2.7.8.

4.3 Realization of scalar Nevanlinna functions
via L2-space models

In the case of a scalar Nevanlinna function M one may also construct a minimal
model via the corresponding integral representation

M(λ) = α+ βλ+

∫
R

(
1

t− λ
− t

1 + t2

)
dσ(t), λ ∈ C \ R. (4.3.1)

Here the constants α, β, and the nondecreasing function σ satisfy

α ∈ R, β ≥ 0,

∫
R

1

1 + t2
dσ(t) <∞. (4.3.2)

It is a consequence of this representation that

ImM(λ) = β +

∫
R

1

|t− λ|2 dσ(t), λ ∈ C \ R.

Therefore, a scalar Nevanlinna function M is equal to the real constant α if and
only if M is not uniformly strict, i.e., if and only if ImM(λ) = 0 for some, and
hence for all λ ∈ C \ R. Under the assumption that the Nevanlinna function is
not constant, a model involving the integral representation is constructed in this
section. Moreover, a concrete natural isomorphism between the new model space
and the reproducing kernel Hilbert space H(NM ) in Theorem 4.2.4 will be given.

The new model is build in the Hilbert space L2
dσ(R) consisting of all (equiv-

alence classes of) complex dσ-measurable functions f such that
∫
R |f |2 dσ < ∞,

equipped with the scalar product

(f, g)L2
dσ(R) :=

∫
R
f(t)g(t) dσ(t), f, g ∈ L2

dσ(R).

The following observations will be used in the construction of the model. Under
the integrability condition on σ in (4.3.2) one has that

t

1 + t2
,

1

1 + t2
∈ L2

dσ(R), (4.3.3)
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and, in addition,

f(t), tf(t) ∈ L2
dσ(R) ⇒ f(t) ∈ L1

dσ(R). (4.3.4)

It is first assumed for convenience that the linear term in the integral repre-
sentation (4.3.1) is absent, that is, β = 0. The general case β 	= 0 will be discussed
afterwards in Theorem 4.3.4. The usual notation for general elements {f, f ′} will
also be used here; the reader should be aware that f ′ is not the derivative here.

Theorem 4.3.1. Let M be a scalar Nevanlinna function of the form (4.3.1) with
β = 0 and assume that M is uniformly strict, that is, M is not identically equal
to a constant. Then

S =

{
{f(t), tf(t)} : f(t), tf(t) ∈ L2

dσ(R),
∫
R
f(t) dσ(t) = 0

}
(4.3.5)

is a closed simple symmetric operator in L2
dσ(R) and its adjoint is given by

S∗ =
{{f(t), f ′(t)} : f(t), f ′(t) ∈ L2

dσ(R), tf(t)− f ′(t) = c ∈ C
}
. (4.3.6)

Moreover, the mappings

Γ0f̂ = c and Γ1f̂ = αc+

∫
R

tf ′(t) + f(t)

1 + t2
dσ(t), f̂ = {f, f ′} ∈ S∗, (4.3.7)

are well defined and {C,Γ0,Γ1} is a boundary triplet for S∗. The corresponding
γ-field is given by the mapping

c �→ fλ(t) =
c

t− λ
∈ ker (S∗ − λ), (4.3.8)

and the corresponding Weyl function is M .

Proof. The proof consists of two steps. In Step 1 it will be shown that S in (4.3.5)
is a closed symmetric operator and that {C,Γ0,Γ1} is a boundary triplet for its
adjoint S∗ in (4.3.6). Moreover, it will be shown that the γ-field is given by (4.3.8)
and that M is the corresponding Weyl function. In Step 2 the simplicity of S is
concluded from Corollary A.1.5.

Step 1. The right-hand side of (4.3.6) is a relation which satisfies the conditions
in Theorem 2.1.9. To see this, denote the relation on the right-hand side of (4.3.6)
by T and think of Γ0 and Γ1 as being defined on T . Observe that the mapping Γ1

is well defined thanks to (4.3.3). Likewise, the operator S is well defined due to
(4.3.4).

First, it is clear that A0 = ker Γ0 ⊂ T is the maximal multiplication operator
by the independent variable in L2

dσ(R):

(A0f)(t) = tf(t), domA0 =
{
f(t) ∈ L2

dσ(R) : tf(t) ∈ L2
dσ(R)

}
.
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Since A0 is a self-adjoint operator in L2
dσ(R), one sees that condition (i) in Theo-

rem 2.1.9 is satisfied.

Next, one has that Γ is surjective. For this, note that, by (4.3.6), the defect

subspace N̂λ(T ), λ ∈ C \ R, of T consists of elements of the form

f̂λ =

{{
cλ

t− λ
,
λ cλ
t− λ

}
: cλ ∈ C

}
, (4.3.9)

which after a simple computation gives

Γ0f̂λ = cλ and Γ1f̂λ = M(λ)cλ,

or, in other words,
Γ1f̂λ = M(λ)Γ0f̂λ. (4.3.10)

Using (4.3.10) one now observes that(
Γ0(f̂λcλ + f̂λcλ)

Γ1(f̂λcλ + f̂λcλ)

)
=

(
cλ + cλ

M(λ)cλ +M(λ)cλ

)
=

(
1 1

M(λ) M(λ)

)(
cλ
cλ

)
.

This shows that Γ is surjective; just note that λ ∈ C \ R implies that ImM(λ) 	= 0.
Hence, condition (ii) in Theorem 2.1.9 is satisfied.

Finally, the abstract Green identity for T and Γ in Theorem 2.1.9 (iii) will

be exhibited. For this purpose, let f̂ = {f, f ′}, ĝ = {g, g′} ∈ T , and assume that
tf(t)− f ′(t) = c and tg(t)− g′(t) = d for some c, d ∈ C. Then a calculation shows
that

Γ1f̂ Γ0ĝ − Γ0f̂ Γ1ĝ

=

(
αc+

∫
R

tf ′(t) + f(t)

1 + t2
dσ(t)

)
d− c

(
αd+

∫
R

tg′(t) + g(t)

1 + t2
dσ(t)

)
=

∫
R

tf ′(t) + f(t)

1 + t2
d dσ(t)−

∫
R
c
tg′(t) + g(t)

1 + t2
dσ(t).

The last line gives, after substitution of c and d,∫
R

tf ′(t) + f(t)

1 + t2
(
tg(t)− g′(t)

)
dσ(t)−

∫
R

(
tf(t)− f ′(t)

) tg′(t) + g(t)

1 + t2
dσ(t)

=

∫
R
f ′(t)g(t) dσ(t)−

∫
R
f(t)g′(t) dσ(t)

= (f ′, g)L2
dσ(R) − (f, g′)L2

dσ(R).

Hence, also condition (iii) in Theorem 2.1.9 is satisfied.
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Therefore, all conditions of Theorem 2.1.9 have been verified. As a conse-
quence the relation ker Γ0 ∩ ker Γ1 is closed and symmetric. It coincides with S in
(4.3.5), since for f̂ ∈ T one has

Γ0f̂ = Γ1f̂ = 0 if and only if f ′(t) = tf(t) and

∫
R
f(t) dσ(t) = 0.

Thus, it follows from Theorem 2.1.9 that the adjoint of the closed symmetric
operator S in (4.3.5) is given by T and hence has the form (4.3.6), and, moreover,
{C,Γ0,Γ1} is a boundary triplet for S∗. As a byproduct of (4.3.9) and (4.3.10) one
sees that the corresponding γ-field is given by (4.3.8) and that the corresponding
Weyl function coincides with M .

Step 2. It remains to show that the operator S in (4.3.5) is simple. To see this,
assume that there is an element g ∈ L2

dσ(R) which is orthogonal to all elements
fλ ∈ ker (S∗ − λ), λ ∈ C \ R, that is,∫

R

1

t− λ
g(t) dσ(t) = 0, λ ∈ C \ R.

Then g = 0 in L2
dσ(R) by Corollary A.1.5. Thus, the linear span of the defect spaces

ker (S∗−λ), λ ∈ C \ R, is dense in L2
dσ(R) and now Corollary 3.4.5 implies that the

symmetric operator S is simple. This completes the proof of Theorem 4.3.1. �

Note that in the model in Theorem 4.3.1 the self-adjoint extension A0 is
equal to the operator of multiplication by the independent variable. The closed
minimal operator S is not densely defined if and only if the constant functions
belong to L2

dσ(R) or, equivalently, σ is a finite measure.

According to Theorem 4.2.6 the L2
dσ(R)-space model for the function M and

the model in Theorem 4.2.4 are unitarily equivalent thanks to the simplicity of
the underlying symmetric operators. A concrete unitary map will be provided in
the following proposition.

Proposition 4.3.2. Let M be the Nevanlinna function in (4.3.1) with β = 0, and
let H(NM ) be the associated reproducing kernel Hilbert space. Then the operator
V : L2

dσ(R)→ H(NM ) defined by the rule

f �→ −
∫
R

1

t− ξ
f(t) dσ(t), ξ ∈ C \ R, (4.3.11)

is unitary. Moreover, under this mapping the boundary triplets in Theorem 4.3.1
and Theorem 4.2.4 are unitarily equivalent.

Proof. It suffices to show that the operator in (4.3.11) satisfies (4.2.25); cf. Theo-
rem 4.2.6. In fact, recall that the γ-field corresponding to the boundary triplet in
Theorem 4.2.4 at a point λ ∈ C \ R is given by the mapping

c �→ −cNM (·, λ) ∈ ker ((SM )∗ − λ). (4.3.12)
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The γ-field corresponding to the boundary triplet in Theorem 4.3.1 at a point
λ ∈ C \ R is given by the mapping

c �→ fλ(t) =
c

t− λ
∈ ker (S∗ − λ). (4.3.13)

It follows from the integral representation (4.3.1) with β = 0 that

NM (ξ, λ) =
M(ξ)−M(λ)

ξ − λ
=

∫
R

1

t− ξ

1

t− λ
dσ(t).

In view of (4.3.11) and (4.3.13), it follows that

(V fλ)(ξ) = −
∫
R

1

t− ξ

c

t− λ
dσ(t) = −cNM (ξ, λ),

and taking into account (4.3.12) one concludes that (4.2.25) is satisfied. Hence,
Theorem 4.2.6 ensures that the operator V in (4.3.11) is well defined and uni-
tary, and the boundary triplets in Theorem 4.3.1 and Theorem 4.2.4 are unitarily
equivalent. �

The special case of a rational Nevanlinna function serves as an illustration of
Theorem 4.3.1. In this situation the measure dσ in (4.3.1) has only finitely many
point masses and the space L2

dσ(R) can be identified with Cn.

Example 4.3.3. Let α1 ∈ R, n ∈ N, γ1, . . . , γn > 0, and

−∞ < δ1 < δ2 < · · · < δn <∞,

and consider the rational complex Nevanlinna function

N(λ) = α1 +
n∑

i=1

γi
δi − λ

, λ 	= δi, i = 1, . . . , n. (4.3.14)

Define a nondecreasing step function σ : R→ [0,∞) by

σ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (−∞, δ1],

γ1, t ∈ (δ1, δ2],

γ1 + γ2, t ∈ (δ2, δ3],

. . .

γ1 + γ2 + · · ·+ γn, t ∈ (δn,∞),

and consider the corresponding L2-space L2
dσ(R) with the scalar product

(f, g)L2
dσ(R) =

∫
R
f(t)g(t) dσ(t) =

n∑
i=1

γi f(δi)g(δi).
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The rational Nevanlinna function N in (4.3.14) admits the integral representation

N(λ) = α+

∫
R

(
1

t− λ
− t

1 + t2

)
dσ(t)

as in (4.3.1), where

α := α1 +

∫
R

t

1 + t2
dσ(t) = α1 +

n∑
i=1

γi
δi

1 + δ2i
.

The Hilbert space L2
dσ(R) can be identified with (Cn, (·, ·)γ), where

(x, y)γ :=
n∑

i=1

γi xiyi, x = (x1, . . . , xn)
�, y = (y1, . . . , yn)

� ∈ Cn,

via the unitary mapping

L2
dσ(R) � f �→

⎛⎜⎝f(δ1)
...

f(δn)

⎞⎟⎠ ,

and the maximal operator of multiplication by the independent variable in L2
dσ(R)

is unitarily equivalent to the diagonal matrix⎛⎜⎝δ1 · · · 0
...

. . .
...

0 · · · δn

⎞⎟⎠ . (4.3.15)

As ∫
R
f(t) dσ(t) =

n∑
i=1

γif(δi) =

⎛⎜⎝
⎛⎜⎝f(δ1)

...
f(δn)

⎞⎟⎠ ,

⎛⎜⎝1
...
1

⎞⎟⎠
⎞⎟⎠
γ

,

the simple symmetric operator S in Theorem 4.3.1 is unitarily equivalent to the
restriction of the diagonal matrix in (4.3.15) to the orthogonal complement of the
subspace span (1, . . . , 1)�. Furthermore, S∗ corresponds to the relation{{f, f̃} ∈ Cn × Cn : δif(δi)− f ′(δi) = c ∈ C, i = 1, . . . , n

}
and the boundary triplet {C,Γ0,Γ1} in Theorem 4.3.1 is of the form

Γ0f̂ = c, Γ1f̂ = αc+

n∑
i=1

δif
′(δi) + f(δi)

1 + δ2i
, f̂ = {f, f ′} ∈ S∗.

According to Theorem 4.3.1, the corresponding Weyl function is the rational
Nevanlinna function N in (4.3.14).
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Now the general case of a scalar Nevanlinna function of the form (4.3.1) with
β > 0 will be addressed.

Theorem 4.3.4. Let M be a scalar Nevanlinna function of the form (4.3.1) with
β > 0. Then

S =

{{(
f(t)
0

)
,

(
tf(t)
h′

)}
: f(t), tf(t) ∈ L2

dσ(R),
∫
R
f(t) dσ(t) = −β1/2h′

}
is a closed simple symmetric operator in L2

dσ(R)⊕ C and its adjoint is given by

S∗ =

{{(
f(t)
h

)
,

(
f ′(t)
h′

)}
:
f(t), f ′(t) ∈ L2

dσ(R), h, h′ ∈ C,
tf(t)− f ′(t) = β−1/2h

}
.

Moreover, for f̂ ∈ S∗ the mappings

Γ0f̂ = β−1/2h and Γ1f̂ = αβ−1/2h+

∫
R

tf ′(t) + f(t)

1 + t2
dσ(t) + β1/2h′

are well defined and {C,Γ0,Γ1} is a boundary triplet for S∗. The corresponding
γ-field is given by the mapping

c �→ fλ(t) =

⎛⎝ c

t− λ

β1/2c

⎞⎠ ∈ ker (S∗ − λ) (4.3.16)

and the corresponding Weyl function is given by M .

Proof. The proof is similar to the one of Theorem 4.3.1, thus only a brief sketch
will be given. Denote the right-hand side of the formula for S∗ by T and think of
Γ0 and Γ1 as being defined on T . It is clear that A0 = ker Γ0 ⊂ T is the orthogonal
componentwise sum of the maximal multiplication operator by the independent
variable in L2

dσ(R) and the purely multivalued part {0} × C. Hence, A0 is a self-

adjoint relation. To show that Γ is surjective, note that the defect subspace N̂λ(T ),
λ ∈ C \ R, of T consists of elements of the form

f̂λ =

⎧⎨⎩
⎛⎝ cλ

t− λ

β1/2cλ

⎞⎠ ,

⎛⎝ λcλ
t− λ

λβ1/2cλ

⎞⎠⎫⎬⎭ ∈ N̂λ(S
∗),

which gives
Γ0f̂λ = cλ and Γ1f̂λ = M(λ)cλ.

Again, as in the proof of Theorem 4.3.1 it follows that Γ is surjective. It can be
checked by straightforward calculation as in the proof of Theorem 4.3.1 that the
abstract Green identity is satisfied. Thus, by Theorem 2.1.9, one concludes that
T is the adjoint of the closed symmetric relation S and that Γ0 and Γ1 define a
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boundary triplet for S∗. Hence, the statements about the γ-field and the Weyl
function follow.

To show the simplicity of S, assume that there is an element orthogonal to
Nλ(S

∗) for all λ ∈ C \ R, i.e., there exists an element g ∈ L2
dσ(R) and a constant

γ ∈ C such that ∫
R

1

t− λ
g(t) dσ(t) = γ, λ ∈ C \ R.

For λ = iy and y → ∞ it follows that γ = 0 and hence Corollary A.1.5 implies
g = 0. Therefore, the closed linear span of all Nλ(S

∗), λ ∈ C \ R, is equal to
L2
dσ(R)⊕C, and, as a consequence, the closed symmetric operator S is simple. �

In the situation of Theorem 4.3.4 one sees that S is a nondensely defined
operator and that mulS∗ is spanned by the vector(

0
1

)
∈ L2

dσ(R)⊕ C. (4.3.17)

Now A0 is the only self-adjoint extension of S which is multivalued: it is the
orthogonal sum of multiplication by the independent variable in L2

dσ and the space
spanned by (4.3.17).

Proposition 4.3.5. Let M be the Nevanlinna function in (4.3.1) with β > 0 and
let H(NM ) be the associated reproducing kernel Hilbert space. Then the operator
V : L2

dσ(R)⊕ C→ H(NM ) given by the rule(
f
h

)
�→ −β1/2h−

∫
R

1

t− ξ
f(t) dσ(t)

is unitary. Moreover, under this mapping the boundary triplets in Theorem 4.3.4
and Theorem 4.2.4 are unitarily equivalent.

Proof. The proof is similar to the one of Proposition 4.3.2 and will be sketched
briefly. Recall that the γ-field corresponding to the boundary triplet in Theo-
rem 4.2.4 at a point λ ∈ C \ R is given by the mapping

c �→ −cNM (·, λ) ∈ ker ((SM )∗ − λ), (4.3.18)

while the γ-field corresponding to the boundary triplet in Theorem 4.3.4 at a point
λ ∈ C \ R is given by the mapping

c �→ fλ(t) =

⎛⎝ c

t− λ

β1/2c

⎞⎠ ∈ ker (S∗ − λ). (4.3.19)

It follows from the integral representation (4.3.1) that

NM (ξ, λ) =
M(ξ)−M(λ)

ξ − λ
= β +

∫
R

1

t− ξ

1

t− λ
dσ(t).
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Hence, (4.3.18)–(4.3.19) and the fact that

(V fλ)(ξ) = −cβ −
∫
R

1

t− ξ

c

t− λ
dσ(t) = −cNM (ξ, λ),

imply that the property (4.2.25) holds. This implies that the boundary triplets in
Theorem 4.3.4 and Theorem 4.2.4 are unitarily equivalent. �

In the following it is briefly explained how the self-adjoint multiplication
operator in L2

dσ(R) and the model discussed in this section (in the case β = 0) are
connected with the spectral theory and the limit properties of the Weyl function
in Chapter 3. For this assume that σ : R → R is a nondecreasing function such
that ∫

R

1

1 + t2
dσ(t) <∞

and consider the self-adjoint multiplication operator

(A0f)(t) = tf(t), domA0 =
{
f ∈ L2

dσ(R) : t �→ tf(t) ∈ L2
dσ(R)

}
in L2

dσ(R). Then it is known from Example 3.3.7 that the spectrum σ(A0) coincides
with the set of growth points of the function σ, see (3.2.1), and the same is true
for the absolutely continuous part σac, singular continuous part σsc, and singular
part σs of σ. On the other hand, the one-dimensional restriction

S =

{
{f(t), tf(t)} : f(t), tf(t) ∈ L2

dσ(R),
∫
R
f(t) dσ(t) = 0

}
of A0 in Theorem 4.3.1 is a closed simple symmetric operator in L2

dσ(R) and
{C,Γ0,Γ1} in (4.3.7) is a boundary triplet for S∗ in (4.3.6) with A0 = ker Γ0 and
corresponding Weyl function

M(λ) = α+

∫
R

(
1

t− λ
− t

1 + t2

)
dσ(t), λ ∈ C \ R, (4.3.20)

where α is an arbitrary real number in the definition of the boundary map Γ1

in (4.3.7). Hence, the results on the description of the spectrum of A0 via the
limit properties of the Weyl function from Section 3.5 and Section 3.6 apply in
the present situation. For example, Theorem 3.6.5 shows that

σac(A0) = closac
({

x ∈ R : 0 < ImM(x+ i0) <∞}),
which is also clear from Theorem 3.2.6 (i), taking into account (3.1.25) and Corol-
lary 3.1.8 (ii). Similar observations can be made for the other spectral subsets.
In other words, in the special situation where A0 is the self-adjoint multiplication
operator in L2

dσ(R) the general description of the spectrum of A0 and its subsets
in Chapter 3 in terms of the limit properties of the associated Weyl function in
(4.3.20) agrees with Example 3.3.7.
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4.4 Realization of Nevanlinna pairs and
generalized resolvents

In this section the model from Section 4.2 for Nevanlinna functions will be extended
to the general setting of Nevanlinna pairs and of generalized resolvents. As a
byproduct the extended model leads to the Sz.-Nagy dilation theorem.

Let G be a Hilbert space and let {A,B} be a Nevanlinna pair of B(G)-valued
functions; cf. Section 1.12. The associated Nevanlinna kernel NA,B

NA,B(·, ·) : Ω× Ω→ B(G)

is defined on Ω = C \ R by

NA,B(λ, μ) =
B(λ)∗A(μ)−A(λ)∗B(μ)

λ− μ
, λ, μ ∈ C \ R, λ 	= μ, (4.4.1)

and NA,B(λ, λ) = B′(λ)∗A(λ) − A′(λ)∗B(λ), λ ∈ C \ R. Then clearly the ker-
nel NA,B is symmetric. Recall that λ �→ A(λ) and λ �→ B(λ) are holomorphic
mappings on C \ R. Hence,

λ �→ NA,B(λ, μ)

is holomorphic for each μ ∈ C \ R, that is, the kernel NA,B is holomorphic. More-
over, it follows from (4.4.1) and Definition 1.12.3 that

NA,B(λ, λ) =
Im (A(λ)∗B(λ))

Imλ
≥ 0, λ ∈ C \ R.

In the next theorem it is shown that the kernel NA,B is, in fact, nonnegative on
C \ R. Note also that the kernel NA,B is uniformly bounded on compact subsets
of C \ R since

‖NA,B(λ, λ)‖ ≤ ‖A(λ)∗‖‖B(λ)∗‖
|Imλ| , λ ∈ C \ R.

Theorem 4.4.1. Let {A,B} be a Nevanlinna pair in G. Then the kernel NA,B is
nonnegative.

Proof. To see this, let N be a uniformly strict B(G)-valued Nevanlinna function
and let ε > 0. Then εN is again a uniformly strict Nevanlinna function. Define
the function Sε by

Sε(λ) = −A(λ)
(
εN(λ)A(λ) +B(λ)

)−1
, λ ∈ C \ R.

By Proposition 1.12.6, Sε is a Nevanlinna function. A calculation shows that the
Nevanlinna kernel associated with the function Sε is of the form

NSε(λ, μ) =
(
εN(λ)A(λ) +B(λ)

)−∗·
· [NA,B(λ, μ) + εA(λ)∗NN (λ, μ)A(μ)

](
εN(μ)A(μ) +B(μ)

)−1
.

(4.4.2)
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Observe that for any ε > 0 the kernel NSε is nonnegative since Sε is a Nevanlinna
function. The identity (4.4.2) shows that the kernel

NA,B(λ, μ) + εA(λ)∗NN (λ, μ)A(μ) (4.4.3)

is nonnegative for any ε > 0.

To show that the kernel NA,B is nonnegative, assume the contrary, i.e., as-
sume that NA,B is not nonnegative. Then it follows from the definition of nonneg-
ativity that there exist n ∈ N, λ1, . . . , λn ∈ C \ R, elements ϕ1, . . . , ϕn ∈ G, and a
vector c ∈ Cn, such that((

(NA,B(λi, λj)ϕj , ϕi)G
)n
i,j=1

c, c
)
= x < 0.

Since −x > 0 and the kernel NN is nonnegative, one can choose ε > 0 so small
that

0 ≤ ε
((
(A(λi)

∗NN (λi, λj)A(λj)ϕj , ϕi)G
)n
i,j=1

c, c
)
< −x.

Combining these results one arrives at the inequality(((
(NA,B(λi, λj) + εA(λi)

∗NN (λi, λj)A(λj)
)
ϕj , ϕi)G

)n
i,j=1

c, c
)
< 0,

which contradicts the nonnegativity of the kernel in (4.4.3). Thus, the kernel NA,B

is nonnegative. �

Let {A,B} be a Nevanlinna pair in G. According to Theorem 4.1.5, with
the nonnegative kernel NA,B there is associated a Hilbert space of holomorphic
G-valued functions, which will be denoted by H(NA,B), with inner product 〈·, ·〉;
cf. Section 4.1. Recall that the reproducing kernel property

〈f,NA,B(·, μ)ϕ〉 = (f(μ), ϕ)G, ϕ ∈ G, μ ∈ C \ R,
holds for all functions f ∈ H(NA,B). The following realization result extends The-
orem 4.2.2 to the case of Nevanlinna pairs. It follows from Theorem 4.2.3 that
this construction is unique up to unitary equivalence. Note in this context that a
Nevanlinna function M always gives rise to a Nevanlinna pair {I,M}.
Theorem 4.4.2. Let {A,B} be a Nevanlinna pair in G and let τ = {A,B} be the
corresponding Nevanlinna family. Let H(NA,B) be the associated reproducing kernel
Hilbert space generated by {A,B}. Denote by PG the orthogonal projection from
H(NM ) ⊕ G onto G and let ιG be the canonical embedding of G into H(NM ) ⊕ G.
Then

ÃA,B =

{{(
f
ϕ

)
,

(
f ′

−ϕ′

)}
:

f, f ′ ∈ H(NA,B), ϕ, ϕ
′ ∈ G,

f ′(ξ)− ξf(ξ) = B(ξ)∗ϕ−A(ξ)∗ϕ′

}
is a self-adjoint relation in the Hilbert space H(NA,B) ⊕ G and the compressed

resolvent of ÃA,B onto G is given by

PG(ÃA,B − λ)−1ιG = −(τ(λ) + λ)−1, λ ∈ C \ R. (4.4.4)
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Furthermore, the self-adjoint relation ÃA,B satisfies the following minimality con-
dition:

H(NA,B)⊕ G = span
{
G, ran (ÃA,B − λ)−1ιG : λ ∈ C \ R}. (4.4.5)

Proof. The proof is almost the same as the proof of Theorem 4.2.2; therefore, only
the main elements are recalled and the details are left to the reader.

Step 1. Use the Nevanlinna pair {A,B} to define the auxiliary relation B in
H(NA,B)⊕ G by

B = span

{{(
NA,B(·, μ)ϕ
−A(μ)ϕ

)
,

(
μNA,B(·, μ)ϕ

B(μ)ϕ

)}
: ϕ ∈ G, μ ∈ C \ R

}
.

It is a direct computation to show that B ⊂ ÃA,B . Likewise, by a similar computa-
tion one verifies that B is symmetric in H(NA,B)⊕G. Observe that for λ0 ∈ C \ R
one has

ran (B − λ0) = span

{(
(μ− λ0)NA,B(·, μ)ϕ
(B(μ) + λ0A(μ))ϕ

)
: ϕ ∈ G, μ ∈ C \ R

}
.

Therefore, choosing μ = λ0 and taking into account that

ran (B(λ0) + λ0A(λ0)) = G

by Definition 1.12.3 and Lemma 1.12.5 it follows that {0} ⊕ G ⊂ ran (B − λ0);
hence also the elements of the form(

NA,B(·, μ)ϕ
0

)
, ϕ ∈ G, μ ∈ C \ R, μ 	= λ0,

belong to ran (B − λ0). It follows from Corollary 4.1.7 that ran (B − λ0) is dense
in H(NA,B)⊕ G, and thus B is essentially self-adjoint.

Step 2. One verifies in the same way as in the proof of Theorem 4.2.2 that ÃA,B is

closed and that ÃA,B ⊂ B∗. Since B ⊂ ÃA,B and B is self-adjoint, it follows that

ÃA,B is self-adjoint in H(NA,B)⊕ G.

Step 3. The statement (4.4.4) follows in a similar way as in Theorem 4.2.2. In fact,

observe that (ÃA,B − λ)−1 consists of all the elements{(
f ′ − λf
−ϕ′ − λϕ

)
,

(
f
ϕ

)}
, f, f ′ ∈ H(NA,B), ϕ, ϕ′ ∈ G,

for which
f ′(ξ)− ξf(ξ) = B(ξ)∗ϕ−A(ξ)∗ϕ′, ξ ∈ C \ R. (4.4.6)

Hence, the compression PG(ÃA,B − λ)−1ιG is formed by the pairs

{−ϕ′ − λϕ, ϕ}, ϕ, ϕ′ ∈ G, (4.4.7)
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which satisfy (4.4.6) for some f, f ′ ∈ H(NA,B) and, in addition, f ′(ξ) = λf(ξ) for
ξ ∈ C \ R. This implies that (4.4.6) becomes

(λ− ξ)f(ξ) = B(ξ)∗ϕ−A(ξ)∗ϕ′, ξ ∈ C \ R,

and the choice ξ = λ gives
B(λ)∗ϕ = A(λ)∗ϕ′. (4.4.8)

On the other hand, as τ(λ) = {{A(λ)ψ,B(λ)ψ} : ψ ∈ G}, one has by the symmetry
property of the Nevanlinna family τ and (1.10.3) that

τ(λ) = τ(λ)∗ =
{{ψ,ψ′} : B(λ)∗ψ = A(λ)∗ψ′},

and since the pair {ϕ,ϕ′} in (4.4.7) satisfies (4.4.8), it follows that {ϕ,ϕ′} ∈ τ(λ).
Hence, {−ϕ′ − λϕ, ϕ} ∈ −(τ(λ) + λ)−1, which yields the inclusion

PG(ÃA,B − λ)−1ιG ⊂ −(τ(λ) + λ)−1.

Since the compressed resolvent of ÃA,B and −(τ(λ) + λ)−1 are both everywhere
defined and bounded operators (4.4.4) follows.

Finally, the minimality condition (4.4.5) is shown in the same way as in the
proof of Theorem 4.2.2. �

Theorem 4.4.2 provides a representation of the resolvent of the Nevanlinna
family τ in terms of the model for the Nevanlinna pair {A,B}. Now let {C,D} be
a Nevanlinna pair which is equivalent to {A,B}:

C(λ) = A(λ)X(λ) and D(λ) = B(λ)X(λ), (4.4.9)

where X(λ), λ ∈ C \ R, is a bounded and boundedly invertible holomorphic op-
erator function in B(H); cf. Section 1.12. Then the kernels NA,B and NC,D of the
Nevanlinna pairs in (4.4.9) are connected by

NC,D(λ, μ) = X(λ)∗NA,B(λ, μ)X(μ). (4.4.10)

The following special case is of interest.

Lemma 4.4.3. Let {A,B} be a Nevanlinna pair in H and consider the bounded and
boundedly invertible holomorphic operator function X(λ) = (B(λ) + λA(λ))−1,
λ ∈ C \ R. Then the Nevanlinna pair {C,D} in (4.4.9) satisfies

C(λ)∗ = C(λ), D(λ)∗ = D(λ), and D(λ) + λC(λ) = I,

and for λ, μ ∈ C \ R the corresponding Nevanlinna kernel can be written as

NC,D(λ, μ) =
D(λ)C(μ)∗ − C(λ)D(μ)∗

λ− μ
=

C(μ)∗ − C(λ)

λ− μ
− C(λ)C(μ)∗.



4.4. Realization of Nevanlinna pairs and generalized resolvents 265

Let again {A,B} be a Nevanlinna pair, let τ be the corresponding Nevanlinna
family, and consider a Nevanlinna pair {C,D} which is equivalent to {A,B} via
(4.4.9), so that it generates the same Nevanlinna family τ . Then according to
Theorem 4.4.2,

ÃC,D =

{{(
F
ψ

)
,

(
F ′

−ψ′

)}
:

F, F ′ ∈ H(NC,D), ψ, ψ′ ∈ G,
F ′(ξ)− ξF (ξ) = D(ξ)∗ψ − C(ξ)∗ψ′

}
(4.4.11)

is a self-adjoint relation in the Hilbert space H(NC,D) ⊕ G and the compressed

resolvent of ÃC,D onto G is given by

PG(ÃC,D − λ)−1ιG = −(τ(λ) + λ)−1, λ ∈ C \ R.

Furthermore, the self-adjoint relation ÃC,D satisfies the following minimality con-
dition:

H(NC,D)⊕ G = span
{
G, ran (ÃC,D − λ)−1ιG : λ ∈ C \ R}.

The explicit connection between the various models involving these kernels in The-
orem 4.4.2 now depends on Proposition 4.1.9. The corresponding self-adjoint rela-
tions are then unitarily equivalent in the sense of Definition 1.3.7 and Lemma 1.3.8.

Lemma 4.4.4. Let the Nevanlinna pairs {A,B} and {C,D} be equivalent in the
sense of (4.4.9). Then the mapping U defined by

U :

(
H(NA,B)

G

)
→
(
H(NC,D)

G

)
,

(
f(ξ)
ϕ

)
�→
(
X(ξ)∗f(ξ)

ϕ

)
, (4.4.12)

is unitary. Moreover, the self-adjoint relation ÃA,B in H(NA,B) ⊕ G in Theo-

rem 4.4.2 and the self-adjoint relation ÃC,D in H(NC,D)⊕G in (4.4.11) are unitarily

equivalent under the mapping U , that is, ÃC,D = UÃA,BU
∗.

Proof. In the identity (4.4.10) set Φ(λ) = X(λ)∗ with X(λ) as in (4.4.9). Since
X(λ) is boundedly invertible one may apply Proposition 4.1.9 and hence U in
(4.4.12) is unitary. Now consider an element{(

f
ϕ

)
,

(
f ′

−ϕ′

)}
∈ ÃA,B ,

so that
f ′(ξ)− ξf(ξ) = B(ξ)∗ϕ−A(ξ)∗ϕ′, ξ ∈ C \ R.

Then with F (ξ) = X(ξ)∗f(ξ) and F ′(ξ) = X(ξ)∗f ′(ξ) it follows that

F ′(ξ)− ξF (ξ) = X(ξ)∗B(ξ)∗ϕ−X(ξ)∗A(ξ)∗ϕ′ = D(ξ)∗ϕ− C(ξ)∗ϕ′.

This implies {
U

(
f
ϕ

)
, U

(
f ′

−ϕ′

)}
=

{(
F
ϕ

)
,

(
F ′

−ϕ′

)}
∈ ÃC,D.
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One verifies in the same way that every element{(
F
ϕ

)
,

(
F ′

−ϕ′

)}
∈ ÃC,D

can be written in the form{
U

(
f
ϕ

)
, U

(
f ′

−ϕ′

)}
for some

{(
f
ϕ

)
,

(
f ′

−ϕ′

)}
∈ ÃA,B .

This shows that the self-adjoint relations ÃA,B and ÃC,D are unitarily equivalent
under the mapping U ; cf. Definition 1.3.7. �

The discussions in this section so far centered mainly on Nevanlinna pairs
and will now be put in a slightly different context.

Definition 4.4.5. Let H be a Hilbert space and let R be a B(H)-valued function
defined on C \ R. Then R is a called a generalized resolvent if it has the following
properties:

(i) λ �→ R(λ) is holomorphic on C \ R;
(ii) R(λ)∗ = R(λ), λ ∈ C \ R;
(iii)

ImR(λ)

Imλ
−R(λ)R(λ)∗ ≥ 0, λ ∈ C \ R.

With the function R one associates the kernel RR

RR(·, ·) : Ω× Ω→ B(H),

defined on Ω = C \ R by

RR(λ, μ) =
R(λ)−R(μ)∗

λ− μ
−R(λ)R(μ)∗, λ, μ ∈ C \ R, λ 	= μ, (4.4.13)

and R(λ, λ) = R′(λ)−R(λ)2, λ ∈ C \ R. Then clearly the kernel RR is symmetric.
Since λ �→ R(λ) is holomorphic, the mapping λ �→ RR(λ, μ) is holomorphic for
each μ ∈ C \ R, that is, the kernel RR is holomorphic. Note also that the kernel
RR is uniformly bounded on compact subsets of C \ R since

‖RR(λ, λ)‖ ≤ ‖R(λ)‖
|Imλ| + ‖R(λ)‖2, λ ∈ C \ R.

For RR to be a reproducing kernel in the sense of Theorem 4.1.5 one needs non-
negativity.

Lemma 4.4.6. Let R : C \ R → B(H) be a generalized resolvent. Then the kernel
RR(·, ·) is nonnegative.
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Proof. Introduce the pair of B(H)-valued functions C and D by

C(λ) = −R(λ) and D(λ) = I + λR(λ), λ ∈ C \ R.

Since R is a generalized resolvent, a straightforward computation shows that
{C,D} is a Nevanlinna pair and that the kernels satisfy

NC,D(λ, μ) = RR(λ, μ), λ, μ ∈ C \ R; (4.4.14)

cf. (4.4.1) and (4.4.13). Now it follows from Theorem 4.4.1 (with G = H) that the
kernel RR(·, ·) is nonnegative. �

Let R : C \ R → B(H) be a generalized resolvent. By Theorem 4.1.5, the
corresponding nonnegative kernel RR induces a Hilbert space of holomorphic H-
valued functions, which will be denoted by H(RR), with inner product 〈·, ·〉; cf.
Section 4.1. Recall that the reproducing kernel property

〈f,RR(·, μ)ϕ〉 = (f(μ), ϕ)H, ϕ ∈ H, μ ∈ C \ R,

holds for all functions f ∈ H(RR). The following result gives a representation of
the function R.

Corollary 4.4.7. Let R : C \ R → B(H) be a generalized resolvent and let H(RR)
be the associated reproducing kernel Hilbert space. Denote by PH the orthogonal
projection from H(RR)⊕H onto H and let ιH be the canonical embedding of H into
H(RR)⊕ H. Then

ÃR =

{{(
f
h

)
,

(
f ′

−h′

)}
:

f, f ′ ∈ H(RR), h, h
′ ∈ H,

f ′(ξ)− ξf(ξ) = (I + ξR(ξ))h+R(ξ)h′

}
is a self-adjoint relation in the Hilbert space H(RR)⊕H and the compressed resol-

vent of ÃR onto H is given by

PH(ÃR − λ)−1ιH = R(λ), λ ∈ C \ R.

Furthermore, the self-adjoint relation ÃR satisfies the following minimality condi-
tion:

H(RR)⊕ H = span
{
H, ran (ÃR − λ)−1ιH : λ ∈ C \ R}. (4.4.15)

Proof. Let R : C \ R→ B(H) be a generalized resolvent and consider the Nevan-
linna pair {C,D} defined by

{C(λ), D(λ)} = {−R(λ), I + λR(λ)
}
;

cf. the proof of Lemma 4.4.6. Then the kernels NC,D and RR coincide by (4.4.14)
and hence one has H(NC,D) = H(RR). Now Theorem 4.4.2 (with G = H) can be

applied to the Nevanlinna family τ(λ) = {C(λ), D(λ)}. It follows that ÃR := ÃC,D
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is a self-adjoint relation in the Hilbert space H(RR) ⊕ H and that its compressed
resolvent is given by

PH(ÃR − λ)−1ιH = −(τ(λ) + λ)−1 = R(λ), λ ∈ C \ R,
where the fact that τ(λ)+λ = {−R(λ), I} was used in the last equality. Moreover,
the minimality condition (4.4.15) holds. �

By Corollary 4.4.7, every generalized resolvent can be interpreted as a com-
pressed resolvent of a self-adjoint relation. Such compressed resolvents have been
discussed briefly in the context of the Krĕın formula in Section 2.7 and will be
further studied in Section 4.5. The next theorem complements Corollary 4.4.7 by
providing equivalent conditions. In particular, generalized resolvents or, equiva-
lently, compressed resolvents, are characterized as Stieltjes transforms of nonde-
creasing families of nonnegative contractions. As a simple consequence one obtains
the Sz.-Nagy dilation theorem in Corollary 4.4.9.

Theorem 4.4.8. Let H be a Hilbert space and let R : C \ R→ B(H) be an operator
function. Then the following statements are equivalent:

(i) The function R is a generalized resolvent.

(ii) There exist a Hilbert space K and a self-adjoint relation Ã in the space H⊕K
such that

R(λ) = PH(Ã− λ)−1ιH, λ ∈ C \ R.
Furthermore, the self-adjoint relation Ã satisfies the following minimality
condition:

H⊕ K = span
{
H, ran (Ã− λ)−1ιH : λ ∈ C \ R}.

(iii) There exists a nondecreasing function Σ : R → B(H), whose values are
nonnegative contractions, such that

∫
R dΣ(t) ∈ B(H), ‖ ∫R dΣ(t)‖ ≤ 1, and

R(λ) =

∫
R

1

t− λ
dΣ(t), λ ∈ C \ R.

Proof. (i) ⇒ (ii) This follows directly from Corollary 4.4.7.

(ii) ⇒ (iii) Since Ã is self-adjoint, one can write

(Ã− λ)−1 =

∫
R

1

t− λ
dE(t), λ ∈ C \ R,

with the spectral measure E(·) of Ã; cf. (1.5.6). The function t �→ E((−∞, t)) is a
nondecreasing family of orthogonal projections from R to B(H ⊕ K) and one has
that

R(λ) = PH(Ã− λ)−1ιH =

∫
R

1

t− λ
dPHE(t)ιH.



4.4. Realization of Nevanlinna pairs and generalized resolvents 269

Now define Σ(t) = PHE((−∞, t))ιH, which is a nondecreasing family of nonnega-
tive contractions from R to B(H) that satisfies

∫
R dΣ(t) ∈ B(H) and the estimate

‖ ∫R dΣ(t)‖ ≤ 1.

(iii) ⇒ (i) It is clear that the function R : C \ R → B(H) is holomorphic and
satisfies R(λ) = R(λ)∗ for λ ∈ C \ R. Moreover, it follows from Proposition A.5.4
that

ImR(λ)

Imλ
−R(λ)R(λ)∗ =

ImR(λ)

Imλ
−R(λ)∗R(λ) ≥ 0, λ ∈ C \ R,

which implies that R is a generalized resolvent. �

The next corollary is a variant of the dilation theorem, which goes back to
M.A. Năımark and B. Sz.-Nagy; here it is obtained from Theorem 4.4.8 and the
Stieltjes inversion formula.

Corollary 4.4.9. Let Σ : R → B(H) be a left-continuous nondecreasing function,
whose values are nonnegative contractions, such that∫

R
dΣ(t) ∈ B(H),

∥∥∥∥∫
R
dΣ(t)

∥∥∥∥ ≤ 1, and Σ(−∞) = 0.

Then there exist a Hilbert space K and a left-continuous nondecreasing function
E : R→ B(H⊕ K), whose values are orthogonal projections, such that

Σ(t) = PHE(t)ιH, t ∈ R.

Proof. Associate with Σ the function

R(λ) =

∫
R

1

t− λ
dΣ(t), λ ∈ C \ R. (4.4.16)

By Theorem 4.4.8, there exists a Hilbert space K and a self-adjoint relation Ã in
H⊕ K such that the compression of the resolvent of Ã onto H is given by

PH(Ã− λ)−1ιH = R(λ), λ ∈ C \ R. (4.4.17)

Let E(·) be the spectral measure of Ã and let t �→ E((−∞, t)) be the corresponding
spectral function, which is left-continuous and satisfies limt→−∞ E((−∞, t)) = 0.
As in the proof of Theorem 4.4.8 one has

PH(Ã− λ)−1ιH = PH

(∫
R

1

t− λ
dE(t)

)
ιH =

∫
R

1

t− λ
dPHE(t)ιH.

Taking into account (4.4.16) and (4.4.17), it follows that∫
R

1

t− λ
dPHE(t)ιH =

∫
R

1

t− λ
dΣ(t), λ ∈ C \ R,
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and hence for all h ∈ H∫
R

1

t− λ
d(E(t)ιHh, ιHh) =

∫
R

1

t− λ
d(Σ(t)h, h), λ ∈ C \ R.

Since the functions t �→ (E(t)ιHh, ιHh) and t �→ (Σ(t)h, h) are left-continuous, and

lim
t→−∞

(
E((−∞, t))ιHh, ιHh

)
= 0 = (Σ(−∞)h, h),

the Stieltjes inversion formula in Corollary A.1.2 yields (E(t)ιHh, ιHh) = (Σ(t)h, h)
for all t ∈ R and h ∈ H. This leads to the assertion. �

4.5 Krĕın’s formula for exit space extensions

Let S be a closed symmetric relation in the Hilbert space H, let {G,Γ0,Γ1} be
a boundary triplet for S∗, A0 = ker Γ0, and let γ and M be the corresponding
γ-field and Weyl function, respectively. Suppose that Ã is a self-adjoint extension
of S in H ⊕ H′, where H′ is the exit space. It was shown in Theorem 2.7.4 that
there exists a Nevanlinna family τ(λ), λ ∈ C \ R, in G such that

PH(Ã− λ)−1ιH = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)∗, λ ∈ C \ R,

holds. This is Krĕın’s formula for the compressed resolvents of self-adjoint exit
space extensions (as studied by M.A. Năımark); it is also referred to as Krĕın–
Năımark formula in this text; cf. Section 2.7.

The goal of this section is to show the converse statement. More precisely,
it will be proved that for every Nevanlinna family τ(λ), λ ∈ C \ R, in the Hilbert

space G there exists a self-adjoint exit space extension Ã of S such that the com-
pressed resolvent of Ã onto H is given by the Krĕın–Năımark formula. The following
result is a first step.

Lemma 4.5.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0, and let γ and M be the corresponding
γ-field and Weyl function, respectively. Let τ = {A,B} be a Nevanlinna family in
G and define R(λ), λ ∈ C \ R, by

R(λ) = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)∗. (4.5.1)

Then the kernel

RR(λ, μ) =
R(λ)−R(μ)∗

λ− μ
−R(λ)R(μ)∗, λ, μ ∈ C \ R, λ 	= μ, (4.5.2)

satisfies
RR(λ, μ) = W (λ)NA,B(λ, μ)W (μ)∗, (4.5.3)
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where
W (λ) = γ(λ)

(
M(λ)A(λ) +B(λ)

)−∗
. (4.5.4)

In particular, the kernel RR is nonnegative, symmetric, holomorphic, and uni-
formly bounded on compact subsets of C \ R.
Proof. Step 1. For λ ∈ C \ R introduce the following notations

R0(λ) = (A0 − λ)−1 and Q(λ) =
(
M(λ) + τ(λ)

)−1
,

so that R in (4.5.1) is given by

R(λ) = R0(λ)− γ(λ)Q(λ)γ(λ)∗.

Rewrite the kernel RR(·, ·) in (4.5.2) in terms of this notation:

RR(λ, μ) =
1

λ− μ

(
R0(λ)−R0(μ)

∗ − γ(λ)Q(λ)γ(λ)∗ + γ(μ)Q(μ)∗γ(μ)∗
)

− (R0(λ)− γ(λ)Q(λ)γ(λ)∗
)(
R0(μ)

∗ − γ(μ)Q(μ)∗γ(μ)∗
)

=
1

λ− μ

(−γ(λ)Q(λ)γ(λ)∗ + γ(μ)Q(μ)∗γ(μ)∗
)

+R0(λ)γ(μ)Q(μ)∗γ(μ)∗ + γ(λ)Q(λ)γ(λ)∗R0(μ)
∗

− γ(λ)Q(λ)γ(λ)∗γ(μ)Q(μ)∗γ(μ)∗.

Recall that, by Proposition 2.3.2 (ii) and Proposition 2.3.6 (iii),

R0(λ)γ(μ) =
γ(λ)− γ(μ)

λ− μ
, γ(λ)∗R0(μ)

∗ =
γ(λ)∗ − γ(μ)∗

λ− μ
,

and

γ(λ)∗γ(μ) =
(
γ(μ)∗γ(λ)

)∗
=

(
M(λ)−M(μ)∗

λ− μ

)∗
=

M(λ)−M(μ)∗

λ− μ
.

Therefore, the kernel RR(·, ·) has the form

RR(λ, μ) =
1

λ− μ
γ(λ)

[
Q(μ)∗ −Q(λ)

+Q(λ)M(μ)∗Q(μ)∗ −Q(λ)M(λ)Q(μ)∗
]
γ(μ)∗.

(4.5.5)

Step 2. Express the identity (4.5.5) in terms of the Nevanlinna pair {A,B}, repre-
senting the Nevanlinna family τ . For this, consider the equivalent Nevanlinna pair
{C,D} as in Lemma 4.4.3, that is,

C(λ) = A(λ)X(λ) and D(λ) = B(λ)X(λ),
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where X(λ) = (B(λ) + λA(λ))−1, so that

NC,D(λ, μ) =
D(λ)C(μ)∗ − C(λ)D(μ)∗

λ− μ
. (4.5.6)

Observe that Q(λ) can be written in terms of τ = {C,D} as

Q(λ) = C(λ)
(
M(λ)C(λ) +D(λ)

)−1
;

cf. (1.12.10). It follows that

Q(λ) = Q(λ)∗ =
(
C(λ)M(λ) +D(λ)

)−1
C(λ) (4.5.7)

and
Q(μ)∗ = Q(μ) = C(μ)∗

(
C(μ)M(μ) +D(μ)

)−∗
. (4.5.8)

Inserting the expressions (4.5.7) and (4.5.8) in (4.5.5) one arrives after a straight-
forward computation at the identity

RR(λ, μ) = Z(λ)NC,D(λ, μ)Z(μ)∗,

where the factor Z(λ) is given by

Z(λ) = γ(λ)
(
C(λ)M(λ) +D(λ)

)−1
. (4.5.9)

Recall that NA,B and NC,D are related via (4.4.10). Therefore, with (4.5.6) and
(4.5.9) one obtains the identity (4.5.3), where

W (λ) = γ(λ)
(
C(λ)M(λ) +D(λ)

)−1(
B(λ) + λA(λ)

)−∗
. (4.5.10)

The proof is finished by writing the normalized pair {C,D} in (4.5.10) in terms
of the pair {A,B}. Observe that since X(λ) = (B(λ) + λA(λ))−1, the symmetry
property B(λ)∗A(λ) = A(λ)∗B(λ) of the Nevanlinna pair yields(

B(λ)∗ + λA(λ)∗
)(
C(λ)M(λ) +D(λ)

)
=
(
B(λ)∗ + λA(λ)∗

)(
A(λ)X(λ)M(λ) +B(λ)X(λ)

)
= A(λ)∗

(
B(λ) + λA(λ)

)
X(λ)M(λ) +B(λ)∗

(
B(λ) + λA(λ)

)
X(λ)

= A(λ)∗M(λ) +B(λ)∗

=
(
M(λ)A(λ) +B(λ)

)∗
,

which gives (4.5.4).

It follows from (4.5.3) and (4.5.4) that the kernel RR in (4.5.2) is nonnegative,
symmetric, holomorphic, and uniformly bounded on compact subsets of C \ R. �

Lemma 4.5.1 shows that RR(·, ·) is a reproducing kernel. Therefore, one may
apply Theorem 4.4.8.
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Theorem 4.5.2. Let S be a closed symmetric relation, let {G,Γ0,Γ1} be a boundary
triplet for S∗ with A0 = ker Γ0, and let γ and M be the corresponding γ-field and
Weyl function, respectively. Let τ be a Nevanlinna family in G. Then there exist
an exit Hilbert space H′ and a self-adjoint relation Ã in H⊕ H′ such that Ã is an
extension of S and the compressed resolvent of Ã is given by the Krĕın–Năımark
formula:

PH(Ã−λ)−1ιH = (A0−λ)−1−γ(λ)
(
M(λ)+τ(λ)

)−1
γ(λ)∗, λ ∈ C \ R. (4.5.11)

Furthermore, the self-adjoint relation Ã satisfies the following minimality condi-
tion:

H⊕ H′ = span
{
H, ran (Ã− μ)−1ιH : μ ∈ C \ R}. (4.5.12)

Proof. Define the function R as in Lemma 4.5.1. Then R is a B(H)-valued holo-
morphic function on C \ R which satisfies R(λ) = R(λ)∗ and so, by Lemma 4.5.1,
R is a generalized resolvent. Hence, by Theorem 4.4.8, the function R is a com-
pressed resolvent, that is, there exist a Hilbert space H′ and a self-adjoint relation
Ã in H⊕ H′ such that

R(λ) = PH(Ã− λ)−1ιH, λ ∈ C \ R;

this implies (4.5.11) Moreover, it follows from Theorem 4.4.8 that Ã satisfies the
minimality condition (4.5.12).

It remains to prove that S ⊂ Ã. Observe first that by (4.5.11) the Štraus

family corresponding to Ã satisfies

T (λ) =
{{R(λ)h, (I + λR(λ))h} : h ∈ H

}
⊂ {R0(λ)h, (I + λR0(λ))h : h ∈ H

}
+̂
{{γ(λ)ϕ, λγ(λ)ϕ} : ϕ ∈ G

}
.

Since each relation on the right-hand side is contained in S∗, so is the relation
T (λ). As T (λ)∗ = T (λ), it follows that S ⊂ T (λ). Now let {f, f ′} ∈ S so that for
each λ ∈ C \ R there exists h ∈ H′ such that{(

f
h

)
,

(
f ′

λh

)}
∈ Ã.

The relation Ã is self-adjoint and, in particular, symmetric. Therefore, one sees
that (f ′, f) + λ(h, h) ∈ R, while by definition (f ′, f) ∈ R. Since λ ∈ C \ R, it
follows that h = 0, and thus {(

f
0

)
,

(
f ′

0

)}
∈ Ã.

This shows that S ⊂ Ã. �
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4.6 Orthogonal coupling of boundary triplets

In this section a different look is taken at the Krĕın–Năımark formula. By means of
an abstract coupling method for direct orthogonal sums of symmetric relations and
corresponding boundary triplets, a particular self-adjoint extension Ã of the direct
sum is identified, and it is shown that the compressed resolvent of Ã is of the same
form as in the Krĕın–Năımark formula. When combined with Theorem 4.2.4, this
coupling procedure provides a constructive approach to the exit space extension
in Theorem 4.5.2 in the special case where the Nevanlinna family τ is a uniformly
strict Nevanlinna function.

First a slightly more general, abstract point of view is adopted. In the fol-
lowing let S and T be closed symmetric relations in the Hilbert spaces H and H′,
respectively, and assume that the defect numbers of S and T coincide:

n+(S) = n−(S) = n+(T ) = n−(T ) ≤ ∞.

Let {G,Γ0,Γ1} be a boundary triplet for S∗ with A0 = ker Γ0 and let {G,Γ′
0,Γ

′
1}

be a boundary triplet for T ∗ with B0 = ker Γ′
0. Then it is easy to see that the direct

orthogonal sum S ⊕̂T is a closed symmetric relation in H⊕H′ and {G⊕G, Γ̃0, Γ̃1},
where

Γ̃0

(
f̂
ĝ

)
=

(
Γ0f̂
Γ′
0ĝ

)
and Γ̃1

(
f̂
ĝ

)
=

(
Γ1f̂
Γ′
1ĝ

)
, f̂ ∈ S∗, ĝ ∈ T ∗, (4.6.1)

is a boundary triplet for (S ⊕̂T )∗ = S∗ ⊕̂T ∗, and that

Ã0 := A0 ⊕̂B0 = ker Γ̃0 (4.6.2)

is a self-adjoint extension of S ⊕̂T in H ⊕ H′. Furthermore, if γ and γ′ denote
the γ-fields corresponding to the boundary triplets {G,Γ0,Γ1} and {G,Γ′

0,Γ
′
1},

and M and τ are the Weyl functions corresponding to {G,Γ0,Γ1} and {G,Γ′
0,Γ

′
1},

respectively, then it is clear that for λ ∈ ρ(Ã0) = ρ(A0) ∩ ρ(B0) the γ-field γ̃ and

the Weyl function M̃ corresponding to the boundary triplet {G ⊕ G, Γ̃0, Γ̃1} have
the forms

γ̃(λ) =

(
γ(λ) 0
0 γ′(λ)

)
and M̃(λ) =

(
M(λ) 0
0 τ(λ)

)
. (4.6.3)

Let Ã be a self-adjoint extension of S ⊕̂ T in H ⊕ H′. Then Krĕın’s formula in
Theorem 2.6.1 has the form

(Ã− λ)−1 = (Ã0 − λ)−1 + γ̃(λ)
(
Θ̃− M̃(λ)

)−1
γ̃(λ)∗

for all λ ∈ ρ(Ã)∩ ρ(Ã0), where γ̃ and M̃ denote the γ-field and the Weyl function

corresponding to the boundary triplet {G ⊕ G, Γ̃0, Γ̃1} in (4.6.3). If Θ̃ = {A,B}
with A,B ∈ B(G⊕ G), then

(Ã− λ)−1 = (Ã0 − λ)−1 − γ̃(λ)A
(
M̃(λ)A−B

)−1
γ̃(λ)∗,
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see Corollary 2.6.3. Writing A and B as block operators

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
,

where Aij ,Bij ∈ B(G), it follows that

M̃(λ)A−B =

(
M(λ)A11 −B11 M(λ)A12 −B12

τ(λ)A21 −B21 τ(λ)A22 −B22

)
,

so that

A
(
M̃(λ)A−B

)−1
=

(
A11 A12

A21 A22

)(
M(λ)A11 −B11 M(λ)A12 −B12

τ(λ)A21 −B21 τ(λ)A22 −B22

)−1

.

The following proposition exhibits a particular self-adjoint extension of S ⊕̂T in
H⊕ H′.

Proposition 4.6.1. Let S and T be closed symmetric relations in the Hilbert spaces
H and H′ with boundary triplets {G,Γ0,Γ1} and {G,Γ′

0,Γ
′
1} as above, respectively.

Then

Ã =

{(
f̂
ĝ

)
: f̂ ∈ S∗, ĝ ∈ T ∗, Γ0f̂ = Γ′

0ĝ, Γ1f̂ = −Γ′
1ĝ

}
(4.6.4)

is a self-adjoint relation in H⊕H′ and for all λ ∈ C \ R the resolvent of Ã has the
form

(Ã− λ)−1 = (Ã0 − λ)−1 − γ̃(λ)

(
(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

)
γ̃(λ)∗,

where Ã0 and γ̃ are as in (4.6.2), and M and τ denote the Weyl functions corre-
sponding to {G,Γ0,Γ1} and {G,Γ′

0,Γ
′
1}, respectively.

Proof. Consider the boundary triplet {G ⊕ G, Γ̃0, Γ̃1} in (4.6.1) and observe that
the relation

Θ̃ :=

{{(
ϕ
ϕ

)
,

(
ψ
−ψ
)}

: ϕ,ψ ∈ G

}
(4.6.5)

is self-adjoint in G⊕ G. Hence, by Corollary 2.1.4 and (4.6.1),{(
f̂
ĝ

)
∈ S∗ ⊕̂T ∗ : Γ̃

(
f̂
ĝ

)
=

{(
Γ0f̂
Γ′
0ĝ

)
,

(
Γ1f̂
Γ′
1ĝ

)}
∈ Θ̃

}
⊂ S∗ ⊕̂T ∗ (4.6.6)

is a self-adjoint relation H ⊕ H′. Now it follows from the particular form of Θ̃ in
(4.6.5) that the self-adjoint relation in (4.6.6) coincides with Ã in (4.6.4).

Next the resolvent of Ã will be computed. Recall first that Krĕın’s formula
in Theorem 2.6.1 implies

(Ã− λ)−1 = (Ã0 − λ)−1 − γ̃(λ)
(
Θ̃− M̃(λ)

)−1
γ̃(λ)∗ (4.6.7)
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for all λ ∈ ρ(Ã)∩ ρ(Ã0), where γ̃ and M̃ denote the γ-field and the Weyl function

corresponding to {G⊕ G, Γ̃0, Γ̃1} in (4.6.3). From (4.6.5) and (4.6.3) one obtains

(
Θ̃− M̃(λ)

)−1
=

{{(
ψ −M(λ)ϕ
−ψ − τ(λ)ϕ

)
,

(
ϕ
ϕ

)}
: ϕ,ψ ∈ G

}
.

Setting φ := ψ−M(λ)ϕ and χ := −ψ− τ(λ)ϕ one has φ+χ = −(M(λ)+ τ(λ))ϕ.
For λ ∈ C \ R it follows from Lemma 1.11.5 (see also Proposition 1.12.6) that
(M(λ) + τ(λ))−1 ∈ B(G), and hence

ϕ = −(M(λ) + τ(λ))−1φ− (M(λ) + τ(λ))−1χ, λ ∈ C \ R.
This yields(

Θ̃− M̃(λ)
)−1

= −
(
(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1

)
,

and the statement about the resolvent of Ã follows from (4.6.7). �

The compressions of the resolvent of the self-adjoint relation Ã in (4.6.4) to

H and H′ are of interest. Note that the resolvent of Ã0 in (4.6.2) is given by the

direct orthogonal sum of the resolvents of A0 and B0, and hence for λ ∈ ρ(Ã0) the
compressions to H and H′ are

PH(Ã0 − λ)−1ιH = (A0 − λ)−1 and PH′(Ã0 − λ)−1ιH′ = (B0 − λ)−1,

respectively. The next statement follows directly from Proposition 4.6.1 and (4.6.3).

Corollary 4.6.2. Let S and T be closed symmetric relations in the Hilbert spaces
H and H′ with boundary triplets {G,Γ0,Γ1} and {G,Γ′

0,Γ
′
1}, and corresponding

γ-fields and Weyl functions γ, γ′ and M, τ , respectively. Then for all λ ∈ C \ R
the following statements hold:

(i) The compression of the resolvent of the self-adjoint relation Ã in (4.6.4) to
H is given by

PH(Ã− λ)−1ιH = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)∗.

(ii) The compression of the resolvent of the self-adjoint relation Ã in (4.6.4) to
H′ is given by

PH′(Ã− λ)−1ιH′ = (B0 − λ)−1 − γ′(λ)
(
M(λ) + τ(λ)

)−1
γ′(λ)∗.

Corollary 4.6.2 and Proposition 4.6.1 can also be viewed as an alternative
approach to the Krĕın–Năımark formula in the special case where the Nevanlinna
family τ in Theorem 4.5.2 is a uniformly strict Nevanlinna function. In fact, ac-
cording to Theorem 4.2.4 every uniformly strict B(G)-valued Nevanlinna function
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can be realized as a Weyl function, that is, there exist a (reproducing kernel)
Hilbert space H′ (= H(Nτ )), a closed simple symmetric operator T (= Sτ ) in H′,
and a boundary triplet {G,Γ′

0,Γ
′
1} for the adjoint T ∗ such that τ is the corre-

sponding Weyl function. In this situation the relation Ã in (4.6.4) is self-adjoint
in H ⊕ H′ = H ⊕ H(Nτ ) and its compressed resolvent in Corollary 4.6.2 coincides
with the one in the Krĕın–Năımark formula in Theorem 4.5.2. Summing up, the
following special case of Theorem 4.5.2 is a consequence of the coupling method
in Proposition 4.6.1 and Corollary 4.6.2.

Corollary 4.6.3. Let S be a closed symmetric relation, let {G,Γ0,Γ1} be a boundary
triplet for S∗ with A0 = ker Γ0, and let γ and M be the corresponding γ-field and
Weyl function, respectively. Let τ be a uniformly strict B(G)-valued Nevanlinna

function. Then there exist an exit Hilbert space H′ and a self-adjoint relation Ã
in H ⊕ H′ such that Ã is an extension of S and the compressed resolvent of Ã is
given by the Krĕın–Năımark formula:

PH(Ã− λ)−1ιH = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ(λ)

)−1
γ(λ)∗, λ ∈ C \ R.

Furthermore, the self-adjoint relation Ã satisfies the minimality condition

H⊕ H′ = span
{
H, ran (Ã− μ)−1ιH : μ ∈ C \ R}. (4.6.8)

Proof. All statements except the minimality condition (4.6.8) follow from Proposi-
tion 4.6.1, Corollary 4.6.2, and Theorem 4.2.4 as explained above. For (4.6.8) recall
first that the closed symmetric operator Sτ (= T ) in Theorem 4.2.4 is simple, and
hence

H′ = span
{
ker (T ∗ − μ) : μ ∈ C \ R} = span

{
ran γ′(μ) : μ ∈ C \ R}. (4.6.9)

It follows from Proposition 4.6.1 that

PH′(Ã− μ)−1ιH = −γ′(μ)
(
M(μ) + τ(μ)

)−1
γ(μ)∗,

and since ran γ(μ)∗ = G and dom (M(μ) + τ(μ)) = G, one sees that

ran
(
PH′(Ã− μ)−1ιH

)
= ran γ′(μ), μ ∈ C \ R.

With (4.6.9) one then concludes that

H′ = span
{
ran
(
PH′(Ã− μ)−1ιH

)
: μ ∈ C \ R},

which in turn yields (4.6.8). �

In the next proposition a particular boundary triplet {G⊕ G, Γ̂0, Γ̂1} is spec-
ified such that the self-adjoint relation Ã in (4.6.4) coincides with the kernel of

the boundary mapping Γ̂0. The corresponding Weyl function M̂ is useful for the
spectral analysis of Ã; cf. Chapter 6.
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Proposition 4.6.4. Let S and T be closed symmetric relations in the Hilbert spaces
H and H′ with boundary triplets {G,Γ0,Γ1} and {G,Γ′

0,Γ
′
1} and corresponding

Weyl functions M and τ , respectively, as in the beginning of this section. Then
{G⊕ G, Γ̂0, Γ̂1}, where

Γ̂0

(
f̂
ĝ

)
=

(
−Γ1f̂ − Γ′

1ĝ

Γ0f̂ − Γ′
0ĝ

)
and Γ̂1

(
f̂
ĝ

)
=

(
Γ0f̂
−Γ′

1ĝ

)
, f̂ ∈ S∗, ĝ ∈ T ∗,

is a boundary triplet for S∗ ⊕̂T ∗ such that the self-adjoint relation Ã in (4.6.4)

corresponds to the boundary mapping Γ̂0, that is,

Ã = ker Γ̂0.

The Weyl function of {G⊕ G, Γ̂0, Γ̂1} is given by

M̂(λ) = −
(
M(λ) −I
−I −τ(λ)−1

)−1

=

( −(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1τ(λ)
τ(λ)(M(λ) + τ(λ))−1 τ(λ)(M(λ) + τ(λ))−1M(λ)

) (4.6.10)

for λ ∈ C \ R.
Proof. Instead of a direct proof the assertions will be obtained as consequences of
the results in Section 2.5. For this consider the boundary triplet {G⊕G, Γ̃0, Γ̃1} in
(4.6.1) with the Weyl function M̃ given in (4.6.3), let

A =
1√
2

(
I 0
I 0

)
and B =

1√
2

(
0 I
0 −I

)
,

and observe that Θ̃ = {A,B}, with Θ̃ in (4.6.5). It is easy to see that A and B

satisfy the conditions in Corollary 2.5.11. Therefore, {G2, Γ̆0, Γ̆1}, where

Γ̆0 = B∗Γ̃0 −A∗Γ̃1 and Γ̆1 = A∗Γ̃0 +B∗Γ̃1,

is a boundary triplet with corresponding Weyl function

M̆(λ) =
(
A∗ +B∗M̃(λ)

)(
B∗ −A∗M̃(λ)

)−1
, λ ∈ C \ R.

It follows that

Γ̆0

(
f̂
ĝ

)
=

1√
2

(
−Γ1f̂ − Γ′

1ĝ

Γ0f̂ − Γ′
0ĝ

)
, f̂ ∈ S∗, ĝ ∈ T ∗,

and

Γ̆1

(
f̂
ĝ

)
=

1√
2

(
Γ0f̂ + Γ′

0ĝ

Γ1f̂ − Γ′
1ĝ

)
, f̂ ∈ S∗, ĝ ∈ T ∗.
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Furthermore, it is easily seen from the above that

M̆(λ) =

(
1 1

M(λ) −τ(λ)
)(−M(λ) −τ(λ)

1 −1
)−1

=

(
1 1

M(λ) −τ(λ)
)(−(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1τ(λ)

−(M(λ) + τ(λ))−1 −(M(λ) + τ(λ))−1M(λ)

)
,

where the last step used the identity

M(λ)(M(λ) + τ(λ))−1τ(λ) = τ(λ)(M(λ) + τ(λ))−1M(λ).

Thus, it is clear that

M̆(λ) =

( −2(M(λ) + τ(λ))−1 (M(λ) + τ(λ))−1(τ(λ)−M(λ))
(τ(λ)−M(λ))(M(λ) + τ(λ))−1 2M(λ)(M(λ+ τ(λ))−1τ(λ)

)
holds for all λ ∈ C \ R. Now let

D =
1√
2

(
I 0
0 I

)
= D∗ and P =

1

2

(
0 I
I 0

)
,

and apply Corollary 2.5.5 to conclude that

Γ̂0 = D−1Γ̆0 and Γ̂1 = D∗Γ̆1 + PD−1Γ̆0

give a boundary triplet for S∗ ⊕̂T ∗. According to Corollary 2.5.5, the correspond-
ing Weyl function is given by

M̂(λ) = D∗M̆(λ)D + P, λ ∈ C \ R,

and one verifies that the first identity in (4.6.10) holds. It is straightforward to
check the second identity in (4.6.10). �
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Chapter 5

Boundary Triplets and Boundary
Pairs for Semibounded Relations

Semibounded relations in a Hilbert space automatically have equal defect numbers,
so that there are always self-adjoint extensions. In this chapter the semibounded
self-adjoint extensions of a semibounded relation will be investigated. Special at-
tention will be paid to the Friedrichs extension, which is introduced with the
help of closed semibounded forms. Section 5.1 provides a self-contained intro-
duction to closed semibounded forms and their representations via semibounded
self-adjoint relations. Closely related is the discussion of the ordering for closed
semibounded forms and for semibounded self-adjoint relations in Section 5.2; this
section also contains a general monotonicity principle about monotone sequences
of semibounded relations. The Friedrichs extension of a semibounded relation is
defined and its central properties are studied in Section 5.3. Particular attention is
paid to semibounded self-adjoint extensions which are transversal to the Friedrichs
extension. Section 5.4 is devoted to special semibounded extensions, namely the
Krĕın type extensions. In the nonnegative case these extensions include the well-
known Krĕın–von Neumann extension. The Friedrichs extension and the Krĕın
type extensions act as extremal elements to describe the semibounded self-adjoint
extensions with a given lower bound. In Section 5.5 there is a return to boundary
triplets and Weyl functions for symmetric relations which are semibounded. Of
special interest is the case where the self-adjoint extensions determined by the
boundary triplet are semibounded and one of them coincides with the Friedrichs
extension. In particular, this leads to a useful abstract version of the first Green
formula. The notion of a boundary pair for semibounded relations is developed in
Section 5.6. In conjunction with the above first Green formula, this notion serves
as a link between boundary triplet methods and form methods when semibounded
self-adjoint extensions are described; in a wider sense it establishes the connection
with the Birman–Krĕın–Vishik method.
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5.1 Closed semibounded forms and
their representations

A sesquilinear form t[·, ·] in a Hilbert space H with inner product (·, ·) is a mapping
from D × D to C, where D is a linear subspace of H, such that t[·, ·] is linear in
the first entry and anti-linear in the second entry. The domain dom t is defined by
dom t = D. The form is said to be symmetric if t[ϕ,ψ] = t[ψ,ϕ] for all ϕ,ψ ∈ dom t.
The corresponding quadratic form t[·] is defined by t[ϕ] = t[ϕ,ϕ], ϕ ∈ dom t. The
polarization formula

t[ϕ,ψ] =
1

4

(
t[ϕ+ ψ]− t[ϕ− ψ]

)
+

i

4

(
t[ϕ+ iψ]− t[ϕ− iψ]

)
(5.1.1)

for ϕ,ψ ∈ dom t is easily checked. In the following the term sesquilinear will be
dropped; whenever a form t[·, ·] is mentioned it is assumed to be sesquilinear and
it will be denoted by t. For instance, the inner product (·, ·) is a form defined on
all of H.

Definition 5.1.1. Let t1 and t2 be forms in H. Then the inclusion t2 ⊂ t1 means
that

dom t2 ⊂ dom t1, t2[ϕ] = t1[ϕ], ϕ ∈ dom t2. (5.1.2)

If t2 ⊂ t1, then t2 is said to be a restriction of t1 and t1 is said to be an extension
of t2. The sum t1 + t2 is defined by

(t1 + t2)[ϕ,ψ] = t1[ϕ,ψ] + t2[ϕ,ψ], ϕ, ψ ∈ dom (t1 + t2),

where dom (t1 + t2) = dom t1 ∩ dom t2.

If α ∈ C the sum t[·, ·] + α(·, ·) is given by

t[ϕ,ψ] + α(ϕ,ψ), ϕ, ψ ∈ dom t.

This sum will be denoted by t+α. It is symmetric when t is symmetric and α ∈ R.

Definition 5.1.2. A symmetric form t in H is bounded from below if there exists a
constant c ∈ R such that

t[ϕ] ≥ c‖ϕ‖2, ϕ ∈ dom t.

This inequality will be denoted by t ≥ c. The lower bound m(t) is the largest of
such numbers c ∈ R:

m(t) = inf

{
t[ϕ]

‖ϕ‖2 : ϕ ∈ dom t, ϕ 	= 0

}
.

If m(t) ≥ 0, then t is called nonnegative.
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In the following the terminology semibounded form is used for a symmetric
form which is bounded from below. Note that t is a semibounded form if and
only if for some, and hence for all α ∈ R the form t + α is semibounded. For a
semibounded form t the lower bound m(t) will often be denoted by γ. Note that
the form t − γ, γ = m(t), is nonnegative with lower bound 0. Therefore, one has
the Cauchy–Schwarz inequality

|(t− γ)[ϕ,ψ]| ≤ (t− γ)[ϕ]
1
2 (t− γ)[ψ]

1
2 , ϕ, ψ ∈ dom t, (5.1.3)

and, hence the triangle inequality

(t− γ)[ϕ+ ψ]
1
2 ≤ (t− γ)[ϕ]

1
2 + (t− γ)[ψ]

1
2 , ϕ, ψ ∈ dom t. (5.1.4)

It follows from (5.1.4) that∣∣(t− γ)[ϕ]
1
2 − (t− γ)[ψ]

1
2

∣∣ ≤ (t− γ)[ϕ− ψ]
1
2 , ϕ, ψ ∈ dom t. (5.1.5)

The following continuity property is a simple consequence of (5.1.5). For a sequence
(ϕn) in dom t and ϕ ∈ dom t one has

(t− γ)[ϕ− ϕn]→ 0 ⇒ (t− γ)[ϕn]→ (t− γ)[ϕ]. (5.1.6)

Let t be a semibounded form in H with lower bound γ and let a < γ. Equip
the space dom t ⊂ H with the form

(ϕ,ψ)t−a = t[ϕ,ψ]− a(ϕ,ψ), ϕ, ψ ∈ dom t. (5.1.7)

By rewriting this definition as

(ϕ,ψ)t−a = (t− γ)[ϕ,ψ] + (γ − a)(ϕ,ψ), ϕ, ψ ∈ dom t, (5.1.8)

one sees that (·, ·)t−a is the sum of the semidefinite inner product t − γ and the
inner product (γ − a)(·, ·). Hence, (·, ·)t−a is an inner product on dom t and the
corresponding norm ‖ · ‖t−a satisfies the inequality

‖ϕ‖2t−a ≥ (γ − a)‖ϕ‖2, ϕ ∈ dom t. (5.1.9)

When dom t is equipped with the inner product (·, ·)t−a, the resulting inner prod-
uct space will be denoted by Ht−a. Note that if γ > 0, then obviously a = 0 is a
natural choice in the above and the following arguments.

Lemma 5.1.3. Let t be a semibounded form in H with lower bound γ and let a < γ.
Let (ϕn) be a sequence in dom t. Then (ϕn) is a Cauchy sequence in Ht−a if and
only if

t[ϕn − ϕm]→ 0 and ‖ϕn − ϕm‖ → 0. (5.1.10)
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Proof. According to (5.1.8), (ϕn) is a Cauchy sequence in Ht−a if and only if

(t− γ)[ϕn − ϕm]→ 0 and ‖ϕn − ϕm‖2 → 0. (5.1.11)

Now assume that (ϕn) is a Cauchy sequence in Ht−a. Then it follows from (5.1.11)
that (ϕn) is a Cauchy sequence in H and that

t[ϕn − ϕm] = (t− γ)[ϕn − ϕm] + γ‖ϕn − ϕm‖2 → 0,

which shows (5.1.10). Conversely, if the sequence (ϕn) satisfies (5.1.10), then it
follows from (5.1.7) that (ϕn) is a Cauchy sequence in Ht−a. �

Let (ϕn) be a Cauchy sequence in Ht−a. Since H is a Hilbert space, it follows
from Lemma 5.1.3 that there is an element ϕ ∈ H such that ϕn → ϕ in H.

Definition 5.1.4. Let t be a semibounded form in H. A sequence (ϕn) in dom t is
said to be t-convergent to an element ϕ ∈ H, not necessarily belonging to dom t, if

ϕn → ϕ in H and t[ϕn − ϕm]→ 0, n,m→∞.

This type of convergence will be denoted by ϕn →t ϕ.

The following result is a direct consequence of Lemma 5.1.3 and the com-
pleteness of H.

Corollary 5.1.5. Let t be a semibounded form in H with lower bound γ and let
a < γ. Then any Cauchy sequence in Ht−a is t-convergent. Conversely, any t-
convergent sequence in dom t is a Cauchy sequence in Ht−a.

If the sequence (ϕn) in dom t is t-convergent, then by Definition 5.1.4

(t− γ)[ϕn − ϕm]→ 0 and ‖ϕn − ϕm‖ → 0.

Thus, one has the following result.

Corollary 5.1.6. Let t be a semibounded form in H with lower bound γ and let the
sequence (ϕn) in dom t be t-convergent. Then the sequences ((t− γ)[ϕn]), (t[ϕn]),
and (‖ϕn‖) converge and, consequently, they are bounded.

Proof. Since γ is the lower bound of t, one has (t − γ)[ϕn − ϕm] → 0. Hence,
(5.1.5) shows that ((t − γ)[ϕn]) is a Cauchy sequence. Then the same is true for
the sequence (t[ϕn]) and it is also clear that (‖ϕn‖) is a Cauchy sequence. In
particular, the sequences ((t− γ)[ϕn]), (t[ϕn]), and (‖ϕn‖) are bounded. �

The t-convergence is preserved when one takes a sum of sequences. To see
this, let (ϕn) and (ψn) be sequences in dom t such that

ϕn →t ϕ and ψn →t ψ
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for some ϕ,ψ ∈ H. Then clearly ϕn + ψn → ϕ+ ψ in H and

(t− γ)[ϕn + ψn − (ϕm + ψm)]
1
2

≤ (t− γ)[ϕn − ϕm]
1
2 + (t− γ)[ψn − ψm]

1
2 ,

by the triangle inequality in (5.1.4). Therefore,

ϕn →t ϕ and ψn →t ψ ⇒ ϕn + ψn →t ϕ+ ψ. (5.1.12)

As a consequence, one sees that

ϕn →t ϕ and ψn →t ψ ⇒ lim
n→∞ t[ϕn, ψn] exists. (5.1.13)

This last implication follows easily from Corollary 5.1.6 and (5.1.12) by the polar-
ization formula in (5.1.1).

Assume that ϕn ∈ dom t and that ϕn →t ϕ for some ϕ ∈ H. Now the question
is when ϕ ∈ dom t and, if this is the case, when t[ϕn − ϕ] → 0 ? This question
gives rise to the notions of closed form and closable form in Definition 5.1.7 and
Definition 5.1.11.

Definition 5.1.7. A semibounded form t in H is said to be closed if

ϕn →t ϕ ⇒ ϕ ∈ dom t and t[ϕn − ϕ]→ 0.

The statement in (5.1.13) can now be made more precise when the form is
closed.

Lemma 5.1.8. Let t be a closed semibounded form in H. Then

ϕn →t ϕ ⇒ ϕ ∈ dom t and t[ϕn]→ t[ϕ], (5.1.14)

and, consequently,

ϕn →t ϕ, ψn →t ψ ⇒ ϕ,ψ ∈ dom t and t[ϕn, ψn]→ t[ϕ,ψ]. (5.1.15)

Proof. Assume that t is a closed semibounded form and ϕn →t ϕ. Then ϕ ∈ dom t
and t[ϕn − ϕ]→ 0, and since ϕn → ϕ it follows that (t− γ)[ϕn − ϕ]→ 0. Hence,
(t−γ)[ϕn]→ (t−γ)[ϕ] by (5.1.6), and therefore t[ϕn]→ t[ϕ]. This shows (5.1.14).
Now polarization and (5.1.12) yield the assertion (5.1.15). �

Lemma 5.1.9. Let t be a semibounded form in H with lower bound γ and let a < γ.
Then the following statements are equivalent:

(i) Ht−a is a Hilbert space;

(ii) t is closed.

In particular, t is closed if and only if t− x is closed for some, and hence for all
x ∈ R.
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Proof. (i) ⇒ (ii) Assume that Ht−a is complete. To show that t is closed, assume
that ϕn →t ϕ, so

ϕn → ϕ and t[ϕn − ϕm]→ 0.

In particular, this implies by Lemma 5.1.3 that ‖ϕn − ϕm‖t−a → 0. Since Ht−a

is complete there is an element ϕ0 ∈ Ht−a = dom t such that ‖ϕn − ϕ0‖t−a → 0.
Hence, by (5.1.9),

‖ϕn − ϕ0‖ → 0.

Thus ϕ = ϕ0 ∈ dom t. Therefore, ‖ϕn − ϕ‖t−a → 0 and by (5.1.7) one sees that
t[ϕn − ϕ]→ 0. This proves that t is closed.

(ii) ⇐ (i) Assume that t is closed. To show that Ht−a is complete, let (ϕn) be
a Cauchy sequence in Ht−a. This implies that ϕn →t ϕ for some ϕ ∈ H; cf.
Corollary 5.1.5. The closedness of t gives that ϕ ∈ dom t = Ht−a and t[ϕn−ϕ]→ 0.
By (5.1.7) this leads to ‖ϕn − ϕ‖t−a → 0, so that Ht−a is complete.

Since t − x is a semibounded form in H with lower bound γ − x, the last
statement follows from Ht−a = Ht−x−(a−x) and the equivalence of (i) and (ii). �

Let t be a semibounded form in H with lower bound γ and let Ht−a be the
corresponding inner product space with a < γ. In general t is not closed and hence
Ht−a is not complete; cf. Lemma 5.1.9. If t1 is a semibounded form with lower
bound γ1, which extends the semibounded form t with lower bound γ, then

γ1 ≤ γ.

Note that for a < γ1 one has that t1 is closed if and only if Ht1−a is a Hilbert space.
The question is when such a closed extension t1 exists and, if so, to determine the
smallest such extension of t. In order to construct an extension of t, note that
Lemma 5.1.8 suggests the following definition.

Definition 5.1.10. Let t be a semibounded form in H. The linear subspace dom t̃
is the set of all ϕ ∈ H for which there exists a sequence (ϕn) in dom t such that
ϕn →t ϕ.

It is clear that dom t̃ is an extension of dom t. To establish the linearity of
dom t̃, recall the property (5.1.12). According to (5.1.13), it would now be natural
to define the form t̃ on dom t̃ as an extension of t by

t̃[ϕ,ψ] = lim
n→∞ t[ϕn, ψn] for any ϕn →t ϕ, ψn →t ψ, (5.1.16)

as the limit on the right-hand side exists. However, in general the limit on the
right-hand side of (5.1.16) depends on the choice of the sequences (ϕn) and (ψn),
so that t̃ may not be well defined as a form.

Definition 5.1.11. A semibounded form t in H is said to be closable if for any
sequence (ϕn) in dom t

ϕn →t 0 ⇒ t[ϕn]→ 0.
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It will be shown that the extension procedure in (5.1.16) defines a form
extension of t if t is closable. In fact, in this case the resulting form t̃ is unique,
being the smallest closed extension, and will be called the closure of t.

Theorem 5.1.12. Let t be a semibounded form in H with lower bound γ and let
a < γ. Then t has a closed extension if and only if t is closable. In fact, if t is
closable, then

(i) the closure t̃ in (5.1.16) is a well-defined form which extends t;

(ii) t̃ has the same lower bound as t;

(iii) t̃ is the smallest closed extension of t,

and the inner product space Ht−a is dense in the Hilbert space Ht̃−a. Moreover, t
is closable if and only t−x is closable for some, and hence for all x ∈ R, in which
case

t̃− x = t̃− x. (5.1.17)

Proof. (⇒) Let t1 be a closed extension of t. In order to show that t is closable,
assume that ϕn →t 0. The form t1 is an extension of t and this implies ϕn →t1 0.
Since t1 is closed, it follows that

t[ϕn] = t1[ϕn]→ 0.

Hence, t is closable.

(⇐) Assume that t is closable. It will be shown that t̃ in (5.1.16) is a well-defined
form on dom t̃. It is clear from (5.1.13) that the limit on the right-hand side of
(5.1.16) exists. To verify that this limit depends only on the elements ϕ, ψ and
not on the particular sequences (ϕn), (ψn), let (ϕ

′
n), (ψ

′
n) be other sequences such

that ϕ′
n →t ϕ and ψ′

n →t ψ. Then

ϕ′
n − ϕn →t 0 and ψ′

n − ψn →t 0;

cf. (5.1.12). In particular, this gives

ϕ′
n − ϕn → 0 and ψ′

n − ψn → 0,

while the closability of t implies that

t[ϕ′
n − ϕn]→ 0 and t[ψ′

n − ψn]→ 0.

To see that the sequences t[ϕ′
n, ψ

′
n] and t[ϕn, ψn] have the same limit, consider the

inequalities

|(t− γ)[ϕ′
n, ψ

′
n]− (t− γ)[ϕn, ψn]|

= |(t− γ)[ϕ′
n − ϕn, ψ

′
n] + (t− γ)[ϕn, ψ

′
n − ψn]|

≤ |(t− γ)[ϕ′
n − ϕn, ψ

′
n]|+ |(t− γ)[ϕn, ψ

′
n − ψn]|

≤ (t− γ)[ϕ′
n − ϕn]

1
2 (t− γ)[ψ′

n]
1
2 + (t− γ)[ϕn]

1
2 (t− γ)[ψ′

n − ψn]
1
2 .
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Clearly, due to the closability assumption, the terms

(t− γ)[ϕ′
n − ϕn] and (t− γ)[ψ′

n − ψn]

converge to 0 as n→∞, while the terms

(t− γ)[ψ′
n] and (t− γ)[ϕn]

are bounded since ψ′
n →t ψ and ϕn →t ϕ, respectively; cf. Corollary 5.1.6. It

follows that t[ϕ′
n, ψ

′
n] − t[ϕn, ψn] → 0 and hence t̃ in (5.1.16) is a well-defined

form. Moreover, it is clear that t̃ extends t: t ⊂ t̃.

The form t̃ is semibounded. To see this, let ϕ ∈ dom t̃. Then there exists
a sequence (ϕn) in dom t such that ϕn →t ϕ. In particular, ϕn → ϕ and hence
‖ϕn‖ → ‖ϕ‖. According to (5.1.16),

t̃[ϕ] = lim
n→∞ t[ϕn],

where t[ϕn] ≥ γ‖ϕn‖2. Therefore,
t̃[ϕ] ≥ γ‖ϕ‖2, ϕ ∈ dom t̃,

so that t̃ is semibounded. Moreover, this argument shows that the lower bound of
the extension is at least γ. Hence, t̃ and t have the same lower bound.

The argument to show that t̃ is closed, is based on the observation that for
the extension t̃:

ϕn →t ϕ ⇒ t̃[ϕ− ϕn]→ 0. (5.1.18)

To see this, let ϕn →t ϕ, that is ϕn → ϕ and limm,n→∞ t[ϕn − ϕm] = 0. Now fix
n ∈ N, then ϕm →t ϕ implies that

ϕm − ϕn →t ϕ− ϕn as m→∞,

so that, by definition,

t̃[ϕ− ϕn] = lim
m→∞ t[ϕm − ϕn].

Now taking n→∞ gives (5.1.18).

The following three steps will establish that t̃ is closed or, equivalently, that
Ht̃−a, a < γ, is complete.

Step 1. Ht−a is dense in Ht̃−a. Indeed, let ϕ ∈ Ht̃−a = dom t̃. Then there is a
sequence (ϕn) in Ht−a = dom t such that ϕn →t ϕ. It follows from this assumption
and (5.1.18) that

ϕn → ϕ and t̃[ϕ− ϕn]→ 0,

in other words,

‖ϕ− ϕn‖2t̃−a
= t̃[ϕ− ϕn]− a‖ϕ− ϕn‖2 → 0.

This shows that Ht−a is dense in Ht̃−a.
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Step 2. Every Cauchy sequence in Ht−a is convergent in Ht̃−a. To see this, let (ϕn)
be a Cauchy sequence in Ht−a. Then clearly there exists an element ϕ ∈ H such
that ϕn →t ϕ; cf. Corollary 5.1.5. Again by (5.1.18) it follows that

‖ϕ− ϕn‖t̃−a → 0,

which now shows that the Cauchy sequence (ϕn) in Ht−a is convergent in Ht̃−a

to, in fact, ϕ ∈ dom t̃ = Ht̃−a.

Step 3. Ht̃−a is a Hilbert space. To see this, let (χn) be a Cauchy sequence in Ht̃−a.
By Step 1, there is an element ϕn ∈ Ht−a such that

‖χn − ϕn‖t̃−a ≤
1

n
.

Hence, the approximating sequence (ϕn) is a Cauchy sequence in Ht−a. By Step 2,
(ϕn) converges in Ht̃−a, which implies that the original sequence (χn) converges
in Ht̃−a.

Next it will be shown that t̃ is the smallest closed extension of t. Assume that
t1 is a closed extension of t: t ⊂ t1. Let ϕ ∈ dom t̃; then there exists a sequence (ϕn)
in dom t with ϕn →t ϕ. Then also ϕn →t1 ϕ and hence ϕ ∈ dom t1. Therefore,
dom t̃ ⊂ dom t1. For every ϕ,ψ ∈ dom t̃ it follows via corresponding sequences
(ϕn), (ψn) in dom t with ϕn →t ϕ and ψn →t ψ that

t̃[ϕ,ψ] = lim
n→∞ t[ϕn, ψn] = lim

n→∞ t1[ϕn, ψn] = t1[ϕ,ψ],

where the first equality follows from (5.1.16), the second equality is valid as t1
extends t, and the third equality follows from (5.1.15). Therefore, t̃ ⊂ t1, and t̃ is
the smallest closed extension of t.

As to the last statement, observe that Definition 5.1.11 implies that t is
closable if and only t − x is closable for some, and hence for all x ∈ R. Finally,
(5.1.17) follows from (5.1.16). �

Thus, a closed semibounded form t1 which extends t contains the closure t̃.
The next corollary is a simple but useful description of the gap between t1 and t̃.

Corollary 5.1.13. Let the semibounded form t with lower bound γ be closable and
let the closed form t1 with lower bound γ1 be an extension of t, so that γ1 ≤ γ.
Assume that a < γ1, then

Ht1−a =
{
ϕ ∈ Ht1−a : (ϕ,ψ)t1−a = 0, ψ ∈ Ht̃−a

}⊕t1−a Ht̃−a.

Let t be a closed semibounded form in H. Let D ⊂ dom t be a linear subspace
and consider the restriction tD of t to D,

tD[ϕ,ψ] = t[ϕ,ψ], ϕ, ψ ∈ D.
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Since tD is a restriction of a closed form, it is closable, see Theorem 5.1.12. Let t̃D
be the closure of tD. Then by definition dom t̃D is the set of all ϕ ∈ H for which
there exists a sequence (ϕn) in D with ϕn →tD ϕ, which means ϕn →t ϕ. Since t
is closed, one sees in particular that dom t̃D ⊂ dom t. Moreover, one has

t̃D[ϕ,ψ] = lim
n→∞ tD[ϕn, ψn] = lim

n→∞ t[ϕn, ψn] = t[ϕ,ψ]

for ϕ,ψ ∈ dom t̃D, where the first equality is by definition, and the third equality
follows from Lemma 5.1.8. Hence, the closure t̃D of tD is the restriction of t to
dom t̃D. Since t is closed, it follows that ϕ ∈ dom t̃D if and only if there is a
sequence (ϕn) in D such that

ϕn → ϕ and t[ϕn − ϕ]→ 0.

Definition 5.1.14. Let t be a closed semibounded form in H. A linear subspace D
of dom t is said to be a core of t if the closure t̃D of the restriction tD of t to D
coincides with t.

Therefore, D ⊂ dom t is a core of t if and only if for every ϕ ∈ dom t there is
a sequence (ϕn) in D such that

ϕn → ϕ and t[ϕn − ϕ]→ 0. (5.1.19)

This leads to the following corollary.

Corollary 5.1.15. Let t be a closed semibounded form in H with lower bound γ, let
a < γ, and let D ⊂ dom t be a linear subspace. Then D is a core of t if and only
if D is dense in the Hilbert space Ht−a.

Note that in the situation of Theorem 5.1.12 the original domain dom t is a
core of the closure t̃ of t (recall that the form t̃ is closed). The following fact is useful:
If t and s are closed semibounded forms in H which coincide on D ⊂ dom t∩dom s
and D is a core of both t and s, then t = s.

Recall the definition of the sum of two forms in Definition 5.1.1 and observe
that a sum of semibounded forms is also semibounded. The following result is
concerned with additive perturbations of forms: it provides a sufficient condition
so that the sum of a closed semibounded form and a symmetric form remains
closed and semibounded. Sometimes this result is referred to as KLMN theorem,
named after Kato, Lions, Lax, Milgram, and Nelson. For a typical application to
Sturm–Liouville operators, see, e.g., Lemma 6.8.3.

Theorem 5.1.16. Assume that t is a closed semibounded form in H and let s be a
symmetric form in H such that dom t ⊂ dom s and

|s[ϕ]| ≤ a‖ϕ‖2 + bt[ϕ], ϕ ∈ dom t, (5.1.20)
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holds for some a ≥ 0 and b ∈ [0, 1). Then the symmetric form

t+ s, dom (t+ s) = dom t,

is closed and semibounded in H. Furthermore, if D is a core of t, then D is also a
core of t+ s.

Proof. Let γ be the lower bound of t. Fix some a′ < γ and assume a′ < 0. For all
ϕ ∈ dom t, ϕ 	= 0, one obtains from (5.1.20) that

s[ϕ] ≥ −a‖ϕ‖2 − bt[ϕ], (5.1.21)

and hence

(t+ s)[ϕ] ≥ (1− b)t[ϕ]− a‖ϕ‖2 >
(
(1− b)a′ − a

)‖ϕ‖2 = c′‖ϕ‖2,
where c′ = (1 − b)a′ − a < 0. This shows that t + s is semibounded from below.
Furthermore, the estimate (5.1.21) also shows that

(1− b)‖ϕ‖2t−a′ = (1− b)t[ϕ]− (1− b)a′‖ϕ‖2
= t[ϕ]− bt[ϕ]− a‖ϕ‖2 − ((1− b)a′ − a

)‖ϕ‖2
≤ (t+ s)[ϕ]− ((1− b)a′ − a

)‖ϕ‖2
= ‖ϕ‖2t+s−c′ .

Using (5.1.20) one obtains

‖ϕ‖2t+s−c′ = t[ϕ] + s[ϕ]− c′‖ϕ‖2
≤ (1 + b)t[ϕ]− (c′ − a)‖ϕ‖2
≤ b′‖ϕ‖2t−a′ ,

where b′ = max {(1 + b), (c′ − a)/a′}. Therefore, the above estimates imply that
the norms ‖ · ‖2t−a′ and ‖ · ‖2t+s−c′ are equivalent on dom t = dom (s+ t). Since t is
closed, Ht−a′ is a Hilbert space and hence Ht+s−c′ is a Hilbert space, that is, the
form t+ s is closed; cf. Lemma 5.1.9. The assertion about the core D is clear from
Corollary 5.1.15. �

Semibounded relations in a Hilbert space generate closable semibounded
forms as will be shown in the following lemma. Note that if a relation is semi-
bounded, then so is its closure, with the same lower bound; this follows directly
from Definition 1.4.5. Furthermore, the closure will generate the same form. The
particular situation of semibounded self-adjoint relations will be considered in
detail in Theorem 5.1.18 and Proposition 5.1.19.

Lemma 5.1.17. Let S be a semibounded relation in H with lower bound m(S). Then
the form tS given by

tS [ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′}, {ψ,ψ′} ∈ S, (5.1.22)
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with dom tS = domS, is well defined, semibounded with the lower bound m(S),
and closable. The closure t̃S of tS is a semibounded closed form whose lower bound
is equal to m(S), and

dom t̃S ⊂ domS. (5.1.23)

Moreover, domS = dom tS is a core of t̃S. Furthermore, with the closure S of S
one has

t̃S = t̃S . (5.1.24)

Proof. As a semibounded relation S is automatically symmetric, it follows that
mulS ⊂ mulS∗ = (domS)⊥, and hence

(ϕ′, ψ) = (ϕ′′, ψ), {ϕ,ϕ′}, {ϕ,ϕ′′}, {ψ,ψ′} ∈ S.

Thus, the form in (5.1.22) is well defined with dom tS = domS. By definition tS
is semibounded and its lower bound is clearly equal to γ = m(S).

In order to show that tS is closable, let ϕn →tS 0. Then, equivalently,

ϕn → 0 and (tS − γ)[ϕn − ϕm]→ 0.

It suffices to verify that (tS − γ)[ϕn]→ 0. Note that there exists ϕ′
n ∈ H such that

{ϕn, ϕ
′
n} ∈ S. Then

(tS − γ)[ϕn] = (tS − γ)[ϕn, ϕn] = (tS − γ)[ϕn, ϕn − ϕm] + (tS − γ)[ϕn, ϕm],

and it follows with the help of the Cauchy–Schwarz inequality (5.1.3) for the
nonnegative form (tS − γ) and (5.1.22) that

|(tS − γ)[ϕn]| ≤ |(tS − γ)[ϕn, ϕn − ϕm]|+ |(tS − γ)[ϕn, ϕm]|
≤ (tS − γ)[ϕn]

1
2 (tS − γ)[ϕn − ϕm]

1
2 + |(ϕ′

n − γϕn, ϕm)|.
By Corollary 5.1.6, the sequence ((tS−γ)[ϕn]) is bounded by M2 for some M > 0.
Moreover, for every ε > 0 there exists N ∈ N such that (tS − γ)[ϕn−ϕm] ≤ ε2 for
n,m ≥ N . Therefore,

|(tS − γ)[ϕn]| ≤Mε+ |(ϕ′
n − γϕn, ϕm)|, n,m ≥ N.

Fix n ≥ N and let m → ∞. From |(ϕ′
n − γϕn, ϕm)| ≤ ‖ϕ′

n − γϕn‖‖ϕm‖ and
‖ϕm‖ → 0 it follows that |(tS − γ)[ϕn]| ≤ Mε for n ≥ N . This shows that
(tS − γ)[ϕn]→ 0 as n→∞, and hence tS is closable.

By Theorem 5.1.12, it is clear that the closure t̃S of tS is a semibounded closed
form whose lower bound is equal to m(S). It also follows from the definition of t̃
that the inclusion (5.1.23) holds. Furthermore, domS = dom tS is a core of t̃S .

It remains to show (5.1.24). The inclusion t̃S ⊂ t̃S is clear. For the opposite
inclusion, let ϕ ∈ dom tS = domS and ϕ′ ∈ H such that {ϕ,ϕ′} ∈ S, in which
case

tS [ϕ,ϕ] = (ϕ′, ϕ).
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Then there exists a sequence ({ϕn, ϕ
′
n}) in S with ϕn → ϕ and ϕ′

n → ϕ′, and
hence

tS [ϕn − ϕm] = (ϕ′
n − ϕ′

m, ϕn − ϕm)→ 0.

Therefore, ϕn →tS ϕ, so that ϕ ∈ dom t̃S . Moreover,

tS [ϕ,ϕ] = (ϕ′, ϕ) = lim
n→∞(ϕ′

n, ϕn) = lim
n→∞ tS [ϕn, ϕn] = t̃S [ϕ,ϕ],

where in the last equality the definition of the closure in Theorem 5.1.12 was used.
This implies tS ⊂ t̃S and hence t̃S ⊂ t̃S . Therefore, t̃S = t̃S . �

In the next theorem it is shown that every closed semibounded form can be
represented by a semibounded self-adjoint relation.

Theorem 5.1.18 (First representation theorem). Assume that t is a closed semi-
bounded form in H. Then there exists a semibounded self-adjoint relation H in H
such that the following statements hold:

(i) domH ⊂ dom t and
t[ϕ,ψ] = (ϕ′, ψ) (5.1.25)

for every {ϕ,ϕ′} ∈ H and ψ ∈ dom t;

(ii) domH is a core of t;

(iii) if ϕ ∈ dom t, ϕ′ ∈ H, and
t[ϕ,ψ] = (ϕ′, ψ) (5.1.26)

for every ψ in a core of t, then {ϕ,ϕ′} ∈ H;

(iv) mulH = (dom t)⊥ and
t[ϕ,ψ] = (Hopϕ,ψ) (5.1.27)

for every ϕ ∈ domH and ψ ∈ dom t.

The semibounded self-adjoint relation H is uniquely determined by (i). The closed
form t and the corresponding semibounded self-adjoint relation H have the same
lower bound: m(t) = m(H). Moreover, for each x ∈ R the closed semibounded
form t− x corresponds to the semibounded self-adjoint relation H − x.

Proof. (i) Let m(t) = γ and choose a < γ. Then the assumption that t is closed is
equivalent to the inner product space Ht−a being complete, where Ht−a = dom t is
equipped with the inner product of (·, ·)t−a as in (5.1.7)–(5.1.8); cf. Lemma 5.1.9.
For any fixed ω ∈ H consider the linear functional

ψ �→ (ψ, ω)

defined for all ψ ∈ Ht−a = dom t ⊂ H. It follows from (5.1.9) that

|(ψ, ω)| ≤ ‖ψ‖‖ω‖ ≤
(

1√
γ − a

‖ω‖
)
‖ψ‖t−a, ψ ∈ Ht−a.
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Hence, the mapping ψ �→ (ψ, ω) from Ht−a to C is bounded with bound at most
‖ω‖/√γ − a. Therefore, by the Riesz representation theorem, there exists an ele-
ment ω̂ in Ht−a such that for all ψ ∈ Ht−a:

(ψ, ω) = (ψ, ω̂)t−a, ‖ω̂‖t−a ≤ 1√
γ − a

‖ω‖.

Taking conjugates for convenience, it follows from the definition (5.1.7) of (·, ·)t−a

that
(ω, ψ) = (ω̂, ψ)t−a = t[ω̂, ψ]− a(ω̂, ψ), (5.1.28)

or, in other words,
t[ω̂, ψ] = (ω + aω̂, ψ), ψ ∈ Ht−a. (5.1.29)

Note that the linear mapping A from H to Ht−a defined by Aω = ω̂ satisfies

√
γ − a ‖Aω‖ ≤ ‖Aω‖t−a ≤ 1√

γ − a
‖ω‖;

where in the first inequality (5.1.9) was used. In other words, if A is interpreted
as a mapping from H to H, then

‖Aω‖ ≤ 1

γ − a
‖ω‖.

By means of A define the linear relation H in H by

H =
{{Aω, ω + aAω} : ω ∈ H

}
,

so that
A = (H − a)−1.

One sees that domH = ranA ⊂ dom t and mulH = kerA. Moreover, every
element {ϕ,ϕ′} ∈ H can be written as {ϕ,ϕ′} = {ω̂, ω + aω̂} for some ω, so that
by the identity (5.1.29) one obtains

t[ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′} ∈ H, ψ ∈ Ht−a = dom t. (5.1.30)

It follows from (5.1.30) with ψ = ϕ that H is a semibounded relation with lower
bound

m(H) ≥ m(t) = γ. (5.1.31)

It is clear that H is symmetric. According to the definition of H one sees that
ran (H − a) = H, which, since a < γ, implies that H is self-adjoint; cf. Proposi-
tion 1.5.6. Thus, (i) has been proved.

(ii) The statement that domH is a core of t is equivalent to the statement that
domH is dense in the Hilbert space Ht−a. To verify denseness, assume that the
element ψ ∈ Ht−a is orthogonal to domH = ranA, i.e.,

0 = (Aω,ψ)t−a = (ω̂, ψ)t−a = (ω, ψ),

for all ω ∈ H; cf. (5.1.28). This leads to ψ = 0. Hence, domH = ranA is dense in
the Hilbert space Ht−a, and the assertion follows from Corollary 5.1.15.
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(iii) Let ϕ ∈ dom t and ϕ′ ∈ H satisfy (5.1.26) for every ψ in a core D of the form
t. Then (5.1.26) holds for all ψ ∈ dom t. To see this, let ψ ∈ dom t. Then there
exists a sequence (ψn) in D such that ψn →t ψ, which implies that t[ψn−ψ]→ 0.
Since ψn ∈ D, the assumption yields

t[ϕ,ψ] = lim
n→∞ t[ϕ,ψn] = lim

n→∞(ϕ′, ψn) = (ϕ′, ψ), ψ ∈ dom t,

so that (5.1.26) holds for all ψ ∈ dom t. Due to the symmetry of t this result may
also be written as

t[ψ,ϕ] = (ψ,ϕ′), ψ ∈ dom t. (5.1.32)

Now let {ψ,ψ′} ∈ H. Then ψ ∈ domH ⊂ dom t and, by (i),

t[ψ,ϕ] = (ψ′, ϕ), (5.1.33)

because ϕ ∈ dom t. Comparing (5.1.32) and (5.1.33) gives

(ψ,ϕ′) = (ψ′, ϕ) for all {ψ,ψ′} ∈ H,

which leads to {ϕ,ϕ′} ∈ H∗ = H. This proves (iii).

(iv) It follows from (i) that if {0, ϕ′} ∈ H, then (ϕ′, ψ) = 0 for all ψ ∈ dom t,
and hence mulH ⊂ (dom t)⊥. Conversely, as domH ⊂ dom t by (i) and H is
self-adjoint, (dom t)⊥ ⊂ (domH)⊥ = mulH. This shows that mulH = (dom t)⊥.

To see (5.1.27), let {ϕ,ϕ′} ∈ H. Then ϕ′ = Hopϕ + χ, where χ ∈ mulH.
Hence, from (5.1.25) one obtains

t[ϕ,ψ] = (ϕ′, ψ) = (Hopϕ+ χ, ψ) = (Hopϕ,ψ),

which gives (5.1.27). This completes the proof of (iv).

To show uniqueness, assume that H ′ is a semibounded self-adjoint relation
in H such that domH ′ ⊂ dom t and

t[ϕ,ψ] = (ϕ′, ψ)

for every {ϕ,ϕ′} ∈ H ′ and ψ ∈ dom t. Then, in particular, one concludes that
ϕ ∈ domH ′ ⊂ dom t and ϕ′ ∈ H, so that by (iii) it follows that {ϕ,ϕ′} ∈ H.
Hence, H ′ ⊂ H and one obtains equality as H ′ and H are both self-adjoint.

Recall that it has been shown in the proof of (i) that m(H) ≥ m(t); cf.
(5.1.31). The equality follows from the fact that domH is a core of t; see (ii). In
fact, if ϕ ∈ dom t, then there exists a sequence (ϕn) in domH such that ϕn →t ϕ.
Therefore, if ϕ 	= 0, then

t[ϕ]

‖ϕ‖2 = lim
n→∞

t[ϕn]

‖ϕn‖2 = lim
n→∞

(Hopϕn, ϕn)

‖ϕn‖2 ≥ m(H).
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Since this inequality holds for every nontrivial ϕ ∈ dom t one concludes that

m(t) = inf

{
t[ϕ]

‖ϕ‖2 : ϕ ∈ dom t, ϕ 	= 0

}
≥ m(H),

and so m(t) = m(H).

Finally, note that for x ∈ R the form t − x is semibounded and closed, and
the relation H − x is semibounded and self-adjoint. For {ϕ,ϕ′} ∈ H,

(t− x)[ϕ,ψ] = (ϕ′, ψ)− x(ϕ,ψ) = (ϕ′ − xϕ, ψ) (5.1.34)

for all ψ ∈ dom t = dom t−x. Observe from (iii) that {ϕ,ϕ′−xϕ} ∈ H−x belongs
to the semibounded self-adjoint relation corresponding to t− x. As H − x is self-
adjoint and contained in the semibounded self-adjoint relation corresponding to
t−x both coincide, i.e.,H−x corresponds to the closed semibounded form t−x. �

The representation result in Theorem 5.1.18 gives assertions concerning the
semibounded self-adjoint relation associated with a given semibounded form. In
fact, every semibounded self-adjoint relation appears in such a context, as is shown
in the following proposition; cf. Lemma 5.1.17.

Proposition 5.1.19. Let A be a semibounded self-adjoint relation in H. Then the
semibounded, closable form defined by

tA[ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′}, {ψ,ψ′} ∈ A,

has a closure whose corresponding semibounded self-adjoint relation is given by A.

Proof. Since A is semibounded and self-adjoint, Lemma 5.1.17 shows that the
form tA is well defined, semibounded, and closable. Moreover, domA is a core of
its closure t̃. Let H be the semibounded self-adjoint relation corresponding to t̃.
Since t̃ is an extension of t, one has

t̃[ϕ,ψ] = t[ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′}, {ψ,ψ′} ∈ A.

Therefore, Theorem 5.1.18 (iii) implies that {ϕ,ϕ′} ∈ H, since domA is a core of
t̃. Consequently, A ⊂ H and since A and H are both self-adjoint, one concludes
A = H. �

The following observation, based on Theorem 5.1.18 and Proposition 5.1.19,
is included for completeness.

Corollary 5.1.20. There is a one-to-one correspondence between all closed semi-
bounded forms and all closed semibounded self-adjoint relations via the identity
(5.1.25) or, equivalently, via the identity (5.1.27) in the first representation theo-
rem.
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The correspondence between closed semibounded forms and semibounded
self-adjoint relations in Theorem 5.1.18 can be illuminated further in the context
of nonnegative forms and nonnegative self-adjoint relations. As a preparation,
observe that a typical way to define forms is via linear operators.

Lemma 5.1.21. Let T be a linear operator from a Hilbert space H to a Hilbert space
K and define a nonnegative form t in H by

t[ϕ,ψ] = (Tϕ, Tψ), ϕ, ψ ∈ dom t = domT.

Then

t is a closable form ⇔ T is a closable operator,

and in this case the closure of t is given by

t̃[ϕ,ψ] = (Tϕ, Tψ), ϕ, ψ ∈ dom t̃ = domT . (5.1.35)

Proof. (⇒) Assume that t is closable. Let (ϕn) be a sequence in domT such that
ϕn → 0 in H and Tϕn → ψ in K. Then

t[ϕn − ϕm] = ‖T (ϕn − ϕm)‖2 → 0,

which implies that ϕn →t 0. Since t is closable, one obtains

‖Tϕn‖2 = t[ϕn]→ 0,

so that Tϕn → 0. It follows that T is closable.

(⇐) Assume that T is closable. Let (ϕn) in dom t with ϕn →t 0. Then ϕn → 0 in
H and (Tϕn) is a Cauchy sequence in K. Hence, Tϕn → ψ for some ψ ∈ K and
since T is closable one sees that ψ = 0. Therefore, t[ϕn] = ‖Tϕn‖2 → 0. It follows
that t is closable.

Finally, assume that t or, equivalently, T is closable. Then one has

dom t̃ = domT . (5.1.36)

Indeed, for the inclusion (⊂) in (5.1.36) consider ϕ ∈ dom t̃. Then there exists
a sequence (ϕn) in dom t with ϕn →t ϕ; cf. Theorem 5.1.12. Hence, ϕn → ϕ in
H and (Tϕn) is a Cauchy sequence in K. Thus, there exists ϕ′ ∈ K such that
Tϕn → ϕ′. Since T is closable it follows that ϕ ∈ domT and ϕ′ = Tϕ. Moreover,
by Theorem 5.1.12 and (5.1.16) it follows that

t̃[ϕ,ϕ] = lim
n→∞ t[ϕn, ϕn] = lim

n→∞(Tϕn, Tϕn) = (Tϕ, Tϕ),
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and polarization leads to the identity in (5.1.35). For the inclusion (⊃) in (5.1.36)
let ϕ ∈ domT . Then Tϕ = ϕ′ for some ϕ′ ∈ K, and there exists a sequence (ϕn) in
domT for which ϕn → ϕ while Tϕn → ϕ′. In particular, it follows that ϕn →t ϕ.
Therefore, ϕ ∈ dom t̃; this proves (5.1.36). �

The following result specializes the first representation theorem to closed
nonnegative forms as in Lemma 5.1.21. For a class of closed nonnegative forms it
identifies the associated self-adjoint relations. Recall that for a closed operator R
a linear subspace D ⊂ domR is a core if the closure of the restriction R �D of R
to D coincides with R; cf. Lemma 1.5.10.

Proposition 5.1.22. Let T be a closed relation from a Hilbert space H to a Hilbert
space K and let Top = PT be the closed orthogonal operator part of T , where P is
the orthogonal projection in K onto (mulT )⊥; cf. Theorem 1.3.15. Then the rule

t[ϕ,ψ] = (Topϕ, Topψ), ϕ, ψ ∈ dom t = domTop = domT, (5.1.37)

defines a closed nonnegative form t in H. The nonnegative self-adjoint relation
corresponding to the form t is given by T ∗T . Moreover, a subset of dom t = domT
is a core of the form t if and only if it is a core of the operator Top .

Proof. Since the operator Top is closed, the nonnegative form t in (5.1.37) is closed,
with dom t = domTop = domT ; cf. Lemma 5.1.21. Recall that T ∗T is a nonneg-
ative self-adjoint relation in H; cf. Lemma 1.5.8. Assume that ϕ ∈ domT ∗T and
ψ ∈ domT . Let ϕ′ ∈ H be any element such that {ϕ,ϕ′} ∈ T ∗T . This implies
that {ϕ, η} ∈ T and {η, ϕ′} ∈ T ∗ for some η ∈ K. Clearly, η = Topϕ+ ω for some
ω ∈ mulT . Since {Topϕ+ ω, ϕ′} ∈ T ∗ and {ψ, Topψ} ∈ T , one sees that

0 = (ϕ′, ψ)− (Topϕ+ ω, Topψ) = (ϕ′, ψ)− (Topϕ, Topψ), ψ ∈ domT,

i.e.,

t[ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′} ∈ T ∗T, ψ ∈ domT.

LetH be the nonnegative self-adjoint relation associated with t via Theorem 5.1.18.
According to (iii) of Theorem 5.1.18, the nonnegative self-adjoint relation T ∗T sat-
isfies T ∗T ⊂ H, which gives T ∗T = H.

Now let D ⊂ dom t = domT be a linear subset. Then D is a core of t if and
only if for every ϕ ∈ dom t = domT there is a sequence (ϕn) in D such that

ϕn → ϕ and t[ϕn − ϕ]→ 0;

cf. (5.1.19). In view of the definition of t, this condition reads as

ϕn → ϕ and Topϕn → Topϕ,

in other words D is a core of Top . �
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The so-called second representation theorem may be seen as a corollary of
Theorem 5.1.18 and Proposition 5.1.22.

Theorem 5.1.23 (Second representation theorem). Assume that the closed semi-
bounded form t and the semibounded self-adjoint relation H are connected as in
Theorem 5.1.18, so that m(H) = m(t) = γ, and let x ≤ γ. Then

dom t = dom (H − x)
1
2

and the form t is represented by

t[ϕ,ψ] =
(
(Hop − x)

1
2ϕ, (Hop − x)

1
2ψ
)
+ x(ϕ,ψ), ϕ, ψ ∈ dom t.

Moreover, a subset of dom t = dom (H − x)
1
2 is a core of the form t if and only if

it is a core of the operator (Hop − x)
1
2 .

Proof. For x ≤ γ define the form sx by

sx[ϕ,ψ] =
(
(Hop − x)

1
2ϕ, (Hop − x)

1
2ψ
)
, ϕ, ψ ∈ dom sx,

on the domain dom sx = dom (Hop − x)1/2 = dom (H − x)1/2. By Proposi-
tion 5.1.22, the form sx is closed and nonnegative. The corresponding nonnegative
self-adjoint relation is given by(

(H − x)
1
2

)∗
(H − x)

1
2 = H − x,

and hence sx[ϕ,ψ] = (ϕ′, ψ) holds for all {ϕ,ϕ′} ∈ H−x and ψ ∈ dom sx. It follows
as in the proof of Theorem 5.1.18 (see (5.1.34)) that the closed semibounded form

(sx + x)[ϕ,ψ] =
(
(Hop − x)

1
2ϕ, (Hop − x)

1
2ψ
)
+ x(ϕ,ψ), ϕ, ψ ∈ dom sx,

is represented by the semibounded self-adjoint relation H. Furthermore,

(sx + x)[ϕ,ψ] = ((Hop − x)ϕ,ψ) + x(ϕ,ψ) = (Hopϕ,ψ)

for all ϕ,ψ ∈ domH, and hence the restrictions of the form sx+x and of the form
t to domHop coincide; cf. Theorem 5.1.18 (iv). According to Proposition 5.1.22
and Lemma 1.5.10, domHop is a core of sx and hence also of sx+x. On the other
hand, by Theorem 5.1.18 (ii), domHop = domH is also a core of t. Hence, the
forms sx + x and t coincide on the common core domHop . This implies that the
forms sx + x and t coincide. Therefore,

dom t = dom (sx + x) = dom (H − x)
1
2 , x ≤ γ,

and

t[ϕ,ψ] =
(
(Hop − x)

1
2ϕ, (Hop − x)

1
2ψ
)
+ x(ϕ,ψ), ϕ, ψ ∈ dom t.

Finally, Proposition 5.1.22 shows that a subset of dom t is a core of t if and only
if it is a core of the operator (Hop − x)

1
2 . This completes the proof. �
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5.2 Ordering and monotonicity

In this section an ordering will be introduced for semibounded closed forms t1
and t2, and for semibounded self-adjoint relations H1 and H2 in a Hilbert space
H. It will be shown that these orderings are compatible if t1 and H1, and t2 and
H2 are related via the first representation theorem (Theorem 5.1.18), respectively.
An alternative formulation of the ordering of semibounded self-adjoint relations
will be given in terms of their resolvent operators. The last part of the section is
devoted to a general monotonicity principle in the context of semibounded self-
adjoint relations or, equivalently, of closed semibounded forms.

First an ordering will be defined for semibounded forms that are not neces-
sarily closed.

Definition 5.2.1. Let t1 and t2 be semibounded forms in H that are not necessarily
closed. Then one writes t1 ≤ t2, if

dom t2 ⊂ dom t1, t1[ϕ] ≤ t2[ϕ], ϕ ∈ dom t2. (5.2.1)

Note that if t1 ≤ t2, then t2-convergence implies t1-convergence. Indeed, let
ϕn →t2 ϕ. By Definition 5.1.4, this means that

ϕn ∈ dom t2, ϕn → ϕ, and t2[ϕn − ϕm]→ 0.

Since t1 ≤ t2, this implies that

ϕn ∈ dom t1 and t1[ϕn − ϕm]→ 0,

which shows that ϕn →t1 ϕ. Definition 5.2.1 generates a number of simple but
useful observations.

Lemma 5.2.2. Let t1, t2, and t3 be semibounded forms in H that are not necessarily
closed. Then the following statements hold:

(i) t2 ⊂ t1 ⇒ t1 ≤ t2;

(ii) t1 ≤ t2 ⇒ m(t1) ≤ m(t2);

(iii) t1 ≤ t2 and t2 ≤ t3 ⇒ t1 ≤ t3;

(iv) t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2;

(v) t1 ≤ t2 ⇒ t̃1 ≤ t̃2, when t1 and t2 are closable.

Proof. (i) This follows from the definition of t2 ⊂ t1; cf. (5.1.2).

(ii) It follows from (5.2.1) that

inf

{
t1[ϕ]

‖ϕ‖2 : ϕ ∈ dom t1, ϕ 	= 0

}
≤ inf

{
t1[ϕ]

‖ϕ‖2 : ϕ ∈ dom t2, ϕ 	= 0

}
≤ inf

{
t2[ϕ]

‖ϕ‖2 : ϕ ∈ dom t2, ϕ 	= 0

}
.

Hence, Definition 5.1.2 implies that m(t1) ≤ m(t2).
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(iii) This is an immediate consequence of Definition 5.2.1.

(iv) If t1 ≤ t2 and t2 ≤ t1, then it follows from (5.2.1) that dom t1 = dom t2 and
that t1[ϕ] = t2[ϕ] for all ϕ ∈ dom t1 = dom t2. The conclusion now follows by
polarization; cf. (5.1.1).

(v) Assume that t1 and t2 are closable forms. Let ϕ ∈ dom t̃2; then, by Defi-
nition 5.1.10, there exists a sequence (ϕn) in dom t2 such that ϕn →t2 ϕ. Re-
call that t2-convergence implies t1-convergence and thus ϕ ∈ dom t̃1. This shows
dom t̃2 ⊂ dom t̃1. Therefore, Theorem 5.1.12 implies that for ϕ ∈ dom t̃2 one has

t̃1[ϕ] = lim
n→∞ t1[ϕn] ≤ lim

n→∞ t2[ϕn] = t̃2[ϕ],

which shows (v). �

Next an ordering will be defined for semibounded self-adjoint relations. It
will be shown in Proposition 5.2.6 below that this ordering is in agreement with
the notation γ ≤ H for a semibounded self-adjoint relation H with lower bound
γ; cf. Definition 1.4.5. Note that the following definition relies on Lemma 1.5.10.

Definition 5.2.3. Let H1 and H2 be semibounded self-adjoint relations in H, with
lower bounds m(H1) and m(H2), respectively. Then the relations H1 and H2 are
said to be ordered, and one writes H1 ≤ H2, if

dom (H2 − x)
1
2 ⊂ dom (H1 − x)

1
2 ,

‖(H1,op − x)
1
2ϕ‖ ≤ ‖(H2,op − x)

1
2ϕ‖, ϕ ∈ dom (H2 − x)

1
2 ,

(5.2.2)

is satisfied for some, and hence for all x ≤ min {m(H1),m(H2)}.
In the next theorem it is shown that the ordering for semibounded forms

in Definition 5.2.1 and the ordering for semibounded self-adjoint relations in
Definition 5.2.3 are compatible. Here the second representation theorem (The-
orem 5.1.23) plays an essential role.

Theorem 5.2.4. Let t1 and t2 be closed semibounded forms in H and let H1 and
H2 be the corresponding semibounded self-adjoint relations. Then

t1 ≤ t2 ⇔ H1 ≤ H2.

Proof. Assume first that t1 ≤ t2. Then, by Definition 5.2.1,

dom t2 ⊂ dom t1, t1[ϕ] ≤ t2[ϕ], ϕ ∈ dom t2,

and for all x ≤ min {m(t1),m(t2)} it follows from Theorem 5.1.23 that (5.2.2)
holds. Hence, H1 ≤ H2 by Definition 5.2.3.

Conversely, assume that H1 ≤ H2. Then, by Definition 5.2.3, (5.2.2) holds
for all x ≤ min {m(H1),m(H2)} and hence Theorem 5.1.23 implies t1 ≤ t2. �
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Lemma 5.2.5. Let H1, H2, and H3 be semibounded self-adjoint relations in H.
Then the following statements hold:

(i) H1 ≤ H2 ⇒ mulH1 ⊂ mulH2;

(ii) H1 ≤ H2 ⇒ m(H1) ≤ m(H2);

(iii) H1 ≤ H2 and H2 ≤ H3 ⇒ H1 ≤ H3;

(iv) H1 ≤ H2 and H2 ≤ H1 ⇒ H1 = H2;

(v) H1 ≤ H2 ⇔ H1 − x ≤ H2 − x for every x ∈ R.

Proof. Let ti be the closed semibounded form corresponding to Hi, i = 1, 2, 3.
For the proof of (i) it is sufficient to observe that

domH2 = dom t2 ⊂ dom t1 = domH1,

where Theorem 5.2.4 and Theorem 5.1.18 (iv) were used. Taking orthogonal com-
plements then gives mulH1 ⊂ mulH2. For (ii) recall that

m(H1) = m(t1) ≤ m(t2) = m(H2),

as follows from Lemma 5.2.2 and Theorem 5.1.18. Statements (iii) and (iv) are
translations of similar statements in Lemma 5.2.2. The statement (v) is clear from
Theorem 5.2.4. �

Assume that in Definition 5.2.3 the self-adjoint relation H1 has a closed
domain domH1. Then the operator part H1,op of H1 is a bounded operator which

implies that domH1 = dom (H1 − x)
1
2 . Thus, in this case H1 ≤ H2 if and only if

dom (H2 − x)
1
2 ⊂ domH1,

((H1,op − x)ϕ,ϕ) ≤ ‖(H2,op − x)
1
2ϕ‖2, ϕ ∈ dom (H2 − x)

1
2 .

(5.2.3)

The following proposition gives an alternative version of this statement.

Proposition 5.2.6. Let H1 and H2 be semibounded self-adjoint relations in H and
assume that domH1 is closed. Then the following statements are equivalent:

(i) H1 ≤ H2;

(ii) domH2 ⊂ domH1, (H1,opϕ,ϕ) ≤ (H2,opϕ,ϕ), ϕ ∈ domH2.

Moreover, if H1 ∈ B(H), then these statements are equivalent to

(iii) (H1ϕ,ϕ) ≤ (H2,opϕ,ϕ), ϕ ∈ domH2;

(iv) (H1ϕ,ϕ) ≤ (ϕ′, ϕ), {ϕ,ϕ′} ∈ H2;

and in the particular case that H1 = γ1IH to

(v) γ1‖ϕ‖2 ≤ (H2,opϕ,ϕ), ϕ ∈ domH2;

(vi) γ1‖ϕ‖2 ≤ (ϕ′, ϕ), {ϕ,ϕ′} ∈ H2.
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Proof. (i) ⇒ (ii) Let (i) be satisfied. Then domH2 ⊂ dom (H2 − x)
1
2 ⊂ domH1

by (5.2.3), and for all ϕ ∈ domH2 the inequality in (5.2.3) takes the form

((H1,op − x)ϕ,ϕ) ≤ ((H2,op − x)ϕ,ϕ),

which implies (ii).

(ii) ⇒ (i) Let (ii) be satisfied and let ϕ ∈ dom (H2 − x)
1
2 . Then there exists a

sequence (ϕn) in domH2 such that

ϕn → ϕ and (H2,op − x)
1
2ϕn → (H2,op − x)

1
2ϕ, n→∞,

since domH2 is a core of (H2 − x)
1
2 ; see Lemma 1.5.10. Due to the assumption

one has ϕn ∈ domH1 and

((H1,op − x)ϕn, ϕn) ≤ ((H2,op − x)ϕn, ϕn) = ‖(H2,op − x)
1
2ϕn‖2.

Since domH1 is closed it follows by taking the limit that

((H1,op − x)ϕ,ϕ) ≤ ‖(H2,op − x)
1
2ϕ‖2, ϕ ∈ dom (H2 − x)

1
2 .

Hence, (5.2.3) is satisfied or, equivalently, H1 ≤ H2.

If H1 ∈ B(H), then domH1 = H and hence the rest of the statements is clear. �

In particular, the inequality in (v)–(vi) of Proposition 5.2.6 shows that the
ordering γIH ≤ H is equivalent to H being semibounded with lower bound γ
as defined in Definition 1.4.5. Furthermore, if both H1 and H2 are self-adjoint
operators in B(H), then they are semibounded and Proposition 5.2.6 (iii) shows
that H1 ≤ H2 in the sense of Definition 5.2.3 agrees with the usual definition
(H1ϕ,ϕ) ≤ (H2ϕ,ϕ) for all ϕ ∈ H.

The ordering for semibounded relations H1 and H2 can also be expressed in
terms of their resolvent operators. The next proposition is an immediate conse-
quence of Proposition 1.5.11 (for the special case ρ = 1).

Proposition 5.2.7. Let H1 and H2 be semibounded self-adjoint relations in H. Then
the following statements are equivalent:

(i) H1 ≤ H2;

(ii) for some, and hence for all x < min {m(H1),m(H2)}

(H2 − x)−1 ≤ (H1 − x)−1.

The next corollary slightly extends Proposition 5.2.7 and gives a further
interpretation of the inequality H1 ≤ H2 when x ≤ min {m(H1),m(H2)}. The
equivalence in (5.2.4) below is an example of the antitonicity property.
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Corollary 5.2.8. Let H1 and H2 be semibounded self-adjoint relations in H. Then

H1 ≤ H2

if and only if for γ ≤ min {m(H1),m(H2)} one has

(H2 − γ)−1 ≤ (H1 − γ)−1.

In particular, if H1 and H2 are nonnegative self-adjoint relations, then

H1 ≤ H2 ⇔ H−1
2 ≤ H−1

1 . (5.2.4)

Proof. Let H be a semibounded self-adjoint relation with γ ≤ m(H). Then H − γ
is nonnegative and hence also (H − γ)−1 is a nonnegative self-adjoint relation.
Now write for x < γ

H − x = H − γ − (x− γ),

and apply Corollary 1.1.12 (with H replaced by (H − γ)−1 and λ replaced by
(x− γ)−1), obtaining

(H − x)
−1

= − 1

x− γ
− 1

(x− γ)2

(
(H − γ)−1 − 1

x− γ

)−1

.

Hence, for the pair of semibounded self-adjoint relations H1 and H2 and with
γ ≤ min {m(H1),m(H2)} one obtains for each x < γ:

(H1 − x)−1 − (H2 − x)−1

=
1

(x− γ)2

[(
(H2 − γ)−1 − 1

x− γ

)−1

−
(
(H1 − γ)−1 − 1

x− γ

)−1
]
.

Since x−γ < 0, a repeated application of Proposition 5.2.7 shows the equivalence.
In fact, H1 ≤ H2 if and only if (H2 − x)−1 ≤ (H1 − x)−1 by Proposition 5.2.7,
which by the above formula is equivalent to(

(H1 − γ)−1 − 1

x− γ

)−1

≤
(
(H2 − γ)−1 − 1

x− γ

)−1

. (5.2.5)

Another application of Proposition 5.2.7 shows that the inequality (5.2.5) is equiv-
alent to the inequality (H2 − γ)−1 ≤ (H1 − γ)−1. �

As a corollary to Proposition 5.2.7 it will be shown that in the case H1 ≤ H2

the difference (H1− x)−1− (H2− x)−1, x < min {m(H1),m(H2)}, can be used to
describe the gap between the corresponding form domains

dom (H2 − x)
1
2 ⊂ dom (H1 − x)

1
2 .
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Corollary 5.2.9. Let H1 and H2 be semibounded self-adjoint relations in H and
assume that

H1 ≤ H2.

Then for all x < min {m(H1),m(H2)} the operator (H1−x)−1−(H2−x)−1 ∈ B(H)
is nonnegative and

dom (H1 − x)
1
2 = ran

(
(H1 − x)−1 − (H2 − x)−1

) 1
2 + dom (H2 − x)

1
2 .

Proof. Since H1 ≤ H2, the operator R(x) ∈ B(H), defined by

R(x) = (H1 − x)−1 − (H2 − x)−1,

is nonnegative for x < min {m(H1),m(H2)}; cf. Proposition 5.2.7. Hence, one can
write

(H1 − x)−1 = R(x) + (H2 − x)−1

=
(
R(x)

1
2 (H2 − x)−

1
2

)( R(x)
1
2

(H2 − x)−
1
2

)
.

(5.2.6)

Now recall that if T = (A B) is a row operator with A,B ∈ B(H), then it follows

from ran (TT ∗)
1
2 = ran |T ∗| = ranT , cf. Corollary D.6, that

ran (AA∗ +BB∗)
1
2 = ran (A B) = ranA+ ranB. (5.2.7)

Hence, taking square roots in the identity (5.2.6) and applying (5.2.7) shows that

ran (H1 − x)−
1
2 = ranR(x)

1
2 + ran (H2 − x)−

1
2 ,

which yields the desired decomposition

dom (H1 − x)
1
2 = ranR(x)

1
2 + dom (H2 − x)

1
2

for x < min {m(H1),m(H2)}. �

Now the ordering for semibounded self-adjoint relations and for semibounded
closed forms will be used to reinterpret and extend the monotonicity result in
Proposition 1.9.9

For the proof of the following theorem it is useful to have available an auxiliary
result concerning the interchange of limits. Let (fn) be a nondecreasing sequence of real
nondecreasing functions defined on an open interval (a, b). Thus, for all x ∈ (a, b) one
has

fm(x) ≤ fn(x), m ≤ n, (5.2.8)

and for all n ∈ N
fn(x) ≤ fn(y), a < x ≤ y < b. (5.2.9)

In view of (5.2.8) the pointwise limit

f∞(x) = lim
n→∞

fn(x), x ∈ (a, b), (5.2.10)
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gives a function f∞ : (a, b) → R ∪ {∞} that is nondecreasing, thanks to (5.2.9). This
is clear when all f∞(x) are finite, in which case limx→b f∞(x) is proper or improper.
However, if f∞(x0) = ∞ for some x0 ∈ (a, b), then (5.2.9) shows that f∞(x) = ∞ for
all x0 ≤ x < b. In this case the function f∞ is also called nondecreasing (in the sense of
R ∪ {∞}) and one defines limx→b f∞(x) = ∞. In view of (5.2.9) the limit

fn(b) = lim
x→b

fn(x), n ∈ N, (5.2.11)

gives a sequence with values in R ∪ {∞} that is nondecreasing, thanks to (5.2.8). This
is again clear when all limits fn(b) are finite in which case limn→∞ fn(b) is proper or
improper. However, if there exists some m ∈ N for which fm(b) = ∞, then for all n ≥ m
one has fn(b) = ∞. In this case one defines limn→∞ fn(b) = ∞.

Lemma 5.2.10. Let (fn) be a nondecreasing sequence of nondecreasing functions defined
on some open interval (a, b). Let f∞ be the nondecreasing limit function in (5.2.10) and
let (fn(b)) be the nondecreasing sequence of limits in (5.2.11). Then

lim
x→b

f∞(x) = lim
n→∞

fn(b). (5.2.12)

In particular, both limits in (5.2.12) are finite or infinite simultaneously.

Proof. Consider the case that all values of f∞ are real. Since fn(x) ≤ f∞(x) for all
x ∈ (a, b), it follows that for any n ∈ N

fn(b) = lim
x→b

fn(x) ≤ lim
x→b

f∞(x).

This implies
lim

n→∞
fn(b) ≤ lim

x→b
f∞(x), (5.2.13)

where the limits may be infinite. Assume that there is strict inequality in (5.2.13). First
consider the case limx→b f∞(x) < ∞. Then clearly there exists some δ > 0 for which

δ + lim
n→∞

fn(b) < lim
x→b

f∞(x). (5.2.14)

Next consider the case limx→b f∞(x) = ∞. Then limn→∞ fn(b) < ∞ (otherwise there
would be equality in (5.2.13)) and (5.2.14) holds for any δ > 0. In each case, there exists
some x ∈ (a, b) such that

δ + lim
n→∞

fn(b) < f∞(x).

From this one concludes

δ + f∞(x) = δ + lim
n→∞

fn(x) ≤ δ + lim
n→∞

fn(b) < f∞(x);

a contradiction. Hence, there is equality in (5.2.13). It remains to consider the situation
where f∞(x0) = ∞ for some a < x0 < b. In this case f∞(x) = ∞ for all x0 < x < b and
limx→b f∞(x) = ∞. Assume that

L = lim
n→∞

fn(b) < ∞.

For any x0 ≤ x < b one has
fn(x) ≤ fn(b) ≤ L,

which implies that limn→∞ fn(x) ≤ L; a contradiction. Again, there is equality in
(5.2.13). �
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Theorem 5.2.11 (Monotonicity principle). Let (Hn) be a nondecreasing sequence
of semibounded self-adjoint relations in H and let γ ≤ m(H1). Then there exists a
semibounded self-adjoint relation H∞ with γ ≤ m(H∞) and Hn ≤ H∞ such that
Hn → H∞ in the strong resolvent sense, i.e.,

(Hn − λ)−1ϕ→ (H∞ − λ)−1ϕ, ϕ ∈ H, λ ∈ C \ [γ,∞). (5.2.15)

Furthermore, H∞ satisfies

dom (H∞ − γ)
1
2

=

{
ϕ ∈

∞⋂
n=1

dom (Hn − γ)
1
2 : lim

n→∞ ‖(Hn,op − γ)
1
2ϕ‖ <∞

}
(5.2.16)

and for all ϕ ∈ dom (H∞ − γ)
1
2 it holds that

‖(H∞,op − γ)
1
2ϕ‖ = lim

n→∞ ‖(Hn,op − γ)
1
2ϕ‖. (5.2.17)

Proof. The assumption Hn ≤ Hm for n ≤ m and Proposition 5.2.7 lead to

0 ≤ (Hm − x)−1 ≤ (Hn − x)−1, x < γ,

where γ ≤ m(H1). Hence, by Proposition 1.9.14, there exists a semibounded self-
adjoint relation H∞ with γ ≤ m(H∞) such that

0 ≤ (H∞ − x)−1 ≤ (Hn − x)−1, x < γ, (5.2.18)

and Hn converges to H∞ in the strong resolvent sense on C \ [γ,∞), that is,
(5.2.15) holds.

It remains to prove (5.2.16) and (5.2.17). It follows from Corollary 1.1.12
with H replaced by Hn − γ and H∞ − γ, respectively, that for x < 0 one has((

(Hn − γ)−1 − x
)−1

ϕ,ϕ
)− (((H∞ − γ)−1 − x

)−1
ϕ,ϕ
)

=
1

x2

[((
(H∞ − γ)− 1

x

)−1

ϕ,ϕ

)
−
((

(Hn − γ)− 1

x

)−1

ϕ,ϕ

)]
.

Since γ + 1/x < γ, the right-hand side tends to zero monotonically from below
for n→∞, as follows from (5.2.15) and (5.2.18); but then also the left-hand side
tends to zero monotonically from below.

To complete the proof, consider the functions, defined for ϕ ∈ H and x < 0 by

fn(x) =
((
(Hn − γ)−1 − x

)−1
ϕ,ϕ
)

and

f∞(x) =
((
(H∞ − γ)−1 − x

)−1
ϕ,ϕ
)
.
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The above argument shows that the sequence fn is nondecreasing with f∞ as
pointwise limit. It follows from Lemma 1.5.12 (with H replaced by Hn − γ and
H∞ − γ, respectively), that both functions fn and f∞ are nondecreasing on the
interval (−∞, 0) and that

fn(0) = lim
x ↑ 0

(
((Hn − γ)−1 − x)−1ϕ,ϕ

)
=

{ ‖(Hn,op − γ)
1
2ϕ‖2, ϕ ∈ dom (Hn − γ)

1
2 ,

∞, otherwise,

(5.2.19)

while

f∞(0) = lim
x ↑ 0

(
((H∞ − γ)−1 − x)−1ϕ,ϕ

)
=

{ ‖(H∞,op − γ)
1
2ϕ‖2, ϕ ∈ dom (H∞ − γ)

1
2 ,

∞, otherwise.

(5.2.20)

Hence, by Lemma 5.2.10,
lim
n→∞ fn(0) = f∞(0), (5.2.21)

where the limits in (5.2.21) are finite or infinite simultaneously.

Assume that ϕ ∈ dom (H∞ − γ)
1
2 . Then, by (5.2.20), f∞(0) <∞, which, in

view of (5.2.21), implies that all fn(0) <∞. Hence, ϕ ∈ ⋂∞
n=1 dom (Hn − γ)

1
2 by

(5.2.19), and (5.2.21) reads

lim
n→∞ ‖(Hn,op − γ)

1
2ϕ‖2 = ‖(H∞,op − γ)

1
2ϕ‖2. (5.2.22)

Thus, ϕ belongs to the right-hand side of (5.2.16). This shows the inclusion (⊂)
in (5.2.16), and (5.2.22) gives (5.2.17).

Conversely, assume that ϕ belongs to the right-hand side of (5.2.16), that is,

ϕ ∈ ⋂∞
n=1 dom (Hn − γ)

1
2 and

lim
n→∞ ‖(Hn,op − γ)

1
2ϕ‖ <∞.

By (5.2.19) one sees that fn(0) <∞ and that limn→∞ fn(0) <∞. It follows from

(5.2.21) that f∞(0) <∞. Now apply (5.2.20) to conclude that ϕ ∈ dom (H∞−γ) 1
2 .

This shows the inclusion (⊃) in (5.2.16). �

Corollary 5.2.12. Let (Hn) be a nondecreasing sequence of semibounded self-adjoint
relations and let H∞ be the strong resolvent limit as in Theorem 5.2.11. Then the
following statements hold:

(i) If K is a semibounded self-adjoint relation such that Hn ≤ K for all n ∈ N,
then also H∞ ≤ K.

(ii) If S is a symmetric relation such that S ⊂ Hn for all n ∈ N, then also
S ⊂ H∞.
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Proof. (i) Assume that Hn ≤ K. Then for all x < γ ≤ m(H1)

0 ≤ ((K − x)−1ϕ,ϕ) ≤ ((Hn − x)−1ϕ,ϕ), ϕ ∈ H.

By (5.2.15), (Hn − x)−1ϕ→ (H∞ − x)−1ϕ for ϕ ∈ H and one concludes that

0 ≤ ((K − x)−1ϕ,ϕ) ≤ ((H∞ − x)−1ϕ,ϕ), ϕ ∈ H.

Hence, by Proposition 5.2.7 it follows that H∞ ≤ K.

(ii) Assume that {ϕ,ϕ′} ∈ S. Then {ϕ,ϕ′} ∈ Hn by assumption and hence for all
n ∈ N one has

(Hn − λ)−1(ϕ′ − λϕ) = ϕ, λ ∈ C \ [γ,∞).

By (5.2.15), (Hn − x)−1ψ → (H∞ − x)−1ψ for ψ ∈ H and one concludes that

(H∞ − λ)−1(ϕ′ − λϕ) = lim
n→∞(Hn − λ)−1(ϕ′ − λϕ) = ϕ,

which gives {ϕ,ϕ′} ∈ H∞. Hence, S ⊂ H∞. �

Now consider the special case of a nondecreasing sequence of self-adjoint
operators (Hn) in B(H). Then it is clear that H∞ is a semibounded self-adjoint
relation which is an operator in B(H) if and only if the sequence (Hn) is uniformly
bounded; cf. Corollary 1.9.10 and the beginning of Section 1.9. The following
corollary shows that the domain of the square root of H∞ − γ, γ ≤ m(H1), is
given by those ϕ ∈ H for which (Hnϕ,ϕ) has a finite limit as n→∞.

Corollary 5.2.13. Let (Hn) be a nondecreasing sequence of self-adjoint operators
in B(H) with γ ≤ m(H1) and define

E =
{
ϕ ∈ H : lim

n→∞(Hnϕ,ϕ) <∞
}
.

Let H∞ be the semibounded self-adjoint limit of the sequence Hn. Then

E = dom (H∞ − γ)
1
2 .

In particular, one has

(i) E = H ⇔ H∞ ∈ B(H);

(ii) E is closed ⇔ H∞,op is a bounded operator;

(iii) closE = H ⇔ H∞ is an operator;

(iv) E = {0} ⇔ H∞ = {0} × H.

A useful variant of Corollary 5.2.13 is concerned with a nondecreasing func-
tion M : (a, b)→ B(H), whose values are self-adjoint operators; cf. Corollary 2.3.8.
Then there exists a self-adjoint limit at the right endpoint b, which can be re-
trieved via sequences converging to b. For the existence of the self-adjoint limit
at the left endpoint a consider the function x �→ −M(x), which is nondecreasing
when x ∈ (a, b) tends to a.
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Corollary 5.2.14. Let M : (a, b)→ B(H) be a nondecreasing function, whose values
are self-adjoint operators. Then there exist self-adjoint relations M(a) and M(b)
in H such that M(x) → M(b) in the strong resolvent sense when x → b and
M(x)→M(a) in the strong resolvent sense when x→ a. Furthermore,

M(x) ≤M(b) and −M(x) ≤ −M(a), x ∈ (a, b).

Define

Eb =

{
ϕ ∈ H : lim

x ↑ b
(M(x)ϕ,ϕ) <∞

}
and

Ea =

{
ϕ ∈ H : lim

x ↓ a
(M(x)ϕ,ϕ) > −∞

}
.

Then for c = a or c = b one has

(i) Ec = H ⇔ M(c) ∈ B(H);

(ii) Ec is closed ⇔ M(c)op is a bounded operator;

(iii) closEc = H ⇔ M(c) is an operator;

(iv) Ec = {0} ⇔ M(c) = {0} × H.

Let (tn) be a nondecreasing sequence of closed semibounded forms in H which
satisfy γ ≤ m(t1). By Theorem 5.1.18, there exist unique semibounded self-adjoint
relations Hn, bounded from below by γ, which correspond to tn. According to
Theorem 5.2.4, the sequence (Hn) is nondecreasing. By the monotonicity principle
in Theorem 5.2.11 the strong resolvent limit of the sequence (Hn) exists as a
semibounded self-adjoint relationH∞ with lower bound γ such thatHn ≤ H∞. Let
t∞ be the form corresponding to H∞ by Proposition 5.1.19. Then t∞ is bounded
below by γ and tn ≤ t∞ by Theorem 5.2.4. Therefore, the following theorem
concerning a nondecreasing sequence of forms may be seen as a direct consequence
of Theorem 5.2.11.

Theorem 5.2.15 (Monotonicity principle). Let (tn) be a nondecreasing sequence
of closed semibounded forms in H and let γ ≤ m(t1). Then there exists a closed
semibounded form t∞ with γ ≤ m(t∞) such that tn ≤ t∞ and

dom t∞ =

{
ϕ ∈

∞⋂
n=1

dom tn : lim
n→∞ tn[ϕ] <∞

}
(5.2.23)

and
t∞[ϕ] = lim

n→∞ tn[ϕ], ϕ ∈ dom t∞. (5.2.24)

Moreover, the relations Hn corresponding to the forms tn converge in the strong
resolvent sense to the relation H∞ corresponding to the form t∞.

Proof. It is clear from Theorem 5.1.23 and the formulas (5.2.16) and (5.2.17) in
Theorem 5.2.11 that the limit form t∞ satisfies (5.2.23) and (5.2.24). �
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5.3 Friedrichs extensions of semibounded relations

A semibounded, not necessarily closed, relation S in a Hilbert space H has equal
defect numbers, and hence admits self-adjoint extensions in H. It will be shown that
such a relation S has a distinguished semibounded self-adjoint extension SF, the
so-called Friedrichs extension of S, with m(SF) = m(S). The construction of this
extension involves a closed semibounded form associated with S. The characteristic
properties of this extension will be investigated in detail.

Let S be a semibounded relation in H. Recall from Lemma 5.1.17 that the
form tS given by

tS [f, g] = (f ′, g), {f, f ′}, {g, g′} ∈ S, (5.3.1)

is well defined and that it is semibounded with the lower bound m(S). Moreover,
it has been shown that tS is closable and that the closure t̃S of tS is a semibounded
closed form whose lower bound is equal to m(S). Also, dom tS = domS is a core
of t̃S .

Lemma 5.3.1. Let S be a semibounded relation in H with lower bound m(S). Let t̃S
be the closure of the form tS in (5.3.1). Then the unique relation SF corresponding
to t̃S via Theorem 5.1.18 is a semibounded self-adjoint extension of S with the lower
bound m(SF) = m(S). In fact, SF is a self-adjoint extension of the semibounded

relation S +̂ N̂∞(S∗), so that

S ⊂ S +̂ N̂∞(S∗) ⊂ SF, where N̂∞(S∗) = {0} ×mulS∗. (5.3.2)

Moreover,
SF = (S)F. (5.3.3)

Proof. By Theorem 5.1.18, the closed form t̃S induces a unique semibounded self-
adjoint relation SF in H such that

t̃S [f, g] = (f ′, g), {f, f ′} ∈ SF, g ∈ dom t̃S .

To show that SF is an extension of S, let {f, f ′} ∈ S. As f ∈ dom tS , it follows
that for all g ∈ dom tS

t̃S [f, g] = tS [f, g] = (f ′, g).

Since dom tS = domS is a core of t̃S , one obtains {f, f ′} ∈ SF from The-
orem 5.1.18 (iii). Hence, SF is a self-adjoint extension of S with lower bound
m(SF) = m(S).

In order to verify (5.3.2) it now suffices to see that {0} ×mulS∗ ⊂ SF. Let
ϕ ∈ mulS∗ and let g ∈ domS, then clearly t̃S [0, g] = 0 and (ϕ, g) = 0. Therefore,

t̃S [0, g] = (ϕ, g) for all g ∈ domS.

Since domS is a core of t̃S , it follows that {0, ϕ} ∈ SF.

To see that (5.3.3) holds, it suffices to recall from Lemma 5.1.17 that t̃S = t̃S
holds for the closures of tS and tS . �
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Definition 5.3.2. Let S be a semibounded relation in H. The semibounded self-
adjoint relation SF associated with the closure of the form tS in (5.3.1) is called
the Friedrichs extension of S. The closure t̃S of the form tS will be denoted by
tSF

, so that tSF
= t̃S .

Let S be a semibounded relation in H and let a < m(S). Then S − a is a
nonnegative relation and it is a consequence of (5.3.1) that tS−a = tS − a. The
translation invariance of the closures, cf. (5.1.17), leads to

t(S−a)F = t̃S−a = t̃S − a = t̃S − a = tSF − a.

The nonnegative self-adjoint relation (S − a)F corresponding to the form on the
left-hand side is equal to the nonnegative self-adjoint relation corresponding to
the form on the right-hand side. Thus, one obtains

(S − a)F = SF − a, a < m(S). (5.3.4)

In other words, the Friedrichs extension is translation invariant.

By Lemma 5.3.1, the Friedrichs extension SF is a semibounded self-adjoint
extension of S. As a restriction of S∗ the Friedrichs extensions can be characterized
as follows.

Theorem 5.3.3. Let S be a semibounded relation in H. The Friedrichs extension
SF of S admits the representation

SF =
{{f, f ′} ∈ S∗ : f ∈ dom tSF

}
(5.3.5)

with mulSF = mulS∗. Furthermore, if H is a self-adjoint extension of S, that is
not necessarily semibounded, then

domH ⊂ dom tSF ⇒ H = SF.

Proof. In order to show that SF is contained in the right-hand side of (5.3.5), let
{f, f ′} ∈ SF. Clearly, S ⊂ SF and since SF is self-adjoint this implies SF ⊂ S∗, so
that {f, f ′} ∈ S∗. Note also that f ∈ domSF ⊂ dom tSF . Hence, SF is contained
in the right-hand side of (5.3.5).

To show the opposite inclusion, let {f, f ′} ∈ S∗ be such that f ∈ dom tSF
.

Then there exists a sequence (fn) in dom tS = domS with

fn →tSF
f.

Let {fn, f ′
n} be corresponding elements in S and let {g, g′} ∈ S be arbitrary. Then

tS ⊂ tSF
and S ⊂ S∗ imply that

tSF [fn, g] = tS [fn, g] = (f ′
n, g) = (fn, g

′).
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Since tSF is a closed form, it follows that

tSF [f, g] = (f, g′).

As {f, f ′} ∈ S∗ and {g, g′} ∈ S, one obtains (f, g′) = (f ′, g), so that

tSF [f, g] = (f ′, g).

This identity holds for an arbitrary element g ∈ domS. Since domS = dom tS is
a core of the form tSF

it follows from Theorem 5.1.18 (iii) that {f, f ′} ∈ SF.

Now let H be any self-adjoint extension of S with domH ⊂ dom tSF . Hence,
if {f, f ′} ∈ H, then {f, f ′} ∈ S∗ and f ∈ domH ⊂ dom tSF . By (5.3.5), one has
{f, f ′} ∈ SF. This shows H ⊂ SF, and since both H and SF are self-adjoint, it
follows that H = SF. �

According to Theorem 5.3.3, the inclusion domH ⊂ dom tSF
for any self-

adjoint extension H of S implies H = SF. Note that in general a self-adjoint
extension of a semibounded relation is not necessarily semibounded. The situation
is different when S has finite defect numbers; cf. Proposition 5.5.8.

The construction of SF in (5.3.5) results in a description of SF by means of
approximating elements from the graph of S.

Corollary 5.3.4. Let S be a semibounded relation in H. Then SF is the set of all
elements {f, f ′} ∈ S∗ for which there exists a sequence ({fn, f ′

n}) in S such that

fn → f and (f ′
n, fn)→ (f ′, f).

Proof. By Theorem 5.3.3, SF is the set of all elements {f, f ′} ∈ S∗ for which
f ∈ dom tSF

. Hence, there exists a sequence ({fn, f ′
n}) in S such that

fn →tSF
f.

In particular, fn → f in H and, moreover,

(f ′, f) = tSF [f, f ] = lim
n→∞ tSF [fn, fn] = lim

n→∞ tS [fn, fn] = lim
n→∞(f ′

n, fn).

Hence, SF is contained in the relation{{f, f ′} ∈ S∗ : fn → f and (f ′
n, fn)→ (f ′, f) for some {fn, f ′

n} ∈ S
}
.

Observe that this relation is symmetric since (f ′
n, fn) ∈ R implies (f ′, f) ∈ R.

Thus, the self-adjoint relation SF is contained in the symmetric relation above,
and therefore they coincide. �

Since S ⊂ SF ⊂ S∗ and domSF ⊂ domS by Corollary 5.3.4 one has that

domS ⊂ domSF ⊂
(
domS ∩ domS∗).

The next corollary shows when these inclusions are identities.
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Corollary 5.3.5. Let S be a semibounded relation in H. Then

S +̂ N̂∞(S∗) = SF, N̂∞(S∗) = {0} ×mulS∗, (5.3.6)

if and only if

domS = domS ∩ domS∗.

In particular, if domS is closed, then SF has the form (5.3.6).

Proof. Recall from (5.3.2) that S +̂ N̂∞(S∗) ⊂ SF. Note that there is equal-

ity if and only if S +̂ N̂∞(S∗) is self-adjoint. Hence, the assertion follows from
Lemma 1.5.7. �

The construction of the Friedrichs extension SF of a semibounded relation S
via the form tS in (5.3.1) leads to an important characteristic property. First of
all, recall that

tSF [f, g] = (f ′, g), {f, f ′} ∈ SF, g ∈ dom tSF ,

with lower bound m(SF) = m(S). Now assume that H is another semibounded
self-adjoint extension of S. Then clearly m(H) ≤ m(S), and according to Propo-
sition 5.1.19, the relation H generates a closed semibounded form tH on H with

tH [f, g] = (f ′, g), {f, f ′} ∈ H, g ∈ dom tH .

By specializing {f, f ′} ∈ S and g ∈ domS, it follows that

tH [f, g] = (f ′, g) = tS [f, g]

and hence tS ⊂ tH . By construction, tS ⊂ t̃ = tSF
and hence tSF

is the smallest
closed form extension of tS ; cf. Theorem 5.1.12. Therefore,

tS ⊂ tSF
⊂ tH . (5.3.7)

This leads to the extremality property of SF stated in the next result.

Proposition 5.3.6. Let S be a semibounded relation in H and let H be a semibounded
self-adjoint extension of S. Then m(tH) = m(H) ≤ m(SF) = m(S) and

tH ≤ tSF or H ≤ SF;

or, equivalently, for some, and hence for all a < m(H),

(SF − a)−1 ≤ (H − a)−1.

Proof. It is a consequence of (5.3.7) and Lemma 5.2.2 (i) that tH ≤ tSF
. The rest

of the statements follow from Theorem 5.2.4 and Proposition 5.2.7. �
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According to Proposition 5.3.6, the Friedrichs extension SF is the largest
semibounded self-adjoint extension of S in the sense of the ordering for forms or
relations, and so it has the smallest form domain. Recall that for any semibounded
self-adjoint extension H of S one has for a < m(H) ≤ m(SF) that

dom (H − a)
1
2 = ranR(a)

1
2 + dom (SF − a)

1
2 , (5.3.8)

where the nonnegative operator R(a) is defined by

R(a) = (H − a)−1 − (SF − a)−1 ∈ B(H); (5.3.9)

cf. Corollary 5.2.9. The identity (5.3.8) will now be put in a geometric context.
Recall that for a < m(H) the closed nonnegative form tH − a on H defines the
following inner product on dom tH

(f, g)tH−a = tH [f, g]− a(f, g), f, g ∈ dom tH = dom (H − a)
1
2 , (5.3.10)

which makes the space HtH−a=domtH =dom(H−a)
1
2 complete; cf. Lemma 5.1.8.

Similarly, the closed nonnegative form tSF − a on H defines the following inner
product on dom tSF

:

(f, g)tSF
−a = tSF [f, g]− a(f, g), f, g ∈ dom tSF = dom (SF − a)

1
2 , (5.3.11)

which makes the space HtSF
−a = dom tSF = dom (SF − a)

1
2 complete. Thus, in

terms of inner product spaces one obtains

HtSF
−a ⊂ HtH−a,

and by (5.3.7) the restriction of the inner product in (5.3.10) to HtSF
−a coincides

with the inner product in (5.3.11). Therefore,

HtH−a =
(
HtH−a �tH−a HtSF

−a

)⊕tH−a HtSF
−a, (5.3.12)

see Corollary 5.1.13. In terms of the spaces HtH−a and HtSF
−a the sum decompo-

sition in (5.3.8) may be rewritten as

HtH−a = ranR(a)
1
2 + HtSF

−a. (5.3.13)

The connection between the decompositions in (5.3.12) and (5.3.13) is discussed
in the next proposition.

Proposition 5.3.7. Let S be a semibounded relation in H, let SF be its Friedrichs
extension, and let H be a semibounded self-adjoint extension of S with lower bound
m(H). Furthermore, let a < m(H) and let R(a) be the nonnegative operator in
(5.3.9). Then

HtH−a �tH−a HtSF
−a = ker (S∗ − a) ∩ HtH−a = ranR(a)

1
2 , (5.3.14)
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and, consequently, the Hilbert space HtH−a has the orthogonal decomposition

HtH−a =
(
ker (S∗ − a) ∩ HtH−a

)⊕tH−a HtSF
−a

= ranR(a)
1
2 ⊕tH−a HtSF

−a.
(5.3.15)

In particular, the sum decomposition in (5.3.8) is direct for every a < m(H).

Proof. First the identity

HtH−a �tH−a HtSF
−a = ker (S∗ − a) ∩ HtH−a (5.3.16)

in (5.3.14) will be shown. Recall from Lemma 5.1.17 and Theorem 5.1.12 that
HtS−a is a dense subspace of HtSF

−a, and hence it suffices to verify that

HtH−a �tH−a HtS−a = ker (S∗ − a) ∩ HtH−a. (5.3.17)

Assume first that g belongs to the left-hand side of (5.3.17). Then (f, g)tH−a = 0
for all f ∈ domS. Hence,

0 = (f, g)tH−a = tH [f, g]− a(f, g) = (f ′, g)− a(f, g) = (f ′ − af, g)

for all {f, f ′} ∈ S ⊂ H, where in the third equality the first representation theorem
was used. This implies g ∈ (ran (S − a))⊥ ∩ HtH−a = ker (S∗ − a) ∩ HtH−a.
Conversely, assume that g ∈ ker (S∗ − a) ∩ HtH−a. Then the same reasoning as
above shows that g belongs to the left-hand side of (5.3.17).

In order to prove the second equality in (5.3.14), one first shows that

ranR(a)
1
2 ⊂ ker (S∗ − a). (5.3.18)

To see this, let {f, f ′} ∈ S. Then {f, f ′} ∈ H∩SF and hence (H−a)−1(f ′−af) = f
and (SF − a)−1(f ′ − af) = f , which implies that for h ∈ H

(f ′ − af,R(a)h) =
(
(H − a)−1(f ′ − af)− (SF − a)−1(f ′ − af), h

)
= 0.

Therefore,
ranR(a) ⊂ (ran (S − a))⊥ = ker (S∗ − a)

and hence also ranR(a) ⊂ ker (S∗ − a). Moreover, since R(a) is a nonnegative
self-adjoint operator it follows from Corollary D.7 that

ranR(a) ⊂ ranR(a)
1
2 ⊂ ranR(a)

1
2 = ranR(a) ⊂ ker (S∗ − a), (5.3.19)

which shows (5.3.18). By (5.3.8), one has ranR(a)
1
2 ⊂ dom (H − a)

1
2 = HtH−a.

Together with (5.3.19) one concludes that ranR(a)
1
2 ⊂ ker (S∗−a)∩HtH−a. From

(5.3.16) it is clear that

ranR(a)
1
2 ⊂ HtH−a �tH−a HtS−a.
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Comparing (5.3.8) with (5.3.12), one then concludes that

ranR(a)
1
2 = HtH−a �tH−a HtS−a.

Together with (5.3.16) the identities in (5.3.14) follow. Furthermore, the above
reasoning shows that the sum decomposition in (5.3.8) is direct. �

The semibounded self-adjoint extensions H of S for which the subspace
ker (S∗ − a) ∩ HtH−a is not a proper subset of ker (S∗ − a) are of special interest.
In fact, they coincide with the semibounded self-adjoint extensions H for which
H and SF are transversal.

Theorem 5.3.8. Let S be a semibounded relation in H and let H be a semibounded
self-adjoint extension of S. Then the following statements are equivalent:

(i) H and SF are transversal, i.e., S∗ = H +̂ SF;

(ii) ker (S∗ − a) ⊂ dom (H − a)
1
2 for some, and hence for all a < m(H);

(iii) dom (H − a)
1
2 = ker (S∗ − a) + dom (SF − a)

1
2 for some, and hence for all

a < m(H);

(iv) domS∗ ⊂ dom (H − a)
1
2 for some, and hence for all a ≤ m(H).

Proof. (i) ⇔ (ii) In general, the self-adjoint extensions H and SF are transversal
if and only if for some, and hence for all a < m(H)

ranR(a) = ker (S∗ − a),

where R(a) = (H − a)−1 − (SF − a)−1, which follows from Theorem 1.7.8. Since
R(a) is a nonnegative self-adjoint operator and since ker (S∗−a) is closed, the last
statement is equivalent to

ranR(a)
1
2 = ker (S∗ − a);

cf. Corollary D.7. It follows from Proposition 5.3.7 that this condition is the same
as

ker (S∗ − a) ∩ dom (H − a)
1
2 = ker (S∗ − a).

(ii) ⇒ (iii) This follows immediately from the direct sum decomposition

dom (H − a)
1
2 =

(
ker (S∗ − a) ∩ dom (H − a)

1
2

)
+ dom (SF − a)

1
2 ;

cf. (5.3.8) and Proposition 5.3.7.

(iii) ⇒ (ii) This implication is trivial.

(i) ⇒ (iv) The identity S∗ = SF +̂ H shows that

domS∗ = domSF + domH,

and note that domH and domSF are subsets of dom (H − a)
1
2 .

(iv) ⇒ (ii) This is clear. �
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The following result is a consequence of Theorem 5.3.8; it describes the be-
havior of any semibounded self-adjoint extension H ′ of S in the presence of a
semibounded self-adjoint extension H such that H and SF are transversal.

Corollary 5.3.9. Let S be a semibounded relation in H and let H be a semibounded
self-adjoint extension of S such that H and SF are transversal. Then every semi-
bounded self-adjoint extension H ′ of S satisfies

dom (H ′ − a)
1
2 ⊂ dom (H − a)

1
2 , a < min {m(H),m(H ′)}, (5.3.20)

in which case there exists C > 0 such that

‖(Hop − a)
1
2ϕ‖ ≤ C‖((H ′)op − a)

1
2ϕ‖ (5.3.21)

for all ϕ ∈ dom (H ′ − a)
1
2 . Moreover, there is equality in (5.3.20) if and only if

H ′ and SF are transversal, in which case there exist c > 0 and C > 0 such that

c‖((H ′)op − a)
1
2ϕ‖ ≤ ‖(Hop − a)

1
2ϕ‖ ≤ C‖((H ′)op − a)

1
2ϕ‖ (5.3.22)

for all ϕ ∈ dom (H ′ − a)
1
2 = dom (H − a)

1
2 .

Proof. By Theorem 5.3.8, the semibounded self-adjoint extension H of S satisfies
all of the equivalent conditions (i)–(iv) in Theorem 5.3.8. Let H ′ be another semi-
bounded self-adjoint extension of S. Applying Proposition 5.3.7 to H ′ one sees
that for a < m(H ′)

dom (H ′ − a)
1
2 =

(
ker (S∗ − a) ∩ HtH′−a

)
+ dom (SF − a)

1
2 .

Choosing a < min {m(H),m(H ′)} it follows from Theorem 5.3.8 (iii) for H that
the inclusion (5.3.20) holds. The inequality (5.3.21) is a direct consequence of
Proposition 1.5.11.

Assume that there is equality in (5.3.20). Then Theorem 5.3.8 (iii) implies
that H ′ and SF are transversal. Conversely, if H ′ and SF are transversal, then
it follows from Theorem 5.3.8 (iii) that there is equality in (5.3.20). If there is
equality in (5.3.20), then (5.3.21) also holds for some c > 0 when H and H ′ are
interchanged. Thus, the inequalities in (5.3.22) hold. �

The extreme case of equality of H and SF is described in the following im-
mediate corollary of Proposition 5.3.7 and (5.3.8).

Corollary 5.3.10. Let S be a semibounded relation in H and let H be a semibounded
self-adjoint extension of S. Then H = SF if and only if

ker (S∗ − a) ∩ dom (H − a)
1
2 = {0}

for some, and hence for all a < m(H).

In the next corollary the form corresponding to a semibounded self-adjoint
extension H which is transversal to SF is specified.
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Corollary 5.3.11. Let S be a semibounded relation in H, let H be a semibounded
self-adjoint extension of S such that H and SF are transversal, and let tSF

and tH
be the corresponding closed semibounded forms in H. Then

dom tH = ker (S∗ − a)⊕tH−a dom tSF
, a < m(H), (5.3.23)

and the restriction of tH to Na(S
∗) = ker (S∗ − a) is a closed form in Na(S

∗)
which is bounded from below by m(H) and represented by a bounded self-adjoint
operator La ∈ B(Na(S

∗)). Furthermore, one has

tH [f, g]− a(f, g) =
(
(La − a)fa, ga

)
+ tSF

[fF, gF]− a(fF, gF) (5.3.24)

for all f = fa + fF, g = ga + gF ∈ dom tH , where fa, ga ∈ ker (S∗ − a) and
fF, gF ∈ dom tSF

.

Proof. The orthogonal decomposition (5.3.23) of dom tH follows from (5.3.15) in
Proposition 5.3.7 and Theorem 5.3.8 (iii). Since the restriction of the form tH
to Na(S

∗) is a closed form which is bounded from below by m(H), it follows
from Theorem 5.1.18 that there exists a semibounded self-adjoint relation La in
Na(S

∗) which represents this form. Moreover, it follows from Theorem 5.1.23 that

Na(S
∗) = dom (La − x)

1
2 , x ≤ m(H), and hence (La − x)

1
2 and La are bounded

self-adjoint operators defined on Na(S
∗).

For f, g ∈ dom tH decomposed, with respect to (5.3.23), in

f = fa + fF and g = ga + gF,

where fa, ga ∈ ker (S∗ − a) and fF, gF ∈ dom tSF
, one has (fa, gF)tH−a = 0 and

(fF, ga)tH−a = 0, and hence

tH [f, g]− a(f, g) = (f, g)tH−a = (fa, ga)tH−a + (fF, gF)tH−a

= tH [fa, ga]− a(fa, ga) + tSF
[fF, gF]− a(fF, gF).

Now (5.3.24) follows from tH [fa, ga] = (Lafa, ga). �

5.4 Semibounded self-adjoint extensions and
their lower bounds

Let S be a, not necessarily closed, semibounded relation in a Hilbert space H
with lower bound m(S). The Friedrichs extension SF is a self-adjoint extension
of S whose lower bound m(SF) is equal to the lower bound m(S) of S. If H
is a semibounded self-adjoint extension of S, then necessarily m(H) ≤ m(S).
In this section the so-called Krĕın type extensions SK,x of S will be introduced.
They can be viewed as generalizations of the Krĕın–von Neumann extension of a
nonnegative symmetric operator or relation. The Krĕın type extension SK,x can
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be used to describe all semibounded self-adjoint extensions H of S whose lower
bound satisfies m(H) ∈ [x,m(S)] when x ≤ m(S).

Let S be a semibounded relation in H with lower bound γ = m(S). It is clear
that x ≤ γ implies that S − x ≥ 0. Hence, for x ≤ γ the relation (S − x)−1 is
nonnegative and one can define the Friedrichs extension ((S−x)−1)F of (S−x)−1,
which is nonnegative; cf. Definition 5.3.2.

Lemma 5.4.1. Let S be a semibounded relation in H with lower bound γ. For x ≤ γ
the relation SK,x defined by

SK,x :=
(
((S − x)−1)F

)−1
+ x (5.4.1)

is a semibounded self-adjoint extension of S with lower bound m(SK,x) = x. More-
over, SK,x = (S)K,x for x ≤ γ and

S ⊂ S +̂ N̂x(S
∗) ⊂ S +̂ N̂x(S

∗) ⊂ SK,x, x ≤ γ, (5.4.2)

while, in particular,
S +̂ N̂x(S

∗) = SK,x, x < γ. (5.4.3)

Proof. Since for x ≤ γ the Friedrichs extension ((S − x)−1)F of the nonnegative
relation (S − x)−1 is nonnegative, it follows that(

((S − x)−1)F
)−1

is a nonnegative self-adjoint extension of S − x. Hence, SK,x defined by (5.4.1) is
a self-adjoint extension of S and, clearly,

m(SK,x) ≥ x, x ≤ γ. (5.4.4)

Since the closure of (S − x)−1 is given by (S − x)−1, it follows from Lemma 5.3.1,
with S replaced by (S − x)−1, that

((S − x)−1)F = ((S − x)−1)F,

which leads to SK,x = (S)K,x for x ≤ γ.

Let x ≤ γ and note that the first and second inclusion in (5.4.2) are clear.
It is also clear that S ⊂ S ⊂ SK,x; thus, to show the third inclusion in (5.4.2) it

suffices to check that N̂x(S
∗) ⊂ SK,x. Set T = (S−x)−1, so that T is nonnegative

and mulT ∗ = Nx(S
∗). By Lemma 5.3.1, {0} ×mulT ∗ ⊂ TF or, equivalently,

{0} ×Nx(S
∗) ⊂ ((S − x)−1)F or Nx(S

∗)× {0} ⊂ ((S − x)−1)F)
−1.

Thus, N̂x(S
∗) ⊂ SK,x which completes the argument.

For x < γ it follows from Proposition 1.4.6 and Lemma 1.2.2 that ran (S−x)

is closed. Hence, the relation S +̂ N̂x(S
∗) is self-adjoint, cf. Lemma 1.5.7, and thus

the equality (5.4.3) prevails.
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It remains to show that m(SK,x) = x. When x < γ one concludes this from
(5.4.3). When x = γ observe that S ⊂ SK,γ implies m(SK,γ) ≤ m(S) = γ. On the
other hand, from (5.4.4) it follows that m(SK,γ) ≥ γ. �

Definition 5.4.2. Let S be a semibounded relation in H with lower bound γ and let
x ≤ γ. The semibounded self-adjoint extensions SK,x in (5.4.1) are called Krĕın
type extensions of S. In the case γ ≥ 0 the nonnegative self-adjoint extension SK,0

is called the Krĕın–von Neumann extension of S.

The definition of the Krĕın type extensions SK,x in (5.4.1) incorporates the
lower bound m(S) = γ of S. Note that m(S − x) = γ − x for any x ∈ R, so that
(S − x)K,γ−x is well defined, and

(S − x)K,γ−x =
((
((S − x)− (γ − x))−1

)
F

)−1
+ γ − x, x ∈ R,

which leads to
(S − x)K,γ−x = SK,γ − x, x ∈ R. (5.4.5)

The identity (5.4.5) is the analog for the Krĕın type extension SK,γ of the shift
invariance property (5.3.4) of SF. There are some more useful identities involving
Krĕın type extensions of S. First note the simple equality(

S +̂ N̂x(S
∗)
)−1

= S−1 +̂ N̂1/x(S
−∗), x ∈ R \ {0}. (5.4.6)

If S ≥ 0 or, equivalently, S−1 ≥ 0, then it follows from (5.4.6) and Lemma 5.4.1
that

(SK,x)
−1 = (S−1)K,1/x, x < 0, (5.4.7)

since 0 ≤ min {m(S),m(S−1)}. In particular, one sees from (5.4.7) that(
(S − γ)K,x

)−1
=
(
(S − γ)−1

)
K,1/x

, x < 0. (5.4.8)

Returning to the general case where S has lower bound γ, note the simple equality(
S +̂ N̂a+x(S

∗)
)− a = (S − a) +̂ N̂x((S − a)∗), a, x ∈ R.

For a+ x < γ this implies

SK,a+x − a = (S − a)K,x, (5.4.9)

and taking a = γ in (5.4.9) gives an analog of (5.4.5):

SK,γ+x − γ = (S − γ)K,x, x < 0. (5.4.10)

By Lemma 5.4.1, the Krĕın type extensions SK,x , x ≤ γ, are semibounded
self-adjoint extensions of S. As restrictions of S∗ the Krĕın type extensions can be
characterized in a similar way as the Friedrichs extension SF; cf. Theorem 5.3.3.
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Theorem 5.4.3. Let S be a semibounded relation in H with lower bound γ. Then
for each x ≤ γ the Krĕın type extension SK,x of S has the representation

SK,x =
{{f, f ′} ∈ S∗ : f ′ − xf ∈ dom t ((S−x)−1)F

}
(5.4.11)

with ker (SK,x − x) = ker (S∗ − x). Furthermore, if H is a self-adjoint extension
of S, which is not necessarily semibounded, then

ran (H − x) ⊂ dom t ((S−x)−1)K ⇒ H = SK,x.

Proof. Let x ≤ γ. Then by definition one has (SK,x − x)−1 = ((S − x)−1)F and
{f, f ′} ∈ SK,x if and only if {f ′ − xf, f} ∈ (SK,x − x)−1. Similarly, {f, f ′} ∈ S∗

if and only if {f ′ − xf, f} ∈ (S∗ − x)−1. Hence, the description (5.4.11) follows
from the representation of ((S − x)−1)F in Theorem 5.3.3 (with S now replaced
by (S − x)−1). Likewise,

ker (SK,x − x) = mul ((S − x)−1)F = mul (S∗ − x)−1 = ker (S∗ − x).

The last item also follows from Theorem 5.3.3. �

There is also an approximation of SK,x by elements in S as in Corollary 5.3.4;
in particular, this gives a useful description of mul SK,x.

Corollary 5.4.4. Let S be a semibounded relation in H with lower bound γ. Then
SK,x, x ≤ γ, is the set of all elements {f, f ′} ∈ S∗ for which there exists a sequence
({fn, f ′

n}) in S such that

f ′
n − xfn → f ′ − xf and (fn, f

′
n − xfn)→ (f, f ′ − xf).

In particular, mulSK,x is the set of all elements f ′ ∈ mulS∗ for which there exists
a sequence ({fn, f ′

n}) in S such that

f ′
n − xfn → f ′ and (fn, f

′
n − xfn)→ 0.

As in the case of the Friedrichs extension, the Krĕın type extension SK,γ

can sometimes be explicitly given in terms of S and an eigenspace of S∗; cf.
Lemma 1.5.7. The following result is the analog of Corollary 5.3.5. The special
case where ran (S − γ) is closed is particularly useful.

Corollary 5.4.5. Let S be a semibounded relation with lower bound γ. Then

SK,γ = S +̂ N̂γ(S
∗) (5.4.12)

if and only if

ran (S − γ) = ran (S − γ) ∩ ran (S∗ − γ).

In particular, if ran (S − γ) is closed, then SK,γ has the form (5.4.12).
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The semibounded self-adjoint extensions SK,x with x ≤ γ become extremal
extensions of S when a lower bound x ≤ γ for semibounded self-adjoint extensions
of S is prescribed.

Theorem 5.4.6. Let S be a semibounded relation in H with lower bound γ. Let
x ≤ γ be fixed and let H be a semibounded self-adjoint relation in H. Then the
following equivalence holds:

S ⊂ H and x ≤ m(H) ⇔ SK,x ≤ H ≤ SF. (5.4.13)

In particular, the class of semibounded self-adjoint extensions of S preserving the
lower bound of S is characterized by

S ⊂ H and γ = m(H) ⇔ SK,γ ≤ H ≤ SF. (5.4.14)

In fact, SK,x ≤ H ≤ SF, x ≤ γ, implies that S ⊂ (SF ∩ SK,x) ⊂ H.

Proof. (⇒) Assume that H is a semibounded self-adjoint extension of S with lower
bound m(H) ≥ x. Then clearly S−x ⊂ H−x and here both sides are nonnegative
relations. But then also (S−x)−1 ⊂ (H −x)−1, where both sides are nonnegative
relations. Applying Proposition 5.3.6 to the relation (S − x)−1 one obtains

(H − x)−1 ≤ ((S − x)−1)F.

Since these relations are nonnegative, the antitonicity property of the inverse in
Corollary 5.2.8 gives the inequality(

((S − x)−1)F
)−1 ≤ H − x

or, equivalently, SK,x ≤ H. The inequality H ≤ SF holds by Proposition 5.3.6.

(⇐) Let H be a semibounded self-adjoint relation such that SK,x ≤ H ≤ SF.
Then m(SK,x) ≤ m(H) ≤ m(SF) by Lemma 5.2.5 (ii) and, since m(SK,x) = x and
m(SF) = γ, one concludes that H is semibounded with x ≤ m(H) ≤ γ.

It remains to show that H is an extension of S. With a < x the assumption
on H is equivalent to(

(SF − a)−1h, h
) ≤ ((H − a)−1h, h

) ≤ ((SK,x − a)−1h, h
)
, h ∈ H; (5.4.15)

cf. Proposition 5.2.7. For R(a) = (H − a)−1 − (SF − a)−1 ∈ B(H) it follows from
(5.4.15) that

0 ≤ (R(a)h, h) ≤ ((SK,x − a)−1h, h
)− ((SF − a)−1h, h

)
, h ∈ H. (5.4.16)

Now, let {f, f ′} ∈ S and define h = f ′ − af . Then h ∈ ran (S − a) and
{h, f} ∈ (S − a)−1, and hence

{h, f} ∈ (SF − a)−1 ∩ (SK,x − a)−1,

so that (SF− a)−1h = (SK,x− a)−1h. It follows from (5.4.16) that (R(a)h, h) = 0,
and since R(a) ≥ 0, one concludes that R(a)h = 0 for all h ∈ ran (S − a).
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In other words,

(H − a)−1(f ′ − af) = (SF − a)−1(f ′ − af) = f, {f, f ′} ∈ S,

and it follows that {f, f ′} ∈ H. This proves the claim S ⊂ H and completes the
proof of (5.4.13). The inclusion SF ∩ SK,x ⊂ H follows similarly. �

If S is nonnegative, then Theorem 5.4.6 shows that the Krĕın–von Neumann
extension

SK,0 =
(
(S−1)F

)−1
(5.4.17)

in Definition 5.4.2 is the smallest nonnegative self-adjoint extension.

Corollary 5.4.7. Let S be a nonnegative relation in H and let H be a semibounded
self-adjoint relation in H. Then the following equivalence holds:

S ⊂ H and m(H) ≥ 0 ⇔ SK,0 ≤ H ≤ SF.

In fact, SK,0 ≤ H ≤ SF, implies that S ⊂ (SF ∩ SK,0) ⊂ H.

For completeness it is observed that the inequalities SK,x ≤ H ≤ SF in
(5.4.13) can also be expressed by inequalities for the corresponding forms:

tSK,x ≤ tH ≤ tSF ,

thanks to Theorem 5.2.4. Recall from (5.3.7) that the inequality tH ≤ tSF is in
fact equivalent to the inclusion tSF ⊂ tH .

It is clear from Lemma 5.3.1 or Theorem 5.3.3 that the Friedrichs extension
SF is an operator if and only if S is densely defined, in which case all self-adjoint ex-
tensions of S are operators. If S is not densely defined, then S may not be closable
as an operator, in which case all self-adjoint extensions of S are multivalued. The
following result shows when semibounded self-adjoint operator extensions exist.

Corollary 5.4.8. Let S be a semibounded operator in H with lower bound γ. Then
the following statements are equivalent:

(i) S has a semibounded self-adjoint operator extension;

(ii) for some x ≤ γ the self-adjoint extension SK,x is an operator;

(iii) there exists x ≤ γ such that for any sequence ({fn, f ′
n}) in S with the prop-

erties f ′
n − xfn → f ′ and (fn, f

′
n − xfn)→ 0 one has f ′ = 0.

If any of these statements hold, then S is a closable operator. Furthermore, the
following statements are equivalent:

(i′) S has a bounded self-adjoint operator extension;

(ii′) for some x ≤ γ the self-adjoint extension SK,x belongs to B(H);

(iii′) there exist x ≤ γ and M ≥ 0 such that ‖f ′ − xf‖2 ≤ M(f, f ′ − xf) for all
{f, f ′} ∈ S.

If any of these statements hold, then S is a bounded operator.
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Proof. (i) ⇒ (ii) Let H be a semibounded self-adjoint operator extension of S.
Then H is densely defined and mulH = {0}. If x = m(H), then Theorem 5.4.6
shows that SK,x ≤ H. Hence, mulSK,x ⊂ mulH = {0} by Lemma 5.2.5 (i), and
therefore SK,x is an operator extension of S.

(ii) ⇒ (i) This is clear.

(ii) ⇔ (iii) This follows from Corollary 5.4.4.

The inclusion S ⊂ H for a self-adjoint operator H shows that S is a closable
operator; this holds when one of the equivalent conditions (i)–(iii) is satisfied.

(i′) ⇒ (iii′) Let H be a bounded self-adjoint operator which extends S and let
m(H) = x. Then H ∈ B(H) and an application of the Cauchy–Schwarz inequality
for the inner product ((H − x)·, ·) yields

‖(H − x)f‖2 ≤ ‖H − x‖ (f, (H − x)f), f ∈ H.

In particular, for f ∈ domS one obtains (iii′) with f ′ = Sf and M = ‖H − x‖.
(iii′) ⇒ (ii′) Assume that (iii′) holds for some x. To show (ii′) let {f, f ′} ∈ SK,x.
Then according to Corollary 5.4.4 there exists a sequence ({fn, f ′

n}) in S such
that f ′

n − xfn → f ′ − xf and (fn, f
′
n − xfn) → (f, f ′ − xf). By assumption

‖f ′
n − xfn‖2 ≤M(fn, f

′
n − xfn) and taking limits gives

‖f ′ − xf‖2 ≤M(f, f ′ − xf) ≤M‖f‖‖f ′ − xf‖.

Thus, if {f, f ′} ∈ SK,x, then ‖f ′ − xf‖ ≤ M‖f‖, which gives mulSK,x = {0}.
In addition, one now sees that SK,x − x is a bounded operator, and since SK,x is
self-adjoint, it follows that SK,x ∈ B(H).

(ii′) ⇒ (i′) This is clear.

The last statement follows from any of the statements (i′), (ii′), and (iii′). �

Let S be a semibounded relation in H with lower bound m(S) = γ. By
means of Theorem 5.4.6 it will be shown that the mapping x �→ SK,x, x < γ, is
nondecreasing.

Corollary 5.4.9. Let S be a semibounded relation in H with lower bound γ. Let
x ≤ y < γ, then

SK,x ≤ SK,y ≤ SK,γ ≤ SF.

Proof. By construction, SK,x and SK,y are semibounded self-adjoint extensions of
S with lower bounds m(SK,x) = x and m(SK,y) = y. Hence, m(SK,x) ≤ m(SK,y)
and an application of (5.4.13) in Theorem 5.4.6 gives SK,x ≤ SK,y. Similarly,
m(SK,y) ≤ m(SK,γ) = γ leads to SK,y ≤ SK,γ . The inequality SK,γ ≤ SF also
follows from Theorem 5.4.6. �
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The Friedrichs extension SF and the Krĕın type extensions SK,x can be ap-
proximated in the strong resolvent sense by the semibounded self-adjoint relations
SK,t with t ∈ (−∞, γ); cf. Theorem 5.2.11.

Theorem 5.4.10. Let S be a semibounded relation in H with lower bound γ. Then
the Friedrichs extension SF is given by the strong resolvent limit

(SF − λ)−1h = lim
t ↓−∞

(SK,t − λ)−1h, h ∈ H, (5.4.18)

where λ ∈ C \ [γ,∞), and for each x ≤ γ the Krĕın type extension SK,x is given
by the strong resolvent limit

(SK,x − λ)−1h = lim
t ↑ x

(SK,t − λ)−1h, h ∈ H, (5.4.19)

where λ ∈ C \ [x,∞).

Proof. First the result in (5.4.19) will be shown. Let x ≤ γ, let ε > 0 be arbitrary,
and note that by Corollary 5.4.9

SK,x−ε ≤ SK,t ≤ SK,x, x− ε ≤ t < x.

In particular, for t ∈ [x−ε, x) the relations SK,t are bounded from below by x−ε.
By the monotonicity of SK,t and Theorem 5.2.11, the strong resolvent limit of SK,t

as t ↑ x exists for λ ∈ C \ [x− ε,∞) and it is a semibounded self-adjoint relation
S′ with x− ε ≤ t ≤ SK,t ≤ S′. It will now be shown that

S′ = SK,x. (5.4.20)

In fact, since SK,t ≤ SK,x, there is a common upper bound and hence one has
S′ ≤ SK,x; see Corollary 5.2.12 (i). As S ⊂ SK,t for all t < x, this implies that
S ⊂ S′ by Corollary 5.2.12 (ii). Thus, S′ is a semibounded self-adjoint extension
of S. Since m(SK,t) ≤ m(S′) for all t < x, it follows that x ≤ m(S′) and, hence
SK,x ≤ S′ by Theorem 5.4.6. Combining S′ ≤ SK,x and SK,x ≤ S′, it follows from
Lemma 5.2.5 (iv) that (5.4.20) holds. This establishes (5.4.19) for λ ∈ C\[x−ε,∞).
Since ε > 0 is arbitrary, one obtains (5.4.19).

Next, (5.4.18) will be shown. Apply the previous result (5.4.19) to the Krĕın–
von Neumann extension ((S − γ)−1)K,0 of the nonnegative relation (S − γ)−1:(

((S − γ)−1)K,0 − λ
)−1

h = lim
t ↑ 0

(
((S − γ)−1)K,t − λ

)−1
h, h ∈ H, (5.4.21)

where λ ∈ C \ [0,∞). Then it follows from (5.4.1) (with x = 0 and S replaced
by (S − γ)−1) and the translation invariance property (5.3.4) of the Friedrichs
extension that

((S − γ)−1)K,0 = ((S − γ)F)
−1 = (SF − γ)−1. (5.4.22)
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Likewise, using (5.4.8) and (5.4.10) one obtains for t < 0 that

((S − γ)−1)K,t = ((S − γ)K,1/t)
−1 = (SK,γ+1/t − γ)−1. (5.4.23)

Substitute (5.4.22) and (5.4.23) into (5.4.21) and replace λ by 1/λ:(
(SF − γ)−1 − 1

λ

)−1

h = lim
t ↑ 0

(
(SK,γ+1/t − γ)−1 − 1

λ

)−1

h, h ∈ H. (5.4.24)

Now recall that for any relation H one has the identity

(H−1 − 1/λ)−1 = −λ− λ2(H − λ)−1, λ 	= 0,

see Corollary 1.1.12. Therefore, (5.4.24) yields(
SF − γ − λ

)−1
h = lim

t ↑ 0

(
SK,γ+1/t − γ − λ

)−1
,

where λ ∈ C \ [0,∞), which is equivalent to (5.4.18). �

The next lemma and Proposition 5.4.12 below show that the convergence
in (5.4.18) in Theorem 5.4.10 is uniform if the limit is a compact operator. First
the case where the Krĕın–von Neumann extension SK,0 is compact is treated.
There is in general no analog of Lemma 5.4.11 for the other Krĕın type extensions
SK,x, x 	= 0, since the eigenspace ker (SK,x − x) = ker (S∗ − x) for the eigenvalue
x ∈ σp(SK,x) is infinite-dimensional whenever the defect numbers of S are infinite.
Hence, SK,x cannot be compact for x 	= 0.

Lemma 5.4.11. Let S be a bounded nonnegative operator in H and assume that the
Krĕın–von Neumann extension SK,0 is a compact operator. Then SK,t ∈ B(H) for
t < 0 and

lim
t ↑ 0
‖SK,t − SK,0‖ = 0.

Proof. Since SK,0 is compact one has, in particular, SK,0 ∈ B(H) and hence
SK,t ∈ B(H) for t < 0; cf. Corollary 5.4.9 and Definition 5.2.3. By Theorem 5.4.10,
the resolvents of SK,t converge in the strong sense to the resolvent of SK,0 and
since all operators belong to B(H) it follows that SK,t converges strongly to SK,0.
In fact, strong resolvent convergence is equivalent to strong graph convergence by
Corollary 1.9.6, and for operators in B(H) this implies strong convergence. Now it
will be shown that this convergence is uniform. Since SK,0 is compact by assump-
tion, for ε > 0 one can choose an orthogonal projection Pε such that ‖SK,0Pε‖ < ε
and I −Pε is a finite-rank operator. Then it follows that the finite-rank operators

(SK,t − SK,0)(I − Pε) and (I − Pε)(SK,t − SK,0)Pε (5.4.25)

tend to zero uniformly as t ↑ 0. For t < 0 one has 0 ≤ SK,t − t ≤ SK,0 − t by
Corollary 5.4.9, and hence

0 ≤ Pε(SK,t − t)Pε ≤ Pε(SK,0 − t)Pε.
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This implies

‖Pε(SK,t − SK,0)Pε‖ ≤ ‖Pε(SK,t − t)Pε‖+ ‖Pε(t− SK,0)Pε‖
≤ 2‖Pε(SK,0 − t)Pε‖
≤ 2ε+ 2|t|,

and now the assertion follows together with (5.4.25) and the estimate

‖(SK,t − SK,0)‖ ≤ ‖(SK,t − SK,0)(I − Pε)‖
+ ‖Pε(SK,t − SK,0)Pε‖+ ‖(I − Pε)(SK,t − SK,0)Pε‖.

This completes the proof. �

The counterpart of Lemma 5.4.11 for the case where the Friedrichs extension
SF has a compact resolvent is provided next.

Proposition 5.4.12. Let S be a semibounded relation in H with lower bound γ and
assume that the resolvent (SF−λ)−1 of the Friedrichs extension SF is compact for
some, and hence for all λ ∈ C \ [γ,∞). Then

lim
t ↓−∞

‖(SK,t − λ)−1 − (SF − λ)−1‖ = 0.

Proof. It follows from the resolvent identity (see Theorem 1.2.6) that the resolvent
of SF is compact for all λ ∈ C \ [γ,∞) if it is compact for some λ ∈ C \ [γ,∞).
Now let x0 < γ and note that (S − x0)

−1 is a bounded nonnegative operator. By
(5.4.17) and (5.3.4) one has(

(S − x0)
−1
)
K,0

=
(
(S − x0)F

)−1
= (SF − x0)

−1,

which is a compact operator by assumption. From Lemma 5.4.11 it follows that
((S − x0)

−1)K,x converge uniformly to ((S − x0)
−1)K,0 when x ↑ 0. This implies

the assertion for λ = x0, since

lim
x ↑ 0

(
(S − x0)

−1
)
K,x

= lim
t ↓−∞

(
(S − x0)

−1
)
K,1/t

= lim
t ↓−∞

(
(S − x0)K,t

)−1

= lim
t ↓−∞

(
SK,t+x0 − x0

)−1

= lim
t ↓−∞

(
SK,t − x0

)−1
,

where (5.4.7) was used in the second equality and (5.4.9) was used in the third
equality. The general case λ ∈ C \ [γ,∞) follows with Lemma 1.11.4. �
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Let S be a closed semibounded relation in H with lower bound γ and let
x < γ. Then x ∈ ρ(SF) is a point of regular type of S and one has that

S∗ = SF +̂ N̂x(S
∗) and SK,x = S +̂ N̂x(S

∗);

cf. Theorem 1.7.1 and (5.4.3). Therefore, it is clear that

SK,x +̂ SF = S∗, x < γ; (5.4.26)

in other words, the extensions SK,x and SF are transversal for x < γ. For x = γ
the situation is different. Now it is possible that the extensions SK,γ and SF are
transversal, but it is also possible that they are not transversal because, for in-
stance, the extensions SK,γ and SF may even coincide. First the case of transver-
sality is discussed.

Corollary 5.4.13. Let S be a semibounded relation in H with lower bound γ. Then
the following statements hold:

(i) SK,γ and SF are transversal if and only if domS∗ ⊂ dom (SK,γ − γ)
1
2 ;

(ii) SK,γ and SF are transversal and S is bounded if and only if SK,γ ∈ B(H).

Proof. (i) This statement follows from Theorem 5.3.8.

(ii) Assume that SF and SK,γ are transversal and that S is a bounded operator.
Then part (i) shows that

domS∗ ⊂ dom (SK,γ − γ)
1
2 . (5.4.27)

Since S∗∗ is a bounded closed operator, domS∗∗ is closed, and hence so is domS∗;
see Theorem 1.3.5. Moreover, (domS∗)⊥ = mulS∗∗ = {0} implies that domS∗ is
dense in H, so that domS∗ = H. Then it follows from (5.4.27) that

dom (SK,γ − γ)
1
2 = H.

Therefore, domSK,γ = H and hence SK,γ ∈ B(H).

Conversely, assume that SK,γ ∈ B(H). Then also S is bounded. Moreover,

domS∗ ⊂ H = dom (SK,γ − γ)
1
2 , which together with (i) shows that SF and SK,γ

are transversal. �

The extreme case of equality of SK,γ and SF is described in the following
corollary.

Corollary 5.4.14. Let S be a semibounded relation in H with lower bound γ. Then
the following statements hold:

(i) SF = SK,γ if and only if ker (S∗ − a)∩ dom (SK,γ − a)
1
2 = {0} for some, and

hence for all a < γ;

(ii) SF = SK,γ and SK,γ ∈ B(H) if and only if S ∈ B(H).
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Proof. (i) This statement follows from Corollary 5.3.10.

(ii) Assume that SF = SK,γ and SK,γ ∈ B(H). The assumption SK,γ ∈ B(H) and
Corollary 5.4.13 (ii) imply that SF and SK,γ are transversal and S is bounded.
Furthermore, SF = SK,γ implies that S∗ = SF +̂ SK,γ = SK,γ , so that S = SK,γ

is a self-adjoint operator in B(H).

Conversely, if S ∈ B(H), then S is the only self-adjoint extension of S and
hence SF = SK,γ = S∗∗ ∈ B(H). �

In the next corollary, which is a special version of Corollary 5.3.11, the form
tSK,x

for x < γ corresponding to the Krĕın type extensions SK,x is expressed in
terms of the Friedrichs form tSF .

Corollary 5.4.15. Let S be a semibounded relation in H with lower bound γ, let
x < γ, and let tSK,x

be the form corresponding to SK,x. Then

dom tSK,x = ker (S∗ − a)⊕tSK,x
−a dom tSF , a < x, (5.4.28)

and the restriction of tSK,x to Na(S
∗) = ker (S∗−a) is represented by the bounded

self-adjoint operator

La = PNa(S∗)
(
x+ (x− a)2(SF − x)−1

)
ιNa(S∗) ∈ B(Na(S

∗)), (5.4.29)

where ιNa(S∗) is the canonical embedding of Na(S
∗) into H and PNa(S∗) is the

orthogonal projection onto Na(S
∗). Furthermore,

tSK,x [f, g]− a(f, g) = (x− a)
((
I + (x− a)(SF − x)−1

)
fa, ga

)
+ tSF [fF, gF]− a(fF, gF)

(5.4.30)

holds for all f = fa + fF, g = ga + gF ∈ dom tSK,x , where fa, ga ∈ ker (S∗ − a) and
fF, gF ∈ dom tSF

.

Proof. The decomposition (5.4.28) is clear from Corollary 5.3.11, since SK,x and
SF are transversal for x < γ. Next it will be shown that the representing oper-
ator for the restriction of tSK,x to Na(S

∗) is given by (5.4.29); then (5.3.24) in
Corollary 5.3.11 also leads to (5.4.30).

In order to verify (5.4.29) consider fa, ga ∈ Na(S
∗) and let

fx =
(
I + (x− a)(SF − x)−1

)
fa.

Then fx ∈ Nx(S
∗) and fa = (I + (a − x)(SF − a)−1)fx by Lemma 1.4.10.

Moreover, since SK,x is representing the form tSK,x and fx ∈ domSK,x one has
tSK,x

[fx, ga] = (xfx, ga). Using (SF − a)−1fx ∈ dom tSF
and ga ∈ Na(S

∗) the
orthogonal decomposition (5.4.28) yields ((SF − a)−1fx, ga)tSK,x

−a = 0.
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Now one computes

tSK,x [fa, ga] = tSK,x [fx, ga] + (a− x)tSK,x

[
(SF − a)−1fx, ga]

= (xfx, ga) + (a− x)a
(
(SF − a)−1fx, ga

)
=
(
xfx + a(fa − fx), ga

)
=
(
(x− a)

(
I + (x− a)(SF − x)−1

)
fa + afa, ga

)
=
((
x+ (x− a)2(SF − x)−1

)
fa, ga

)
,

which implies (5.4.29). �

Finally, the decomposition (5.4.28) in the previous corollary is used to show
a similar direct sum decomposition for a = x.

Corollary 5.4.16. Let S be a semibounded relation in H with lower bound γ, let
x < γ, and let tSK,x be the form corresponding to SK,x. Then

dom tSK,x
= ker (S∗ − x) + dom tSF

(5.4.31)

is a direct sum decomposition.

Proof. Let a < x < γ. Recall that the decomposition (5.4.28) holds since SK,x and
SF are transversal.

It is clear that the right-hand side of (5.4.31) is contained in the left-hand
side. Observe for this that

dom tSF ⊂ dom tSK,x and ker (S∗ − x) ⊂ domSK,x ⊂ dom tSK,x .

To show that the left-hand side of (5.4.31) is contained in the right-hand side, let
f ∈ dom tSK,x . According to (5.4.28) one has f = fa + fF, with fa ∈ ker (S∗ − a)
and fF ∈ dom tSF . Define

fx = (I + (x− a)(SF − x)−1)fa.

Then

fx ∈ ker (S∗ − x) and f = fx + (fa − fx + fF),

where the last term is in dom tSF since fa−fx ∈ domSF. Hence, the left-hand side
of (5.4.31) belongs to the right-hand side. Thus, the sum decomposition (5.4.31)
has been shown.

Finally, it will be shown that the sum decomposition (5.4.31) is direct. For
this assume that fx ∈ ker (S∗ − x) is nontrivial and belongs to dom tSF . Then
{fx, xfx} ∈ S∗ implies that {fx, xfx} ∈ SF; cf. Theorem 5.3.3. Since x < γ, this
is a contradiction. �



332 Chapter 5. Boundary Triplets and Boundary Pairs for Semibounded Relations

5.5 Boundary triplets for semibounded relations

In this section semibounded self-adjoint extensions of semibounded symmetric re-
lations are studied in the context of boundary triplets and their Weyl functions.
The initial observations are general results about a closed symmetric relation S
with a boundary triplet {G,Γ0,Γ1}, where A0 = ker Γ0 is semibounded. In par-
ticular, the Friedrichs and the Krĕın type extensions will be identified. In the
remaining part of the section it will be assumed that S is a semibounded relation
with a boundary triplet {G,Γ0,Γ1}, where A0 = SF, and various specific prop-
erties are derived. The case where the self-adjoint extension A1 = ker Γ1 is also
semibounded is of specific interest. As a preparation for the main results in the
following section it will be explained how the corresponding semibounded form is
the first stepping stone to the notion of boundary pair.

Let S be a closed symmetric relation in a Hilbert space H and let {G,Γ0,Γ1}
be a boundary triplet for S∗. Assume that A0 = ker Γ0 is semibounded with lower
bound γ0 = m(A0). Then clearly S is semibounded and γ0 ≤ m(S) = γ. Therefore,
one may speak of the Friedrichs extension SF so that γ0 ≤ m(SF) = γ and the
Krĕın type extensions SK,x of S with x ≤ γ. The corresponding Weyl function M
is holomorphic on ρ(A0) and, in particular, on C \ [γ0,∞). Moreover, one has

M(x) = Γ(N̂x(S
∗)) = Γ(S +̂ N̂x(S

∗)) = Γ(SK,x), x < γ0; (5.5.1)

cf. Definition 2.3.4 and (5.4.3). By Corollary 2.3.8, the mapping x �→ M(x) from
(−∞, γ0) to B(G) is nondecreasing. In particular, by Corollary 5.2.14 the limit
M(−∞) exists in the strong resolvent sense,(

M(−∞)− λ
)−1

= lim
x ↓−∞

(M(x)− λ)−1, (5.5.2)

and the limit M(γ0) exists in the strong resolvent sense,(
M(γ0)− λ

)−1
= lim

x ↑ γ0

(M(x)− λ)−1, (5.5.3)

where λ ∈ C \ [γ0,∞). Then M(−∞) and M(γ0) are self-adjoint relations in G;
cf. Theorem 5.2.11 and Corollary 5.2.14. In the following theorem the Friedrichs
extension SF and the Krĕın type extension SK,x with x ≤ γ0 will be characterized
by means of the limits in (5.5.2) and (5.5.3).

Theorem 5.5.1. Let S be a closed semibounded relation in H with lower bound γ.
Let {G,Γ0,Γ1} be a boundary triplet for S∗ and let M be the corresponding Weyl
function. Assume that the self-adjoint extension A0 = ker Γ0 is semibounded with
γ0 = m(A0) ≤ m(SF) = γ. Then the Friedrichs extension SF of S is given by

SF =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈M(−∞)

}
(5.5.4)

and the Krĕın type extension SK,x of S with x ≤ γ0 is given by

SK,x =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈M(x)

}
. (5.5.5)
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Proof. According to Theorem 5.4.10, the Friedrichs extension SF of S is given by
the strong resolvent limit

(SF − λ)−1h = lim
t ↓−∞

(SK,t − λ)−1h, h ∈ H, (5.5.6)

and for each x ≤ γ0 the Krĕın type extension SK,x is given by the strong resolvent
limit

(SK,x − λ)−1h = lim
t ↑ x

(SK,t − λ)−1h, h ∈ H, (5.5.7)

where λ ∈ C \ [x,∞). The idea behind the proof of the theorem is to connect the
limit formulas in (5.5.2) and (5.5.3) with the limit formulas in (5.5.6) and (5.5.7).
This in fact will be done by means of the Krĕın formula. For this purpose observe
that for t < γ0 and λ ∈ C \ R the resolvent formula in Theorem 2.6.1 for SK,t

reads

(SK,t − λ)−1 = (A0 − λ)−1 + γ(λ)
(
M(t)−M(λ)

)−1
γ(λ)∗, (5.5.8)

due to (5.5.1). Here (M(t)−M(λ))−1 ∈ B(G) by Theorem 2.6.1 and Theorem 2.6.2.

First consider the Krĕın type extension SK,x of S. If x < γ0, then the formula
(5.5.5) is a direct consequence of (5.5.1). To treat the case x = γ0 let ΘK be the
self-adjoint relation in G which corresponds to SK,γ0 , that is,

SK,γ0 =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈ ΘK

}
. (5.5.9)

Then again by the resolvent formula in Theorem 2.6.1 one has

(SK,γ0
− λ)−1 = (A0 − λ)−1 + γ(λ)

(
ΘK −M(λ)

)−1
γ(λ)∗ (5.5.10)

for λ ∈ C \ R. Here (ΘK−M(λ))−1 ∈ B(G) by Theorem 2.6.1 and Theorem 2.6.2.
Subtracting (5.5.10) from (5.5.8) leads to

(SK,t − λ)−1 − (SK,γ0
− λ)−1

= γ(λ)
[(
M(t)−M(λ)

)−1 − (ΘK −M(λ)
)−1]

γ(λ)∗
(5.5.11)

with t < γ0. Now take the strong limit for t ↑ γ0 and apply (5.5.7). Then for each
h ∈ H

(SK,t − λ)−1h→ (SK,γ0 − λ)−1h as t ↑ γ0,
which, via (5.5.11), leads to

γ(λ)
[(
M(t)−M(λ)

)−1 − (ΘK −M(λ)
)−1]

γ(λ)∗h→ 0 as t ↑ γ0.

Since γ(λ) maps G isomorphically onto ker (S∗−λ) and γ(λ)∗ : H→ G is surjective,
see Proposition 2.3.2, it follows that for each ϕ ∈ G(

M(t)−M(λ)
)−1

ϕ→ (ΘK −M(λ)
)−1

ϕ as t ↑ γ0. (5.5.12)
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Next the parameter ΘK will be identified with M(γ0). For this purpose, observe
that for ϕ ∈ G{

(M(t)−M(λ))−1ϕ,ϕ+M(λ)(M(t)−M(λ))−1ϕ
} ∈M(t). (5.5.13)

As t ↑ γ0, the components on the left-hand side of (5.5.13) converge due to (5.5.12),
while the bounded operators M(t) converge in the strong resolvent sense, and
hence in the graph sense (see Corollary 1.9.6) to the self-adjoint relation M(γ0).
Hence, (5.5.13) implies{

(ΘK −M(λ))−1ϕ,ϕ+M(λ)(ΘK −M(λ))−1ϕ
} ∈M(γ0) (5.5.14)

for all ϕ ∈ G, and thus (ΘK−M(λ))−1 ⊂ (M(γ0)−M(λ))−1. Since M(λ) ∈ B(G),
it follows that ΘK ⊂M(γ0), or, since both relations are self-adjoint, ΘK = M(γ0).
Now (5.5.5) for x = γ0 follows from (5.5.9).

Next consider the Friedrichs extension SF of S. Let ΘF be the self-adjoint
relation in G which corresponds to SF, that is,

SF =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈ ΘF

}
.

Then again by the resolvent formula in Theorem 2.6.1 one has

(SF − λ)−1 = (A0 − λ)−1 + γ(λ)
(
ΘF −M(λ)

)−1
γ(λ)∗ (5.5.15)

for λ ∈ C \ R. As above, (ΘF−M(λ))−1 ∈ B(G). Subtracting (5.5.15) from (5.5.8)
and using the same reasoning as above involving Theorem 5.4.10 yields(

M(t)−M(λ)
)−1

ϕ→ (ΘF −M(λ)
)−1

ϕ as t ↓ −∞.

From the fact that M(−∞) is the strong resolvent limit, and hence the strong
graph limit of M(t) when t ↓ −∞, one concludes ΘF = M(−∞) in the same way
as in (5.5.13)–(5.5.14). This shows (5.5.4). �

The statements in the following corollary are consequences of Theorem 5.5.1
and Proposition 2.1.8.

Corollary 5.5.2. Let S be a closed symmetric relation, let {G,Γ0,Γ1} be a boundary
triplet for S∗, and let M be the corresponding Weyl function. Assume that the
self-adjoint extension A0 = ker Γ0 is semibounded with lower bound γ0. Then the
following statements hold:

(i) A0 = SF if and only if M(−∞) = {0} × G;

(ii) A0 ∩ SF = S if and only if M(−∞) is a closed operator;

(iii) A0 +̂ SF = S∗ if and only if M(−∞) ∈ B(G),

and, similarly

(iv) A0 = SK,γ0
if and only if M(γ0) = {0} × G;

(v) A0 ∩ SK,γ0 = S if and only if M(γ0) is a closed operator;

(vi) A0 +̂ SK,γ0 = S∗ if and only if M(γ0) ∈ B(G).



5.5. Boundary triplets for semibounded relations 335

Moreover, for A1 = ker Γ1 one has

(vii) A1 = SF if and only if M(−∞) = G× {0};
(viii) A1 = SK,γ0

if and only if M(γ0) = G× {0}.
Such facts can also be stated in terms of the limit behavior of M(−∞) and

M(γ0) via Corollary 5.2.14 applied to the Weyl function M . For this purpose recall
the notations

Eγ0
=

{
ϕ ∈ G : lim

x ↑ γ0

(M(x)ϕ,ϕ) <∞
}
,

E−∞ =

{
ϕ ∈ G : lim

x ↓−∞
(M(x)ϕ,ϕ) > −∞

}
.

Corollary 5.5.3. Let S be a closed symmetric relation, let {G,Γ0,Γ1} be a boundary
triplet for S∗, and let M be the corresponding Weyl function. Assume that the
self-adjoint extension A0 = ker Γ0 is semibounded with lower bound γ0. Then the
following statements hold:

(i) A0 = SF if and only if E−∞ = {0};
(ii) A0 ∩ SF = S if and only if closE−∞ = G;

(iii) A0 +̂ SF = S∗ if and only if E−∞ = G,

and, similarly

(iv) A0 = SK,γ0
if and only if Eγ0

= {0};
(v) A0 ∩ SK,γ0 = S if and only if closEγ0 = G;

(vi) A0 +̂ SK,γ0 = S∗ if and only if Eγ0 = G.

In the context of Theorem 5.5.1, the Weyl function of the boundary triplet
is holomorphic on the interval (−∞, γ0). In this situation the inverse result in
Theorem 4.2.4 can be formulated as follows.

Proposition 5.5.4. Let G be a Hilbert space and let M be a uniformly strict B(G)-
valued Nevanlinna function, which is holomorphic on C\ [γ0,∞) and not holomor-
phic at γ0. Then there exist a Hilbert space H, a closed simple symmetric operator
S in H, and a boundary triplet {G,Γ0,Γ1} for S∗ such that A0 is a semibounded
self-adjoint relation with lower bound m(A0) = γ0 and M is the corresponding
Weyl function.

Proof. Let M be a uniformly strict Nevanlinna function with values in B(G). Let
H(NM ) be the reproducing kernel Hilbert space associated with the Nevanlinna
kernel

M(λ)−M(μ)∗

λ− μ
, λ, μ ∈ C \ R.

By Theorem 4.2.4, there exist a closed simple symmetric operator S in the re-
producing kernel Hilbert space H(NM ) and a boundary triplet {G,Γ0,Γ1} for S∗
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such that M is the corresponding Weyl function. The assumption that M is holo-
morphic on (−∞, γ0) and the fact that S is simple imply, by Theorem 3.6.1,
that (−∞, γ0) ⊂ ρ(A0). Moreover, since M is not holomorphic at γ0, one has
γ0 ∈ σ(A0). Therefore, the self-adjoint relation A0 is semibounded with lower
bound m(A0) = γ0. �

The context of Theorem 5.5.1 will now be narrowed. Let S be a closed semi-
bounded relation in H. Then the existence of a semibounded self-adjoint extension
of S is guaranteed by the Friedrichs extension SF of S. The interest in the rest of
this section is in boundary triplets {G,Γ0,Γ1} for which A0 = SF. The following
result is a consequence of Theorem 2.4.1 since for any self-adjoint extension H of
S there is a boundary triplet {G,Γ0,Γ1} for S∗ such that H = ker Γ0.

Corollary 5.5.5. Let S be a closed semibounded relation in H with lower bound γ.
Then there exists a boundary triplet {G,Γ0,Γ1} for S∗ such that

SF = ker Γ0.

The corresponding Weyl function M is holomorphic on (−∞, γ) and the mapping
x �→M(x) from (−∞, γ) to B(G) is nondecreasing, while M(−∞) = {0} × G.

The following result will be useful in treating the connection between semi-
bounded self-adjoint extensions and the Weyl function.

Proposition 5.5.6. Let S be a closed semibounded relation in H, let {G,Γ0,Γ1} be
a boundary triplet for S∗ such that SF = ker Γ0, and let M be the corresponding
Weyl function. Let AΘ be a self-adjoint extension of S corresponding to the self-
adjoint relation Θ in G and assume that x < m(S). Then M(x) ∈ B(G) and the
following equivalence holds:

x ≤ AΘ ⇔ M(x) ≤ Θ.

In particular, if AΘ is semibounded in H, then Θ is semibounded in G.

Proof. The assumption x < m(S) = m(SF) implies that x ∈ ρ(SF) and hence
M(x) ∈ B(G) is clear. The formula in Theorem 2.6.1, applied to AΘ and SF, gives

(AΘ − x)−1 − (SF − x)−1 = γ(x)(Θ−M(x))−1γ(x)∗, (5.5.16)

since (SF − x)−1 ∈ B(H). Recall that γ(x)∗ maps ker (S∗ − x) onto G; see Propo-
sition 2.3.2. Note that if, in addition, x ∈ ρ(AΘ), then (Θ−M(x))−1 ∈ B(G).

(⇒) Since AΘ is a semibounded self-adjoint extension of S, it follows from Propo-
sition 5.3.6 that AΘ ≤ SF. Observe that for x ∈ ρ(AΘ)

0 ≤ (SF − x)−1 ≤ (AΘ − x)−1,
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where both operators belong to B(H) since x ∈ ρ(SF) ∩ ρ(AΘ). Hence, it then
follows from (5.5.16) that

(Θ−M(x))−1 ≥ 0 or, equivalently, Θ−M(x) ≥ 0.

Since M(x) ∈ B(G) it follows that M(x) ≤ Θ; cf. Proposition 5.2.6.

Now let x ≤ AΘ. First assume that x < m(AΘ). In this case, x ∈ ρ(AΘ)
and thus M(x) ≤ Θ. Next, assume that x = m(AΘ) and consider an increasing
sequence xn whose limit is x. Then clearly M(xn) ≤ Θ and thus M(x) ≤ Θ; cf.
Corollary 5.2.12 (i).

(⇐) Assume that M(x) ≤ Θ. Then Θ−M(x) ≥ 0 by Proposition 5.2.6 and hence
(Θ−M(x))−1 ≥ 0. It is straightforward to see that the right-hand side of (5.5.16)
is a nonnegative relation. Thus, the relation

(AΘ − x)−1 − (SF − x)−1

on the left-hand side of (5.5.16) is also nonnegative and, in fact, this relation is also
self-adjoint since (AΘ− x)−1 is self-adjoint and (SF− x)−1 ∈ B(H) is self-adjoint.
Therefore, one concludes with the help of Proposition 5.2.6 and x < m(SF) that

0 ≤ (SF − x)−1 ≤ (AΘ − x)−1.

In particular, this shows that 0 ≤ AΘ − x or x ≤ AΘ. �

From Proposition 5.5.6 one sees that if the self-adjoint extension AΘ is semi-
bounded in H, then the corresponding self-adjoint relation Θ is semibounded in
G. The converse is not true in general; cf. Remark 5.6.16. However, in Proposi-
tion 5.5.8 below it will be shown that the converse holds if S has finite defect
numbers or SF has a compact resolvent. The following result is a preliminary
observation.

Lemma 5.5.7. Let S be a closed semibounded relation in H with lower bound γ and
let {G,Γ0,Γ1} be a boundary triplet for S∗ such that SF = ker Γ0. Let M be the
corresponding Weyl function and assume that for any C > 0 there exists x1 < γ
such that

M(x) ≤ −C, x ≤ x1. (5.5.17)

Then for every semibounded self-adjoint relation Θ in G the corresponding self-
adjoint extension AΘ is semibounded from below.

Proof. Let Θ be a self-adjoint relation in G with lower bound ν and choose C > 0
in (5.5.17) such that −C < ν ≤ Θ. For all x ≤ x1 one then has

0 < ν + C ≤ Θ+ C ≤ Θ−M(x),

which implies that Θ −M(x) is boundedly invertible for all x ≤ x1. From The-
orem 2.6.2 one concludes (−∞, x1) ∈ ρ(AΘ) and hence AΘ is semibounded from
below. This conclusion also follows from Proposition 5.5.6. �
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Now it will be shown that the condition (5.5.17) holds when S has finite
defect numbers or SF has a compact resolvent.

Proposition 5.5.8. Let S be a closed semibounded relation in H with lower bound
γ and let {G,Γ0,Γ1} be a boundary triplet for S∗ such that SF = ker Γ0. Assume
that one of the following conditions hold:

(i) G is finite-dimensional;

(ii) (SF − λ)−1 is compact for some, and hence for all, λ ∈ ρ(SF).

Then for any C > 0 there exists x1 < γ such that (5.5.17) holds. In particular, if
(i) holds, then all self-adjoint extensions of S in H are semibounded from below, or
if (ii) holds and Θ is a semibounded self-adjoint relation in G, then the self-adjoint
extension AΘ of S is semibounded from below.

Proof. (i) As SF = ker Γ0, one has (M(x)ϕ,ϕ) → −∞ for x → −∞ and all
ϕ ∈ G by Corollary 5.5.3 (i). Since G is finite-dimensional, a compactness argument
shows that there exists x1 < γ such that (5.5.17) holds. Every self-adjoint relation
Θ in the finite-dimensional space G is semibounded and hence it follows from
Lemma 5.5.7 that all self-adjoint extensions AΘ are semibounded.

(ii) Recall from Proposition 5.4.12 that the resolvents of the Krĕın type extensions
SK,t converge uniformly to the resolvent of SF, that is, for all λ ∈ C \ [γ,∞) one
has

lim
t ↓−∞

‖(SK,t − λ)−1 − (SF − λ)−1‖ = 0. (5.5.18)

In the following fix some λ = x0 < m(SF) and note that, by (5.5.18), there exists
t′ < x0 such that x0 ∈ ρ(SK,t) for all t ≤ t′. Using (5.5.1) it follows that the
resolvent of SK,t has the form

(SK,t − x0)
−1 − (SF − x0)

−1 = γ(x0)
(
M(t)−M(x0)

)−1
γ(x0)

∗,

where (M(t)−M(x0))
−1 ∈ B(G) for all t ≤ t′ by Theorem 2.6.1 and Theorem 2.6.2.

Since γ(x0) maps G isomorphically to Nx0(S
∗) and γ(x0)

∗ maps Nx0(S
∗) isomor-

phically to G, it follows together with (5.5.18) that

lim
t ↓−∞

∥∥(M(t)−M(x0)
)−1∥∥ = 0. (5.5.19)

This implies that for any C > 0 there exists x1 < γ such that (5.5.17) holds.
In fact, otherwise there exists some C0 > 0 and a sequence sn → −∞ such that
sn < t′ < x0 and M(sn) > −C0. Then the estimate

−C0 − ‖M(x0)‖ ≤ −C0 −M(x0) ≤M(sn)−M(x0) ≤ 0

and (M(sn) − M(x0))
−1 ∈ B(G) contradict (5.5.19). Therefore, the condition

(5.5.17) is satisfied and if Θ is a semibounded self-adjoint relation in G, then by
Lemma 5.5.7 the corresponding self-adjoint extension AΘ is semibounded. �
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In the case of Corollary 5.5.5 the relationship between the Friedrichs exten-
sion SF and the Krĕın type extension SK,γ is described in the following corollary,
which is a translation of (iv)–(vi) in Corollary 5.5.2; cf. Corollary 5.4.13 and Corol-
lary 5.4.14.

Corollary 5.5.9. Let S be a closed semibounded relation in H. Let {G,Γ0,Γ1} be
a boundary triplet for S∗ such that SF = ker Γ0 and let M be the corresponding
Weyl function. Let γ = m(SF). Then the following statements hold:

(i) SF and SK,γ coincide if and only if M(γ) = {0} × G;

(ii) SF and SK,γ are disjoint if and only if M(γ) is a closed operator;

(iii) SF and SK,γ are transversal if and only if M(γ) ∈ B(G).

In general it may not be possible to simultaneously prescribe ker Γ0 as the
Friedrichs extension SF and ker Γ1 as the Krĕın type extension SK,γ , since ker Γ0

and ker Γ1 are necessarily transversal; cf. Section 2.1. However, note that the
Friedrichs extension SF and the Krĕın type extension SK,x for x < γ are automat-
ically transversal; cf. (5.4.26).

Proposition 5.5.10. Let S be a closed semibounded relation in H with lower bound
γ. Then the following statements hold:

(i) For x < γ there exists a boundary triplet {G,Γ0,Γ1} for S∗ such that

SF = ker Γ0 and SK,x = ker Γ1. (5.5.20)

(ii) If SF and SK,γ are transversal, then there exists a boundary triplet {G,Γ0,Γ1}
for S∗ such that

SF = ker Γ0 and SK,γ = ker Γ1.

In both cases the corresponding Weyl function satisfies M(−∞) = {0} × G and
M(x) = G× {0}, x ≤ γ. In particular, M(t) ≤ 0 for all t ≤ x, i.e., M belongs to
the class S−1

G (−∞, x) of inverse Stieltjes functions.

Proof. (i) The extensions SF and SK,x for x < γ are automatically transversal
according to (5.4.26). Hence, it follows from Theorem 2.5.9 that there exists a
boundary triplet {G,Γ0,Γ1} for S∗ such that (5.5.20) holds.

(ii) Since it is assumed that SF and SK,γ are transversal, Theorem 2.5.9 yields the
statement.

The Weyl function M satisfies M(−∞) = {0} × G and M(x) = G × {0}
as a consequence of Corollary 5.5.2. Finally, that M(t) ≤ 0 for all t ≤ x is a
consequence of the monotonicity of the Weyl function M in Corollary 2.3.8. The
assertion M ∈ S−1

G (−∞, x) is immediate from the definition of the inverse Stieltjes
class in Definition A.6.1. �
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The following corollary is a consequence of Proposition 5.5.4 and Corol-
lary 5.5.2.

Corollary 5.5.11. Let G be a Hilbert space and let M be a uniformly strict B(G)-
valued Nevanlinna function, which is holomorphic on C \ [γ,∞) and not holomor-
phic at γ. Assume, in addition, that

M(−∞) = {0} × G and M(γ) = G× {0}. (5.5.21)

Then there exist a Hilbert space H, a closed simple semibounded operator S in H
with lower bound γ, and a boundary triplet {G,Γ0,Γ1} for S∗ with SF = ker Γ0

and SK,γ = ker Γ1, such that M is the corresponding Weyl function.

Proof. It follows from Proposition 5.5.4 that there exist a Hilbert space H, a
closed simple symmetric operator S in H, and a boundary triplet {G,Γ0,Γ1} for
S∗ such that A0 = ker Γ0 is a semibounded self-adjoint relation with lower bound
m(A0) = γ andM is the corresponding Weyl function. The assumptions in (5.5.21)
and Corollary 5.5.2 (i) and (viii) imply SF = ker Γ0 = A0 and SK,γ = ker Γ1. Since
m(SF) = m(A0) = γ, it is also clear that the symmetric operator S is semibounded
with lower bound γ. �

In the next corollary a boundary triplet with the properties as in Proposi-
tion 5.5.10 (i) is exhibited.

Corollary 5.5.12. Let S be a closed semibounded relation in H with lower bound γ.
Then

S∗ = SF +̂ N̂x(S
∗), x < γ, (5.5.22)

is a direct sum decomposition. Let f̂ = {f, f ′} ∈ S∗ have the unique decomposition

f̂ = f̂F + f̂x,

with f̂F = {fF, f ′
F} ∈ SF and f̂x = {fx, xfx} ∈ N̂x(S

∗). Then

Γ0f̂ = fx and Γ1f̂ = PNx(S∗)(f
′
F − xfF)

defines a boundary triplet {Nx(S
∗),Γ0,Γ1} for S∗ such that (5.5.20) holds. For

λ ∈ ρ(SF) the corresponding γ-field γ is given by

γ(λ) =
(
I + (λ− x)(SF − λ)−1

)
ιNx(S∗), (5.5.23)

and the corresponding Weyl function M is given by

M(λ) = λ− x+ (λ− x)2PNx(S∗)(SF − λ)−1ιNx(S∗). (5.5.24)

Proof. It is clear from Theorem 1.7.1 that (5.5.22) is a direct sum decompo-
sition. Now choose μ = x in Theorem 2.4.1 and modify the boundary triplet
{Nx(S

∗),Γ0,Γ1} in Theorem 2.4.1 to {Nx(S
∗),Γ0,Γ1 − xΓ0}. Then SF = ker Γ0
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and the corresponding γ-field and Weyl function have the form (5.5.23) and
(5.5.24); cf. Theorem 2.4.1 and Corollary 2.5.5. It is easy to see that

S +̂ N̂x(S
∗) ⊂ ker Γ1,

and since SK,x = S +̂ N̂x(S
∗) and ker Γ1 are both self-adjoint, one concludes that

SK,x = ker Γ1, so that (5.5.20) holds. �

The following example is an illustration of Proposition 5.5.10 (i) and Corol-
lary 5.5.12 for the case where the semibounded relation S is uniformly positive. In
this situation it is convenient to have a boundary triplet for which the Krĕın–von
Neumann extension SK,0 corresponds to the boundary mapping Γ1; cf. Chapter 8.

Example 5.5.13. Let S be a closed nonnegative symmetric relation in H with
lower bound γ > 0. In this case the Krĕın–von Neumann extension SK,0 is given

by SK,0 = S +̂ N̂0(S
∗); cf. (5.4.3). Moreover, the Friedrichs extension SF and

the Krĕın–von Neumann extension SK,0 are transversal by (5.4.26). For x = 0
Corollary 5.5.12 shows that {N0(S

∗),Γ0,Γ1}, where

Γ0f̂ = f0 and Γ1f̂ = PN0(S∗)f
′
F, f̂ = {fF, f ′

F}+ {f0, 0},

is a boundary triplet for S∗ = SF +̂ N̂0(S
∗) such that

SF = ker Γ0 and SK,0 = ker Γ1;

moreover, for λ ∈ ρ(SF) the corresponding γ-field γ is given by

γ(λ) =
(
I + λ(SF − λ)−1

)
ιN0(S∗),

and the corresponding Weyl function M is given by

M(λ) = λ+ λ2PN0(S∗)(SF − λ)−1ιN0(S∗).

Note that, in particular, γ(0) = ιN0(S∗) is the canonical embedding of N0(S
∗) into

H, γ(0)∗ = PN0(S∗) is the orthogonal projection onto N0(S
∗), and M(0) = 0.

The last objective in this section is to derive an abstract first Green identity.
For this consider a boundary triplet {G,Γ0,Γ1} for which SF = ker Γ0 and assume
that also the self-adjoint extension corresponding to Γ1 is semibounded. In the
following the notation S1 = ker Γ1 (instead of A1) is used; this will turn out to be
more convenient for the next section. As a first step rewrite the abstract Green
identity (2.1.1) in the form

(f ′, g)− (Γ1f̂ ,Γ0ĝ) = (f, g′)− (Γ0f̂ ,Γ1ĝ), f̂ , ĝ ∈ S∗. (5.5.25)

In the following theorem it will be shown that the expression on the left-hand side,
and hence on the right-hand side, of (5.5.25) can be seen as a restriction of the
form tS1 .
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Theorem 5.5.14. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1}
be a boundary triplet for S∗ such that

SF = ker Γ0 and S1 = ker Γ1, (5.5.26)

where SF is the Friedrichs extension and S1 is a semibounded self-adjoint extension
of S. Moreover, let tS1 be the closed semibounded form corresponding to S1. Then
domS∗ ⊂ dom tS1 and the following equality holds:

(f ′, g) = tS1
[f, g] + (Γ1f̂ ,Γ0ĝ), f̂ , ĝ ∈ S∗. (5.5.27)

Proof. By the assumption (5.5.26), the extensions SF and S1 are transversal and
hence it follows from Theorem 5.3.8 that domS∗ ⊂ dom tS1 . Moreover, every

f̂ , ĝ ∈ S∗ can be decomposed as

f̂ = f̂F + f̂1, ĝ = ĝF + ĝ1, f̂F, ĝF ∈ SF, f̂1, ĝ1 ∈ S1.

Using the conditions in (5.5.26) one sees that

Γ0f̂F = Γ0ĝF = 0 and Γ1f̂1 = Γ1ĝ1 = 0, (5.5.28)

and therefore the identity (5.5.25) can be rewritten as

(f ′, g)− (Γ1f̂ ,Γ0ĝ) = (f, g′)− (Γ0f̂ ,Γ1ĝ)

= (fF + f1, g
′
F + g′1)− (Γ0f̂1,Γ1ĝF).

(5.5.29)

In order to rewrite the last term on the right-hand side of (5.5.29) observe that

f̂1, ĝF ∈ S∗. Therefore, another application of the abstract Green identity for the
boundary triplet {G,Γ0,Γ1} shows that

(f ′
1, gF)− (f1, g

′
F) = (Γ1f̂1,Γ0ĝF)− (Γ0f̂1,Γ1ĝF)

= −(Γ0f̂1,Γ1ĝF),
(5.5.30)

where (5.5.28) was used in the last equality. A combination of (5.5.29) and (5.5.30)
gives

(f ′, g)− (Γ1f̂ ,Γ0ĝ) = (fF, g
′
F) + (fF, g

′
1) + (f1, g

′
1) + (f ′

1, gF). (5.5.31)

Since domS∗ ⊂ dom tS1
, the last three terms on the right-hand side of (5.5.31)

can be rewritten by means of Theorem 5.1.18:

(fF, g
′
1) = tS1 [fF, g1], (f1, g

′
1) = tS1 [f1, g1], (f ′

1, gF) = tS1 [f1, gF],

whereas the first term on the right-hand side of (5.5.31) can be rewritten by means
of Theorem 5.1.18 and the inclusion tSF

⊂ tS1
as follows:

(fF, g
′
F) = tSF [fF, gF] = tS1 [fF, gF].
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Combined with (5.5.31), the above rewriting leads to

(f ′, g)− (Γ1f̂ ,Γ0ĝ) = tS1
[fF, gF] + tS1

[fF, g1] + tS1
[f1, g1] + tS1

[f1, gF]

= tS1 [fF + f1, gF + g1]

= tS1
[f, g],

and hence (5.5.27) has been shown. �

Let Θ be a self-adjoint relation in G and consider the corresponding self-
adjoint extension

HΘ =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈ Θ

}
; (5.5.32)

here the notation HΘ (instead of AΘ) is used, which is more convenient for the

next section. For f̂ ∈ S∗ the condition {Γ0f̂ ,Γ1f̂} ∈ Θ is equivalent to

Γ0f̂ ∈ domΘop and Pop Γ1f̂ = Θop Γ0f̂ , (5.5.33)

where Pop denotes the orthogonal projection from G onto Gop = domΘ and Θop

is the self-adjoint operator part of the self-adjoint relation Θ; cf. the end of Sec-
tion 2.2. The following statement is an immediate consequence of Theorem 5.5.14.

Corollary 5.5.15. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1}
be a boundary triplet for S∗ such that SF = ker Γ0 and S1 = ker Γ1, where SF

is the Friedrichs extension and S1 is a semibounded self-adjoint extension of S.
Let tS1 be the closed semibounded form corresponding to S1. Assume that HΘ is a
self-adjoint extension of S corresponding to the self-adjoint relation Θ in G. Then

(f ′, g) = tS1
[f, g] + (Θop Γ0f̂ ,Γ0ĝ), f̂ , ĝ ∈ HΘ. (5.5.34)

Under the assumption that HΘ is semibounded, the left-hand side of (5.5.34)
can be written as tHΘ

[f, g]. One may view the identity (5.5.34) as a perturbation

of the form tS1 by means of the term (Θop Γ0f̂ ,Γ0ĝ). The proper interpretation of
(5.5.34) in terms of quadratic forms requires an extension of the mapping Γ0; this
procedure will be taken up in detail in Section 5.6 with the introduction of the
notion of a boundary pair.

5.6 Boundary pairs and boundary triplets

In this section the notion of a boundary pair for a semibounded symmetric rela-
tion in a Hilbert space H is developed. It will turn out that there is an intimate
connection between boundary pairs and boundary triplets. In fact, a boundary
pair helps to express the closed semibounded form associated with a semibounded
self-adjoint extension in terms of the parameter provided by the boundary triplet.
The concept of a boundary pair is motivated by applications occurring in the study
of semibounded differential operators.
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Definition 5.6.1. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and the Friedrichs extension
SF are transversal. Let tS1

be the closed form associated with S1 and let

HtS1
−a =

(
dom tS1 , (·, ·)tS1

−a

)
, a < m(S1),

be the corresponding Hilbert space. A pair {G,Λ} is called a boundary pair for S
corresponding to S1 if G is a Hilbert space and Λ ∈ B(HtS1

−a,G) satisfies

kerΛ = dom tSF
and ranΛ = G.

Let S be a closed semibounded relation in H, let SF be the Friedrichs ex-
tension of S, and assume that {G,Λ} is a boundary pair for S corresponding
to a semibounded self-adjoint extension S1 of S. Then, by Definition 5.6.1, the
semibounded self-adjoint extensions S1 and SF are transversal, which, by Theo-
rem 5.3.8, is equivalent to the inclusion

domS∗ ⊂ dom tS1 = domΛ.

One also has the orthogonal decomposition

HtS1
−a = ker (S∗ − a)⊕tS1

−a HtSF
−a, a < m(S1) ≤ m(SF);

cf. Proposition 5.3.7 and Theorem 5.3.8. Since kerΛ = dom tSF and ranΛ = G,
one sees that the restriction of Λ to the space ker (S∗−a) equipped with the norm
‖ · ‖tS1

−a, is a bounded mapping from ker (S∗ − a) to G such that

ran
(
Λ� ker (S∗ − a)

)
= G.

Hence, the restriction Λ� ker (S∗ − a) has a bounded everywhere defined inverse.

Boundary pairs have a useful invariance property. To see this consider a pair
of semibounded self-adjoint extensions S1 and S2 of S which are each transversal
with SF, i.e.,

S∗ = S1 +̂ SF = S2 +̂ SF. (5.6.1)

Lemma 5.6.2. Let S be a closed semibounded relation in H, let S1 and S2 be semi-
bounded self-adjoint extensions which satisfy the transversality conditions (5.6.1),
and assume that a < min {m(S1),m(S2)}. Then dom tS1 = dom tS2 and the form
topologies of tS1 and tS2 coincide. Consequently, {G,Λ} is a boundary pair for S
corresponding to S1 if and only if {G,Λ} is a boundary pair for S corresponding
to S2.

Proof. It suffices to consider the boundedness property, as the other properties of
a boundary pair in Definition 5.6.1 do not depend on the choice of the transversal
extensions S1 and S2. In fact, according to Corollary 5.3.9, the transversality
conditions in (5.6.1) imply that

dom (S1 − a)
1
2 = dom (S2 − a)

1
2 , a < min {m(S1),m(S2)}.
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Moreover, again by Corollary 5.3.9, this implies that

c1‖((S1)op − a)
1
2ϕ‖2 ≤ ‖((S2)op − a)

1
2ϕ‖2 ≤ c2‖((S1)op − a)

1
2ϕ‖2

for all ϕ ∈ dom (S2 − a)
1
2 = dom (S1 − a)

1
2 and for some constants c1, c2 > 0. In

other words, c1(tS1 − a) ≤ tS2 − a ≤ c2(tS1 − a) for some constants c1, c2 > 0.
Therefore, the form topologies of tS1

and tS2
coincide and thus Λ ∈ B(HtS1

−a,G)
if and only if Λ ∈ B(HtS2

−a,G). This implies that {G,Λ} is a boundary pair for
S corresponding to S1 if and only if {G,Λ} is a boundary pair for S correspond-
ing to S2. �

To explore the connection between boundary pairs and boundary triplets,
the notion of extension in the next definition will be important.

Definition 5.6.3. Let S be a closed semibounded relation in H, let {G,Γ0,Γ1} be
a boundary triplet for S∗ with A0 = ker Γ0 and assume that mulA0 = mulS∗.
Let S1 be a semibounded self-adjoint extension of S such that S1 and SF are
transversal, so that, domS∗ ⊂ dom tS1

. Then an operator Λ ∈ B(HtS1
−a,G) is

said to be an extension of Γ0 if

Γ0f̂ = Λf for all f̂ = {f, f ′} ∈ S∗. (5.6.2)

It follows already from the assumption mulA0 = mulS∗ that the mapping
f �→ Γ0f̂ from domS∗ to G in (5.6.2) is an operator. In fact, if f̂ = {0, f ′} ∈ S∗,
then f̂ ∈ A0 = ker Γ0, so that Γ0f̂ = 0. Note also that in the case A0 = SF the
condition mulA0 = mulS∗ is satisfied by Theorem 5.3.3.

Next the notion of a compatible boundary pair will be introduced.

Definition 5.6.4. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1}
be a boundary triplet for S∗ with

A0 = ker Γ0 and A1 = ker Γ1.

Let S1 be a semibounded self-adjoint extension of S such that S1 and SF are
transversal and let {G,Λ} be a boundary pair for S corresponding to S1. Then
{G,Γ0,Γ1} and {G,Λ} are said to be compatible if Λ is an extension of Γ0 and the
self-adjoint relations A1 and S1 coincide.

The next lemma provides a sufficient condition for an extension Λ of Γ0 such
that {G,Λ} is a boundary pair, or compatible boundary pair, for S corresponding
to S1. In the special case where the defect numbers of S are finite this condition is
automatically satisfied, which makes the lemma useful in applications to Sturm–
Liouville operators in Chapter 6.

Lemma 5.6.5. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0 and A1 = ker Γ1. Let S1 be a semibounded
self-adjoint extension of S such that S1 and SF are transversal or, equivalently,
domS∗ ⊂ dom tS1 , and let a < m(S1). Then the following statements hold:
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(i) If Λ ∈ B(HtS1
−a,G) is an extension of Γ0, then ranΛ = G and

dom tSF
⊂ kerΛ.

(ii) If Λ ∈ B(HtS1
−a,G) is an extension of Γ0 and

dom tSF
= kerΛ, (5.6.3)

then A0 = ker Γ0 = SF and {G,Λ} is a boundary pair for S corresponding to
S1. If, in addition, A1 = S1, then {G,Γ0,Γ1} and {G,Λ} are compatible.

In particular, if Λ ∈ B(HtS1
−a,G) is an extension of Γ0 and the defect numbers

of S are finite, then A0 = ker Γ0 = SF and {G,Λ} is a boundary pair for S
corresponding to S1. If, in this case, also A1 = S1, then {G,Γ0,Γ1} and {G,Λ} are
compatible.

Proof. (i) Let Λ ∈ B(HtS1
−a,G) be an extension of Γ0. It follows from the extension

property (5.6.2) that ranΛ = G and that

domS ⊂ domA0 ⊂ kerΛ. (5.6.4)

Since Λ ∈ B(HtS1
−a,G), it is clear that kerΛ is closed in HtS1

−a and, by (5.6.4),
the closure of domS with respect to the inner product (·, ·)tS1

−a is contained in
kerΛ. On the other hand, domS ⊂ domSF ⊂ dom tSF and the inner product on
HtS1

−a restricted to HtSF
−a coincides with the inner product (·, ·)tSF

−a in HtSF
−a

(see the discussion below (5.3.10) and (5.3.11)). As domS is a core of tSF
, it follows

from Corollary 5.1.15 that the closure of domS with respect to the inner product
(·, ·)tSF

−a coincides with dom tSF . Thus, one concludes dom tSF ⊂ kerΛ.

(ii) Assume that Λ ∈ B(HtS1
−a,G) is an extension of Γ0 and that (5.6.3) holds.

Then
A0 =

{
f̂ ∈ S∗ : f̂ ∈ ker Γ0

} ⊂ {f̂ ∈ S∗ : f ∈ kerΛ
}
. (5.6.5)

Since kerΛ = dom tSF , it follows from Theorem 5.3.3 that the right-hand side of
(5.6.5) concides with SF. Thus, A0 ⊂ SF and since both relations are self-adjoint,
it follows that A0 = SF. Moreover, one has ranΛ = G by (i) and hence {G,Λ} is a
boundary pair for S∗ corresponding to S1. It follows directly from Definition 5.6.4
that the additional assumption A1 = S1 yields compatibility of {G,Γ0,Γ1} and
{G,Λ}.

For the last statement assume that the defect numbers of S are finite and let
Λ ∈ B(HtS1

−a,G) be an extension of Γ0. Then ranΛ = G and dom tSF ⊂ kerΛ by
(i). Since S1 and SF are transversal, one has the orthogonal decomposition

HtS1
−a = ker (S∗ − a)⊕tS1

−a HtSF
−a

for a < m(S1) by Proposition 5.3.7 and Theorem 5.3.8. Then

dim ranΛ = dimG = dimker (S∗ − a) <∞
together with dom tSF

⊂ kerΛ implies dom tSF
= kerΛ. Now the assertions follow

from (ii). �
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If the boundary triplet {G,Γ0,Γ1} and the boundary pair {G,Λ} are compat-
ible, then automatically ker Γ0 = SF. In the next theorem it will be shown that for
a boundary triplet for S∗ such that ker Γ0 = SF and ker Γ1 = S1 is semibounded,
there exists a compatible boundary pair {G,Λ} for S corresponding to S1.

Theorem 5.6.6. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1} be
a boundary triplet for S∗. Assume that

ker Γ0 = SF and ker Γ1 = S1,

where SF is the Friedrichs extension and S1 is a semibounded self-adjoint extension
of S. Then, with a < m(S1) fixed, the mapping

Λ0 =
{{f,Γ0f̂} : f̂ ∈ S∗} ⊂ HtS1

−a × G, (5.6.6)

is (the graph of ) a densely defined bounded operator. Its unique bounded extension
Λ to all of HtS1

−a induces a boundary pair {G,Λ} for S corresponding to S1 which
is compatible with the boundary triplet {G,Γ0,Γ1}.
Proof. The assumption that {G,Γ0,Γ1} is a boundary triplet for S∗ implies that
SF and S1 are transversal extensions of S. By Theorem 5.3.8, this is equivalent to
domS∗ ⊂ dom tS1 , and hence domΛ0 = domS∗ is contained in HtS1

−a, i.e., the
relation Λ0 in (5.6.6) is well defined from HtS1

−a to G.

In order to see that Λ0 is an operator, assume that {f,Γ0f̂} ∈ Λ0 with f̂ ∈ S∗

satisfying f = 0. Hence, f̂ = {0, f ′} ∈ S∗, which by Theorem 5.3.3 shows that

f̂ ∈ SF. Now the identity SF = ker Γ0 implies that Γ0f̂ = 0. Hence, mulΛ0 = {0},
that is, Λ0 in (5.6.6) is an operator. Furthermore, it is clear that SF = ker Γ0 yields
kerΛ0 = domSF.

Next it will be shown that the operator

Λ0 : HtS1
−a ⊃ domS∗ → G, f �→ Λ0f = Γ0f̂ , (5.6.7)

is bounded. By assumption, a < m(S1) ≤ m(SF), and hence one has the decompo-

sition S∗ = SF +̂ N̂a(S
∗); see Theorem 1.7.1. Let f̂ = {f, f ′} ∈ S∗ and decompose

it accordingly,

f̂ = f̂F + f̂a, f̂F ∈ SF, f̂a = {fa, afa} ∈ N̂a(S
∗).

From SF = ker Γ0 and the fact that Γ0 : S∗ → G is bounded (with respect to the
graph norm; cf. Proposition 2.1.2) it follows that

‖Λ0f‖2 = ‖Γ0f̂‖2 = ‖Γ0f̂a‖2 ≤M(‖fa‖2 + a2‖fa‖2) ≤M ′‖fa‖2

holds for some constants M,M ′ > 0. Then is clear from (5.1.9) that there exists
M ′′ > 0 such that

‖Λ0f‖2 ≤M ′′‖fa‖2tS1
−a ≤M ′′(‖fF‖2tS1

−a + ‖fa‖2tS1
−a

)
= M ′′‖f‖2tS1

−a,
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where fF ∈ domSF ⊂ dom tSF ; here in the last equality one uses the orthogonal
decomposition

dom tS1
= ker (S∗ − a)⊕tS1

−a dom tSF

with respect to the inner product (·, ·)tS1
−a in the Hilbert space HtS1

−a, see Propo-
sition 5.3.7 and Theorem 5.3.8. This shows that the operator Λ0 in (5.6.7) is
bounded.

By Theorem 5.1.18 (ii), domS1 is a core of tS1 and hence domS1 is dense in
the Hilbert space HtS1

−a by Corollary 5.1.15. As domS1 ⊂ domS∗ ⊂ dom tS1 , it
follows that domS∗ is also a dense subspace of HtS1

−a. Therefore, the bounded
operator Λ0 in (5.6.7) is densely defined, and hence Λ0 admits a unique extension
Λ by continuity to all of HtS1

−a.

Since the restriction of the inner product in HtS1
−a to HtSF

−a coincides with
the inner product in HtSF

−a (see the discussion below (5.3.10) and (5.3.11)), the
closure of domSF = kerΛ0 in HtS1

−a is dom tSF . This implies kerΛ = dom tSF .
Finally, by definition ranΛ = ranΛ0 = G, and hence {G,Λ} is a boundary pair
for S corresponding to S1. It is also clear that the boundary pair {G,Λ} and the
boundary triplet {G,Γ0,Γ1} are compatible. �

In the next corollary it is shown that in the context of Theorem 5.6.6 the
continuity of Λ : HtS1

−a → G makes it possible to extend the identity

(f ′, g) = tS1
[f, g] + (Γ1f̂ ,Γ0ĝ), f̂ , ĝ ∈ S∗, (5.6.8)

in Theorem 5.5.14 to f̂ ∈ S∗ and g ∈ dom tS1 .

Corollary 5.6.7. Let S be a closed semibounded relation in H, and let {G,Γ0,Γ1}
and {G,Λ} be the boundary triplet and boundary pair in Theorem 5.6.6, respec-
tively. Then the following equality holds:

(f ′, g) = tS1 [f, g] + (Γ1f̂ ,Λg), f̂ ∈ S∗, g ∈ dom tS1 .

Proof. As domS∗ is a dense subspace of HtS1
−a, there exist gn ∈ domS∗ and

ĝn = {gn, g′n} ∈ S∗ such that gn → g in HtS1
−a, and hence Γ0ĝn = Λgn → Λg in G.

Furthermore, gn → g in HtS1
−a also implies gn → g ∈ H and tS1 [f, gn]→ tS1 [f, g]

for f̂ = {f, f ′} ∈ S∗. By (5.6.8), the identity

(f ′, gn) = tS1
[f, gn] + (Γ1f̂ ,Γ0ĝn) = tS1

[f, gn] + (Γ1f̂ ,Λgn)

holds for f̂ = {f, f ′} and ĝn = {gn, g′n} ∈ S∗. Now the assertion follows by taking
limits. �

For the sake of completeness the existence of boundary pairs is stated in the
following corollary as an addendum to Definition 5.6.1.
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Corollary 5.6.8. Let S be a closed semibounded relation in H. Then there exist a
semibounded self-adjoint extension S1 of S such that S1 and SF are transversal
and a mapping Λ ∈ B(HtS1

−a,G), a < m(S1), such that {G,Λ} is a boundary pair
for S.

Proof. By Proposition 5.5.10, there exists a boundary triplet {G,Γ0,Γ1} for S∗

such that SF = ker Γ0 and SK,x = ker Γ1 for x < m(S) = m(SF). Now the
statement follows with S1 = SK,x and a < m(S1) = x from Theorem 5.6.6. �

Example 5.6.9. Let S be a closed semibounded relation in H with lower bound
γ, fix x < γ, and consider the boundary triplet {Nx(S

∗),Γ0,Γ1} for S∗ in Corol-
lary 5.5.12 with

Γ0f̂ = fx, f̂ = {fF, f ′
F}+ {fx, xfx} ∈ SF +̂ N̂x(S

∗).

Then SF = ker Γ0 and SK,x = ker Γ1 and for a < x one has the direct sum
decomposition

HtSK,x
−a = dom tSK,x = dom tSF +Nx(S

∗), a < x < γ; (5.6.9)

cf. Corollary 5.4.16. Then the mapping

Λf = fx, f = fF + fx ∈ dom tSF
+Nx(S

∗),

belongs to B(HtSK,x
−a,Nx(S

∗)). In fact, let f ∈ HtSK,x
−a have the decomposition

f = fF + fx as in (5.6.9), and define fa = (I + (a − x)(SF − a)−1)fx. Then
f = gF + fa, where gF = fx − fa + fF ∈ dom tSF and fa ∈ Na(S

∗). Now observe
that fx = (I+(x−a)(SF−x)−1)fa, so that Proposition 1.4.6 leads to the estimate

‖fx‖ ≤ γ − a

γ − x
‖fa‖.

Recall from (5.1.9) (with t = tSK,x , γ = x, ϕ = fa) and (5.4.28) that

(x− a)‖fa‖2 ≤ ‖fa‖2tSK,x
−a ≤ ‖fa‖2tSK,x

−a + ‖gF‖2tSK,x
−a = ‖f‖2tSK,x

−a,

which proves that Λ ∈ B(HtSK,x
−a,Nx(S

∗)). Thus, Λ extends Γ0 in the sense

of Definition 5.6.3. It is clear that dom tSF
= kerΛ, and hence Lemma 5.6.5 (ii)

implies that {Nx(S
∗),Λ} is a boundary pair for S corresponding to SK,x which is

compatible with the boundary triplet {Nx(S
∗),Γ0,Γ1} in Corollary 5.5.12.

Theorem 5.6.6 admits a converse. If S is a semibounded relation and {G,Λ} is
a boundary pair for S in the sense of Definition 5.6.1, then there exists a compatible
boundary triplet {G,Γ0,Γ1} for S∗. The construction of the mapping Γ0 : S∗ → G

is inspired by Lemma 5.6.5 and the construction of Γ1 : S∗ → G is inspired by the
first Green formula in Theorem 5.5.14.
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Theorem 5.6.10. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and SF are transversal. Let
{G,Λ} be a boundary pair for S corresponding to S1. Then

Γ0 =
{{f̂ ,Λf} : f̂ ∈ S∗} (5.6.10)

is (the graph of ) a linear operator from S∗ to G and there exists a unique linear
operator Γ1 : S∗ → G such that {G,Γ0,Γ1} defines a boundary triplet for S∗ which
is compatible with the boundary pair {G,Λ} for S corresponding to S1.

Proof. The relations S1 and SF are semibounded self-adjoint extensions of S and
hence m(S1) ≤ m(SF) = m(S). There are the following decompositions of the
relation S∗:

S∗ = SF +̂ N̂a(S
∗), a < m(SF), (5.6.11)

and, likewise,
S∗ = S1 +̂ N̂a(S

∗), a < m(S1); (5.6.12)

cf. Theorem 1.7.1. Recall that tSF
⊂ tS1

and, since S1 and SF are transversal,
there is the orthogonal decomposition

dom tS1 = ker (S∗ − a)⊕tS1
−a dom tSF , a < m(S1), (5.6.13)

of the Hilbert space HtS1
−a. Moreover, in this case one also has domS∗ ⊂ dom tS1 ;

cf. Proposition 5.3.7 and Theorem 5.3.8. The proof will be given in a number of
steps. The mapping Γ0 is considered in Step 1. Step 2 and Step 3 are preparations
for the construction of Γ1 in Step 4. In the remaining steps the various properties
of Γ1 are established.

Step 1. This step concerns the properties of Γ0 in (5.6.10). Since domS∗ ⊂ dom tS1

one sees from Definition 5.6.1 that the relation Γ0 is well defined. It is clear that
Γ0 is the graph of an operator,

Γ0 : S∗ → G, f̂ �→ Γ0f̂ = Λf, (5.6.14)

and that {0} ×mulS∗ ⊂ ker Γ0. Furthermore,

SF =
{
f̂ ∈ S∗ : f ∈ dom tSF

}
=
{
f̂ ∈ S∗ : f ∈ kerΛ

}
= ker Γ0, (5.6.15)

where the first equality holds by Theorem 5.3.3, the second equality is due to
dom tSF = kerΛ, and the third equality follows from (5.6.14).

Since ranΛ = G and kerΛ = dom tSF , it follows from (5.6.13) that Λ maps
ker (S∗ − a) bijectively onto G. Therefore,

Γ0 is a bijection between N̂a(S
∗) and G, (5.6.16)

and, in particular,
ranΓ0 = G. (5.6.17)



5.6. Boundary pairs and boundary triplets 351

Step 2. Now it will be shown that the identity

tS1
[f, gF] = (f ′, gF), f̂ ∈ S∗, gF ∈ dom tSF

, (5.6.18)

holds. For this, assume that f̂ is decomposed as

f̂ = f̂F + ĥa, f̂F ∈ SF, ĥa ∈ N̂a(S
∗); (5.6.19)

cf. (5.6.11). Recall that domS∗ ⊂ dom tS1
and observe that with (5.6.19) one gets

tS1
[f, gF] = tS1

[fF + ha, gF] = tSF
[fF, gF] + tS1

[ha, gF]. (5.6.20)

The orthogonal decomposition in (5.6.13) gives

0 = (ha, gF)tS1
−a = tS1 [ha, gF]− a(ha, gF).

Hence, (5.6.20) leads to the identity

tS1 [f, gF] = tSF [fF, gF] + a(ha, gF) = (f ′
F, gF) + a(ha, gF),

which shows (5.6.18).

Step 3. Next it will be shown that

tS1 [f, g]− (f ′, g) = (fa, ga)tS1
−a, f̂ , ĝ ∈ S∗, (5.6.21)

where f̂ and ĝ are decomposed as

f̂ = f̂1 + f̂a, f̂1 ∈ S1, f̂a ∈ N̂a(S
∗), (5.6.22)

and
ĝ = ĝF + ĝa, ĝF ∈ SF, ĝa ∈ N̂a(S

∗); (5.6.23)

cf. (5.6.12) and (5.6.11). For this note first that with (5.6.22) the identity (5.6.18)
in Step 2 gives

tS1
[f1 + fa, gF] = (f ′

1 + afa, gF). (5.6.24)

Furthermore, note that with ga from (5.6.23) one has

tS1
[f1, ga] = (f ′

1, ga) (5.6.25)

due to f̂1 ∈ S1 and ga ∈ Na(S
∗) ⊂ dom tS1 ; cf. Theorem 5.1.18. A combination of

(5.6.24) and (5.6.25) leads to

tS1
[f, g]− (f ′, g) = tS1

[f1 + fa, gF + ga]− (f ′
1 + afa, gF + ga)

= tS1 [f1 + fa, ga]− (f ′
1 + afa, ga)

= tS1
[fa, ga]− a(fa, ga),

which gives (5.6.21).
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Step 4. In this step the operator Γ1 : S∗ → G will be constructed. For this purpose
fix f̂ ∈ S∗ and consider the linear relation

Φf̂ =
{{Γ0 ĝ, (g, f

′)− tS1 [g, f ]} : ĝ ∈ S∗ }. (5.6.26)

It follows from ranΓ0 = G in (5.6.17) that domΦf̂ = G. Next it will be shown that

Φf̂ is the graph of a bounded linear functional. If f̂ and ĝ are decomposed as in

(5.6.22) and (5.6.23), then it follows from (5.6.21) in Step 3 that∣∣(g, f ′)− tS1
[g, f ]

∣∣ = ∣∣tS1
[f, g]− (f ′, g)

∣∣ = |(fa, ga)tS1
−a| ≤ ‖fa‖tS1

−a‖ga‖tS1
−a.

Recall that the restriction of Λ to ker (S∗−a) has a bounded inverse (with respect
to the norm ‖ · ‖tS1

−a on ker (S∗ − a)). Therefore, by (5.6.10) and (5.6.15),

‖ga‖tS1
−a ≤ C‖Λga‖ = C‖Γ0ĝa‖ = C‖Γ0ĝ‖ (5.6.27)

for some constant C > 0 and, as a consequence,∣∣(g, f ′)− tS1 [g, f ]
∣∣ ≤ C‖fa‖tS1

−a‖Γ0ĝ‖, ĝ ∈ S∗.

This implies that the relation Φf̂ in (5.6.26) is the graph of an everywhere defined
bounded functional. Hence, by the Riesz representation theorem, there exists a
unique ϕf̂ ∈ G such that

Φf̂ (Γ0ĝ) =
(
Γ0ĝ, ϕf̂

)
, ĝ ∈ S∗.

Define the mapping Γ1 by

Γ1 : S∗ → G, f̂ �→ Γ1f̂ := ϕf̂ . (5.6.28)

By construction, Γ1 is linear and it follows from (5.6.21) and (5.6.26) that

(Γ1f̂ ,Γ0ĝ) = (f ′, g)− tS1
[f, g] = −(fa, ga)tS1

−a (5.6.29)

for all f̂ ∈ S∗ and ĝ ∈ S∗ decomposed in the forms (5.6.22) and (5.6.23), respec-
tively.

Step 5. It will be shown that the operator Γ1, constructed in Step 4, satisfies

S1 = ker Γ1. (5.6.30)

To show that S1 ⊂ ker Γ1, assume that f̂ ∈ S1. Then (5.6.29) in Step 4 implies

that (Γ1f̂ ,Γ0ĝ) = 0 for all ĝ ∈ S∗, and since Γ0 is surjective (see (5.6.17)), one

concludes that Γ1f̂ = 0. Thus, S1 ⊂ ker Γ1. To show the reverse inclusion, assume
that f̂ = {f, f ′} ∈ ker Γ1. Then it follows from (5.6.29) that

tS1
[f, g] = (f ′, g) for all g ∈ domS1 ⊂ domS∗.

Since domS1 is a core of tS1 , it is a consequence of the first representation theorem

(Theorem 5.1.18) that f̂ = {f, f ′} ∈ S1. Thus, ker Γ1 ⊂ S1, and so (5.6.30) has
been proved.
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Step 6. Next it will be shown that the operator Γ1, constructed in Step 4, satisfies

ranΓ1 = G. (5.6.31)

For this purpose note first that ranΓ1 = G. In fact, if ranΓ1 	= G, then in view of
(5.6.16) there exists ĝa ∈ N̂a(S

∗) such that Γ0ĝa 	= 0 and

(Γ1f̂ ,Γ0ĝa) = 0 for all f̂ ∈ S∗. (5.6.32)

Now apply (5.6.29) with f̂ = f̂1+f̂a ∈ S∗, f̂1 ∈ S1, f̂a ∈ N̂a(S
∗), and ĝa ∈ N̂a(S

∗).
Then (5.6.32) implies

(fa, ga)tS1
−a = 0

for all fa ∈ Na(S
∗). Therefore, ga = 0 and hence ĝa = 0 and Γ0ĝa = 0, which is a

contradiction. Thus, ranΓ1 = G.

To conclude (5.6.31), it suffices to show that ranΓ1 is closed. For this consider

the restriction Γ′
1 to N̂a(S

∗). It follows from S∗ = S1 +̂ N̂a(S
∗) and (5.6.30) that

Γ′
1 is injective and that

ranΓ′
1 = ranΓ1. (5.6.33)

With the inner product (·, ·)tS1
−a the space N̂a(S

∗) is a closed subspace of the
Hilbert space HtS1

−a × HtS1
−a (see (5.6.13)). Since∣∣(Γ′

1f̂a,Γ0ĝ)
∣∣ = |(fa, ga)tS1

−a| ≤ C‖fa‖tS1
−a‖Γ0ĝ‖

by (5.6.29) and (5.6.27), it follows from

‖Γ′
1f̂a‖ = sup

‖Γ0ĝ‖=1

∣∣(Γ1f̂a,Γ0ĝ)
∣∣ ≤ C‖fa‖tS1

−a

that the operator Γ′
1 is bounded in the topology of HtS1

−a ×HtS1
−a. Hence, Γ

′
1 is

closed and the same is true for the inverse operator

(Γ′
1)

−1 : G ⊃ ranΓ′
1 → N̂a(S

∗).

Assume that (Γ′
1)

−1 is unbounded. Then there exists a sequence (ĝn) in N̂a(S
∗)

such that ‖gn‖tS1
−a = 1 and Γ′

1ĝn → 0 in G. From (5.6.29) and the definition of
Γ0 one obtains

1 = (gn, gn)tS1
−a = −(Γ′

1ĝn,Γ0ĝn) = −(Γ′
1ĝn,Λgn) ≤ ‖Γ′

1ĝn‖‖Λgn‖,
and as Λ : HtS1

−a → G is bounded this yields

1 ≤ C ′‖Γ′
1ĝn‖‖gn‖tS1

−a = C ′‖Γ′
1ĝn‖ → 0;

a contradiction. Hence, the operator (Γ′
1)

−1 is bounded. As (Γ′
1)

−1 is closed, it
follows that ranΓ′

1 = dom (Γ′
1)

−1 is closed, which together with (5.6.33) and
ranΓ1 = G shows (5.6.31).
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Step 7. First it will be verified that the mappings Γ0 and Γ1 form a boundary
triplet for S∗. Observe that (5.6.29) implies the Green identity

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ), f̂ , ĝ ∈ S∗.

It remains to show that

ran

(
Γ0

Γ1

)
= G× G. (5.6.34)

For this, let ϕ,ϕ′ ∈ G. From ranΓ0 = G in (5.6.17) and ranΓ1 = G in (5.6.31) it is

clear that there exist ĥ, k̂ ∈ S∗ such that Γ0ĥ = ϕ and Γ1k̂ = ϕ′. It follows from
the transversality S∗ = SF +̂ S1 that

ĥ = ĥF + ĥ1 and k̂ = k̂F + k̂1, ĥF, k̂F ∈ SF, ĥ1, k̂1 ∈ S1.

Define f̂ := ĥ1 + k̂F ∈ S∗. Making use of the facts that ker Γ0 = SF in (5.6.15)
and ker Γ1 = S1 in (5.6.30), one obtains

Γ0f̂ = Γ0ĥ1 = Γ0ĥ = ϕ,

Γ1f̂ = Γ1k̂F = Γ1k̂ = ϕ′,

which shows (5.6.34). Therefore, {G,Γ0,Γ1} is a boundary triplet for S∗.
Since ker Γ0 = SF and ker Γ1 = S1, and since Λ is an extension of Γ0, see

(5.6.10), one concludes that the boundary triplet {G,Γ0,Γ1} and the boundary
pair {G,Λ} are compatible; see Definition 5.6.4.

It remains to check that Γ1 constructed in (5.6.28)–(5.6.29) is uniquely de-
termined. Note that the mapping Γ0 and the kernel S1 of Γ1 are uniquely deter-
mined as the boundary triplet is required to be compatible with the boundary
pair {G,Λ}. Under these circumstances the action of Γ1 is uniquely determined by
formula (5.5.27) in Theorem 5.5.14. �

The following result gives a connection via a boundary pair {G,Λ} between
closed semibounded forms tH corresponding to semibounded self-adjoint exten-
sions H of S such that S1 ≤ H ≤ SF and closed nonnegative forms ω in G. A
similar result also involving boundary triplets follows later.

Theorem 5.6.11. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and SF are transversal. Let
{G,Λ} be a boundary pair for S corresponding to S1. Then the following statements
hold:

(i) If H is a semibounded self-adjoint extension of S such that S1 ≤ H, then
there exists a closed nonnegative form ω in G defined on domω = Λ(dom tH)
such that

tH [f, g] = tS1 [f, g] + ω[Λf,Λg], f, g ∈ dom tH . (5.6.35)

Moreover, the space Λ(domH) is a core of the form ω.
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(ii) If ω is a closed nonnegative form in G, then

t[f, g] = tS1
[f, g] + ω[Λf,Λg],

dom t =
{
f ∈ dom tS1 : Λf ∈ domω

}
,

(5.6.36)

is a closed semibounded form in H and the corresponding self-adjoint relation
H is a semibounded self-adjoint extension of S which satisfies S1 ≤ H.

The formulas (5.6.35) and (5.6.36) establish a one-to-one correspondence between
all closed nonnegative forms ω in G and all semibounded self-adjoint extensions H
of S satisfying the inequalities S1 ≤ H ≤ SF.

Proof. (i) Let H be a semibounded self-adjoint extension of S and let tH be the
corresponding closed semibounded form. By assumption, S1 ≤ H or, equivalently,
tS1 ≤ tH ; cf. Theorem 5.2.4. Hence, dom tH ⊂ dom tS1 and tS1 [f ] ≤ tH [f ] for all
f ∈ dom tH . Recall that tSF , as the closure of tS , satisfies tSF ⊂ tS1 and tSF ⊂ tH .
Since kerΛ = dom tSF , one concludes that the form

ω[Λf,Λg] := tH [f, g]− tS1 [f, g], domω = Λ(dom tH), f, g ∈ dom tH , (5.6.37)

is well defined and nonnegative in the Hilbert space G. To see that it is well defined,
just note that for f, g ∈ dom tH the Cauchy–Schwarz inequality shows∣∣tH [f, g]− tS1 [f, g]

∣∣ ≤ ∣∣tH [f, f ]− tS1 [f, f ]
∣∣ 12 ∣∣tH [g, g]− tS1 [g, g]

∣∣ 12 ,
and hence tH [f, g] − tS1 [f, g] in (5.6.37) vanishes when either f or g belongs to
kerΛ = dom tSF .

Next it will be shown that the form ω is closed in G. To this end consider a
sequence (ϕn) in domω and assume that ϕn →ω ϕ for some ϕ ∈ G, that is, (ϕn)
is a sequence in domω = Λ(dom tH), such that

ϕn → ϕ ∈ G and ω[ϕn − ϕm]→ 0. (5.6.38)

Since kerΛ = dom tSF
and

dom tSF ⊂ dom tH ⊂ dom tS1 =
(
dom tS1 �tS1

−a dom tSF

)⊕tS1
−a dom tSF

for a < m(S1), there exists a sequence (fn) in dom tH �tS1
−a dom tSF such that

Λfn = ϕn. Moreover, since ranΛ = G, there exists f ∈ dom tS1
�tS1

−a dom tSF

such that Λf = ϕ; see Proposition 5.3.7. Since the restriction of Λ to the space
dom tS1 �tS1

−a dom tSF has a bounded inverse (see the discussion following Def-
inition 5.6.1), it follows that fn → f in HtS1

−a. In particular, fn → f in H and
tS1 [fn − fm]→ 0. Then (5.6.37) and (5.6.38) imply

tH [fn − fm] = tS1 [fn − fm] + ω[Λfn − Λfm]

= tS1
[fn − fm] + ω[ϕn − ϕm]→ 0,
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and as tH is closed one concludes f ∈ dom tH and tH [fn − f ] → 0. This implies
ϕ = Λf ∈ domω. Furthermore, as tS1

is closed, also tS1
[fn − f ]→ 0, and hence

ω[ϕn − ϕ] = ω[Λfn − Λf ] = tH [fn − f ]− tS1 [fn − f ]→ 0,

so that ω is a closed form in G. It is clear that the definition of ω in (5.6.37) implies
the representation of tH in (i).

It remains to show that Λ(domH) is a core of ω. For this let ϕ ∈ domω
and choose f ∈ dom tH such that ϕ = Λf . As domH is a core of tH , there exists
a sequence (fn) in domH such that fn → f in H and tH [fn − f ] → 0. Then
0 ≤ (tS1

− a)[fn − f ] ≤ (tH − a)[fn − f ] → 0 and, in particular, one has fn → f
in HtS1

−a. Setting ϕn := Λfn one has ϕn ⊂ Λ(domH) and using the fact that Λ
is bounded one concludes that

ϕn = Λfn → Λf = ϕ

and
ω[ϕn − ϕ] = ω[Λfn − Λf ] = tH [fn − f ]− tS1 [fn − f ]→ 0.

This shows that Λ(domH) is a core of ω.

(ii) Assume that ω is a closed nonnegative form in G. Then it is clear that the
form

t[f, g] = tS1 [f, g] + ω[Λf,Λg] (5.6.39)

defined on dom t = Λ−1(domω) ⊂ dom tS1
is semibounded and t[f ] ≥ tS1

[f ] holds
for all f ∈ dom t. To verify that t is closed consider a sequence (fn) in dom t such
that fn →t f for some f ∈ H, that is, fn → f in H and t[fn − fm] → 0. Since
the forms tS1

− a, a < m(S1), and ω are nonnegative, it follows from (5.6.39) and
(t− a)[fn − fm]→ 0 that 0 ≤ (tS1 − a)[fn − fm]→ 0 and ω[Λfn − Λfm]→ 0. As
tS1

is a closed form in H, one concludes that f ∈ dom tS1
and tS1

[fn−f ]→ 0. This
shows that fn converges to f in HtS1

−a and as Λ is bounded one has Λfn → Λf
in G. Moreover, since ω[Λfn − Λfm] → 0 and ω is closed in G, one concludes
that Λf ∈ domω and ω[Λfn − Λf ] → 0. Hence, f ∈ dom t = Λ−1(domω) and
t[fn − f ]→ 0, and t is a closed form in H.

Let H be the semibounded self-adjoint relation associated with t via the
first representation theorem; see Theorem 5.1.18. Since dom tSF = kerΛ, it follows
from (5.6.36) that tSF ⊂ t. Hence, tS1 ≤ t ≤ tSF or, equivalently, S1 ≤ H ≤ SF;
see Theorem 5.2.4. One concludes from Theorem 5.4.6 (or its proof) that H is a
self-adjoint extension of S. This completes the proof of (ii).

The indicated one-to-one correspondence is clear from (i) and (ii) by the
uniqueness of the representing semibounded self-adjoint relation associated with
a closed semibounded form. �

A combination of Theorem 5.6.11 with Theorem 5.4.6 leads to the following
observations. Recall that the Krĕın type extensions SK,x and SF are transversal
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when x < γ = m(S) = m(SF) (see (5.4.26)) and that in the nonnegative case
γ ≥ 0 the Krĕın–von Neumann extension is given by SK,0; cf. Definition 5.4.2.

Corollary 5.6.12. Let S be a closed semibounded relation in H with lower bound γ.

(i) For x < γ and S1 = SK,x the formulas (5.6.35) and (5.6.36) establish a one-
to-one correspondence between all closed nonnegative forms ω in G and all
self-adjoint extensions H of S satisfying m(H) ≥ x.

(ii) If SK,γ and SF are transversal, then with S1 = SK,γ the formulas (5.6.35) and
(5.6.36) establish a one-to-one correspondence between all closed nonnegative
forms ω in G and all self-adjoint extensions H of S satisfying m(H) = γ.

(iii) If γ > 0, then with the Krĕın–von Neumann extension S1 = SK,0 the formulas
(5.6.35) and (5.6.36) establish a one-to-one correspondence between all closed
nonnegative forms ω in G and all nonnegative self-adjoint extensions H of
S. If γ = 0 the same is true if the Krĕın–von Neumann extension S1 = SK,0

and SF are transversal.

Theorem 5.6.11 is a first step towards a full description of all semibounded
self-adjoint extensions and their associated forms. The following result is a con-
tinuation of Theorem 5.5.14 for semibounded self-adjoint extensions (see Corol-
lary 5.5.15) and an extension of the first part of Theorem 5.6.11, in which also the
boundary conditions of the extensions and the corresponding forms are connected.

Theorem 5.6.13. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and SF are transversal. Let
{G,Γ0,Γ1} be a boundary triplet for S∗ and let {G,Λ} be a compatible boundary
pair for S corresponding to S1. Assume that HΘ is a semibounded self-adjoint
extension of S corresponding to the self-adjoint relation Θ in G as in (5.5.32)–
(5.5.33). Then Θ is semibounded in G and the corresponding closed semibounded
form ωΘ in G and the closed semibounded form tHΘ corresponding to HΘ are
related by

tHΘ [f, g] = tS1 [f, g] + ωΘ[Λf,Λg],

dom tHΘ =
{
f ∈ dom tS1 : Λf ∈ domωΘ

}
.

(5.6.40)

Proof. The proof of the theorem will rely on the results in Theorem 5.5.14 and
Corollary 5.5.15, where HΘ is now taken to be semibounded. In the first two steps
of the proof the equality between the forms in (5.6.40) will be verified. In the last
step the domain characterization in (5.6.40) will be shown.

Step 1. First recall from Corollary 5.5.15 the formula (5.5.34):

(f ′, g) = tS1
[f, g] + (Θop Γ0f̂ ,Γ0ĝ), f̂ , ĝ ∈ HΘ. (5.6.41)

Since HΘ is assumed to be semibounded, it follows from Theorem 5.1.18 that
(f ′, g) = tHΘ [f, g]. As the boundary pair {G,Λ} is compatible with the boundary
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triplet {G,Γ0,Γ1}, the mapping Λ is an extension of Γ0. Hence, (5.6.41) may now
be rewritten as

tHΘ [f, g] = tS1 [f, g] + (ΘopΛf,Λg), f, g ∈ domHΘ. (5.6.42)

Step 2. In this step it is shown that the formula (5.6.42) can be extended to
the form domain of tHΘ

as in (5.6.40). First observe that by Lemma 5.6.5 one
has A0 = SF. Moreover, since HΘ is a semibounded extension of S, it follows
from Proposition 5.5.6 that Θ is semibounded from below. Hence, (5.6.42) can be
written as

tHΘ [f, g] = tS1 [f, g] + ωΘ[Λf,Λg], f, g ∈ domHΘ, (5.6.43)

where ωΘ is the closed semibounded form corresponding to Θ in G. It follows from
Corollary 5.3.9 that

dom (HΘ − a)
1
2 ⊂ dom (S1 − a)

1
2 (5.6.44)

and hence there is a constant C > 0 such that

‖((S1)op − a)
1
2ϕ‖ ≤ C‖((HΘ)op − a)

1
2ϕ‖ (5.6.45)

for all ϕ ∈ dom (HΘ − a)
1
2 .

Now let f ∈ dom tHΘ
. As domHΘ is a core of tHΘ

, there exists a sequence
(fn) in domHΘ such that fn → f in H and tHΘ [fn − f ]→ 0. By (5.6.44)–(5.6.45)
it follows that f ∈ dom tS1 and tS1 [fn−f ]→ 0, so that fn → f in HtS1

−a. Since Λ
is bounded, this shows that Λfn → Λf in G. Furthermore, from (5.6.43) one sees
that

ωΘ[Λfn − Λfm] = tHΘ [fn − fm]− tS1 [fn − fm]→ 0.

Since ωΘ is closed, one obtains

Λf ∈ domωΘ and ωΘ[Λfn − Λf ]→ 0.

Therefore, the following inclusion has been shown

dom tHΘ ⊂
{
f ∈ dom tS1 : Λf ∈ domωΘ

}
. (5.6.46)

Let f, g ∈ dom tHΘ and choose (fn), (gn) in domHΘ as above. Then one has
tHΘ [fn, gn]→ tHΘ [f, g], tS1 [fn, gn]→ tS1 [f, g], and ωΘ[Λfn,Λgn]→ ωΘ[Λf,Λg] as
n→∞ by Lemma 5.1.8, and hence (5.6.43) extends to

tHΘ [f, g] = tS1 [f, g] + ωΘ[Λf,Λg], f, g ∈ dom tHΘ . (5.6.47)

Step 3. To complete the proof of the theorem the equality between the domains
in (5.6.40) must be verified. Due to (5.6.46) it suffices to show that{

f ∈ dom tS1 : Λf ∈ domωΘ

} ⊂ dom tHΘ .
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Let f ∈ dom tS1 and assume that ϕ = Λf ∈ domωΘ. Using the orthogonal decom-
position

dom tS1
=
(
dom tS1

�tS1
−a dom tSF

)⊕tS1
−a dom tSF

, a < m(S1), (5.6.48)

write f in the form f = h+k, where h ∈ dom tS1�tS1
−a dom tSF and k ∈ dom tSF .

Then k ∈ dom tHΘ , and since kerΛ = dom tSF , one has ϕ = Λh. It remains to
show that h ∈ dom tHΘ

.

Recall that domΘ is a core of ωΘ. Hence, there exists a sequence (ϕn) in
domΘ such that ϕn →ωΘ ϕ, that is,

ϕn → ϕ ∈ G and ωΘ[ϕn − ϕm]→ 0.

Note that ϕn ∈ domΘ means {ϕn, ϕ
′
n} ∈ Θ for some ϕ′

n ∈ G and there exists
{fn, f ′

n} ∈ HΘ such that Γ{fn, f ′
n} = {ϕn, ϕ

′
n}. Hence, Λfn = Γ0{fn, f ′

n} = ϕn,
where fn ∈ domHΘ ⊂ dom tHΘ ⊂ dom tS1 . Using (5.6.48), one can write fn in the
form

fn = hn + kn, hn ∈ dom tS1
�tS1

−a dom tSF
, kn ∈ dom tSF

.

From kerΛ = dom tSF it is clear that ϕn = Λfn = Λhn. Since the restriction of
Λ to dom tS1 �tS1

−a dom tSF has a bounded inverse it follows from ϕn → ϕ in G

that hn → h in HtS1
−a. In particular, hn → h in H and tS1

[hn− hm]→ 0. Then it
follows from (5.6.47) that

tHΘ [hn − hm] = tS1 [hn − hm] + ωΘ[Λhn − Λhm]

= tS1
[hn − hm] + ωΘ[ϕn − ϕm]→ 0,

and as tHΘ
is closed, one concludes that h ∈ dom tHΘ

. �

One may apply the second representation theorem (Theorem 5.1.23) to the
closed form ωΘ in Theorem 5.6.13. Assume that μ ≤ m(Θ), then it follows that

ωΘ[Λf,Λg] =
(
(Θop − μ)

1
2Λf, (Θop − μ)

1
2Λg
)
+ μ (Λf,Λg) ,

domωΘ = dom (Θop − μ)
1
2 .

Hence, one obtains the following result; cf. Corollary 5.5.15.

Corollary 5.6.14. Let the assumptions be as in Theorem 5.6.13 and let μ ≤ m(Θ).
Then the closed semibounded form tHΘ corresponding to HΘ is given by

tHΘ [f, g] = tS1 [f, g] +
(
(Θop − μ)

1
2Λf, (Θop − μ)

1
2Λg
)
+ μ (Λf,Λg) ,

dom tHΘ =
{
f ∈ dom tS1 : Λf ∈ dom (Θop − μ)

1
2

}
.

Furthermore, if Θop ∈ B(Gop), then

tHΘ [f, g] = tS1 [f, g] +
(
ΘopΛf,Λg

)
,

dom tHΘ =
{
f ∈ dom tS1 : Λf ∈ domΘop

}
,

(5.6.49)

and in the special case Θ ∈ B(G)

tHΘ [f, g] = tS1 [f, g] +
(
ΘΛf,Λg

)
, dom tHΘ = dom tS1 .
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Example 5.6.15. Let S be a closed semibounded relation in H with lower bound
γ, fix x < γ, and consider the boundary triplet {Nx(S

∗),Γ0,Γ1} for S∗ in Corol-
lary 5.5.12 and the corresponding compatible boundary pair {Nx(S

∗),Λ} in Ex-
ample 5.6.9. Assume that HΘ is a semibounded self-adjoint extension of S corre-
sponding to the self-adjoint relation Θ in Nx(S

∗) as in (5.5.32)–(5.5.33). Then Θ
is semibounded in Nx(S

∗) and the corresponding closed semibounded form ωΘ in
Nx(S

∗) and the closed semibounded form tHΘ
corresponding to HΘ are related by

tHΘ
[f, g] = tSK,x

[f, g] + ωΘ[fx, gx],

dom tHΘ =
{
f = fF + fx ∈ dom tSF +Nx(S

∗) : fx ∈ domωΘ

}
.

Let HΘ be a semibounded self-adjoint extension of S corresponding to the
self-adjoint relation Θ in G as in (5.5.32)–(5.5.33). The first boundary condition

in (5.5.33) is the essential boundary condition given by Γ0f̂ ∈ domΘop . Since HΘ

is now assumed to be semibounded, it follows from f ∈ domS∗ ⊂ domΛ that this
condition can be written as

Λf = Γ0f̂ ∈ domΘop ⊂ dom (Θop − μ)
1
2 , μ ≤ m(Θ),

which implies that f ∈ dom tHΘ
. The second boundary condition in (5.5.33) is

the natural boundary condition given by Pop Γ1f̂ = Θop Γ0f̂ . It is subsumed in the
additive term in the structure of the form tHΘ

:(
(Θop − μ)

1
2Λf, (Θop − μ)

1
2Λg
)
+ μ (Λf,Λg) ;

cf. Corollary 5.5.15, which in case of a bounded operator part Θop simplifies to(
ΘopΛf,Λg

)
;

cf. (5.6.49). In particular, the elements in domHΘ satisfy an essential boundary
condition if and only if domΘ 	= G, that is, Θ 	∈ B(G). Note that the extreme case

domΘ = {0} corresponds to Λf = 0 and Γ0f̂ = 0, i.e., f ∈ dom tSF and f̂ ∈ SF.

Remark 5.6.16. In Theorem 5.6.11 a one-to-one correspondence between the closed
nonnegative forms ω in G and the semibounded self-adjoint extensions H of S in
H satisfying S1 ≤ H ≤ SF is established. For closed semibounded forms ω in G the
situation is different: Although Theorem 5.6.13 shows that for each semibounded
self-adjoint extensionH = HΘ of S there exists a closed semibounded form ω = ωΘ

in G such that
tH [f, g] = tS1 [f, g] + ω[Λf,Λg], (5.6.50)

one can also see that for an arbitrary closed semibounded form ω in G the right-
hand side in (5.6.50) is not necessarily bounded from below. However, if, e.g., ω is
a symmetric form with domω = G such that for some a ≥ 0 and b ∈ [0, 1)

|ω[Λf ]| ≤ a‖f‖2 + btS1 [f ], f ∈ dom tS1 ,
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then Theorem 5.1.16 shows that tH in (5.6.50) is a closed semibounded form with
dom tH = dom tS1

in H. In particular, in this situation the corresponding self-
adjoint extension H of S is semibounded.

Recall from Proposition 5.5.8 that in the case of finite defect numbers or in
the case that SF has a compact resolvent the implication

Θ semibounded in G ⇒ HΘ semibounded in H

holds. The following corollary supplements Theorem 5.6.13 and can be seen as an
extension and completion of the second part of Theorem 5.6.11. When the defect
numbers are not finite or the resolvent of SF is not compact there is in general no
analog of the second part of Theorem 5.6.11.

Corollary 5.6.17. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and SF are transversal. Let
{G,Γ0,Γ1} be a boundary triplet for S∗, let {G,Λ} be a compatible boundary pair for
S corresponding to S1 and assume, in addition, that one of the following conditions
hold:

(i) the defect numbers of S are finite;

(ii) (SF − λ)−1 is a compact operator for some λ ∈ ρ(SF).

Let Θ be a semibounded self-adjoint relation in G and let HΘ be the corresponding
self-adjoint extension of S as in (5.5.32)–(5.5.33). Then HΘ is semibounded and
the closed semibounded forms tHΘ

and ωΘ are related by (5.6.40).

The following corollary complements Corollary 5.6.12 (iii). If the symmetric
relation S is positive a natural choice for S1 is the Krĕın–von Neumann extension
SK,0. A possible explicit choice for the boundary triplet can be found in Exam-
ple 5.5.13.

Corollary 5.6.18. Let S be a closed semibounded relation in H with lower bound
γ > 0, let {G,Γ0,Γ1} be a boundary triplet for S∗, and let {G,Λ} be a compatible
boundary pair for S corresponding to the Krĕın–von Neumann extension SK,0.
Then the formula

tHΘ
[f, g] = tSK,0

[f, g] +
(
Θ

1
2
opΛf,Θ

1
2
opΛg

)
,

dom tHΘ
=
{
f ∈ dom tSK,0

: Λf ∈ domΘ
1
2
op

}
,

(5.6.51)

establishes a one-to-one correspondence between all closed nonnegative forms tHΘ

corresponding to nonnegative self-adjoint extensions HΘ of S in H and all closed
nonnegative forms ωΘ corresponding to nonnegative self-adjoint relations Θ in G.

Proof. By assumption, one has SK,0 = ker Γ1 and hence the Weyl function M
corresponding to {G,Γ0,Γ1} satisfies M(0) = 0 by Corollary 5.5.2 (viii). Assume
that HΘ is a nonnegative self-adjoint extension of S with corresponding closed
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nonnegative form tHΘ . Since γ > 0, Proposition 5.5.6 with x = 0 shows that the
self-adjoint relation Θ in G is nonnegative. Formula (5.6.51) follows from Theo-
rem 5.6.13 and Corollary 5.6.14 with μ = 0. Conversely, if Θ is a nonnegative
self-adjoint relation in G, then Theorem 5.6.11 (ii) shows that HΘ is a nonnegative
self-adjoint extension of S and (5.6.51) holds. �

In the next corollary the ordering of semibounded self-adjoint extensions is
translated in the ordering of the corresponding parameters.

Corollary 5.6.19. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1}
be a boundary triplet for S∗. Assume that

ker Γ0 = SF and ker Γ1 = S1,

where SF is the Friedrichs extension and S1 is a semibounded self-adjoint extension
of S. Let HΘ1 and HΘ2 be semibounded self-adjoint extensions of S corresponding
to the semibounded self-adjoint relations Θ1 and Θ2. Then

HΘ1 ≤ HΘ2 ⇔ Θ1 ≤ Θ2. (5.6.52)

In particular, S1 ≤ HΘ2 ⇔ 0 ≤ Θ2.

Proof. Let {G,Λ} be a compatible boundary pair for S corresponding to S1 as in
Theorem 5.6.6. Then according to Theorem 5.6.13 one has the following identities

tHΘ1
[f, g] = tS1 [f, g] + ωΘ1 [Λf,Λg],

dom tHΘ1
=
{
f ∈ dom tS1

: Λf ∈ domωΘ1

}
,

(5.6.53)

and

tHΘ2
[f, g] = tS1 [f, g] + ωΘ2 [Λf,Λg],

dom tHΘ2
=
{
f ∈ dom tS1 : Λf ∈ domωΘ2

}
.

(5.6.54)

Recall from Theorem 5.2.4 that HΘ1
≤ HΘ2

if and only if tHΘ1
≤ tHΘ2

. This last
statement means by definition that

dom tHΘ2
⊂ dom tHΘ1

and tHΘ1
[f ] ≤ tHΘ2

[f ], f ∈ dom tHΘ2
, (5.6.55)

which, via (5.6.53) and (5.6.54), is equivalent to

dom tHΘ2
⊂ dom tHΘ1

and ωΘ1 [Λf ] ≤ ωΘ2 [Λf ], f ∈ dom tHΘ2
. (5.6.56)

Assume now that HΘ1 ≤ HΘ2 , i.e., that (5.6.56) (and (5.6.55)) holds. First
it will be shown that dom tHΘ2

⊂ dom tHΘ1
implies that

domΘ2 ⊂ domωΘ1 . (5.6.57)
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To see this, let ϕ ∈ domΘ2. Then {ϕ,ϕ′} ∈ Θ2 for some ϕ′ ∈ G. Now choose
{f, f ′} ∈ HΘ2

⊂ S∗ with the property Γ{f, f ′} = {ϕ,ϕ′}. Then it follows that
Λf = Γ0{f, f ′} = ϕ. Furthermore, since f ∈ domS∗ ⊂ dom tS1

and

ϕ = Λf ∈ domΘ2 ⊂ domωΘ2 ,

it follows from dom tHΘ2
⊂ dom tHΘ1

that ϕ = Λf ∈ domωΘ1 . Hence, (5.6.57)
has been shown. Next observe that due to the previous reasoning the inequality
in (5.6.56) gives

ωΘ1 [ϕ] ≤ ωΘ2 [ϕ], ϕ ∈ domΘ2. (5.6.58)

Denote the restriction of the form ωΘ2 to domΘ2 by ω̊Θ2 . Then the inclusion
(5.6.57) and the inequality (5.6.58) can be written as

ωΘ1
≤ ω̊Θ2

, (5.6.59)

and, since domΘ2 is a core of ωΘ2
, it follows from (5.6.59) and Lemma 5.2.2 (v)

that
ωΘ1 ≤ ωΘ2 or, equivalently, Θ1 ≤ Θ2.

Hence, HΘ1 ≤ HΘ2 implies that Θ1 ≤ Θ2.

For the converse statement assume Θ1 ≤ Θ2 or, equivalently, ωΘ1 ≤ ωΘ2 ,
i.e.,

domωΘ2
⊂ domωΘ1

and ωΘ1
[ϕ] ≤ ωΘ2

[ϕ], ϕ ∈ domωΘ2
. (5.6.60)

It will be shown that (5.6.56) holds. Let f ∈ dom tHΘ2
, so that f ∈ dom tS1

and
Λf ∈ domωΘ2 . Then it follows from (5.6.60) that also Λf ∈ domωΘ1 . Hence,
one sees that dom tHΘ2

⊂ dom tHΘ1
. Furthermore, if f ∈ dom tHΘ2

, then it fol-
lows directly from (5.6.60) that ωΘ1 [Λf ] ≤ ωΘ2 [Λf ]. Thus, (5.6.56) holds and one
concludes that H1 ≤ H2.

Finally, note that for the choice Θ1 = 0 one has HΘ1 = ker Γ1 = S1 and
hence the equivalence (5.6.52) takes the form S1 ≤ HΘ2 ⇔ 0 ≤ Θ2. �

If S is a semibounded relation in H with lower bound γ and one chooses HΘ1

to be the Krĕın type extension SK,x for some x ≤ γ in the previous corollary, then
the next statement follows from (5.5.1).

Corollary 5.6.20. Let the assumptions be as in Corollary 5.6.19 and let HΘ be a
semibounded self-adjoint extension of S corresponding to the self-adjoint relation
Θ in G as in (5.5.32)–(5.5.33). Then for any x ≤ m(S)

SK,x ≤ HΘ ⇔ M(x) ≤ Θ.
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Chapter 6

Sturm–Liouville Operators

Second-order Sturm–Liouville differential expressions generate self-adjoint differ-
ential operators in weighted L2-spaces on an interval (a, b). A brief exposition of
elementary properties of Sturm–Liouville expressions can be found in Section 6.1;
this includes the limit-circle and limit-point terminology. The corresponding max-
imal and minimal operators associated with the Sturm–Liouville expression are
introduced in Section 6.2; here one can find also a discussion of quasi-derivatives
which are useful in limit-circle cases. In this chapter the boundary triplets and
Weyl functions which can be associated with Sturm–Liouville operators will be
studied. The case where the endpoints of (a, b) are regular or limit-circle is treated
in Section 6.3, while the case where a is regular or limit-circle and b is limit-point
is treated in Section 6.4. In each of these sections the spectrum is related to the
limit properties of the Weyl function, as in Chapter 3. The case where both end-
points are limit-point can be found in Section 6.5. Here the useful technique of
interface conditions is explained by means of the coupling concept in Section 4.6.
Closely related is the case of exit space extensions resulting in boundary con-
ditions depending on the eigenvalue parameter; such extensions are treated in
Section 6.6. The characterization of the spectrum via subordinate solutions can
be found in Section 6.7, where again the results in Chapter 3 play a central role.
The rest of this chapter is devoted to boundary triplets and Weyl functions for
Sturm–Liouville operators which are semibounded. Particular attention is paid to
the corresponding semibounded forms and boundary pairs; cf. Section 5.6. The
special case of regular endpoints is given in Section 6.8. In the singular case it
is possible to construct semibounded closed forms by means of solutions which
are nonoscillatory near the endpoints. This construction, which is suggested by a
particular form of the Green formula, can be found in Section 6.9. Section 6.10
contains an overview of the necessary properties of the so-called nonprincipal and
principal solutions which make these forms useful. The case where both endpoints
a and b are limit-circle is treated in Section 6.11, while the case where a is limit-
circle and b is limit-point is treated in Section 6.12. In each section the connection
between the boundary triplet and the form is studied in detail as in Section 5.6.
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Finally, in Section 6.13 the particular case L = −D2 + q, where q is a real in-
tegrable potential on a half-line is treated. Here again the spectral theory from
Chapter 3 will be employed.

6.1 Sturm–Liouville differential expressions

This section offers a brief review of the properties of the Sturm–Liouville differen-
tial expression L defined by

L =
1

r
[−DpD + q] , D = d/dx, (6.1.1)

where p, q, and r are assumed to be real functions on an open interval (a, b) with
−∞ ≤ a < b ≤ ∞. Throughout the text the following minimal conditions will be
imposed: {

p(x) 	= 0, r(x) > 0, for almost all x ∈ (a, b),

1/p, q, r ∈ L1
loc (a, b).

(6.1.2)

Here L1
loc (a, b) stands for the linear space of all (equivalence classes of) complex

functions which are integrable on each compact subset K ⊂ (a, b).

For the reader’s convenience some more notations which are used in the
following are collected. The space of complex integrable functions on (a, b) will
be denoted by L1(a, b). One denotes by L2

r,loc (a, b) the set of all functions f for

which |f |2r ∈ L1
loc(a, b), while L2

r(a, b) stands for the set of all functions f for
which |f |2r ∈ L1(a, b). The space L2

r(a, b) is a Hilbert space when equipped with
the usual inner product

(f, g)L2
r(a,b)

:=

∫ b

a

f(x)g(x)r(x) dx.

For f ∈ L2
r,loc (a, b) the generic notations

f ∈ L2
r(a, a

′) or f ∈ L2
r(b

′, b)

indicate that |f |2r is integrable on an interval (a, a′) for some, and hence for all
a < a′ < b or on an interval (b′, b) for some, and hence for all a < b′ < b,
respectively. A complex function f is absolutely continuous on (a, b) if there exists
g ∈ L1

loc (a, b) such that

f(x)− f(y) =

∫ x

y

g(t) dt (6.1.3)

for all x, y ∈ (a, b). One denotes by AC(a, b) the linear space of absolutely contin-
uous functions on (a, b). Note that if f ∈ AC(a, b), then f is differentiable almost
everywhere on (a, b) and f ′ = g almost everywhere, where g is as in (6.1.3).
When a ∈ R, then AC[a, b) stands for the subclass of f ∈ AC(a, b) for which
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g ∈ L1
loc (a, b) in (6.1.3) additionally belongs to L1(a, a′) for some, and hence for

all a < a′ < b, in which case

f(x)− f(a) =

∫ x

a

g(t) dt

for all x ∈ (a, b) and thus f(a) = limx→a f(x). When b ∈ R there is a similar
notation AC(a, b] and for f ∈ AC(a, b] one has f(b) = limx→b f(x). The notation
AC[a, b] is analogous. If for some a < c < b there are functions fl ∈ AC(a, c] and
fr ∈ AC[c, b) with the property fl(c) = fr(c), then the function f : (a, b) → C
defined by

f(x) =

{
fl(x), a < x ≤ c,

fr(x), c < x < b,

belongs to the space AC(a, b), as follows easily from the above observations.

In order to apply the differential expression L in (6.1.1) to a complex func-
tion f on (a, b) in a meaningful way one must first assume that f ∈ AC(a, b), so
that as a consequence f is differentiable almost everywhere. However, then the
function pf ′ is only defined almost everywhere. The natural domain of the differ-
ential expression L in (6.1.1) is the linear space of all f ∈ AC(a, b) for which the
equivalence class [pf ′] (in the sense of Lebesgue measure) contains an absolutely
continuous function, which again will be denoted by pf ′. For such functions f one
defines Lf by

(Lf)(x) =
1

r(x)

[−(pf ′)′(x) + q(x)f(x)
]
, x ∈ (a, b),

so that (Lf)(x) is well defined almost everywhere. This convention will be used
tacitly: for f ∈ AC(a, b) the assertion pf ′ ∈ AC(a, b) means that the equivalence
class [pf ′] contains an absolutely continuous function, which is denoted by pf ′.
Sufficient conditions for the equivalence class [pf ′] to have a representative in
AC(a, b) can be found in Theorem 6.1.2.

The following simple observation will be used frequently: for all functions
f ∈ AC(a, b) with pf ′ ∈ AC(a, b) one has

Lf = Lf (6.1.4)

since the coefficient functions of L are assumed to be real.

Often the coefficient functions are integrable in a neighborhood of an end-
point. Hence, the following definition is presented.

Definition 6.1.1. Let the coefficient functions p, q, and r of the differential ex-
pression L in (6.1.1) satisfy the conditions (6.1.2). Then L is said to be regular
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(i) at the endpoint a if one has a ∈ R and 1/p, q, r ∈ L1(a, a′) for one, and hence
for all a′ ∈ (a, b).

(ii) at the endpoint b if one has b ∈ R and 1/p, q, r ∈ L1(b′, b) for one, and hence
for all b′ ∈ (a, b).

The endpoint a or b is said to be regular if L is regular there and singular if a or
b is not a regular endpoint, respectively.

Under the conditions in (6.1.2) there is an existence and uniqueness result
for initial value problems involving the inhomogeneous equation (L − λ)f = g
when the initial values are posed at an interior point of (a, b). The initial value
problem may also be posed at a finite endpoint when the differential expression
L is regular there. The uniqueness and existence result can be proved by writing
the Sturm–Liouville equation as a first-order system of differential equations:(

f
pf ′

)′
=

(
0 1/p

q − λr 0

)(
f
pf ′

)
−
(
0
rg

)
.

The new initial value problem is equivalent to a Volterra integral equation which
can be solved in the usual way by successive approximations when all data are
locally integrable; see, e.g., [754, Theorem 2.1]. Note also that the assumption
g ∈ L2

r,loc (a, b) in the next theorem implies that rg ∈ L1
loc (a, b); this follows by

means of the Cauchy–Schwarz inequality from the condition r ∈ L1
loc (a, b).

Theorem 6.1.2. Let g ∈ L2
r,loc (a, b) and c1, c2 ∈ C. Then for all λ ∈ C and

x0 ∈ (a, b) the initial value problem

(L− λ)f = g, f(x0) = c1, (pf ′)(x0) = c2, (6.1.5)

has a unique solution f ∈ AC(a, b) for which pf ′ ∈ AC(a, b). Moreover, if a or
b is regular, then x0 = a or x0 = b is allowed and f, pf ′ belong to AC[a, b) or
AC(a, b], respectively. In addition, the functions

λ �→ f(x0, λ) and λ �→ (pf ′)(x0, λ)

are entire for each x0 ∈ (a, b) and for x0 = a or x0 = b if the endpoint a or b is
regular, respectively.

Let f, g be complex functions in AC(a, b). Then the Wronskian determinant
W (f, g) is defined by

W (f, g) = p(fg′ − f ′g) = f(pg′)− (pf ′)g. (6.1.6)

The value at x ∈ (a, b) of W (f, g) will be denoted by Wx(f, g). For complex
functions f, g, h, k in AC(a, b) one has the so-called Plücker identity

W (f, g)W (h, k) = W (f, h)W (g, k)−W (f, k)W (g, h). (6.1.7)
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This identity can be easily verified by writing out the various terms accord-
ing to (6.1.6). The Wronskian determinant and the Plücker identity will be ap-
plied in conjunction with the differential expression L. Assume, in addition, that
pf ′, pg′ ∈ AC(a, b) (in the sense that their equivalence classes contain an element
in AC(a, b)). Then differentiation of the Wronskian gives an identity involving the
differential expression L:

(W (f, g))′ = r [(Lf) g − f (Lg)]. (6.1.8)

When g in (6.1.8) is a solution of (L − μ)y = 0 for some μ ∈ C one obtains the
useful formula

(W (f, g))′ = r ((L− μ)f) g. (6.1.9)

Furthermore, if for some λ ∈ C the function f is a solution of (L− λ)y = 0, then
(6.1.9) gives

(W (f, g))′ = r (λ− μ)f g. (6.1.10)

In particular, one sees that the Wronskian x �→Wx(f, g) is constant for solutions
f, g of (L− λ)y = 0. Moreover, if the functions f, g are solutions of (L− λ)y = 0,
then it is straightforward to verify that these functions are linearly independent if
and only if W (f, g) 	= 0.

Integration by parts in (6.1.8) over a compact subinterval [α, β] ⊂ (a, b) leads
to the Green or Lagrange identity:∫ β

α

[
(Lf)(x) g(x)− f(x) (Lg)(x)

]
r(x) dx = Wx(f, g)|βα, (6.1.11)

assuming that f, pf ′, g, pg′ ∈ AC(a, b) and Lf, Lg ∈ L2
r(α, β). In particular, when

f = g are solutions of (L− λ)y = 0 for some λ ∈ C this gives

(λ− λ)

∫ β

α

|f(x)|2 r(x) dx = Wx(f, f)|βα, (6.1.12)

see also (6.1.10).

The interest in the present chapter is in solutions of (L− λ)y = 0 which are
square-integrable with respect to the weight r near the endpoint a or the endpoint
b. Thus, if f is a solution of (L − λ)y = 0 on (a, b) for some λ ∈ C, then for
λ ∈ C \ R the identity (6.1.12) implies that

f ∈ L2
r(a, a

′) ⇔ lim
x→a

Wx(f, f) exists,

f ∈ L2
r(b

′, b) ⇔ lim
x→b

Wx(f, f) exists.

Clearly, if these statements hold for some a < a′ < b or a < b′ < b, then they hold
for all a < a′ < b or a < b′ < b, respectively.
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It follows that under the circumstances of Theorem 6.1.2 for any λ ∈ C the
homogeneous equation has a fundamental system of solutions, i.e., for any λ ∈ C
there are two solutions u1(·, λ) and u2(·, λ) of (L − λ)y = 0 which are linearly
independent. This can be seen by imposing the conditions(

u1(x0, λ) u2(x0, λ)
(pu′

1)(x0, λ) (pu′
2)(x0, λ)

)
=

(
1 0
0 1

)
for a fixed x0 ∈ (a, b); when L is regular at the endpoint a or b, then x0 = a or
x0 = b, respectively, is also allowed. Note that then the Wronskian determinant
satisfies Wx(u1(·, λ), u2(·, λ)) = 1 for all x ∈ (a, b). Hence, for g ∈ L2

r,loc (a, b) it is
clear that the function

h(x) = u1(x, λ)

∫ x

x0

u2(t, λ)g(t)r(t) dt− u2(x, λ)

∫ x

x0

u1(t, λ)g(t)r(t) dt

belongs to AC(a, b), while (ph′)(x) is equal almost everywhere to

(pu′
1)(x, λ)

∫ x

x0

u2(t, λ)g(t)r(t) dt− (pu′
2)(x, λ)

∫ x

x0

u1(t, λ)g(t)r(t) dt,

and the last expression belongs to AC(a, b). Hence, h provides a solution of the
inhomogeneous equation (L−λ)h = g with h(x0) = 0 and (ph′)(x0) = 0. Moreover,
by adding c1u1(·, λ)+c2u2(·, λ), c1, c2 ∈ C, to the solution h one obtains a function

f = h+ c1u1(·, λ) + c2u2(·, λ) (6.1.13)

which is a solution of the initial value problem (6.1.5). The formula (6.1.13) is
sometimes referred to as the variation of constants formula.

The following result is about smoothly cutting off the solution of an inhomo-
geneous Sturm–Liouville equation near an endpoint of the interval (a, b), so that
it becomes trivial in a neighborhood of that endpoint.

Proposition 6.1.3. Let g ∈ L2
r,loc (a, b), λ ∈ C, and let f be a solution of the

inhomogeneous equation
(L− λ)f = g,

with f, pf ′ ∈ AC(a, b). Let [α, β] ⊂ (a, b) be a compact subinterval. Then there
exist functions fa and ga with

fa, pf
′
a ∈ AC(a, b) and ga ∈ L2

r,loc (a, b),

such that
(L− λ)fa = ga,

and, in addition,

fa(t) =

{
f(t), t ∈ (a, α],

0, t ∈ [β, b),
ga(t) =

{
g(t), t ∈ (a, α],

0, t ∈ [β, b).
(6.1.14)
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Likewise, there exist functions fb and gb with

fb, pf
′
b ∈ AC(a, b) and gb ∈ L2

r,loc (a, b),

such that
(L− λ)fb = gb,

and, in addition,

fb(t) =

{
0, t ∈ (a, α],

f(t), t ∈ [β, b),
gb(t) =

{
0, t ∈ (a, α],

g(t), t ∈ [β, b).
(6.1.15)

Proof. The cut-off process at the endpoint a as exhibited in (6.1.15) will be shown;
the other case of cutting off at the endpoint b as in (6.1.14) is treated in a similar
way. Define the functions fb and gb as indicated on the interval (a, α) and on the
interval (β, b). On the interval [α, β] choose any function h ∈ L2

r(α, β) and define
the function fb on (α, β) by

fb(x) = u1(x, λ)

∫ x

α

u2(t, λ)h(t)r(t) dt− u2(x, λ)

∫ x

α

u1(t, λ)h(t)r(t) dt,

where u1(·, λ) and u2(·, λ) form a fundamental system of (L − λ)y = 0, fixed by
standard initial conditions at α:(

u1(α, λ) u2(α, λ)
(pu′

1)(α, λ) (pu′
2)(α, λ)

)
=

(
1 0
0 1

)
;

cf. Theorem 6.1.2. Then it is clear that on the interval [α, β] the function fb satisfies
(L− λ)fb = h and fb(α) = 0, (pf ′

b)(α) = 0. Furthermore, one sees that(
fb(β)

(pf ′
b)(β)

)
=

(
u1(β, λ) u2(β, λ)

(pu′
1)(β, λ) (pu′

2)(β, λ)

)( ∫ β

α
u2(t, λ)h(t)r(t) dt

− ∫ β

α
u1(t, λ)h(t)r(t) dt

)
.

Now one may choose the function h ∈ L2
r(α, β) in such a way that(

fb(β)
(pf ′

b)(β)

)
=

(
f(β)

(pf ′)(β)

)
.

To see this, note that the mapping from L2
r(α, β) to C2 defined by

h �→
( ∫ β

α
u2(t, λ)h(t)r(t) dt

− ∫ β

α
u1(t, λ)h(t)r(t) dt

)

is surjective: any element in C2 which is orthogonal to its range is trivial.

Observe that with such a choice of h the above components of fb belong to
AC(a, α], AC[α, β], and AC[β, b), respectively, and that there are no jumps. There
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is a similar statement for pf ′
b and hence one concludes that fb, pf

′
b ∈ AC(a, b).

Since h ∈ L2
r(α, β), one sees that the choice

gb(t) = h(t), t ∈ [α, β],

implies gb ∈ L2
r,loc(a, b) and (L− λ)fb = gb. �

The following lemma is useful in the proof of Theorem 6.1.5.

Lemma 6.1.4. Assume that r ∈ L1
loc (b

′, b) is nonnegative almost everywhere and
let ϕ ∈ L2

r(b
′, b) be a nonnegative function. If u ∈ L2

r,loc [b
′, b) and there exist

nonnegative constants A and B such that

|u(x)|2 ≤ ϕ(x)2
(
A+B

∫ x

b′
|u(s)|2r(s) ds

)
, b′ ≤ x < b, (6.1.16)

then u ∈ L2
r(b

′, b).

Proof. For B = 0 the statement is clear. In the following it will be assumed that
B > 0. Since ϕ ∈ L2

r(b
′, b), one can choose b′ < c < b such that

2B

(∫ b

c

ϕ(x)2r(x) dx

)
< 1.

Let y ∈ R be an arbitrary number with b′ < c < y < b. Then it is clear from the
assumption (6.1.16) that

|u(x)|2 ≤ Aϕ(x)2 +Bϕ(x)2
∫ y

b′
|u(s)|2r(s) ds, c ≤ x ≤ y.

Multiply this inequality by 2r(x) and integrate over the interval [c, y]; then

2

∫ y

c

|u(x)|2r(x) dx ≤ 2A

∫ y

c

ϕ(x)2r(x) dx

+ 2B

(∫ y

c

ϕ(x)2r(x) dx

)(∫ y

b′
|u(s)|2r(s) ds

)
<

A

B
+

∫ y

b′
|u(s)|2r(s) ds.

It follows that for any c < y < b∫ y

c

|u(x)|2r(x) dx ≤ A

B
+

∫ c

b′
|u(s)|2r(s) ds.

The monotone convergence theorem implies that u ∈ L2
r(c, b), and hence one

concludes u ∈ L2
r(b

′, b). �
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The next two theorems present fundamental results proved in a purely ana-
lytical way.

Theorem 6.1.5. Assume that all solutions of (L − λ0)y = 0, λ0 ∈ R, belong to
L2
r(a, a

′) or to L2
r(b

′, b) for some λ0 ∈ C, respectively. Then for any λ ∈ C all
solutions of (L− λ)y = 0 belong to L2

r(a, a
′) or to L2

r(b
′, b), respectively.

Proof. It suffices to give the proof for the endpoint b. In the following, fix λ0 ∈ C
and let u1 := u1(·, λ0) and u2 := u2(·, λ0) be two linearly independent solutions of
(L− λ0)y = 0 such that

u1 ∈ L2
r(b

′, b) and u2 ∈ L2
r(b

′, b) (6.1.17)

for some a < b′ < b. Let λ ∈ C and let u := u(·, λ) be an arbitrary solution of
(L− λ)y = 0. It will be shown that u ∈ L2

r(b
′, b), which proves the theorem.

Assume without loss of generality that(
u1(b

′, λ0) u2(b
′, λ0)

(pu′
1)(b

′, λ0) (pu′
2)(b

′, λ0)

)
=

(
1 0
0 1

)
.

Observe that (L−λ0)u = (λ−λ0)u, so that by the variation of constants formula
there exist α1, α2 ∈ C such that

u(x) = α1u1(x) + α2u2(x)

+ (λ− λ0)

[
u1(x)

∫ x

b′
u2(s)u(s)r(s) ds− u2(x)

∫ x

b′
u1(s)u(s)r(s) ds

]
for all x ∈ (a, b). Define

α = max {|α1|, |α2|}, ϕ(x) = max {|u1(x)|, |u2(x)|}, x ∈ (a, b),

and note that ϕ ∈ L2
r(b

′, b) by (6.1.17). It follows from the above representation
of u that

|u(x)| ≤ 2

[
αϕ(x) + |λ− λ0|ϕ(x)

∫ x

b′
ϕ(s)|u(s)|r(s) ds

]
,

which leads to

|u(x)|2 ≤ 8α2ϕ(x)2 + 8|λ− λ0|2ϕ(x)2
(∫ x

b′
ϕ(s)|u(s)|r(s) ds

)2

.

An application of the Cauchy–Schwarz inequality gives

|u(x)|2 ≤ 8α2ϕ(x)2 +Bϕ(x)2
∫ x

b′
|u(s)|2r(s) ds,

where

B = 8|λ− λ0|2
∫ b

b′
ϕ(s)2r(s) ds.

Since ϕ ∈ L2
r(b

′, b) one can apply Lemma 6.1.4 with A = 8α2 and B as above.
This leads to u ∈ L2

r(b
′, b), as claimed. �
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Limit-circle case and limit-point case. The following discussion is devoted to the
construction of solutions of (L − λ)y = 0 that belong to L2

r(a, a
′) or L2

r(b
′, b).

Here the case for L2
r(b

′, b) will be considered; the treatment for the case L2
r(a, a

′)
is entirely similar. For λ ∈ C \ R let u := u(·, λ) and v := v(·, λ) be solutions of
(L− λ)y = 0, and denote

{u, v}x =
Wx(u, v)

λ− λ
.

It is clear that u �→ {u, v}x is linear and v �→ {u, v}x is anti-linear; in addition,
{u, v}x = {v, u}x. Fix a < c < b, then for any solution u of (L− λ)y = 0 one has∫ x

c

|u(t)|2 r(t) dt = {u, u}x − {u, u}c; (6.1.18)

cf. (6.1.12). Hence, the function x �→ {u, u}x is nondecreasing on (c, b). In the
following let u1 := u1(·, λ) and u2 := u2(·, λ) be two linearly independent solutions
of (L− λ)y = 0 fixed by(

u1(c, λ) u2(c, λ)
(pu′

1)(c, λ) (pu′
2)(c, λ)

)
=

(
1 0
0 1

)
, (6.1.19)

so that W (u1, u2) = 1. Then it is clear that {u1, u1}c = 0, {u2, u2}c = 0, and that
for x > c:

{u1, u1}x =

∫ x

c

|u1(t)|2 r(t) dt > 0,

{u2, u2}x =

∫ x

c

|u2(t)|2 r(t) dt > 0;

(6.1.20)

cf. (6.1.18). For each ζ ∈ C define a solution u = u(·, λ) of (L− λ)y = 0 in terms
of the fundamental system u1, u2 by u = ζu1 + u2. Then for c < x < b one has

{u, u}x = ζζ{u1, u1}x + ζ{u1, u2}x + ζ{u2, u1}x + {u2, u2}x

and it easily follows from this identity that

{u, u}x
{u1, u1}x =

(
|ζ − ζx|2 − {u1, u2}x{u2, u1}x − {u1, u1}x{u2, u2}x

{u1, u1}x{u1, u1}x

)
,

where ζx ∈ C is defined by

ζx = −{u2, u1}x
{u1, u1}x . (6.1.21)

It is a direct consequence of the definition, (λ− λ)2 = −4|Imλ|2, and the Plücker
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identity (6.1.7) with f = u1, g = u2, h = u1, and k = u2, that

{u1, u2}x{u2, u1}x − {u1, u1}x{u2, u2}x
{u1, u1}x{u1, u1}x

=
W (u1, u1)W (u2, u2)−W (u1, u2)W (u2, u1)

4|Imλ|2({u1, u1}x)2

=
W (u1, u2)W (u1, u2)

4|Imλ|2({u1, u1}x)2
= r2x,

where rx > 0 is defined for c < x < b by

rx =
1

2|Imλ|{u1, u1}x . (6.1.22)

Consequently, for all c < x < b the solution u = ζu1 + u2 of (L− λ)y = 0 satisfies
the identity

{u, u}x = {u1, u1}x
(|ζ − ζx|2 − r2x

)
, (6.1.23)

where ζx ∈ C and rx > 0 are given by (6.1.21) and (6.1.22), respectively. Since
{u1, u1}x > 0 for all x > c by (6.1.20), it follows from (6.1.23) that the equation
{u, u}x = 0 gives the circle with center ζx and radius rx; and for ζ = ζx one has
{u, u}x = −{u1, u1}x r2x < 0. Hence, by (6.1.23), one sees for u = ζu1 + u2 and
c < x < b that

{u, u}x ≤ 0 ⇔ |ζ − ζx| ≤ rx. (6.1.24)

For each c < x < b the closed disk with center ζx and radius rx will be
denoted by D(ζx, rx). Now let c < x1 < x2 < b and assume that ζ ∈ D(ζx2 , rx2).
Then it follows from (6.1.24) that {u, u}x2 ≤ 0 where u = ζu1 + u2. Recall that
(6.1.18) with u = ζu1 + u2 implies that

{u, u}x1
≤ {u, u}x2

≤ 0.

By (6.1.24) this means that ζ ∈ D(ζx1
, rx1

). In other words,

c < x1 < x2 < b ⇒ D(ζx2
, rx2

) ⊂ D(ζx1
, rx1

). (6.1.25)

Therefore, the disks D(ζx, rx) tend to a limit disk as x → b or shrink to exactly
one point. These are the limit-circle case and the limit-point case, respectively.
In the limit-circle case rb = limx→b rx > 0 is the radius of the limit circle and
its center is given by ζb = limx→b ζx. In the limit-point case rb = limx→b rx = 0
and ζb = limx→b ζx show that the limit circle degenerates into one point: the limit
point.

The main fact which goes together with Theorem 6.1.5 is that at each end-
point and for all λ ∈ C \ R there is at least one nontrivial solution in L2

r(a, a
′) or in

L2
r(b

′, b). This leads to the following classification of the limit-circle and limit-point
cases.
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Theorem 6.1.6. Let L be the differential expression in (6.1.1) on (a, b) such that the
conditions in (6.1.2) are satisfied, and let λ ∈ C \ R. Then the following statements
hold for the endpoint b:

(i) There exists a nontrivial solution u of (L− λ)y = 0 with u ∈ L2
r(b

′, b).
(ii) The limit-point case prevails at the endpoint b if and only if there exists a

solution v of (L− λ)y = 0 such that v 	∈ L2
r(b

′, b). In this case

lim
x→b

Wx(u, u) = 0

holds for each solution u of (L− λ)y = 0 such that u ∈ L2
r(b

′, b).
(iii) The limit-circle case prevails at the endpoint b if and only if every solution

of (L − λ)y = 0 belongs to L2
r(b

′, b). In this case there exists a fundamental
system u1 and u2 of (L−λ)y = 0 and a disk with center ζb and radius rb > 0
so that with u = ζu1 + u2

lim
x→b

Wx(u, u) = 0

holds for all ζ with |ζ − ζb| = rb.

There are similar statements for the endpoint a.

Proof. It suffices to give the proof for the endpoint b as the proof for the other
endpoint is completely similar. Let u1 := u1(·, λ) and u2 := u2(·, λ) be two linearly
independent solutions of (L− λ)y = 0 fixed by (6.1.19).

Step 1. Assume that b is in the limit-circle case. Then rb = limx→b rx > 0 is the
radius of the limit circle and ζb = limx→b ζx is the center of the limit circle. It
follows from (6.1.22) that

lim
x→b

{u1, u1}x =
1

2|Imλ| rb
and by (6.1.20) and the monotone convergence theorem one therefore obtains∫ b

c

|u1(t)|2 r(t) dt = lim
x→b

{u1, u1}x <∞.

Moreover, for any ζ with |ζ − ζb| ≤ rb it follows from (6.1.18) with u = ζu1 + u2

and (6.1.24) that∫ x

c

|ζu1(t) + u2(t)|2 r(t) dt = {u, u}x − {u, u}c ≤ −{u, u}c.

Hence, the monotone convergence theorem implies that∫ b

c

|ζu1(t) + u2(t)|2 r(t) dt <∞.
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Therefore, u1 and ζu1 + u2 form a fundamental system of (L− λ)y = 0 and both
functions belong to L2

r(b
′, b).

Still assuming that b is in the limit-circle case, take the limit x→ b in (6.1.23)
to obtain

{u, u}b = {u1, u1}b
(|ζ − ζb|2 − r2b

)
.

Since {u1, u1}b > 0 it follows for |ζ − ζb| = rb that {u, u}b = 0, so that

lim
x→b

Wx(u, u) = 0.

Step 2. Assume that b is in the limit-point case. Then rb = limx→b rx = 0 and
ζb = limx→b ζx show that the limit circle degenerates into the limit point. It follows
from (6.1.22) that

lim
x→b

{u1, u1}x = lim
x→b

1

2|Imλ| rx =∞,

and therefore ∫ b

c

|u1(t)|2 r(t) dt = lim
x→b

{u1, u1}x =∞.

Thus, there exists a solution v of (L− λ)y = 0 such that v 	∈ L2
r(b

′, b).
Still assuming that b is in the limit-point case, observe that by (6.1.25) ζb is

inside all circles with center ζx and radius rx, and therefore it follows from (6.1.24)
that {uζb , uζb}x ≤ 0, where uζb = ζbu1 + u2. Hence, by (6.1.18),∫ x

c

|uζb(t)|2 r(t) dt = {uζb , uζb}x − {uζb , uζb}c ≤ −{uζb , uζb}c,

and the monotone convergence theorem implies that∫ b

c

|uζb(t)|2 r(t) dt <∞,

that is, uζb ∈ L2
r(b

′, b). Thus, u1 and uζb form a fundamental system of (L−λ)y = 0
and every solution in L2

r(b
′, b) must be a multiple of uζb . It follows from (6.1.22),

(6.1.20), and (6.1.23) that for uζb = ζbu1 + u2 and c < x < b

− 1

4|Imλ|2{u1, u1}x = −{u1, u1}x r2x
≤ {u1, u1}x

(|ζb − ζx|2 − r2x
)
= {uζb , uζb}x ≤ 0.

Since {u1, u1}x →∞ as x→ b, it follows from these inequalities that

lim
x→b

{uζb , uζb}x = 0.

In other words, limx→b Wx(uζb , uζb) = 0 and since every solution u ∈ L2
r(b

′, b) of
(L− λ)y = 0 is a multiple of uζb it follows that

lim
x→b

Wx(u, u) = 0.
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Step 3. It follows from Step 1 and Step 2 that both in the limit-circle case and in
the limit-point case there is a nontrivial solution of (L−λ)y = 0 which belongs to
L2
r(b

′, b). Therefore, (i) has been shown.

According to Step 1, in the limit-circle case every solution of (L − λ)y = 0
belongs to L2

r(b
′, b). Conversely, if every solution of (L − λ)y = 0 belongs to

L2
r(b

′, b), then the limit-circle case must prevail. To see this, assume that the limit-
point case prevails. Then by Step 2 there is a nontrivial solution of (L− λ)y = 0
which does not belong to L2

r(b
′, b), which gives a contradiction. Therefore, (iii) has

been shown.

According to Step 2, the limit-point case implies that there exists a nontrivial
solution of (L − λ)y = 0 which does not belong to L2

r(b
′, b). Conversely, if there

exists a nontrivial solution of (L−λ)y = 0 which does not belong to L2
r(b

′, b), then
the limit-point case must prevail. To see this, assume that the limit-circle case
prevails. Then by Step 1 all solutions of (L − λ)y = 0 belong to L2

r(b
′, b), which

gives a contradiction. Therefore, (ii) has been shown. �

By means of Theorem 6.1.5 the alternative in Theorem 6.1.6 is shown to be
independent of λ ∈ C \ R. The existence of these two possibilities at an endpoint
is known as Weyl’s alternative.

Corollary 6.1.7. Let L be the differential expression in (6.1.1) on (a, b) such that
the conditions in (6.1.2) are satisfied. Then the following statements hold:

(i) The endpoint b is in the limit-circle case for some λ ∈ C \ R if and only if
it is in the limit-circle case for all λ ∈ C \ R. In this situation, for all λ ∈ C
every solution of (L− λ)y = 0 belongs to L2

r(b
′, b).

(ii) The endpoint b is in the limit-point case for some λ ∈ C \ R if and only if it
is in the limit-point case for all λ ∈ C \ R. In this situation, for all λ ∈ C \ R
there is, up to scalar multiples, exactly one nontrivial solution (L− λ)y = 0
in L2

r(b
′, b) and for all λ ∈ R there is, up to scalar multiples, at most one

nontrivial solution of (L− λ)y = 0 in L2
r(b

′, b).

There are similar statements for the endpoint a.

In addition to the assertions in Corollary 6.1.7 note that if for some λ ∈ R
every solution of (L−λ)y = 0 belongs to L2

r(b
′, b), then the limit-circle case prevails

for all λ ∈ C \ R. Likewise, if for some λ ∈ R there is at most one nontrivial
solution of (L − λ)y = 0 which belongs to L2

r(b
′, b), then the limit-point prevails

for all λ ∈ C \ R.
So far the Sturm–Liouville differential expression L in (6.1.1) was considered

on the interval (a, b) under the conditions (6.1.2). At the end of this section some
attention is paid to the following extra condition:

p(x) > 0 for almost all x ∈ (a, b). (6.1.26)
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This sign condition will play an important role later in this chapter. Here are a
couple of useful remarks.

Let v be a real solution of (L − λ)y = 0, λ ∈ R, and let α < β be a pair of
consecutive zeros of v, i.e., v(α) = v(β) = 0 and v(x) 	= 0 for x ∈ (α, β). Assume
the sign condition (6.1.26). Then

v(t) > 0 for α < t < β ⇒ (pv′)(α) > 0 and (pv′)(β) < 0,

and there is a similar implication when the signs are changed. It suffices to show
the first inequality. By the uniqueness and existence theorem it is not possible to
have (pv′)(α) = 0. Now assume that (pv′)(α) < 0; then since pv′ is absolutely
continuous, there exists δ > 0 such that pv′ < 0 on the interval (α− δ, α+ δ). As
p(x) > 0 almost everywhere on (a, b), one sees that v′(x) < 0 almost everywhere
on (α−δ, α+δ). Since v is absolutely continuous one has v(x) =

∫ x

α
v′(t) dt, which

implies that v(x) ≤ 0 for α < x < α+δ; a contradiction. Hence, it has been shown
that (pv′)(α) > 0. The above implication will play a role in the following lemma,
which is concerned with the Sturm comparison theory.

Lemma 6.1.8. Assume the additional sign condition (6.1.26) and let u and v be
real solutions of (L − λ)y = 0 with λ ∈ R. Then the following statements are
equivalent:

(i) u and v are linearly independent;

(ii) u vanishes exactly once between consecutive zeros of v.

Let w be a real solution of (L − μ)y = 0 with μ > λ. Then between consecutive
zeros of v there is at least one zero of w.

Proof. (i) ⇒ (ii) Let u and v be real solutions which are linearly independent so
that x �→Wx(u, v) is a nonzero constant. Let α < β be consecutive zeros of v and
assume that v(t) > 0 for α < t < β. Then clearly

0 < Wα(u, v)Wβ(u, v) = u(α)(pv′)(α)u(β)(pv′)(β). (6.1.27)

The inequality (6.1.27) and (pv′)(α) > 0 and (pv′)(β) < 0 together show that
u(α)u(β) < 0. Hence, u has a zero between α and β. It is the only zero of u on
this interval. For if not, a repetition of the argument applied to u would produce
a zero of v between α and β, which is a contradiction.

(ii) ⇒ (i) This implication is clear.

In order to see the last statement, assume again that α < β are consecutive zeros
of v and that v(t) > 0 for α < t < β. Let w be a real solution of (L−μ)y = 0 with
μ > λ. Assume that w has no zeros between α and β, and that, in fact, w(t) > 0
for α < t < β. Then

Wα(w, v) = w(α)(pv′)(α) ≥ 0, Wβ(w, v) = w(β)(pv′)(β) ≤ 0,
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since (pv′)(α) > 0 and (pv′)(β) < 0. Recall from (6.1.10) that on (α, β)

(Wx(w, v))
′ = r(x) (μ− λ)w(x) v(x), α < x < β,

and the right-hand side is positive almost everywhere on (α, β) which gives a
contradiction. Thus, w has at least one zero between α and β. �

For later use the following simple observation is included.

Lemma 6.1.9. Assume that the sign condition (6.1.26) holds. Let f and g be real
solutions of (L − λ)y = 0 with λ ∈ R, and assume that f does not vanish on
(α, β) ⊂ (a, b). Then the function g/f is monotone on (α, β) and for x < y in
(α, β) one has

g(y)

f(y)
− g(x)

f(x)
= c

∫ y

x

1

p(s)f(s)2
ds,

where c = Wx(f, g).

Proof. A straightforward calculation shows that(
g

f

)′
(x) =

Wx(f, g)

p(x)f(x)2
, (6.1.28)

where Wx(f, g) is constant and the right-hand side has a constant sign on the
interval (α, β), due to the condition (6.1.26). �

6.2 Maximal and minimal Sturm–Liouville
differential operators

In Section 6.1 it has been shown that the differential expression L in (6.1.1) may be
applied to a complex function f on (a, b) when f, pf ′ ∈ AC(a, b). The conditions
in (6.1.2) were used for the existence and uniqueness theorem for the correspond-
ing initial value problems. In this section it will be shown that the differential
expression L generates differential operators in the Hilbert space L2

r(a, b), where
the weight function r is positive almost everywhere on the open interval (a, b).

The maximal operator Tmax in L2
r(a, b) associated with the differential ex-

pression L is defined by

Tmax f = Lf =
1

r

[−(pf ′)′ + qf
]
,

domTmax =
{
f ∈ L2

r(a, b) : f, pf
′ ∈ AC(a, b), Lf ∈ L2

r(a, b)
}
.

(6.2.1)

Recall from (6.1.6) that for f, g ∈ AC(a, b) the Wronskian is defined as

Wx(f, g) = f(x)(pg′)(x)− (pf ′)(x)g(x), (6.2.2)
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and it follows from (6.1.11) and the definition of Tmax that for all f, g ∈ domTmax

the limits
lim
x→a

Wx(f, g) and lim
x→b

Wx(f, g)

exist separately. Therefore, it is a consequence of (6.1.11) that the following Green
identity

(Tmax f, g)L2
r(a,b)

− (f, Tmax g)L2
r(a,b)

= lim
x→b

Wx(f, g)− lim
x→a

Wx(f, g) (6.2.3)

holds. The preminimal operator T0 in L2
r(a, b) is defined by

T0f = Lf =
1

r

[−(pf ′)′ + qf
]
,

domT0 =
{
f ∈ domTmax : supp f is compact in (a, b)

}
.

It follows from the Green formula (6.2.3) that the operator T0 is symmetric. The
following theorem concerning the minimal operator Tmin = T 0 of the operator T0

is based on the existence and uniqueness result in Theorem 6.1.2.

Theorem 6.2.1. The closure Tmin = T 0 of T0 is a densely defined closed symmetric
operator in L2

r(a, b) and it satisfies

Tmin ⊂ (Tmin )
∗ = Tmax ,

and, consequently, Tmin = (Tmax )
∗.

Proof. Step 1. This step is preparatory. Let [α, β] ⊂ (a, b) be a compact interval
in which case the restriction of L to (α, β) is regular at α and β. Define the linear
space D[α,β] as

D[α,β] =
{
ϕ ∈ AC[α, β] : pϕ′ ∈ AC[α, β], Lϕ ∈ L2

r(α, β),

ϕ(α) = ϕ(β) = 0, (pϕ′)(α) = (pϕ′)(β) = 0
}
,

and the operator S[α,β] from L2
r(α, β) into itself by

S[α,β]ϕ = Lϕ, ϕ ∈ D[α,β].

Denote by N the two-dimensional space of all solutions of Ly = 0 on [α, β]; thus
if h ∈ N, then h, ph′ ∈ AC[α, β] and Lh = 0. In particular, one has N ⊂ L2

r(α, β).
Now one shows that the Hilbert space L2

r(α, β) admits the orthogonal decompo-
sition

L2
r(α, β) = ranS[α,β] ⊕N, (6.2.4)

so that ranS[α,β] is automatically closed. For this, let g = S[α,β]ϕ with ϕ ∈ D[α,β].
Then for any solution u of Ly = 0 it follows from the Green identity that∫ β

α

g(x)u(x)r(x) dx = Wx(ϕ, u) |βα = 0.
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Hence, one concludes that g ⊥ N in L2
r(α, β), which shows ranS[α,β] ⊂ N⊥.

Conversely, assume that g ∈ N⊥. Let ϕ be the solution of the equation Lϕ = g
that is uniquely determined by the initial conditions ϕ(β) = 0 and (pϕ′)(β) = 0;
cf. Theorem 6.1.2. For any solution u of Ly = 0 it follows from the Green identity
that

0 =

∫ β

α

g(x)u(x)r(x) dx = −Wα(ϕ, u).

By choosing the right initial conditions at α for the solution u it follows that
ϕ(α) = 0 and (pϕ′)(α) = 0. Hence, g = Lϕ with ϕ ∈ D[α,β], i.e., g = S[α,β]ϕ.

Thus, N⊥ ⊂ ranS[α,β]. Hence, (6.2.4) has been shown.

Step 2. The previous step will be used in conjunction with the following observa-
tion. Let [α, β] ⊂ (a, b) be a compact subinterval. Then one has the equivalence:

f ∈ domT0 and supp f ⊂ [α, β] ⇔ f ∈ D[α,β]. (6.2.5)

The implication (⇒) about the restriction of f to [α, β] is clear by definition.
Conversely, if f ∈ D[α,β], then f can be trivially extended to all of (a, b) and
then the extension, also denoted by f , belongs to domTmax since f and pf ′ are
continuous across α and β. Hence, the implication (⇐) in (6.2.5) follows.

Step 3. The symmetric operator T0 is densely defined. To see this, assume that
g ∈ L2

r(a, b) satisfies (g, ϕ)L2
r(a,b)

= 0 for all ϕ ∈ domT0 and let u be any solution of
Lu = g. For any compact interval [α, β] one has (g, ϕ)L2

r(a,b)
= 0 for all ϕ ∈ domT0

with support in [α, β]. Hence, for [α, β] fixed one has by means of Step 2 that

0 = (g, ϕ)L2
r(a,b)

=

∫ β

α

(Lu)(x)ϕ(x)r(x) dx =

∫ β

α

u(x)(Lϕ)(x)r(x) dx

for all ϕ ∈ D[α,β]. According to Step 1 it follows that u ∈ N, i.e., g = Lu = 0 on
[α, β]. Since [α, β] is arbitrary, it follows that g = 0 in L2

r(a, b). Thus, T0 is densely
defined. In particular it follows from T0 ⊂ (T0)

∗ that the operator T0 is closable.
Therefore, Tmin = T 0 is an operator.

Step 4. Observe first that Tmax ⊂ (T0)
∗. In fact, if f ∈ domTmax , then for all

ϕ ∈ domT0 one has

(Tmax f, ϕ)L2
r(a,b)

− (f, T0ϕ)L2
r(a,b)

= (Tmax f, ϕ)L2
r(a,b)

− (f, Tmaxϕ)L2
r(a,b)

= 0

due to (6.2.3) and ϕ being zero in a neighborhood of a and of b; this proves the
claim. It will now be shown that (T0)

∗ ⊂ Tmax . For this let {f, g} ∈ (T0)
∗. Then

for all ϕ ∈ domT0 one has

(g, ϕ)L2
r(a,b)

= (f, T0ϕ)L2
r(a,b)

.

Now let [α, β] ⊂ (a, b) be any compact interval. Then for all ϕ ∈ domT0 with
suppϕ ⊂ [α, β] or, by Step 2, for all ϕ ∈ D[α,β] one has∫ β

α

g(x)ϕ(x)r(x) dx =

∫ β

α

f(x)(Lϕ)(x)r(x) dx.
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On [α, β] choose u with u, pu′ ∈ AC[α, β] such that Lu = g almost everywhere.
Then ∫ β

α

(Lu)(x)ϕ(x)r(x) dx =

∫ β

α

f(x)(Lϕ)(x)r(x) dx

and integration by parts of the left-hand side yields∫ β

α

u(x)(Lϕ)(x)r(x) dx =

∫ β

α

f(x)(Lϕ)(x)r(x) dx,

so that f−u ⊥ ranS[α,β] in L2
r(α, β). By Step 1 one sees that f−u ∈ N. It follows

that f has the decomposition

f = h+ u, h = f − u,

where h, ph′, u, pu′ ∈ AC[α, β] and Lh = 0. Therefore, f, pf ′ ∈ AC[α, β] and
Lf = Lu = g almost everywhere on [α, β]. This is true for each compact subinterval
[α, β] of (a, b) and hence f, pf ′ ∈ AC(a, b) and one has g = Lf almost everywhere
on (a, b). Therefore, {f, g} ∈ Tmax and (T0)

∗ ⊂ Tmax . �

As a consequence of Theorem 6.2.1 and Theorem 1.7.11 one sees that the
graph of Tmax has the componentwise sum decomposition

Tmax = Tmin +̂ N̂λ(Tmax ) +̂ N̂λ(Tmax ), λ ∈ C \ R, direct sums.

Observe that Nλ(Tmax ) consists of functions that solve the differential equation
(L − λ)y = 0 and belong to L2

r(a, b). In particular, each of the defect numbers
of Tmin is at most 2 and since the coefficient functions are real, it follows that
the defect numbers are equal; cf. (6.1.4). If both endpoints are in the limit-circle
case, then every solution of (L − λ)y = 0, λ ∈ C \ R, belongs to L2

r(a, b) by
Theorem 6.1.5. If one endpoint is in the limit-circle case and the other endpoint
is in the limit-point case, there is, up to scalar multiples, only one solution that
belongs to L2

r(a, b) by Theorem 6.1.6. This leads to the next corollary on the defect
numbers of Tmin .

Corollary 6.2.2. Let Tmin be the minimal operator associated with the differential
expression L in L2

r(a, b). Then the following statements hold:

(i) If both endpoints of (a, b) are in the limit-circle case, then the defect numbers
of Tmin are (2, 2).

(ii) If one endpoint of (a, b) is in the limit-circle case and the other is in the
limit-point case, then the defect numbers of Tmin are (1, 1).

In addition to the cases in Corollary 6.2.2 there is the situation where both
endpoints of (a, b) are in the limit-point case. Then the defect numbers of Tmin

are (0, 0), which will become clear in Section 6.5; cf. Corollary 6.5.2.
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The cases (i) and (ii) in Corollary 6.2.2 will be treated in Section 6.3 and Sec-
tion 6.4, respectively, in terms of boundary triplets. These triplets will be defined
by means of the Green formula

(Tmax f, g)L2
r(a,b)

− (f, Tmax g)L2
r(a,b)

= lim
x→b

Wx(f, g)− lim
x→a

Wx(f, g), (6.2.6)

where for f, g ∈ domTmax each of the limits

lim
x→a

Wx(f, g) and lim
x→b

Wx(f, g)

exists separately. These limits will be essential ingredients in defining “boundary
values” of functions in dom Tmax . In particular, observe that Tmin = (Tmax )

∗

implies that domTmin consists of all f ∈ domTmax for which

lim
x→b

Wx(f, g) = lim
x→a

Wx(f, g)

for all g ∈ domTmax . Hence, it follows from Proposition 6.1.3 that domTmin

consists of all f ∈ domTmax for which the two separate limits must satisfy

lim
x→b

Wx(f, g) = 0 and lim
x→a

Wx(f, g) = 0 (6.2.7)

for all g ∈ domTmax . An essential ingredient is the behavior of the Wronskian
W (f, g) for f, g ∈ domTmax near an endpoint which is regular or in the limit-
circle case. First the regular case is considered.

Lemma 6.2.3. Assume that L is regular at a or b. Then a or b is in the limit-circle
case, respectively. In particular, if f ∈ domTmax , then the limits

f(a) = lim
x→a

f(x), (pf ′)(a) = lim
x→a

(pf ′)(x),

f(b) = lim
x→b

f(x), (pf ′)(b) = lim
x→b

(pf ′)(x),
(6.2.8)

exist, respectively. Moreover, for f, g ∈ domTmax

lim
x→a

Wx(f, g) = f(a)(pg′)(a)− (pf ′)(a)g(a),

lim
x→b

Wx(f, g) = f(b)(pg′)(b)− (pf ′)(b)g(b),

respectively.

Proof. Assume that L is regular at b. Then it follows from Theorem 6.1.2 that
all solutions of (L − λ)y = 0, λ ∈ C, belong to AC(a, b] and hence are bounded
near b. Since r is integrable at b, all solutions belongs to L2

r(b
′, b) and so the limit-

circle case prevails at b by Theorem 6.1.6. Let f ∈ domTmax and let g = Tmax f .
Then f, g ∈ L2

r(a, b) and f, pf ′ ∈ AC(a, b] by Theorem 6.1.2. This implies the
statements. �
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If the endpoint is in the limit-circle case but not regular, then the existence
of the individual limits in (6.2.8) is not guaranteed. In that case the notion of
quasi-derivative proves useful.

Definition 6.2.4. Let u and v be linearly independent real solutions of the equation
(L − λ0)y = 0 for some λ0 ∈ R and assume that the solutions are normalized by
W (u, v) = 1. Let f be a complex function on (a, b) for which f, pf ′ ∈ AC(a, b).
Then the quasi-derivatives of f , induced by the normalized solutions u and v, are
defined as complex functions on (a, b) given by

f [0] := W (f, v) and f [1] := −W (f, u). (6.2.9)

Let f and g be functions on (a, b) for which f, pf ′, g, pg′ ∈ AC(a, b). Then it
follows from the Plücker identity in (6.1.7) that

Wx(f, g) = f [0](x)g[1](x)− f [1](x)g[0](x). (6.2.10)

Note that the right-hand side has an appearance which is similar to the right-hand
side of (6.1.6) and (6.2.2), but both f [0] and f [1] are made up of f and pf ′. In the
limit-circle case also the individual factors have limits.

Lemma 6.2.5. Let u and v be linearly independent real solutions of the equation
(L − λ0)y = 0 for some λ0 ∈ R which are normalized by W (u, v) = 1, and let
f, g ∈ domTmax . If u, v ∈ L2

r(a, a
′), then the limits

f [0](a) = lim
x→a

f [0](x) and f [1](a) = lim
x→a

f [1](x)

exist, and consequently

lim
x→a

Wx(f, g)(x) = f [0](a)g[1](a)− f [1](a)g[0](a).

Likewise, if u, v ∈ L2
r(b

′, b), then the limits

f [0](b) = lim
x→b

f [0](x) and f [1](b) = lim
x→b

f [1](x)

exist, and consequently

lim
x→b

Wx(f, g)(x) = f [0](b)g[1](b)− f [1](b)g[0](b).

Proof. Let φ be any real solution of (L − λ0)y = 0. Since f ∈ domTmax by
assumption, it is clear that (L−λ0)f ∈ L2

r(a, b). It is easily seen from (6.1.9) that
the following identity

Wx(f, φ)−Ws(f, φ) =

∫ x

s

((L− λ0)f)(t)φ(t) r(t) dt
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holds for all a < s < x < b. If, in addition, φ ∈ L2
r(a, a

′), then

Wa(f, φ) = lim
x→a

Wx(f, φ)

exists as can be seen from the dominated convergence theorem. The assertions in
the lemma then follow by taking φ = v and φ = −u, respectively. �

At the end of this section it is assumed that the coefficient functions satisfy
(6.1.2) and that the endpoint a is in the limit-circle case. The following result is
about solving the Sturm–Liouville equation (L − λ)f = g with initial conditions
in terms of quasi-derivatives. The proof of this result has the same background as
the proof of Theorem 6.1.2. Just write the equation as a first-order system, but
now involving quasi-derivatives:(

f [0]

f [1]

)′
= (λ− λ0)

(
uvr v2r
−u2r −uvr

)(
f [0]

f [1]

)
+

(
vrg
−urg

)
.

The new initial value problem is equivalent to a Volterra integral equation which
can be solved in the usual way by successive approximations when all data are
locally integrable. Note that the condition g ∈ L2

r(a, b) in the proposition implies
that urg, vrg ∈ L1(a, a′). There is a similar statement when the endpoint b is in
the limit-circle case.

Proposition 6.2.6. Let a be in the limit-circle case. Let u, v be real solutions of
(L− λ0)y = 0, λ0 ∈ R, such that W (u, v) = 1, and u, v ∈ L2

r(a, a
′). Let c1, c2 ∈ C

and let g ∈ L2
r(a, b). Then for all λ ∈ C the initial value problem

(L− λ)f = g, f [0](a) = c1, f [1](a) = c2,

has a unique solution f ∈ AC(a, b) for which pf ′ ∈ AC(a, b). In addition, the
functions

λ �→ f [0](a, λ) and λ �→ f [1](a, λ)

are entire.

It follows that under the circumstances of Proposition 6.2.6 for any λ ∈ C the
homogeneous equation (L−λ)y = 0 has a fundamental system, i.e., for any λ ∈ C
there are two solutions u1(·, λ) and u2(·, λ) of (L − λ)y = 0 which are linearly
independent when it is required that(

u
[0]
1 (a, λ) u

[0]
2 (a, λ)

u
[1]
1 (a, λ) u

[1]
2 (a, λ)

)
=

(
1 0
0 1

)
; (6.2.11)

cf. (6.2.10). Moreover, each of the entries of the left-hand side gives an entire
function in λ.

The quasi-derivatives of an element f ∈ domTmax may be interpreted as
coefficients of f in terms of a local expansion involving the square-integrable so-
lutions u and v as follows.
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Lemma 6.2.7. Let u and v be linearly independent real solutions of the equation
(L−λ0)y = 0 for some λ0 ∈ R which are normalized by W (u, v) = 1. Assume that
f ∈ domTmax and let the quasi-derivatives f [0] and f [1] be defined as in (6.2.9).
If u, v ∈ L2

r(a, a
′), then

f(x) = u(x)
(
f [0](a) + o(1)

)
+ v(x)

(
f [1](a) + o(1)

)
, x→ a.

Likewise, if u, v ∈ L2
r(b

′, b), then

f(x) = u(x)
(
f [0](b) + o(1)

)
+ v(x)

(
f [1](b) + o(1)

)
, x→ b.

Proof. Consider the case of the endpoint a. Let the function g be defined by
g = (Tmax − λ0)f and note that g ∈ L2

r(a, b). There exist unique α, β ∈ C such
that

f(x) = u(x)

(
α+

∫ x

a

v(t)g(t)r(t) dt

)
+ v(x)

(
β −

∫ x

a

u(t)g(t)r(t) dt

)
; (6.2.12)

cf. the variation of constants formula (6.1.13). One sees, via the Cauchy–Schwarz
inequality, that∫ x

a

v(t)g(t)r(t) dt = o(1) and

∫ x

a

u(t)g(t)r(t) dt = o(1), x→ a.

In order to identify the parameters α and β use that

f [0] = f(pv′)− (pf ′)v and f [1] = (pf ′)u− f(pu′).

Now substitute (6.2.12) and its differentiated form

(pf ′)(x) = (pu′)(x)
(
α+

∫ x

a

v(t)g(t)r(t) dt

)
+ (pv′)(x)

(
β −

∫ x

a

u(t)g(t)r(t) dt

)
,

so that with the normalization W (u, v) = 1 it follows that

f [0](x) = α+

∫ x

a

v(t)g(t)r(t) dt and f [1](x) = β −
∫ x

a

u(t)g(t)r(t) dt.

Hence, one obtains that α = f [0](a) and β = f [1](a).

Next consider the case of the endpoint b. Likewise, if u, v ∈ L2
r(b

′, b), then
there exist unique γ, δ ∈ C such that

f(x) = u(x)

(
γ −

∫ b

x

v(t)g(t)r(t) dt

)
+ v(x)

(
δ +

∫ b

x

u(t)g(t)r(t) dt

)
,

where ∫ b

x

v(t)g(t)r(t) dt = o(1) and

∫ b

x

u(t)g(t)r(t) dt = o(1), x→ b.

In a similar way one can show that γ = f [0](b) and δ = f [1](b). �
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6.3 Regular and limit-circle endpoints

Let Tmax = (Tmin )
∗ be the maximal operator associated with the Sturm–Liouville

differential expression L in (6.1.1) on the interval (a, b). This situation will be
considered first under the assumption that both endpoints a and b are regular and
then in the end of this section the endpoints in the limit-circle case are treated.

Assume that the endpoints a and b are regular, i.e., [a, b] is a compact interval
and {

p(x) 	= 0, r(x) > 0, for almost all x ∈ (a, b),

1/p, q, r ∈ L1(a, b);

cf. Definition 6.1.1. It follows from Theorem 6.1.2 that there exists a fundamental
system (u1(·, λ);u2(·, λ)) for the equation (L− λ)y = 0 with the initial conditions(

u1(a, λ) u2(a, λ)
(pu′

1)(a, λ) (pu′
2)(a, λ)

)
=

(
1 0
0 1

)
. (6.3.1)

Then for i = 1, 2 each of the mappings λ �→ ui(x, λ) and λ �→ (pu′
i)(x, λ) is entire

for fixed x ∈ [a, b]. From (6.2.1) and Theorem 6.1.2 one also sees that every function
f ∈ domTmax satisfies f, pf ′ ∈ AC[a, b] and the quantities f(a), (pf ′)(a), f(b), and
(pf ′)(b) are well defined.

Proposition 6.3.1. Assume that the endpoints a and b are regular. Then {C2,Γ0,Γ1},
where

Γ0f =

(
f(a)
f(b)

)
and Γ1f =

(
(pf ′)(a)
−(pf ′)(b)

)
, f ∈ domTmax , (6.3.2)

is a boundary triplet for (Tmin )
∗ = Tmax . The self-adjoint extension A0 corre-

sponding to Γ0 is the restriction of Tmax defined on

domA0 =
{
f ∈ domTmax : f(a) = f(b) = 0

}
and the minimal operator Tmin is the restriction of Tmax defined on

domTmin =
{
f ∈ domTmax : f(a) = f(b) = (pf ′)(a) = (pf ′)(b) = 0

}
.

Moreover, for all λ ∈ ρ(A0) one has u2(b, λ) 	= 0. The corresponding γ-field and
Weyl function are given by

γ(λ) =
(
u1(·, λ) u2(·, λ)

) 1

u2(b, λ)

(
u2(b, λ) 0
−u1(b, λ) 1

)
, λ ∈ ρ(A0),

and

M(λ) =
1

u2(b, λ)

(−u1(b, λ) 1
1 −(pu′

2)(b, λ)

)
, λ ∈ ρ(A0).



6.3. Regular and limit-circle endpoints 389

Proof. Assume that the endpoints a and b are regular. First it will be shown that
(6.3.2) defines a boundary triplet. For f, g ∈ domTmax one has by (6.2.6) and
Lemma 6.2.3

(Tmax f, g)− (f, Tmax g) = lim
x→b

Wx(f, g)− lim
x→a

Wx(f, g)

= f(b)(pg′)(b)− (pf ′)(b)g(b)− f(a)(pg′)(a) + (pf ′)(a)g(a),

which implies that the abstract Green identity is satisfied with the choice of Γ0 and
Γ1 in (6.3.2). Furthermore, the mapping (Γ0,Γ1)

� : domTmax → C4 is surjective.
To see this, choose α ∈ C4 and consider the initial value problem (6.1.5) with
λ = 0, g = 0, and x0 = a with initial data α1, α2 ∈ C. Then there is a unique
solution f with f, pf ′ ∈ AC[a, b]. Now cut off this function so that it becomes
a solution fa of a corresponding inhomogeneous equation which is trivial in a
neighborhood of b; see Proposition 6.1.3. It is clear that fa ∈ domTmax and

Γ0fa =

(
α1

0

)
, Γ1fa =

(
α2

0

)
.

A similar procedure at the other endpoint gives a function fb ∈ domTmax and

Γ0fb =

(
0
α3

)
, Γ1fb =

(
0
α4

)
.

Taking h = fa + fb completes the argument. Thus, (6.3.2) defines a boundary
triplet for (Tmin )

∗.
The description of the domain of the self-adjoint extension A0 is trivial.

Since u2(a, λ) = 0 for all λ ∈ C it follows that u2(b, λ) 	= 0 for λ ∈ ρ(A0), as
otherwise u2(·, λ) would be an eigenfunction for A0, which contradicts λ ∈ ρ(A0).
Furthermore, by Proposition 2.1.2 (ii) one has domTmin = ker Γ0 ∩ ker Γ1, which
implies the description of the domain of the minimal operator.

In order to compute the γ-field and Weyl function corresponding to the
boundary triplet {C2,Γ0,Γ1} note that in terms of the fundamental system deter-
mined by (6.3.1) every element in Nλ(Tmax ) has the form

f(·, λ) = (u1(·, λ) u2(·, λ)
)(c1

c2

)
, c1, c2 ∈ C.

It follows from Definition 2.3.1 that γ(λ) is given by{(
1 0

u1(b, λ) u2(b, λ)

)(
c1
c2

)
,
(
u1(·, λ) u2(·, λ)

)(c1
c2

)}
for all pairs c1, c2 ∈ C and, likewise, it follows from Definition 2.3.4 that M(λ) is
given by{(

1 0
u1(b, λ) u2(b, λ)

)(
c1
c2

)
,

(
0 1

−(pu′
1)(b, λ) −(pu′

2)(b, λ)

)(
c1
c2

)}
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for all pairs c1, c2 ∈ C. Since u2(b, λ) 	= 0 for λ ∈ ρ(A0) the stated results follow.
In particular, the last result on the form of the Weyl function M follows as the
Wronskian of u1 and u2 is constant and equal to one; cf. (6.3.1). �

Note that the self-adjoint operator A0 in Proposition 6.3.1 corresponds to
Dirichlet boundary conditions and the self-adjoint operator A1 defined on ker Γ1

corresponds to Neumann boundary conditions. In the next corollary the boundary
condition at the endpoint b is fixed as the Dirichlet condition f(b) = 0. The
corresponding boundary triplet appears as a restriction of the boundary triplet
in Proposition 6.3.1. Corollary 6.3.2 can be seen as an immediate consequence of
Proposition 6.3.1 and Proposition 2.5.12 applied to the decomposition

C2 = G = G′ ⊕ G′′, with G′ = span

(
1
0

)
and G′′ = span

(
0
1

)
.

A short direct argument will be given.

Corollary 6.3.2. Assume that the endpoints a and b are regular. Let the operator
T ′
min be the extension of Tmin defined on

domT ′
min =

{
f ∈ domTmax : f(a) = (pf ′)(a) = f(b) = 0

}
.

Then T ′
min is a densely defined closed symmetric operator with defect numbers

(1, 1) and Tmin ⊂ T ′
min ⊂ A0. The adjoint (T ′

min )
∗ is defined on

dom (T ′
min )

∗ =
{
f ∈ domTmax : f(b) = 0

}
. (6.3.3)

Then {C,Γ′
0,Γ

′
1}, where

Γ′
0f = f(a) and Γ′

1f = (pf ′)(a), f ∈ dom (T ′
min )

∗, (6.3.4)

is a boundary triplet for (T ′
min )

∗. Moreover, for λ ∈ ρ(A0) the corresponding γ-field
and the Weyl function are given by

γ′(·, λ) = u1(·, λ)− u1(b, λ)

u2(b, λ)
u2(·, λ) and M ′(λ) = −u1(b, λ)

u2(b, λ)
.

Proof. One verifies that the adjoint (T ′
min )

∗ is a restriction of Tmax given by the
boundary condition in (6.3.3) and that {C,Γ′

0,Γ
′
1} (6.3.4) is a boundary triplet

for (T ′
min )

∗. To see the last statement let

f(·, λ) = α(λ)u1(·, λ) + β(λ)u2(·, λ) ∈ ker
(
(T ′

min )
∗ − λ

)
,

where α(λ)u1(b, λ) + β(λ)u2(b, λ) = 0. For λ ∈ ρ(A0) one obtains

γ′(λ) = u1(·, λ) + β(λ)

α(λ)
u2(·, λ) and M ′(λ) =

β(λ)

α(λ)
.

This completes the proof. �
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Example 6.3.3. In the special case r = p = 1 and a constant q ∈ R, the Sturm–
Liouville expression is Lf = −f ′′ + qf . For λ > q the fundamental system deter-
mined by (6.3.1) is given by

u1(x, λ) = cos
[√

λ− q (x− a)
]
, u2(x, λ) =

sin
[√

λ− q (x− a)
]

√
λ− q

,

and if the square root
√· is fixed such that Im

√
λ > 0 for λ ∈ C \ [0,∞) and√

λ ≥ 0 for λ ∈ [0,∞), the formula extends to λ ∈ C \ {0}. Hence the Weyl
function in Proposition 6.3.1 is

M(λ) =

√
λ− q

sin
[√

λ− q (b− a)
] (− cos

[√
λ− q (b− a)

]
1

1 − cos
[√

λ− q (b− a)
]) ,

and the Weyl function in Corollary 6.3.2 is

M ′(λ) = −
√
λ− q cot

[√
λ− q (b− a)

]
.

The poles of M and M ′ are given by{
(kπ)2

(b− a)2
+ q : k ∈ N

}
and coincide with the eigenvalues of the self-adjoint extension A0.

Proposition 6.3.4. For λ ∈ ρ(A0) the resolvent of A0 is an integral operator of the
form (

(A0 − λ)−1g
)
(t) =

∫ b

a

G0(t, s, λ)g(s)r(s)ds, g ∈ L2
r(a, b),

where the Green function G0(t, s, λ) is given by

G0(t, s, λ) =

{
(u1(t, λ) +M ′(λ)u2(t, λ))u2(s, λ), a < s < t,

u2(t, λ)(u1(s, λ) +M ′(λ)u2(s, λ)), t < s < b.

Here M ′ is the Weyl function in Corollary 6.3.2. The integral operator belongs to
the Hilbert–Schmidt class. In particular, σ(A0) = σp(A0) and the multiplicity of
each eigenvalue is 1.

Proof. A straightforward calculation shows that the function

f(t) =

∫ b

a

G0(t, s, λ)g(s)r(s)ds

= (u1(t, λ) +M ′(λ)u2(t, λ))

∫ t

a

u2(s, λ)g(s)r(s) ds

+ u2(t, λ)

∫ b

t

(u1(s, λ) +M ′(λ)u2(s, λ))g(s)r(s) ds

satisfies the differential equation (L− λ)f = g. Since u2(a, λ) = 0, it is clear that
f(a) = 0. Moreover, since M ′(λ)u2(b, λ) = −u1(b, λ), one also has f(b) = 0. As
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f is continuous on [a, b] and r ∈ L1(a, b), it follows that f ∈ L2
r(a, b) and hence

f ∈ domA0. Therefore, (A0 − λ)f = g and for λ ∈ ρ(A0) the resolvent of A0 is of
the form as stated.

Furthermore, one has∫ b

a

∫ b

a

|G0(t, s, λ)|2r(s)r(t) ds dt <∞

since G0(·, ·, λ) is continuous for a ≤ s ≤ t and t ≤ s ≤ b and r ∈ L1(a, b). Thus,
(A0 − λ)−1 is a Hilbert–Schmidt operator and, in particular, σ(A0) = σp(A0)
holds. Since the eigenfunctions of A0 are multiples of the solution u2(·, λ) it also
follows that the eigenvalues of A0 have multiplicity one. �

It is easy to see that the closed symmetric operators Tmin and T ′
min in Propo-

sition 6.3.1 and Corollary 6.3.2 do not have eigenvalues. Therefore, since the spec-
trum of A0 is purely discrete according to Proposition 6.3.4, the next corollary is
immediate from Proposition 3.4.8.

Corollary 6.3.5. Tmin and T ′
min are simple symmetric operators in L2

r(a, b).

It follows from Corollary 6.3.5 and the results in Section 3.5 that the spectrum
of A0 can be characterized with the help of the Weyl functions M and M ′ in
Proposition 6.3.1 and Corollary 6.3.2. More precisely, in the present situation the
functions

M(λ) =
1

u2(b, λ)

(−u1(b, λ) 1
1 −(pu′

2)(b, λ)

)
and M ′(λ) = −u1(b, λ)

u2(b, λ)

are defined and holomorphic on ρ(A0), and one has λ ∈ σ(A0) = σp(A0) if and
only if λ is a pole of M and M ′. In particular, it follows that λ ∈ σp(A0) if and
only if u2(b, λ) = 0; this extends the observation that u2(b, λ) 	= 0 for all λ ∈ ρ(A0)
in Proposition 6.3.1. The two linear maps

τ : ker (A0 − λ)→ ranRλ, f(·, λ) �→ Γ1f(·, λ) =
(

(pf ′)(a, λ)
−(pf ′)(b, λ)

)
,

and
τ ′ : ker (A0 − λ)→ ranR′

λ, f(·, λ) �→ Γ′
1f(·, λ) = (pf ′)(a, λ),

where

Rλϕ = lim
ε ↓ 0

iεM(λ+ iε)ϕ, ϕ ∈ C2, and R′
λ = lim

ε ↓ 0
iεM ′(λ+ iε)

coincide with the residues of M and M ′ at λ, are bijective.

In the following some classes of extensions of Tmin and their spectral prop-
erties are briefly discussed. Let {C2,Γ0,Γ1} be the boundary triplet in Proposi-
tion 6.3.1 with corresponding γ-field γ and Weyl function M . Recall first that the
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self-adjoint (maximal dissipative, maximal accumulative) extensions AΘ ⊂ Tmax of
Tmin are in a one-to-one correspondence to the self-adjoint (maximal dissipative,
maximal accumulative, respectively) relations Θ in C2 via

domAΘ =
{
f ∈ domTmax : {Γ0f,Γ1f} ∈ Θ

}
=

{
f ∈ domTmax :

{(
f(a)
f(b)

)
,

(
(pf ′)(a)
−(pf ′)(b)

)}
∈ Θ

}
.

(6.3.5)

In the following assume that Θ is a self-adjoint relation in C2, so that the operator
AΘ is a self-adjoint realization of the Sturm–Liouville differential expression L in
L2
r(a, b). By Corollary 1.10.9, the relation Θ in C2 can be represented by means

of 2× 2 matrices A and B satisfying the conditions A∗B = B∗A, AB∗ = BA∗ and
A∗A+B∗B = I = AA∗ +BB∗, namely,

Θ =
{{Aϕ,Bϕ} : ϕ ∈ C2

}
=
{{ψ,ψ′} : A∗ψ′ = B∗ψ

}
.

In that case one has

domAΘ =

{
f ∈ domTmax : A∗

(
(pf ′)(a)
−(pf ′)(b)

)
= B∗

(
f(a)
f(b)

)}
.

Recall from Theorem 2.6.1 and Corollary 2.6.3 for λ ∈ ρ(AΘ) ∩ ρ(A0) the Krĕın
formula for the corresponding resolvents

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗

= (A0 − λ)−1 + γ(λ)A
(
B−M(λ)A

)−1
γ(λ)∗.

Since the spectrum of A0 is discrete and the difference of the resolvents of A0 and
AΘ is an operator of rank ≤ 2, it is clear that the spectrum of the self-adjoint
operator AΘ is discrete. Note that λ ∈ ρ(A0) is an eigenvalue of AΘ if and only if
ker (Θ−M(λ)) or, equivalently, ker (B−M(λ)A) is nontrivial, and that

ker (AΘ − λ) = γ(λ) ker
(
Θ−M(λ)

)
= γ(λ)A ker

(
B−M(λ)A

)
.

For a complete description of the (discrete) spectrum of AΘ recall that the sym-
metric operator Tmin is simple and make use of a transform of the boundary triplet
{C2,Γ0,Γ1} as in Section 3.8. This reasoning implies that λ is an eigenvalue of
AΘ if and only if λ is a pole of the function

λ �→MΘ(λ) =
(
A∗ +B∗M(λ)

)(
B∗ −A∗M(λ)

)−1
.

It is important to note in this context that the multiplicity of the eigenvalues of
AΘ is at most 2 and that the dimension of the eigenspace ker (AΘ − λ) coincides
with the dimension of the range of the residue of MΘ at λ. In the special case
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where the self-adjoint relation Θ in C2 is a 2 × 2 matrix the boundary condition
in (6.3.5) reads

domAΘ =

{
f ∈ domTmax : Θ

(
f(a)
f(b)

)
=

(
(pf ′)(a)
−(pf ′)(b)

)}
,

and according to Section 3.8 the spectral properties of the self-adjoint operator
AΘ can also be described with the help of the function

λ �→ (Θ−M(λ)
)−1

; (6.3.6)

that is, the poles of the matrix function (6.3.6) coincide with the (discrete) spec-
trum of AΘ and the dimension of the eigenspace ker (AΘ − λ) coincides with the
dimension of the range of the residue of the function in (6.3.6) at λ.

In what follows some special types of boundary conditions will be discussed.

Example 6.3.6. Let {C2,Γ0,Γ1} be the boundary triplet in Proposition 6.3.1 with
corresponding γ-field γ and Weyl function M . Consider a 2× 2 diagonal matrix

Θ =

(
α 0
0 β

)
, α, β ∈ R.

The domain of the corresponding self-adjoint Sturm–Liouville operator AΘ is
given by

domAΘ =
{
f ∈ domTmax : αf(a) = (pf ′)(a), βf(b) = −(pf ′)(b)

}
.

Such boundary conditions are often called separated boundary conditions. The
eigenvalues of AΘ have multiplicity one and they coincide with the poles of the
function

λ �→ v(λ)

(
βu2(b, λ) + (pu′

2)(b, λ) 1
1 u1(b, λ) + αu2(b, λ)

)
,

where

v(λ) =
u2(b, λ)

(u1(b, λ) + αu2(b, λ))(βu2(b, λ) + (pu′
2)(b, λ))− 1

.

In the special case α = β = 0 the operator AΘ is defined on ker Γ1, which corre-
sponds to Neumann boundary conditions. In this situation the poles of the function

λ �→ −M(λ)−1 =
1

(pu′
1)(b, λ)

(
(pu′

2)(b, λ) 1
1 u1(b, λ)

)
coincide with the Neumann eigenvalues.

Next the boundary triplet {C2,Γ0,Γ1} in Proposition 6.3.1 will be trans-
formed so that the so-called periodic boundary conditions can be treated in a
convenient way. For this consider the matrix

W =
1√
2

⎛⎜⎜⎝
1 −1 0 0
0 0 1 1
0 0 1 −1
−1 −1 0 0

⎞⎟⎟⎠ ,
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and note that the condition (2.5.1) in Theorem 2.5.1 is satisfied. It then follows
that {C2,Υ0,Υ1}, where

Υ0f =
1√
2

(
f(a)− f(b)

(pf ′)(a)− (pf ′)(b)

)
, f ∈ domTmax, (6.3.7)

and

Υ1f =
1√
2

(
(pf ′)(a) + (pf ′)(b)
−f(a)− f(b)

)
, f ∈ domTmax, (6.3.8)

is a boundary triplet for Tmax. In order to compute the corresponding γ-field γΥ
and Weyl function MΥ use Proposition 2.5.5 and note first that(

0 0
−1 −1

)
+

(
1 −1
0 0

)
M(λ) =

1

u2(b, λ)

(−1− u1(b, λ) 1 + (pu′
2)(b, λ)

−u2(b, λ) −u2(b, λ)

)
and ((

1 −1
0 0

)
+

(
0 0
1 1

)
M(λ)

)−1

= w(λ)

(
1− (pu′

2)(b, λ) u2(b, λ)
u1(b, λ)− 1 u2(b, λ)

)
,

where

w(λ) =
1

2− u1(b, λ)− (pu′
2)(b, λ)

and M is the Weyl function corresponding to the boundary triplet {C2,Γ0,Γ1}
in Proposition 6.3.1. Now it follows that the γ-field γΥ and Weyl function MΥ of
{C2,Υ0,Υ1} are given by

γΥ(λ) =
(
u1(·, λ) u2(·, λ)

)
w(λ)

(
1− (pu′

2)(b, λ) u2(b, λ)
(pu′

1)(b, λ) 1− u1(b, λ)

)
(6.3.9)

and

MΥ(λ) = w(λ)

(
2(pu′

1)(b, λ) −u1(b, λ) + (pu′
2)(b, λ)

−u1(b, λ) + (pu′
2)(b, λ) −2u2(b, λ)

)
. (6.3.10)

As above, it follows from Corollary 6.3.5 and the considerations in Section 3.5
that the eigenvalues of the self-adjoint operator AΥ0 which corresponds to the
boundary condition kerΥ0, that is,

domAΥ0
=
{
f ∈ domTmax : f(a) = f(b), (pf ′)(a) = (pf ′)(b)

}
,

coincide with the isolated poles of MΥ, that is, λ is an eigenvalue of AΥ0 if and
only if u1(b, λ) + (pu′

2)(b, λ) = 2. It is important to note that in this situation
eigenvalues of multiplicity two may arise and hence a reduction of the spectral
problem to a scalar Weyl function as in Corollary 6.3.2 is, in general, not possible.
This is the case in the following example, where a symmetric extension of Tmin

appears which is not simple.
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Example 6.3.7. Let {C2,Υ0,Υ1} be the boundary triplet in (6.3.7)–(6.3.8) with
corresponding γ-field γΥ and Weyl function MΥ in (6.3.9) and (6.3.10), respec-
tively. Consider the Sturm–Liouville expression Lf = −f ′′ in L2(0, 2π), that is,
r = p = 1 and q = 0, and (a, b) = (0, 2π). Then the positive eigenvalues k2, k ∈ N,
of AΥ0

are of multiplicity two and the eigenvalue 0 has multiplicity one. Consider
the symmetric operator T ′′

min defined on

domT ′′
min =

{
f ∈ domTmax : f(0) = f(2π), f ′(0) = f ′(2π) = 0

}
which arises in the same way as in Corollary 6.3.2, but now with the bound-
ary triplet {C2,Γ0,Γ1} from Proposition 6.3.1 replaced by the boundary triplet
{C2,Υ0,Υ1}. As in Corollary 6.3.2, one obtains that T ′′

min is a closed symmetric
operator with defect numbers (1, 1) and adjoint (T ′′

min )
∗ defined on

dom (T ′′
min )

∗ =
{
f ∈ domTmax : f ′(0) = f ′(2π)

}
,

and one has Tmin ⊂ T ′′
min ⊂ AΥ0

. Moreover, {C,Υ′
0,Υ

′
1}, where

Υ′
0f =

1√
2

(
f(0)− f(2π)

)
and Υ′

1f =
1√
2

(
f ′(0) + f ′(2π)

)
, f ∈ dom (T ′′

min )
∗,

is a boundary triplet for (T ′′
min )

∗ with corresponding Weyl function M ′
Υ given by

M ′
Υ(λ) =

2u′
1(2π, λ)

2− u1(2π, λ)− u′
2(2π, λ)

.

However, in contrast to the situation in Corollary 6.3.2 and Corollary 6.3.5, here
T ′′
min is not simple. In fact, since the eigenvalues k2, k ∈ N, of AΥ0 have multi-

plicity two and T ′′
min is a one-dimensional restriction of AΥ0

each k2, k ∈ N, is
an eigenvalue of T ′′

min of multiplicity one. Therefore, the corresponding eigenfunc-
tions span an infinite-dimensional subspace of L2(0, 2π) which reduces T ′′

min and in
which T ′′

min is self-adjoint. Note however, that a further one-dimensional restriction
of T ′′

min leads to the minimal operator Tmin which is simple by Corollary 6.3.5.

This section is concluded with the limit-circle case. It is assumed that the
coefficient functions satisfy (6.1.2) and that both endpoints a and b are in the
limit-circle case; cf. Theorem 6.1.6. Now consider real solutions ua, va and ub, vb
of (L − λ0)y = 0, λ0 ∈ R, which satisfy W (ua, va) = 1 and W (ub, vb) = 1, while
ua, va ∈ L2

r(a, a
′) and ub, vb ∈ L2

r(b
′, b). In the following it is tacitly assumed that

quasi-derivatives at a are defined in terms of ua, va and that the quasi-derivatives
at b are defined in terms of ub, vb.

Fix a fundamental system (u1(·, λ);u2(·, λ)) for the equation (L − λ)y = 0
by the initial conditions(

u
[0]
1 (a, λ) u

[0]
2 (a, λ)

u
[1]
1 (a, λ) u

[1]
2 (a, λ)

)
=

(
1 0
0 1

)
.
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Recall that for each function f ∈ domTmax the quasi-derivaties f [0](a), f [1](a),
f [0](b), f [1](b) are well defined; cf. Definition 6.2.4. The proof of the following
proposition follows the lines of the proof of Proposition 6.3.1 in conjunction with
Lemma 6.2.5 and Proposition 6.2.6.

Proposition 6.3.8. Assume that the endpoints a and b are in the limit-circle case.
Then {C2,Γ0,Γ1}, where

Γ0f =

(
f [0](a)
f [0](b)

)
and Γ1f =

(
f [1](a)
−f [1](b)

)
, f ∈ domTmax ,

is a boundary triplet for Tmax . The self-adjoint extension A0 corresponding to Γ0

is the restriction of Tmax defined on

domA0 =
{
f ∈ domTmax : f [0](a) = f [0](b) = 0

}
and the minimal operator Tmin is the restriction of Tmax defined on

domTmin =
{
f ∈ domTmax : f [0](a) = f [0](b) = f [1](a) = f [1](b) = 0

}
.

Moreover, for all λ ∈ ρ(A0) one has u
[0]
2 (b, λ) 	= 0. The corresponding γ-field and

Weyl function are given by

γ(λ) =
(
u1(·, λ) u2(·, λ)

) 1

u
[0]
2 (b, λ)

(
u
[0]
2 (b, λ) 0

−u[0]
1 (b, λ) 1

)
, λ ∈ ρ(A0),

and

M(λ) =
1

u
[0]
2 (b, λ)

(
−u[0]

1 (b, λ) 1

1 −u[1]
2 (b, λ)

)
, λ ∈ ρ(A0).

6.4 The case of one limit-point endpoint

Let Tmax = (Tmin )
∗ be the maximal operator associated with the Sturm–Liouville

differential expression L in (6.1.1) on the interval (a, b). This situation will be
considered under the assumption that the endpoint a is regular and the endpoint
b is in the limit-point case. In the end of the section also the situation that a is in
the limit-circle case is briefly discussed.

Recall that the assumption that the endpoint a is regular means{
p(x) 	= 0, r(x) > 0, for a.e. x ∈ (a, b),

1/p, q, r ∈ L1(a, a′), 1/p, q, r ∈ L1
loc(a

′, b);

cf. Definition 6.1.1. Let the fundamental system (u1(·, λ);u2(·, λ)) for the equation
(L− λ)y = 0 be fixed by the initial conditions(

u1(a, λ) u2(a, λ)
(pu′

1)(a, λ) (pu′
2)(a, λ)

)
=

(
1 0
0 1

)
. (6.4.1)
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For each function f ∈ domTmax one has f, pf ′ ∈ AC[a, b) and the quantities f(a)
and (pf ′)(a) are well defined; cf. Theorem 6.1.2.

Proposition 6.4.1. Assume that the endpoint a is regular and that the endpoint b
is in the limit-point case. Then {C,Γ0,Γ1}, where

Γ0f = f(a) and Γ1f = (pf ′)(a), f ∈ domTmax , (6.4.2)

is a boundary triplet for the operator (Tmin )
∗ = Tmax . The self-adjoint extension

A0 corresponding to Γ0 is the restriction of Tmax defined on

domA0 =
{
f ∈ domTmax : f(a) = 0

}
and the minimal operator Tmin is the restriction of Tmax defined on

domTmin =
{
f ∈ domTmax : f(a) = (pf ′)(a) = 0

}
.

Moreover, if λ ∈ C \ R and χ(·, λ) is a nontrivial element in Nλ(Tmax ), then one
has χ(a, λ) 	= 0. For all λ ∈ C \ R the corresponding γ-field and Weyl function are
given by

γ(·, λ) = u1(·, λ) +M(λ)u2(·, λ) and M(λ) =
(pχ′)(a, λ)
χ(a, λ)

. (6.4.3)

Proof. First it will be verified that the mapping (Γ0,Γ1)
� : domTmax → C2 is

surjective. Let α ∈ C2. Then there exists f ∈ domTmax such that f(a) = α1,
(pf ′)(a) = α2, which vanishes in a neighborhood of b. To see this, let h be a
solution of Ly = 0 with h, ph′ ∈ AC[a, b) and h(a) = α1, (ph

′)(a) = α2. Now by
cutting off the function h near b one obtains a function f which satisfies Lf = g for
some g ∈ L2

r(a, b) and which vanishes in a neighborhood of b; see Proposition 6.1.3.
Hence, f ∈ domTmax and at a one has

Γ0f = f(a) = h(a) = α1 and Γ1f = (pf ′)(a) = (ph′)(a) = α2.

This proves the claim.

Next one verifies the abstract Green identity. For this one shows first that
limx→b Wx(f, g) = 0 for all f, g ∈ domTmax . In fact, since the endpoint b is in
the limit-point case it follows from Corollary 6.2.2 that Tmin has defect numbers
(1, 1). Now choose h1, h2 ∈ domTmax such that

h1(a) = 1, (ph′
1)(a) = 0, h2(a) = 0, (ph′

2)(a) = 1,

and such that h1 and h2 vanish in a neighborhood of b; cf. Proposition 6.1.3. Then
h1, h2 	∈ domTmin, since otherwise

lim
x→a

Wx(hi, g) = hi(a)(pg
′)(a)− (ph′

i)(a)g(a) = 0, i = 1, 2,
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for all g ∈ domTmax by (6.2.7) and Lemma 6.2.3, which is not possible by the
considerations in the beginning of the proof. Thus, every function f ∈ domTmax

can be written in the form

f = f0 + c1h1 + c2h2, f0 ∈ domTmin ,

for some c1, c2 ∈ C. Observe that therefore

Wx(f, g) = Wx(f0, g) +Wx(c1h1 + c2h2, g)

for all g ∈ domTmax , and since the last term vanishes in a neighborhood of b one
obtains

lim
x→b

W (f, g) = lim
x→b

W (f0, g) = 0

for all g ∈ domTmax . Hence, by (6.2.6) and Lemma 6.2.3, for f, g ∈ domTmax one
has

(Tmax f, g)L2
r(a,b)

− (f, Tmax g)L2
r(a,b)

= − lim
x→a

W (f, g)

= (pf ′)(a)g(a)− f(a)(pg′)(a),

which implies that the abstract Green identity is satisfied with the choice of Γ0

and Γ1 in (6.4.2). Thus, (6.4.2) defines a boundary triplet for (Tmin )
∗ = Tmax .

The description of the domain of the self-adjoint extension A0 is trivial.
Furthermore, by Proposition 2.1.2 (ii) one has domTmin = ker Γ0 ∩ ker Γ1, which
yields the stated description of the domain of the minimal operator.

Due to the assumption that the endpoint b is in the limit-point case, each
eigenspaceNλ(Tmax ), λ ∈ C \ R, has dimension one. Hence, if χ(·, λ) is a nontrivial
element which spans Nλ(Tmax ), λ ∈ C \ R, then, by Definition 2.3.4,

M(λ) =
{{χ(a, λ)c, (pχ′)(a, λ)c} : c ∈ C

}
, λ ∈ C \ R.

Observe that χ(a, λ) 	= 0 for λ ∈ C \ R, since otherwise χ(·, λ) ∈ ker (A0 − λ) and
the fact that A0 is self-adjoint would imply χ(·, λ) = 0. Consequently,

M(λ) =
(pχ′)(a, λ)
χ(a, λ)

, λ ∈ C \ R.

Likewise, it follows from Definition 2.3.1 that

γ(λ) =
{{χ(a, λ)c, χ(·, λ)c} : c ∈ C

}
, λ ∈ C \ R,

and so

γ(λ) =
χ(·, λ)
χ(a, λ)

, λ ∈ C \ R.

Writing χ(·, λ) in terms of the fundamental system,

χ(·, λ) = χ(a, λ)u1(·, λ) + (pχ′)(a, λ)u2(·, λ), λ ∈ C \ R,
the form of the γ-field follows. �
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Note that the γ-field and the Weyl function corresponding to the boundary
triplet {C,Γ0,Γ1} in Proposition 6.4.1 are defined and analytic on the resolvent set
of the self-adjoint operator A0. The expressions in (6.4.3) extend from C \ R to all
of ρ(A0) when ρ(A0)∩R 	= ∅. In fact, it follows from the direct sum decomposition
domTmax = domA0 + Nλ(Tmax) that also for each λ ∈ ρ(A0) ∩ R there exists
a nontrivial element χ(·, λ) in Nλ(Tmax ) such that χ(a, λ) 	= 0. It is clear from
(6.4.2) that also for these points λ ∈ ρ(A0) ∩ R the γ-field and Weyl function are
given by (6.4.3).

Example 6.4.2. In the special case r = p = 1 on ι = (a,∞) and a constant q ∈ R,
the Sturm–Liouville expression is Lf = −f ′′+qf . Fix the square root

√· such that
Im
√
λ > 0 for all λ ∈ C \ [0,∞) and

√
λ ≥ 0 for λ ∈ [0,∞). For all λ ∈ C \ [q,∞),

the function
x �→ χ(x, λ) = ei

√
λ−q (x−a) ∈ L2(a,∞)

spans the one-dimensional eigenspace Nλ(Tmax). Hence, the Weyl function M in
Proposition 6.4.1 is given by

M(λ) =
Γ1χ(·, λ)
Γ0χ(·, λ) = i

√
λ− q .

In terms of the fundamental system

u1(x, λ) = cos
[√

λ− q (x− a)
]
, u2(x, λ) =

sin
[√

λ− q (x− a)
]

√
λ− q

,

one has χ(x, λ) = u1(x, λ) +M(λ)u2(x, λ) = ei
√
λ−q (x−a) for λ ∈ C \ [q,∞). Note

also that M is holomorphic on C \ [q,∞) and that σ(A0) = [q,∞). Moreover, for
λ ∈ (q,∞) one has

lim
ε ↓ 0

ImM(λ+ iε) =
√
λ− q > 0,

and for λ ∈ [q,∞)
lim
ε ↓ 0

iεM(λ+ iε) = 0.

Below in Proposition 6.4.4 it is shown that Tmin is simple and hence the results
in Section 3.5 and Section 3.6 apply. In particular, it follows from Theorem 3.6.5
that σac(A0) = [q,∞) and Corollary 3.5.6 shows σp(A0) ∩ [q,∞) = ∅ (see also
Theorem 3.6.1).

Proposition 6.4.3. For λ ∈ ρ(A0) the resolvent of the self-adjoint extension A0 is
an integral operator of the form(

(A0 − λ)−1g
)
(t) =

∫ b

a

G0(t, s, λ)g(s)r(s)ds, g ∈ L2
r(a, b), (6.4.4)

where the Green function G0(t, s, λ) is given by

G0(t, s, λ) =

{
(u1(t, λ) +M(λ)u2(t, λ))u2(s, λ), a < s < t,

u2(t, λ)(u1(s, λ) +M(λ)u2(s, λ)), t < s < b.
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In particular, if g ∈ L2
r(a, b) has compact support, then(

(A0 − λ)−1g
)
(t) = u2(t, λ)M(λ)

∫ b

a

u2(s, λ)g(s)r(s) ds

+ u1(t, λ)

∫ t

a

u2(s, λ)g(s)r(s) ds

+ u2(t, λ)

∫ b

t

u1(s, λ)g(s)r(s) ds.

(6.4.5)

Proof. As in the proof of Proposition 6.3.4, consider the function f(·, λ) given by
the right-hand side in (6.4.4), which has the form

f(t, λ) =
(
u1(t, λ) +M(λ)u2(t, λ)

) ∫ t

a

u2(s, λ)g(s)r(s) ds

+ u2(t, λ)

∫ b

t

(
u1(s, λ) +M(λ)u2(s, λ)

)
g(s)r(s) ds

(6.4.6)

for g ∈ L2
r(a, b). Note that f(·, λ) is well defined, since u1(·, λ) + M(λ)u2(·, λ)

belongs to L2
r(a, b) by (6.4.3). A straightforward computation shows that f(·, λ) is

a solution of the inhomogeneous differential equation (L− λ)f = g satisfying the
initial conditions

f(a, λ) = 0,

(pf ′)(a, λ) = (pu′
2)(a, λ)

∫ b

a

(u1(s, λ) +M(λ)u2(s, λ))g(s)r(s) ds

=

∫ b

a

g(s) (u1(s, λ) +M(λ)u2(s, λ)) r(s) ds

= (g, γ(λ))L2
r(a,b)

.

On the other hand, since A0 ⊂ Tmax , it is clear that the function h = (A0−λ)−1g
also satisfies the inhomogeneous differential equation (L−λ)h = g and, moreover,

h(a) = Γ0h = Γ0(A0 − λ)−1g =
(
(A0 − λ)−1g

)
(a) = 0,

(ph′)(a) = Γ1h = Γ1(A0 − λ)−1g = γ(λ)∗g = (g, γ(λ))L2
r(a,b)

,

where Proposition 2.3.2 (iv) was used. Hence, f = h by the uniqueness property
for the initial value problem. This proves (6.4.4). The formula (6.4.5) follows for
g ∈ L2

r(a, b) with compact support from (6.4.6). �

Proposition 6.4.4. The minimal operator Tmin is simple.

Proof. It suffices to show that the defect spaces Nλ(Tmax ) span the space L2
r(a, b);

cf. Corollary 3.4.5. To see this, let g ∈ L2
r(a, b) and assume that∫ b

a

(
u1(t, λ) +M(λ)u2(t, λ)

)
g(t)r(t) dt = 0
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for all λ ∈ C \ R. Then it follows from (6.4.4) that

(
(A0 − λ)−1g

)
(t) = (u1(t, λ) +M(λ)u2(t, λ))

∫ t

a

u2(s, λ)g(s)r(s) ds

+ u2(t, λ)

∫ b

t

(
u1(s, λ) +M(λ)u2(s, λ)

)
g(s)r(s) ds

=
(
u1(t, λ) +M(λ)u2(t, λ)

) ∫ t

a

u2(s, λ)g(s)r(s) ds

− u2(t, λ)

∫ t

a

(
u1(s, λ) +M(λ)u2(s, λ)

)
g(s)r(s) ds

=

∫ t

a

(
u1(t, λ)u2(s, λ)− u2(t, λ)u1(s, λ)

)
g(s)r(s) ds

and the right-hand side is entire in λ. Now consider a bounded interval δ ⊂ R
such that the endpoints of δ are not eigenvalues of A0 and let h ∈ L2

r(a, b) be
a function with compact support. It follows from Stone’s formula (1.5.7) (see
also Example A.1.4), Fubini’s theorem, and dominated convergence that, for any
h ∈ L2

r(a, b) with compact support,

(E(δ)g, h)L2
r(a,b)

= lim
ε ↓ 0

1

2πi

∫
δ

((
(A0 − (μ+ iε))−1 − (A0 − (μ− iε))−1

)
g, h
)
L2

r(a,b)
dμ

= 0.

This implies that E(δ)g = 0 for all bounded intervals δ ⊂ R as above and letting
δ expand to R one concludes that g = E(R)g = 0. �

Let {C,Γ0,Γ1} be the boundary triplet in Proposition 6.4.1 with γ-field and
Weyl function given by

γ(·, λ) = u1(·, λ) +M(λ)u2(·, λ) and M(λ) =
(pχ′)(a, λ)
χ(a, λ)

,

where χ(·, λ) is a nontrivial element in Nλ(Tmax ), λ ∈ ρ(A0). Since the operator
Tmin is simple by Proposition 6.4.4, Theorem 3.6.1 shows that the Weyl function
M is analytic at λ if and only if λ ∈ ρ(A0), that λ ∈ σp(A0) if and only if
limε↓0 iεM(λ + iε) 	= 0, the poles of M coincide with the isolated eigenvalues of
A0, and λ ∈ σc(A0) if and only if limε↓0 iεM(λ + iε) = 0 and M does not admit
an analytic continuation to λ. Furthermore, if Δ is an open interval in R, then

σac(A0) ∩Δ = closac
({

λ ∈ Δ : 0 < ImM(λ+ i0) < +∞}).
In the special case Δ = R one has

σac(A0) = closac
({

λ ∈ R : 0 < ImM(λ+ i0) < +∞}).
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Furthermore, with the help of Corollary 3.6.9 one can exclude singular continuous
spectrum as follows. If Δ is an open interval in R and there exist at most countably
many λ ∈ Δ such that

ImM(λ+ iε)→ +∞, εM(λ+ iε)→ 0 as ε ↓ 0,

then σsc(A0)∩Δ = ∅. For more results on the description of singular and singular
continuous spectra of A0 in this context see Section 3.6.

Now consider the self-adjoint (maximal dissipative, maximal accumulative)
extensions of Tmin . According to Corollary 2.1.4 for τ ∈ R (τ ∈ C+, τ ∈ C−), the
realization Aτ of L with domain

domAτ =
{
f ∈ domTmax : (pf ′)(a) = τf(a)

}
is self-adjoint (maximal dissipative, maximal accumulative), and the boundary
condition τ = ∞ is understood as f(a) = 0, which corresponds to ker Γ0. For
τ ∈ R ∪ {∞} introduce the following transformation of the boundary triplet in
(6.4.2): (

Γτ
0

Γτ
1

)
=

1√
τ2 + 1

(
τ −1
1 τ

)(
Γ0

Γ1

)
. (6.4.7)

Then {C,Γτ
0 ,Γ

τ
1} is a boundary triplet defined on dom Tmax with corresponding

γ-field and Weyl function given by

γτ (λ) =
γ(λ)

τ −M(λ)

√
τ2 + 1 and Mτ (λ) =

1 + τM(λ)

τ −M(λ)
, λ ∈ C \ R; (6.4.8)

cf. (2.5.19) and (2.5.20). Moreover, it is clear that

ker Γτ
0 = ker (Γ1 − τΓ0) = domAτ ,

and again τ =∞ corresponds to the extension with boundary condition f(a) = 0.
The spectrum of Aτ can now be characterized with the help of the Weyl function
Mτ in the same way as the spectrum of the extension defined on ker Γ0 (that is,
τ = ∞) was characterized with the function M . E.g., λ is an eigenvalue of Aτ if
and only if limε↓0 iεMτ (λ+ iε) 	= 0, and the absolutely continuous spectrum of Aτ

is given by

σac(Aτ ) = closac
({

λ ∈ R : 0 < ImMτ (λ+ i0) < +∞}).
The transformation for the γ-field in (6.4.7) and (6.4.8) also shows up in a

transformation of the fundamental solutions.

Lemma 6.4.5. Let τ ∈ R ∪ {∞}. For λ ∈ C \ R the γ-field γτ (λ) is of the form

γτ (·, λ) = v1(·, λ) +Mτ (λ)v2(·, λ).
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Here the fundamental system (v1(·, λ); v2(·, λ)) is given by(
v1(·, λ)
v2(·, λ)

)
=

1√
τ2 + 1

(
τ −1
1 τ

)(
u1(·, λ)
u2(·, λ)

)
and one has W (v1(·, λ), v2(·, λ)) = 1.

Proof. Recall that γ(·, λ) = u1(·, λ) +M(λ)u2(·, λ). If v1(·, λ) and v2(·, λ) are as
above, then it is clear that(

u1(·, λ)
u2(·, λ)

)
=

1√
τ2 + 1

(
τ 1
−1 τ

)(
v1(·, λ)
v2(·, λ)

)
.

Hence,

γ(λ) =
1√

τ2 + 1

(
τv1(·, λ) + v2(·, λ) +M(λ)

(−v1(·, λ) + τv2(·, λ)
))

=
1√

τ2 + 1

(
(τ −M(λ))v1(·, λ) + (1 + τM(λ))v2(·, λ)

)
=

τ −M(λ)√
τ2 + 1

(
v1(·, λ) + 1 + τM(λ)

τ −M(λ)
v2(·, λ)

)
,

where it was used that M(λ) 	= τ ∈ R for λ ∈ C \ R. This leads to

γ(λ)

τ −M(λ)

√
τ2 + 1 = v1(·, λ) + 1 + τM(λ)

τ −M(λ)
v2(·, λ).

Comparing with (6.4.8) one obtains the claimed form of γτ (λ). �

Note that the formal solution

v2(·, λ) = 1√
τ2 + 1

(
u1(·, λ) + τu2(·, λ)

)
(6.4.9)

satisfies the boundary condition (pv′2)(a, λ) = τv2(a, λ) which is connected with
the self-adjoint realization Aτ defined on ker Γτ

0 = ker (Γ1 − τΓ0). Observe that
for g ∈ L2

r(a, b) and λ ∈ ρ(Aτ ) the resolvent of Aτ has the form

(
(Aτ − λ)−1g

)
(t) =

∫ b

a

Gτ (t, s, λ)g(s)r(s) ds, g ∈ L2
r(a, b), (6.4.10)

where the Green function is given by

Gτ (t, s, λ) =

{
(v1(t, λ) +Mτ (λ)v2(t, λ))v2(s, λ), a < s < t,

v2(t, λ)(v1(s, λ) +Mτ (λ)v2(s, λ)), t < s < b,
(6.4.11)
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that is,

(
(Aτ − λ)−1g

)
(t) =

(
v1(t, λ) +Mτ (λ)v2(t, λ)

) ∫ t

a

v2(s, λ)g(s)r(s) ds

+ v2(t, λ)

∫ b

t

(
v1(s, λ) +Mτ (λ)v2(s, λ)

)
g(s)r(s) ds.

This follows in the same way as in the proof of Proposition 6.4.3. In fact, a straight-
forward computation shows that the right-hand side (denoted by f(·, λ)) satisfies
the differential equation (L− λ)f = g and that

f(a, λ) =
1√

τ2 + 1

∫ b

a

(
v1(s, λ) +Mτ (λ)v2(s, λ)

)
g(s)r(s) ds,

(pf ′)(a, λ) =
τ√

τ2 + 1

∫ b

a

(
v1(s, λ) +Mτ (λ)v2(s, λ)

)
g(s)r(s) ds.

Hence,
1√

τ2 + 1

(
τf(a, λ)− (pf ′)(a, λ)

)
= 0

and

1√
τ2 + 1

(
f(a, λ) + τ(pf ′)(a, λ)

)
=

∫ b

a

(
v1(s, λ) +Mτ (λ)v2(s, λ)

)
g(s)r(s) ds

= (g, γτ (λ))L2
r(a,b)

.

Since h = (Aτ − λ)−1g also satisfies the equation (L − λ)h = g and the same
boundary condition Γτ

0h = 0 and Γτ
1h = (g, γτ (λ))L2

r(a,b)
, it follows that f = h.

In Theorem 6.4.7 below a unitary Fourier transform for the self-adjoint real-
ization Aτ , τ ∈ R ∪ {∞}, will be provided, which takes Aτ into multiplication by
the independent variable in the space L2

dστ
(R). Here στ denotes the nondecreasing

function in the integral representation

Mτ (λ) = ατ +

∫
R

(
1

t− λ
− t

1 + t2

)
dστ (t), λ ∈ C \ R, (6.4.12)

of the Weyl function Mτ . Observe that no linear term is present in the integral
representation since Aτ is not multivalued (this follows, e.g., from Lemma A.4.3
and Proposition 3.5.7). Recall that ατ is a real constant and that

∫
R(1+t2)−1 dστ (t)

is finite; cf. Theorem A.2.5

The following preparatory lemma shows that the condition (B.1.2) in Ap-
pendix B for the Fourier transform is satisfied.
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Lemma 6.4.6. Let τ ∈ R ∪ {∞} and let Eτ (·) be the spectral measure of the self-
adjoint operator Aτ . For f ∈ L2

r(a, b) with compact support define the Fourier

transform f̂ by

f̂(μ) =

∫ b

a

v2(s, μ)f(s)r(s) ds, μ ∈ R,

where v2(·, μ) is the formal solution in (6.4.9). Let στ be the function in the integral
representation (6.4.12) of the Weyl function Mτ . Then for every bounded open
interval δ ⊂ R whose endpoints are not eigenvalues of Aτ one has

(Eτ (δ)f, f)L2
r(a,b)

=

∫
δ

f̂(μ) f̂(μ) dστ (μ).

Proof. Observe that for f ∈ L2
r(a, b) with compact support and λ ∈ ρ(Aτ ) the

resolvent of Aτ can be written as

(
(Aτ − λ)−1f

)
(t) = Mτ (λ)v2(t, λ)

∫ b

a

v2(s, λ)f(s)r(s) ds

+ v1(t, λ)

∫ t

a

v2(s, λ)f(s)r(s) ds+ v2(t, λ)

∫ b

t

v1(s, λ)f(s)r(s) ds.

(6.4.13)

Now let δ ⊂ R be a bounded open interval whose endpoints are not eigenvalues
of Aτ . Then the spectral projection of Aτ corresponding to δ is given by Stone’s
formula

(Eτ (δ)f, f)L2
r(a,b)

= lim
ε ↓ 0

1

2πi

∫
δ

((
(Aτ − (μ+ iε))−1 − (Aτ − (μ− iε))−1

)
f, f
)
L2

r(a,b)
dμ.

If f ∈ L2
r(a, b) has compact support, say in [a′, b′] ⊂ (a, b), then (6.4.13) and the

fact that the function

λ �→ v1(t, λ)

∫ t

a

v2(s, λ)f(s)r(s) ds+ v2(t, λ)

∫ b

t

v1(s, λ)f(s)r(s) ds

in (6.4.13) is entire imply that (Eτ (δ)f, f)L2
r(a,b)

has the form

lim
ε ↓ 0

1

2πi

∫
δ

(∫ b

a

∫ b

a

[
gt,s(μ+ iε)Mτ (μ+ iε)

− gt,s(μ− iε)Mτ (μ− iε)
]
f(s)r(s)ds f(t)r(t)dt

)
dμ,

(6.4.14)

where gt,s is defined by gt,s(η) = v2(t, η)v2(s, η). Note that for t, s ∈ [a′, b′] the
function gt,s is entire in η. For ε0 > 0 and A < B such that δ ⊂ (A,B) consider
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the rectangle R = [A,B]× [−iε0, iε0]. The function {t, s, η} �→ gt,s(η) is bounded
on [a′, b′] × [a′, b′] × R and hence for each fixed ε such that 0 < ε ≤ ε0 it follows
that ∫

δ

(∫ b

a

∫ b

a

[
gt,s(μ+ iε)Mτ (μ+ iε)

− gt,s(μ− iε)Mτ (μ− iε)
]
f(s)r(s)ds f(t)r(t)dt

)
dμ

=

∫ b

a

∫ b

a

(∫
δ

[
gt,s(μ+ iε)Mτ (μ+ iε)

− gt,s(μ− iε)Mτ (μ− iε)
]
dμ

)
f(s)r(s)ds f(t)r(t)dt.

The Stieltjes inversion formula in Lemma A.2.7 shows that

lim
ε ↓ 0

1

2πi

∫
δ

[
(gt,sMτ )(μ+ iε)− (gt,sMτ )(μ− iε)

]
dμ =

∫
δ

gt,s(μ) dστ (μ)

for all t, s ∈ [a′, b′]. To justify taking the limit ε ↓ 0 inside the integral (6.4.14)
one needs dominated convergence. Recall from Lemma A.2.7 that there exists a
constant m ≥ 0 such that for 0 < ε ≤ ε0 one has∣∣∣∣∫

δ

[
(gt,sMτ )(μ+ iε)− (gt,sMτ )(μ− iε)

]
dμ

∣∣∣∣
≤ m sup

{|gt,s(η)|, |g′t,s(η)| : t, s ∈ [a′, b′], η ∈ R
}
,

(6.4.15)

where R = [A,B]× [−iε0, iε0]. Since {t, s, η} �→ gt,s(η) and {t, s, η} �→ g′t,s(η) are
bounded functions on [a′, b′] × [a′, b′] × R, it follows that the integral in (6.4.15)
regarded as a function in {t, s} on [a′, b′]×[a′, b′] is bounded by some constant for all
0 < ε ≤ ε0. As f ∈ L2

r(a, b) has compact support, there is an integrable majorant
for the integrands in (6.4.14). Dominated convergence and Fubini’s theorem yield

(Eτ (δ)f, f)L2
r(a,b)

=

∫ b

a

∫ b

a

(∫
δ

gt,s(μ) dστ (μ)

)
f(s)r(s)ds f(t)r(t)dt

=

∫
δ

(∫ b

a

v2(s, μ)f(s)r(s) ds

)(∫ b

a

v2(t, μ)f(t)r(t) dt

)
dστ (μ)

for every bounded open interval δ whose endpoints are not eigenvalues of Aτ . Now
the assertion follows from the definition of f̂ . �

The next theorem is a consequence of Lemma 6.4.6 and Theorem B.1.4 in
Appendix B.



408 Chapter 6. Sturm–Liouville Operators

Theorem 6.4.7. Let τ ∈ R ∪ {∞}, let v2(·, μ) be the formal solution in (6.4.9),
and let στ be the function in the integral representation of the Weyl function Mτ .
Then the Fourier transform

f �→ f̂ , f̂(μ) =

∫ b

a

v2(s, μ)f(s)r(s) ds, μ ∈ R,

extends by continuity from compactly supported functions f ∈ L2
r(a, b) to a unitary

mapping F : L2
r(a, b)→ L2

dστ
(R), such that the self-adjoint operator Aτ in L2

r(a, b)
is unitarily equivalent to multiplication by the independent variable in L2

dστ
(R).

Proof. It follows from Lemma 6.4.6 that the condition (B.1.2) is satisfied. It is
also clear that for every μ ∈ R there exists s ∈ (a, b) such that v2(s, μ) 	= 0 and
hence (B.1.13) holds. Now the result follows from Theorem B.1.4. �

In the next lemma the Fourier transform Fγτ of the γ-field in (6.4.8) cor-
responding to the boundary triplet {C,Γτ

0 ,Γ
τ
1} is computed; this will be useful

in identifying the model in Theorem 6.4.7 with the model for scalar Nevanlinna
functions discussed in Section 4.3.

Lemma 6.4.8. Let τ ∈ R∪{∞} and let γτ be the γ-field in Lemma 6.4.5. Then for
all λ ∈ C \ R one has almost everywhere in the sense of dστ :[

Fγτ (λ)
]
(μ) =

1

μ− λ
, μ ∈ R,

where F is the Fourier transform from L2
r(a, b) onto L2

dστ
(R) in Theorem 6.4.7.

Proof. Let f ∈ L2
r(a, b). From (6.4.10) one obtains for all t ∈ (a, b) that(

(Aτ − λ)−1f
)
(t) =

(
Gτ (t, ·, λ), f

)
L2

r(a,b)
,

where both terms are absolutely continuous in t ∈ (a, b). Differentiation yields

p(t)
d

dt

(
(Aτ − λ)−1f

)
(t) =

(
p(t)∂tGτ (t, ·, λ), f

)
L2

r(a,b)
,

where again both terms are absolutely continuous in t ∈ (a, b). Since the Fourier
transform F is unitary, these two formulas lead to(

(Aτ − λ)−1f
)
(t) =

(
FGτ (t, ·, λ),Ff

)
L2

dστ (R)
(6.4.16)

and

p(t)
d

dt

(
(Aτ − λ)−1f

)
(t) =

(
Fp(t)∂tGτ (t, ·, λ),Ff

)
L2

dστ (R)
, (6.4.17)

where all terms are absolutely continuous in t ∈ (a, b).
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With f ∈ L2
r(a, b) it follows from (B.1.8) that(
(Aτ − λ)−1f

)
(t) =

∫
R

v2(t, μ)

μ− λ
(Ff)(μ) dστ (μ) (6.4.18)

for almost all t ∈ (a, b) and that, in particular, the integrand on the right-hand
side is integrable. In fact, if Ff has compact support, then the right-hand side
of (6.4.18) is absolutely continuous in t ∈ (a, b) and hence in this case (6.4.18)
holds for all t ∈ (a, b). Moreover, if Ff has compact support, one also has for all
t ∈ (a, b)

p(t)
d

dt

(
(Aτ − λ)−1f

)
(t) =

∫
R

(pv′2)(t, μ)
μ− λ

(Ff)(μ) dστ (μ), (6.4.19)

where again all terms are absolutely continuous in t ∈ (a, b). Differentiation under
the integral sign is now allowed as the integrand has compact support and the
function μ �→ (pv′2)(t, μ) is bounded.

Comparison of the integrals on the right-hand sides of (6.4.16) and (6.4.18)
under the assumption that Ff is an arbitrary function in L2

dστ
(R) with compact

support leads for each t ∈ (a, b) to

v2(t, μ)

μ− λ
=
[
FGτ (t, ·, λ)

]
(μ), μ ∈ R, (6.4.20)

almost everywhere. Similarly, comparison of the integrals on the right-hand sides
of (6.4.17) and (6.4.19) under the assumption that Ff is an arbitrary function in
L2
dστ

(R) with compact support leads for each t ∈ (a, b) to

(pv′2)(t, μ)
μ− λ

= F
[
p(t)∂tGτ (t, ·, λ)

]
(μ), μ ∈ R, (6.4.21)

almost everywhere. The union of the exceptional sets in (6.4.20) and (6.4.21) is
denoted by Ω(t) and it has measure 0 in the sense of dστ .

Let t ∈ (a, b); then for all μ ∈ R \ Ω(t) it follows from the identities (6.4.20)
and (6.4.21) that

1

μ− λ

(
v1(t, λ)(pv

′
2)(t, μ)− (pv′1)(t, λ)v2(t, μ)

)
= v1(t, λ)F

[
p(t)∂tGτ (t, ·, λ)

]
(μ)− (pv′1)(t, λ)

[
FGτ (t, ·, λ)

]
(μ)

= F
[
v1(t, λ)p(t)∂tGτ (t, ·, λ)− (pv′1)(t, λ)Gτ (t, ·, λ)

]
(μ)

= F
[
w(t, ·, λ)](μ),

(6.4.22)

where w(t, s, λ) is defined by

w(t, s, λ) =

{
Mτ (λ)v2(s, λ), a < s < t,

γτ (s, λ), t < s < b.
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The form of w(t, s, λ) follows from (6.4.11), Lemma 6.4.5, and a straightforward
computation. First observe that according to this definition

‖γτ (·, λ)− w(t, ·, λ)‖2L2
r(a,b)

=

∫ t

a

|v1(s, λ)|2 r(s) ds→ 0 as t→ a,

and the continuity of F implies that∥∥F[γτ (·, λ)]− F
[
w(t, ·, λ)]∥∥

L2
dστ

(R) → 0 as t→ a.

Now approximate the endpoint a by a sequence (tn). Then there exist a subse-
quence, again denoted by (tn), and a set Ω of measure 0 in the sense of dστ , such
that pointwise

F
[
γτ (·, λ)

]
(μ) = lim

n→∞F
[
w(tn, ·, λ)

]
(μ), μ ∈ R \ Ω.

Observe that
⋃∞

n=1 Ω(tn) is a set of measure 0 in the sense of dστ and that via
(6.4.22)

F
[
w(tn, ·, λ)

]
(μ) =

1

μ− λ

(
v1(tn, λ)(pv

′
2)(tn, μ)− (pv′1)(tn, λ)v2(tn, μ)

)
for all μ ∈ R \⋃∞

n=1 Ω(tn). The limit on the right-hand side as n→∞ gives

1

μ− λ

(
v1(a, λ)(pv

′
2)(a, μ)− (pv′1)(a, λ)v2(a, μ)

)
=

1

μ− λ
,

which follows from the special form of the fundamental system (v1(·, λ); v2(·, λ))
in Lemma 6.4.5 and (6.4.1). Hence,

F
[
γτ (·, λ)

]
(μ) =

1

μ− λ
, μ ∈ R \

(
Ω ∪

∞⋃
n=1

Ω(tn)

)
,

which completes the proof. �

Lemma 6.4.8 will be used to identify the model in Theorem 6.4.7 with the
model for scalar Nevanlinna functions discussed in Chapter 4.3. The Weyl function
Mτ of the boundary triplet {C,Γτ

0 ,Γ
τ
1} for Tmax has the integral representation

(6.4.12). By Theorem 4.3.1, there is a closed simple symmetric operator S in
L2
dστ

(R) such that the Nevanlinna function Mτ in (6.4.12) is the Weyl function
corresponding to the boundary triplet {C,Γ′

0,Γ
′
1} for S∗ in Theorem 4.3.1. The

γ-field corresponding to {C,Γ′
0,Γ

′
1} is denoted by γ′ and is given by (4.3.8). Fur-

thermore, the self-adjoint restriction A′
0 corresponding to the boundary mapping

Γ′
0 is the maximal multiplication operator by the independent variable in L2

dστ
(R).

By comparing with (4.3.8) one sees that, according to Lemma 6.4.8, the Fourier
transform F from L2

r(a, b) onto L2
dστ

(R), being a unitary mapping, satisfies

Fγτ (λ) = γ′(λ).
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Hence, by Theorem 4.2.6, the boundary triplet {C,Γτ
0 ,Γ

τ
1} for the simple operator

Tmin and the boundary triplet {C,Γ′
0,Γ

′
1} for the simple operator S are unitarily

equivalent under the Fourier transform F. Thus, not only are A′
0 and Aτ unitarily

equivalent under F,
A′

0 = FAτF
−1,

as stated in Theorem 6.4.7, but in fact the complete boundary triplet structure is
preserved under the Fourier transform F.

Now assume that the coefficient functions satisfy (6.1.2) and that the end-
point a is in the limit-circle case, while the endpoint b is in the limit-point case.
Let u, v be real solutions of (L − λ0)y = 0, λ0 ∈ R, with W (u, v) = 1 with
u, v ∈ L2

r(a, a
′). Let a fundamental system (u1(·, λ);u2(·, λ)) for the equation

(L− λ)y = 0 be fixed by the initial conditions (6.2.11). The following proposition
is proved along the same lines as Proposition 6.4.1.

Proposition 6.4.9. Assume that the endpoint a is in the limit-circle case and that
the endpoint b is in the limit-point case. Then {C,Γ0,Γ1}, where

Γ0f = f [0](a) and Γ1f = f [1](a), f ∈ domTmax , (6.4.23)

is a boundary triplet for the operator (Tmin )
∗ = Tmax . The self-adjoint extension

A0 corresponding to Γ0 is the restriction of Tmax defined on

domA0 =
{
f ∈ domTmax : f [0](a) = 0

}
and the minimal operator Tmin is the restriction of Tmax defined on

domTmin =
{
f ∈ domTmax : f [0](a) = f [1](a) = 0

}
.

Moreover, if λ ∈ C \ R and χ(·, λ) is a nontrivial element in Nλ(Tmax ), then one
has χ[0](a, λ) 	= 0. For all λ ∈ C \ R the corresponding γ-field and Weyl function
are given by

γ(·, λ) = u1(·, λ) +M(λ)u2(·, λ) and M(λ) =
χ[1](a, λ)

χ[0](a, λ)
.

Proof. First it will be verified that the mapping (Γ0,Γ1)
� : domTmax → C2 is

surjective. Let α ∈ C2; then there exists f ∈ domTmax such that f [0](a) = α1,
f [1](a) = α2, and f vanishes in a neighborhood of b. To see this, define the function
h on (a, b) by

h(x) = α1u(x) + α2v(x).

Then h, ph′ ∈ AC(a, b) and h satisfies (L − λ0)y = 0, while h ∈ L2
r(a, a

′) by
assumption. Now by cutting off the function h near b, one obtains a function
f which satisfies (L − λ0)f = g for some g ∈ L2

r(a, b) and which vanishes in a
neighborhood of b, see Proposition 6.1.3. Hence, f ∈ domTmax and at a one has

Γ0f = f [0](a) = h[0](a) = Wa(h, v) = α1
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and
Γ1f = f [1](a) = h[1](a) = −Wa(h, u) = α2.

This proves the claim.

Now the abstract Green identity will be proved. The argument is the same as
in the proof of Proposition 6.4.1. It will be shown first that limx→b Wx(f, g) = 0 for
all f, g ∈ domTmax . In fact, since b is in the limit-point case, the minimal operator
Tmin has defect numbers (1, 1) by Corollary 6.2.2. Now choose h1, h2 ∈ domTmax

such that
h
[0]
1 (a) = 1, h

[1]
1 (a) = 0, h

[0]
2 (a) = 0, h

[1]
2 (a) = 1,

and such that h1 and h2 vanish in a neighborhood of b; cf. Proposition 6.1.3. Then
h1, h2 	∈ domTmin follows in the same way as in the proof of Proposition 6.4.1
from (6.2.7) and Lemma 6.2.5. Thus, every function f ∈ domTmax can be written
in the form

f = f0 + c1h1 + c2h2, f0 ∈ domTmin ,

for some c1, c2 ∈ C. Therefore,

Wx(f, g) = Wx(f0, g) +Wx(c1h1 + c2h2, g)

for all g ∈ domTmax and since the last term vanishes in a neighborhood of b, one
obtains

lim
x→b

W (f, g) = lim
x→b

W (f0, g) = 0

for all g ∈ domTmax . Hence, it follows from (6.2.6) and Lemma 6.2.5 that for
f, g ∈ domTmax one has

(Tmax f, g)L2
r(a,b)

− (f, Tmax g)L2
r(a,b)

= − lim
x→a

W (f, g)

= f [1](a)g[0](a)− f [0](a)g[1](a),

which implies that the abstract Green identity is satisfied with the choice of Γ0

and Γ1 in (6.4.23). Thus, (6.4.23) defines a boundary triplet for (Tmin )
∗ = Tmax .

The forms of domA0, domTmin , the γ-field, and the Weyl function are veri-
fied in the same way as in the proof of Proposition 6.4.1. �

6.5 The case of two limit-point endpoints and
interface conditions

Assume that the endpoints a and b of the interval (a, b) are both singular and that
the differential expression L is in the limit-point case at a and at b. In this section
interface conditions at an interior point c ∈ (a, b) are discussed and the maximal
operator Tmax associated with L in L2

r(a, b) is identified as a natural extension of
the coupling of the minimal operators on the subintervals (a, c) and (c, b). It turns
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out, in particular, that Tmax is self-adjoint in L2
r(a, b) and hence Tmin = Tmax, so

that the defect numbers of Tmin are (0, 0); cf. Corollary 6.2.2.

Let c ∈ (a, b) and consider the intervals (a, c) and (c, b) separately. The
differential expression L will be restricted to the open intervals (a, c) and (c, b), so
that the endpoint c is regular for L and the endpoints a and b are in the limit-point
case. At the point c fix a fundamental system (u1(·, λ);u2(·, λ)) for the equation
(L− λ)y = 0 by the conditions(

u1(c, λ) u2(c, λ)
(pu′

1)(c, λ) (pu′
2)(c, λ)

)
=

(
1 0
0 1

)
. (6.5.1)

In the following the functions f on (a, b) will often be written in the vector form(
f+
f−

)
, where f+ = f�(c,b) and f− = f�(a,c);

here the indices + and − stand for the restriction of a function on (a, b) to the
subintervals (c, b) and (a, c), respectively.

Let T+
max be the maximal operator generated by L on (c, b) and define

Γ+
0 f+ = f+(c) and Γ+

1 f+ = (p+f
′
+)(c), f+ ∈ domT+

max .

According to Proposition 6.4.1, {C,Γ+
0 ,Γ

+
1 } is a boundary triplet for T+

max with
Weyl function m+, so that on (c, b)

γ+(·, λ) = u1(·, λ) +m+(λ)u2(·, λ) ∈ L2
r(c, b),

where u1(·, λ) and u2(·, λ) are as in (6.5.1). Note that the operator A+
0 with domain

domA+
0 = ker Γ+

0 =
{
f+ ∈ domT+

max : f+(c) = 0
}

is a self-adjoint extension of the minimal operator T+
min in L2

r+(c, b) defined on

domT+
min =

{
f+ ∈ domT+

max : f+(c) = (pf ′
+)(c) = 0

}
.

Likewise, let T−
max be the maximal operator generated by L on (a, c) and define

Γ−
0 f− = f−(c) and Γ−

1 f− = −(p−f ′
−)(c), f− ∈ domT−

max .

Then {C,Γ−
0 ,Γ

−
1 } is a boundary triplet for T−

max with Weyl function m−, so that
on (a, c)

γ−(·, λ) = u1(·, λ)−m−(λ)u2(·, λ) ∈ L2
r(a, c),

where again u1(·, λ) and u2(·, λ) are as in (6.5.1). Note that the operator A−
0 with

domain
domA−

0 = ker Γ−
0 =

{
f− ∈ domT−

max : f−(c) = 0
}
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is a self-adjoint extension of the minimal operator T−
min in L2

r(a, c) defined on

domT−
min =

{
f− ∈ domT−

max : f−(c) = (pf ′
−)(c) = 0

}
.

The two maximal operators together give rise to the orthogonal coupling

T−
max ⊕̂ T+

max in L2
r(a, b) = L2

r(a, c)⊕ L2
r(c, b).

It is clear from Proposition 1.3.13 that T−
max ⊕̂ T+

max is the adjoint of the or-
thogonal coupling of the corresponding minimal operators T+

min ⊕̂ T−
min , and that

T+
min ⊕̂ T−

min is a restriction of T+
max ⊕̂ T−

max defined by the conditions

f+(c) = 0 = f−(c) and (p+f
′
+)(c) = 0 = −(p−f ′

−)(c)

on the functions f ∈ dom (T+
max ⊕̂ T−

max ). In particular, these conditions force
a smooth connection at c. Note that T+

min ⊕̂ T−
min is a densely defined closed

symmetric operator with defect numbers (2, 2) in L2
r(a, b) = L2

r(a, c) ⊕ L2
r(c, b),

which is simple since both operators T+
min and T−

min are simple by Proposition 6.4.4.
The orthogonal coupling T+

max ⊕̂ T−
max can also be identified with an operator

associated with L when it is restricted to the domain{
f ∈ L2

r(a, b) : f, pf
′ ∈ AC((a, b)\{c}), Lf ∈ L2

r(a, b)
}
;

in other words, for the elements in this domain both f and pf ′ are allowed to have
one-sided limits at c which need not be equal. Similarly, the orthogonal coupling
T+
min ⊕̂ T−

min can be identified as a restriction of the self-adjoint operator Tmax in
L2
r(a, b) defined by the interface conditions

f(c) = (pf ′)(c) = 0.

The following result is a direct consequence of the orthogonal coupling of boundary
triplets; see Section 4.6.

Proposition 6.5.1. A boundary triplet {C2, Γ̃0, Γ̃1} for T+
max ⊕̂ T−

max is given by

Γ̃0f =

(
f+(c)
f−(c)

)
and Γ̃1f =

(
(p+f

′
+)(c)

−(p−f ′
−)(c)

)
, (6.5.2)

where f = (f+, f−)� ∈ dom (T+
max ⊕̂ T−

max ). The self-adjoint extension Ã0 corre-

sponding to Γ̃0 is the orthogonal coupling of the operators A+
0 and A−

0 with domain

dom Ã0 =

{
f =

(
f+
f−

)
∈ dom

(
T+
max ⊕̂ T−

max

)
: f+(c) = 0 = f−(c)

}
and the orthogonal coupling of the minimal operators T+

min ⊕̂ T−
min is the restric-

tion of T+
max ⊕̂ T−

max defined on

dom
(
T+
min ⊕̂ T−

min

)
=

{
f =

(
f+
f−

)
∈ dom

(
T+
max ⊕̂ T−

max

)
:

f+(c) = 0 = f−(c),
(pf ′

+)(c) = 0 = (pf ′
−)(c)

}
.
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Moreover, for all λ ∈ ρ(Ã0) = ρ(A+
0 )∩ρ(A−

0 ) the corresponding γ-field γ̃ and Weyl

function M̃ are given by

γ̃(λ) =

(
γ+(λ) 0

0 γ−(λ)

)
and M̃(λ) =

(
m+(λ) 0

0 m−(λ)

)
.

Note that the self-adjoint operator Ã0 = A+
0 ⊕̂ A−

0 is the orthogonal coupling
of the self-adjoint realizations of L on (a, c) and (c, b) corresponding to Dirichlet
boundary conditions at c. The resolvents of A+

0 and A−
0 admit an integral repre-

sentation as in Proposition 6.4.3 which extends in a natural form to the orthogonal
coupling Ã0. Since the orthogonal coupling T+

min ⊕̂ T−
min of the minimal operators

is a densely defined closed simple symmetric operator with defect numbers (2, 2),

the spectrum of Ã0 can be described with the help of the 2 × 2-matrix function
M̃ in Proposition 6.5.1 and the general results in Section 3.5 and Section 3.6; cf.
the considerations below Proposition 6.4.4.

Recall for completeness that all self-adjoint extensions ÃΘ of the orthogonal
coupling T+

min ⊕̂ T−
min in L2

r(a, b) = L2
r(a, c)⊕L2

r(c, b) are in one-to-one correspon-
dence to the self-adjoint relations Θ in C2 via

dom ÃΘ =
{
f ∈ dom

(
T+
max ⊕̂ T−

max

)
: {Γ̃0f, Γ̃1f} ∈ Θ

}
=

{
f ∈ dom

(
T+
max ⊕̂ T−

max

)
:

{(
f+(c)
f−(c)

)
,

(
(p+f

′
+)(c)

−(p−f ′
−)(c)

)}
∈ Θ

}
.

For λ ∈ ρ(ÃΘ) ∩ ρ(Ã0) Krĕın’s formula in the present setting has the form

(ÃΘ − λ)−1 = (Ã0 − λ)−1 + γ̃(λ)
(
Θ− M̃(λ)

)−1
γ̃(λ)∗. (6.5.3)

In the same way as in Section 6.3 and Section 6.4, the spectral properties of the
self-adjoint realizations ÃΘ can be described in a convenient way with the help of
transforms of the Weyl function M̃ ; cf. Section 3.8.

Among all self-adjoint extensions of T+
min ⊕̂ T−

min there is one of particular
importance, namely the extension corresponding to the self-adjoint relation

Θ̃ = span

(
1
1

)
× span

(
1
−1
)

=

{{(
ϕ
ϕ

)
,

(
ψ
−ψ
)}

: ϕ,ψ ∈ C
}
, (6.5.4)

which was also considered in the abstract context in Section 4.6; cf. Proposi-
tion 4.6.1.

Corollary 6.5.2. Let {C2, Γ̃0, Γ̃1} be the boundary triplet for T+
max ⊕̂ T−

max as de-

fined in (6.5.2) and let the self-adjoint relation Θ̃ be as in (6.5.4). Then the cor-

responding self-adjoint extension ÃΘ̃ of T+
min ⊕̂ T−

min satisfies

ÃΘ̃ = Tmax , (6.5.5)



416 Chapter 6. Sturm–Liouville Operators

and for λ ∈ C \ R Krĕın’s formula in (6.5.3) reads

(Tmax − λ)−1 = (Ã0 − λ)−1 − 1

m+(λ) +m−(λ)
γ̃(λ)

(
1 1
1 1

)
γ̃(λ)∗. (6.5.6)

Proof. By definition, the self-adjoint extension ÃΘ̃ of T+
min ⊕̂ T−

min is determined
by the boundary condition{

Γ̃0f, Γ̃1f
} ∈ Θ̃, f =

(
f+
f−

)
∈ dom (T+

max ⊕̂ T−
max ),

which, by the definition of the boundary mappings in Proposition 6.5.1 and (6.5.4),
leads to

dom ÃΘ̃ =

{
f =

(
f+
f−

)
∈ dom

(
T+
max ⊕̂ T−

max

)
:

f+(c) = f−(c)
(p+f

′
+)(c) = (p−f ′

−)(c)

}
.

Observe that this domain coincides with dom Tmax and (6.5.5) follows. Krĕın’s
formula in (6.5.6) follows from (6.5.3) and

(
Θ̃− M̃(λ)

)−1
= − 1

m+(λ) +m−(λ)

(
1 1
1 1

)
;

cf. Proposition 4.6.1. �

Since Tmax is self-adjoint, it follows from Corollary 6.5.2 that the defect
numbers of Tmin are (0, 0). This fact can be seen as a completion of the statements
in Corollary 6.2.2.

The boundary triplet in (6.5.2) will now be transformed in order to inter-
pret the self-adjoint extension Tmax in (6.5.5) in a convenient way. The following
proposition is a variant of Proposition 4.6.4 in the present situation.

Proposition 6.5.3. A boundary triplet {C2, Γ̂0, Γ̂1} for T+
max ⊕̂ T−

max is given by

Γ̂0f =

(−(p+f ′
+)(c) + (p−f ′

−)(c)
f+(c)− f−(c)

)
and Γ̂1f =

(
f+(c)

(p−f ′
−)(c)

)
,

where f = (f+, f−)� ∈ dom (T+
max ⊕̂ T−

max ). Here the self-adjoint operator de-

fined on ker Γ̂0 coincides with the maximal operator Tmax associated with L in
L2
r(a, b). For all λ ∈ C \ R the Weyl function corresponding to the boundary triplet

{C2, Γ̂0, Γ̂1} is given by

M̂(λ) =

⎛⎜⎜⎝−
1

m+(λ) +m−(λ)
m−(λ)

m+(λ) +m−(λ)

m−(λ)
m+(λ) +m−(λ)

m−(λ)m+(λ)

m+(λ) +m−(λ)

⎞⎟⎟⎠ . (6.5.7)
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Assume that λ ∈ ρ(Ã0) = ρ(A+
0 ) ∩ ρ(A−

0 ). Then the functions m+ and m−
are defined and analytic at λ. It is not difficult to check that λ ∈ σp(Tmax ) if
and only if m+(λ) +m−(λ) = 0; this also follows from Theorem 2.6.2, the special

form of M̃ in Proposition 6.5.1, and the choice of Θ̃. Since the resolvents of Tmax

and the orthogonal coupling Ã0 differ by a rank-one operator, it is also clear that
a point λ ∈ ρ(A+

0 ) ∩ ρ(A−
0 ) is either an isolated eigenvalue of Ã, or belongs to

ρ(Tmax ). Hence, the expression for the Weyl function M̂ in (6.5.7) remains valid
for all λ ∈ ρ(A+

0 )∩ρ(A−
0 )∩ρ(Tmax ). Note also that for λ ∈ C \ R the Weyl function

M̂ has the simple representation

M̂(λ) = −
(
m+(λ) −1
−1 − 1

m−(λ)

)−1

.

This representation remains valid for all λ ∈ ρ(A+
0 ) ∩ ρ(A−

1 ) ∩ ρ(Ã), where A−
1

denotes the self-adjoint operator in L2
r(a, c) defined on ker Γ−

1 .

As the orthogonal coupling T+
min ⊕̂ T−

min is a simple symmetric operator with
defect numbers (2, 2), the spectral properties of the self-adjoint extension Tmax

can be described by means of the Weyl function M̂ in Proposition 6.5.3 and the
general results in Section 3.5 and Section 3.6. First of all, it is clear that the poles
of M̂ coincide with the isolated eigenvalues of Tmax and hence it follows from the
representation (6.5.7) that λ ∈ σp(Tmax ) is an isolated eigenvalue if and only if
m+ and m− are holomorphic at λ and m+(λ) + m−(λ) = 0, or both m+ and

m− have a pole at λ. Note that M̂ is holomorphic at λ if m∓ has a pole and m±
is holomorphic at λ. For the description of the eigenvalues of Tmax embedded in
the continuous spectrum recall from Corollary 3.5.6 (see also Theorem 3.6.1) that

λ ∈ σp(Tmax ) if and only if R̂λϕ = limε ↓ 0 iεM̂(λ+ iε)ϕ 	= 0 for some ϕ ∈ C2 and
that the linear map

τ̂ : ker (Tmax − λ)→ ran R̂λ, f(·, λ) �→ Γ̂1f(·, λ) =
(

f+(c, λ)
(p−f ′

−)(c, λ)

)
,

is bijective. The continuous, absolutely continuous, and singular continuous spec-
tra are described as in Theorem 3.6.5 and Theorem 3.6.8.

Proposition 6.5.4. For λ ∈ C \ R the resolvent of the self-adjoint extension Tmax

is an integral operator of the form

(
(Tmax − λ)−1g

)
(t) =

∫ b

a

G(t, s, λ)g(s)r(s) ds, g ∈ L2
r(a, b), (6.5.8)

where the Green function G(t, s, λ) is given by{ −1
m+(λ)+m−(λ) (u1(t, λ) +m+(λ)u2(t, λ))(u1(s, λ)−m−(λ)u2(s, λ)), a < s < t,

−1
m+(λ)+m−(λ) (u1(t, λ)−m−(λ)u2(t, λ))(u1(s, λ) +m+(λ)u2(s, λ)), t < s < b.
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In particular, if g ∈ L2
r(a, b) has compact support, then

(
(Tmax − λ)−1g

)
(t) =

(
u1(t, λ) u2(t, λ)

)
M̂(λ)

⎛⎝∫ b

a
u1(s, λ)g(s)r(s) ds∫ b

a
u2(s, λ)g(s)r(s) ds

⎞⎠
− u1(t, λ)

∫ b

t

u2(s, λ)g(s)r(s) ds− u2(t, λ)

∫ t

a

u1(s, λ)g(s)r(s) ds,

where the 2× 2 matrix M̂(λ) is given by (6.5.7).

Proof. Observe that for g ∈ L2
r(a, b) and λ ∈ C \ R the function f(·, λ) given by

− (m+(λ) +m−(λ)
)
f(t, λ)

=
(
u1(t, λ) +m+(λ)u2(t, λ)

) ∫ t

a

(
u1(s, λ)−m−(λ)u2(s, λ)

)
g(s)r(s) ds

+
(
u1(t, λ)−m−(λ)u2(t, λ)

) ∫ b

t

(
u1(s, λ) +m+(λ)u2(s, λ)

)
g(s)r(s) ds

is well defined. Moreover, it satisfies (L− λ)f = g and it has the following initial
values at c:

f(c, λ) = − (g−, γ−(λ))L2
r(a,c)

+ (g+, γ+(λ))L2
r(c,b)

m+(λ) +m−(λ)

and

(pf ′)(c, λ) = −m+(λ)(g−, γ−(λ))L2
r(a,c)

−m−(λ)(g+, γ+(λ))L2
r(c,b)

m+(λ) +m−(λ)
.

Recall that the function h = (Tmax − λ)−1g is given by the Krĕın formula in
(6.5.6). This leads to the following expressions for its components(

h+(·, λ)
h−(·, λ)

)
=

(
(A+

0 − λ)−1g+
(A−

0 − λ)−1g−

)
− 1

m+(λ) +m−(λ)

(
γ+(λ) 0

0 γ−(λ)

)(
1 1
1 1

)(
(g+, γ+(λ))L2

r(c,b)

(g−, γ−(λ))L2
r(a,c)

)
=

(
(A+

0 − λ)−1g+
(A−

0 − λ)−1g−

)
− 1

m+(λ) +m−(λ)

(
γ+(λ)

[
(g+, γ+(λ))L2

r(c,b)
+ (g−, γ−(λ))L2

r(a,c)

]
γ−(λ)

[
(g+, γ+(λ))L2

r(c,b)
+ (g−, γ−(λ))L2

r(a,c)

]) .

To compute h(c, λ) and (ph′)(c, λ), it suffices to compute h+(c, λ) and (p+h
′
+)(c, λ)

since h ∈ domTmax is smooth at c. Let k+(·, λ) = (A+
0 − λ)−1g+, then clearly

k+(c, λ) = 0 and (p+k
′
+)(c, λ) = (g+, γ+(λ))L2

r(c,b)
,
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using Proposition 2.3.2 (iv). Furthermore, observe that

γ+(c, λ) = 1 and (p+γ
′
+)(c, λ) = m+(λ).

Hence, one sees that

h(c, λ) = h+(c, λ) = −
(g+, γ+(λ))L2

r(c,b)
+ (g−, γ−(λ))L2

r(a,c)

m+(λ) +m−(λ)

and that

(ph′)(c, λ) = (ph′
+)(c, λ)

= (g+, γ+(λ))L2
r(c,b)

− m+(λ)
[
(g+, γ+(λ))L2

r(c,b)
+ (g−, γ−(λ))L2

r(a,c)

]
m+(λ) +m−(λ)

=
m−(λ)(g+, γ+(λ))L2

r(c,b)
−m+(λ)(g−, γ−(λ))L2

r(a,c)

m+(λ) +m−(λ)
.

Therefore, f(·, λ) and h(·, λ) satisfy the same differential equation and the same
initial conditions. It follows that f(·, λ) = (Tmax − λ)−1g and this yields (6.5.8).

Now assume that g ∈ L2
r(a, b) has compact support. Then writing out all the

products on the right-hand side of (Tmax −λ)−1g is allowed, since each individual
integral is well defined. This rewriting of the terms of the function f(·, λ) gives
eight terms, which after adding and substracting of the terms

m−(λ)u1(t, λ)

∫ b

t

u2(s, λ)g(s)r(s) ds

and

m−(λ)u2(t, λ)

∫ t

a

u1(s, λ)g(s)r(s) ds

and regrouping leads to the desired result. �

Let f ∈ L2
r(a, b) have compact support and define the two-dimensional

Fourier transform

f̂(μ) =

(∫ b

a
u1(t, μ)f(t) dt∫ b

a
u2(t, μ)f(t) dt

)
. (6.5.9)

Consider the maximal operator Tmax as the smooth extension of T+
min ⊕̂ T−

min

and let E(λ) be the corresponding spectral family. Then it follows from Proposi-
tion 6.5.4 in the same way as in the proof of Lemma 6.4.6 that

(E(Δ)f, f)L2
r(a,b)

=

∫
Δ

f̂(x)∗dΣ(x)f̂(x),

where Σ denotes the 2 × 2-matrix function in the integral representation of the
Weyl function M̂ in Proposition 6.5.3; cf. Theorem A.4.2. In the present context
there is an analog of Theorem 6.4.7.
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Theorem 6.5.5. Let Σ be the 2 × 2-matrix function in the integral representation
of the Weyl function M̂ in (6.5.7). Then the map f �→ f̂ in (6.5.9) extends by
continuity from compactly supported functions f ∈ L2

r(a, b) to a unitary mapping
F : L2

r(a, b) → L2
dΣ(R), such that the self-adjoint operator Tmax in L2

r(a, b) is
unitarily equivalent to multiplication by the independent variable in L2

dΣ(R).

The Fourier transform in the theorem is vector-valued. The details of the
proof follow the scalar case, but this line of thought will not be pursued in the
text.

Remark 6.5.6. The coupling technique in this section can also be applied in sit-
uations when the endpoints a or b are regular or in the limit-circle case. For
simplicity a possible choice of the boundary triplets and Weyl functions will be
made explicit when L is regular at a and b, and Dirichlet boundary conditions
are imposed there. Let c ∈ (a, b), consider the intervals (a, c) and (c, b) separately,
and use the fundamental system (u1(·, λ);u2(·, λ)) in (6.5.1). As in Corollary 6.3.2
choose the operator (T+

min )
′ in L2

r+(c, b) defined on

dom (T+
min )

′ =
{
f ∈ domT+

max : f+(c) = (p+f
′
+)(c) = f+(b) = 0

}
and the boundary triplet {C,Γ+

0 ,Γ
+
1 } for the adjoint given by

Γ+
0 f+ = f+(c) and Γ+

1 f+ = (p+f
′
+)(c), f+ ∈ dom ((T+

min )
′)∗,

with corresponding Weyl function

m+(λ) = −u1(b, λ)

u2(b, λ)
. (6.5.10)

Likewise, choose the operator (T−
min )

′ in L2
r−(a, c) defined on

dom (T−
min )

′ =
{
f ∈ domT−

max : f−(c) = (p−f ′
−)(c) = f−(b) = 0

}
and the boundary triplet {C,Γ−

0 ,Γ
−
1 } for the adjoint given by

Γ−
0 f− = f−(c) and Γ−

1 f− = −(p−f ′
−)(c), f− ∈ dom ((T−

min )
′)∗,

with corresponding Weyl function

m−(λ) =
u1(a, λ)

u2(a, λ)
. (6.5.11)

The earlier considerations in this section remain valid with the Weyl functions m+

and m− in (6.5.10) and (6.5.11), respectively.
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6.6 Exit space extensions

In order to study boundary value problems where the spectral parameter appears
in the boundary conditions one has to deal with self-adjoint extensions of a closed
symmetric Sturm–Liouville operator in an exit space extending the original Hilbert
space. In this section the exit space extensions will be investigated for a Sturm–
Liouville expression L, which is regular at one endpoint and in the limit-point case
at the other endpoint. Other situations may be studied in an analogous fashion.

At this stage observe that the construction in Section 6.5 may also be in-
terpreted in the following way. The operator T+

min in L2
r(c, b) has a self-adjoint

extension Tmax in the Hilbert space L2
r(a, b) when L2

r(a, c) is considered as an exit
space: L2

r(a, b) = L2
r(a, c)⊕L2

r(c, b). It follows from (6.5.6) in Corollary 6.5.2 that
the compression of the resolvent of Tmax from L2

r(a, b) onto L2
r(c, b) is of the form

P+(Tmax − λ)−1ı+ = (A+
0 − λ)−1 − γ+(λ)

(
m+(λ) +m−(λ)

)−1
γ+(λ)

∗,

where P+ denotes the orthogonal projection from L2
r(a, b) onto L2

r(c, b) and ι+
is the corresponding canonical embedding. It follows from Theorem 2.7.3 and
Theorem 2.7.4 (see also Corollary 4.6.2) that the compressed resolvent of the self-
adjoint operator Tmax in L2

r(a, b) gives rise to the Štraus extensions of T+
min in

L2
r(c, b) corresponding to the boundary conditions

Γ+
1 f+ = −m−(λ)Γ+

0 f or (pf ′
+)(c) = −m−(λ)f+(c). (6.6.1)

Note that the family of Štraus extensions is defined via the Weyl function m−(λ)
of the Sturm–Liouville operator on the interval (a, c); in particular, this family is
described by the boundary conditions (6.6.1) in which the eigenvalue parameter
appears.

In the present treatment one stays close to the above context. More precisely,
one assumes that the Sturm–Liouville operator is defined on an interval (c, b)
where the endpoint c is regular and the limit-point condition prevails at b. The
maximal operator in H = L2

r(c, b) is denoted by T+
max and the boundary triplet

for the minimal operator T+
min is denoted by {C,Γ+

0 ,Γ
+
1 }, where Γ+

0 f+ = f+(c)
and Γ+

1 f+ = (p+f
′
+)(c); cf. Proposition 6.4.1 and Section 6.4. The corresponding

γ-field and Weyl function are denoted by γ+ and m+, respectively. Now let τ be
a scalar Nevanlinna function (which is not equal to a real constant). The interest
is in boundary value problems of the form

Γ+
1 f+ = −τ(λ)Γ+

0 f+ or, equivalently, (p+f
′
+)(c) = −τ(λ)f+(c); (6.6.2)

cf. (6.6.1). According to Theorem 4.2.4 (or Theorem 4.3.1), there exist a repro-
ducing kernel Hilbert space H′ = H(Nτ ) (or an L2-space H′, respectively), a closed
simple symmetric operator T ′ in H′, and a boundary triplet {C,Γ′

0,Γ
′
1} for the
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adjoint (T ′)∗ with γ-field γ′ and Weyl function τ . Observe that the closed sym-
metric operator T ′ is not necessarily densely defined and (T ′)∗ may not be an
operator. Hence, to denote boundary triplets for the orthogonal sum of the max-
imal operators T+

max ⊕̂ (T ′)∗ the graph notation will be used. In particular, in-

stead of Γ+
0 f+ = f+(c) and Γ+

1 f+ = (pf ′
+)(c) the notation Γ+

0 f̂+ = f+(c) and

Γ+
1 f̂+ = (pf ′

+)(c) for f̂+ = {f+, f ′
+} ∈ T+

max is used. Thus,

Γ̃0

(
f̂+
k̂

)
=

(
Γ+
0 f̂+
Γ′
0k̂

)
and Γ̃1

(
f̂+
k̂

)
=

(
Γ+
1 f̂+
Γ′
1k̂

)

where f̂+ = {f+, f ′
+} ∈ T+

max and k̂ = {k, k′} ∈ (T ′)∗, defines a boundary triplet

{C2, Γ̃0, Γ̃1} for (T+
min ⊕̂T ′)∗ = T+

max ⊕̂ (T ′)∗ and

Ã0 := A+
0 ⊕̂A′

0 = ker Γ̃0,

where A+
0 = ker Γ+

0 and A′
0 = ker Γ′

0, is a self-adjoint extension of T+
min ⊕̂T ′ in

H ⊕ H′. It is clear that for λ ∈ ρ(Ã0) = ρ(A+
0 ) ∩ ρ(A′

0) the γ-field γ̃ and Weyl

function M̃ corresponding to the boundary triplet {C2, Γ̃0, Γ̃1} have the form

γ̃(λ) =

(
γ+(λ) 0

0 γ′(λ)

)
and M̃(λ) =

(
m+(λ) 0

0 τ(λ)

)
;

cf. Proposition 6.5.1. The self-adjoint extension Ã of T+
min ⊕̂ T ′ in the next propo-

sition is of special interest since its compressed resolvent corresponds to the Nevan-
linna function τ via the Krĕın–Năımark formula. Proposition 6.6.1 is a special case
of Theorem 2.7.4 and Corollary 4.6.2.

Proposition 6.6.1. Let T+
min and T ′ be the closed simple symmetric operators with

boundary triplets {C,Γ+
0 ,Γ

+
1 } and {C,Γ′

0,Γ
′
1} as above. Then

Ã =

{(
f̂+
k̂

)
: f̂+ ∈ T+

max , k̂ ∈ (T ′)∗, Γ+
0 f̂+ = Γ′

0k̂, Γ
+
1 f̂+ = −Γ′

1k̂

}
(6.6.3)

is a self-adjoint relation in H⊕H′ and for all λ ∈ C \ R the resolvent of Ã has the
form

(Ã− λ)−1 = (Ã0 − λ)−1 − 1

m+(λ) + τ(λ)
γ̃(λ)

(
1 1
1 1

)
γ̃(λ)∗.

The self-adjoint relation Ã satisfies the minimality condition

H⊕ H′ = span
{
H, ran (Ã− λ)−1ιH : λ ∈ C \ R},

and for λ ∈ C \ R the compression of the resolvent (Ã− λ)−1 to H is given by

PH(Ã− λ)−1ιH = (A+
0 − λ)−1 − γ+(λ)

(
m+(λ) + τ(λ)

)−1
γ+(λ)

∗, (6.6.4)

where PH : H ⊕ H′ → H is the orthogonal projection from H ⊕ H′ onto H and
ιH : H→ H⊕ H′ is the canonical embedding of H into H⊕ H′.
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The next result describes a particular boundary triplet {C2, Γ̂0, Γ̂1} for which
the self-adjoint relation Ã in (6.6.3) coincides with the kernel of the boundary

mapping Γ̂0; cf. Proposition 4.6.4.

Proposition 6.6.2. Let T+
min and T ′ be closed symmetric operators in the Hilbert

spaces H and H′ with boundary triplets {C,Γ+
0 ,Γ

+
1 } and {C,Γ′

0,Γ
′
1} and corre-

sponding Weyl functions m+ and τ , respectively, as in the beginning of this section.

Then {C2, Γ̂0, Γ̂1}, where

Γ̂0

(
f̂+
k̂

)
=

(
−Γ+

1 f̂+ − Γ′
1k̂

Γ+
0 f̂+ − Γ′

0k̂

)
and Γ̂1

(
f̂+
k̂

)
=

(
Γ+
0 f̂+
−Γ′

1k̂

)
,

with f̂+ ∈ T+
max , k̂ ∈ (T ′)∗, is a boundary triplet for T+

max ⊕̂ (T ′)∗ such that the

self-adjoint relation Ã in (6.6.3) corresponds to the boundary mapping Γ̂0, that is,

Ã = ker Γ̂0.

The Weyl function corresponding to {C2, Γ̂0, Γ̂1} is given by

M̂(λ) =

⎛⎜⎜⎝−
1

m+(λ) + τ(λ)

τ(λ)

m+(λ) + τ(λ)

τ(λ)

m+(λ) + τ(λ)

m(λ)τ(λ)

m+(λ) + τ(λ)

⎞⎟⎟⎠ , λ ∈ C \ R. (6.6.5)

Next it is shown that the Weyl function M̂ shows up in the integral represen-
tation of the compressed resolvent R(λ) = PH(Ã − λ)−1ιH of Ã. The next result
and its proof are similar to Proposition 6.5.4 and its proof.

Proposition 6.6.3. For λ ∈ C \ R the compressed resolvent of the self-adjoint ex-

tension Ã in (6.6.3) is an integral operator of the form

(R(λ)g+)(t) =

∫ b

c

G(t, s, λ)g+(s)r(s) ds, g+ ∈ L2
r(c, b), (6.6.6)

where the Green function G(t, s, λ) is given by{ −1
m+(λ)+τ(λ) (u1(t, λ) +m+(λ)u2(t, λ))(u1(s, λ)− τ(λ)u2(s, λ)), c < s < t,

−1
m+(λ)+τ(λ) (u1(t, λ)− τ(λ)u2(t, λ))(u1(s, λ) +m+(λ)u2(s, λ)), t < s < b.

In particular, if g+ ∈ L2
r(c, b) has compact support, then

(R(λ)g+)(t) =
(
u1(t, λ) u2(t, λ)

)
M̂(λ)

(∫ b

c
u1(s, λ)g+(s)r(s) ds∫ b

c
u2(s, λ)g+(s)r(s) ds

)

− u1(t, λ)

∫ b

t

u2(s, λ)g+(s)r(s) ds− u2(t, λ)

∫ t

c

u1(s, λ)g+(s)r(s) ds,

where the 2× 2 matrix M̂(λ) is given by (6.6.5).



424 Chapter 6. Sturm–Liouville Operators

Proof. Observe that for g+ ∈ L2
r(c, b) and λ ∈ C \ R the function f+(·, λ) given by

− (m+(λ) + τ(λ)
)
f+(t, λ)

=
(
u1(t, λ) +m+(λ)u2(t, λ)

) ∫ t

c

(
u1(s, λ)− τ(λ)u2(s, λ)

)
g+(s)r(s) ds

+
(
u1(t, λ)− τ(λ)u2(t, λ)

) ∫ b

t

(
u1(s, λ) +m+(λ)u2(s, λ)

)
g+(s)r(s) ds

is well defined. Moreover, it satisfies (L−λ)f+ = g+ and it has the following initial
values at c:

f+(c, λ) = −
(g+, γ+(λ))L2

r(c,b)

m+(λ) + τ(λ)
and (pf ′

+)(c, λ) =
τ(λ)(g+, γ+(λ))L2

r(c,b)

m+(λ) + τ(λ)
.

Now consider the function h+ = R(λ)g+ = PH(Ã − λ)−1ιHg+, which is given by
the Krĕın formula in (6.6.4). This leads to the equality

h+(·, λ) = (A+
0 − λ)−1g+ − 1

m+(λ) + τ(λ)
γ+(λ)(g+, γ+(λ))L2

r(c,b)
.

Since (L− λ)(A+
0 − λ)−1g+ = g+ and (L− λ)γ+(λ) = 0, one has (L− λ)h+ = g+.

From γ+(c, λ) = 1 and ((A+
0 − λ)−1g+)(c) = 0 one concludes that

h+(c, λ) = −
(g+, γ+(λ))L2

r(c,b)

m+(λ) + τ(λ)
.

Furthermore, since (pγ′
+)(c, λ) = m+(λ) and(

p((A+
0 − λ)−1g+)

′)(c) = Γ1(A
+
0 − λ)−1g+ = γ+(λ)

∗g+ = (g+, γ+(λ))L2
r(c,b)

,

it also follows that

(ph′
+)(c, λ) = (g+, γ+(λ))L2

r(c,b)
− m+(λ)(g+, γ+(λ))L2

r(c,b)

m+(λ) + τ(λ)

=
τ(λ)(g+, γ+(λ))L2

r(c,b)

m+(λ) + τ(λ)
.

Therefore, f+(·, λ) and h+(·, λ) = (R(λ)g+)(·) satisfy the same differential equa-
tion and the same initial conditions. Consequently, f+ = R(λ)g+, which yields
(6.6.6).

Now assume that g ∈ L2
r(c, b) has compact support. Then writing out all

the products in the Green function is allowed, as each individual integral is well
defined. This rewriting of the terms of the function f(·, λ) gives eight terms, which
after adding and substracting of the terms

τ(λ)u1(t, λ)

∫ b

t

u2(s, λ)g(s)r(s) ds
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and

τ(λ)u2(t, λ)

∫ t

c

u1(s, λ)g(s)r(s) ds

and regrouping leads to the desired result. �

Returning to the boundary value problem (6.6.2) and taking into account
Theorem 2.7.3 it is clear that for λ ∈ C \ R and g+ ∈ L2

r(c, b) the unique solution of

(L− λ)f+ = g+, (p+f
′
+)(c) = −τ(λ)f+(c), (6.6.7)

is given by R(λ)g+ in Proposition 6.6.3. The last condition in (6.6.7) is an example
of λ-dependent boundary conditions. If τ is the Weyl function corresponding to a
Sturm–Liouville operator on (a, c) such that the endpoint a is in the limit-point

case and c is regular, then the exit space extension Ã coincides with the maximal
operator Sturm–Liouville on (a, b); this is the situation discussed in Section 6.5.
For the special case where τ is a linear or rational Nevanlinna function the model
space and hence the corresponding exit space extension Ã can be constructed
explicitly; cf. Example 4.3.3.

6.7 Weyl functions and subordinate solutions

Consider the Sturm–Liouville equation on the interval (a, b) and assume that the
endpoint a is regular and that the endpoint b is in the limit-point case (when
replacing derivatives by quasi-derivatives the following discussion extends in a
natural fashion to the situation where a is in the limit-circle case). Let {C,Γ0,Γ1}
be the boundary triplet for Tmax in Proposition 6.4.1. The spectrum of the self-
adjoint extension A0 with domA0 = ker Γ0 will be studied by means of subordinate
solutions of the equation (L− λ)y = 0.

Note that for each x > a one can define the Hilbert space L2
r(a, x) with the

inner product

(f, g)L2
r(a,x)

=

∫ x

a

f(t)g(t)r(t) dt, f, g ∈ L2
r(a, x).

For fixed f, g ∈ L2
r(a, c), a < c < b, the function x �→ (f, g)x is absolutely contin-

uous and
d

dx
(f, g)L2

r(a,x)
= f(x)g(x)r(x)

almost everywhere on (a, c). The norm corresponding to (·, ·)L2
r(a,x)

will be denoted
by ‖ · ‖L2

r(a,x)
; it will play an important role in the estimates in this section.

Definition 6.7.1. Let ξ ∈ R. A solution v(·, ξ) of (L − ξ)y = 0 is said to be
subordinate at b if

lim
x→b

‖v(·, ξ)‖L2
r(a,x)

‖u(·, ξ)‖L2
r(a,x)

= 0

for every solution u(·, ξ) of (L− ξ)y = 0 which is not a scalar multiple of v(·, ξ).
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The spectrum of A0 will be studied in terms of solutions of the differential
equation (L− ξ)y = 0 which do not necessarily belong to L2

r(a, b). In fact, the in-
terest will be in subordinate solutions which satisfy or do not satisfy the boundary
condition f(a) = 0 which characterizes domA0. Observe that if a solution v(·, ξ)
of (L − ξ)y = 0 belongs to L2

r(a, b), then it is subordinate at b since b is in the
limit-point case and hence any other solution which is not a scalar multiple of
v(·, ξ) does not belong to L2

r(a, b).

Before the main result can be stated some preliminary considerations are
necessary. Recall first the transformation of the boundary triplet in (6.4.7), where
τ ∈ R ∪ {∞}. This results in a boundary triplet {C,Γτ

0 ,Γ
τ
1}, where

Γτ
0f =

τ√
τ2 + 1

f(a)− 1√
τ2 + 1

(pf ′)(a),

Γτ
1f =

1√
τ2 + 1

f(a) +
τ√

τ2 + 1
(pf ′)(a),

for f ∈ domTmax , with corresponding γ-field and Weyl function given by

γτ (λ) =
γ(λ)

τ −M(λ)

√
τ2 + 1 and Mτ (λ) =

1 + τM(λ)

τ −M(λ)
, λ ∈ C \ R. (6.7.1)

It follows from Proposition 2.3.6 (iii) that

Mτ (λ)−Mτ (μ)
∗

λ− μ
= γτ (μ)

∗γτ (λ), λ, μ ∈ C \ R. (6.7.2)

The fundamental system (v1(·, λ); v2(·, λ)), λ ∈ C, in Lemma 6.4.5 given by(
v1(·, λ)
v2(·, λ)

)
=

1√
τ2 + 1

(
τ −1
1 τ

)(
u1(·, λ)
u2(·, λ)

)
satisfies the initial conditions(

v1(a, λ) v2(a, λ)
(pv′1)(a, λ) (pv′2)(a, λ)

)
=

1√
τ2 + 1

(
τ −1
1 τ

)
.

In terms of this fundamental system the γ-field γτ (λ) can then be expressed as

γτ (·, λ) = v1(·, λ) +Mτ (λ)v2(·, λ); (6.7.3)

cf. Lemma 6.4.5. Note that the formal solution

v2(·, λ) = 1√
τ2 + 1

(
u1(·, λ) + τu2(·, λ)

)
(6.7.4)

satisfies the boundary condition (pf ′)(a) = τf(a) for the functions in the domain
ker (Γ1 − τΓ0) of the self-adjoint realization Aτ , τ ∈ R ∪ {∞}.
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Using the fundamental system (v1(·, λ); v2(·, λ)), define for any λ ∈ C and
h ∈ L2

r(a, x), a < x < b,

(H(λ)h)(t) = v1(t, λ)

∫ t

a

v2(s, λ)h(s)r(s) ds

− v2(t, λ)

∫ t

a

v1(s, λ)h(s)r(s) ds, t ∈ (a, x), λ ∈ C.

Then H(λ) is a well-defined integral operator and one sees that for fixed λ ∈ C
the function f(t, λ) = (H(λ)h)(t) is absolutely continuous and satisfies

(L− λ)f = h, f(a) = 0, (pf ′)(a) = 0. (6.7.5)

In particular, H(λ) maps L2
r(a, x) into itself. It follows directly that

vi(·, λ)− vi(·, μ) = (λ− μ)H(λ)vi(·, μ), i = 1, 2, (6.7.6)

since the left-hand side and the right-hand side satisfy the same differential equa-
tion and the same initial conditions at a; cf. (6.7.5).

Lemma 6.7.2. Let a < x < b and let h ∈ L2
r(a, x). Then

‖H(λ)h‖2L2
r(a,x)

≤ 2‖v1(·, λ)‖2L2
r(a,x)

‖v2(·, λ)‖2L2
r(a,x)

‖h‖2L2
r(a,x)

.

Proof. For h ∈ L2
r(a, x) define the functions gi(·, λ), i = 1, 2, by

gi(t, λ) =

∫ t

a

vi(s, λ)h(s)r(s) ds.

The Cauchy–Schwarz inequality then gives

|gi(t, λ)|2 ≤ ‖vi(·, λ)‖2L2
r(a,t)

‖h‖2L2
r(a,t)

, i = 1, 2.

Hence, with f(t, λ) = (H(λ)h)(t), it follows from the definition of H(λ) that

|f(t, λ)|2 ≤ 2
( |v1(t, λ)|2|g2(t, λ)|2 + |v2(t, λ)|2|g1(t, λ)|2)

≤ 2
( |v1(t, λ)|2‖v2(·, λ)‖2L2

r(a,t)
‖h‖2L2

r(a,t)

+ |v2(t, λ)|2‖v1(·, λ)‖2L2
r(a,t)

‖h‖2L2
r(a,t)

)
.

Integration of this inequality yields

‖f(·, λ)‖2L2
r(a,x)

≤ 2

∫ x

a

(|v1(t, λ)|2‖v2(·, λ)‖2L2
r(a,t)

‖h‖2L2
r(a,t)

+ |v2(t, λ)|2‖v1(·, λ)‖2L2
r(a,t)

‖h‖2L2
r(a,t)

)
r(t) dt

= 2

∫ x

a

(
d

dt

(
‖v1(·, λ)‖2L2

r(a,t)
‖v2(·, λ)‖2L2

r(a,t)

))
‖h‖2L2

r(a,t)
dt,
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since for i = 1, 2,

d

dt
‖vi(·, λ)‖2L2

r(a,t)
=

d

dt

∫ t

a

|vi(s, λ)|2r(s) ds = |vi(t, λ)|2r(t).

Therefore,

‖f(·, λ)‖2L2
r(a,x)

≤ 2‖h‖2L2
r(a,x)

∫ x

a

d

dt

(
‖v1(·, λ)‖2L2

r(a,t)
‖v2(·, λ)‖2L2

r(a,t)

)
dt,

which implies the assertion. �

Lemma 6.7.3. Let ξ ∈ R be a fixed number. The function x �→ ετ (x, ξ) given by

√
2 ετ (x, ξ)‖v1(·, ξ)‖L2

r(a,x)
‖v2(·, ξ)‖L2

r(a,x)
= 1, a < x < b,

is well defined, continuous, nonincreasing, and satisfies

lim
x→b

ετ (x, ξ) = 0.

Proof. For any a < x < b the two functions

x �→ ‖v1(·, ξ)‖L2
r(a,x)

and x �→ ‖v2(·, ξ)‖L2
r(a,x)

have positive values, so clearly ετ (x, ξ) > 0 is well defined. Note that the map-
ping x �→ ‖v1(·, ξ)‖L2

r(a,x)
‖v2(·, ξ)‖L2

r(a,x)
is continuous and nondecreasing. The

assumption that b is in the limit-point case implies that not both v1(·, ξ) and
v2(·, ξ) belong to L2

r(a, b). Thus, the limit result follows. �

The function x �→ ετ (x, ξ) appears in the estimate in the following theorem.

Theorem 6.7.4. Let Mτ be the Weyl function in (6.7.1) corresponding to the bound-
ary triplet {C,Γτ

0 ,Γ
τ
1}. Assume that ξ ∈ R and let ετ (x, ξ) be as in Lemma 6.7.3.

Then for a < x < b

1

d0
≤ ‖v2(·, ξ)‖L2

r(a,x)

‖v1(·, ξ)‖L2
r(a,x)

|Mτ (ξ + iετ (x, ξ))| ≤ d0,

where d0 = 1 + 2
(√

2 +
√

2 +
√
2
)
.

Proof. Assume that ξ ∈ R and let ε > 0. Define the function ψ(·, ξ, ε) by

ψ(·, ξ, ε) = v1(·, ξ) +Mτ (ξ + iε)v2(·, ξ). (6.7.7)

Then for a < x < b,∣∣ ‖v2(·, ξ)‖L2
r(a,x)

|Mτ (ξ + iε)| − ‖v1(·, ξ)‖L2
r(a,x)

∣∣ ≤ ‖ψ(·, ξ, ε)‖L2
r(a,x)
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or, equivalently,∣∣∣∣ ‖v2(·, ξ)‖L2
r(a,x)

‖v1(·, ξ)‖L2
r(a,x)

|Mτ (ξ + iε)| − 1

∣∣∣∣ ≤ ‖ψ(·, ξ, ε)‖L2
r(a,x)

‖v1(·, ξ)‖L2
r(a,x)

. (6.7.8)

The term on the right-hand side of (6.7.8) will now be estimated in a suitable way.
In the definition (6.7.7) rewrite the right-hand side using the identity in (6.7.6)
with λ = ξ and μ = ξ + iε. Together with (6.7.3) this shows the identity

ψ(·, ξ, ε) = γτ (·, ξ + iε)− iεH(ξ)γτ (·, ξ + iε),

expressing the function ψ(·, ξ, ε) directly in terms of the γ-field. It follows from
Lemma 6.7.2 that

‖ψ(·, ξ, ε)‖L2
r(a,x)

≤ (1 +√2 ε ‖v1(·, ξ)‖L2
r(a,x)

‖v2(·, ξ)‖L2
r(a,x)

)‖γτ (·, ξ + iε)‖L2
r(a,x)

.

Therefore, the right-hand side of (6.7.8) is estimated by(
1 +

√
2 ε ‖v1(·, ξ)‖L2

r(a,x)
‖v2(·, ξ)‖L2

r(a,x)

) ‖γτ (·, ξ + iε)‖L2
r(a,x)

‖v1(·, ξ)‖L2
r(a,x)

=
1 +

√
2 ε ‖v1(·, ξ)‖L2

r(a,x)
‖v2(·, ξ)‖L2

r(a,x)

(‖v1(·, ξ)‖L2
r(a,x)

‖v2(·, ξ)‖L2
r(a,x)

)
1
2

‖v2(·, ξ)‖
1
2

L2
r(a,x)

‖v1(·, ξ)‖
1
2

L2
r(a,x)

‖γτ (·, ξ + iε)‖L2
r(a,x)

.

Now observe that ‖γτ (·, ξ + iε)‖L2
r(a,x)

≤ ‖γτ (·, ξ + iε)‖L2
r(a,b)

and it follows from
(6.7.2) that

‖γτ (·, ξ + iε)‖L2
r(a,b)

≤
√

ImMτ (ξ + iε)

ε
≤
√
|Mτ (ξ + iε)|

ε
.

Thus, for any ε > 0,∣∣∣∣ ‖v2(·, ξ)‖L2
r(a,x)

‖v1(·, ξ)‖L2
r(a,x)

|Mτ (ξ + iε)| − 1

∣∣∣∣
≤ 1 +

√
2 ε ‖v1(·, ξ)‖L2

r(a,x)
‖v2(·, ξ)‖L2

r(a,x)

(ε ‖v1(·, ξ)‖L2
r(a,x)

‖v2(·, ξ)‖L2
r(a,x)

)
1
2

(‖v2(·, ξ)‖L2
r(a,x)

‖v1(·, ξ)‖L2
r(a,x)

|Mτ (ξ + iε)|
) 1

2

.

Now for ξ ∈ R choose ε = ετ (x, ξ) in this estimate. This choice minimizes the first
factor on the right-hand side to 25/4. Hence, the nonnegative quantity

Q =
‖v2(·, ξ)‖L2

r(a,x)

‖v1(·, ξ)‖L2
r(a,x)

|Mτ (ξ + iετ (x, ξ))|

satisfies the inequality
|Q− 1| ≤ 25/4Q

1
2

or, equivalently, Q2−2Q+1 ≤ 4
√
2Q. Therefore, 1/d0 ≤ Q ≤ d0, which completes

the proof. �
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The following result is now a direct consequence of Theorem 6.7.4.

Theorem 6.7.5. Let M be the Weyl function corresponding to the boundary triplet
{C,Γ0,Γ1} and let ξ ∈ R. Then the following statements hold:

(i) If τ ∈ R, then the solution u1(·, ξ)+τu2(·, ξ) of (L−ξ)y = 0, (py′)(a) = τy(a)
(which is unique up to scalar multiples) is subordinate if and only if

lim
ε ↓ 0

M(ξ + iε) = τ.

(ii) If τ =∞, then the solution u2(·, ξ) of (L−ξ)y = 0, y(a) = 0 (which is unique
up to scalar multiples) is subordinate if and only if

lim
ε ↓ 0

|M(ξ + iε)| =∞.

Proof. Since x �→ ετ (x, ξ) is continuous, nonincreasing, and with limit 0 as x→ b,
one has the identity

lim
ε ↓ 0

Mτ (ξ + iε) = lim
x→b

Mτ (ξ + iετ (x, ξ)).

(i) Assume that τ ∈ R. It suffices to show that |Mτ (ξ + iε)| → ∞ for ε ↓ 0 if and
only if the solution

v2(·, ξ) = 1√
τ2 + 1

(
u1(·, ξ) + τu2(·, ξ)

)
in (6.7.4) is subordinate. For this, assume first that |Mτ (ξ + iε)| → ∞. Then, by
Theorem 6.7.4,

lim
x→b

‖v2(·, ξ)‖L2
r(a,x)

‖v1(·, ξ)‖L2
r(a,x)

= 0. (6.7.9)

Hence, for any c1, c2 ∈ R, c1 	= 0, one obtains from (6.7.9) that

lim
x→b

‖v2(·, ξ)‖L2
r(a,x)

‖c1v1(·, ξ) + c2v2(·, ξ)‖L2
r(a,x)

= 0, (6.7.10)

and therefore the solution v2(·, ξ) is subordinate. Conversely, assume that v2(·, ξ)
is subordinate, so that (6.7.10) holds for all c1, c2 ∈ R, c1 	= 0. Then clearly (6.7.9)
holds, and from Theorem 6.7.4 it follows that |Mτ (ξ + iε)| → ∞.

It is a consequence of (6.7.1) that for ε ↓ 0 one has

|Mτ (ξ + iε)| → ∞ ⇔ M(ξ + iε)→ τ.

This establishes the assertion for τ ∈ R.

(ii) The case τ =∞ can be treated in the same way as (i). �
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Let {C,Γ0,Γ1} be the boundary triplet for Tmax in Proposition 6.4.1 and
recall that A0 corresponds to the Dirichlet boundary condition

f(a) = 0. (6.7.11)

Let M be the Weyl function of {C,Γ0,Γ1} with the integral representation

M(λ) = α+

∫
R

(
1

t− λ
− t

t2 + 1

)
dτ(t), (6.7.12)

where α ∈ R and the measure τ satisfies∫
R

1

t2 + 1
dτ(t) <∞;

cf. Theorem A.2.5. On the basis of Theorem 6.7.5 the following sets will be intro-
duced.

Definition 6.7.6. With the Sturm–Liouville equation (L − ξ)y = 0, ξ ∈ R, the
following subsets of R are associated:

(i) M is the complement of the set of all ξ ∈ R for which a subordinate solution
exists that does not satisfy (6.7.11);

(ii) Mac is the set of all ξ ∈ R for which no subordinate solution exists;

(iii) Ms is the set of all ξ ∈ R for which a subordinate solution exists that satisfies
(6.7.11);

(iv) Msc is the set of all ξ ∈ R for which a subordinate solution exists that satisfies
(6.7.11) and does not belong to L2

r(a, b);

(v) Mp is the set of all ξ ∈ R for which a (subordinate) solution exists that
satisfies (6.7.11) and belongs to L2

r(a, b).

It is a direct consequence of Definition 6.7.6 that

R = Mc � Mac � Ms, M = Mac � Ms, and Ms = Msc � Mp

hold, where � stands for the disjoint union.

The following proposition is based on Corollary 3.1.8, where minimal sup-
ports for the various parts of the measure τ in the integral representation (6.7.12)
of M are described in terms of the boundary behavior of the Nevanlinna func-
tion M .

Proposition 6.7.7. Let M be the Weyl function associated with the boundary triplet
{C,Γ0,Γ1} and let τ be the corresponding measure in (6.7.12). Then the sets

M,Mac,Ms,Msc,Mp,

are minimal supports for the measures

τ, τac, τs, τsc, τp,

respectively.
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Proof. Step 1. It will be shown that the set Mac is a minimal support for the
measure τac. According to Theorem 6.7.5, Mac coincides with the set of all ξ ∈ R
for which both conditions

lim
ε ↓ 0

M(ξ + iε) ∈ R and lim
ε ↓ 0

|M(ξ + iε)| =∞

are not satisfied. Hence, ξ 	∈Mac if and only if

lim
ε ↓ 0

M(ξ + iε) ∈ R or lim
ε ↓ 0

|M(ξ + iε)| =∞.

Recall that the set M′
ac, defined by

M′
ac =

{
ξ ∈ R : 0 < lim

ε ↓ 0
ImM(ξ + iε) <∞}, (6.7.13)

is a minimal support for τac; see Corollary 3.1.8. The following identity and inclu-
sion are straightforward consequences of the definitions

M′
ac \Mac =

{
ξ ∈M′

ac : lim
ε ↓ 0

|M(ξ + iε)| =∞},
Mac \M′

ac ⊂
{
ξ ∈ R : lim

ε ↓ 0
M(ξ + iε) does not exist in C ∪ {∞}}.

Hence, it follows from Corollary 3.1.7 that

m(M′
ac \Mac) = 0 and m(Mac \M′

ac) = 0, (6.7.14)

wherem denotes the Lebesgue measure. However, since τac is absolutely continuous
with respect to m, it also follows that τac(M

′
ac \Mac) = 0. Therefore, Mac is a

minimal support for τac; cf. Lemma 3.1.1.

Step 2. It will be shown that the set Ms is a minimal support for the measure τs.
According to Theorem 6.7.5, Ms admits the following description

Ms =
{
ξ ∈ R : lim

ε ↓ 0
|M(ξ + iε)| =∞}.

Observe that the set

M′
s =
{
ξ ∈ R : lim

ε ↓ 0
ImM(ξ + iε) =∞}

is a minimal support for the measure τs by Corollary 3.1.8. Note that M′
s ⊂ Ms

and that

m(Ms \M′
s) ≤ m(Ms) = 0,

where the last identity follows from Corollary 3.1.7 Therefore, Ms is a minimal
support for τs by Lemma 3.1.1.
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Step 3. Here the remaining assertions will be proved. Since M is a Nevanlinna
function, the limit value limε ↓ 0 ε ImM(ξ+ iε) exists, is finite, and is nonnegative;
cf. (3.1.27) and (3.1.12). This allows to divide the minimal support Ms of τs into
two disjoint subsets,

Msc =
{
ξ ∈Ms : lim

ε ↓ 0
ε ImM(ξ + iε) = 0

}
and

Mp =
{
ξ ∈Ms : lim

ε ↓ 0
ε ImM(ξ + iε) > 0

}
.

By Corollary 3.1.8 the set

M′
sc =

{
ξ ∈M′

s : lim
ε ↓ 0

ε ImM(ξ + iε) = 0
}

is a minimal support for τsc. Since M′
sc ⊂Msc and

m(Msc \M′
sc) ≤ m(Msc) ≤ m(Ms) = 0

by Corollary 3.1.7, also Msc is a minimal support for τsc.

On the other hand, clearly Mp ⊂M′
s and hence

Mp =
{
ξ ∈M′

s : lim
ε ↓ 0

ε ImM(ξ + iε) > 0
}
,

which is a minimal support of τp by Corollary 3.1.8.

Finally, the assertion concerning the set M is a consequence of the other
proved statements. �

The minimal supports in Proposition 6.7.7 are intimately connected with the
spectrum of A0. For the absolutely continuous spectrum one obtains the following
result, where the notion of the absolutely continuous closure of a Borel set from
Definition 3.2.4 is used. Similar statements (with an inclusion) can be formulated
for the singular parts of the spectrum; cf. Section 3.6.

Theorem 6.7.8. Let A0 be the self-adjoint realization of L corresponding to the
Dirichlet boundary condition at the regular endpoint a and let Mac be as in Defi-
nition 6.7.6. Then

σac(A0) = closac(Mac).

Proof. Since the minimal operator Tmin is simple by Proposition 6.4.4, one can
apply Theorem 3.6.5 with Δ = R, which yields

σac(A0) = closac
{
ξ ∈ R : 0 < lim

ε ↓ 0
ImM(ξ + iε) <∞} = closac(M

′
ac);

cf. (6.7.13). Since m(M′
ac \Mac) = 0 and m(Mac \M′

ac) = 0 by (6.7.14), it follows
from Lemma 3.2.5 that

closac(M
′
ac) = closac(M

′
ac ∩Mac) = closac(Mac).

This leads to the result. �
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6.8 Semibounded Sturm–Liouville expressions
in the regular case

Let L be the Sturm–Liouville differential expression in (6.1.1),

L =
1

r
[−DpD + q] , D = d/dx,

and assume that the endpoints a and b are regular, that is, [a, b] is a compact
interval and the coefficient functions are real and satisfy{

p(x) 	= 0, r(x) > 0, for almost all x ∈ (a, b),

1/p, q, r ∈ L1(a, b).
(6.8.1)

Recall from Proposition 6.3.1 that {C2,Γ0,Γ1}, where

Γ0f =

(
f(a)
f(b)

)
and Γ1f =

(
(pf ′)(a)
−(pf ′)(b)

)
, f ∈ domTmax , (6.8.2)

is a boundary triplet for Tmax . In the present section it will be assumed, in addition
to (6.8.1), that the sign condition

p(x) > 0 for almost all x ∈ (a, b) (6.8.3)

holds; cf. (6.1.26). This assumption will imply that the minimal operator and all
self-adjoint realizations of L in L2

r(a, b) are semibounded from below. The main
objective of this section is to provide a characterization of the closed semibounded
forms and the corresponding semibounded self-adjoint realizations of L by using
the abstract techniques developed in Section 5.6.

In order to apply the results from Section 5.6 a boundary pair will be con-
structed which is compatible with the boundary triplet in (6.8.2). As a first step, as-
sociate with the coefficient functions which satisfy (6.8.1) and (6.8.3) the quadratic
form defined by

t[f, g] =

∫ b

a

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx (6.8.4)

for f, g ∈ dom t = D, where

D =
{
f ∈ L2

r(a, b) : f ∈ AC(a, b),
√
pf ′ ∈ L2(a, b)

}
. (6.8.5)

It turns out that t is densely defined, closed, and semibounded. Hence, there exists
a semibounded self-adjoint operator S1 which corresponds to t and it will be shown
that S1 extends Tmin and that S1 and the Friedrichs extension SF are transversal.
The next step is to define the mapping

Λf =

(
f(a)
f(b)

)
, f ∈ D = dom t. (6.8.6)
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In Lemma 6.8.4 it will be proved that {C2,Λ} is a well-defined boundary pair
for Tmin on D corresponding to S1 that is compatible with the boundary triplet
{C2,Γ0,Γ1} in (6.8.2). In other words, the mapping Λ is an extension of Γ0 and
the self-adjoint operator S1 corresponding to the form t on D coincides with the
operator A1 corresponding to Γ1. Therefore, Theorem 5.6.13 and Corollary 5.6.14
can be applied, which leads to Theorem 6.8.5, the main result of this section.

Observe that the definition of the linear space D in (6.8.5) does not involve
the potential q in the differential expression L. Some properties concerning D are
collected in the following lemma.

Lemma 6.8.1. Let [a, b] be a compact interval and let the conditions (6.8.1) and
(6.8.3) be satisfied. Then

domTmax ⊂
{
f ∈ AC[a, b] : pf ′ ∈ AC[a, b]

} ⊂ D ⊂ AC[a, b]. (6.8.7)

In particular, D is dense in L2
r(a, b) and for f ∈ D both limits

f(a) = lim
x→a

f(x) and f(b) = lim
x→b

f(x) (6.8.8)

exist.

Proof. The first inclusion in (6.8.7) is clear; cf. (6.2.1) and the beginning of Sec-
tion 6.3. To see the second inclusion in (6.8.7), let f ∈ AC[a, b] and pf ′ ∈ AC[a, b].
In particular, f is bounded so that f ∈ L2

r(a, b); and pf ′ is bounded so that
|√pf ′| ≤ C 1/

√
p for some positive C. It follows that

√
pf ′ ∈ L2(a, b) and thus

f ∈ D.

To see the third inclusion in (6.8.7), it suffices to show that f ∈ D implies
f ′ ∈ L1(a, b). In fact, for f ∈ D one has∫ b

a

|f ′(x)| dx =

∫ b

a

1√
p(x)

|
√

p(x)f ′(x)| dx

≤
√∫ b

a

1

p(x)
dx

√∫ b

a

p(x)|f ′(x)|2 dx <∞

by the Cauchy–Schwarz inequality.

It follows from (6.8.7) that D is a dense subspace of L2
r(a, b), since domTmax

is dense in L2
r(a, b); cf. Theorem 6.2.1. Furthermore, the limits in (6.8.8) exist for

f ∈ D since f ∈ AC[a, b] by (6.8.7). �

To study the properties of the form t in (6.8.4) one uses the decomposition
t = r+ q, where the forms r and q are defined by

r[f, g] =

∫ b

a

(
√
pf ′)(x)(

√
pg′)(x) dx, f, g ∈ D, (6.8.9)
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and

q[f, g] =

∫ b

a

q(x)f(x)g(x) dx, f, g ∈ D, (6.8.10)

respectively. It follows directly from (6.8.5) that the form r is well defined. To see
that the form q is well defined, note that qfg ∈ L1(a, b) since f, g ∈ D ⊂ AC[a, b]
are bounded. Hence, D is a natural domain of definition for the form t in (6.8.4)
for any real potential q ∈ L1(a, b). It will be shown that the form q is a small
perturbation of the form r; cf. Theorem 5.1.16. The properties of the unperturbed
form r will be studied first.

Associated with the function p is the first-order differential expression N
on the interval (a, b) by Nf =

√
pf ′, which is meaningful for f ∈ AC[a, b]. The

differential expression N generates a linear operator R from L2
r(a, b) to L2(a, b) by

Rf := Nf, domR = D. (6.8.11)

It is clear that the form r in (6.8.9) and the operator R in (6.8.11) are connected by

r[f, g] = (Rf,Rg)L2(a,b), dom r = D, (6.8.12)

so that the form r is closed if and only if R is closed as an operator from L2
r(a, b)

to L2(a, b); cf. Lemma 5.1.21.

Lemma 6.8.2. Let [a, b] be a compact interval and assume that the conditions
(6.8.1) and (6.8.3) are satisfied. Then r in (6.8.9) is a densely defined closed non-
negative form in L2

r(a, b). Moreover, for ε > 0 there exists Cε > 0 such that

|f(x)|2 ≤ Cε‖f‖2L2
r(a,b)

+ εr[f ], x ∈ [a, b], (6.8.13)

holds for all f ∈ D.

Proof. It is clear from (6.8.12) that the form r is nonnegative and densely defined;
cf. Lemma 6.8.1. To show (6.8.13), observe that for f ∈ D and x, y ∈ [a, b] one has

|f(x)|2 ≤ (|f(y)|+ |f(x)− f(y)|)2
≤ 2
(|f(y)|2 + |f(y)− f(x)|2)

≤ 2

(
|f(y)|2 +

∣∣∣∣∫ y

x

f ′(t) dt
∣∣∣∣2)

≤ 2

(
|f(y)|2 +

∫ y

x

p(t)|f ′(t)|2 dt
∫ y

x

1

p(t)
dt

)
,

(6.8.14)

where the Cauchy–Schwarz inequality and integrability of 1/p were used. Let ε > 0.
Due to the absolute continuity of x �→ ∫ x

a
1/(p(t)) dt on [a, b], there exist δ > 0

and cδ > 0 such that for all x ∈ [a, b] and J(x, δ) = (x− δ, x+ δ) ∩ [a, b] one has(∫
J(x,δ)

1

p(t)
dt

)
≤ ε

2
and

∫
J(x,δ)

r(y) dy ≥ cδ. (6.8.15)
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For x ∈ [a, b] and the corresponding interval J(x, δ) one observes from (6.8.14)
that

|f(x)|2
∫
J(x,δ)

r(y) dy =

∫
J(x,δ)

|f(x)|2r(y) dy

≤ 2

∫
J(x,δ)

|f(y)|2r(y) dy

+ 2

∫
J(x,δ)

(∫ y

x

p(t)|f ′(t)|2 dt
∫ y

x

1

p(t)
dt

)
r(y) dy.

(6.8.16)

The first term on the right-hand side can be estimated by 2‖f‖2L2
r(a,b)

. For the

second term on the right-hand side note that

2

∫
J(x,δ)

(∫ y

x

p(t)|f ′(t)|2 dt
∫ y

x

1

p(t)
dt

)
r(y) dy

≤ 2

(∫
J(x,δ)

1

p(t)
dt

)∫
J(x,δ)

(∫ y

x

p(t)|f ′(t)|2 dt
)
r(y) dy

≤ ε

(∫ b

a

p(t)|f ′(t)|2 dt
)∫

J(x,δ)

r(y) dy.

Use this with the estimate in (6.8.16), divide by
∫
J(x,δ)

r(y) dy, and use (6.8.15)

to conclude (6.8.13) with Cε = 2c−1
δ for x ∈ [a, b].

To verify that the form r is closed, it suffices by (6.8.12) to prove that the
operator R in (6.8.11) is closed; cf. Lemma 5.1.21. Let fn ∈ domR = D and assume
that fn → f in L2

r(a, b) for some in f ∈ L2
r(a, b) and that Rfn =

√
pf ′

n → g in
L2(a, b) for some g ∈ L2(a, b). It will be shown that f ∈ D and g = Rf . In fact,
the sequence fn(a) converges by (6.8.13) to some α ∈ C. Next define the function
h on [a, b] by

h(x) := α+

∫ t

a

g(t)√
p(t)

dt.

Since 1/p is integrable, the Cauchy–Schwarz inequality shows that

‖g/√p‖L1(a,b) ≤ ‖p−1‖1/2L1(a,b)‖g‖L2(a,b).

Thus, it follows that h is well defined and absolutely continuous on [a, b] and that√
ph′ = g almost everywhere on [a, b]. Furthermore, for a ≤ x ≤ b one obtains

|fn(x)− h(x)| ≤ |fn(a)− α|+
∣∣∣∣∫ x

a

f ′
n(t) dt−

∫ x

a

g(t)√
p(t)

dt

∣∣∣∣
≤ |fn(a)− α|+

∫ x

a

1√
p(t)

∣∣√p(t)f ′
n(t)− g(t)

∣∣ dt
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≤ |fn(a)− α|+
(∫ x

a

|
√
p(t)f ′

n(t)− g(t)|2 dt
)1/2(∫ x

a

1

p(t)
dt

)1/2

≤ |fn(a)− α|+ ‖Rfn − g‖L2(a,b)‖p−1‖1/2L1(a,b) → 0

as n → ∞. Thus, fn → h uniformly on [a, b]. On the other hand, fn → f in
L2
r(a, b). Therefore, f = h on [a, b] and√

p(x)f ′(x) =
√
p(x)h′(x) = g(x), x ∈ [a, b].

Hence, one concludes f ∈ D and Rf = g. �

For another appearance of the above lemma in a slightly more general setting,
see Lemma 6.9.1. Now the main result about the perturbed form t will be given.

Lemma 6.8.3. Let [a, b] be a compact interval and assume that the conditions
(6.8.1) and (6.8.3) are satisfied. Then t in (6.8.4) is a densely defined closed semi-
bounded form in L2

r(a, b) and the corresponding semibounded self-adjoint operator
S1 is an extension of Tmin . Moreover, for ε > 0 there exists Cε > 0 such that

|f(x)|2 ≤ Cε‖f‖2L2
r(a,b)

+ εt[f ], x ∈ [a, b], (6.8.17)

holds for all f ∈ D.

Proof. Recall the decomposition t = r + q where r and q are defined in (6.8.9)
and (6.8.10). According to Lemma 6.8.2, the form r is nonnegative and closed in
L2
r(a, b). Moreover, the form q is a small perturbation of r. Indeed, f ∈ D implies

that f ∈ AC[a, b], and hence

|q[f ]| =
∣∣∣∣∣
∫ b

a

q(x)|f(x)|2 dx
∣∣∣∣∣ ≤ sup

x∈[a,b]

|f(x)|2
∫ b

a

|q(x)| dx.

Therefore, with ε > 0 and Cε > 0 as in Lemma 6.8.2, one concludes that

|q[f ]| ≤ Cε‖q‖L1(a,b)‖f‖2L2
r(a,b)

+ ε‖q‖L1(a,b)r[f ],

and it follows that q is form-bounded with respect to r and the form bound is
arbitrarily small. Now Theorem 5.1.16 implies that t = r + q is a semibounded
closed form in L2

r(a, b). Since Tmin is equal to ker Γ0 ∩ ker Γ1, integration by parts
shows that

(Tmin f, g)L2
r(a,b)

= t[f, g], f ∈ domTmin , g ∈ D,

and now the first representation theorem implies that Tmin ⊂ S1. In particular,
Tmin is semibounded from below.
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In order to show (6.8.17), decompose q as q = q+ − q− into its positive part
q+ = max {q, 0} and its negative part q− = max {−q, 0}. Observe that for f ∈ D

q[f ] =

∫ b

a

q(x)|f(x)|2 dx ≥ −
∫ b

a

q−(x)|f(x)|2 dx (6.8.18)

and also that ∫ b

a

q−(x)|f(x)|2 dx ≤ sup
x∈[a,b]

|f(x)|2
∫ b

a

q−(x) dx. (6.8.19)

By Lemma 6.8.2 one sees that for every δ > 0 there exists Cδ such that∫ b

a

q−(x)|f(x)|2 dx ≤ Cδ‖q−‖L1(a,b)‖f‖2L2
r(a,b)

+ δ‖q−‖L1(a,b)r[f ].

Hence, it follows from (6.8.18), (6.8.19), and t = r+ q that

t[f ] ≥ (1− δ‖q−‖L1(a,b)

)
r[f ]− Cδ‖q−‖L1(a,b)‖f‖2L2

r(a,b)
.

If δ > 0 is sufficiently small this means that there exist constants α, β > 0 such
that

r[f ] ≤ αt[f ] + β‖f‖2L2
r(a,b)

.

A further application of Lemma 6.8.2 yields the desired result. �

Now the theory developed in Chapter 5 concerning boundary pairs will be
applied to the semibounded minimal operator Tmin . Recall the definition of the
mapping in (6.8.6). A preparation for the main result is Lemma 6.8.4 below, which
is based on Lemma 5.6.5.

Lemma 6.8.4. Let [a, b] be a compact interval, assume that the conditions (6.8.1)
and (6.8.3) are satisfied, and let {C2,Γ0,Γ1} be the boundary triplet in (6.8.2).
Then {C2,Λ} in (6.8.6) is a boundary pair for Tmin corresponding to S1 which is
compatible with the boundary triplet {C2,Γ0,Γ1}. Moreover, one has

(Tmax f, g)L2
r(a,b)

= (Γ1f,Λg) + t[f, g], f ∈ domTmax , g ∈ D. (6.8.20)

Proof. Consider the form t in (6.8.4) defined on dom t = D and let S1 be the
corresponding semibounded self-adjoint operator in L2

r(a, b). By Lemma 6.8.1,
domTmax ⊂ D and hence Λ in (6.8.6) is an extension of the boundary mapping
Γ0 in (6.8.2). Integration by parts shows that

(Tmax f, g)L2
r(a,b)

=

∫ b

a

(−(pf ′)′(x) + q(x)f(x)
)
g(x) dx

= (pf ′)(a)g(a)− (pf ′)(b)g(b) + t[f, g]

(6.8.21)
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for f ∈ domTmax ⊂ D and g ∈ D. This yields (6.8.20). It also follows from (6.8.21)
that

(A1f, g)L2
r(a,b)

= t[f, g]

for f ∈ domA1 = ker Γ1 and g ∈ D, and the first representation theorem implies
that A1 = S1. Let ε > 0 and Cε > 0 be as in Lemma 6.8.3. It follows from the
estimate (6.8.17) that for ρ < m(S1) there exists Cρ,ε > 0 such that

‖Λf‖2C2 = |f(a)|2 + |f(b)|2 ≤ 2Cε‖f‖2L2
r(a,b)

+ 2εt[f ] ≤ Cρ,ε‖f‖2tS1
−ρ

for all f ∈ D. Therefore, Λ ∈ B(HtS1
−ρ,C2); recall that the Hilbert space HtS1

−ρ

was defined above Lemma 5.1.3. Now Lemma 5.6.5 implies that {C2,Λ} is a bound-
ary pair for Tmin and since A1 = S1 one also sees that {C2,Λ} and {C2,Γ0,Γ1}
are compatible. �

Recall that by means of the boundary triplet in (6.8.2) all the self-adjoint
extensions of Tmin are in a one-to-one correspondence to the self-adjoint relations
Θ in C2 via

domAΘ =
{
f ∈ domTmax : {Γ0f,Γ1f} ∈ Θ

}
. (6.8.22)

The next result, which is an immediate consequence of Theorem 5.6.13 and Corol-
lary 5.6.14, makes use of the compatible boundary pair in Lemma 6.8.4 and pro-
vides a characterization of all closed semibounded forms associated with the semi-
bounded self-adjoint extensions AΘ.

Theorem 6.8.5. Let {C2,Γ0,Γ1} be the boundary triplet in (6.8.2), let Θ be a self-
adjoint relation in C2, and let AΘ be the corresponding self-adjoint restriction
of Tmax in (6.8.22). Then AΘ is semibounded from below and the corresponding
densely defined closed semibounded form tΘ in L2

r(a, b) such that

(AΘf, g)L2
r(a,b)

= tΘ[f, g], f ∈ domAΘ, g ∈ dom tΘ,

is given as follows:

(i) If Θ is a symmetric 2× 2-matrix, then

tΘ[f, g] = t[f, g] +

(
Θ

(
f(a)
f(b)

)
,

(
g(a)
g(b)

))
, dom tΘ = D.

(ii) If Θ = Θop ⊕̂Θmul with respect to the decomposition C2 = domΘop ⊕mulΘ
and dimdomΘop = 1, then

tΘ[f, g] = t[f, g] + Θop

(
f(a)g(a) + f(b)g(b)

)
,

dom tΘ =

{
h ∈ D :

(
h(a)
h(b)

)
∈ domΘop

}
.
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(iii) If Θ = {0} × C2, then AΘ = A0 coincides with the Friedrichs extension SF

and
tΘ[f, g] = t[f, g], dom tΘ =

{
h ∈ D : h(a) = h(b) = 0

}
.

Theorem 6.8.5 has an immediate corollary for the form tΘ, which is the analog
of Lemma 6.8.3 for the form t.

Corollary 6.8.6. Let [a, b] be a compact interval and let the conditions (6.8.1) and
(6.8.3) be satisfied. Let Θ be a self-adjoint relation in C2 and let the form tΘ be as
in Theorem 6.8.5. Then for ε > 0 there exists Cε > 0 such that

|f(x)|2 ≤ Cε‖f‖2L2
r(a,b)

+ εtΘ[f ], x ∈ [a, b],

holds for all f ∈ dom tΘ.

Proof. Let tΘ be given as in Theorem 6.8.5 (i); the case in Theorem 6.8.5 (ii) is
treated in the same way and for tΘ in Theorem 6.8.5 (iii) the result is clear from
Lemma 6.8.3. Let μ(Θ) be the smallest eigenvalue of the symmetric 2 × 2 matrix
Θ and define μ ∈ R by

μ =

{
0, μ(Θ) ≥ 0,

|μ(Θ)|, μ(Θ) < 0.

Then (ΘΛf,Λf)C2 ≥ −μ(|f(a)|2 + |f(b)|2) for all f ∈ D = dom tΘ and using
Lemma 6.8.3 one concludes that for 0 < ε′ < 1 there exists Cε′ > 0 such that

(ΘΛf,Λf)C2 ≥ −Cε′‖f‖2L2
r(a,b)

− ε′t[f ], f ∈ D.

The inequality

tΘ[f ] = t[f ] + (ΘΛf,Λf)C2 ≥ (1− ε′)t[f ]− Cε′‖f‖2L2
r(a,b)

shows that

t[f ] ≤ Cε′

1− ε′
‖f‖2L2

r(a,b)
+

1

1− ε′
tΘ[f ], f ∈ D,

and another application of Lemma 6.8.3 completes the proof. �

Finally, the Krĕın type extensions SK,x from Definition 5.4.2 are provided for
x < m(SF). Recall from Proposition 6.3.1 that

M(x) =
1

u2(b, x)

(−u1(b, x) 1
1 −(pu′

2)(b, x)

)
.

Hence, it follows from Theorem 5.5.1 that

domSK,x =

{
f ∈ domTmax : M(x)

(
f(a)
f(b)

)
=

(
(pf ′)(a)
−(pf ′)(b)

)}
.
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Note that the semibounded self-adjoint extensions of Tmin in L2
r(a, b) with lower

bound x < m(SF) are precisely those self-adjoint extensions AΘ that satisfy the
inequalities SK,x ≤ AΘ ≤ SF. These extensions and the corresponding closed semi-
bounded forms can now be described explicitly using the results in Section 5.6. In
particular, ifm(SF) > 0, then the Krĕın–von Neumann extension SK,0 is defined on

domSK,0 =

{
f ∈ domTmax : M(0)

(
f(a)
f(b)

)
=

(
(pf ′)(a)
−(pf ′)(b)

)}
and Corollary 5.6.18 provides a one-to-one correspondence between all closed non-
negative forms corresponding to nonnegative self-adjoint extension AΘ of Tmin and
all closed nonnegative forms corresponding to nonnegative self-adjoint relations Θ
in C2.

6.9 Closed semibounded forms for
Sturm–Liouville equations

Let L be the Sturm–Liouville differential expression given by (6.1.1) on the interval
(a, b). It will be assumed that the coefficient functions satisfy the conditions in
(6.1.2) and, in addition, that

p(x) > 0 for almost all x ∈ (a, b). (6.9.1)

In Section 6.8 it was assumed that L is regular at the endpoints, in which case the
minimal operator Tmin is semibounded from below and the form in (6.8.4) and
the mapping in (6.8.6) give a boundary pair compatible with the boundary triplet
in (6.8.2). The interest is now in the construction of a corresponding form when
L is not necessarily regular at the endpoints, which implies that (6.8.4) is not
adequate anymore. The key to defining an appropriate form in the general case is
the condition (6.9.1) together with the assumption that there are nonoscillatory
solutions of the Sturm–Liouville equation (L−λ0)y = 0 for some λ0 ∈ R. It will be
shown that these assumptions imply that Tmin is semibounded from below. The
main result in this section is Theorem 6.9.6. In Section 6.10 the properties of the
nonoscillatory solutions will be further investigated.

The differential equation (L− λ0)y = 0 with λ0 ∈ R is said to be nonoscilla-
tory at an endpoint a or b, if it has a real solution u whose zeros do not accumulate
at a or b, respectively. Otherwise, the equation (L− λ0)y = 0 is called oscillatory.
If this is the case, then the zeros of any nontrivial real solution do not accumulate
at that endpoint; cf. Lemma 6.1.8. Furthermore, Lemma 6.1.8 also implies that in
this case the equation (L−λ′

0)y = 0 with λ′
0 < λ0 is nonoscillatory. If the equation

(L − λ0)y = 0 is nonoscillatory at both endpoints, then there exist real solutions
of this equation which do not vanish in neighborhoods of a and b, respectively.
As a preparation for the general case there is first a closer look at the situation
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where the equation (L− λ0)y = 0 has a real solution which does not vanish on a
subinterval.

Assume that φ is a real solution of (L − λ0)y = 0 with λ0 ∈ R which does
not vanish on the subinterval (α, β) ⊂ (a, b). Use φ to introduce the first-order
differential expression Nφ

Nφf =
√
pφ

(
f

φ

)′
(6.9.2)

for all functions f ∈ AC(α, β). The differential expression Nφ in (6.9.2) generates
an operator Rφ from L2

r(α, β) to L2(α, β) defined on the linear subspace

Dφ =
{
f ∈ L2

r(α, β) : f ∈ AC(α, β), Nφf ∈ L2(α, β)
}

by
Rφf = Nφf, domRφ = Dφ. (6.9.3)

In the special case q = 0, λ0 = 0, and φ = 1, the corresponding differential
expression in (6.9.2) reduces to Nφf =

√
pf ′, which played an important role in

the proof of Lemma 6.8.2. The next lemma is an analog of Lemma 6.8.2. The
interval (α, β) below is a possibly unbounded subinterval of (a, b) for which α = a
or β = b is allowed.

Lemma 6.9.1. Let φ be a real solution of (L − λ0)y = 0 with λ0 ∈ R, which does
not vanish on a subinterval (α, β) ⊂ (a, b). Then the operator Rφ from L2

r(α, β) to
L2(α, β) defined in (6.9.3) is closed. The associated form rφ in L2

r(α, β) defined by

rφ[f, g] = (Rφf,Rφg)L2(α,β), f, g ∈ dom rφ = domRφ = Dφ,

is nonnegative and closed.

Proof. The proof will be given in three steps. Observe that the functions rφ2 and
pφ2 satisfy the integrability conditions

rφ2 ∈ L1
loc (α, β),

1

pφ2
∈ L1

loc (α, β), (6.9.4)

while rφ2 and pφ2 are positive almost everywhere on (α, β).

Step 1. First take q = 0, λ0 = 0, and φ = 1, in which case Nφf =
√
pf ′. Then

the associated operator Rφ from L2
r(α, β) to L2(α, β) is closed. To see this, let

fn ∈ Dφ be such that fn → f in L2
r(α, β) and Rφfn → g in L2(α, β). Then clearly

for every compact subinterval [α′, β′] ⊂ (α, β) one has that fn → f in L2
r(α

′, β′)
and Rφfn → g in L2(α′, β′). By Lemma 6.8.2, this implies that on [α′, β′] one
has f ∈ AC[α′, β′] and g =

√
pf ′. Since [α′, β′] is arbitrary, one concludes that

f ∈ AC(α, β) and g =
√
pf ′ ∈ L2(α, β). In other words, f ∈ Dφ and g = Rφf .

Step 2. Introduce the Hilbert space L2
rφ2(α, β) and the linear space D′ by

D′ =
{
f ∈ L2

rφ2(α, β) : f ∈ AC(α, β),
√
pφf ′ ∈ L2(α, β)

}
.
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Note that

f ∈ L2
r(α, β) ⇔ f

φ
∈ L2

rφ2(α, β),

and

f ∈ Dφ ⇔ f

φ
∈ D′.

Step 3. The operator Rφ from L2
r(α, β) to L2(α, β) is closed. Indeed, let fn ∈ Dφ

be such that fn → f in L2
r(α, β) and Rφfn → g in L2(α, β). Then it is clear that

fn
φ
∈ D′,

fn
φ
→ f

φ
in L2

rφ2(α, β),

while also

√
pφ

(
fn
φ

)′
→ g in L2(α, β).

Then Step 1, applied with p replaced by pφ2 and r replaced by rφ2 (and taking
into account the integrability conditions (6.9.4)) shows that

f

φ
∈ D′ and

√
pφ

(
f

φ

)′
= g.

Thus, by Step 2 one obtains f ∈ Dφ and g = Rφf . Therefore, the operator Rφ is
closed, as claimed. As a consequence, the associated nonnegative form rφ is closed;
cf. Lemma 5.1.21. �

The differential expression Nφ appears naturally when one considers the fol-
lowing form of the first Green identity for the differential expression L.

Lemma 6.9.2. Let φ be a real solution of (L−λ0)y = 0 with λ0 ∈ R, which does not
vanish on a subinterval (α, β) ⊂ (a, b). Assume that f, pf ′, g ∈ AC(α, β). Then
for any compact subinterval [α′, β′] ⊂ (α, β) one has

∫ β′

α′
(Lf)(x)g(x)r(x) dx = Wx(f, φ)

(
g

φ

)
(x)

∣∣∣∣β′

α′

+

∫ β′

α′
(Nφf)(x)(Nφg)(x) dx+ λ0

∫ β′

α′
f(x)g(x)r(x) dx.

(6.9.5)

Proof. Since f, pf ′ ∈ AC(α, β), it follows from the definition of the Wronskian
that (

(L− λ0)f
)
(x)r(x)φ(x) =

d

dx
Wx(f, φ);
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cf. (6.1.9). Multiply this identity by g(x)/φ(x); then integration by parts gives for
any compact subinterval [α′, β′] ⊂ (α, β) that∫ β′

α′

(
(L− λ0)f

)
(x)g(x)r(x) dx

=

∫ β′

α′
(Wx(f, φ))

′(x)
g(x)

φ(x)
dx

= Wx(f, φ)

(
g

φ

)
(x)

∣∣∣∣β′

α′
−
∫ β′

α′
Wx(f, φ)

d

dx

(
g(x)

φ(x)

)
dx.

Now observe that the Wronskian Wx(f, φ) can be written in terms of the differ-
ential expressions Nφf in (6.9.2) as

Wx(f, φ) = −pφ2

(
f

φ

)′
= −√pφ(Nφf),

and so

−
∫ β′

α′
Wx(f, φ)

d

dx

(
g(x)

φ(x)

)
dx =

∫ β′

α′
(Nφf)(x)(Nφg)(x) dx.

Hence, the result in (6.9.5) follows. �

In the first Green formula (6.9.5) there is an interplay between the out-
integrated parts and the integrals involving the differential expression Nφ. In fact,
assume, in addition, that f, Lf ∈ L2

r(α, β) and g = f in (6.9.5), then the limits

lim
x→α

Wx(f, φ)

(
f

φ

)
(x) or lim

x→β
Wx(f, φ)

(
f

φ

)
(x), (6.9.6)

exist in C if and only if Nφf ∈ L2(α, c) or Nφf ∈ L2(c, β), respectively, since the
corresponding limit on the left-hand side and the limit of the third term on the
right-hand side in (6.9.5) exist.

Note that the integral terms on the right-hand side of (6.9.5) make sense for
f, g ∈ AC(α, β). In the next lemma these terms are rewritten using the form in
(6.8.4).

Lemma 6.9.3. Let φ be a real solution of (L − λ0)y = 0 with λ0 ∈ R, which does
not vanish on a subinterval (α, β) ⊂ (a, b). Assume that f, g ∈ AC(α, β). Then for
any compact subinterval [α′, β′] ⊂ (α, β) one has∫ β′

α′
(Nφf)(x)(Nφg)(x) dx+ λ0

∫ β′

α′
f(x)g(x)r(x) dx

=

∫ β′

α′

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

− (pφ′)(β′)
φ(β′)

f(β′)g(β′) +
(pφ′)(α′)
φ(α′)

f(α′)g(α′).

(6.9.7)
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Proof. Let f, g ∈ AC(α, β). Then

NφfNφg = pf ′g′ − (fg)′
pφ′

φ
+ fg p

(
φ′

φ

)2

. (6.9.8)

Observe that

−
∫ β′

α′
(fg)′(x)

(pφ′)(x)
φ(x)

dx =

∫ β′

α′
(fg)(x)

(
pφ′

φ

)′
(x) dx

− (pφ′)(β′)
φ(β′)

f(β′)g(β′) +
(pφ′)(α′)
φ(α′)

f(α′)g(α′),

and that (
pφ′

φ

)′
+ p

(
φ′

φ

)2

=
(pφ′)′

φ
= q − λ0r.

Now integration of (6.9.8) leads to the desired result. �

After this excursion to the case of a nonvanishing solution of the equation
(L− λ0)y = 0 on an arbitrary open subinterval (α, β) ⊂ (a, b), one returns to the
general situation. Let L be the Sturm–Liouville expression (6.1.1) on the interval
(a, b) and let the coefficient functions satisfy the conditions (6.1.2) and (6.9.1).
Assume that there exist λa

0 ∈ R and λb
0 ∈ R for which the equations (L−λa

0)y = 0
and (L− λb

0)y = 0 are nonoscillatory at a and b, respectively. Then Lemma 6.1.8
implies that for λ0 ≤ min {λa

0 , λ
b
0} the equation (L− λ0)y = 0 is nonoscillatory at

a and b. Thus, this equation has real solutions φa and φb which do not vanish on
(a, a0) and on (b0, b), respectively. Denote the corresponding first-order differential
expressions by Nφa

and Nφb
; cf. (6.9.2). To define a form associated with the

differential expression L by means of Nφa and Nφb
, let [c, d] ⊂ (a, b) be a compact

interval such that
a < c < a0 < b0 < d < b. (6.9.9)

Define the linear subspace D ⊂ L2
r(a, b) by

D =
{
f ∈ L2

r(a, b) : f ∈ AC(a, b),
√
pf ′ ∈ L2(c, d),

Nφa
f ∈ L2(a, c), Nφb

f ∈ L2(d, b)
}
,

(6.9.10)

and define the form t by

t[f, g] =

∫ c

a

(Nφa
f)(x)(Nφa

g)(x) dx+

∫ b

d

(Nφb
f)(x)(Nφb

g)(x) dx

+ λ0

∫ c

a

f(x)g(x)r(x) dx+ λ0

∫ b

d

f(x)g(x)r(x) dx

+

∫ d

c

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

+
(pφ′

a)(c)

φa(c)
f(c)g(c)− (pφ′

b)(d)

φb(d)
f(d)g(d),

(6.9.11)
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where f, g ∈ D. Observe that here

(pφ′
a)(c)

φa(c)
∈ R and

(pφ′
b)(d)

φb(d)
∈ R. (6.9.12)

The basic properties of t and its domain D in (6.9.10) and (6.9.11) will be shown
in the following lemma. It is clear that t and D depend on the choice of the
nonoscillatory solutions φa and φb. However, they do not depend on the particular
choice of the points c and d in (6.9.9).

Lemma 6.9.4. Assume that φa and φb are real nonoscillatory solutions of the equa-
tion (L−λ0)y = 0 which do not vanish on (a, a0) and on (b0, b), respectively. Then
the form t and its domain D in (6.9.10) and (6.9.11) do not depend on the par-
ticular choice of the points c < d in (6.9.9). Moreover, the form t is closed and
bounded from below in L2

r(a, b).

Proof. Step 1. First one shows that t and D do not depend on the particular choice
of the points c < d in (a, b). Here only the case where the point d is replaced by
some point d′ with b0 < d′ < b is considered. For the sake of definiteness assume
that d < d′ < b.

To see that in the definition (6.9.10) of D the point d may be replaced by
the point d′ observe that for f ∈ AC(a, b) one has on (d, b):

Nφb
f =

√
pφb

(
f

φb

)′
=
√
pf ′ − 1√

p

(
f
pφ′

b

φb

)
. (6.9.13)

Consider the compact interval K = [d, d′] and recall that the nonoscillatory solu-
tion φb does not vanish on K. Then the last term on the right-hand side of (6.9.13)
belongs to L2(K) because 1/

√
p ∈ L2(K), while the remaining factor is bounded

because f ∈ AC(a, b), pφ′
b ∈ AC(a, b), and φb ∈ AC(a, b). Hence, Nφb

f ∈ L2(K)
if and only if

√
pf ′ ∈ L2(K). From this observation it follows directly that D does

not depend on the particular choice of the point d.

Next consider the right-hand side of (6.9.11) with the point d, subtract from
it the right-hand side of (6.9.11) with d replaced by the point d′, and observe that∫ d′

d

(Nφb
f)(x)(Nφb

g)(x) dx+ λ0

∫ d′

d

f(x)g(x)r(x) dx

=

∫ d′

d

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

+
(pφ′

b)(d)

φb(d)
f(d)g(d)− (pφ′

b)(d
′)

φb(d′)
f(d′)g(d′),

which follows from (6.9.7) in Lemma 6.9.3 with the nonvanishing solution φb on
the interval [d, d′]. This shows that t in (6.9.11) does not depend on the choice of
the point d ∈ (b0, b).
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Step 2. Next as a preparation for the rest of the proof one defines forms on each
of the disjoint intervals (a, c), (c, d), and (d, b). The properties of these forms are
given in Theorem 6.8.5 and Lemma 6.9.1. In the next steps it will be shown how
the information about each of the separate intervals can be pieced together for the
form t. For the interval (a, c) define the form t(a,c) by

t(a,c)[f, g] =

∫ c

a

(Nφaf)(x)(Nφag)(x) dx+ λ0

∫ c

a

f(x)g(x)r(x) dx,

on the domain

D(a,c) =
{
f ∈ L2

r(a, c) : f ∈ AC(a, c), Nφaf ∈ L2(a, c)
}
,

and, likewise, for the interval (d, b) define the form t(d,b) by

t(d,b)[f, g] =

∫ b

d

(Nφb
f)(x)(Nφb

g)(x) dx+ λ0

∫ b

d

f(x)g(x)r(x) dx,

on the domain

D(d,b) =
{
f ∈ L2

r(d, b) : f ∈ AC(d, b), Nφb
f ∈ L2(d, b)

}
.

The forms t(a,c) and t(c,d) are clearly bounded from below:

t(a,c)[f ] ≥ λ0

∫ c

a

|f(x)|2 r(x) dx, f ∈ D(a,c),

and

t(d,b)[f ] ≥ λ0

∫ b

d

|f(x)|2 r(x) dx, f ∈ D(d,b).

It is a consequence of Lemma 6.9.1 that the forms t(a,c) and t(d,b) are closed. For
the interval (c, d) define the form t(c,d) by

t(c,d)[f, g] =

∫ d

c

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

+
(pφ′

a)(c)

φa(c)
f(c)g(c)− (pφ′

b)(d)

φb(d)
f(d)g(d),

on the domain

D(c,d) =
{
f ∈ L2

r(c, d) : f ∈ AC(c, d),
√
pf ′ ∈ L2(c, d)

}
.

It is a consequence of (6.9.12) and Theorem 6.8.5 with

Θ =

(
(pφ′

a)(c)
φa(c)

0

0 − (pφ′
b)(d)

φb(d)

)
,
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that in L2
r(c, d) the form t(c,d) is closed and bounded from below:

t(c,d)[f ] ≥ C(c,d)

∫ d

c

|f(x)|2 r(x) dx, f ∈ D(c,d).

Step 3. It will be shown that the form t is bounded from below in L2
r(a, b). Let

f ∈ D. Then the restrictions of f to the intervals (a, c), (c, d), and (d, b) belong to
D(a,c), D(c,d), and D(d,b), respectively, and

t[f ] = t(a,c)[f ] + t(c,d)[f ] + t(d,b)[f ].

This decomposition shows that

t[f ] ≥ λ0

(∫ c

a

+

∫ b

d

)
|f(x)|2 r(x) dx+ C(c,d)

∫ d

c

|f(x)|2 r(x) dx.

Hence, it follows that

t[f ] ≥M

∫ b

a

|f(x)|2 r(x) dx, M = min {λ0, C(c,d)},

for all f ∈ D. Thus, the form t is bounded from below in L2
r(a, b).

Step 4. It will be shown that the form t is closed in L2
r(a, b). For this, let fn ∈ D

be a sequence such that fn → f in L2
r(a, b) and t[fn − fm] → 0. One needs to

establish that f ∈ D = dom t and t[fn − f ] → 0. It is clear from the assumption
that the restrictions to the intervals (a, c), (c, d), and (d, b) satisfy

fn → f in L2
r(a, c) and t(a,c)[fn − fm]→ 0,

fn → f in L2
r(c, d) and t(c,d)[fn − fm]→ 0,

fn → f in L2
r(d, b) and t(d,b)[fn − fm]→ 0,

respectively. It follows from Lemma 6.9.1 for the intervals (a, c) and (d, b), and
from Theorem 6.8.5 for the interval (c, d), that

f ∈ AC(a, c), Nφaf ∈ L2(a, c), Nφafn → Nφaf,

f ∈ AC(c, d),
√
pf ′ ∈ L2(c, d), t(c,d)[fn − f ]→ 0,

f ∈ AC(d, b), Nφb
f ∈ L2(d, b), Nφb

fn → Nφb
f,

respectively. It remains to show that f ∈ AC(a, b).

Recall from Step 1 that the definition of t is independent of the choice of
interval (c, d). By enlarging (c, d) to (c′, d′) with c′ < c and d < d′ one concludes
that also f ∈ AC(c′, d′). Hence, there is absolute continuity across the points c
and d. Thus, f ∈ AC(a, b) and consequently f ∈ dom t while t[fn − f ] → 0. One
concludes that the form t is closed in L2

r(a, b). �
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The Green formula in the following lemma will give the connection between
the differential expression L and the form t defined in (6.9.10) and (6.9.11).

Lemma 6.9.5. Assume that φa and φb are real nonoscillatory solutions of the equa-
tion (L− λ0)y = 0 which do not vanish on (a, a0) and on (b0, b), respectively. Let
[c, d] be as in (6.9.9) and assume that f, pf ′, g ∈ AC(a, b). Then for any choice of
a′ and b′ with a < a′ < c and d < b′ < b one has∫ b′

a′
(Lf)(x)g(x)r(x) dx

= Wb′(f, φb)

(
g

φb

)
(b′)−Wa′(f, φa)

(
g

φa

)
(a′)

+

∫ c

a′
(Nφaf)(x)(Nφag)(x) dx+

∫ b′

d

(Nφb
f)(x)(Nφb

g)(x) dx

+ λ0

∫ c

a′
f(x)g(x)r(x) dx+ λ0

∫ b′

d

f(x)g(x)r(x) dx

+

∫ d

c

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

+
(pφ′

a)(c)

φa(c)
f(c)g(c)− (pφ′

b)(d)

φb(d)
f(d)g(d).

(6.9.14)

Proof. Split the integral on the left-hand side of (6.9.14) into three integrals over
the subintervals (a′, c), [c, d], and (d, b′), and evaluate each integral by partial
integration. Recall that the integral over the compact interval [c, d] gives the usual
formula ∫ d

c

(Lf)(x)g(x)r(x) dx = −(pf ′)(x)g(x)
∣∣∣d
c

+

∫ d

c

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx.

As suggested by Lemma 6.9.2, the integral over the interval (a′, c) can be written
as ∫ c

a′
(Lf)(x)g(x)r(x) dx = Wx(f, φa)

(
g

φa

)
(x)

∣∣∣∣c
a′

+

∫ c

a′
(Nφaf)(x)(Nφag)(x) dx+ λ0

∫ c

a′
f(x)g(x)r(x) dx

and the integral over the interval (d, b′) can be written as∫ b′

d

(Lf)(x)g(x)r(x) dx = Wx(f, φb)

(
g

φb

)
(x)

∣∣∣∣b′
d

+

∫ b′

d

(Nφb
f)(x)(Nφb

g)(x) + λ0

∫ b′

d

f(x)g(x)r(x) dx.
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Combining the out-integrated parts one obtains

Wx(f, φa)

(
g

φa

)
(x)

∣∣∣∣c
a′
− (pf ′)(x)g(x)

∣∣∣d
c
+Wx(f, φb)

(
g

φb

)
(x)

∣∣∣∣b′
d

= Wb′(f, φb)

(
g

φb

)
(b′)−Wa′(f, φa)

(
g

φa

)
(a′)

+
(pφ′

a)(c)

φa(c)
f(c)g(c)− (pφ′

b)(d)

φb(d)
f(d)g(d),

which yields the identity (6.9.14). �

A combination of Lemma 6.9.4 and Lemma 6.9.5 leads to the following the-
orem, which describes the interplay between Tmax and the form t.

Theorem 6.9.6. Assume the conditions in (6.1.2) and (6.9.1). Let φa and φb be real
nonoscillatory solutions of (L − λ0)y = 0 for some λ0 ∈ R which do not vanish
on (a, a0) and on (b0, b), respectively, and let [c, d] be as in (6.9.9). Let t and
D = dom t be defined as in (6.9.10) and (6.9.11), so that t is a closed semibounded
form. Assume that f ∈ domTmax ∩D and g ∈ D. Then

(Tmax f, g)L2
r(a,b)

= t[f, g] + lim
b′→b

Wb′(f, φb)

(
g

φb

)
(b′)

− lim
a′→a

Wa′(f, φa)

(
g

φa

)
(a′),

(6.9.15)

where each of the limits exists in C. Furthermore, the form t is densely defined
and Tmin ⊂ S1, where S1 is the semibounded self-adjoint operator corresponding
to t and, in fact,

(Tminf, g)L2
r(a,b)

= t[f, g], f ∈ domTmin ⊂ D, g ∈ D. (6.9.16)

In particular, Tmin is bounded from below and the form tSF corresponding to the
Friedrichs extension SF of Tmin satisfies

tSF ⊂ t. (6.9.17)

Proof. The assumptions f ∈ domTmax ∩D and g ∈ D show that in (6.9.14) the
term on the left-hand side and the integrals on the right-hand side which involve
a′ and b′ have limits when a′ → a or b′ → b. Therefore, the limits of

Wa′(f, φa)

(
g

φa

)
(a′) and Wb′(f, φb)

(
g

φb

)
(b′)

exist when a′ → a or b′ → b. The definitions in (6.9.10) and (6.9.11) then lead to
the identity (6.9.15).
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To show that domTmin ⊂ D and (6.9.16) holds, take first f ∈ domTmin with
compact support. In other words, f ∈ domT0, where T0 denotes the preminimal
operator. Then f, pf ′ ∈ AC(a, b) and hence

√
pf ′ ∈ L2(c, d) is clear. It is claimed

that Nφa
f ∈ L2(a, c) and Nφb

f ∈ L2(d, b). Only the last inclusion will be shown.
Consider the identity

Nφb
f =

√
pφb

(
f

φb

)′
=

1√
p

[
pf ′ − pφ′

b

f

φb

]
,

and note that the functions f, pf ′ ∈ AC(a, b) have compact support, φb ∈ AC(a, b)
does not vanish on [d, b), and pφ′

b ∈ AC(a, b). Hence, pf ′ − pφ′
b (f/φb) vanishes

in a neighborhood of b and is bounded on [d, b). Since 1/p ∈ L1
loc(a, b) by the

assumption (6.1.2) it follows that Nφb
f ∈ L2(d, b). Therefore,

domT0 ⊂ D

and, in particular, t is densely defined; cf. Theorem 6.2.1. For f ∈ domT0 and
g ∈ D the identity

(T0f, g)L2
r(a,b)

= t[f, g] (6.9.18)

follows immediately from (6.9.15). By Lemma 6.9.4, the form t is closed and
bounded from below. Hence, by the first representation theorem, there exists a
self-adjoint operator S1 in L2

r(a, b) which is bounded from below such that

(S1f, g)L2
r(a,b)

= t[f, g]

holds for all f ∈ domT ⊂ D and g ∈ D. It follows from (6.9.18) and Theo-
rem 5.1.18 that T0 ⊂ S1, and hence also T 0 = Tmin ⊂ S1. In particular, Tmin is
bounded from below, one has dom Tmin ⊂ D, and (6.9.16) holds.

In order to verify (6.9.17) consider the form t0[f, g] = (T0f, g)L2
r(a,b)

defined
on domT0. Then one has t0 ⊂ t by (6.9.16). Since t is closed, the closure of t0,
which coincides with the form tSF

corresponding to the Friedrichs extension SF in
Definition 5.3.2, is contained in t. This leads to (6.9.17). �

Note that the existence of nonoscillatory solutions implies the semibounded-
ness of Tmin . The following result will lead to a converse statement.

Lemma 6.9.7. Assume the conditions in (6.1.2) and (6.9.1) and assume that Tmin

is bounded from below. Let u be a real solution of the equation (L− λ0)y = 0 with
λ0 ∈ R and assume that u has at least two zeros in (a, b). Then λ0 ≥ m(Tmin ).
Consequently, for λ0 < m(Tmin ) any real solution of (L − λ0)y = 0 has at most
one zero on (a, b).

Proof. Let λ0 ∈ R and assume that u is a real solution of the equation (L−λ0)y = 0
which has two zeros α < β. Denote the maximal and minimal Sturm–Liouville
operator in L2

r(α, β) by Tmax (α, β) and Tmin (α, β). Likewise, the preminimal
operator in L2

r(α, β) is denoted by T0(α, β). Denote the Friedrichs extension of
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Tmin (α, β) by SF(α, β). By Theorem 6.8.5 (iii), it is clear that the restriction
of u to [α, β] is an eigenelement of SF(α, β) with eigenvalue λ0, and therefore
λ0 ≥ m(SF(α, β)). Now recall from Lemma 5.3.1 and Definition 5.3.2 that

m(SF(α, β)) = m(Tmin (α, β)) = m(T0(α, β)),

and obviously

m(T0(α, β)) ≥ m(T0) = m(Tmin ).

Therefore, λ0 ≥ m(Tmin ). �

Theorem 6.9.8. Assume the conditions in (6.1.2) and (6.9.1). Then the operator
Tmin is bounded from below if and only if there exist λa ∈ R and λb ∈ R such that
(L− λa)y = 0 and (L− λb)y = 0 are nonoscillatory at a and b, respectively.

Proof. By Theorem 6.9.6, the existence of nonoscillatory solutions of (L−λ0)y = 0
for some λ0 ∈ R implies that Tmin is bounded from below. Conversely, if Tmin is
bounded from below, then according to Lemma 6.9.7 the equation (L− λ0)y = 0
is nonoscillatory at both endpoints for any λ0 < m(Tmin ). �

Remark 6.9.9. If one of the endpoints is regular, then the appearance of the form
t in (6.9.10) and (6.9.11) becomes somewhat simpler. Assume for instance that the
endpoint a is regular and that φb is a real nonoscillatory solution of (L−λ0)y = 0
that does not vanish on an open interval (b0, b). Let b0 < d < b and define the
linear space D by

D =
{
f ∈ L2

r(a, b) : f ∈ AC(a, b),
√
pf ′ ∈ L2(a, d), Nφb

f ∈ L2(d, b)
}
, (6.9.19)

and the form t by

t[f, g] =

∫ b

d

(Nφb
f)(x)(Nφb

g)(x) dx+ λ0

∫ b

d

f(x)g(x)r(x) dx

+

∫ d

a

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

− (pφ′
b)(d)

φb(d)
f(d)g(d),

(6.9.20)

where f, g ∈ D. The form t and its domain D in (6.9.19) and (6.9.20) do not
depend on the particular choice of the point d in (b0, b). For the corresponding
Green formula, assume that f, pf ′, g ∈ AC(a, b) and that f, Lf ∈ L2

r(a, b). Then
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for any choice of b′ with a < d < b′ < b one has∫ b′

a

(Lf)(x)g(x)r(x) dx

= Wb′(f, φb)

(
g

φb

)
(b′) + (pf ′)(a)g(a)

+

∫ b′

d

(Nφb
f)(x)(Nφb

g)(x) dx+ λ0

∫ b′

d

f(x)g(x)r(x) dx

+

∫ d

a

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

− (pφ′
b)(d)

φb(d)
f(d)g(d).

Let t and D be as in (6.9.19) and (6.9.20), and assume that f ∈ domTmax ∩ D
and g ∈ D. Then the formula (6.9.15) becomes

(Tmax f, g) = t[f, g] + (pf ′)(a)g(a) + lim
b′→b

Wb′(f, φb)

(
g

φb

)
(b′), (6.9.21)

where the limit exists in C.

6.10 Principal and nonprincipal solutions of
Sturm–Liouville equations

This section contains a further treatment of the nonoscillatory solutions of a
Sturm–Liouville equation. The forms in Section 6.9 were defined by means of so-
lutions of (L− λ0)y = 0 which are nonoscillatory near an endpoint. The nonoscil-
latory solutions φ will now be further classified as nonprincipal and principal,
depending on the square-integrability of (pφ2)−1 near an endpoint. The main re-
sult in this section is Theorem 6.10.9 which concerns the square-integrability of
Nφf near an endpoint when f is absolutely continuous, and it will be obtained by
means of Lemma 6.10.1 and Theorem 6.10.4 below. In the following Section 6.11
and Section 6.12 there is a detailed treatment of the cases where the endpoint a
and the endpoint b are either in the limit-circle case or in the limit-point case,
respectively, and where the corresponding form in (6.9.10) and (6.9.11) will be
defined in terms of nonprincipal and principal solutions.

The following auxiliary results concern a measurable function P : (a, b)→ R
which satisfies

1/P ∈ L1
loc(a, b) and P (x) > 0 for almost all x ∈ (a, b). (6.10.1)

They are stated with respect to the endpoint a of the interval (a, b); the corre-
sponding results for the other endpoint are clear.
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Lemma 6.10.1. Let the function P satisfy (6.10.1) and let a < α < b. Assume that

ϕ ∈ AC(a, α) and
√
Pϕ′ ∈ L2(a, α).

Then the following statements hold:

(i) One has

lim
x→a

ϕ(x)2∫ α

x
1

P (t) dt
∈ C and

∫ α′

a

|ϕ(t)|2
P (t)(

∫ α

t
1

P (s) ds)
2
dt <∞

for any a < α′ < α. Moreover,∫ α

a

1

P (t)
dt =∞ ⇒ lim

x→a

ϕ(x)2∫ α

x
1

P (t) dt
= 0.

(ii) Assume that
∫ α

a
1

P (t) dt <∞. Then limx→a ϕ(x) exists in C and one has

lim
x→a

ϕ(x) = 0 ⇒
∫ α

a

|ϕ(t)|2
P (t)(

∫ t

a
1

P (s) ds)
2
dt <∞.

Moreover,

lim
x→a

ϕ(x) = 0 ⇔ lim
x→a

ϕ(x)2∫ x

a
1

P (t) dt
= 0 ⇔ lim

x→a

ϕ(x)2∫ x

a
1

P (t) dt
∈ C.

Proof. In the following proof it will be assumed without loss of generality that the
function ϕ is real.

(i) As abbreviation use the notation H(t) =
∫ α

t
1

P (s) ds, a < t < α. Then the

identities

PH

((
ϕ√
H

)′)2

= P

(
ϕ′ +

1

2

ϕ

PH

)2

= P (ϕ′)2 +
ϕϕ′

H
+

1

4

ϕ2

PH2

and
1

2

(
ϕ2

H

)′
=

ϕϕ′

H
+

1

2

ϕ2

PH2

yield

PH

((
ϕ√
H

)′)2

= P (ϕ′)2 − 1

4

ϕ2

PH2
+

1

2

(
ϕ2

H

)′
. (6.10.2)

In particular, one sees that

P (ϕ′)2 ≥ 1

4

ϕ2

PH2
− 1

2

(
ϕ2

H

)′
.



456 Chapter 6. Sturm–Liouville Operators

Integrate this last inequality over [x, α′] with a < x < α′ < α. Then∫ α′

x

P (t)ϕ′(t)2 dt ≥ 1

4

∫ α′

x

ϕ(t)2

P (t)H(t)2
dt+

1

2

ϕ(x)2

H(x)
− 1

2

ϕ(α′)2

H(α′)

≥ 1

4

∫ α′

x

ϕ(t)2

P (t)H(t)2
dt− 1

2

ϕ(α′)2

H(α′)
.

Since
√
Pϕ′ is square-integrable, taking the limit x → a shows the integrability

result in (i). Hence, both terms on the right-hand side of the estimate

PH

((
ϕ√
H

)′)2

= P

(
ϕ′ +

1

2

ϕ

PH

)2

≤ 2P (ϕ′)2 +
1

2

ϕ2

PH2

are integrable on (a, α′). Therefore, in view of (6.10.2), one sees that the limit

limx→a
ϕ(x)2

H(x) exists in C. Thus, the first two statements in (i) have been proved.

In order to prove the last statement in (i) assume that
∫ α

a
1

P (t) dt =∞. Then

∫ α′

a

1

P (t)H(t)
dt = lim

x→a

(∫ α′

x

1

P (t)H(t)
dt

)
= lim

x→a

(
logH(x)− logH(α′)

)
=∞;

(6.10.3)

note that (logH)′ = −1/PH. In view of∫ α′

a

1

P (t)H(t)

ϕ(t)2

H(t)
dt =

∫ α′

a

ϕ(t)2

P (t)H(t)2
dt <∞,

it follows from (6.10.3) that actually limx→a
ϕ(x)2

H(x) = 0, which is the limit result in

assertion (i).

(ii) Assume that
∫ α

a
1

P (t) dt <∞. First observe that for a < y < x < α the identity

ϕ(x)− ϕ(y) =

∫ x

y

√
P (t)ϕ′(t)

1√
P (t)

dt

together with the Cauchy–Schwarz inequality gives

|ϕ(x)− ϕ(y)|2 ≤
∣∣∣∣∫ x

y

1

P (t)
dt

∣∣∣∣ ∣∣∣∣∫ x

y

P (t)ϕ′(t)2 dt
∣∣∣∣ .

Due to the assumptions it is now clear that limy→a ϕ(y) exists in C. Moreover, if,
in particular, limy→a ϕ(y) = 0, then the above inequality shows that

|ϕ(x)|2 ≤
∣∣∣∣∫ x

a

1

P (t)
dt

∣∣∣∣ ∣∣∣∣∫ x

a

P (t)ϕ′(t)2 dt
∣∣∣∣ .
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Hence, the implications

lim
x→a

ϕ(x) = 0 ⇒ lim
x→a

ϕ(x)2∫ x

a
1

P (t) dt
= 0 ⇒ lim

x→a

ϕ(x)2∫ x

a
1

P (t) dt
∈ C

are clear. Furthermore, since limy→a ϕ(y) exists in C,

lim
x→a

ϕ(x)2∫ x

a
1

P (t) dt
∈ C ⇒ lim

x→a
ϕ(x) = 0.

This proves the equivalences in the last statement of (ii).

For the rest of the proof of (ii) use as abbreviation the notation

G(t) =

∫ t

a

1

P (s)
ds, a < t < α.

Note that the integral is well defined due to the assumption
∫ α

a
1

P (t) dt <∞. Then

the identities

PG

((
ϕ√
G

)′)2

= P

(
ϕ′ − 1

2

ϕ

PG

)2

= P (ϕ′)2 − ϕϕ′

G
+

1

4

ϕ2

PG2

and
1

2

(
ϕ2

G

)′
=

ϕϕ′

G
− 1

2

ϕ2

PG2

lead to

PG

((
ϕ√
G

)′)2

= P (ϕ′)2 − 1

4

ϕ2

PG2
− 1

2

(
ϕ2

G

)′
.

In particular, one sees that

P (ϕ′)2 ≥ 1

4

ϕ2

PG2
+

1

2

(
ϕ2

G

)′
.

Integrate this last inequality over [x, α] with a < x < α. Then∫ α

x

P (t)ϕ′(t)2 dt ≥ 1

4

∫ α

x

ϕ(t)2

P (t)G(t)2
dt+

1

2

ϕ(α)2

G(α)
− 1

2

ϕ(x)2

G(x)
.

Recall that limx→a ϕ(x) = 0 is equivalent to limx→a ϕ(x)
2/G(x) exists in C. Since√

Pϕ′ is square-integrable, the integrability result in (ii) follows. �

Corollary 6.10.2. Let the function P satisfy (6.10.1) and let a < α < b. Assume
that

ϕ,ψ ∈ AC(a, α) and
√
Pϕ′,

√
Pψ′ ∈ L2(a, α).
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Then
lim inf
x→a

∣∣P (x)ϕ′(x)ψ(x)
∣∣ = 0, (6.10.4)

when either ∫ α

a

1

P (t)
dt =∞

or ∫ α

a

1

P (t)
dt <∞ and lim

x→a
ψ(x) = 0.

Proof. According to Lemma 6.10.1 (i) applied to ψ one has withH(t) =
∫ α

t
1

P (s) ds,

a < t < α, that
ψ√
PH

∈ L2(a, α′)

for any a < α′ < α. The assumption
∫ α

a
1

P (t) dt =∞ implies that∫ α′

a

1

P (t)H(t)
dt =∞; (6.10.5)

cf. (6.10.3). However, with
√
Pϕ′ ∈ L2(a, α) one also sees via the Cauchy–Schwarz

inequality that∫ α′

a

∣∣P (t)ϕ′(t)ψ(t)
∣∣ 1

P (t)H(t)
dt =

∫ α′

a

∣∣∣∣√P (t)ϕ′(t)
ψ(t)√

P (t)H(t)
dt

∣∣∣∣ <∞.

Therefore, it follows from (6.10.5) that (6.10.4) holds.

Next assume that∫ α

a

1

P (t)
dt <∞ and lim

x→a
ψ(x) = 0.

Then with G(t) =
∫ t

a
1

P (s) ds, a < t < α, the assumption
∫ α

a
1

P (t) dt < ∞ implies

that ∫ α

a

1

P (t)G(t)
dt = lim

x→a

∫ α

x

1

P (t)G(t)
dt

= lim
x→a

(
logG(α)− logG(x)

)
=∞;

note that one has (logG)′ = 1/PG. Thanks to the assumption limx→a ψ(x) = 0,
Lemma 6.10.1 (ii) applied to ψ, shows that

ψ√
PG

∈ L2(a, α).

Combining this with the fact that
√
Pϕ′ ∈ L2(a, α) one sees in a similar way as

above that (6.10.4) holds. �
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Now return to the Sturm–Liouville differential expression L given by (6.1.1)
on the interval (a, b). In addition to the conditions in (6.1.2), it will be assumed
that

p(x) > 0 for almost all x ∈ (a, b).

If the equation (L − λ0)y = 0, λ0 ∈ R, is nonoscillatory at the endpoint a, then
its real solutions may be distinguished by the following properties.

Definition 6.10.3. Let (L−λ0)y = 0 with λ0 ∈ R be nonoscillatory at the endpoint
a and let u and v be real solutions of (L−λ0)y = 0. Then u is said to be principal
at a if 1/(pu2) is not integrable at a and v is said to be nonprincipal at a if 1/(pv2)
is integrable at a.

It is clear that a real solution of (L−λ0)y = 0 with λ0 ∈ R is either principal
or nonprincipal at a. In Theorem 6.10.4 and Corollary 6.10.5 below it turns out
that a principal solution exists and is uniquely determined up to real multiples.
Hence, every linearly independent solution is nonprincipal.

Theorem 6.10.4. Let (L− λ0)y = 0 with λ0 ∈ R be nonoscillatory at the endpoint
a. Then the following statements hold:

(i) Let u be a solution of (L − λ0)y = 0 which is principal at a. Assume that u
does not vanish on (a, a0) and let α ∈ (a, a0). Then v is a real solution of
(L− λ0)y = 0 with W (u, v) = 1 if and only if there exists γ ∈ R such that

v(x) = −u(x)
(
γ +

∫ α

x

ds

p(s)u(s)2

)
, a < x < α. (6.10.6)

For each γ ∈ R the solution v is nonprincipal at a and∫ x

a

dt

p(t)v(t)2
=

1

γ +
∫ α

x
dt

p(t)u(t)2

, a < x < av, (6.10.7)

when v does not vanish on (a, av).

(ii) Let v be a solution of (L− λ0)y = 0 which is nonprincipal at a. Assume that
v does not vanish on (a, a0) and let α ∈ (a, a0). Then w is a real solution of
(L− λ0)y = 0 with W (v, w) = 1 if and only if there exists γ ∈ R such that

w(x) = v(x)

(
γ +

∫ x

a

ds

p(s)v(s)2

)
, a < x < α. (6.10.8)

The solution w is principal at a if γ = 0 and nonprincipal at a if γ 	= 0, in
which case∫ x

a

dt

p(t)w(t)2
=

1

γ
− 1

γ +
∫ x

a
1

p(s)v(s)2 ds
, a < x < aw, (6.10.9)

when w does not vanish on (a, aw).
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Proof. (i) If v is given by (6.10.6), then it follows from the definition that

v′(x) = −u′(x)
(
γ +

∫ α

x

ds

p(s)u(s)2

)
+

1

p(x)u(x)

and

(pv′)′(x) = −(pu′)′(x)
(
γ +

∫ α

x

ds

p(s)u(s)2

)
.

Hence, v is a solution of (L − λ0)y = 0 and W (u, v) = 1. Conversely, if v is a
solution with W (u, v) = 1, then it follows from (6.1.28) that∫ α

x

ds

p(s)u(s)2
=

v(α)

u(α)
− v(x)

u(x)
, a < x < α,

which leads to (6.10.6). Observe that

d

dt

(
1

γ +
∫ α

t
ds

p(s)u(s)2

)
=

1

p(t)u(t)2
1(

γ +
∫ α

t
ds

p(s)u(s)2

)2 =
1

p(t)v(t)2
,

and consequently, for a < y < x < av:∫ x

y

dt

p(t)v(t)2
=

1

γ +
∫ α

x
1

p(s)u(s)2 ds
− 1

γ +
∫ α

y
1

p(s)u(s)2 ds
.

Since u is principal at a, the last term on the right-hand side goes to 0 as y → a,
so that v is nonprincipal at a, and (6.10.7) follows.

(ii) One verifies in the same way as in the proof of (i) that w is a real solution of
(L−λ0)y = 0 with W (v, w) = 1 if and only if there exists γ ∈ R such that (6.10.8)
holds. In a similar way as above observe that

d

dt

(
1

γ +
∫ t

a
ds

p(s)v(s)2

)
= − 1

p(t)v(t)2
1(

γ +
∫ t

a
ds

p(s)v(s)2

)2 = − 1

p(t)w(t)2
,

and one obtains for a < y < x < aw:∫ x

y

dt

p(t)w(t)2
=

1

γ +
∫ y

a
1

p(s)v(s)2 ds
− 1

γ +
∫ x

a
1

p(s)v(s)2 ds
.

Since v is nonprincipal at a, one sees for γ 	= 0 that w is nonprincipal at a, and
(6.10.9) follows. For γ = 0 it follows that w is principal at a. �

Theorem 6.10.4 allows some flexibility. It is clear from the proof of Theo-
rem 6.10.4 that one can choose α = a0 in (6.10.6) if u does not vanish on (a, a0]
and one can choose α = a0 in (6.10.8) if v does not vanish on (a, a0]. As to the
nonoscillatory behavior of the solutions, observe that in (6.10.6) the factor

Hα(x) = γ +

∫ α

x

ds

p(s)u(s)2
, a < x < a0,
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is a decreasing function with limx→a Hα(x) =∞, while limx→a0 Hα(x) is finite or
−∞, depending on whether u is nonprincipal or principal at a0. In any case, Hα

has at most one zero on (a, a0). Note that Hα(α) = γ, so that Hα(x) ≥ γ when
a < x ≤ α.

If u and v are solutions which are principal and nonprincipal at a, respectively,
and which are nonvanishing on (a, a0), then, without loss of generality, one may
assume that W (u, v) = 1. By choosing a < α < a0 it follows from Theorem 6.10.4
that v is of the form (6.10.6) for a unique γ ∈ R. Moreover, by construction one
sees that γ > 0. A similar observation can be made about (6.10.8).

Corollary 6.10.5. Let (L− λ0)y = 0 with λ0 ∈ R be nonoscillatory at the endpoint
a. Then there exists a nontrivial solution of (L−λ0)y = 0 which is principal at a.
This solution is unique up to real nonzero multiples. In fact, a nontrivial solution
u is principal at a if and only if

lim
x→a

u(x)

v(x)
= 0 (6.10.10)

for all solutions v of (L− λ0)y = 0 which are linearly independent of u.

Proof. A solution of (L − λ0)y = 0 is either principal or nonprincipal at a, and
by Theorem 6.10.4 any solution of (L − λ0)y = 0 which is nonprincipal at a
generates a solution which is principal at a. Thus, there exists a nontrivial solution
of (L− λ0)y = 0 which is principal at a. It also follows from Theorem 6.10.4 that
a principal solution is unique up to real nonzero multiples.

If u is a solution of (L−λ0)y = 0 which is principal at a, then it follows from
Theorem 6.10.4 (i) that for every solution v of (L − λ0)y = 0 with W (u, v) = 1
one has u(x)/v(x)→ 0 as x→ a, that is, (6.10.10) holds.

If u is a solution of (L− λ0)y = 0 which is nonprincipal at a, then (6.10.10)
does not hold. Indeed, Theorem 6.10.4 (ii) (with v replaced by u and w replaced
by v) shows that for every solution v of (L − λ0)y = 0 with W (u, v) = 1 there
exists γ ∈ R such that

u(x)

v(x)
=

1

γ +
∫ x

a
ds

p(s)u(s)2

for x ∈ (a, av) ⊂ (a, a0), where (a, av) is an interval on which v does not vanish.
Hence, u(x)/v(x) → 1/γ as x → a when γ 	= 0 and u(x)/v(x) → ∞ as x → a
when γ = 0. Therefore, (6.10.10) does not hold. �

Let a be regular, which means that a ∈ R and that
∫ a0

a
1

p(t) dt <∞. For any

real solution v of (L− λ0)y = 0 with v(a) 	= 0 it follows that∫ a0

a

1

p(t)v(t)2
dt <∞.

Hence, the principal solution u corresponds to u(a) = 0 (and (pu′)(a) 	= 0 as
otherwise u would be trivial).
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There is a refinement of the defining property of a principal solution when
the endpoint a is in the limit-circle case.

Corollary 6.10.6. Let (L − λ0)y = 0 with λ0 ∈ R be nonoscillatory at a and
assume that a is in the limit-circle case. Let u be a principal solution and let v
be a nonprincipal solution which do not vanish on the interval (a, a0), and let
α ∈ (a, a0). Then ∫ x

a
u(t)2r(t) dt∫ x

a
v(t)2r(t) dt

≤ u(x)2

v(x)2
, a < x < α. (6.10.11)

Proof. By assumption, u is principal and v is nonprincipal. Hence, according to
Theorem 6.10.4 (i) v may be written as (6.10.6). Since a is in the limit-circle case,
u, v ∈ L2

r(a, a0). It follows from (6.10.6) that for a < x < α(
v(x)

u(x)

)2 ∫ x

a

u(t)2r(t) dt =

(
γ +

∫ α

x

ds

p(s)u(s)2

)2 ∫ x

a

u(t)2r(t) dt. (6.10.12)

Moreover, since u and v do not vanish (6.10.6) also implies that

0 ≤ γ +

∫ α

x

ds

p(s)u(s)2
≤ γ +

∫ α

t

ds

p(s)u(s)2

for a < t < x. Therefore, the right-hand side of (6.10.12) can be estimated by∫ x

a

u(t)2
(
γ +

∫ α

t

ds

p(s)u(s)2

)2

r(t) dt =

∫ x

a

v(t)2r(t) dt,

and the assertion follows. �

Returning to the general case of an endpoint, observe that the connections
between the solutions in Theorem 6.10.4 give also the following connections be-
tween the associated Wronskians.

Corollary 6.10.7. Let (L− λ0)y = 0 with λ0 ∈ R be nonoscillatory at the endpoint
a and assume that f ∈ AC(a, a0). Then the following statements hold:

(i) Let u be a principal solution at a which does not vanish on (a, a0), let v be
given by (6.10.6), and let α ∈ (a, a0). Then

Wx(f, v) = Wx(f, u)
v(x)

u(x)
+

f(x)

u(x)
, a < x < α. (6.10.13)

(ii) Let v be a nonprincipal solution at a which does not vanish on (a, a0), let w
be given by (6.10.8), and let α ∈ (a, a0). Then

Wx(f, w) = Wx(f, v)
w(x)

v(x)
+

f(x)

v(x)
, a < x < α. (6.10.14)
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The results about principal and nonprincipal solutions will now be applied in
the context of the first-order differential expression (6.9.2) related to the Sturm–
Liouville expression. Let φ be a real solution of (L− λ0)y = 0 which is nonoscilla-
tory at the endpoint a and assume that φ does not vanish on (a, a0). Recall that
the first-order differential expression Nφ on (a, a0) is given by

Nφf =
√
pφ

(
f

φ

)′
= −W (f, φ)√

pφ
(6.10.15)

for all functions f ∈ AC(a, a0); cf. (6.9.2). Note that for q = 0 one may take
λ0 = 0 and φ = 1, in which case Nφf =

√
pf ; cf. (6.8.11). One basic observation

is contained in the following lemma.

Lemma 6.10.8. Let (L − λ0)y = 0 with λ0 ∈ R be nonoscillatory at the endpoint
a. Then the following statements hold:

(i) Let u be a principal solution of (L − λ0)y = 0 (which is unique up to real
multiples) and let v be a nonprincipal solution of (L − λ0)y = 0 such that
W (u, v) = 1. Assume that u and v do not vanish on (a, a0) and let α ∈ (a, a0).
Then

(Nuf)(x)− (Nvf)(x) =

(
f√
puv

)
(x), a < x < α, (6.10.16)

for f ∈ AC(a, a0).

(ii) Let v and w be nonprincipal solutions of (L−λ0)y = 0 such that W (v, w) = 1,
assume that v and w do not vanish on (a, a0), and let α ∈ (a, a0). Then

(Nvf)(x)− (Nwf)(x) =

(
f√
pvw

)
(x), a < x < α, (6.10.17)

for f ∈ AC(a, a0).

Proof. (i) As v is assumed to be a real solution of (L−λ0)y = 0 with W (u, v) = 1,
it is given by (6.10.6) for some γ ∈ R. Hence, (6.10.13) holds and it follows that

1√
pv

W (f, v) =
1√
pu

W (f, u) +
f√
puv

.

Using (6.10.15) this implies (6.10.16).

(ii) Since w is assumed to be a real solution of (L−λ0)y = 0 with W (v, w) = 1, it
is given by (6.10.8) for some real γ 	= 0. Hence, (6.10.14) holds and it follows that

1√
pw

W (f, w) =
1√
pv

W (f, v) +
f√
pvw

.

Using (6.10.15) this implies (6.10.17). �
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The following theorem is based on a direct application of Lemma 6.10.1. It
shows the usefulness of the various types of solutions.

Theorem 6.10.9. Let (L− λ0)y = 0 with λ0 ∈ R be nonoscillatory at the endpoint
a. Then the following statements hold:

(i) Let v be a solution which is nonprincipal at a and assume that v does not
vanish on the subinterval (a, a0). Let f ∈ AC(a, a0) and Nvf ∈ L2(a, c) for
a < c < a0. Then

lim
x→a

f(x)

v(x)

exists and is finite.

(ii) Let v and w be nonprincipal solutions with W (v, w) = 1, assume that both v
and w do not vanish on (a, a0), and let f ∈ AC(a, a0). Then

Nvf ∈ L2(a, c) ⇔ Nwf ∈ L2(a, c)

for a < c < a0.

(iii) Let u be a principal solution, let v be a nonprincipal solution such that
W (u, v) = 1, assume that both u and v do not vanish on (a, a0), and let
f ∈ AC(a, a0). Then

Nuf ∈ L2(a, a′) ⇔ Nvf ∈ L2(a, a′′) and lim
x→a

f(x)

v(x)
= 0

for some a < a′, a′′ < a0.

(iv) Let u be a principal solution which does not vanish on (a, a0). If f ∈ AC(a, a0)
and Nuf ∈ L2(a, c) for a < c < a0, then

lim
x→a

f(x)

u(x)

(∫ x

a

dt

p(t)v(t)2

)1/2

= 0

for any nonprincipal solution v at a.

Proof. (i) Let v be a nonprincipal solution and assume that f ∈ AC(a, a0) and
Nvf ∈ L2(a, c). Now apply Lemma 6.10.1 (ii) with P = pv2 and ϕ = f/v. In fact,
in the present situation one has ϕ = f/v ∈ AC(a, c) and

√
Pϕ′ = Nvf ∈ L2(a, c),

and
∫ c

a
1

P (t)dt <∞, since v is nonprincipal at a. Therefore, Lemma 6.10.1 (ii) with

α = c yields that the limit

lim
x→a

f(x)

v(x)
= lim

x→a
ϕ(x)

exists and is finite.
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(ii) By symmetry, it suffices to show the implication (⇒). Hence, assume that
f ∈ AC(a, a0) and Nvf ∈ L2(a, c). Since v is nonprincipal at a it follows from (i)
that the limit

lim
x→a

f(x)

v(x)

exists and is finite. As v does not vanish in (a, a0) one has f/v ∈ AC(a, a0) and
for c ∈ (a, a0) there exists M > 0 such that∣∣∣∣f(x)v(x)

∣∣∣∣ ≤M, x ∈ (a, c).

By Lemma 6.10.8 (ii),

(Nvf)(x)− (Nwf)(x) =
1√

p(x)w(x)

(
f

v

)
(x). (6.10.18)

Now it follows from (6.10.18) with 1/(pw2) integrable on (a, c) that∫ c

a

|Nwf(s)|2ds ≤ 2

∫ c

a

|Nvf(s)|2ds+ 2M2

∫ c

a

1

p(s)w(s)2
ds <∞,

and hence Nwf ∈ L2(a, c).

(iii) (⇒) Assume that f ∈ AC(a, a0) and Nuf ∈ L2(a, a′) for a < a′ < a0. Since
the principal solution u does not vanish on (a, a0), the function

Ha′(x) =

∫ a′

x

ds

p(s)u(s)2
, a < x < a′,

is well defined and Ha′(x) → ∞ as x → a. Then, according to Lemma 6.10.1 (i)
with P = pu2, ϕ = f/u, α = a′, and α′ = a′′ one obtains

1√
pu

(
f

u

)
1

Ha′
∈ L2(a, a′′) (6.10.19)

for any a < a′′ < a′, and((
f

u

)
(x)

)2
1

Ha′(x)
→ 0 as x→ a. (6.10.20)

Since v is a nonprincipal solution it can be expressed in terms of u by means of
Theorem 6.10.4 (i) with some γ > 0 as

v(x) = −u(x) (γ +Ha′(x)) , a < x < a′,

and consequently

u(x)

v(x)
Ha′(x) = − Ha′(x)

γ +Ha′(x)
, a < x < a′.
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Since Ha′(x)→∞ as x→ a, it is clear that∣∣∣∣u(x)v(x)
Ha′(x)

∣∣∣∣ ≤ 1, a < x < a′. (6.10.21)

Write (6.10.16) in Lemma 6.10.8 on the interval (a, a′) as

Nuf −Nvf =
1√
pu

(
f

u

)
1

Ha′

u

v
Ha′ . (6.10.22)

Obviously, (6.10.19) and (6.10.21) imply that the right-hand side of (6.10.22)
belongs to L2(a, a′′). As Nuf ∈ L2(a, a′) this gives Nvf ∈ L2(a, a′′). To calculate
limx→a f(x)/v(x), observe that on (a, a0)(

f

v

)2

=

(
f

u

)2
1

Ha′

(u
v
Ha′
)2 1

Ha′
, (6.10.23)

which in view of (6.10.20) and (6.10.21) shows that

lim
x→a

f(x)

v(x)
= 0.

(⇐) For the converse implication assume that f ∈ AC(a, a0), Nvf ∈ L2(a, a′′),
and limx→a f(x)/v(x) = 0. By means of Theorem 6.10.4 (ii) one can express u in
terms of v as

u(x) = v(x)Ka(x), Ka(x) =

∫ x

a

ds

p(s)v(s)2
ds, a < x < a′′.

Now by Lemma 6.10.1 (ii) with P = pv2, ϕ = f/v, and α = a′′ one has

1√
pv

(
f

v

)
1

Ka
∈ L2(a, a′′). (6.10.24)

In order to show that the functions Nuf is square-integrable near a, write (6.10.16)
in Lemma 6.10.8 as

Nuf −Nvf =
1√
pv

(
f

v

)
· v
u
=

1√
pv

(
f

v

)
1

Ka
. (6.10.25)

It follows from (6.10.24) and (6.10.25) that Nuf ∈ L2(a, a′′) and hence, in partic-
ular, Nuf ∈ L2(a, a′) for a < a′ ≤ a′′.

(iv) Let u be a principal solution which does not vanish on (a, a0). Assume that
f ∈ AC(a, a0) and Nuf ∈ L2(a, a′), where a′ = c ∈ (a, a0). Then it follows that
(6.10.20) holds; cf. (iii). Recall that every solution v of (L − λ0)y = 0 which is
nonprincipal at a has the form (6.10.6) with α = a′. Then v does not vanish on
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(a, av) ⊂ (a, a′). Now observe that for f ∈ AC(a, a0) it then follows from (6.10.7)
that for a < x < av

f(x)2

u(x)2

(∫ x

a

dt

p(t)v(t)2

)
=

f(x)2

u(x)2
1∫ a′

x
dt

p(t)u(t)2

∫ a′

x
dt

p(t)u(t)2

γ +
∫ a′

x
dt

p(t)u(t)2

.

Therefore, the right-hand side has the limit 0 as x→ a. �

Let u and v be solutions of (L − λ0)y = 0, λ0 ∈ R, which are principal
and nonprincipal at a, respectively. If the endpoint a is in the limit-circle case,
then one can say more about the limits of f(x)/v(x) and f(x)/u(x) as x→ a; cf.
Theorem 6.10.9 (i) and (iv).

Lemma 6.10.10. Let (L−λ0)y = 0 with λ0 ∈ R be nonoscillatory at a and assume
that the endpoint a is in the limit-circle case. Let u and v be real solutions of
(L− λ0)y = 0 for λ0 ∈ R which do not vanish on (a, a0) and which are principal
and nonprincipal at a, respectively, with W (u, v) = 1. Let f, pf ′ ∈ AC(a, a0) and
assume that f, Lf ∈ L2

r(a, a0). Then

lim
x→a

f(x)

v(x)
= − lim

x→a
Wx(f, u). (6.10.26)

If, in addition,

lim
x→a

Wx(f, u)
v(x)

u(x)
= 0, (6.10.27)

then

lim
x→a

f(x)

u(x)
= lim

x→a
Wx(f, v). (6.10.28)

Proof. Note that under the present conditions both limits

lim
x→a

Wx(f, u) and lim
x→a

Wx(f, v)

exist; cf. Lemma 6.2.5. Recall that v can be written in terms of u as in (6.10.6).
Hence, for f ∈ AC(a, a0) Corollary 6.10.7 (i) shows that

Wx(f, v) = Wx(f, u)
v(x)

u(x)
+

f(x)

u(x)
, a < x < α. (6.10.29)

Multiplying the identity (6.10.29) by u(x)
v(x) one obtains

u(x)

v(x)
Wx(f, v) = Wx(f, u) +

f(x)

v(x)
, a < x < α.

Since, by Corollary 6.10.5, limx→a
u(x)
v(x) = 0, it follows that (6.10.26) holds. Fur-

thermore, if (6.10.27) is satisfied, then (6.10.28) follows from (6.10.29). �
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The following result is a slight variation of Theorem 6.10.9 (iii) in the context
of the limit-circle case.

Proposition 6.10.11. Let (L − λ0)y = 0 with λ0 ∈ R be nonoscillatory at a and
assume that the endpoint a is in the limit-circle case. Let u and v be real solutions
of (L − λ0)y = 0 for some λ0 ∈ R which are principal and nonprincipal at a,
respectively, and do not vanish on (a, a0). Let f, pf

′ ∈ AC(a, a0) and assume that
f, Lf ∈ L2

r(a, a0). Then the following statements are equivalent:

(i) Nuf ∈ L2(a, c) for a < c < a0;

(ii) limx→a
f(x)
v(x) = 0;

(iii) limx→a Wx(f, u) = 0;

(iv) limx→a f(x)/u(x) exists in C;

and in this case

lim
x→a

f(x)

u(x)
= lim

x→a
Wx(f, v).

Furthermore, if the endpoint a is regular, then (i)–(iv) are equivalent to

(v) f(a) = 0.

Proof. Let u and v be principal and nonprincipal at a, respectively, and assume
without loss of generality that W (u, v) = 1.

(i) ⇒ (ii) If Nuf ∈ L2(a, c), then Theorem 6.10.9 (iii) implies f(x)/v(x) → 0 as
x→ a.

(ii) ⇒ (iii) This follows from (6.10.26).

(iii) ⇒ (iv) Assume that limx→a Wx(f, u) = 0. Then the identity (6.1.9) shows
that

Wx(f, u) =

∫ x

a

((L− λ0)f)(t)u(t)r(t) dt,

which gives the estimate

|Wx(f, u)| ≤
(∫ x

a

u(t)2r(t) dt

) 1
2
(∫ x

a

|((L− λ0)f)(t)|2 r(t) dt
) 1

2

.

Combining this with the estimate (6.10.11) leads to

|Wx(f, u)|
∣∣∣∣ v(x)u(x)

∣∣∣∣ ≤ (∫ x

a

v(t)2r(t) dt

) 1
2
(∫ x

a

|((L− λ0)f)(t)|2 r(t) dt
) 1

2

for x sufficiently close to a, so that

Wx(f, u)
v(x)

u(x)
→ 0 as x→ a.

Therefore, limx→a f(x)/u(x) exists by Lemma 6.10.10.
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(iv) ⇒ (i) Since limx→a Wx(f, u) exists, the assumption that limx→a f(x)/u(x)
exists implies that Nuf ∈ L2(a, c) for a < c < a0; cf. (6.9.6).

(iv)⇔ (v) Observe that in the case of a regular endpoint one has v(a) 	= 0 for any
nonprincipal solution v. This shows the equivalence of (ii) and (v). �

The importance of Theorem 6.10.9 and Proposition 6.10.11 will become clear
in the treatment of the various forms associated with Sturm–Liouville expressions
in Section 6.11 and Section 6.12. In fact, the dependence of the forms on the choice
of nonprincipal and principal solutions will be indicated in Proposition 6.11.7 and
Proposition 6.12.7.

6.11 Semibounded Sturm–Liouville operators and
the limit-circle case

Let L be the Sturm–Liouville differential expression in (6.1.1) on the open interval
(a, b):

L =
1

r
[−DpD + q] , D = d/dx,

and let the coefficient functions satisfy the conditions{
p(x) > 0, r(x) > 0, for almost all x ∈ (a, b),

1/p, q, r ∈ L1
loc (a, b).

(6.11.1)

In addition, it will be assumed that the equation (L−λ0)y = 0 is nonoscillatory at
the endpoints a and b for some λ0 ∈ R, which implies that the minimal operator
Tmin is bounded from below; cf. Theorem 6.9.6. Recall that if Tmin is semibounded
from below, then in any case for every λ0 < m(Tmin ) the equation (L− λ0)y = 0
is nonoscillatory; cf. Theorem 6.9.8. Furthermore, it will be assumed that the
endpoints a and b are in the limit-circle case.

Let va and vb be solutions of (L− λ0)y = 0, λ0 ∈ R, which are nonprincipal
at a and b, respectively. Recall that va and vb are real by Definition 6.10.3. Since
it is assumed that a and b are in the limit-circle case, one sees that va and vb
belong to L2

r(a, b). These nonprincipal solutions va and vb will be used to define a
convenient boundary triplet.

Proposition 6.11.1. Let va and vb be solutions of (L − λ0)y = 0, λ0 ∈ R, which
are nonprincipal at a and b, respectively. Assume that the endpoints a and b are
in the limit-circle case. Then {C2,Γ0,Γ1}, where

Γ0f =

⎛⎝limx→a
f(x)
va(x)

limx→b
f(x)
vb(x)

⎞⎠ and Γ1f =

(− limx→a Wx(f, va)
limx→b Wx(f, vb)

)
, f ∈ domTmax ,

is a boundary triplet for (Tmin )
∗ = Tmax .
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Proof. Let ua and ub be solutions of (L − λ0)y = 0, λ0 ∈ R, which are princi-
pal at a and b such that Wx(ua, va) = 1 and Wx(ub, vb) = 1, respectively; cf.
Theorem 6.10.4. By Lemma 6.10.10,

lim
x→a

f(x)

va(x)
= − lim

x→a
Wx(f, ua)

and in a similar way one obtains

lim
x→b

f(x)

vb(x)
= − lim

x→a
Wx(f, ub).

Hence, the claim is that for f ∈ domTmax the mappings

Γ0f =

(
limx→a Wx(f,−ua)
limx→b Wx(f,−ub)

)
and Γ1f =

(− limx→a Wx(f, va)
limx→b Wx(f, vb)

)
define a boundary triplet for Tmax . To see this, observe that

Wx(va,−ua) = 1 and Wx(vb,−ub) = 1,

and apply Proposition 6.3.8. �

Choose a0 and b0 such that va does not vanish on (a, a0) and vb does not
vanish on (b0, b), and let c, d be as in (6.9.9). By means of the solutions va and vb
of (L− λ0)y = 0, which are nonprincipal at a and b, one introduces the form t by

t[f, g] =

∫ c

a

(Nva
f)(x)(Nva

g)(x) dx+

∫ b

d

(Nvb
f)(x)(Nvb

g)(x) dx

+ λ0

∫ c

a

f(x)g(x)r(x) dx+ λ0

∫ b

d

f(x)g(x)r(x) dx

+

∫ d

c

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

+
(pv′a)(c)
va(c)

f(c)g(c)− (pv′b)(d)
vb(d)

f(d)g(d)

(6.11.2)

for f, g ∈ D, where

D =
{
f ∈ L2

r(a, b) : f ∈ AC(a, b),
√
pf ′ ∈ L2(c, d),

Nvaf ∈ L2(a, c), Nvb
f ∈ L2(d, b)

}
;

(6.11.3)

cf. (6.9.10)–(6.9.11). The next corollary follows from Lemma 6.9.4 and Theo-
rem 6.9.6 with φa = va and φb = vb.

Corollary 6.11.2. Let va and vb be solutions of (L − λ0)y = 0, λ0 ∈ R, which are
nonprincipal at a and b, respectively. Assume that the endpoints a and b are in



6.11. Semibounded Sturm–Liouville operators and the limit-circle case 471

the limit-circle case. Then t in (6.11.2)–(6.11.3) is a densely defined closed semi-
bounded form in L2

r(a, b). Moreover, if S1 is the semibounded self-adjoint operator
corresponding to t, then Tmin ⊂ S1 and, in fact,

(Tmin f, g)L2
r(a,b)

= t[f, g]

holds for all f ∈ domTmin ⊂ D and g ∈ D.

Now one shows that also dom Tmax ⊂ D. This property is important for the
construction of a compatible boundary pair in Lemma 6.11.5.

Lemma 6.11.3. Let va and vb be solutions of (L − λ0)y = 0, λ0 ∈ R, which are
nonprincipal at a and b, respectively. Assume that the endpoints a and b are in the
limit-circle case. Then

domTmax ⊂ D.

Proof. Let f ∈ domTmax . Then f, pf ′ ∈ AC(a, b) and hence
√
pf ′ ∈ L2(c, d). It

follows from (6.10.15) with φ = va that

Nva
f = −W (f, va)√

pva
.

Since f ∈ domTmax and va ∈ L2
r(a, b), Lemma 6.2.5 shows that limx→a Wx(f, va)

exists. Hence, x �→ Wx(f, va) is bounded in (a, c]. Consequently, Nvaf ∈ L2(a, c),
as va is nonprincipal at a and does not vanish in (a, a0). Likewise, it is clear that
Nvbf ∈ L2(d, b). Hence, f ∈ D. �

Introduce the mapping Λ : D→ C2 by

Λf =

⎛⎝limx→a
f(x)
va(x)

limx→b
f(x)
vb(x)

⎞⎠ , f ∈ D. (6.11.4)

Note that, by Theorem 6.10.9 (i), Λ is well defined.

Lemma 6.11.4. Let va and vb be solutions of (L − λ0)y = 0, λ0 ∈ R, which are
nonprincipal at a and b, respectively. Assume that the endpoints a and b are in the
limit-circle case, and let t be the form in (6.11.2)–(6.11.3). Then for every ε > 0
there exists Dε > 0 such that

‖Λf‖2C2 ≤ ε t[f ] +Dε‖f‖2L2
r(a,b)

, f ∈ D.

Proof. Choose ε > 0 and write the form t as the sum of

t[c,d][f, g] =

∫ d

c

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

+
(pva)

′(c)
va(c)

f(c)g(c)− (pvb)
′(d)

vb(d)
f(d)g(d),
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t(a,c)[f, g] =

∫ c

a

(Nva
f)(x)(Nva

g)(x) dx+ λ0

∫ c

a

f(x)g(x)r(x) dx,

t(b,d)[f, g] =

∫ b

d

(Nvb
f)(x)(Nvb

g)(x) dx+ λ0

∫ b

d

f(x)g(x)r(x) dx.

It has been shown in Lemma 6.9.4 that t is independent of the choice of c and
d, and hence c ∈ (a, a0) and d ∈ (b0, b) can be chosen suitably close to a and b,
respectively; see below. First observe that for f ∈ D and for all d ≤ x < b one has

f(x)

vb(x)
=

f(d)

vb(d)
+

∫ x

d

(
f(t)

vb(t)

)′
dt =

f(d)

vb(d)
+

∫ x

d

1√
p(t)vb(t)

Nvb
f(t) dt

and hence ∣∣∣∣ f(x)vb(x)

∣∣∣∣2 ≤ 2

∣∣∣∣ f(d)vb(d)

∣∣∣∣2 + 2

∫ x

d

1

p(t)vb(t)2
dt

∫ x

d

|Nvb
f(t)|2 dt

≤ 2

∣∣∣∣ f(d)vb(d)

∣∣∣∣2 + 2

∫ b

d

1

p(t)vb(t)2
dt

∫ b

d

|Nvbf(t)|2 dt.

Now choose d so close to b that

2

∫ b

d

1

p(t)vb(t)2
dt ≤ ε,

so that now for all d ≤ x < b one has∣∣∣∣ f(x)vb(x)

∣∣∣∣2 ≤ 2

∣∣∣∣ f(d)vb(d)

∣∣∣∣2 + ε

∫ b

d

|Nvb
f(t)|2 dt.

Therefore, ∣∣∣∣ limx→b

f(x)

vb(x)

∣∣∣∣2 ≤ 2

∣∣∣∣ f(d)vb(d)

∣∣∣∣2 + ε

∫ b

d

|Nvb
f(t)|2 dt

for all f ∈ D. Similarly, one can choose c so close to a that∣∣∣∣ limx→a

f(x)

va(x)

∣∣∣∣2 ≤ 2

∣∣∣∣ f(c)va(c)

∣∣∣∣2 + ε

∫ c

a

|Nvaf(t)|2 dt

for all f ∈ D. An application of Corollary 6.8.6 shows that there exists Cε > 0
such that for all f ∈ D one has∣∣∣∣ f(c)va(c)

∣∣∣∣2 + ∣∣∣∣ f(d)vb(d)

∣∣∣∣2 ≤ Cε‖f‖L2
r(c,d)

+ εt[c,d][f ].

The assertion follows by combining the above inequalities. �



6.11. Semibounded Sturm–Liouville operators and the limit-circle case 473

In order to apply the theory developed in Chapter 5 it will be shown that the
map Λ in (6.11.4) leads to a boundary pair which is compatible with the bound-
ary triplet {C2,Γ0,Γ1} in Proposition 6.11.1. As usual, the self-adjoint operator
defined on ker Γ1 is denoted by A1.

Lemma 6.11.5. Let va and vb be solutions of (L − λ0)y = 0, λ0 ∈ R, which are
nonprincipal at a and b, respectively. Assume that the endpoints a and b are in the
limit-circle case and let {C2,Γ0,Γ1} be the boundary triplet in Proposition 6.11.1.
Then {C2,Λ} is a boundary pair for Tmin corresponding to S1 which is compatible
with the boundary triplet {C2,Γ0,Γ1}. Moreover, one has

(Tmax f, g)L2
r(a,b)

= (Γ1f,Λg) + t[f, g], f ∈ domTmax , g ∈ D. (6.11.5)

Proof. Consider the form t on dom t = D as in (6.11.2)–(6.11.3) and denote
the corresponding semibounded self-adjoint operator in L2

r(a, b) by S1; cf. Corol-
lary 6.11.2. Let ε > 0 and Dε > 0 be as in Lemma 6.11.4. It follows from the
estimate in Lemma 6.11.4 that for ρ < m(S1) there exists Cρ,ε > 0 such that

‖Λf‖2C2 ≤ Dε‖f‖2L2
r(a,b)

+ εt[f, f ] ≤ Cρ,ε‖f‖2tS1
−ρ

for all f ∈ D. Therefore, Λ ∈ B(HtS1
−ρ,C2). Moreover, according to Lemma 6.11.3

one has domTmax ⊂ D and hence Λ is an extension of the boundary mapping Γ0

in Proposition 6.11.1. Now Lemma 5.6.5 implies that {C2,Λ} is a boundary pair
for Tmin corresponding to S1.

In order to conclude that {C2,Λ} and {C2,Γ0,Γ1} are compatible, it remains
to show that A1 = S1, where A1 is the self-adjoint operator defined on ker Γ1. In
fact, since domTmax ⊂ D, the Green formula (6.9.15) is valid for f ∈ domTmax

and g ∈ D,

(Tmax f, g)L2
r(a,b)

= t[f, g] + lim
b′→b

Wb′(f, vb)

(
g

vb

)
(b′)

− lim
a′→a

Wa′(f, va)

(
g

va

)
(a′),

which, in the present context, is equivalent to (6.11.5). Hence,

(A1f, g)L2
r(a,b)

= t[f, g]

for all f ∈ domA1 and g ∈ dom t. As A1 is self-adjoint, the first representation
theorem implies A1 = S1. �

Recall that by means of the boundary triplet in Proposition 6.11.1, all self-
adjoint extensions of Tmin are in a one-to-one correspondence to the self-adjoint
relations Θ in C2 via

domAΘ =
{
f ∈ domTmax : {Γ0f,Γ1f} ∈ Θ

}
. (6.11.6)
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The next result, which is an immediate consequence of Theorem 5.6.13 and Corol-
lary 5.6.14, makes use of the compatible boundary pair in Lemma 6.11.5 and
provides a characterization of all closed semibounded forms associated with the
semibounded self-adjoint extensions AΘ.

Theorem 6.11.6. Let {C2,Γ0,Γ1} be the boundary triplet in Proposition 6.11.1, let
Θ be a self-adjoint relation in C2, and let AΘ be the corresponding self-adjoint
restriction of Tmax in (6.11.6). Then AΘ is semibounded from below and the cor-
responding densely defined closed semibounded form tΘ in L2

r(a, b) such that

(AΘf, g)L2
r(a,b)

= tΘ[f, g], f ∈ domAΘ, g ∈ dom tΘ,

is given in terms of t in (6.11.2)–(6.11.3), and Λ in (6.11.4) as follows:

(i) If Θ is a symmetric 2× 2-matrix, then

tΘ[f, g] = t[f, g] + (ΘΛf,Λg) , dom tΘ = D.

(ii) If Θ = Θop ⊕̂Θmul with respect to the decomposition C2 = domΘop ⊕mulΘ
and dimdomΘop = 1, then

tΘ[f, g] = t[f, g] + (ΘopΛf,Λg) , dom tΘ =
{
h ∈ D : Λh ∈ domΘop

}
.

(iii) If Θ = {0} × C2, then AΘ = A0 coincides with the Friedrichs extension SF

and
tΘ[f, g] = t[f, g], dom tΘ =

{
h ∈ D : Λh = 0

}
.

The above description in Theorem 6.11.6 of the (automatically) semibounded
self-adjoint extensions of Tmin is in terms of the corresponding closed semibounded
forms via the first representation theorem in Section 5.1, see also Theorem 5.6.13.
The boundary triplet and the compatible boundary pair are provided by the choice
of the solutions va and vb of (L − λ0)y = 0, which are nonprincipal at a and b,
respectively; cf. Proposition 6.11.1.

It will now be shown what the results look like when there is a different
choice of nonoscillatory solutions. First let wa and wb be nonprincipal solutions
of (L − λ0)y = 0 at a and b, respectively. Assume that va and wa do not vanish
on (a, a0) and that vb and wb do not vanish on (b0, b). Denote the form generated
by the solutions wa and wb by t′; cf. (6.11.2)–(6.11.3). Then according to (ii) in
Theorem 6.10.9, dom t′ = dom t = D. To describe t′, let ua and ub be solutions
of (L − λ0)y = 0 which are principal at a and b, respectively, and which satisfy
W (ua, va) = 1 and W (ub, vb) = 1; cf. Theorem 6.10.4. Then clearly

wa = αava + βaua and wb = αbvb + βbub

for some αa, βa, αb, βb ∈ R, where αa, αb are different from zero. Denote the bound-
ary triplet generated by wa and wb by {C2,Γ′

0,Γ
′
1} and let {C2,Λ′} be the corre-

sponding boundary pair; cf. Proposition 6.11.1 and (6.11.4).
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Proposition 6.11.7. The boundary triplet {C2,Γ′
0,Γ

′
1} and the boundary pair

{C2,Λ′} generated by the nonprincipal solutions wa and wb are given by

Λ′f =

( 1
αa

0

0 1
αb

)
Λf, f ∈ D,

and

Γ′
1f =

(
αa 0
0 αb

)
Γ1f +

(
βa 0
0 −βb

)
Λf, f ∈ domTmax .

Moreover, the form t′ coincides with tΘ as in Theorem 6.11.6, where the self-adjoint
matrix Θ is given by

Θ =

(
− βa

αa
0

0 βb

αb

)
.

Proof. The following observations are for the endpoint a; the results are similar
for the endpoint b. Since by Corollary 6.10.5 ua(x)/va(x)→ 0 as x→ a, one has

lim
x→a

f(x)

wa(x)
= lim

x→a

f(x)

αava(x)
· 1

1 + βa

αa

ua(x)
va(x)

=
1

αa
lim
x→a

f(x)

va(x)
.

Furthermore, it is clear that

W (f, wa) = αaW (f, va) + βaW (f, ua)

and recall that

lim
x→a

Wx(f, ua) = − lim
x→a

f(x)

va(x)
;

cf. Lemma 6.10.10. Hence, one sees that

lim
x→a

Wx(f, wa) = αa lim
x→a

Wx(f, va)− βa lim
x→a

f(x)

va(x)
.

Thus, the results for the boundary triplet and boundary pair follow directly from
Proposition 6.11.1 and (6.11.4). Analogous to the Green formula (6.11.5) one has

(Tmax f, g)L2
r(a,b)

= (Γ′
1f,Λ

′g) + t′[f, g]

= (Γ1f,Λg) +

((
βa

αa
0

0 − βb

αb

)
Λf,Λg

)
+ t′[f, g]

for f ∈ domTmax and g ∈ D. Comparison of the right-hand sides gives

t[f, g] =

((
βa

αa
0

0 − βb

αb

)
Λf,Λg

)
+ t′[f, g]

for f ∈ domTmax and g ∈ D. It is easily seen that in fact the last identity holds
for f, g ∈ D, which completes the proof. �
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Next let ua and ub be nontrivial solutions of (L−λ0)y = 0 which are principal
at a and b, respectively, and assume that ua does not vanish on (a, a0) and that
ub does not vanish on (b0, b). Denote the form generated by the solutions ua and
ub by t̃; cf. Theorem 6.9.6.

Proposition 6.11.8. Let the form t̃ be generated by the solutions ua and ub of
(L − λ0)y = 0 which are principal at a and b, respectively. Then t̃ coincides with
tΘ as in Theorem 6.11.6, where Θ = {0} × C2 or, equivalently, t̃ is the form
generated by the Friedrichs extension

tSF
= t̃.

Proof. Recall from Theorem 6.9.6 that

tSF
⊂ t̃. (6.11.7)

Furthermore, let t be the form in (6.11.2) defined on D in (6.11.3) generated
by the solutions va and vb of (L − λ0)y = 0 which are nonprincipal at a and
b, respectively. Now consider f ∈ D and observe that, by Theorem 6.10.9 (iii),
Nuaf is square-integrable at a if and only if Nvaf is square-integrable at a and
limx→a f(x)/va(x) = 0; an analogous statement holds at the endpoint b. Therefore,
f ∈ dom t̃ if and only if f ∈ dom t and

lim
x→a

f(x)

va(x)
= 0 and lim

x→b

f(x)

vb(x)
= 0. (6.11.8)

Consider the boundary pair {C2,Λ} in Lemma 6.11.5 with the boundary map Λ
in (6.11.4). Then (6.11.8) is equivalent to f ∈ kerΛ and it follows that

kerΛ = dom tSF ⊂ dom t̃ = dom t ∩ kerΛ ⊂ kerΛ.

Hence, dom tSF
= dom t̃ and from (6.11.7) one concludes tSF

= t̃. �

For the sake of completeness the following equivalent characterizations of the
Friedrichs extension of Tmin are mentioned explicitly; cf. Proposition 6.10.11.

Corollary 6.11.9. Let va and vb be solutions of (L − λ0)y = 0, λ0 ∈ R, which are
nonprincipal at a and b, and let ua and ub be solutions of (L− λ0)y = 0, λ0 ∈ R,
which are principal at a and b. Assume that the endpoints a and b are in the limit-
circle case. Then f ∈ domTmax is in the domain of the Friedrichs extension SF

of Tmin if and only if one of the following equivalent conditions holds:

(i) Nua
f ∈ L2(a, a′) and Nub

f ∈ L2(b′, b);

(ii) limx→a
f(x)
va(x)

= 0 and limx→b
f(x)
vb(x)

= 0;

(iii) limx→a Wx(f, ua) = 0 and limx→b Wx(f, ub) = 0;

(iv) limx→a f(x)/ua(x) and limx→b f(x)/ub(x) exist in C.
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In the next remark the case of a regular endpoint is briefly discussed.

Remark 6.11.10. The considerations in this section simplify if one endpoint, say
a, is regular. In that case one can choose the boundary triplet {C2,Γ0,Γ1} where

Γ0f =

(
f(a)

limx→b
f(x)
vb(x)

)
and Γ1f =

(
(pf ′)(a)

limx→b Wx(f, vb)

)
, f ∈ domTmax ;

cf. (6.9.21). The form t and D in (6.11.2) and (6.11.3) reduce to (6.9.19) and
(6.9.20) with φb = vb in Remark 6.9.9, respectively. The corresponding boundary
pair Λ : D→ C2 in (6.11.4) has the form

Λf =

(
f(a)

limx→b
f(x)
vb(x)

)
, f ∈ D.

6.12 Semibounded Sturm–Liouville operators and
the limit-point case

Let L be the Sturm–Liouville differential expression in (6.1.1) on the open interval
(a, b):

L =
1

r
[−DpD + q] , D = d/dx,

and let the coefficient functions satisfy the conditions (6.11.1). In addition, it will
be assumed that the equation (L − λ0)y = 0 is nonoscillatory at the endpoints a
and b for some λ0 ∈ R; cf. Theorem 6.9.6 and Theorem 6.9.8. Let va be a solution
of (L−λ0)y = 0 which is nonprincipal at a and let ub be a solution of (L−λ0)y = 0
which is principal at b. Furthermore, it will be assumed that the endpoint a is in
the limit-circle case and that b is in the limit-point case. Hence, va ∈ L2

r(a, a
′) for

a < a′ < b.

Proposition 6.12.1. Assume that the endpoint a is in the limit-circle case and
that the endpoint b is in the limit-point case. Let va be a solution of the equation
(L− λ0)y = 0, λ0 ∈ R, which is nonprincipal at a. Then {C,Γ0,Γ1}, where

Γ0f = lim
x→a

f(x)

va(x)
and Γ1f = − lim

x→a
Wx(f, va), f ∈ domTmax , (6.12.1)

is a boundary triplet for (Tmin )
∗ = Tmax .

Proof. Let ua be a solution of (L− λ0)y = 0, λ0 ∈ R, which is principal at a such
that Wx(ua, va) = 1; cf. Theorem 6.10.4. By Lemma 6.10.10, one has that

lim
x→a

f(x)

va(x)
= − lim

x→a
Wx(f, ua),
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and hence the claim is that for f ∈ domTmax the mappings

Γ0f = lim
x→a

Wx(f,−ua) and Γ1f = − lim
x→a

Wx(f, va)

define a boundary triplet for Tmax . To see this, note that Wx(va,−ua) = 1 and
apply Proposition 6.4.9. �

Choose a0 and b0 such that va does not vanish on (a, a0) and ub does not
vanish on (b0, b), and let c, d be as in (6.9.9). By means of the solutions va and ub

of (L− λ0)y = 0 the following form t will be considered:

t[f, g] =

∫ c

a

(Nvaf)(x)(Nvag)(x) dx+

∫ b

d

(Nub
f)(x)(Nub

g)(x) dx

+ λ0

∫ c

a

f(x)g(x)r(x) dx+ λ0

∫ b

d

f(x)g(x)r(x) dx

+

∫ d

c

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

+
(pv′a)(c)
va(c)

f(c)g(c)− (pu′
b)(d)

ub(d)
f(d)g(d)

(6.12.2)

for f, g ∈ D, where the domain of definition D is given by

D =
{
f ∈ L2

r(a, b) : f ∈ AC(a, b),
√
pf ′ ∈ L2(c, d),

Nvaf ∈ L2(a, c), Nub
f ∈ L2(d, b)

}
.

(6.12.3)

The next corollary is the counterpart of Corollary 6.11.2 in the present situ-
ation; it follows from Lemma 6.9.4 and Theorem 6.9.6 with φa = va and φb = ub.

Corollary 6.12.2. Let va and ub be solutions of (L − λ0)y = 0, λ0 ∈ R, which
are nonprincipal at a and principal at b, respectively. Assume that the endpoint
a is in the limit-circle case and the endpoint b is in the limit-point case. Then
t in (6.12.2)–(6.12.3) is a densely defined closed semibounded form in L2

r(a, b).
Moreover, if S1 is the semibounded self-adjoint operator corresponding to t, then
Tmin ⊂ S1 and, in fact,

(Tmin f, g)L2
r(a,b)

= t[f, g]

holds for all f ∈ domTmin ⊂ D and g ∈ D.

As in Lemma 6.11.3 one has domTmax ⊂ D when the endpoint b is in the
limit-point case.

Lemma 6.12.3. Let va and ub be solutions of (L − λ0)y = 0, λ0 ∈ R, which are
nonprincipal at a and principal at b, respectively. Assume that the endpoint a is
in the limit-circle case and the endpoint b is in the limit-point case. Then

domTmax ⊂ D.
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Proof. Let f ∈ domTmax . Then f, pf ′ ∈ AC(a, b), and hence
√
pf ′ ∈ L2(c, d). It

follows as in the proof of Lemma 6.11.3 that Nva
f ∈ L2(a, c), as va is nonprincipal

at a. For the behavior at b of Nub
f decompose f ∈ domTmax as

f = f0 + h,

where f0 ∈ domTmin and h ∈ domTmax is a function which vanishes in a neigh-
borhood of b, say (b′, b); cf. the proof of Proposition 6.4.9. Since domTmin ⊂ D
by Corollary 6.12.2 it is clear that Nub

f0 ∈ L2(d, b). It follows from (6.10.15) with
φ = ub that

Nub
h = −W (h, ub)√

pub
.

Since h vanishes on (b′, b), it follows that Nub
h vanishes on (b′, b), while on [d, b′]

the function x → Wx(h, ub) is bounded and the function ub does not vanish.
Consequently, one sees that Nub

h ∈ L2(d, b) and thus Nub
f ∈ L2(d, b). Hence, it

follows that f ∈ D. �

Let the mapping Λ : D→ C be defined by

Λf = lim
x→a

f(x)

va(x)
, f ∈ D. (6.12.4)

Note that Λ is well defined by Theorem 6.10.9 (i).

Lemma 6.12.4. Let va and ub be real solutions of (L − λ0)y = 0, λ0 ∈ R, which
are nonprincipal at a and principal at b, respectively. Assume that the endpoint a
is in the limit-circle case and the endpoint b is in the limit-point case. Let t be the
form in (6.12.2)–(6.12.3). Then for every ε > 0 there exists Dε > 0 such that

|Λf |2 ≤ ε t[f ] +Dε‖f‖2L2
r(a,b)

, f ∈ D.

Proof. Choose ε > 0 and write the form t as the sum of

t[c,d][f, g] =

∫ d

c

(
(
√
pf ′)(x)(

√
pg′)(x) + q(x)f(x)g(x)

)
dx

+
(pva)

′(c)
va(c)

f(c)g(c)− (pvb)
′(d)

ub(d)
f(d)g(d),

t(a,c)[f, g] =

∫ c

a

(Nvaf)(x)(Nvag)(x) dx+ λ0

∫ c

a

f(x)g(x)r(x) dx,

t(b,d)[f, g] =

∫ b

d

(Nub
f)(x)(Nub

g)(x) dx+ λ0

∫ b

d

f(x)g(x)r(x) dx.

It has been shown in Lemma 6.9.4 that t is independent of the choice of c and
d, and hence c ∈ (a, a0) and d ∈ (b0, b) can be chosen suitably close to a and b,
respectively. In fact, choose c so close to a that

2

∫ c

a

1

p(t)va(t)2
dt ≤ ε.
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Then, as in the proof of Lemma 6.11.4, it follows that for all f ∈ D∣∣∣∣ limx→a

f(x)

va(x)

∣∣∣∣2 ≤ 2

∣∣∣∣ f(c)va(c)

∣∣∣∣2 + ε

∫ c

a

|Nvaf(t)|2 dt.

Consequently, with the above choice of c and any choice of b0 < d < b one sees
that for all f ∈ D∣∣∣∣ limx→a

f(x)

va(x)

∣∣∣∣2 ≤ 2

∣∣∣∣ f(c)va(c)

∣∣∣∣2 + 2

∣∣∣∣ f(d)ub(d)

∣∣∣∣2
+ ε

(∫ c

a

|Nvaf(t)|2 dt+
∫ b

d

|Nub
f(t)|2 dt

)
.

As in the proof of Lemma 6.11.4, an application of Corollary 6.8.6 shows that
there exists Cε > 0 such that for all f ∈ D one has∣∣∣∣ f(c)va(c)

∣∣∣∣2 + ∣∣∣∣ f(d)vb(d)

∣∣∣∣2 ≤ Cε‖f‖L2
r(c,d)

+ εt[c,d][f ].

The assertion follows by combining the above inequalities. �

The following lemma is the counterpart of Lemma 6.8.4 and Lemma 6.11.5
in the present situation.

Lemma 6.12.5. Let va and ub be solutions of (L − λ0)y = 0, λ0 ∈ R, which are
nonprincipal at a and principal at b, respectively. Assume that the endpoint a is in
the limit-circle case and the endpoint b is in the limit-point case, and let {C,Γ0,Γ1}
be the boundary triplet in Proposition 6.12.1. Then {C,Λ} is a boundary pair for
Tmin corresponding to S1 which is compatible with the boundary triplet {C,Γ0,Γ1}.
Moreover, one has

(Tmax f, g)L2
r(a,b)

= (Γ1f,Λg) + t[f, g], f ∈ domTmax , g ∈ D. (6.12.5)

Proof. Consider the form t defined on dom t = D as in (6.12.2)–(6.12.3) and
denote the corresponding semibounded self-adjoint operator in L2

r(a, b) by S1; cf.
Corollary 6.12.2. Let ε > 0 and Dε > 0 be as in Lemma 6.12.4. It follows from the
estimate in Lemma 6.12.4 that for ρ < m(S1) there exists Cρ,ε > 0 such that

|Λf |2 ≤ Dε‖f‖2L2
r(a,b)

+ εt[f ] ≤ Cρ,ε‖f‖2tS1
−ρ

for all f ∈ D. Therefore, Λ ∈ B(HtS1
−ρ,C). Moreover, by Lemma 6.12.3, one

has domTmax ⊂ D and hence Λ is an extension of the boundary mapping Γ0

in (6.12.1). Now Lemma 5.6.5 implies that {C,Λ} is a boundary pair for Tmin

corresponding to S1.

In order to conclude that {C,Λ} and {C,Γ0,Γ1} are compatible it remains
to show that A1 = S1, where A1 is the self-adjoint operator defined on ker Γ1. In
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fact, due to domTmax ⊂ D the Green formula (6.9.15) is valid for f ∈ domTmax

and g ∈ D

(Tmax f, g)L2
r(a,b)

= t[f, g] + lim
b′→b

Wb′(f, ub)

(
g

ub

)
(b′)

− lim
a′→a

Wa′(f, va)

(
g

va

)
(a′),

where each of the limits exist. Now observe that

W (f, ub)

(
g

ub

)
= −pu2

b

(
f

ub

)′(
g

ub

)
;

cf. (6.10.15). Since ub is principal at b and Nub
f,Nub

g ∈ L2(d, b) for b0 < d < b, it
follows from Corollary 6.10.2 (applied to the endpoint b) with P = pu2

b , ϕ = f/ub,
and ψ = g/ub, that

lim
b′→b

Wb′(f, ub)

(
g

ub

)
(b′) = lim inf

b′→b
Wb′(f, ub)

(
g

ub

)
(b′) = 0.

Thus, in the present context, it follows that (6.12.5) holds. Hence,

(A1f, g)L2
r(a,b)

= t[f, g]

holds for all f ∈ domA1 and g ∈ dom t. As A1 is self-adjoint the first representation
theorem implies A1 = S1. �

Recall that by means of the boundary triplet in Proposition 6.12.1, all the
self-adjoint extensions of Tmin are in a one-to-one correspondence to τ ∈ R∪{∞}
via

domAτ =
{
f ∈ domTmax : Γ1f = τΓ0f

}
, (6.12.6)

where in case τ =∞ one means Γ0f = 0. The next result, which is an immediate
consequence of Theorem 5.6.13 and Corollary 5.6.14, makes use of the compatible
boundary pair in Lemma 6.12.5 and provides a characterization of all closed semi-
bounded forms associated with the semibounded self-adjoint extensions Aτ . The
boundary triplet and the compatible boundary pair are provided by the choice of
the solution va of (L− λ0)y = 0, which is nonprincipal at a.

Theorem 6.12.6. Let {C,Γ0,Γ1} be the boundary triplet in Proposition 6.12.1, let
τ ∈ R ∪ {∞}, and let Aτ be the corresponding self-adjoint restriction of Tmax

in (6.12.6). Then Aτ is semibounded from below and the corresponding densely
defined closed semibounded form tτ in L2

r(a, b) such that

(Aτf, g)L2
r(a,b)

= tτ [f, g], f ∈ domAτ , g ∈ dom tτ ,

is given in terms of t in (6.12.2)–(6.12.3), and Λ in (6.12.4) as follows:
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(i) If τ ∈ R, then

tτ [f, g] = t[f, g] + τ(Λf,Λg), dom tτ = D.

(ii) If τ =∞, then Aτ = A0 coincides with the Friedrichs extension SF and

tτ [f, g] = t[f, g], dom tτ =
{
h ∈ D : Λh = 0

}
.

In the same way as in the previous section it will be discussed briefly what
the results look like when there is a different choice for the nonoscillatory solution.
Let wa be a solution of (L− λ0)y = 0 which is nonprincipal at a and assume that
va and wa do not vanish on (a, a0). Denote the form generated by the solutions
wa and ub by t′ and let ua be a solution of (L− λ0)y = 0 which is principal at a
and which satisfies W (ua, va) = 1. Then one has dom t′ = dom t = D and

wa = αava + βaua

for some αa, βa ∈ R, where αa 	= 0. Denote the boundary triplet generated by wa

by {C,Γ′
0,Γ

′
1} and let {C,Λ′} be the corresponding boundary pair; cf. Proposi-

tion 6.12.1 and (6.12.4). Then the following result is clear; cf. Proposition 6.11.7.

Proposition 6.12.7. The boundary triplet {C,Γ′
0,Γ

′
1} and the boundary pair {C,Λ′}

generated by the nonprincipal solution wa are given by

Λ′f =
1

αa
Λf, f ∈ D,

and
Γ′
1f = αa Γ1f + βa Λf, f ∈ domTmax .

Moreover, the form t′ coincides with tτ as in Theorem 6.12.6, where τ ∈ R is
given by

τ = −βa

αa
.

Next let ua and ub be nontrivial solutions of (L−λ0)y = 0 which are principal
at a and b, respectively, and assume that ua does not vanish on (a, a0) and that
ub does not vanish on (b0, b). Denote the form generated by the solutions ua and
ub by t̃; cf. Theorem 6.9.6. Then the following analog of Proposition 6.11.8 holds.

Proposition 6.12.8. The form t̃ coincides with t∞ in Theorem 6.12.6 or, equiva-
lently, t̃ is the form generated by the Friedrichs extension

tSF = t̃.

The following equivalent characterizations of the Friedrichs extension of Tmin

are mentioned for completeness; cf. Proposition 6.10.11 and Corollary 6.11.9.

Corollary 6.12.9. Let va and ua be solutions of (L− λ0)y = 0, λ0 ∈ R, which are
nonprincipal and principal at a, respectively. Assume that the endpoint a is in the
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limit-circle case and the endpoint b is in the limit-point case. Then f ∈ domTmax

is in the domain of the Friedrichs extension SF of Tmin if and only if one of the
following equivalent conditions holds:

(i) Nua
f ∈ L2(a, a′);

(ii) limx→a
f(x)
va(x)

= 0;

(iii) limx→a Wx(f, ua) = 0;

(iv) limx→a f(x)/ua(x) exists in C.

Finally, the special case that the endpoint a is regular is briefly discussed.

Remark 6.12.10. The considerations in this section simplify if the endpoint a is
regular. In that case one can choose the boundary triplet {C,Γ0,Γ1} in Propo-
sition 6.4.1. The form t and D in (6.12.2) and (6.12.3) reduce to (6.9.19) and
(6.9.20) with φb = ub in Remark 6.9.9, respectively. The corresponding boundary
pair Λ : D→ C in (6.11.4) has the form

Λf = f(a), f ∈ D.

6.13 Integrable potentials

In this section the Sturm–Liouville differential expression

L = −D2 + q, D = d/dx, with q ∈ L1(0,∞) real,

is studied on the interval (0,∞); note that in this special case r = p = 1. It is
clear that the endpoint 0 is regular. In the following lemma it will be shown that
−D2 + q can be seen as a perturbation of the expression −D2, in the sense that

the fundamental solutions have the same asymptotic behavior as x �→ ei
√
λx and

x �→ e−i
√
λx; cf. Example 6.4.2. In this context it also follows that the endpoint ∞

is in the limit-point case. Throughout this section it will be tacitly assumed that
the square root

√· is fixed by the requirement that Im
√
λ > 0 for all λ ∈ C\ [0,∞)

and
√
λ ≥ 0 for λ ∈ [0,∞).

Lemma 6.13.1. Assume that q ∈ L1(0,∞) and that λ ∈ C \ [0,∞). Then there is
a fundamental system (e1(·, λ); e2(·, λ)) of the equation (L− λ)y = 0 such that

e1(x, λ) = ei
√
λx(1 + o(1)), x→∞,

e′1(x, λ) = i
√
λei

√
λx(1 + o(1)), x→∞,

and

e2(x, λ) = e−i
√
λx(1 + o(1)), x→∞,

e′2(x, λ) = −i
√
λe−i

√
λx(1 + o(1)), x→∞.

In particular, e1(·, λ) ∈ L2(0,∞) and e2(·, λ) 	∈ L2(0,∞) for all λ ∈ C \ [0,∞).
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Proof. Due to the integrability of q the nonnegative function

σ(x) =

∫ ∞

x

|q(t)| dt, x > 0,

is well defined, nonincreasing, and limx→∞ σ(x) = 0. The proof of the lemma will
be given in three steps. In the first two steps each of the above solutions e1(·, λ)
and e2(·, λ) is constructed; in the third step the linear independence is shown.

Step 1. Let λ ∈ C \ {0}. It will be shown that there is a bounded function α(·, λ)
such that the integral equation

α(x, λ) = 1 +

∫ ∞

x

e2i
√
λ(t−x) − 1

2i
√
λ

q(t)α(t, λ) dt, x > 0, (6.13.1)

is satisfied. Note that for t ≥ x one has

|e2i
√
λ(t−x) − 1| ≤ 2.

Define the sequence of functions αn, n ∈ N ∪ {0}, inductively by

α0(x, λ) = 1 and αn+1(x, λ) =

∫ ∞

x

e2i
√
λ(t−x) − 1

2i
√
λ

, q(t)αn(t, λ) dt

for x > 0. Since σ is nonincreasing it is easily seen that

|αn(x, λ)| ≤
(
σ(x)

|√λ|

)n

.

Now choose δ > 0 such that |√λ| ≥ δ. Then there exists an xδ > 0 such that

σ(xδ)

δ
< 1, (6.13.2)

and note that for all x ≥ xδ it follows that

σ(x)

|√λ| ≤
σ(xδ)

δ
< 1.

For the function α(x, λ) =
∑∞

n=0 αn(x, λ) defined for x ≥ xδ one has

|α(x, λ)| ≤
∞∑

n=0

|αn(x, λ)| ≤
∞∑

n=0

(
σ(x)

|√λ|

)n

≤
∞∑

n=0

(
σ(xδ)

δ

)n

=
1

1− σ(xδ)
δ
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for x ≥ xδ. Hence, the function α(·, λ) is well defined and bounded for x ≥ xδ. By
dominated convergence, it follows for x ≥ xδ that

α(x, λ) = 1 +
∞∑

n=0

αn+1(x, λ)

= 1 +

∞∑
n=0

∫ ∞

x

e2i
√
λ(t−x) − 1

2i
√
λ

q(t)αn(t, λ) dt

= 1 +

∫ ∞

x

e2i
√
λ(t−x) − 1

2i
√
λ

q(t)

∞∑
n=0

αn(t, λ) dt

= 1 +

∫ ∞

x

e2i
√
λ(t−x) − 1

2i
√
λ

q(t)α(t, λ) dt.

Hence, the integral equation (6.13.1) is satisfied for all x ≥ xδ. Note also that for
x > xδ

α′(x, λ) = −
∫ ∞

x

e2i
√
λ(t−x) q(t)α(t, λ) dt (6.13.3)

and

α′′(x, λ) = 2i
√
λ

∫ ∞

x

e2i
√
λ(t−x) q(t)α(t, λ) dt+ q(x)α(x, λ). (6.13.4)

It is clear that |α′(x, λ)| → 0 as x→∞.

Now consider the function e1(x, λ) = ei
√
λxα(x, λ), defined for x ≥ xδ. It

follows from a straightforward computation and (6.13.3)–(6.13.4) that e1(·, λ) sat-
isfies the differential equation (L − λ)e1 = 0 and the asymptotic properties of e1
and e′1 for x→∞ are a consequence of the asymptotic properties of α in (6.13.1)
and α′ in (6.13.3) for x → ∞. It remains to note that the solution e1 on the
interval (xδ,∞) can be extended to a solution on (0,∞).

Step 2. In this step it is assumed that λ ∈ C \ [0,∞). As in Step 1, choose δ > 0
and xδ > 0 such that |√λ| ≥ δ and (6.13.2) hold. It will be shown that there exists
a bounded function β(·, λ) such that the integral equation

β(x, λ) = 1 +
1

2i
√
λ

∫ x

xδ

e2i
√
λ(x−t) q(t)β(t, λ) dt+

1

2i
√
λ

∫ ∞

x

q(t)β(t, λ) dt

is satisfied; in particular, then also the second integral is well defined.

Note first that for xδ ≤ t ≤ x one has

|e2i
√
λ(x−t)| ≤ 1. (6.13.5)

Define the sequence of functions βn, n ∈ N ∪ {0}, inductively by β0(x, λ) = 1 and

βn+1(x, λ) =
1

2i
√
λ

∫ x

xδ

e2i
√
λ(x−t) q(t)βn(t, λ) dt+

1

2i
√
λ

∫ ∞

x

q(t)βn(t, λ) dt
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for x > xδ. In the same way as in Step 1 it follows that

|βn(x, λ)| ≤
(
σ(xδ)

|√λ|

)n

≤
(
σ(xδ)

δ

)n

, x ≥ xδ,

and the function β(x, λ) =
∑∞

n=0 βn(x, λ) is well defined for x ≥ xδ, bounded by
some constant Mβ ≥ 0, and solves the integral equation. For x ≥ xδ define the

function e2(x, λ) = e−i
√
λxβ(x, λ). Since for x > xδ one has

β′(x, λ) =
∫ x

xδ

e2i
√
λ(x−t) q(t)β(t, λ) dt

and

β′′(x, λ) = 2i
√
λ

∫ x

xδ

e2i
√
λ(x−t) q(t)β(t, λ) dt+ q(x)β(x, λ),

it follows that e2(·, λ) satisfies the differential equation (L − λ)e2 = 0. For the
asymptotic properties of e2 and e′2 observe first that∫ x

xδ

e2i
√
λ(x−t) q(t)β(t, λ) dt

= ei
√
λx

∫ x/2

xδ

ei
√
λ(x−2t) q(t)β(t, λ) dt+

∫ x

x/2

e2i
√
λ(x−t) q(t)β(t, λ) dt

(6.13.6)

tends to 0 for x → ∞. In fact, since |ei
√
λ(x−2t)| ≤ 1 for xδ ≤ t ≤ x/2 the first

term on the right-hand side in (6.13.6) satisfies the estimate∣∣∣∣ei√λx

∫ x/2

xδ

ei
√
λ(x−2t) q(t)β(t, λ) dt

∣∣∣∣ ≤ ∣∣e−Im
√
λx
∣∣Mβ

∫ x/2

xδ

|q(t)| dt,

and hence tends to 0 for x → ∞ as Im
√
λ > 0 and q ∈ L1(0,∞). Similarly, the

second term on the right-hand side in (6.13.6) tends to 0 for x → ∞ by (6.13.5),
|β(t, λ)| ≤Mβ , and q ∈ L1(0,∞). Now the asymptotic properties of e2 and e′2 for
x→∞ follow from the asymptotic properties of β and β′ for x→∞. Finally, the
solution e2 can be extended to a solution on (0,∞).

Step 3. Since the Wronskian W (e1(·, λ), e2(·, λ)) is constant, it follows from the
asymptotic behavior of e1(·, λ) and e2(·, λ) that

W (e1(·, λ), e2(·, λ) = −2i
√
λ.

Hence, e1(·, λ) and e2(·, λ) form a fundamental system. �

It is a direct consequence of Lemma 6.13.1 that the defect numbers of Tmin

are (1, 1). Hence, the endpoint ∞ is in the limit-point case and {C,Γ0,Γ1}, where
Γ0 and Γ1 are defined by

Γ0f = f(0) and Γ1f = f ′(0), f ∈ domTmax , (6.13.7)
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is a boundary triplet for Tmax ; cf. Proposition 6.4.1. The self-adjoint restriction
A0 of Tmax is given by

A0 = −D2 + q, domA0 =
{
f ∈ domTmax : f(0) = 0

}
.

Let u1(·, λ) and u2(·, λ) be the fundamental system corresponding to the usual
initial conditions, that is, u1(·, λ) and u2(·, λ) satisfy(

u1(0, λ) u2(0, λ)
u′
1(0, λ) u′

2(0, λ)

)
=

(
1 0
0 1

)
. (6.13.8)

Then the Weyl function belonging to the boundary triplet in (6.13.7) is uniquely
defined by the property

u1(·, λ) +M(λ)u2(·, λ) ∈ L2(0,∞), λ ∈ C \ R; (6.13.9)

cf. Proposition 6.4.1. In order to determine the corresponding Weyl function one
has to compare the fundamental system (u1(·, λ);u2(·, λ)) with the fundamental
system (e1(·, λ); e2(·, λ)) from Lemma 6.13.1.

An important ingredient for the following considerations is Gronwall’s lemma.

Lemma 6.13.2. Let f be a continuous complex function on [c, b).

(i) Assume that α, β ∈ L1
loc [c, b) are nonnegative functions and that α is nonde-

creasing. If

|f(t)| ≤ α(t) +

∫ t

c

β(s)|f(s)| ds, t ∈ (c, b), (6.13.10)

then f satisfies the inequality

|f(t)| ≤ α(t) e
∫ t
c
β(u) du, t ∈ (c, b). (6.13.11)

(ii) Assume that β ∈ L1(c, b) is a nonnegative function and that α ≥ 0 is a
constant. If βf ∈ L1(c, b) and

|f(t)| ≤ α+

∫ b

t

β(s)|f(s)| ds, t ∈ [c, b), (6.13.12)

then f satisfies the inequality

|f(t)| ≤ α e
∫ b
t
β(u) du, t ∈ [c, b). (6.13.13)
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Proof. (i) It follows from the inequality in (6.13.10) that

d

ds

(
e−

∫ s
c
β(u) du

∫ s

c

β(u)|f(u)| du
)

=

[
|f(s)| −

∫ s

c

β(u)|f(u)| du
]
β(s)e−

∫ s
c
β(u) du

≤ α(s)β(s)e−
∫ s
c
β(u) du

almost everywhere. Integration of this inequality over the interval [c, t] leads to

e−
∫ t
c
β(u) du

∫ t

c

β(u)|f(u)| du ≤
∫ t

c

α(s)β(s)e−
∫ s
c
β(u) du ds

or, equivalently, ∫ t

c

β(u)|f(u)| du ≤
∫ t

c

α(s)β(s)e
∫ t
s
β(u) du ds.

Due to (6.13.10) and the assumption that α is nondecreasing one obtains

|f(t)| − α(t) ≤
∫ t

c

β(u)|f(u)| du

≤ α(t)

∫ t

c

β(s)e
∫ t
s
β(u) du ds

= −α(t)
∫ t

c

d

ds
e
∫ t
s
β(u) du ds

= −α(t)
(
1− e

∫ t
c
β(u) du

)
,

which gives (6.13.11).

(ii) It follows from the inequality in (6.13.12) that

d

ds

(
e−

∫ b
s
β(u) du

∫ b

s

β(u)|f(u)| du
)

=

[ ∫ b

s

β(u)|f(u)| du− |f(s)|
]
β(s)e−

∫ b
s
β(u) du

≥ −αβ(s)e−
∫ b
s
β(u) du

almost everywhere. Integration of this inequality over the interval [t, b] leads to

−e−
∫ b
t
β(u) du

∫ b

t

β(u)|f(u)| du ≥ −α
∫ b

t

β(s)e−
∫ b
s
β(u) du ds
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or, equivalently, ∫ b

t

β(u)|f(u)| du ≤ α

∫ b

t

β(s)e
∫ s
t
β(u) du ds

= α

∫ b

t

d

ds
e
∫ s
t
β(u) du ds

= α
(
e
∫ b
t
β(u) du − 1

)
.

Due to (6.13.12) one obtains (6.13.13). �

The next lemma on the asymptotic properties of solutions of (L − λ)u = 0
is the first step to determine the Weyl function corresponding to the boundary
triplet in (6.13.7).

Lemma 6.13.3. Assume that q ∈ L1(0,∞), let λ ∈ C \ [0,∞) and c1, c2 ∈ C. Let
u(·, λ) be a solution of (L− λ)u = 0 satisfying

(−D2 + q)u = λu, u(0, λ) = c1, u′(0, λ) = c2. (6.13.14)

Then

|ei
√
λxu(x, λ)| ≤

(
|c1|+ |c2|

|√λ|

)
exp

(
1

|√λ|

∫ x

0

|q(t)| dt
)

(6.13.15)

and

u(x, λ) = e−i
√
λx

(
c1
2
− c2

2i
√
λ
− 1

2i
√
λ

∫ ∞

0

ei
√
λt q(t)u(t, λ) dt+ o(1)

)
as x→∞.

Proof. A simple computation shows that for λ ∈ C \ {0} the unique solution of
(6.13.14) is given by

u(x, λ) = c1 cos
√
λx+ c2

sin
√
λx√
λ

+

∫ x

0

sin
√
λ(x− t)√
λ

q(t)u(t, λ) dt. (6.13.16)

It follows from (6.13.16) that ϕ(x, λ) = e−(Im
√
λ)xu(x, λ) satisfies

|ϕ(x, λ)| ≤ |c1|+ |c2|
|√λ| +

1

|√λ|

∫ x

0

|q(t)| |ϕ(t, λ)| dt,

and hence Lemma 6.13.2 (i) leads to

|ϕ(x, λ)| ≤
(
|c1|+ |c2|

|√λ|

)
exp

(
1

|√λ|

∫ x

0

|q(t)| dt
)
.
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Since |ei
√
λxu(x, λ)| = |e−(Im

√
λ)xu(x, λ)| = |ϕ(x, λ)|, the estimate (6.13.15) fol-

lows.

Furthermore, (6.13.16) yields that

u(x, λ) = e−i
√
λx

(
c1
2
− c2

2i
√
λ

)
+ ei

√
λx

(
c1
2

+
c2

2i
√
λ

)
− 1

2i
√
λ

∫ x

0

e−i
√
λ(x−t)q(t)u(t, λ) dt

+
1

2i
√
λ

∫ x

0

ei
√
λ(x−t)q(t)u(t, λ) dt.

(6.13.17)

For the second term on the right-hand side of (6.13.17) with λ ∈ C \ [0,∞) one
has

ei
√
λx

(
c1
2

+
c2

2i
√
λ

)
= e−i

√
λxo(1), x→∞.

To estimate the third term on the right-hand side of (6.13.17) note first that this
term is equal to

e−i
√
λx

[
− 1

2i
√
λ

∫ x

0

ei
√
λtq(t)u(t, λ) dt

]
.

Next one has

− 1

2i
√
λ

∫ ∞

x

ei
√
λtq(t)u(t, λ) dt = o(1), x→∞.

In fact, this holds since t �→ ei
√
λtu(t, λ) is bounded by (6.13.15) and∣∣∣∣∫ ∞

x

ei
√
λtq(t)u(t, λ) dt

∣∣∣∣ ≤ C

∫ ∞

x

|q(t)| dt.

Therefore, the third term on the right-hand side of (6.13.17) has the form

e−i
√
λx

(
− 1

2i
√
λ

∫ ∞

0

ei
√
λt q(t)u(t, λ) dt+ o(1)

)
.

For the fourth term on the right-hand side of (6.13.17) one uses again that

t �→ ei
√
λtu(t, λ) is bounded. Then∣∣∣∣ 1

2i
√
λ

∫ x

0

ei
√
λ(x−t)q(t)u(t, λ) dt

∣∣∣∣ ≤ C

|√λ|

(∫ x

0

e(Im
√
λ)(2t−x)|q(t)| dt

)
,
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and splitting the interval of integration leads to∫ x

0

e(Im
√
λ)(2t−x)|q(t)| dt

=

∫ x/2

0

e(Im
√
λ)(2t−x)|q(t)| dt+

∫ x

x/2

e(Im
√
λ)(2t−x)|q(t)| dt

≤
∫ x/2

0

|q(t)| dt+ e(Im
√
λ)x

∫ x

x/2

|q(t)| dt

= e−i
√
λxo(1), x→∞.

This completes the proof, as the last assertion in the lemma now follows from
(6.13.17). �

The next proposition is a consequence of Lemma 6.13.1 and Lemma 6.13.3.
Here the Weyl function M in (6.13.9) is specified.

Proposition 6.13.4. Let M be the Weyl function corresponding to the boundary
triplet {C,Γ0,Γ1} in (6.13.7). Then there exists a countable (possibly empty) set
D ⊂ (−∞, 0) which is bounded from below and may only accumulate at 0, such
that M is holomorphic on C \ ([0,∞) ∪D) and

M(λ) =
i
√
λ− ∫∞

0
ei

√
λtq(t)u1(t, λ) dt

1 +
∫∞
0

ei
√
λtq(t)u2(t, λ) dt

, λ ∈ C \ ([0,∞) ∪D). (6.13.18)

Proof. In order to determine the Weyl function M corresponding to the boundary
triplet {C,Γ0,Γ1} observe first that for λ ∈ C \ [0,∞) the fundamental systems
(u1(·, λ);u2(·, λ)) and (e1(·, λ); e2(·, λ)) in Lemma 6.13.1 are connected by

u1(·, λ) = A11(λ)e1(·, λ) +A12(λ)e2(·, λ),
u2(·, λ) = A21(λ)e1(·, λ) +A22(λ)e2(·, λ),

(6.13.19)

where Aij(λ), i, j = 1, 2, are connection coefficients. Since

u1(·, λ) +M(λ)u2(·, λ) = e1(·, λ)
(
A11(λ) +M(λ)A21(λ)

)
+ e2(·, λ)

(
A12(λ) +M(λ)A22(λ)

)
and e1(·, λ) ∈ L2(0,∞), e2(·, λ) 	∈ L2(0,∞) for λ ∈ C \ [0,∞) by Lemma 6.13.1,
it follows that for λ ∈ C \ [0,∞) the function u1(·, λ) + M(λ)u2(·, λ) belongs to
L2(0,∞) if and only if M(λ) satisfies the equation

A12(λ) +M(λ)A22(λ) = 0. (6.13.20)

Hence, it remains to compute the connection coefficients A12(λ) and A22(λ). It
follows from Lemma 6.13.3 with c1 = 1 and c2 = 0 that

u1(x, λ) = e−i
√
λx

(
1

2
− 1

2i
√
λ

∫ ∞

0

ei
√
λt q(t)u1(t, λ) dt+ o(1)

)
,
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and with c1 = 0 and c2 = 1 that

u2(x, λ) = e−i
√
λx

(
− 1

2i
√
λ
− 1

2i
√
λ

∫ ∞

0

ei
√
λt q(t)u2(t, λ) dt+ o(1)

)
.

Comparing with (6.13.19) and Lemma 6.13.1, and taking care of the terms involv-
ing o(1), this gives

A12(λ) =
1

2
− 1

2i
√
λ

∫ ∞

0

ei
√
λt q(t)u1(t, λ) dt

and, likewise,

A22(λ) = − 1

2i
√
λ
− 1

2i
√
λ

∫ ∞

0

ei
√
λt q(t)u2(t, λ) dt.

Hence, for λ ∈ C \ [0,∞) such that A22(λ) 	= 0 it follows from (6.13.20) that

M(λ) = −A12(λ)

A22(λ)
=

1
2 − 1

2i
√
λ

∫∞
0

ei
√
λt q(t)u1(t, λ) dt

1
2i
√
λ
+ 1

2i
√
λ

∫∞
0

ei
√
λt q(t)u2(t, λ) dt

,

which leads to the expression for M in (6.13.18). Since the Weyl function is holo-
morphic on ρ(A0), it is clear that A22(λ) 	= 0 for all λ ∈ C \ R. Note also that the
functions A12 and A22 are both holomorphic in C \ [0,∞), and that the zeros of
A22 in (−∞, 0) may only accumulate at 0 and −∞. However, (6.13.15) shows that

|ei
√
λxu2(x, λ)| ≤ 1

|√λ| exp
(

1

|√λ|

∫ x

0

|q(t)| dt
)
,

and hence there exists C− ∈ (−∞, 0) such that for all λ ∈ (−∞, C−)∣∣∣∣∫ ∞

0

ei
√
λtq(t)u2(t, λ) dt

∣∣∣∣ < 1.

Therefore, A22(λ) 	= 0 for all λ ∈ (−∞, C−) and 0 is the only possible accumulation
point of the zeros of A22 in the interval (−∞, 0). This completes the proof of the
proposition. �

It will turn out in Corollary 6.13.6 that the set C \ ([0,∞) ∪ D) coincides
with the resolvent set of the self-adjoint operator A0, so that the form of the Weyl
function M in Proposition 6.13.4 is valid for all λ ∈ ρ(A0).

In the following lemma, which complements Proposition 6.13.4, it will be
shown that the Weyl function admits a continuation onto (0,∞) from C+ with a
positive imaginary part.

Lemma 6.13.5. Let M be the Weyl function corresponding to the boundary triplet
{C,Γ0,Γ1} in (6.13.7). Then the limits limε↓0 M(λ+ iε) and limε↓0 ImM(λ+ iε)
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exist for all λ > 0 and are given by

M(λ+ i0) = −a11(λ) + ia12(λ)

a21(λ) + ia22(λ)
, λ > 0, (6.13.21)

and

ImM(λ+ i0) =
1√
λ

1

a21(λ)2 + a22(λ)2
> 0, λ > 0, (6.13.22)

respectively, where aij : (0,∞) → R, i, j = 1, 2, are the coefficients in the asymp-
totic formulas

u1(x, λ) = a11(λ) cos
√
λx+ a12(λ) sin

√
λx+ o(1), x→∞,

u2(x, λ) = a21(λ) cos
√
λx+ a22(λ) sin

√
λx+ o(1), x→∞,

(6.13.23)

for λ > 0. The functions aij have the form

a11(λ) = 1− 1√
λ

∫ ∞

0

sin
√
λt q(t)u1(t, λ) dt,

a12(λ) =
1√
λ

∫ ∞

0

cos
√
λt q(t)u1(t, λ) dt,

a21(λ) = − 1√
λ

∫ ∞

0

sin
√
λt q(t)u2(t, λ) dt,

a22(λ) =
1√
λ

(
1 +

∫ ∞

0

cos
√
λt q(t)u2(t, λ) dt

)
,

(6.13.24)

and satisfy

a11(λ)a22(λ)− a12(λ)a21(λ) =
1√
λ
, λ > 0. (6.13.25)

Proof. It follows from Lemma 6.13.2 (i) that the solution

u(x, λ) = c1 cos
√
λx+ c2

sin
√
λx√
λ

+

∫ x

0

sin
√
λ(x− t)√
λ

q(t)u(t, λ) dt

of (6.13.14) is bounded for all λ > 0; cf. the proof of Lemma 6.13.3. Therefore,

u(x, λ) = c1 cos
√
λx+ c2

sin
√
λx√
λ

+

∫ ∞

0

sin
√
λ(x− t)√
λ

q(t)u(t, λ) dt+ o(1)

(6.13.26)

and in the same way one obtains

u′(x, λ) = −c1
√
λ sin

√
λx+ c2 cos

√
λx

+

∫ ∞

0

cos
√
λ(x− t) q(t)u(t, λ) dt+ o(1).

(6.13.27)
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From (6.13.26) and∫ ∞

0

sin
√
λ(x− t)√
λ

q(t)u(t, λ) dt =
sin
√
λx√
λ

∫ ∞

0

cos
√
λt q(t)u(t, λ) dt

− cos
√
λx√
λ

∫ ∞

0

sin
√
λt q(t)u(t, λ) dt

one then derives for λ > 0 the asymptotic formulas (6.13.23), where the coefficient
functions aij are as in (6.13.24). Similarly, from (6.13.27) and∫ ∞

0

cos
√
λ(x− t) q(t)u(t, λ) dt = sin

√
λx

∫ ∞

0

sin
√
λt q(t)u(t, λ) dt

+ cos
√
λx

∫ ∞

0

cos
√
λt q(t)u(t, λ) dt

one obtains for the derivatives

u′
1(x, λ) = −a11(λ)

√
λ sin

√
λx+ a12(λ)

√
λ cos

√
λx+ o(1), x→∞,

u′
2(x, λ) = −a21(λ)

√
λ sin

√
λx+ a22(λ)

√
λ cos

√
λx+ o(1), x→∞.

In view of the initial values of u1(·, λ) and u2(·, λ), their Wronskian satisfies

1 = W (u1(·, λ), u2(·, λ)) =
√
λ
(
a11(λ)a22(λ)− a12(λ)a21(λ)

)
+ o(1)

as x→∞, and hence (6.13.25) follows.

To complete the proof of (6.13.21) and (6.13.22), it remains to note that for
λ > 0 the limits

lim
ε ↓ 0

(
i
√
λ+ iε−

∫ ∞

0

ei
√
λ+iεtq(t)u1(t, λ+ iε) dt

)
and

lim
ε ↓ 0

(
1 +

∫ ∞

0

ei
√
λ+iεtq(t)u2(t, λ+ iε) dt

)
exist and are given by

i
√
λ−

∫ ∞

0

ei
√
λtq(t)u1(t, λ) dt and 1 +

∫ ∞

0

ei
√
λtq(t)u2(t, λ) dt,

respectively, so that the statements follow from the representation of M in Propo-
sition 6.13.4 and the form of the coefficient functions aij . Note that a21(λ) and
a22(λ) do not vanish simultaneously for any λ > 0 by (6.13.25). �

In the next corollary the spectral properties of the self-adjoint operator A0

with Dirichlet boundary condition at 0 are discussed.
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Corollary 6.13.6. Let {C,Γ0,Γ1} be the boundary triplet in (6.13.7) and consider
the self-adjoint operator

A0 = −D2 + q, domA0 =
{
f ∈ domTmax : f(0) = 0

}
.

Then the following holds for the spectrum of A0:

(i) σac(A0) = [0,∞);

(ii) σp(A0) ∩ (0,∞) = ∅ and σsc(A0) ∩ (0,∞) = ∅;
(iii) (σ(A0) ∩ (−∞, 0)) ⊂ σp(A0) is at most countable, bounded from below, and

may only accumulate at 0; each eigenvalue has multiplicity one.

Proof. In order to apply the results from Chapter 3, recall first that, by Proposi-
tion 6.4.4, the minimal operator Tmin is simple. It follows from Proposition 6.13.4
that the spectrum of A0 in (−∞, 0) consists of at most countably many eigenvalues
which are bounded from below and may only accumulate at 0. Since the singular
endpoint ∞ is in the limit-point case, each eigenvalue has multiplicity one. This
shows (iii). From Theorem 3.6.5 and Lemma 6.13.5 one then concludes that

σac(A0) = closac
({

λ ∈ R : 0 < ImM(λ+ i0) < +∞}) = [0,∞),

i.e., (i) holds. According to Lemma 6.13.5, M(λ + i0) exists for all λ > 0 and
hence Rλ = limε↓0 iεM(λ+ iε) = 0 for all λ > 0. That σp(A0)∩ (0,∞) = ∅ follows
from Theorem 3.5.5 and Corollary 3.5.6 (see also Theorem 3.6.1). Finally, that
σsc(A0) ∩ (0,∞) = ∅ follows from Theorem 3.6.8 (see also Corollary 3.6.9) and
0 < ImM(λ+ i0) < +∞ in Lemma 6.13.5. �

Recall from (6.4.8) that for τ ∈ R the Weyl function corresponding to the
boundary triplet {C,Γτ

0 ,Γ
τ
1} in (6.4.7) is given by

Mτ (λ) =
1 + τM(λ)

τ −M(λ)
(6.13.28)

and that the self-adjoint restriction of Tmax corresponding to ker Γτ
0 is

Aτ = −D2 + q, domAτ =
{
f ∈ domTmax : f ′(0) = τf(0)

}
.

For Aτ one obtains a statement similar to Corollary 6.13.6.

Proposition 6.13.7. Let τ ∈ R and let {C,Γτ
0 ,Γ

τ
1} be the boundary triplet in (6.4.7)

with Aτ as above. Then the following holds for the spectrum of Aτ :

(i) σac(Aτ ) = [0,∞);

(ii) σp(Aτ ) ∩ (0,∞) = ∅ and σsc(Aτ ) ∩ (0,∞) = ∅;
(iii) (σ(Aτ ) ∩ (−∞, 0)) ⊂ σp(Aτ ) is at most countable, bounded from below, and

may only accumulate at 0; each eigenvalue has multiplicity one.
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Proof. It follows from Proposition 6.13.4 that 1+ τM and τ −M are holomorphic
on C \ [0,∞) with the possible exception of a countable set of poles in (−∞, 0)
which may only accumulate at 0. Furthermore, since M is a Nevanlinna function,
it is nondecreasing in between two consecutive poles in (−∞, 0) and hence τ −M
has at most countable many zeros in (−∞, 0) which may only accumulate at 0.
Therefore, the function Mτ in (6.13.28) has at most countably many poles in
(−∞, 0) which may only accumulate to 0.

By Lemma 6.13.5, the limit Mτ (λ+ i0) exists for all λ > 0. In fact, it is clear
that the limits 1+ τM(λ+ i0) and τ −M(λ+ i0) exist for all λ > 0. Now assume
that for some λ > 0 one has τ = M(λ). Then it follows with the functions aij in
Lemma 6.13.5 that

τ
(
a21(λ) + ia22(λ)

)
= −a11(λ)− ia12(λ)

or, equivalently,

a11(λ) + τa21(λ) + i
(
a12(λ) + τa22(λ)

)
= 0.

Hence, a11(λ) = −τa21(λ) and a12(λ) = −τa22(λ) and (6.13.25) yields

1√
λ
= −τa21(λ)a22(λ) + τa22(λ)a21(λ) = 0;

a contradiction. It follows that the limit Mτ (λ+ i0) exists for all λ > 0. A simple
computation using ImM(λ+ i0) > 0 for λ > 0 shows that

ImMτ (λ+ i0) =
(1 + τ2)ImM(λ+ i0)

|τ −M(λ+ i0)|2 > 0, λ > 0.

From these properties of Mτ the assertions (i)–(iii) follow in the same way as in
the proof of Corollary 6.13.6. �

Example 6.13.8. Consider the integrable potential

q(x) = − 2A2

cosh2(Ax+B)
,

where A ≥ 0 and B ∈ R is arbitrary. Define the smooth bounded function

T (x) = −A tanh(Ax+B),

so that q(x) = 2T ′(x) and

T (x)2 − T ′(x) = A2,

which gives T ′′(x) = q(x)T (x). It is therefore clear that the functions

ϕ(x, λ) = cos
√
λx+ T (x)

sin
√
λx√
λ

,

ψ(x, λ) =
√
λ sin

√
λx− T (x) cos

√
λx,
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satisfy the equation −y′′ + qy = λy with the initial values

ϕ(0, λ) = 1, ϕ′(0, λ) = T (0),

ψ(0, λ) = −T (0), ψ′(0, λ) = λ− T ′(0).

Hence, the following combinations of ϕ(·, λ) and ψ(·, λ), given by

u1(x, λ) =
1

λ+A2

(
(λ− T ′(0))ϕ(x, λ)− T (0)ψ(x, λ)

)
and

u2(x, λ) =
1

λ+A2

(
T (0)ϕ(x, λ) + ψ(x, λ)

)
,

form a fundamental system with the initial conditions in (6.13.8). It is clear that
limx→∞ T (x) = −A and hence the coefficients in Lemma 6.13.5 are given by the
functions(

a11(λ) a12(λ)
a21(λ) a22(λ)

)
=

1

λ+A2

⎛⎝λ− T ′(0)−AT (0) −λ(A+T (0))+AT ′(0)√
λ

T (0) +A λ−AT (0)√
λ

⎞⎠ .

Note that a11(λ)a22(λ) − a12(λ)a21(λ) = 1/
√
λ by Lemma 6.13.5 and this also

leads to

M(λ) = −λ3/2 −√λ(T ′(0) +AT (0)) + i
(
AT ′(0)− λ(A+ T (0))

)
√
λ(T (0) +A) + i(λ−AT (0))

, λ > 0,

(6.13.29)
and

ImM(λ) =

√
λ (λ+A2)

λ+ T (0)2
, λ > 0.

Upon writing the solution x �→ u1(x, λ) +M(λ)u2(x, λ) for λ ∈ C \ [0,∞) in the
form

d1(x, λ)e
i
√
λx + d2(x, λ)e

−i
√
λx (6.13.30)

one observes that x �→ d1(x, λ) and x �→ d2(x, λ) are bounded with limits as x→ b.
One concludes that limx→b d2(x, λ) = 0 since the solution (6.13.30) belongs to
L2(0,∞). A computation of the coefficient d2(x, λ) shows that the expression for
M in (6.13.29) remains valid also for λ ∈ C \ [0,∞). Now one verifies that M has
a pole at λ < 0 if and only if B < 0 and λ = −T (0)2. Hence, the operator

A0 = −D2 + q, domA0 =
{
f ∈ domTmax : f(0) = 0

}
,

has one negative eigenvalue −T (0)2 if B < 0 and

f(x) = e−T (0)x
(
T (x)− T (0)

)
is a corresponding eigenfunction; in the case B ≥ 0 the operator A0 has no negative
eigenvalues.
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Chapter 7

Canonical Systems of
Differential Equations

Boundary value problems for regular and singular canonical systems of differ-
ential equations are investigated. After a brief introduction to Hilbert spaces of
C2-valued vector functions which are square-integrable with respect to some 2× 2
matrix-valued function in Section 7.1, the class of canonical systems to be studied
here is introduced in Section 7.2. In Section 7.3 the notions of regular, quasireg-
ular, and singular endpoints for canonical systems are explained. The number of
square-integrable solutions at an endpoint of the interval is studied in Section 7.4.
Together with a monotonicity principle from Chapter 5, this leads to a limit-
circle/limit-point classification of singular endpoints in the same way as in Weyl’s
alternative in Chapter 6. The important concept of definiteness of canonical sys-
tems is defined and studied in Section 7.5, and a cut-off technique for solutions is
provided. Afterwards, in Section 7.6, a symmetric minimal relation in the appro-
priate L2-Hilbert space and its adjoint, the maximal relation, are associated with
real definite canonical systems. The defect numbers of the minimal relation are
specified for regular endpoints and for endpoints in the limit-circle or limit-point
case. Boundary triplets and Weyl functions for canonical systems in the limit-
circle case are constructed in Section 7.7, while the limit-point case is treated in
Section 7.8. The connection between subordinate solutions and properties of the
Weyl function, as well as the description of absolutely continuous and singular
spectrum are studied in Section 7.9. Finally, in Section 7.10 some special classes
of canonical systems of differential equations are discussed, among them weighted
Sturm–Liouville equations.
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7.1 Classes of integrable functions

The purpose of this section is to introduce classes of vector functions which are
locally square-integrable with respect to a measurable nonnegative matrix function
and to collect some useful properties of such functions.

Let ı ⊂ R be an interval, not necessarily bounded, with endpoints a < b,
not necessarily belonging to ı. In the following an integral of a vector function or
a matrix function over ı or over a subinterval is always understood in the com-
ponentwise sense. The linear space L1

loc (ı) of locally integrable C2-valued vector
functions consists of all measurable C2-valued vector functions f defined almost
everywhere on ı such that for each compact subinterval K ⊂ ı∫

K

|f(s)| ds <∞.

Here |x| denotes the Euclidean norm of x in C2. Note that for f ∈ L1
loc (ı) and

each compact subinterval K ⊂ ı the norm inequality∣∣∣∣∫
K

f(s) ds

∣∣∣∣ ≤ ∫
K

|f(s)| ds (7.1.1)

holds. A C2-valued vector function f ∈ L1
loc (ı) is said to be integrable at the left

endpoint a of the interval ı or integrable at the right endpoint b of the interval ı
if for some, and hence for all c ∈ R with a < c < b∫ c

a

|f(s)| ds <∞ or

∫ b

c

|f(s)| ds <∞, (7.1.2)

respectively. Similarly, a measurable 2 × 2 matrix function Φ is locally integrable
on ı if for each compact subinterval K ⊂ ı∫

K

|Φ(s)| ds <∞;

here and in the following |A| stands for the operator norm of a 2× 2 matrix A. In
particular, ∣∣∣∣∫

K

Φ(s) ds

∣∣∣∣ ≤ ∫
K

|Φ(s)| ds. (7.1.3)

The linear space consisting of all locally integrable 2×2 matrix functions on ı will
also be denoted by L1

loc (ı); it will be clear from the context if the values of the
functions in L1

loc (ı) are vectors in C2 or 2 × 2 matrices. A 2 × 2 matrix function
Φ ∈ L1

loc (ı) is said to be integrable at the left endpoint a of the interval ı or
integrable at the right endpoint b of the interval ı if (7.1.2) holds for some, and
hence for all c ∈ R with a < c < b and f replaced by Φ.
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Note that all norms on the linear space of 2 × 2 matrices are equivalent
and that the operator norm |A| of a 2 × 2 matrix A can be estimated by the
Hilbert–Schmidt matrix norm as follows:

|A| ≤ ‖A‖2 ≤
√
2|A|, where ‖A‖2 :=

√√√√ 2∑
i,j=1

|aij |2. (7.1.4)

For the product of 2× 2 matrices A and B one has

|AB| ≤ |A| |B| and ‖AB‖2 ≤ ‖A‖2 ‖B‖2. (7.1.5)

In the case where the 2 × 2 matrix A is nonnegative the trace norm of A can be
estimated by the Hilbert–Schmidt matrix norm:

‖A‖2 ≤ trA ≤
√
2‖A‖2, where trA = a11 + a22,

which also gives
|A| ≤ trA ≤ 2|A|. (7.1.6)

The following definition introduces the semi-inner product space L2
Δ(ı) of

C2-valued functions which are square-integrable with respect to Δ; it is assumed
that Δ is a 2 × 2 matrix function on ı and that Δ(s) ≥ 0 for almost every s ∈ ı.
In order to express the seminorm on L2

Δ(ı) the notation

f(s)∗Δ(s)f(s) =
(
Δ(s)f(s), f(s)

)
will be useful. Here (·, ·) denotes the standard scalar product in C2 and f is any
C2-function defined on the interval ı.

Definition 7.1.1. Let ı ⊂ R be an interval and let Δ be a measurable 2× 2 matrix
function such that Δ(s) ≥ 0 for almost every s ∈ ı. Then L2

Δ(ı) denotes the
linear space of all measurable functions f on ı with values in C2 which are square-
integrable with respect to Δ, that is,

‖f‖2Δ =

∫
ı

f(s)∗Δ(s)f(s) ds =

∫
ı

|Δ(s)
1
2 f(s)|2 ds <∞. (7.1.7)

The semidefinite inner product (·, ·)Δ on L2
Δ(ı) corresponding to the semi-

norm ‖ · ‖Δ in (7.1.7) is given by

(f, g)Δ =

∫
ı

g(s)∗Δ(s)f(s) ds, f, g ∈ L2
Δ(ı). (7.1.8)

Theorem 7.1.2. Let ı ⊂ R be an interval and let Δ be a measurable 2 × 2 matrix
function such that Δ(s) ≥ 0 for almost every s ∈ ı. Then the linear space L2

Δ(ı)
equipped with the seminorm (7.1.8) is complete.
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Proof. Since the 2×2 matrix function Δ is measurable and nonnegative almost ev-
erywhere, there are measurable nonnegative functions e1 and e2, and a measurable
2× 2 matrix function U with unitary values, such that

Δ(s) = U(s)∗Ξ(s)U(s), where Ξ(s) =

(
e1(s) 0
0 e2(s)

)
,

for almost all s ∈ ı. Hence, one has for all measurable functions f with values in
C2 on ı that ∫

ı

f(s)∗Δ(s)f(s) ds =

∫
ı

(Uf)(s)∗Ξ(s)(Uf)(s) ds.

Written out in components this gives∫
ı

f(s)∗Δ(s)f(s) ds =

∫
ı

|(Uf)1(s)|2e1(s) ds+
∫
ı

|(Uf)2(s)|2e2(s) ds

=

∫
ı

|(Uf)1(s)|2 dμ1(s) +

∫
ı

|(Uf)2(s)|2 dμ2(s),

(7.1.9)

where the measures μ1 and μ2 are absolutely continuous with respect to the
Lebesgue measure m and their Radon–Nikodým derivatives are given by e1 and
e2, respectively. Therefore, it is now clear that

f ∈ L2
Δ(ı) ⇔ (Uf)1 ∈ L2

dμ1
(ı) and (Uf)2 ∈ L2

dμ2
(ı).

This shows that the transformation U maps the space L2
Δ(ı) bijectively onto

L2
dμ1

(ı) × L2
dμ2

(ı) and from (7.1.9) one sees that the seminorms in L2
Δ(ı) and

L2
dμ1

(ı) × L2
dμ2

(ı) are preserved. Therefore, the completeness of L2
Δ(ı) is a conse-

quence of the completeness of L2
dμ1

(ı) and L2
dμ2

(ı). �

The space L2
Δ(ı) has the following approximation property.

Lemma 7.1.3. Each element of the seminormed space L2
Δ(ı) can be approximated

by functions in L2
Δ(ı) which have compact support.

Proof. Let (Kn)n∈N be a sequence of nondecreasing compact intervals such that
ı =
⋃∞

n=1 Kn. For f ∈ L2
Δ(ı) put fn(s) = f(s) for s ∈ Kn and fn(s) = 0 elsewhere.

Then fn ∈ L2
Δ(ı), fn has support in Kn, and

‖f − fn‖2Δ =

∫
ı

(f(s)− fn(s))
∗Δ(s)(f(s)− fn(s)) ds→ 0

as n→∞, by dominated convergence. �

The space L2
Δ,loc (ı) consists of all C2-valued functions which are square-

integrable with respect to Δ for each compact subinterval K ⊂ ı, i.e.,∫
K

f(s)∗Δ(s)f(s) ds <∞.
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A function f ∈ L2
Δ,loc (ı) is said to be square-integrable with respect to Δ at the

left endpoint a of the interval ı or square-integrable with respect to Δ at the right
endpoint b of the interval ı if for some, and hence for all c ∈ R with a < c < b,∫ c

a

f(s)∗Δ(s)f(s) ds <∞ or

∫ b

c

f(s)∗Δ(s)f(s) ds <∞,

respectively. A function f ∈ L2
Δ,loc (ı) belongs to L2

Δ(ı) if and only if f is square-
integrable with respect to Δ at both endpoints a and b of ı.

Clearly, if Δ is a nonnegative matrix function and f is a vector function, then

|Δ(s)f(s)| = |Δ(s)
1
2Δ(s)

1
2 f(s)| ≤ |Δ(s)

1
2 | |Δ(s)

1
2 f(s)|.

Now the statement in the next lemma is a consequence of the Cauchy–Schwarz
inequality and the fact that

|Δ(s)
1
2 |2 = |Δ(s)

1
2Δ(s)

1
2 | = |Δ(s)|.

Lemma 7.1.4. Let Δ be a locally integrable nonnegative 2 × 2 matrix function on
ı and let K ⊂ ı be compact. If f ∈ L2

Δ(K), then Δf ∈ L1(K) and∫
K

|Δ(s)f(s)| ds ≤
(∫

K

|Δ(s)| ds
) 1

2
(∫

K

f(s)∗Δ(s)f(s) ds

) 1
2

.

In particular, if f ∈ L2
Δ(ı), then Δf ∈ L1

loc (ı) and for all compact K ⊂ ı∫
K

|Δ(s)f(s)| ds ≤
(∫

K

|Δ(s)| ds
) 1

2

‖f‖Δ.

Let N = {f ∈ L2
Δ(ı) : ‖f‖Δ = 0}, so that N is a linear space, and consider

the quotient space
L2
Δ(ı) := L2

Δ(ı)/N

equipped with the scalar product induced by (7.1.8), that is, (f, g)Δ = (f̃ , g̃)Δ,

where f̃ , g̃ ∈ L2
Δ(ı) are representatives in the equivalence classes f, g ∈ L2

Δ(ı).
From Theorem 7.1.2 it is clear that L2

Δ(ı) is a Hilbert space. When no confusion
can arise, the equivalence classes in L2

Δ(ı) will also be referred to as functions
that are square-integrable with respect to Δ. Note that the compactly supported
functions in L2

Δ(ı) are dense in L2
Δ(ı) by Lemma 7.1.3.

Recall that a C2-valued vector function f on an open interval ı is absolutely
continuous if there exists a C2-valued vector function h ∈ L1

loc (ı) such that

f(t)− f(s) =

∫ t

s

h(u) du (7.1.10)
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for all s, t ∈ ı. In this case, f is differentiable and f ′ = h almost everywhere. The
space of absolutely continuous C2-valued vector functions is denoted by AC(ı).
When a ∈ R, then AC[a, b) stands for the subclass of f ∈ AC(a, b) for which
h ∈ L1

loc (a, b) in (7.1.10) additionally belongs to L1(a, a′) for some, and hence for
all a < a′ < b, in which case

f(t)− f(a) =

∫ t

a

h(u) du

holds for all t ∈ (a, b) and thus f(a) = limt→a f(t). When b ∈ R there is a similar
notation AC(a, b] and for f ∈ AC(a, b] one has f(b) = limt→b f(t). The notation
AC[a, b] is analogous.

7.2 Canonical systems of differential equations

This section offers a brief review of so-called 2×2 canonical systems of differential
equations. The existence and uniqueness result for linear systems of differential
equations will be discussed and properties of the corresponding fundamental ma-
trices will be derived.

Let ı = (a, b) ⊂ R be an open, not necessarily bounded, interval and let H
and Δ be 2× 2 matrix functions defined almost everywhere on ı such that

H,Δ ∈ L1
loc (ı), H(t) = H(t)∗, and Δ(t) ≥ 0 (7.2.1)

for almost every t ∈ ı. Furthermore, let

J =

(
0 −1
1 0

)
(7.2.2)

and note that J∗ = −J = J−1. A canonical system is a system of differential
equations of the form

Jf ′(t)−H(t)f(t) = λΔ(t)f(t) + Δ(t)g(t), t ∈ ı, λ ∈ C, (7.2.3)

where g ∈ L2
Δ,loc (ı) is a function that is locally square-integrable with respect to Δ

with values in C2. The condition g ∈ L2
Δ,loc (ı) implies that Δg is locally integrable;

cf. Lemma 7.1.4. In the general case of (7.2.3) one speaks of an inhomogeneous
system, while if the term involving Δg is absent, that is,

Jf ′(t)−H(t)f(t) = λΔ(t)f(t), t ∈ ı, λ ∈ C, (7.2.4)

one speaks of the corresponding homogeneous system.

A function f on ı with values in C2 is said to be a solution of the canonical
system (7.2.3) if f belongs to AC(ı) and the equation (7.2.3) holds for almost every



7.2. Canonical systems of differential equations 505

t ∈ ı. Observe that if f is a solution of (7.2.3), then f is also a solution of (7.2.3)
when g ∈ L2

Δ,loc (ı) is replaced by g̃ ∈ L2
Δ,loc (ı) with Δ(g − g̃) = 0. Furthermore,

if f is a solution of (7.2.3) and h is a solution of (7.2.4), then f +h is a solution of
(7.2.3). In fact, the collection of all solutions of the homogeneous system (7.2.4)
forms a linear space. The following result on the existence and uniqueness of
solutions of initial value problems for inhomogeneous canonical systems will be
useful.

Theorem 7.2.1. Let g ∈ L2
Δ,loc (ı) and λ ∈ C. Fix some c0 ∈ ı = (a, b) and γ ∈ C2.

Then the initial value problem

Jf ′(t)−H(t)f(t) = λΔ(t)f(t) + Δ(t)g(t), f(c0) = γ, (7.2.5)

admits a unique solution f ∈ AC(ı). Moreover, the mapping λ �→ f(t, λ) is entire
for every fixed t ∈ ı.

In order to prove this theorem one replaces the initial value problem (7.2.5)
by an equivalent integral equation; recall that the functions H and Δ are locally
integrable. The integral equation can be solved, for instance, by successive itera-
tions, which also leads to the statement concerning the mapping λ �→ f(t, λ) being
entire, see, e.g., [754, Theorem 2.1].

In the next lemma a Lagrange identity for solutions of the inhomogeneous
canonical system is obtained.

Lemma 7.2.2. Assume that λ, μ ∈ C and that g, k ∈ L2
Δ,loc (ı). Let f, h be solutions

of the inhomogeneous equations

Jf ′(t)−H(t)f(t) = λΔ(t)f(t) + Δ(t)g(t),

Jh′(t)−H(t)h(t) = μΔ(t)h(t) + Δ(t)k(t),

respectively. Then for every compact interval [α, β] ⊂ ı,

h(β)∗Jf(β)− h(α)∗Jf(α) =
∫ β

α

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds

+ (λ− μ)

∫ β

α

h(s)∗Δ(s)f(s)ds.

Proof. The assumptions that J is skew-adjoint and that H(t) and Δ(t) are self-
adjoint almost everywhere on ı lead to the identities

(h∗Jf)′ = h∗(Jf ′)− (Jh′)∗f
= h∗(λΔf +Δg +Hf)− (μΔh+Δk +Hh)∗f
= h∗Δg − k∗Δf + (λ− μ)h∗Δf,

which are valid almost everywhere on ı. Integration over the interval [α, β] com-
pletes the argument. �
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Taking λ = μ = 0 in Lemma 7.2.2, one obtains the following corollary. It
provides the form of the Lagrange identity that will be studied in detail later in
this chapter.

Corollary 7.2.3. Assume that g, k ∈ L2
Δ,loc (ı). Let f, h be solutions of the inhomo-

geneous equations

Jf ′(t)−H(t)f(t) = Δ(t)g(t),

Jh′(t)−H(t)h(t) = Δ(t)k(t),
(7.2.6)

respectively. Then for every compact interval [α, β] ⊂ ı,

h(β)∗Jf(β)− h(α)∗Jf(α) =
∫ β

α

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds.

There is also a corollary of Lemma 7.2.2 involving solutions of the corre-
sponding homogeneous system. Let Y1(·, λ) and Y2(·, λ) be solutions of (7.2.4)
and define the solution matrix

Y (·, λ) = (Y1(·, λ) Y2(·, λ)
)
, λ ∈ C, (7.2.7)

which is a 2× 2 matrix function for each λ ∈ C. Then the matrix function Y (·, λ)
solves the equation (7.2.4) in the sense that it actually solves the matrix version
of (7.2.4),

JY ′(t, λ)−H(t)Y (t, λ) = λΔ(t)Y (t, λ), t ∈ ı.

Corollary 7.2.4. Let Y (·, λ) be a solution matrix of the homogeneous canonical
system (7.2.4). Then for every compact interval [α, β] ⊂ ı and all λ, μ ∈ C,

Y (β, μ)∗JY (β, λ)− Y (α, μ)∗JY (α, λ) = (λ− μ)

∫ β

α

Y (s, μ)∗Δ(s)Y (s, λ)ds.

In particular, for all [α, β] ⊂ ı and all λ ∈ C,

Y (β, λ)∗JY (β, λ) = Y (α, λ)∗JY (α, λ).

It is a consequence of Corollary 7.2.4 that for every solution matrix Y (·, λ)
the function

t �→ Y (t, λ)∗JY (t, λ)

is constant on ı. Hence, if for some c0 ∈ ı

Y (c0, λ)
∗JY (c0, λ) = J, (7.2.8)

then Y (t, λ)∗JY (t, λ) = J for all t ∈ ı. This shows that

Y (t, λ)−1 = −JY (t, λ)∗J and Y (t, λ)−∗ = −JY (t, λ)J, t ∈ ı, (7.2.9)
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and thus it also follows that

Y (t, λ)JY (t, λ)∗ = J, t ∈ ı. (7.2.10)

Let X be an invertible matrix which does not depend on λ and assume
that X∗JX = J . Let Y (·, λ) be the solution matrix which is fixed by the initial
condition

Y (c0, λ) = X (7.2.11)

for some c0 ∈ ı and all λ ∈ C. Then (7.2.8) is valid and hence (7.2.9) and (7.2.10)
are satisfied; the matrix Y (·, λ) is a fundamental matrix, that is, its columns are
linearly independent solutions of the homogeneous canonical system (7.2.4) on ı.
Frequently the fundamental matrix Y (·, λ) will be fixed by the initial condition

Y (c0, λ) = I (7.2.12)

for some c0 ∈ ı.

According to Theorem 7.2.1, there is a unique solution of the initial value
problem (7.2.5). It is possible to express this unique solution in terms of the
fundamental matrix Y (·, λ) determined by the initial condition (7.2.12) (and in a
similar way with the initial condition (7.2.11)). In fact, for any λ ∈ C, any γ ∈ C2,
and any g ∈ L2

Δ,loc (ı), the unique solution of the inhomogeneous initial value
problem

Jf ′ −Hf = λΔf +Δg, f(c0) = γ, (7.2.13)

is provided by the variation of constant formula :

f(t) = Y (t, λ)γ + Y (t, λ)

∫ t

c0

Y (s, λ)−1J−1Δ(s)g(s) ds. (7.2.14)

This can be seen by verifying that the second term on the right-hand side is a
solution of the inhomogeneous equation that vanishes at c0. Making use of (7.2.9),
one recasts (7.2.14) as

f(t) = Y (t, λ)γ − Y (t, λ)

∫ t

c0

JY (s, λ)∗Δ(s)g(s) ds. (7.2.15)

In terms of the notation (7.2.7) for the fundamental matrix Y (·, λ) fixed by (7.2.12)
the unique solution (7.2.15) of (7.2.13) can be written as

f(t) = Y1(t, λ)γ1 + Y2(t, λ)γ2

+ Y1(t, λ)

∫ t

c0

Y2(s, λ)
∗Δ(s)g(s) ds

− Y2(t, λ)

∫ t

c0

Y1(s, λ)
∗Δ(s)g(s) ds,

(7.2.16)

where γ = (γ1, γ2)
�. This form of the solution will be used later.
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The general form of the inhomogeneous equation (7.2.3) can be simplified by
a transformation of the system. This transformation will be employed in Corol-
lary 7.4.8.

Lemma 7.2.5. Let λ0 ∈ R, c0 ∈ ı, and let U(·, λ0) be a solution matrix which
satisfies

JU ′(·, λ0)−HU(·, λ0) = λ0ΔU(·, λ0), U(c0, λ0)
∗JU(c0, λ0) = J. (7.2.17)

Assume that g ∈ L2
Δ,loc (ı) and let f be a solution of the inhomogeneous equation

(7.2.3). Define the functions f̃ , g̃, and Δ̃ by

f̃ = U(·, λ0)
−1f, g̃ = U(·, λ0)

−1g, Δ̃(·) = U(·, λ0)
∗Δ(·)U(·, λ0). (7.2.18)

Then Δ̃ is a locally integrable nonnegative measurable matrix function,

f̃∗Δ̃f̃ = f∗Δf and g̃∗Δ̃g̃ = g∗Δg, (7.2.19)

and, in particular, g̃ ∈ L2
Δ̃,loc

(ı). Moreover, the function f̃ is a solution of the

system of differential equations

Jf̃ ′ = (λ− λ0)Δ̃f̃ + Δ̃g̃. (7.2.20)

Conversely, if

f̃ , g̃ ∈ L2
Δ̃,loc

(ı) and Δ̃(·) = U(·, λ0)
∗Δ(·)U(·, λ0)

satisfy the equation (7.2.20), then f = U(·, λ0)f̃ and g = U(·, λ0)g̃ satisfy the
inhomogeneous equation (7.2.3).

Proof. First observe that it is a direct consequence of (7.2.17) that the function
U(·, λ0) satisfies

U(·, λ0)
∗JU(·, λ0) = J ;

cf. (7.2.8). In particular, this shows that U(t, λ0) is invertible for each t ∈ ı.

Let f̃ , g̃, and Δ̃ be defined by (7.2.18). Then it is clear that (7.2.19) holds.
Since g ∈ L2

Δ,loc (ı) it also follows that g̃ ∈ L2
Δ̃,loc

(ı). Moreover,

Jf ′ −Hf = λΔf +Δg (7.2.21)

holds by assumption. Substituting f = U(·, λ0)f̃ and g = U(·, λ0)g̃ in (7.2.21),
multiplying by U(·, λ0)

∗ from the left, and using (7.2.17) a straightforward cal-
culation leads to (7.2.20). Similarly, one verifies by a direct calculation that the
converse statement holds. �
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It follows from (7.2.19) that the functions f̃ or g̃ in (7.2.18) are square-

integrable with respect to Δ̃ if and only if f or g are square-integrable with respect
to Δ, respectively. The transformation in Lemma 7.2.5 implies that the boundary
terms h(x)∗Jf(x) in the Lagrange formula of the original equation in Lemma 7.2.2
can be written in terms of the boundary terms of the corresponding solutions of
the transformed equation (7.2.20).

Corollary 7.2.6. Assume that λ, μ ∈ C, g, k ∈ L2
Δ,loc (ı) and that f, h are solutions

of the inhomogeneous equations

Jf ′(t)−H(t)f(t) = λΔ(t)f(t) + Δ(t)g(t),

Jh′(t)−H(t)h(t) = μΔ(t)h(t) + Δ(t)k(t).

Assume that U(·, λ0) with λ0 ∈ R is a solution matrix which satisfies (7.2.17) and

define the functions f̃ = U(·, λ0)
−1f and h̃ = U(·, λ0)

−1h as in (7.2.18). Then for
each t ∈ ı

h(t)∗Jf(t) = h̃(t)∗Jf̃(t).

Recall that the functions H and Δ were assumed to be 2×2 matrix functions
with complex entries. When these functions are real the solutions enjoy a certain
symmetry property.

Definition 7.2.7. The canonical system Jf ′ −Hf = λΔf is said to be real if the
entries of the 2× 2 matrix functions H and Δ in (7.2.1) are real functions.

To deal with real canonical systems the notion of conjugate matrices is useful.
For a matrix T the conjugate matrix T is the matrix whose entries are the complex
conjugates of the entries of T . Let T and S be matrices, not necessarily of the same
size, for which the matrix product TS is defined. Then clearly

TS = T S. (7.2.22)

Lemma 7.2.8. Assume that the canonical system (7.2.4) is real. Let Y (·, λ) be a
solution matrix of (7.2.4) such that for all λ ∈ C

Y (c0, λ) = Y (c0, λ) (7.2.23)

for some point c0 ∈ ı. Then

Y (·, λ) = Y (·, λ) (7.2.24)

for all λ ∈ C. In particular, (7.2.24) holds when Y (·, λ) is a fundamental matrix
fixed by (7.2.11) or (7.2.12).

Proof. By definition, the solution matrix Y (·, λ) satisfies

JY ′(·, λ)−HY (·, λ) = λΔY (·, λ). (7.2.25)
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By assumption, the entries of J , H, and Δ are real; hence taking complex conju-
gates and using (7.2.22) one sees that

JY
′
(·, λ)−HY (·, λ) = λΔY (·, λ).

Therefore, the matrix function Y (·, λ) satisfies the same equation (7.2.25) as Y (·, λ)
and by (7.2.23) these matrix functions satisfy the same initial condition at c0. Now
the uniqueness in Theorem 7.2.1 leads to (7.2.24). �

The following observation is an easy consequence of Lemma 7.2.8.

Corollary 7.2.9. Let the system Jf ′ − Hf = λΔf be real and let a fundamental
matrix Y (·, λ0) be fixed by the initial condition Y (c, λ0) = I for some a < c < b.
Then for every u ∈ C2∫

ı

u∗Y (s, λ)∗Δ(s)Y (s, λ)u ds =

∫
ı

u∗Y (s, λ)∗Δ(s)Y (s, λ)u ds.

In particular,
Y (·, λ)u ∈ L2

Δ(ı) ⇔ Y (·, λ)u ∈ L2
Δ(ı).

Proof. Clearly, for any u ∈ C2 and all s ∈ ı one has

u∗Y (s, λ)∗Δ(s)Y (s, λ)u ≥ 0.

Therefore,

u∗Y (s, λ)∗Δ(s)Y (s, λ)u = u∗Y (s, λ)∗Δ(s)Y (s, λ)u

= u∗Y (s, λ)∗Δ(s)Y (s, λ)u,

which gives the assertion. �

7.3 Regular and quasiregular endpoints

In this section the notions of regular and quasiregular for an endpoint of the
interval ı are introduced; this makes it possible to extend Theorem 7.2.1, so that
one may solve an initial value problem in an endpoint.

The following definition gives a classification for the endpoints of the canon-
ical system (7.2.3).

Definition 7.3.1. An endpoint of the interval ı is said to be a quasiregular endpoint
of the canonical system (7.2.3) if the locally integrable functions H and Δ in
(7.2.1) are integrable up to that endpoint. A finite quasiregular endpoint is called
regular. An endpoint is said to be singular when it is not regular. The canonical
system (7.2.3) is called regular if both endpoints are regular; otherwise it is called
singular.
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The main result in this section implies that if the term g ∈ L2
Δ,loc (ı) in

(7.2.3) is square-integrable with respect to Δ at an endpoint which is regular or
quasiregular, then every solution of the inhomogeneous equation has a continuous
extension to that endpoint, so that it is square-integrable with respect to Δ there.

Proposition 7.3.2. Assume that the endpoint a or b of ı = (a, b) is regular or
quasiregular and that g ∈ L2

Δ,loc (ı) is square-integrable with respect to Δ at a or
b, respectively. Then each solution f of (7.2.3) is square-integrable with respect to
Δ at a or at b and the limits

f(a) := lim
t→a

f(t) or f(b) := lim
t→b

f(t) (7.3.1)

exist, respectively. Moreover, for each γ ∈ C2 there exists a unique solution f
of (7.2.3) such that f(a) = γ or f(b) = γ, respectively, and the corresponding
function λ �→ f(t, λ) is entire for every t ∈ ı and t = a or t = b, respectively.

Proof. It suffices to consider the case of the endpoint b. So let b be a regular or
quasiregular endpoint, let λ ∈ C, and fix c ∈ (a, b). The proof is split in three
separate steps.

Step 1. Any solution f of (7.2.3) with f(c) = η satisfies

f(t) = η +

∫ t

c

J−1 (λΔ(s) +H(s)) f(s) ds+

∫ t

c

J−1Δ(s)g(s) ds (7.3.2)

with t ∈ ı. Recall that, since g is square-integrable with respect to Δ at b, it
follows that Δg is integrable on [c, b); cf. Lemma 7.1.4. By definition also λΔ+H
is integrable on [c, b). Hence, Gronwall’s lemma in Section 6.13 (see Lemma 6.13.2)
shows that

|f(t)| ≤
(
|η|+

∫ t

c

|Δ(s)g(s)| ds
)
e
∫ t
c
|λΔ(s)+H(s)| ds, c ≤ t < b. (7.3.3)

Thus, the solution f is bounded on [c, b): |f(s)| ≤ M , c < s < b. In particular,
this shows that ∫ b

c

f(s)∗Δ(s)f(s) ds ≤M2

∫ b

c

|Δ(s)| ds <∞,

and hence f is square-integrable with respect to Δ at b. Moreover, it is clear from
(7.3.2) that the limit f(b) = limt→b f(t) in (7.3.1) exists.

Step 2. In the special case where h is a solution of the homogeneous system (7.2.4)
with h(c) = η it follows from (7.3.2) that

h(b) = η +

∫ b

c

J−1 (λΔ(s) +H(s))h(s) ds. (7.3.4)
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The solution h(·, λ) actually depends on λ and according to Theorem 7.2.1 for each
c ≤ t < b the function λ �→ h(t, λ) is entire. It will be shown that also λ �→ h(b, λ)
is entire. In fact, from (7.3.4) it is clear that it suffices to prove that the mapping

λ �→
∫ b

c

J−1 (λΔ(s) +H(s))h(s, λ) ds (7.3.5)

is entire. To see this note that (7.3.3) and the equality h(b) = limt→b h(t) imply
that, for each compact set K ⊂ C,

|h(t, λ)| ≤ CK e
∫ b
c
(|Δ(s)|+|H(s)|) ds

for all c ≤ t ≤ b and for all λ ∈ K. Hence, by dominated convergence, the mapping
in (7.3.5) is continuous, and an application of Morera’s theorem implies that this
mapping is holomorphic. Therefore, λ �→ h(b, λ) is entire.

Step 3. Let Z(·, λ) be a fundamental matrix of the homogeneous equation (7.2.4)
fixed by Z(c, λ) = I. Then, according to Step 1 and Step 2, one has

Z(t) = I +

∫ t

c

J−1 (λΔ(s) +H(s))Z(s) ds

and Gronwall’s lemma yields the estimate

|Z(t, λ)| ≤ e
∫ t
c
|λΔ(s)+H(s)| ds, c ≤ t < b. (7.3.6)

Thus, Z(b, λ) = limt→b Z(t, λ) exists and it follows from Step 2 that the mapping
λ �→ Z(b, λ) is entire. Moreover, from Z(t, λ)∗JZ(t, λ) = J for c ≤ t < b one
concludes by taking the limit t → b that the matrix Z(b, λ) is invertible for all
λ ∈ C. It is also clear that Z(b, λ)∗JZ(b, λ) = J . Thus, the function U(·, λ) defined
by

U(t, λ) = Z(t, λ)Z(b, λ)−1

is a fundamental matrix of the homogeneous equation which satisfies U(b, λ) = I
and λ �→ U(t, λ) is entire for c ≤ t ≤ b. Therefore, if γ ∈ C2 is fixed one sees that

f(t) = U(t, λ)γ + U(t, λ)

∫ b

t

JU(s, λ)∗Δ(s)g(s) ds

is the unique solution of the inhomogeneous equation with f(b) = γ; cf. (7.2.15).
It remains to verify that λ �→ f(t, λ) is entire for c ≤ t ≤ b. For this it suffices to
check that

λ �→ U(t, λ)

∫ b

t

JU(s, λ)∗Δ(s)g(s) ds = Z(t, λ)

∫ b

t

JZ(s, λ)∗Δ(s)g(s) ds

is entire for c ≤ t ≤ b, which can be seen with the help of (7.3.6) in the same way
as in Step 2. �
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Corollary 7.3.3. Assume that the endpoints a and b of the canonical system (7.2.3)
are regular or quasiregular and that g ∈ L2

Δ(ı). Then each solution f of (7.2.3)
belongs to L2

Δ(ı) and both limits in (7.3.1) exist.

The next statement follows from Corollary 7.2.3 and Corollary 7.3.3.

Corollary 7.3.4. Assume that the endpoints a and b of the canonical system (7.2.3)
are regular or quasiregular and that g, k ∈ L2

Δ(ı). Let f, h be solutions of the
inhomogeneous equations (7.2.6). Then

h(b)∗Jf(b)− h(a)∗Jf(a) =
∫ b

a

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds.

Finally, the next statement is a consequence of Proposition 7.3.2 and identity
(7.2.10).

Corollary 7.3.5. Assume that the endpoint a or b of the canonical system (7.2.3)
is regular or quasiregular and let Y (·, λ) be a fundamental matrix of the canonical
system (7.2.3). Then Y (·, λ)φ is square-integrable with respect to Δ at a or b for
every φ ∈ C2 and Y (·, λ) admits a unique continuous extension to a or b such that
Y (a, λ) or Y (b, λ) is invertible, respectively. In particular, the point c0 in (7.2.12)
can be chosen to be a or b, respectively.

7.4 Square-integrability of solutions of
real canonical systems

Let ı = (a, b) be an open interval and consider on this interval the homogeneous
system Jf ′ −Hf = λΔf . Recall that a solution f , depending on λ ∈ C, is called
square-integrable with respect to Δ at a or b if for some c ∈ ı∫ c

a

f(s)∗Δ(s)f(s) ds <∞ or

∫ b

c

f(s)∗Δ(s)f(s) ds <∞,

respectively. In this section the existence of such solutions is studied for real canon-
ical systems; cf. Definition 7.2.7. The first main result asserts that if there are two
linearly independent solutions which are square-integrable with respect to Δ at
an endpoint for some λ ∈ C, then for any λ ∈ C all solutions are square-integrable
with respect to Δ at that endpoint. The second main result states that for any
λ ∈ C \ R there is at least one solution that is square-integrable with respect to Δ
at an endpoint. A combination of these two results gives a general description of
the existence of the solutions that are square-integrable with respect to Δ at an
endpoint and leads to the limit-point and limit-circle classification.

In the rest of this section it will be assumed that the system (7.2.3) is real
and the symmetry result in Corollary 7.2.9 will be used throughout.
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Theorem 7.4.1. Assume that for λ0 ∈ C the equation Jf ′ −Hf = λ0Δf has two
linearly independent solutions which are square-integrable with respect to Δ at a
or b. Then for any λ ∈ C each solution of Jf ′ −Hf = λΔf is square-integrable
with respect to Δ at a or b, respectively.

Proof. It is sufficient to show the result for one endpoint, say b. Assume without
loss of generality that the endpoint a of the canonical system (7.2.3) is regular. Fix
a fundamental solution Y (·, λ0) by the initial condition Y (a, λ0) = I. The columns
Y1(·, λ0) and Y2(·, λ0) of Y (·, λ0) belong to L2

Δ(ı) by assumption. As the system
is assumed to be real, one has∫ b

a

|Δ(s)
1
2Yi(s, λ0)|2 ds =

∫ b

a

|Δ(s)
1
2Yi(s, λ0)|2 ds, i = 1, 2; (7.4.1)

cf. Corollary 7.2.9.

Let λ ∈ C and let f(·, λ) be any solution of Jf ′ − Hf = λΔf . It will be
shown that f(·, λ) is square-integrable with respect to Δ at b. Since the function
f(·, λ) satisfies

Jf ′(·, λ)−Hf(·, λ) = λ0Δf(·, λ) + (λ− λ0)Δf(·, λ),
it follows from (7.2.16) (with g = (λ− λ0)f(·, λ)) that f(·, λ) can be written as

f(t, λ) = Y1(t, λ0)α1 + Y2(t, λ0)α2

+ (λ− λ0)
[
Y1(t, λ0)y2(t, λ)− Y2(t, λ0)y1(t, λ)

]
,

(7.4.2)

where f(a, λ) = (α1, α2)
� and yi(·, λ) is defined by

yi(t, λ) =

∫ t

a

Yi(s, λ0)
∗Δ(s)f(s, λ) ds, i = 1, 2,

respectively. By applying the Cauchy–Schwarz inequality in the definition of
yi(t, λ) and using (7.4.1) one obtains for i = 1, 2,

|yi(t, λ)| ≤
√∫ t

a

|Δ(s)
1
2Yi(s, λ0)|2 ds

√∫ t

a

|Δ(s)
1
2 f(s, λ)|2 ds

≤
√∫ b

a

|Δ(s)
1
2Yi(s, λ0)|2 ds

√∫ t

a

|Δ(s)
1
2 f(s, λ)|2 ds

=

√∫ b

a

|Δ(s)
1
2Yi(s, λ0)|2 ds

√∫ t

a

|Δ(s)
1
2 f(s, λ)|2 ds.

Introduce the number α ≥ 0 and the nonnegative function ϕ by

α = max {|α1|, |α2|}, ϕ(t) = max
{|Δ(t)

1
2Y1(t, λ0)|, |Δ(t)

1
2Y2(t, λ0)|

}
,
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so that ϕ ∈ L2(a, b). Multiply both sides in the identity in (7.4.2) from the left by

Δ(t)
1
2 , then

|Δ(t)
1
2 f(t, λ)|

≤ 2αϕ(t) + 2|λ− λ0|ϕ(t)
√∫ b

a

ϕ(s)2 ds

√∫ t

a

|Δ(s)
1
2 f(s, λ)|2 ds.

Therefore, one obtains that

|Δ(t)
1
2 f(t, λ)|2 ≤ ϕ(t)2

(
A+B

∫ t

a

|Δ(s)
1
2 f(s, λ)|2 ds

)
, (7.4.3)

where

A = 8α2, B = 8|λ− λ0|2
∫ b

a

ϕ(s)2 ds.

It follows from (7.4.3) by means of Lemma 6.1.4 with u(t) = |Δ(t)
1
2 f(t, λ)|, ϕ as

above, and r = 1, that the function f(·, λ) is square-integrable with respect to Δ
at b. �

Next it will be shown that for each endpoint and any λ ∈ C \ R there is at
least one solution of the homogeneous canonical system (7.2.4) which is square-
integrable with respect to Δ at that endpoint. The proof of this fact is based
on the monotonicity principle in Section 5.2; cf. Corollary 5.2.14. To apply this
result, let Y (·, λ) be a fundamental matrix of the canonical system (7.2.3) fixed as
in (7.2.12) and consider the 2× 2 matrix function D(·, λ) on ı defined by

D(t, λ) = Y (t, λ)∗(−iJ)Y (t, λ), t ∈ ı, λ ∈ C. (7.4.4)

Observe that the function t �→ D(t, λ), t ∈ ı, is absolutely continuous for every
λ ∈ C and that the matrices D(t, λ) are self-adjoint and invertible for all t ∈ ı and
λ ∈ C.

According to the following theorem, the matrix function in (7.4.4) admits self-
adjoint limits at a and b, which may be either self-adjoint matrices or self-adjoint
relations with a one-dimensional domain and a one-dimensional multivalued part.
Furthermore, the dimensions of the domains of the limit relations are directly
connected with the number of linearly independent solutions of the homogeneous
canonical system (7.2.4) that are square-integrable with respect to Δ.

Theorem 7.4.2. For λ ∈ C+ or λ ∈ C− the 2 × 2 matrix function t �→ D(t, λ) is
nondecreasing or nonincreasing on ı, respectively. There exist self-adjoint relations
D(b, λ) and D(a, λ) in C2 such that

D(t, λ)→ D(a, λ) and D(t, λ)→ D(b, λ)

in the (strong ) resolvent sense when t→ a and t→ b, respectively, and

1 ≤ dim
(
domD(a, λ)

) ≤ 2 and 1 ≤ dim
(
domD(b, λ)

) ≤ 2.
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Furthermore, φ ∈ domD(a, λ) or φ ∈ domD(b, λ) if and only if Y (·, λ)φ is a
solution of (7.2.4) that is square-integrable with respect to Δ at a or b, respectively.

Proof. It follows from Corollary 7.2.4 that

D(β, λ)−D(α, λ) = 2 Imλ

∫ β

α

Y (s, λ)∗Δ(s)Y (s, λ) ds, λ ∈ C, (7.4.5)

holds for any compact interval [α, β] ⊂ ı. Hence, the matrix function D(·, λ) is
nondecreasing for λ ∈ C+ and nonincreasing for λ ∈ C−. It follows from Corol-
lary 5.2.14 that there exist self-adjoint relations D(a, λ) and D(b, λ) such that

lim
t→a

(
D(t, λ)− μ

)−1
=
(
D(a, λ)− μ

)−1
, μ ∈ C \ R,

and
lim
t→b

(
D(t, λ)− μ

)−1
=
(
D(b, λ)− μ

)−1
, μ ∈ C \ R.

Next it will be shown that the dimension of the domains of the self-adjoint relations
D(a, λ) and D(b, λ) is at least one. For this it is sufficient to prove that there exists
at least one (finite) eigenvalue.

Note first that, by (7.4.4) and (7.2.12),

D(c0, λ) = Y (c0, λ)
∗(−iJ)Y (c0, λ) = −iJ

and hence the eigenvalues of D(c0, λ) are ν−(c0) = −1 and ν+(c0) = 1. As the
function D(·, λ) is continuous on ı, the same holds true for its eigenvalues ν−(·)
and ν+(·). Since the matrices D(t, λ) are self-adjoint and invertible for all t ∈ ı it
follows that ν−(t) < 0 and ν+(t) > 0 for all t ∈ ı. Recall that

ν−(t) = inf
|x|=1

(D(t, λ)x, x) and ν+(t) = sup
|x|=1

(D(t, λ)x, x),

and since D(t1, λ) ≤ D(t2, λ), t1 ≤ t2, it follows that

ν−(t1) ≤ ν−(t2) and ν+(t1) ≤ ν+(t2), t1 ≤ t2.

Therefore, it is clear that the limits of ν−(t) and ν+(t) exist and that

ν−(b) = lim
t→b

ν−(t) ≤ 0 and 0 < ν+(b) = lim
t→b

ν+(t) ≤ ∞.

In order to see the connection of these limits with the self-adjoint relation D(b, λ)
observe that for μ ∈ C \ R

1

ν−(t)− μ
and

1

ν+(t)− μ

are the eigenvalues of the matrix (D(t, λ)− μ)−1. Therefore, again by continuity,
one sees that

1

ν−(b)− μ
and

1

ν+(b)− μ



7.4. Square-integrability of solutions of real canonical systems 517

are the eigenvalues of the matrix (D(b, λ) − μ)−1. Hence, ν−(b) is a nonpositive
eigenvalue of the self-adjoint relation D(b, λ), which implies dim (domD(b, λ)) ≥ 1.
More precisely, if ν+(b) < ∞, then ν+(b) is a positive eigenvalue of D(b, λ), in
which case dim (domD(b, λ)) = 2, while if ν+(b) = ∞, then D(b, λ) has a one-
dimensional multivalued part and dim (domD(b, λ)) = 1. Similar observations
may be made for the self-adjoint relation D(a, λ). In particular, it follows that
dim (domD(a, λ)) ≥ 1.

Finally, it will be shown that φ ∈ domD(b, λ) if and only if the solution
Y (·, λ)φ of (7.2.4) is square-integrable with respect to Δ at b; the argument for the
left endpoint a is the same. Suppose that λ ∈ C+, so that D(·, λ) is nondecreasing
on ı. In this case it follows from Corollary 5.2.13 and Corollary 5.2.14 that

domD(b, λ) =
{
φ ∈ C2 : lim

t→b
φ∗D(t, λ)φ <∞}

and hence (7.4.5) implies that φ ∈ domD(b, λ) if and only if∫ b

α

φ∗Y (s, λ)∗Δ(s)Y (s, λ)φds <∞,

that is, the solution Y (·, λ)φ is square-integrable with respect to Δ at b. The case
where λ ∈ C− is dealt with in a similar way. �

A combination of Theorems 7.4.1 and 7.4.2 leads to the following observation.

Corollary 7.4.3. If for some λ0 ∈ C \ R the equation Jf ′ − Hf = λ0Δf has, up
to scalar multiples, only one nontrivial solution which is square-integrable with
respect to Δ at a or b, then for any λ ∈ C \ R the equation Jf ′ −Hf = λΔf has,
up to scalar multiples, precisely one nontrivial solution which is square-integrable
with respect to Δ at a or b, respectively.

Proof. It is sufficient to consider the endpoint b. Assume that for some λ0 ∈ C \ R
the equation Jf ′ − Hf = λ0Δf has, up to scalar multiples, only one nontrivial
solution that is square-integrable with respect to Δ at b, and suppose that for
some λ ∈ C \ R with λ 	= λ0 the equation Jf ′ − Hf = λΔf does not have, up
to scalar multiples, only one nontrivial solution which is square-integrable with
respect to Δ at b. Since

1 ≤ dim
(
domD(b, λ)

) ≤ 2

by Theorem 7.4.2 there exist two linearly independent solutions of Jf ′−Hf = λΔf
which are square-integrable with respect to Δ at b. But then Theorem 7.4.1 implies
that there also exist two linearly independent solutions of Jf ′−Hf = λ0Δf that
are square-integrable with respect to Δ at b; a contradiction. �

Theorem 7.4.1 and Corollary 7.4.3 yield the limit-point and limit-circle clas-
sification for real canonical systems in the next definition and corollary. The termi-
nology is inspired by the terminology for Sturm–Liouville equations in Section 6.1.
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Definition 7.4.4. For a real canonical system the endpoint a or b of the interval ı
is said to be in the limit-circle case if for some, and hence for all λ ∈ C there exist
two linearly independent solutions of Jf ′ −Hf = λΔf that are square-integrable
with respect to Δ at a or b, respectively. The endpoint a or b of the interval ı is
said to be in the limit-point case if for some, and hence for all λ ∈ C \ R there
exists, up to scalar multiples, only one nontrivial solution of Jf ′ − Hf = λΔf
that is square-integrable with respect to Δ at a or b, respectively.

Note that, by Theorem 7.4.2, at any endpoint of the interval ı there is at least
one nontrivial solution that is square-integrable with respect to Δ and there are
at most two linearly independent solutions that are square-integrable with respect
to Δ. This leads to Weyl’s alternative for canonical systems.

Corollary 7.4.5. For a real canonical system each of the endpoints of the interval
is either in the limit-circle case or in the limit-point case.

For completeness also the special case of regular and quasiregular endpoints
is briefly discussed. The next corollary is an immediate consequence of Corol-
lary 7.3.5.

Corollary 7.4.6. A regular or quasiregular endpoint of a real canonical system is
in the limit-circle case.

A simple but useful characterization of the limit-point case is given in the
following corollary. It is stated for the endpoint b, but clearly there is a similar
statement for the endpoint a.

Corollary 7.4.7. Let the canonical system be real and assume that the endpoint a
is regular or quasiregular. Then the following statements hold:

(i) If the endpoint b is in the limit-point case, then for all λ ∈ R the equation
Jf ′−Hf = λΔf has, up to scalar multiples, at most one nontrivial solution
that is square-integrable with respect to Δ at b.

(ii) If there exists λ0 ∈ R such that the equation Jf ′ − Hf = λ0Δf has, up to
scalar multiples, at most one nontrivial solution that is square-integrable with
respect to Δ at b, then the endpoint b is in the limit-point case.

Proof. (i) If there exists λ ∈ R for which the homogeneous equation has two
linearly independent solutions that are square-integrable with respect to Δ at b,
then by Theorem 7.4.1, for each λ ∈ C all nontrivial solutions are square-integrable
with respect to Δ at b. Hence, b is in the limit-circle case; a contradiction.

(ii) If b is in the limit-circle case, then for all λ ∈ C, and hence for λ ∈ R, the
homogeneous equation has two linearly independent solutions which are square-
integrable with respect to Δ at b. This implies (ii). �

If, for instance, the endpoint b is regular or quasiregular, then any solution
of (7.2.3) with g square-integrable with respect to Δ at b has a limit at b by
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Proposition 7.3.2 and b is in the limit-circle case by Corollary 7.4.6. However, if b
is in the limit-circle case, then the solutions of (7.2.3) are square-integrable with
respect to Δ at b, but they do not necessarily have a limit at b. It will be shown in
this case that there exists a natural transformation which turns the system into
one where b is quasiregular; cf. Lemma 7.2.5.

Corollary 7.4.8. Assume that a is regular and that b is in the limit-circle case. Let
g ∈ L2

Δ(a, b) and let f(·, λ) be a solution of

Jf ′ −Hf = λΔf +Δg.

Let U(·, λ0), λ0 ∈ R, be a matrix function as in (7.2.17). Then the limit

f̃(b) = lim
t→b

U(t, λ0)
−1f(t) (7.4.6)

exists in C2. Moreover, for each γ ∈ C2 there exists a unique solution f(·, λ) of

(7.2.3) such that f̃(b) = γ and the corresponding function

λ �→ lim
t→b

U(t, λ0)
−1f(t, λ)

is entire.

Proof. Let g ∈ L2
Δ(a, b) and let f be a solution of (7.2.3). Since b is in the limit-

circle case, there exists for λ0 ∈ R and c0 ∈ [a, b) a matrix function U(·, λ0)
satisfying (7.2.17) that is square-integrable with respect to Δ at b. Thus, the

function Δ̃ defined in (7.2.18) is integrable at b, which means that the endpoint b
for the system in (7.2.20) is quasiregular. Since g is square-integrable with respect

to Δ at b, the function g̃ in Lemma 7.2.5 is square-integrable with respect to Δ̃
at b. Therefore, the assertion is clear from Proposition 7.3.2 as f̃ is a solution of
(7.2.20). �

Let the endpoint a be regular or quasiregular. Let g, k ∈ L2
Δ(ı) and let f, h

be solutions of the inhomogeneous equations (7.2.6) such that f, h ∈ L2
Δ(ı). Then

for a ≤ t < b one has

h(t)∗Jf(t)− h(a)∗Jf(a) =
∫ t

a

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds (7.4.7)

by the Lagrange identity in Corollary 7.2.3. It follows from (7.4.7) that the limit

lim
t→b

h(t)∗Jf(t)

exists. Of course, when b is regular or quasiregular, then the individual limits
limt→b f(t) and limt→b h(t) exist by Proposition 7.3.2, see also Corollary 7.3.4.
In general the existence of the individual limits limt→b f(t) and limt→b h(t) is
not guaranteed. However, in the case where b is in the limit-circle case but not
quasiregular the next corollary suggests to employ the limits in (7.4.6).
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Corollary 7.4.9. Assume that the endpoint a is regular and that b is in the limit-
circle case. Let g, k ∈ L2

Δ(ı) and let f, h be solutions of the inhomogeneous equa-
tions (7.2.6) such that f, h ∈ L2

Δ(ı). Then

lim
t→b

h(t)∗Jf(t) = h̃(b)∗Jf̃(b), (7.4.8)

where f̃(b) and h̃(b) are as in (7.4.6). Moreover,

h̃(b)∗Jf̃(b)− h(a)∗Jf(a) =
∫ b

a

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds. (7.4.9)

Proof. It follows by taking limits in (7.4.7) that

lim
t→b

h(t)∗Jf(t)− h(a)∗Jf(a) =
∫ b

a

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds.

Now apply Corollary 7.2.6 and Corollary 7.4.8. Take the limit t → b and (7.4.8)
and (7.4.9) follow. �

7.5 Definite canonical systems

The general class of canonical differential equations as in (7.2.3) will now be nar-
rowed down by imposing a definiteness condition; see Definition 7.5.5. This condi-
tion will be assumed in the rest of this chapter. In this section various equivalent
formulations of the definiteness condition will be presented. Moreover, it will be
shown that the solution of a definite canonical system (7.2.3) can be cut off near
an endpoint of the interval ı, in the sense that the solution is modified in such a
way that it becomes trivial in a neighborhood of that endpoint.

It will be convenient to begin the discussion of definiteness of the canonical
system (7.2.3) with the notion of definiteness when the system is restricted to an
arbitrary subinterval j ⊂ ı.

Definition 7.5.1. Let j ⊂ ı be a nonempty interval. The canonical system (7.2.3)
is said to be definite on j if for each solution f of Jf ′ −Hf = 0 on j one has

Δ(t)f(t) = 0, t ∈ j ⇒ f(t) = 0, t ∈ j.

Observe that if a solution f of the canonical system (7.2.3) vanishes on a
nonempty subinterval j ⊂ ı, then f(t) = 0 for t ∈ ı; cf. Theorem 7.2.1. Hence, it
is clear that if the canonical system (7.2.3) is definite on j, then it is also definite
on every interval j̃ with the property that j ⊂ j̃ ⊂ ı. Also observe that with the
subinterval j ⊂ ı and a continuous function f one has

Δ(t)f(t) = 0, t ∈ j ⇔
∫
j

f(s)∗Δ(s)f(s) ds = 0. (7.5.1)
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Clearly, if Δ(t) has full rank for almost all t ∈ j, then the canonical system is
automatically definite on j.

Lemma 7.5.2. Let j ⊂ ı be a nonempty interval. The canonical system (7.2.3) is
definite on the interval j ⊂ ı if and only if for all λ ∈ C and for each solution f
of Jf ′ −Hf = λΔf on j one has

Δ(t)f(t) = 0, t ∈ j ⇒ f(t) = 0, t ∈ j.

Proof. Assume that the canonical system is definite on j. Choose λ ∈ C and let
f be a solution of Jf ′ −Hf = λΔf on j with Δ(t)f(t) = 0 for almost all t ∈ j.
Thus, f is a solution of Jf ′ − Hf = 0 with Δ(t)f(t) = 0 for almost all t ∈ j.
By assumption this implies that f(t) = 0 for t ∈ j. The converse statement is
trivial. �

The following result is an alternative useful version of Lemma 7.5.2 in terms
of a fundamental matrix Y (·, λ).
Corollary 7.5.3. Let Y (·, λ), λ ∈ C, be a fundamental matrix for (7.2.3) and let
I ⊂ ı be a compact interval. Then the system (7.2.3) is definite on I if and only if
the 2× 2 matrix ∫

I

Y (s, λ)∗Δ(s)Y (s, λ) ds (7.5.2)

is invertible for some, and hence for all λ ∈ C.

Proof. Assume that (7.2.3) is definite on I. If the (nonnegative) matrix in (7.5.2)
is not invertible, then there exists a nontrivial γ ∈ C2 for which

γ∗
(∫

I

Y (s, λ)∗Δ(s)Y (s, λ) ds

)
γ = 0, (7.5.3)

or alternatively Δ(t)Y (t, λ)γ = 0 for t ∈ I; cf. (7.5.1). Since Y (·, λ)γ is a solution of
Jf ′−Hf = λΔf , it follows from the definiteness that Y (t, λ)γ = 0 for t ∈ I, which
implies γ = 0. This contradiction shows that the matrix in (7.5.2) is invertible.

Conversely, assume that the (nonnegative) matrix in (7.5.2) is invertible. In
order to show that (7.2.3) is definite, let

Jf ′(t)−H(t)f(t) = λΔ(t)f(t), Δ(t)f(t) = 0, t ∈ I.

Since Y (·, λ) is a fundamental matrix of Jf ′ −Hf = λΔf , every solution of this
equation can be written in the form f = Y (·, λ)γ with a unique γ ∈ C2. The
condition Δ(t)f(t) = 0, t ∈ I, implies that (7.5.3) holds. Therefore, γ = 0 and
thus the system (7.2.3) is definite. �

The next proposition shows that there is no difference between global defi-
niteness and local definiteness.
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Proposition 7.5.4. The canonical system (7.2.3) is definite on ı if and only if there
exists a compact interval I ⊂ ı such that the canonical system (7.2.3) is definite
on the interval I.

Proof. If the canonical system (7.2.3) is definite on the interval I, then it is clearly
definite on the larger interval ı.

To see the converse statement, let the canonical system (7.2.3) be definite on
the interval ı; in other words, assume that for each solution f of Jf ′−Hf = 0 on
ı one has

Δ(t)f(t) = 0, t ∈ ı ⇒ f(t) = 0, t ∈ ı.

Introduce for each compact subinterval K of ı the subset d(K) of C2 by

d(K) =

{
φ ∈ C2 : |φ| = 1,

∫
K

φ∗Y (s, 0)∗Δ(s)Y (s, 0)φds = 0

}
.

Clearly, d(K) is compact and K ⊂ K̃ implies d(K̃) ⊂ d(K). Now choose an
increasing sequence of compact intervals (Kn) such that their union equals the
interval ı. Then ⋂

n∈N
d(Kn) = ∅. (7.5.4)

Indeed, assume that there exists an element φ ∈ C2 with |φ| = 1, such that∫
Kn

φ∗Y (s, 0)∗Δ(s)Y (s, 0)φds = 0

for every n ∈ N. Then, by monotone convergence,∫
ı

φ∗Y (s, 0)∗Δ(s)Y (s, 0)φds = 0.

As the canonical system (7.2.3) is definite, this implies by (7.5.1) that Y (·, 0)φ = 0,
which leads to φ = 0; a contradiction. Therefore, the identity (7.5.4) is valid. Since
each of the sets d(Kn) in (7.5.4) is compact, it follows that there exists a compact
interval Km such that d(Km) = ∅. Hence, I = Km satisfies the requirements. To
see this, let Jf ′ − Hf = 0 on Km and assume that Δ(t)f(t) = 0, t ∈ Km, or,
equivalently,

∫
Km

f(s)∗Δ(s)f(s) = 0; cf. (7.5.1). Since d(Km) = ∅ one concludes
that f = 0. �

In the rest of the text one often speaks of definite systems in the following
sense.

Definition 7.5.5. The canonical system (7.2.3) is said to be definite if it is definite
on ı.

The next result is about smoothly cutting off the solution of a definite canon-
ical system (7.2.3) near an endpoint of the interval ı, i.e., modifying the solution so
that it becomes trivial in a neighborhood of that endpoint. The following propo-
sition and corollary will be used in Section 7.6.



7.5. Definite canonical systems 523

Proposition 7.5.6. Let the canonical system (7.2.3) be definite and choose a com-
pact interval [α, β] ⊂ ı such that the system is definite on [α, β]. Let g ∈ L2

Δ,loc (ı)
and let f ∈ AC(ı) be a solution of the inhomogeneous equation (7.2.3) for some
λ ∈ C. Then there exist functions fa ∈ AC(ı) and ga ∈ L2

Δ,loc (ı) satisfying

Jf ′
a(t)−H(t)fa(t) = λΔ(t)fa(t) + Δ(t)ga(t)

such that

fa(t) =

{
f(t), t ∈ (a, α],

0, t ∈ [β, b),
and ga(t) =

{
g(t), t ∈ (a, α],

0, t ∈ [β, b).

Similarly, there exist functions fb ∈ AC(ı) and gb ∈ L2
Δ,loc (ı) satisfying

Jf ′
b(t)−H(t)fb(t) = λΔ(t)fb(t) + Δ(t)gb(t)

such that

fb(t) =

{
0, t ∈ (a, α],

f(t), t ∈ [β, b),
and gb(t) =

{
0, t ∈ (a, α],

g(t), t ∈ [β, b).

Proof. Let the functions f and g be as indicated. The result will be proved for the
functions fb and gb; the proof for the functions fa and ga is similar.

Let [α, β] ⊆ ı be a compact interval on which the canonical system (7.2.3)
is definite; cf. Proposition 7.5.4. Let k ∈ L2

Δ(α, β) and fix a fundamental system
Y (·, λ) by the initial condition Y (α, λ) = I. According to (7.2.15), the function
defined by

h(t) = −Y (t, λ)

∫ t

α

JY (s, λ)∗Δ(s)k(s) ds (7.5.5)

satisfies the inhomogeneous equation

Jh′(t)−H(t)h(t) = λΔ(t)h(t) + Δ(t)k(t), α < t < β,

and in the endpoints it has the values

h(α) = 0 and h(β) = −Y (β, λ)

∫ β

α

JY (s, λ)∗Δ(s)k(s) ds.

It will be shown that there exists a function k ∈ L2
Δ(α, β) such that h(β) = f(β).

In order to verify this, observe that Y (β, λ) is invertible and that the integral
operator

� �→
∫ β

α

JY (s, λ)∗Δ(s)�(s) ds
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taking L2
Δ(α, β) into C2 is surjective. To see this, assume that γ ∈ C2 is orthogonal

to the range of this integral operator, that is,

0 = γ∗
∫ β

α

JY (s, λ)∗Δ(s)�(s) ds =

∫ β

α

(Y (s, λ)J∗γ)∗Δ(s)�(s) ds

for all � ∈ L2
Δ(α, β). With �(s) = Y (s, λ)J∗γ it then follows from (7.5.1) and

Lemma 7.5.2 that �(s) = 0 for s ∈ (α, β), which implies that γ = 0. Thus, the
integral operator is surjective.

Now choose k ∈ L2
Δ(α, β) as above, so that h defined by (7.5.5) satisfies

h(α) = 0 and h(β) = f(β). Hence, the functions fb and gb defined by

fb(t) =

⎧⎪⎨⎪⎩
0, t ∈ (a, α],

h(t), t ∈ (α, β),

f(t), t ∈ [β, b),

and gb(t) =

⎧⎪⎨⎪⎩
0, t ∈ (a, α],

k(t), t ∈ (α, β),

g(t), t ∈ [β, b),

satisfy the appropriate inhomogeneous canonical equations on (a, α), (α, β), and
(β, b). Since fb(α) = h(α) and fb(β) = h(β) it follows that fb ∈ AC(ı). �

In particular, if f is a solution of the homogeneous system (7.2.4), then f can
be localized as indicated above. The following restatement of this fact in terms of
matrix functions (groupings of column vector functions) is useful. Note that the
modification of the solutions of the homogeneous equation involves a solution of
the inhomogeneous equation.

Corollary 7.5.7. Let the canonical system (7.2.3) be definite and choose a compact
interval [α, β] ⊂ ı such that the system is definite on [α, β]. Let Y (·, λ) be a funda-
mental matrix of (7.2.4). Then there exist a 2×2 matrix function Ya(·, λ) ∈ AC(ı)
and a 2× 2 matrix function Za(·, λ) whose columns belong to L2

Δ(ı), satisfying

JY ′
a(t, λ)−H(t)Ya(t, λ) = λΔ(t)Ya(t, λ) + Δ(t)Za(t, λ)

such that

Ya(t, λ) =

{
Y (t, λ), t ∈ (a, α],

0, t ∈ [β, b),
and Za(t, λ) =

{
0, t ∈ (a, α],

0, t ∈ [β, b).

Similarly, there exist a 2× 2 matrix function Yb(·, λ) ∈ AC(ı) and a 2× 2 matrix
function Zb(·, λ) whose columns belong to L2

Δ(ı), satisfying

JY ′
b (t, λ)−H(t)Yb(t, λ) = λΔ(t)Yb(t, λ) + Δ(t)Zb(t, λ)

such that

Yb(t, λ) =

{
0, t ∈ (a, α],

Y (t, λ), t ∈ [β, b),
and Zb(t, λ) =

{
0, t ∈ (a, α],

0, t ∈ [β, b).
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With φ ∈ C2 observe that the function Ya(·, λ)φ belongs to L2
Δ(ı) if and

only if Y (·, λ)φ is square-integrable with respect to Δ at a, and, likewise, that the
function Yb(·, λ)φ belongs to L2

Δ(ı) if and only if Y (·, λ)φ is square-integrable with
respect to Δ at b.

It is useful to have a special notation for the elements that modify the
pairs {Y (·, λ), λY (·, λ)} in Corollary 7.5.7. Define the matrix functions Ya(·, λ)
and Yb(·, λ) by

Ya(·, λ) :=
{
Ya(·, λ), λYa(·, λ) + Za(·, λ)

}
,

Yb(·, λ) :=
{
Yb(·, λ), λYb(·, λ) + Zb(·, λ)

}
,

(7.5.6)

that is, for φ ∈ C2 one has

Ya(·, λ)φ =
{
Ya(·, λ)φ, λYa(·, λ)φ+ Za(·, λ)φ

}
,

Yb(·, λ)φ =
{
Yb(·, λ)φ, λYb(·, λ)φ+ Zb(·, λ)φ

}
.

Note that Ya(·, λ) and Yb(·, λ) satisfy

Ya(t, λ) =

{
{Y (t, λ), λY (t, λ)}, a < t ≤ α,

{0, 0}, β ≤ t < b,

Yb(t, λ) =

{
{0, 0}, a < t ≤ α,

{Y (t, λ), λY (t, λ)}, β ≤ t < b.

(7.5.7)

It is clear from the construction that the columns of Ya(·, λ) or Yb(·, λ) are square-
integrable on (a, b) with respect to Δ if and only if the corresponding columns of
Y (·, λ) have this property at a or b, respectively.

7.6 Maximal and minimal relations for
canonical systems

In this and later sections it will be assumed that the canonical system (7.2.3) is
real as in Definition 7.2.7 and definite as in Definition 7.5.5: such systems will be
called real definite canonical systems. In this context the central Hilbert space will
be L2

Δ(ı), in which the maximal and minimal relations associated with the real
definite canonical system (7.2.3) will be defined. In principle, both these relations
may be multivalued. The results from Section 7.4 and Section 7.5 make it possible
to consider the limit-circle case and the limit-point case from the point of view of
the maximal and minimal relations.

The real definite canonical system (7.2.3) induces the maximal relation Tmax

in L2
Δ(ı) defined by

Tmax =
{{f, g} ∈ L2

Δ(ı)× L2
Δ(ı) : Jf

′ −Hf = Δg
}
.
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Since the elements of L2
Δ(ı) are equivalence classes, the definition of Tmax needs the

following explanation: an element {f, g} ∈ L2
Δ(ı) × L2

Δ(ı) belongs to Tmax if and

only if the equivalence class f contains an absolutely continuous representative f̃
such that the inhomogeneous equation Jf̃ ′(t) − H(t)f̃(t) = Δ(t)g̃(t) is satisfied
for almost every t ∈ ı. Here g̃ is any representative of g ∈ L2

Δ(ı); observe that the
function Δ(t)g̃(t) is independent of the representative. The above argument also
shows that the relation Tmax is linear.

Since the canonical system (7.2.3) is assumed to be definite, the absolutely
continuous representative is unique.

Lemma 7.6.1. If {f, g} ∈ Tmax , then the equivalence class f has a unique absolutely
continuous representative.

Proof. Let {f, g} ∈ Tmax and let f̃1 and f̃2 be absolutely continuous representa-

tives of f . Then J(f̃1 − f̃2)
′ −H(f̃1 − f̃2) = 0 holds and

Δ(t)(f̃1 − f̃2)(t) = 0, t ∈ ı.

Therefore, by Definition 7.5.5, it follows that f̃1(t) = f̃2(t) for all t ∈ ı. �

It will be shown that Tmax is the adjoint of a symmetric relation whose defect
numbers are equal and at most (2, 2). Let T0 be the preminimal relation, i.e., the
restriction of the maximal relation Tmax to the elements where the first component
has compact support in ı:

T0 =
{{f, g} ∈ Tmax : f has compact support

}
.

More precisely, an element {f, g} ∈ L2
Δ(ı)×L2

Δ(ı) belongs to T0 if and only if the

equivalence class f contains an absolutely continuous representative f̃ with com-
pact support such that the inhomogeneous equation Jf̃ ′(t)−H(t)f̃(t) = Δ(t)g̃(t)
is satisfied for almost every t ∈ ı. Here g̃ is any representative of g ∈ L2

Δ(ı). The
minimal relation Tmin is defined as Tmin = T 0.

Theorem 7.6.2. The closure Tmin = T 0 of T0 is a closed symmetric relation in
L2
Δ(ı) and it satisfies

Tmin ⊂ (Tmin )
∗ = Tmax ,

and, consequently, Tmin = (Tmax )
∗.

Proof. Step 1. It will be shown that

Tmax ⊂ (T0)
∗. (7.6.1)

For this purpose, let {f, g} ∈ Tmax , {h, k} ∈ T0, and choose an interval [α, β] ⊂ ı
containing the support h (and hence the support of Δk). Then

(g, h)Δ − (f, k)Δ =

∫ β

α

h(s)∗Δ(s)g(s) ds−
∫ β

α

k(s)∗Δ(s)f(s) ds

= h(β)∗Jf(β)− h(α)∗Jf(α)
= 0
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by Corollary 7.2.3. Here (·, ·)Δ denotes the scalar product in L2
Δ(ı), f and h are the

uniquely defined absolutely continuous representatives, while g and k are arbitrary
representatives. Observe that the integral does not depend on the particular choice
of g and k. This shows {f, g} ∈ (T0)

∗ and hence (7.6.1) follows.

Step 2. It will be shown that

(T0)
∗ ⊂ Tmax . (7.6.2)

For this, let {f, g} ∈ (T0)
∗. By Theorem 7.2.1, there exists a nontrivial absolutely

continuous function u on ı such that Ju′ − Hu = Δg. The aim is to show that
for any representative f the difference f − u is absolutely continuous modulo an
element whose L2

Δ(a, b)-norm is zero. Recall that the system is assumed to be
definite, and hence there exists a compact interval [α0, β0] on which it is definite;
cf. Proposition 7.5.4. Choose an interval [α1, β1] ⊂ ı which contains [α0, β0]; then
the system is also definite on [α1, β1].

It is convenient to introduce the subspace

M1 :=

{
k ∈ L2

Δ(α1, β1) :
Jh′ −Hh = Δk for some h ∈ AC[α1, β1]

such that h(α1) = h(β1) = 0

}
.

Let k ∈ M1 and let h ∈ AC[α1, β1] be a solution of Jh′ − Hh = Δk for which
h(α1) = h(β1) = 0. It follows from (7.2.15) that

h(t) = Y (t, 0)J−1

∫ t

α1

Y (s, 0)∗Δ(s)k(s) ds, t ∈ [α1, β1], (7.6.3)

where the fundamental matrix Y (·, λ) is fixed by Y (α1, λ) = I. Note that the
condition h(β1) = 0 implies∫ β1

α1

Y (s, 0)∗Δ(s)k(s) ds = 0. (7.6.4)

Conversely, if k ∈ L2
Δ(α1, β1) satisfies (7.6.4), then k ∈ M1 since h ∈ AC[α1, β1]

in (7.6.3) satisfies Jh′−Hh = Δk and h(α1) = h(β1) = 0. In other words, one has

M1 =

{
k ∈ L2

Δ(α1, β1) :

∫ β1

α1

Y (s, 0)∗Δ(s)k(s) ds = 0

}
.

Now let k ∈ M1 and let h be defined by (7.6.3). Then the pair of functions
{h, k} can be trivially extended to all of ı and the extended pair, which will also
be denoted by {h, k}, belongs to T0. As {f, g} ∈ (T0)

∗, one has (h, g)Δ = (k, f)Δ,
and since the supports of h and k are inside [α1, β1] it follows that∫ β1

α1

g(s)∗Δ(s)h(s) ds =

∫ β1

α1

f(s)∗Δ(s)k(s) ds. (7.6.5)
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Consider the pair {u, g} on [α1, β1]. Note that on this interval u is absolutely
continuous and g is square-integrable with respect to Δ. It follows from the La-
grange identity in Corollary 7.2.3 applied to the pairs {h, k} and {u, g}, and
h(α1) = h(β1) = 0 that∫ β1

α1

g(s)∗Δ(s)h(s) ds =

∫ β1

α1

u(s)∗Δ(s)k(s) ds. (7.6.6)

Combining (7.6.5) and (7.6.6), one obtains that∫ β1

α1

(f(s)− u(s))∗Δ(s)k(s) ds = 0

for all k ∈M1. In other words, the restriction of f − u to [α1, β1] is orthogonal to
M1 in the semidefinite Hilbert space L2

Δ(α1, β1). Furthermore, by (7.6.4) one has
that Y (·, 0)γ is orthogonal to M1 in L2

Δ(α1, β1) for all γ ∈ C2, and since the same
is true for f − u it follows that f − u−Y (·, 0)γ is orthogonal to M1 in L2

Δ(α1, β1)
for all γ ∈ C2.

Next it will be shown that for some γ1 ∈ C2 the function f − u − Y (·, 0)γ1
belongs to M1. In fact, first of all it is clear from (7.2.15) that for any γ ∈ C2

h(t) = Y (t, 0)J−1

∫ t

α1

Y (s, 0)∗Δ(s)
(
f(s)− u(s)− Y (s, 0)γ

)
ds

satisfies Jh′ −Hh = Δ(f − u− Y (·, 0)γ) and h(α1) = 0. To satisfy the boundary
condition h(β1) = 0, choose γ = γ1 ∈ C2 such that∫ β1

α1

Y (s, 0)∗Δ(s)(f(s)− u(s)) ds =

∫ β1

α1

Y (s, 0)∗Δ(s)Y (s, 0)γ1 ds;

this is possible since the system is definite on [α1, β1] and hence the matrix∫ β1

α1

Y (s, 0)∗Δ(s)Y (s, 0) ds

is invertible; cf. Corollary 7.5.3. Therefore, f − u − Y (·, 0)γ1 ∈ M1. Since the
element f − u− Y (·, 0)γ1 is orthogonal to M1 in L2

Δ(α1, β1), this yields∫ β1

α1

(
f(s)− u(s)− Y (s, 0)γ1

)∗
Δ(s)

(
f(s)− u(s)− Y (s, 0)γ1

)
ds = 0,

and hence there exists a function ω1 on [α1, β1] such that

f(s) = u(s) + Y (s, 0)γ1 + ω1(s), Δ(s)ω1(s) = 0, s ∈ [α1, β1].
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Likewise, on any interval [α2, β2] extending [α1, β1] the same argument shows that
there exist γ2 ∈ C2 and a function ω2 such that

f(s) = u(s) + Ỹ (s, 0)γ2 + ω2(s), Δ(s)ω2(s) = 0, s ∈ [α2, β2];

here the fundamental matrix Ỹ (·, λ) is fixed by Ỹ (α2, λ) = I. Hence, on the smaller
interval one obtains for s ∈ [α1, β1]

ω1(s)− ω2(s) = Ỹ (s, 0)γ2 − Y (s, 0)γ1, Δ(s)(ω1(s)− ω2(s)) = 0.

Since the system is definite on the interval [α1, β1], this shows that ω1(s) = ω2(s)

and Y (s, 0)γ1 = Ỹ (s, 0)γ2 for s ∈ [α1, β1], and hence Y (s, 0)γ1 = Ỹ (s, 0)γ2 for
s ∈ ı. One concludes that there exists a function ω such that

f(s) = u(s) + Y (s, 0)γ1 + ω(s), Δ(s)ω(s) = 0, s ∈ ı.

Thus, the functions f and u + Y (·, 0)γ1 belong to the same equivalence class in
L2
Δ(ı). Since J(u+Y (·, 0)γ1)′−H(u+Y (·, 0)γ1) = Δg it follows that {f, g} ∈ Tmax

and u + Y (·, 0)γ1 is the unique absolutely continuous representative of f . This
implies (7.6.2).

Step 3. It follows from (7.6.1) and (7.6.2) that Tmax = (T0)
∗ and, in particular,

this implies that Tmax is closed. Hence, the fact that T0 ⊂ Tmax and the definition
Tmin = T 0 imply that

Tmin = T 0 ⊂ Tmax = (T0)
∗ = (Tmin )

∗.

Thus, Tmin is a (closed) symmetric relation and Tmin = (Tmax )
∗. �

At this stage note that Tmin is a closed symmetric relation which need not
be densely defined in L2

Δ(ı). Consider the orthogonal decomposition

L2
Δ(ı) = (mulTmin )

⊥ ⊕mulTmin = domTmax ⊕mulTmin (7.6.7)

and recall from Theorem 1.4.11 that Tmin admits the corresponding orthogonal
sum decomposition

Tmin = (Tmin )op ⊕̂
({0} ×mulTmin

)
. (7.6.8)

The operator part (Tmin )op is not necessarily densely defined in domTmax and
{0} ×mulTmin is the purely multivalued self-adjoint relation in mul Tmin .

Since by Theorem 7.6.2 the relation Tmin is closed and symmetric, while
(Tmin )

∗ = Tmax , it follows from the von Neumann decomposition, as given in
Theorem 1.7.11, that the relation Tmax has the componentwise sum decomposition

Tmax = Tmin +̂ N̂λ(Tmax ) +̂ N̂μ(Tmax ), λ ∈ C+, μ ∈ C−,
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where the sums are direct. Now assume that f ∈ Nζ(Tmax ) with ζ ∈ C \ R.
Then {f, ζf} ∈ Tmax , which is equivalent to f ∈ L2

Δ(ı) having an absolutely

continuous representative f̃ such that Jf̃ ′−Hf̃ = ζΔf̃ . Since the system consists
of 2 × 2 matrix functions, there are precisely two linearly independent solutions
of this homogeneous equation and at most two linearly independent solutions
that are square-integrable with respect to Δ. Furthermore, since the canonical
system is assumed to be real, the number of solutions at ζ ∈ C+ that are square-
integrable with respect to Δ coincides with the number of solutions at ζ ∈ C− that
are square-integrable with respect to Δ by Corollary 7.2.9. Taking into account
Corollary 7.4.5 and Corollary 7.4.6 one then obtains the following statement. The
case where both endpoints of the interval ı are in the limit-point case will be dealt
with in Corollary 7.6.9.

Corollary 7.6.3. Let Tmin be the minimal symmetric relation associated with the
real definite canonical system (7.2.3) in L2

Δ(ı). Then the following statements hold:

(i) If both endpoints of ı are regular or quasiregular, then the defect numbers of
Tmin are (2, 2).

(ii) If one endpoint of ı is regular or quasiregular and one endpoint is in the
limit-point case, then the defect numbers of Tmin are (1, 1).

Recall that elements {f, g} ∈ Tmax satisfy the equation Jf ′ −Hf = Δg and
that the entries also satisfy the integrability condition f, g ∈ L2

Δ(ı). These two in-
gredients make it possible to extend the usual Lagrange identity in Corollary 7.2.3
on a compact subinterval to all of ı. This new Lagrange identity for the elements
in Tmax will play an important role in the rest of this chapter.

Lemma 7.6.4. Let Tmax be the maximal relation associated with the real definite
canonical system (7.2.3) in L2

Δ(ı). Then for all {f, g}, {h, k} ∈ Tmax one has

(g, h)Δ − (f, k)Δ = lim
t→b

h(t)∗Jf(t)− lim
t→a

h(t)∗Jf(t), (7.6.9)

where f(t) and h(t) denote the values of the unique absolutely continuous repre-
sentatives of f and h, respectively.

Proof. First observe that for all elements {f, g}, {h, k} ∈ Tmax and every compact
subinterval [α, β] ⊂ ı one has∫ β

α

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds = h(β)∗Jf(β)− h(α)∗Jf(α)

by the Lagrange identity in Corollary 7.2.3; here f(t) and h(t) denote the values
of the unique absolutely continuous representatives of f and h, and g(t) and k(t)
are the values of some representatives of g and k. Observe that the integral on
the left-hand side does not depend on the choice of the representatives of g and
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k. The limit of the left-hand side exists as β → b and α → a, respectively, since
f, g, h, k ∈ L2

Δ(ı). As a consequence, one sees that each of the limits

lim
t→a

h(t)∗Jf(t) and lim
t→b

h(t)∗Jf(t)

exists and hence the Lagrange identity takes the limit form (7.6.9). �

Remark 7.6.5. Observe that in (7.6.9) one uses the values f(t) and h(t) of the
unique absolutely continuous representatives of f and h in domTmax , respectively.
For instance, if {0, g} ∈ Tmax and {h, k} ∈ Tmax , then there exists an absolutely

continuous function f̃ such that Δ(t)f̃(t) = 0 and Jf̃ ′(t)−H(t)f̃(t) = Δ(t)g̃(t) is
satisfied for almost every t ∈ ı, where g̃ is any representative of g ∈ L2

Δ(ı). In this
situation the identity (7.6.9) has the form

(g, h)Δ − (0, k)Δ = lim
t→b

h(t)∗Jf̃(t)− lim
t→a

h(t)∗Jf̃(t).

The elements in the minimal symmetric relation Tmin = T 0 can be easily
characterized in terms of these limits.

Corollary 7.6.6. Let Tmin and Tmax be the minimal and maximal relations associ-
ated with the real definite canonical system (7.2.3) in L2

Δ(ı) and let {f, g} ∈ Tmax .
Then {f, g} ∈ Tmin if and only if

lim
t→a

h(t)∗Jf(t) = 0 and lim
t→b

h(t)∗Jf(t) = 0 (7.6.10)

for all {h, k} ∈ Tmax , where f(t) and h(t) denote the values of the unique absolutely
continuous representatives of f and h, respectively.

Proof. Observe first that since Tmin = (Tmax )
∗ one has {f, g} ∈ Tmin if and only

if (g, h)Δ = (f, k)Δ for all {h, k} ∈ Tmax . Hence, it follows from the Lagrange
identity (7.6.9) that {f, g} ∈ Tmin if and only if

lim
t→b

h(t)∗Jf(t) = lim
t→a

h(t)∗Jf(t) (7.6.11)

for all {h, k} ∈ Tmax . To see that for {f, g} ∈ Tmin each of the limits in (7.6.11)
is zero, consider {h, k} ∈ Tmax and use Proposition 7.5.6 (with λ = 0) to obtain
an element {ha, ka} ∈ Tmax that coincides with {h, k} in a neighborhood of a and
with {0, 0} in a neighborhood of b. Then (7.6.11) implies

lim
t→a

h(t)∗Jf(t) = lim
t→a

ha(t)
∗Jf(t) = lim

t→b
ha(t)

∗Jf(t) = 0,

and hence (7.6.10) follows together with (7.6.11). Conversely, if (7.6.10) holds for
some {f, g} ∈ Tmax and all {h, k} ∈ Tmax , then the identity (7.6.11) holds for all
{h, k} ∈ Tmax and hence {f, g} ∈ Tmin . �
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The main difficulty when dealing with the boundary value problems associ-
ated with the system (7.2.3) is to break the limits in (7.6.9) and in (7.6.10) into
limits of the separate factors. The case where the endpoints are regular, quasiregu-
lar, or in the limit-circle case will be pursued in Section 7.7. If one of the endpoints
is in the limit-point case, the situation is somewhat simpler, since one of the limits
in (7.6.9) automatically vanishes, as will be shown now. A further discussion of
the remaining limit will be pursued in Section 7.8.

Lemma 7.6.7. Let Tmax be the maximal relation associated with the real definite
canonical system (7.2.3) in L2

Δ(ı), let λ ∈ C, and let Ya(·, λ) and Yb(·, λ) be as in
(7.5.6). Then the following statements hold:

(i) Let a be a regular or quasiregular endpoint and let b be in the limit-point case.
Then for λ ∈ C

Tmax = Tmin +̂
{
Ya(·, λ)φ : φ ∈ C2

}
, (7.6.12)

where the sum is direct.

(ii) Let b be a regular or quasiregular endpoint and let a be in the limit-point case.
Then for λ ∈ C

Tmax = Tmin +̂
{
Yb(·, λ)φ : φ ∈ C2

}
,

where the sum is direct.

Proof. It suffices to consider the case (i) since the case (ii) can be proved in
a similar way. Let Y (·, λ) be a fundamental matrix of (7.2.4). Note that if a
is regular or quasiregular, then it follows from Corollary 7.3.3 and (7.5.7) that
Ya(·, λ)φ ∈ L2

Δ(ı) × L2
Δ(ı), and Corollary 7.5.7 implies that Ya(·, λ)φ ∈ Tmax for

all φ ∈ C2.

As Tmin ⊂ Tmax , it is clear that the right-hand side of (7.6.12) is contained in
Tmax . By assumption and Corollary 7.6.3 (ii) Tmax is a two-dimensional extension
of Tmin and hence it suffices to show that the elements Ya(·, λ)φ, φ ∈ C2, span a
two-dimensional subspace of Tmax which has a trivial intersection with Tmin . In
other words, it remains to check that Ya(·, λ)φ ∈ Tmin if and only if φ = 0. Suppose
that Ya(·, λ)φ ∈ Tmin for some φ ∈ C2. For all ψ ∈ C2 one has Ya(·, λ)ψ ∈ Tmax

and therefore, by Corollary 7.6.6,

0 = lim
t→a

ψ∗Ya(t, λ)
∗JYa(t, λ)φ.

Since Ya(·, λ) = Y (·, λ) and Ya(·, λ) = Y (·, λ) in a neighborhood of a, it follows
that

0 = lim
t→a

ψ∗Y (t, λ)∗JY (t, λ)φ

for all ψ ∈ C2. Fix the fundamental matrix Y (·, λ) by Y (a, λ) = I. This leads
to ψ∗Jφ = 0 for all ψ ∈ C2, which implies φ = 0. Hence, the right-hand side of
(7.6.12) is a two-dimensional extension of Tmin which is contained in Tmax , and
therefore coincides with Tmax . �
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In the next lemma the case of a singular endpoint in the limit-point case is
discussed.

Lemma 7.6.8. Let Tmax be the maximal relation associated with the real definite
canonical system (7.2.3) in L2

Δ(ı). Then the endpoint a or b of the interval ı is in
the limit-point case if and only if for all {f, g}, {h, k} ∈ Tmax one has

lim
t→a

h(t)∗Jf(t) = 0 or lim
t→b

h(t)∗Jf(t) = 0,

respectively. Here f(t) and h(t) denote the values of the unique absolutely contin-
uous representatives of f and h, respectively.

Proof. It suffices to consider the case that the endpoint a is regular. The proof of
the case where b is regular is similar. As usual the fundamental matrix is fixed by
Y (a, λ) = I.

Assume that b is in the limit-point case. In this case one has the decompo-
sition (7.6.12) in Lemma 7.6.7. Let {f, g}, {h, k} ∈ Tmax be decomposed in the
form

{f, g} = {f0, g0}+ Ya(·, λ)φ and {h, k} = {h0, k0}+ Ya(·, λ)ψ,

where {f0, g0}, {h0, k0} ∈ Tmin and φ, ψ ∈ C2. Then it follows from (7.5.7) that

lim
t→b

h(t)∗Jf(t) = lim
t→b

h0(t)
∗Jf0(t) = 0,

where Corollary 7.6.6 was used in the last step.

Conversely, assume that for all {f, g}, {h, k} ∈ Tmax

lim
t→b

h∗(t)Jf(t) = 0. (7.6.13)

Then b is in the limit-point case. To see this, assume that b is not in the limit-
point case, so that b is in the limit-circle case by Corollary 7.4.5. It then follows
that for λ0 ∈ R the columns of the matrix function Yb(·, λ0) are square-integrable
with respect to Δ at b. Consider {f, g} = {h, k} = Yb(·, λ0)φ ∈ Tmax for some
φ ∈ C2 such that φ∗Jφ 	= 0. Using (7.5.7) and Y (t, λ0)

∗JY (t, λ0) (see (7.2.8)), one
computes

lim
t→b

h∗(t)Jf(t) = lim
t→b

φ∗Y (t, λ0)
∗JY (t, λ0)φ = φ∗Jφ 	= 0,

which contradicts (7.6.13). �

Corollary 7.6.9. Let Tmin be the minimal symmetric relation associated with the
real definite canonical system (7.2.3) in L2

Δ(ı) and assume that both endpoints
of ı are in the limit-point case. Then the defect numbers of Tmin are (0, 0) and
Tmin = Tmax is self-adjoint in L2

Δ(ı).
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Proof. Assume that the system is definite on the interval [α, β] ⊂ ı. Then the
system is also definite on the intervals (a, β′) and (α′, b), with β′ ∈ (β, b) and
α′ ∈ (a, α), respectively. Denote the maximal relation in L2

Δ(α
′, b) associated with

the canonical system by Tmax (α
′, b). It follows that the endpoint α′ is regular and

that the endpoint b is in the limit-point case for the canonical system on (α′, b).
To see the last assertion, assume that there are two linearly independent solutions
on (α′, b) which are square-integrable with respect to Δ at b. Since these solutions
admit unique extensions to solutions on (a, b), one obtains a contradiction. In
particular, for all {fb, gb}, {hb, kb} ∈ Tmax (α

′, b) one concludes from Lemma 7.6.8
that

lim
t→b

hb(t)
∗Jfb(t) = 0.

Now consider {f, g}, {h, k} ∈ Tmax and let fb, gb, hb, kb be the restrictions of
f, g, h, k to the interval (α′, b). Then one has {fb, gb}, {hb, kb} ∈ Tmax (α

′, b), and
hence

lim
t→b

h(t)∗Jf(t) = lim
t→b

hb(t)
∗Jfb(t) = 0.

A similar argument applies to the canonical system on (a, β′) and shows that

lim
t→a

h(t)∗Jf(t) = 0

for all {f, g}, {h, k} ∈ Tmax . Therefore, Lemma 7.6.4 implies

(g, h)Δ − (f, k)Δ = lim
t→b

h(t)∗Jf(t)− lim
t→a

h(t)∗Jf(t) = 0

for all {f, g}, {h, k} ∈ Tmax , and hence Tmax ⊂ T ∗
max . From Theorem 7.6.2 one

now concludes Tmin = Tmax and thus it follows that the defect numbers of Tmin

are (0, 0). �

7.7 Boundary triplets for the limit-circle case

Assume that the system (7.2.3) is real and definite, and assume that the endpoints
of the system are both in the limit-circle case. A boundary triplet will be presented
for Tmax = (Tmin )

∗ and the self-adjoint extensions of Tmin will be described in
terms of the boundary triplet. For a straightforward presentation the case where
the endpoints are regular or quasiregular is discussed first. At the end of the section
it will be explained what modifications are necessary for endpoints which are in
the limit-circle case and which are not regular or quasiregular.

The symmetric relation Tmin = T 0 will now be described when a and b are
regular or quasiregular.

Lemma 7.7.1. Assume that a and b are regular or quasiregular endpoints for the
canonical system (7.2.3). Then the minimal relation Tmin is given by

Tmin =
{{f, g} ∈ Tmax : f(a) = f(b) = 0

}
,
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where f(a) and f(b) denote the boundary values of the unique absolutely continuous
representatives of f .

Proof. According to Corollary 7.6.6, the element {f, g} ∈ Tmax belongs to Tmin if
and only if

lim
t→a

h(t)∗Jf(t) = 0 and lim
t→b

h(t)∗Jf(t) = 0

for all {h, k} ∈ Tmax . Since the endpoints are regular or quasiregular, these con-
ditions are the same as

h(a)∗Jf(a) = 0 and h(b)∗Jf(b) = 0

for all {h, k} ∈ Tmax . Now observe that for any γ ∈ C2 and k ∈ L2
Δ(ı) there exists

an element h ∈ L2
Δ(ı) such that {h, k} ∈ Tmax and h(a) = γ or h(b) = γ. Hence,

it follows that f(a) = 0 and f(b) = 0. �

When the endpoints of the interval ı = (a, b) are regular or quasiregular for
the canonical system, then the solutions of Jf ′−Hf = λΔf , λ ∈ C, automatically
belong to L2

Δ(ı) and thus dimker (Tmax − λ) = 2, so that the defect numbers of
Tmin are (2, 2); cf. Corollary 7.6.3. In the next theorem a boundary triplet for
(Tmin )

∗ = Tmax is provided and the corresponding γ-field and Weyl function are
obtained in terms of an arbitrary fundamental matrix Y (·, λ) fixed by Y (c, λ) = I
for some c ∈ [a, b].

Theorem 7.7.2. Assume that a and b are regular or quasiregular endpoints for the
canonical system (7.2.3) and let the fundamental matrix Y (·, λ) of (7.2.4) be fixed
by Y (c, λ) = I for some c ∈ [a, b]. Then {C2,Γ0,Γ1}, with

Γ0{f, g} = 1√
2
(f(a) + f(b)) and Γ1{f, g} = − J√

2
(f(a)− f(b)),

where {f, g} ∈ Tmax , is a boundary triplet for (Tmin )
∗ = Tmax ; here f(a) and f(b)

denote the boundary values of the unique absolutely continuous representative of
f . The corresponding γ-field and Weyl function are given by

γ(λ) =
√
2Y (·, λ)(Y (a, λ) + Y (b, λ)

)−1
, λ ∈ ρ(A0),

and

M(λ) = −J(Y (a, λ)− Y (b, λ)
)(
Y (a, λ) + Y (b, λ)

)−1
, λ ∈ ρ(A0).

Proof. Let {f, g}, {h, k} ∈ Tmax . Since the endpoints a and b are regular or
quasiregular, one has the Lagrange identity

(g, h)Δ − (f, k)Δ =

∫ b

a

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds

= h(b)∗Jf(b)− h(a)∗Jf(a);
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cf. Corollary 7.3.4. On the other hand, a straightforward calculation shows that(
Γ1{f, g},Γ0{h, k}

)− (Γ0{f, g},Γ1{h, k}
)

= −1

2

(
h(a) + h(b)

)∗
J
(
f(a)− f(b)

)
+

1

2

(
h(a)− h(b)

)∗
J∗(f(a) + f(b)

)
= h(b)∗Jf(b)− h(a)∗Jf(a),

and hence the boundary mappings Γ0 and Γ1 satisfy the abstract Green identity
(2.1.1). Furthermore, the mapping (Γ0,Γ1)

� : Tmax → C4 is surjective. To see this,
observe first that(

Γ0{f, g}
Γ1{f, g}

)
=

1√
2

(
I I
−J J

)(
f(a)
f(b)

)
, {f, g} ∈ Tmax ,

and that the 4× 4-matrix on the right-hand side is invertible. Hence, it suffices to
check that for any γa, γb ∈ C2 there exists {f, g} ∈ Tmax such that(

f(a)
f(b)

)
=

(
γa
γb

)
. (7.7.1)

Choose a solution of the equation Jh′ −Hh = 0 such that h(a) = γa and modify
h as in Proposition 7.5.6, so that it becomes a solution ha of an inhomogeneous
equation Jh′

a − Hha = Δka which coincides with h in a neighborhood of a and
vanishes in a neighborhood of the endpoint b. Then one has {ha, ka} ∈ Tmax and
ha(a) = γa and ha(b) = 0. The same argument shows that there exists an element
{hb, kb} ∈ Tmax such that hb(b) = γb and hb(a) = 0. Thus, for f = ha + hb

and g = ka + kb one has {f, g} ∈ Tmax and (7.7.1) holds. It follows that the
mapping (Γ0,Γ1)

� : Tmax → C4 is surjective, as claimed. Therefore, {C2,Γ0,Γ1}
is a boundary triplet for (Tmin )

∗ = Tmax .

To obtain the expressions for the associated γ-field and Weyl function, let
λ ∈ ρ(A0), where A0 = ker Γ0, and note that

Nλ(Tmax) =
{
Y (·, λ)φ : φ ∈ C2

}
, λ ∈ C.

Hence, for f̂λ = {Y (·, λ)φ, λY (·, λ)φ}, φ ∈ C2, and λ ∈ ρ(A0) one has

Γ0f̂λ =
1√
2

(
Y (a, λ) + Y (b, λ)

)
φ and Γ1f̂λ = − J√

2

(
Y (a, λ)− Y (b, λ)

)
φ,

which leads to

γ(λ) =

{{
1√
2

(
Y (a, λ) + Y (b, λ)

)
φ, Y (·, λ)φ

}
: φ ∈ C2

}
and

M(λ) =

{{
1√
2

(
Y (a, λ) + Y (b, λ)

)
φ,− J√

2

(
Y (a, λ)− Y (b, λ)

)
φ

}
: φ ∈ C2

}
;
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cf. Definition 2.3.1 and Definition 2.3.4. Now observe that for λ ∈ ρ(A0) the
matrix Y (a, λ) + Y (b, λ) is invertible, as otherwise (Y (a, λ) + Y (b, λ))ψ = 0 for
some nontrivial ψ ∈ C2 would imply that λ is an eigenvalue of the self-adjoint
relation A0 = ker Γ0 with corresponding eigenfunction Y (·, λ)ψ; a contradiction.
Therefore, the formulas for the γ-field and the Weyl function follow from the above
identities for γ(λ) and M(λ). �

Before formulating the next proposition some terminology is recalled. Let T
be an integral operator of the form

Tf(t) =

∫ b

a

K(t, s)f(s) ds,

where f is a C2-valued function and K is a C2×2-valued measurable matrix kernel.
If K is square-integrable with respect to the Lebesgue measure on ı× ı, that is,∫ b

a

∫ b

a

‖K(t, s)‖22 ds dt <∞,

where ‖ · ‖2 is the Hilbert–Schmidt matrix norm in (7.1.4), then T is a bounded
linear operator from L2(ı) into itself, which belongs to the Hilbert–Schmidt class.
Recall that a bounded linear operator from L2(ı) into itself belongs to the Hilbert–
Schmidt class if for some, and hence for all orthonormal bases (ϕi) in L2(ı) one has∑

i,j

|(Tϕi, ϕj)|2 <∞.

Proposition 7.7.3. Assume that a and b are regular or quasiregular endpoints for
the canonical system (7.2.3) and let {C2,Γ0,Γ1} be the boundary triplet for Tmax in
Theorem 7.7.2 with corresponding Weyl function M . Let the fundamental matrix
Y (·, λ) be fixed by Y (a, λ) = I. Then the self-adjoint relation A0 = ker Γ0 is
given by

A0 = ker Γ0 =
{{f, g} ∈ Tmax : f(a) + f(b) = 0

}
,

where f(a) and f(b) denote the boundary values of the unique absolutely continuous
representative of f . The resolvent of A0 is an integral operator(

(A0 − λ)−1g
)
(t) =

∫ b

a

G0(t, s, λ)Δ(s)g(s) ds, λ ∈ ρ(A0), (7.7.2)

which belongs to the Hilbert–Schmidt class. The Green function G0(t, s, λ) is
given by

G0(t, s, λ) = G0,e(t, s, λ) +G0,i(t, s, λ), (7.7.3)

where the entire part G0,e is given by

G0,e(t, s, λ) = Y (t, λ)

[
1

2
J sgn (s− t)

]
Y (s, λ)∗

=
1

2

{
−Y (t, λ)JY (s, λ)∗, s < t,

Y (t, λ)JY (s, λ)∗, s > t,

(7.7.4)
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and

G0,i(t, s, λ) = Y (t, λ)

[
−1

2
JM(λ)J

]
Y (s, λ)∗. (7.7.5)

Proof. Step 1. The resolvent of A0 has the form (7.7.2) with G0 as in (7.7.3). To
see this, let λ ∈ ρ(A0) and g ∈ L2

Δ(ı), and define the function

f(t) =

∫ b

a

G0(t, s, λ)Δ(s)g(s) ds.

From the structure of the Green function in (7.7.3), (7.7.4), and (7.7.5), it follows
that

f(t) =
1

2
Y (t, λ)J

(
−
∫ t

a

Y (s, λ)∗Δ(s)g(s) ds+

∫ b

t

Y (s, λ)∗Δ(s)g(s) ds

)
+ Y (t, λ)E0(λ)

∫ b

a

Y (s, λ)∗Δ(s)g(s) ds,

with E0(λ) = − 1
2JM(λ)J . Hence, f is well defined and absolutely continuous. A

straightforward computation together with (7.2.10) shows that

Jf ′(t) =
1

2
JY ′(t, λ)J

(
−
∫ t

a

Y (s, λ)∗Δ(s)g(s) ds+

∫ b

t

Y (s, λ)∗Δ(s)g(s) ds

)
+Δ(t)g(t) + JY ′(t, λ)E0(λ)

∫ b

a

Y (s, λ)∗Δ(s)g(s) ds.

This implies that
Jf ′ −Hf = λΔf +Δg = Δ(g + λf),

and thus one has {f, g + λf} ∈ Tmax . Furthermore, it is clear from the definition
of f and Y (a, λ) = I that

f(a) =

[
1

2
J + E0(λ)

] ∫ b

a

Y (s, λ)∗Δ(s)g(s) ds

and

f(b) = Y (b, λ)

[
−1

2
J + E0(λ)

] ∫ b

a

Y (s, λ)∗Δ(s)g(s) ds.

Since E0(λ) = − 1
2JM(λ)J = − 1

2 (I − Y (b, λ))(I + Y (b, λ))−1J , observe that

1

2
J + E0(λ) = Y (b, λ)(I + Y (b, λ))−1J,

−1

2
J + E0(λ) = −(I + Y (b, λ))−1J.

Thus, [
1

2
J + E0(λ)

]
+ Y (b, λ)

[
−1

2
J + E0(λ)

]
= 0,
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and hence Γ0{f, g + λf} = 1√
2
(f(a) + f(b)) = 0, which implies {f, g + λf} ∈ A0.

Therefore, f = (A0 − λ)−1g and the resolvent of A0 is given by (7.7.2).

Step 2. The kernel GΔ(·, ·, λ) defined by

GΔ(t, s, λ) = Δ(t)
1
2G0(t, s, λ)Δ(s)

1
2 , (7.7.6)

where the kernel G0(·, ·, λ) is given in (7.7.3), satisfies∫ b

a

∫ b

a

∥∥GΔ(t, s, λ)
∥∥2
2
ds dt <∞; (7.7.7)

here ‖·‖2 is the Hilbert–Schmidt matrix norm. In fact, from (7.7.3), (7.7.4), (7.7.5),
and (7.1.5) it follows that∫ b

a

∫ b

a

∥∥GΔ(t, s, λ)
∥∥2
2
ds dt =

∫ b

a

∫ b

a

∥∥Δ(t)
1
2G0(t, s, λ)Δ(s)

1
2

∥∥2
2
ds dt

≤ C

∫ b

a

∫ b

a

∥∥Δ(t)
1
2Y (t, λ)

∥∥2
2

∥∥Y (s, λ)∗Δ(s)
1
2

∥∥2
2
ds dt.

To show that the right-hand side is finite, note that with Y (·,λ)=(Y1(·,λ)Y2(·,λ))
one has∫ b

a

∥∥Δ(t)
1
2Y (t, λ)

∥∥2
2
dt =

∫ b

a

∣∣Δ(t)
1
2Y1(t, λ)

∣∣2 dt+ ∫ b

a

∣∣Δ(t)
1
2Y2(t, λ)

∣∣2 dt <∞,

as the columns Y1(·, λ) and Y2(·, λ) of Y (·, λ) are square-integrable with respect
to Δ. Due to the identity ‖A‖2 = ‖A∗‖2, it follows that∫ b

a

∥∥Y (s, λ)∗Δ(s)
1
2

∥∥2
2
ds =

∫ b

a

∥∥Δ(s)
1
2Y (s, λ)

∥∥2
2
dt <∞.

Therefore, the kernel GΔ is square-integrable with respect to the Lebesgue measure
on [a, b] × [a, b] and hence (7.7.7) holds. Consequently, the integral operator TΔ,
defined by

TΔf(t) =

∫ b

a

GΔ(t, s, λ)f(s) ds, f ∈ L2(ı), (7.7.8)

belongs to the Hilbert–Schmidt class in L2(ı).

Step 3. The operator (A0 − λ)−1 belongs to the Hilbert–Schmidt class or, equiva-
lently, ∑

i,j

∣∣((A0 − λ)−1ui, uj

)∣∣2 <∞, λ ∈ ρ(A0), (7.7.9)
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for some, and hence for any orthonormal basis (ui) in L2
Δ(ı). To see (7.7.9), observe

that (Δ
1
2ui) is an orthonormal system in L2(ı) and that (7.7.2) and (7.7.6) give

(
(A0 − λ)−1ui, uj

)
Δ
=

∫ b

a

uj(t)
∗Δ(t)

(∫ b

a

G0(t, s, λ)Δ(s)ui(s) ds

)
dt

=

∫ b

a

∫ b

a

(
Δ(t)

1
2uj(t)

)∗
GΔ(t, s, λ)

(
Δ(s)

1
2ui(s)

)
ds dt

= (TΔ Δ
1
2ui,Δ

1
2uj)L2(ı),

where TΔ is the Hilbert–Schmidt operator (7.7.8) in L2(ı) whose kernel is given by
(7.7.6). Hence, by Step 2 it follows that (7.7.9) holds, which implies that (A0−λ)−1

is a Hilbert–Schmidt operator. �

Since the resolvent of the self-adjoint relation A0 is a Hilbert–Schmidt oper-
ator, the spectrum of A0 is discrete. As the minimal relation Tmin has no eigen-
values, the next statement follows immediately from Proposition 3.4.8.

Theorem 7.7.4. Let {C2,Γ0,Γ1} be the boundary triplet for Tmax as in Theo-
rem 7.7.2. Then the operator part (Tmin )op is simple in L2

Δ(ı)�mulTmin .

Theorem 7.7.4 together with the considerations in Section 3.5 and Section 3.6
ensure that the Weyl function M in Theorem 7.7.2 contains the complete spectral
data of A0. In the present situation the eigenvalues of A0 coincide with the poles
of the Weyl function and the multiplicities of the eigenvalues of A0 coincide with
the multiplicities of the poles of M .

Let {C2,Γ0,Γ1} be the boundary triplet in Theorem 7.7.2 with corresponding
γ-field γ and Weyl function M . The self-adjoint (maximal dissipative, maximal
accumulative) extensions AΘ ⊂ Tmax of Tmin are in a one-to-one correspondence
to the self-adjoint (maximal dissipative, maximal accumulative) relations Θ in C2

via

AΘ =
{{f, g} ∈ Tmax :

{
Γ0{f, g},Γ1{f, g}

} ∈ Θ
}

=
{{f, g} ∈ Tmax :

{
f(a) + f(b),−Jf(a) + Jf(b)

} ∈ Θ
}
,

(7.7.10)

where f(a) and f(b) denote the boundary values of the unique absolutely contin-
uous representative of f . Recall from Theorem 2.6.1 that for λ ∈ ρ(AΘ) ∩ ρ(A0)
the Krĕın formula for the corresponding resolvents reads

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗. (7.7.11)

Assume in the following that Θ is a self-adjoint relation in C2. Since the
spectrum of A0 is discrete and the difference of the resolvents of A0 and AΘ is
an operator of rank ≤ 2, it is clear that the spectrum of the self-adjoint relation
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AΘ is also discrete. Note that λ ∈ ρ(A0) is an eigenvalue of AΘ if and only if
ker (Θ−M(λ)) is nontrivial, and that

ker (AΘ − λ) = γ(λ) ker (Θ−M(λ)).

For the self-adjoint relation Θ one may use a parametric representation with the
help of 2× 2 matrices A and B as in Section 1.10 and give a complete description
of the (discrete) spectrum of AΘ via poles of a transform of the Weyl function M ;
cf. Section 3.8 and Section 6.3.

In the following paragraph and corollary it is assumed for simplicity that the
relation Θ in (7.7.10) is a self-adjoint 2 × 2 matrix. In this case the self-adjoint
relation AΘ in (7.7.10) is given by

AΘ =
{{f, g} ∈ Tmax : Θ(f(a) + f(b)) = −Jf(a) + Jf(b)

}
(7.7.12)

and according to Section 3.8 the spectral properties of AΘ can also be described
with the help of the function

λ �→ (Θ−M(λ)
)−1

; (7.7.13)

that is, the poles of the matrix function (7.7.13) coincide with the (discrete) spec-
trum of AΘ and the dimension of the eigenspace ker (AΘ − λ) coincides with the
dimension of the range of the residue of the function in (7.7.13) at λ. Now fix a
fundamental matrix Y (·, λ) by Y (a, λ) = I as in Proposition 7.7.3. By Proposi-
tion 7.7.3, the resolvent (A0 − λ)−1 in the Krĕın formula (7.7.11) is an integral
operator. Since I + JM(λ) = 2(I + Y (b, λ))−1, the γ-field and Weyl function in
Theorem 7.7.2 are connected in the present situation via

γ(·, λ) = 1√
2
Y (·, λ)(I + JM(λ)), λ ∈ C \ R.

One verifies that

γ(λ)∗g =
1√
2
(I −M(λ)J)

∫ b

a

Y (s, λ)∗Δ(s)g(s) ds, g ∈ L2
Δ(ı),

and this implies that the second term on the right-hand side of (7.7.11) applied
to g ∈ L2

Δ(ı) can be written as

1

2
Y (·, λ)(I + JM(λ))

(
Θ−M(λ)

)−1
(I −M(λ)J)

∫ b

a

Y (s, λ)∗Δ(s)g(s) ds.

Combining this expression with the entire part G0,e in (7.7.4) and the part G0,i

in (7.7.5) for (A0 − λ)−1, one sees that the resolvent of the self-adjoint extension
AΘ is an integral operator in L2

Δ(ı) of the form

(
(AΘ − λ)−1g

)
(t) =

∫ b

a

GΘ(t, s, λ)Δ(s)g(s) ds, λ ∈ ρ(AΘ) ∩ ρ(A0), (7.7.14)
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where g ∈ L2
Δ(ı). The Green function GΘ(t, s, λ) in (7.7.14) is given by

GΘ(t, s, λ) = Y (t, λ)

[
1

2
J sgn (s− t) + EΘ(λ)

]
Y (s, λ)∗, (7.7.15)

where

EΘ(λ) = −1

2
J
[
M(λ) + (M(λ)− J)

(
Θ−M(λ)

)−1
(M(λ) + J)

]
J. (7.7.16)

In the next corollary the Green function in (7.7.14) is further decomposed in the
case that the self-adjoint relation Θ in C2 is a self-adjoint matrix.

Corollary 7.7.5. Let a and b be regular or quasiregular endpoints for the canon-
ical system (7.2.3) and let {C2,Γ0,Γ1} be the boundary triplet for Tmax in The-
orem 7.7.2 with corresponding Weyl function M . Assume that the fundamental
matrix Y (·, λ) is fixed by Y (a, λ) = I, let Θ be a self-adjoint matrix in C2, and let
AΘ be the self-adjoint extension in (7.7.12). Then the Green function GΘ(t, s, λ)
in (7.7.14) has the decomposition

GΘ(t, s, λ) = GΘ,e(t, s, λ) +GΘ,i(t, s, λ),

where the entire part GΘ,e is given by

GΘ,e(t, s, λ) = Y (t, λ)

[
1

2
J sgn (s− t) +

1

2
JΘJ

]
Y (s, λ)∗,

and

GΘ,i(t, s, λ) = YΘ(t, λ)

[
1

2
(Θ−M(λ))−1

]
YΘ(s, λ)

∗,

where YΘ(t, λ) = Y (t, λ)(I + JΘ).

Proof. Since Θ is a self-adjoint 2× 2-matrix, one sees that

(M(λ)− J)
(
Θ−M(λ)

)−1
(M(λ) + J)

= −M(λ)−Θ+ (Θ− J)
(
Θ−M(λ)

)−1
(Θ + J).

Therefore, EΘ(λ) in (7.7.16) has the form

EΘ(λ) = −1

2
J
[
−Θ+ (Θ− J)

(
Θ−M(λ)

)−1
(Θ + J)

]
J

=
1

2
JΘJ + (I + JΘ)

[
1

2

(
Θ−M(λ)

)−1
]
(I −ΘJ).

The assertion now follows from this identity combined with (7.7.15). �

At the end of this section the assumption is that the endpoints a and b are
in the general limit-circle case, so that the assumption that a and b are regular or
quasiregular is abandoned. The transformation in Lemma 7.2.5 will be useful as
for any λ0 ∈ R the solution matrix U(·, λ0) is now square-integrable with respect
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to Δ. This implies that the transformed equation (7.2.20) is in the quasiregular
case at a and b. Then most of the above results remain true once the (limit) values
f(a) and f(b) are replaced by the limits in (7.4.6). The next proposition is the
counterpart of Theorem 7.7.2.

Proposition 7.7.6. Assume that a and b are in the limit-circle case and let Y (·, λ)
be a fundamental matrix. Let λ0 in R, let U(·, λ0) be a solution matrix as in
Lemma 7.2.5, and consider the limits

f̃(a) = lim
t→a

U(t, λ0)
−1f(t) and f̃(b) = lim

t→b
U(t, λ0)

−1f(t)

for {f, g} ∈ Tmax ; cf. Corollary 7.4.8. Then {C2,Γ0,Γ1}, with

Γ0{f, g} = 1√
2
(f̃(a) + f̃(b)) and Γ1{f, g} = − J√

2
(f̃(a)− f̃(b)),

where {f, g} ∈ Tmax , is a boundary triplet for (Tmin )
∗ = Tmax . The corresponding

γ-field and Weyl function are given by

γ(λ) =
√
2Y (·, λ)(Ỹ (a, λ) + Ỹ (b, λ)

)−1
, λ ∈ ρ(A0),

and

M(λ) = −J(Ỹ (a, λ)− Ỹ (b, λ)
)(
Ỹ (a, λ) + Ỹ (b, λ)

)−1
, λ ∈ ρ(A0),

where Ỹ (·, λ)φ = U(·, λ0)
−1Y (·, λ)φ for φ ∈ C2 and λ ∈ ρ(A0).

Proof. Recall that due to Corollary 7.4.9 the Lagrange formula takes the form

h̃(b)∗Jf̃(b)− h̃(a)∗Jf̃(a) =
∫ b

a

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds

for {f, g}, {h, k} ∈ Tmax . Now the same computation as in the proof of Theo-
rem 7.7.2 shows that the abstract Green identity (2.1.1) is satisfied. The surjec-
tivity of the map (Γ0,Γ1)

� : Tmax → C4, and the form of the γ-field and Weyl
function follow in the same way as in the proof of Theorem 7.7.2. �

7.8 Boundary triplets for the limit-point case

Assume that the system (7.2.3) is real and definite, and assume that the endpoint a
is in the limit-circle case and the endpoint b is in the limit-point case. A boundary
triplet will be presented for Tmax = (Tmin )

∗ and will be used to describe the self-
adjoint extensions of Tmin . To make the presentation straightforward, the case
where the endpoint a is regular or quasiregular is dealt with first. At the end of
the section it will be explained what modifications are necessary if the endpoint a
is in the limit-circle case.

The symmetric relation Tmin = T 0 will now be described when a is a regular
or quasiregular endpoint and b is in the limit-point case.
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Lemma 7.8.1. Assume that the endpoint a is regular or quasiregular and the end-
point b is in the limit-point case. Then the minimal relation Tmin is given by

Tmin =
{{f, g} ∈ Tmax : f(a) = 0

}
,

where f(a) denotes the boundary value of the unique absolutely continuous repre-
sentative of f .

Proof. According to Corollary 7.6.6 and Lemma 7.6.8, an element {f, g} ∈ Tmax

belongs to Tmin if and only if

lim
t→a

h(t)∗Jf(t) = 0

for all {h, k} ∈ Tmax . Since the endpoint a is regular or quasiregular this condition
is the same as

h(a)∗Jf(a) = 0

for all {h, k} ∈ Tmax . Now observe that for any γ ∈ C2 there exists {h, k} ∈ Tmax

such that h(a) = γ. In fact, choose a solution Ju′−Hu = 0 such that u(a) = γ and
use Proposition 7.5.6 to modify u to a function h ∈ L2

Δ(ı) which coincides with u in
a neighborhood of a, vanishes in a neighborhood of b, and satisfies Jh′−Hh = Δk
with some k ∈ L2

Δ(ı), that is, {h, k} ∈ Tmax . Since γ∗Jf(a) = 0 for all γ ∈ C2, it
follows that f(a) = 0. �

Let the endpoint a be regular or quasiregular and let b be in the limit-point
case. Then there exists for some, and hence for all λ ∈ C \ R, up to scalar multiples,
one nontrivial solution of Jf ′−Hf = λΔf , which is square-integrable with respect
to Δ at b and thus dimker (Tmax − λ) = 1 for λ ∈ C \ R. This implies that the
defect numbers are (1, 1); cf. Corollary 7.6.3. In the next theorem a boundary
triplet is provided in this case. To avoid confusion, recall that Y1(·, λ) and Y2(·, λ)
are the columns of a fundamental matrix Y (·, λ), whereas f1 and f2 stand for the
components of the 2× 1 vector function f .

Theorem 7.8.2. Assume that the endpoint a is regular or quasiregular and that the
endpoint b is in the limit-point case. Let Y (·, λ) be a fundamental matrix fixed by
Y (a, λ) = I. Then {C,Γ0,Γ1}, where

Γ0{f, g} = f1(a) and Γ1{f, g} = f2(a), {f, g} ∈ Tmax ,

is a boundary triplet for (Tmin )
∗ = Tmax ; here f1(a) and f2(a) denote the boundary

values of the components of the unique absolutely continuous representative of f .
Moreover, if λ ∈ C \ R and χ(·, λ) is a nontrivial element in Nλ(Tmax ), then one
has χ1(a, λ) 	= 0. For all λ ∈ C \ R the corresponding γ-field and Weyl function
are given by

γ(·, λ) = Y1(·, λ) +M(λ)Y2(·, λ) and M(λ) =
χ2(a, λ)

χ1(a, λ)
.
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Proof. Since the endpoint a is assumed to be regular or quasiregular, the elements
{f, g}, {h, k} ∈ Tmax have boundary values f(a), h(a) ∈ C2. Due to Lemma 7.6.8,
the Lagrange identity in Corollary 7.3.4 takes the form

(g, h)Δ − (f, k)Δ =

∫ b

a

(
h(s)∗Δ(s)g(s)− k(s)∗Δ(s)f(s)

)
ds

= −h(a)∗Jf(a)
= f2(a)h1(a)− f1(a)h2(a)

=
(
Γ1{f, g},Γ0{h, k}

)− (Γ0{f, g},Γ1{h, k}
)
.

Hence, the boundary mappings Γ0 and Γ1 satisfy the abstract Green identity
(2.1.1). In the proof of Lemma 7.8.1 it was shown that for γ ∈ C2 there exists
{h, k} ∈ Tmax such that h(a) = γ, and so the mapping (Γ0,Γ1)

� : Tmax → C2 is
surjective. It follows that {C,Γ0,Γ1} is a boundary triplet for (Tmin )

∗ = Tmax .

Due to the assumption that the endpoint b is in the limit-point case, each
eigenspace Nλ(Tmax ), λ ∈ C \ R, has dimension 1. Hence, f̂λ ∈ N̂λ(Tmax ) has the

form f̂λ = {χ(·, λ)c, λχ(·, λ)c} for some c ∈ C, where χ(·, λ) is a nontrivial element
in Nλ(Tmax ), λ ∈ C \ R. It follows from Definition 2.3.1 and Definition 2.3.4 that

γ(λ) =
{{χ1(a, λ)c, χ(·, λ)c} : c ∈ C

}
, λ ∈ C \ R,

and
M(λ) =

{{χ1(a, λ)c, χ2(a, λ)c} : c ∈ C
}
, λ ∈ C \ R.

Observe that χ1(a, λ) 	= 0 for λ ∈ C \ R, as otherwise λ ∈ C \ R would be an eigen-
value of the self-adjoint relation A0 = ker Γ0 and χ(·, λ) would be a corresponding
eigenfunction. Thus, one concludes that

γ(λ) =
χ(·, λ)
χ1(a, λ)

and M(λ) =
χ2(a, λ)

χ1(a, λ)
, λ ∈ C \ R.

Note that χ(·, λ) = α1Y1(·, λ) + α2Y2(·, λ) for some α1, α2 ∈ C and that the
assumption Y (a, λ) = I yields(

χ1(a, λ)
χ2(a, λ)

)
= χ(a, λ) =

(
α1

α2

)
.

This implies

γ(λ) =
α1Y1(·, λ) + α2Y2(·, λ)

χ1(a, λ)
= Y1(·, λ) +M(λ)Y2(·, λ), λ ∈ C \ R,

establishing the formulas for the γ-field and Weyl function. �

Note that the γ-field andWeyl function corresponding to the boundary triplet
{C,Γ0,Γ1} in Theorem 7.8.2 are defined and analytic on the resolvent set of the



546 Chapter 7. Canonical Systems of Differential Equations

self-adjoint relation A0 = ker Γ0. It follows in the same way as in Section 6.4 (see
the discussion after the proof of Proposition 6.4.1) that the expressions for γ and
M in Theorem 7.8.2 extend to points in ρ(A0) ∩ R.

In the next proposition the resolvent of the self-adjoint relation A0 is ex-
pressed as an integral operator.

Proposition 7.8.3. Assume that the endpoint a is regular or quasiregular and that
the endpoint b is in the limit-point case. Let Y (·, λ) be a fundamental matrix fixed
by Y (a, λ) = I. Let {C,Γ0,Γ1} be the boundary triplet for Tmax in Theorem 7.8.2
with corresponding Weyl function M . Then the self-adjoint relation A0 = ker Γ0

is given by

A0 = ker Γ0 =
{{f, g} ∈ Tmax : f1(a) = 0

}
,

where f1(a) denotes the boundary value of the first component of the unique abso-
lutely continuous representative of f . The resolvent of A0 is an integral operator

(
(A0 − λ)−1g

)
(t) =

∫ b

a

G0(t, s, λ)Δ(s)g(s) ds, λ ∈ C \ R, (7.8.1)

where g ∈ L2
Δ(ı). The Green function G0(t, s, λ) is given by

G0(t, s, λ) = G0,e(t, s, λ) +G0,i(t, s, λ), (7.8.2)

where the entire part G0,e is given by

G0,e(t, s, λ) =

{
Y1(t, λ)Y2(s, λ)

∗, s < t,

Y2(t, λ)Y1(s, λ)
∗, s > t,

(7.8.3)

and

G0,i(t, s, λ) = Y2(t, λ)M(λ)Y2(s, λ)
∗. (7.8.4)

Proof. To prove the identity (7.8.1), consider g ∈ L2
Δ(ı) and define the function

f by the right-hand side of (7.8.1) with G0 as in (7.8.2). In view of (7.8.3) and
(7.8.4), this means that

f(t) =
(
Y1(t, λ) + Y2(t, λ)M(λ)

) ∫ t

a

Y2(s, λ)
∗Δ(s)g(s) ds

+ Y2(t, λ)

∫ b

t

(
Y1(s, λ)

∗ +M(λ)∗Y2(s, λ)
∗)Δ(s)g(s) ds.

(7.8.5)

Observe that, indeed, the integral near b exists, since one has

γ(·, λ) = Y1(·, λ) +M(λ)Y2(·, λ) ∈ L2
Δ(ı)
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and g ∈ L2
Δ(ı). It follows that the function f in (7.8.5) is well defined and abso-

lutely continuous. Rewrite (7.8.5) in the form

f(t) = Y (t, λ)

(
1

M(λ)

)∫ t

a

(
0 1

)
Y (s, λ)∗Δ(s)g(s) ds

+ Y (t, λ)

(
0
1

)∫ b

t

(
1 M(λ)∗

)
Y (s, λ)∗Δ(s)g(s) ds.

(7.8.6)

Then a straightforward calculation using the identity(
1

M(λ)

)(
0 1

)− (0
1

)(
1 M(λ)∗

)
=

(
0 1
−1 0

)
= −J (7.8.7)

and (7.2.10) shows that f satisfies the inhomogenenous equation

Jf ′ −Hf = λΔf +Δg. (7.8.8)

Moreover, one sees from (7.8.5) that f satisfies

f(a) =

(
0
1

)∫ b

a

(
Y1(s, λ) + Y2(s, λ)M(λ)

)∗
Δ(s)g(s) ds =

(
0

(g, γ(λ))Δ

)
.

Now denote the function on the left-hand side of (7.8.1) by h = (A0−λ)−1g. Then
it is clear that

{h, λh+ g} = {(A0 − λ)−1g, g + λ(A0 − λ)−1g
} ∈ A0 ⊂ Tmax , (7.8.9)

so that h also satisfies (7.8.8). Moreover, by (7.8.9) and Proposition 2.3.2 one
obtains

h1(a) = Γ0{h, λh+ g} = 0,

h2(a) = Γ1{h, λh+ g} = γ(λ)∗g = (g, γ(λ))Δ.

Thus, for a fixed λ ∈ C \ R the functions h and f satisfy the same inhomogeneous
equation (7.8.8) and they have the same initial value f(a) = h(a). Since the
solution is unique, h = f . One concludes that (A0 − λ)−1g is given by the right-
hand side of (7.8.1). �

Note that there exist canonical systems whose Weyl functions are of the form
M(λ) = α + βλ where α ∈ R and β ≥ 0; cf. Example 7.10.4 for a special case.
Hence, the functions M and G0,i in (7.8.4) may be entire.

Theorem 7.8.4. Assume that the endpoint a is regular or quasiregular and that the
endpoint b is in the limit-point case. Then the operator part (Tmin )op is simple in
the Hilbert space L2

Δ(ı)�mulTmin .
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Proof. Step 1. Let g ∈ L2
Δ(ı) and define f = (A0 − λ)−1g. Then it is clear that

{f, g + λf} ∈ A0 and one has

f(t) = −Y (t, λ)J

∫ t

a

Y (s, λ)∗Δ(s)g(s) ds+ Y (t, λ)

(
0

(g, γ(λ))Δ

)
, (7.8.10)

where Y (·, λ) is the fundamental matrix fixed by Y (a, λ) = I. In fact, it follows
from Proposition 7.8.3 and its proof that f is given by (7.8.1) or, equivalently, by
(7.8.6). Now on the right-hand side of (7.8.6) substract and add the term

Y (t, λ)

(
0
1

)∫ t

a

(
1 M(λ)∗

)
Y (s, λ)∗Δ(s)g(s) ds,

and use (7.8.7) and γ(·, λ) = Y1(·, λ) +M(λ)Y2(·, λ). This yields (7.8.10).
Step 2. The multivalued part mul Tmin is given by(

span {γ(λ) : λ ∈ C \ R})⊥= mulTmin , (7.8.11)

which, in view of Corollary 3.4.6, is equivalent to (Tmin )op being simple in the
Hilbert space L2

Δ(ı)�mulTmin .

The identity (7.8.11) will be verified by exhibiting the corresponding inclu-
sions. For the inclusion (⊃) in (7.8.11), let g ∈ mulTmin . Since {0, g} ∈ Tmin and
{γ(λ), λγ(λ)} ∈ Tmax for all λ ∈ C \ R one sees that

(g, γ(λ))Δ = (g, γ(λ))Δ − (0, λγ(λ))Δ = 0.

Hence, g ∈ mulTmin is orthogonal to all γ(λ), λ ∈ C \ R.
For the inclusion (⊂) in (7.8.11), assume that g ∈ L2

Δ(ı) is orthogonal to all
γ(λ), λ ∈ C \ R. Then it follows from (7.8.10) that

f(t) =
(
(A0 − λ)−1g

)
(t) = −Y (t, λ)J

∫ t

a

Y (s, λ)∗Δ(s)g(s) ds. (7.8.12)

Clearly, f(a) = 0, so that, in fact,

{f, g + λf} ∈ Tmin . (7.8.13)

Let h ∈ L2
Δ(ı) have compact support, say in [a′, b′] ⊂ ı. Then it follows from

(7.8.12) that

(
(A0 − λ)−1g, h

)
Δ
= −

∫ b

a

(∫ t

a

h(t)∗Δ(t)Y (t, λ)JY (s, λ)∗Δ(s)g(s) ds

)
dt

and due to the structure of the double integral the integration takes place only on
the square [a′, b′]× [a′, b′].
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Now consider a bounded interval δ ⊂ R such that the endpoints of δ are not
eigenvalues of A0. Then the spectral projection of A0 corresponding to the interval
δ is given by Stone’s formula (1.5.7) (see also Example A.1.4),

(E(δ)g, h)Δ = lim
ε ↓ 0

1

2πi

∫
δ

((
(A0 − (μ+ iε))−1 − (A0 − (μ− iε))−1

)
g, h
)
Δ
dμ.

Making use of the above integral for ((A0 − λ)−1g, h)Δ one has that

(E(δ)g, h)Δ = lim
ε ↓ 0

1

2πi

∫
δ

∫ b

a

∫ t

a

h(t)∗Δ(t)Fε(t, s, μ)Δ(s)g(s) ds dt dμ

= lim
ε ↓ 0

1

2πi

∫ b

a

∫ t

a

h(t)∗Δ(t)

(∫
δ

Fε(t, s, μ) dμ

)
Δ(s)g(s) ds dt,

where

Fε(t, s, μ) = Y (t, μ− iε)JY (s, μ− iε)∗ − Y (t, μ+ iε)JY (s, μ+ iε)∗.

To justify the application of Fubini’s theorem above note that each of the functions

s �→ Δ(s)g(s) and t �→ Δ(t)h(t)

is integrable on [a′, b′], due to g, h ∈ L2
Δ(a, b) and Lemma 7.1.4, and that the

function

(s, t, λ) �→ Y (t, λ)JY (s, λ)∗ − Y (t, λ)JY (s, λ)∗, s, t ∈ [a′, b′], λ ∈ K,

where K ⊂ C is some compact set, is continuous and hence bounded on the set
[a′, b′]× [a′, b′]×K. Since the mapping λ �→ Y (t, λ) is entire, it follows that

lim
ε ↓ 0

∫
δ

Fε(t, s, μ) dμ = 0

and dominated convergence implies that (E(δ)g, h)Δ = 0 for any h ∈ L2
Δ(ı) with

compact support. Therefore, E(δ)g = 0 for any bounded interval δ with endpoints
not in σp(A0). With δ → R one concludes E(R)g = 0 and this implies g ∈ mulA0.
Since {f, g + λf} ∈ A0 and {0, g} ∈ A0, it follows that {f, λf} ∈ A0 and hence
f = 0, as λ ∈ C \ R is not an eigenvalue of A0. Since {f, g+λf} ∈ Tmin by (7.8.13),
one concludes {0, g} ∈ Tmin, that is, g ∈ mulTmin . This shows the inclusion (⊂)
in (7.8.11). �

Let {C,Γ0,Γ1} be the boundary triplet in Theorem 7.8.2. Then the self-
adjoint extensions of Tmin are in a one-to-one correspondence to the numbers
τ ∈ R ∪ {∞} via

Aτ =
{{f, g} ∈ Tmax : Γ1{f, g} = τΓ0{f, g}

}
. (7.8.14)
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Note that A0 corresponds to τ =∞. For a given τ ∈ R ∪ {∞} one can transform
the boundary triplet {C,Γ0,Γ1} as follows:(

Γτ
0

Γτ
1

)
=

1√
τ2 + 1

(
τ −1
1 τ

)(
Γ0

Γ1

)
(7.8.15)

(see (2.5.19)), so that Aτ = ker Γτ
0 . Then, by (2.5.20), the γ-field and Weyl function

corresponding to the new boundary triplet are given by

Mτ (λ) =
1 + τM(λ)

τ −M(λ)
and γτ (λ) =

√
τ2 + 1

τ −M(λ)
γ(λ), λ ∈ C \ R. (7.8.16)

The Weyl function Mτ and the γ-field γτ are connected by

Mτ (λ)−Mτ (μ)
∗

λ− μ
= γτ (μ)

∗γτ (λ), λ, μ ∈ C \ R.

Let Y (·, λ) be a fundamental matrix fixed by Y (a, λ) = I. In a similar fashion one
can transform Y (·, λ) to a fundamental matrix V (·, λ) given by(

V1(·, λ) V2(·, λ)
)
=
(
Y1(·, λ) Y2(·, λ)

) 1√
τ2 + 1

(
τ 1
−1 τ

)
. (7.8.17)

Note that V (a, λ)∗JV (a, λ) = J holds; cf. (7.2.8) and (7.2.11). Due to this trans-
formation the γ-field γτ can be written in terms of the new fundamental system
as

γτ (λ) = V1(·, λ) +Mτ (λ)V2(·, λ),
which belongs to L2

Δ(ı), while the second column of V (·, λ) satisfies the (formal)
boundary condition which determines Aτ = ker Γτ

0 :

V2(a, λ) =
1√

τ2 + 1

(
1
τ

)
. (7.8.18)

The next proposition is the counterpart of Proposition 7.8.3 for the self-adjoint
extensions Aτ .

Proposition 7.8.5. Assume that the endpoint a is regular or quasiregular and that
the endpoint b is in the limit-point case. Let Y (·, λ) be a fundamental matrix fixed
by Y (a, λ) = I. Let {C,Γ0,Γ1} be the boundary triplet for Tmax in Theorem 7.8.2.
For τ ∈ R let Aτ be a self-adjoint extension of Tmin given by (7.8.14) and let Mτ

be as in (7.8.16). Then the resolvent of Aτ is an integral operator

(
(Aτ − λ)−1g

)
(t) =

∫ b

a

Gτ (t, s, λ)Δ(s)g(s) ds, λ ∈ C \ R, (7.8.19)

where g ∈ L2
Δ(ı). The Green’s function Gτ (t, s, λ) is given by

Gτ (t, s, λ) = Gτ,e(t, s, λ) +Gτ,i(t, s, λ), (7.8.20)
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where the entire part Gτ,e is given by

Gτ,e(t, s, λ) =

{
V1(t, λ)V2(s, λ)

∗, s < t,

V2(t, λ)V1(s, λ)
∗, s > t,

(7.8.21)

and
Gτ,i(t, s, λ) = V2(t, λ)Mτ (λ)V2(s, λ)

∗. (7.8.22)

Proof. The proof of Proposition 7.8.5 is similar to the proof of Proposition 7.8.3.
In order to show the identity (7.8.19), consider g ∈ L2

Δ(ı) and define the function
f by the right-hand side of (7.8.19). Then one has

f(t) =
(
V1(t, λ) + V2(t, λ)Mτ (λ)

) ∫ t

a

V2(s, λ)
∗Δ(s)g(s) ds

+ V2(t, λ)

∫ b

t

(
V1(s, λ)

∗ +Mτ (λ)
∗V2(s, λ)

∗)Δ(s)g(s) ds

(7.8.23)

and the same arguments as in the proof of Proposition 7.8.3 show that f is well
defined, absolutely continuous, and satisfies the inhomogenenous equation

Jf ′ −Hf = λΔf +Δg. (7.8.24)

Moreover, one sees from (7.8.23) that f satisfies

f(a) =
1√

τ2 + 1

(
1
τ

)∫ b

a

(
V1(s, λ) + V2(s, λ)Mτ (λ)

)∗
Δ(s)g(s) ds

=
1√

τ2 + 1

(
1
τ

)
(g, γτ (λ))Δ,

and hence

τf1(a)− f2(a)√
τ2 + 1

= 0 and
f1(a) + τf2(a)√

τ2 + 1
= (g, γτ (λ))Δ.

Now denote the function on the left-hand side of (7.8.19) by h = (Aτ − λ)−1g.
Then h also satisfies (7.8.24) and from (7.8.15) and Proposition 2.3.2 one obtains

τh1(a)− h2(a)√
τ2 + 1

= Γτ
0{h, λh+ g} = 0,

h1(a) + τh2(a)√
τ2 + 1

= Γτ
1{h, λh+ g} = γτ (λ)

∗g = (g, γτ (λ))Δ.

Thus, for a fixed λ ∈ C \ R the functions h and f satisfy the same initial value
problem and hence it follows that h = f . Therefore, (Aτ − λ)−1g is given by the
right-hand side of (7.8.19). �
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Let {C,Γ0,Γ1} be the boundary triplet for Tmax in Theorem 7.8.2 and con-
sider the self-adjoint extension Aτ = ker Γτ ; cf. (7.8.14). Assume that the Weyl
function Mτ corresponding to {C,Γτ

0 ,Γ
τ
1} has the integral representation

Mτ (λ) = ατ + βτλ+

∫
R

(
1

t− λ
− t

t2 + 1

)
dστ (t), (7.8.25)

with ατ ∈ R, βτ ≥ 0, and στ a nondecreasing function with∫
R

1

t2 + 1
dστ (t) <∞.

Recall from Theorem 3.5.10 and Lemma A.2.6 that mulAτ�mulTmin is nontrivial
if and only if βτ > 0.

Lemma 7.8.6. Let τ ∈ R ∪ {∞} and let Eτ (·) be the spectral measure of the self-
adjoint relation Aτ . For h ∈ L2

Δ(ı) with compact support define the Fourier trans-

form f̂ by

f̂(μ) =

∫ b

a

V2(s, μ)
∗Δ(s)f(s) ds, μ ∈ R,

where V2(·, μ) is the formal solution in (7.8.17). Let στ be the function in the
integral representation (7.8.25) of the Weyl function Mτ . Then for every bounded
open interval δ ⊂ R such that its endpoints are not eigenvalues of Aτ one has

(Eτ (δ)f, f)Δ =

∫
δ

f̂(μ) f̂(μ) dστ (μ). (7.8.26)

Proof. Recall that (Aτ − λ)−1 is given by (7.8.19), where the Green function
Gτ (t, s, λ) in (7.8.20) is given by (7.8.21) and (7.8.22). Assume that the function
h ∈ L2

Δ(ı) has compact support in [a′, b′] ⊂ ı. Then

(
(Aτ − λ)−1f, f

)
Δ
=

∫ b

a

f(t)∗Δ(t)

(∫ b

a

Gτ (t, s, λ)Δ(s)f(s) ds

)
dt

for each λ ∈ C \ R, where, in fact, the integration takes place only on the square
[a′, b′]× [a′, b′].

Let δ ⊂ R be a bounded interval such that the endpoints of δ are not eigen-
values of Aτ . Then the spectral projection of Aτ corresponding to the interval δ
is given by Stone’s formula (1.5.7) (see also Example A.1.4)

(E(δ)f, f)Δ = lim
ε ↓ 0

1

2πi

∫
δ

((
(Aτ − (μ+ iε))−1 − (Aτ − (μ− iε))−1

)
f, f
)
Δ
dμ

= lim
ε ↓ 0

1

2πi

∫
δ

(∫ b

a

∫ b

a

f(t)∗Δ(t)
(
Gτ (t, s, μ+ iε)

−Gτ (t, s, μ− iε)
)
Δ(s)f(s) ds dt

)
dμ.
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Decompose the Green function in (7.8.20) as in (7.8.21) and (7.8.22). Since the
function λ �→ V (t, λ) is entire, one verifies in the same way as in the proof of
Theorem 7.8.4 that

lim
ε ↓ 0

1

2πi

∫
δ

(∫ b

a

∫ b

a

f(t)∗Δ(t)
(
Gτ,e(t, s, μ+ iε)

−Gτ,e(t, s, μ− iε)
)
Δ(s)f(s) ds dt

)
dμ = 0.

Therefore, it remains to consider the corresponding integral with Gτ,i, which takes
the form

lim
ε ↓ 0

1

2πi

∫
δ

(∫ b

a

∫ b

a

f(t)∗Δ(t)
(
V2(t, μ+ iε)Mτ (μ+ iε)V2(s, μ− iε)∗

− V2(t, μ− iε)Mτ (μ− iε)V2(s, μ+ iε)∗
)
Δ(s)f(s) ds dt

)
dμ

= lim
ε ↓ 0

1

2πi

∫
δ

(∫ b

a

∫ b

a

f(t)∗Δ(t)
[
(gt,sMτ )(μ+ iε)

− (gt,sMτ )(μ− iε)
]
Δ(s)f(s) ds dt

)
dμ,

(7.8.27)

where gt,s stands for the 2× 2 matrix function

gt,s(η) = V2(t, η)V2(s, η)
∗.

For t, s ∈ [a′, b′] this function is entire in η. For ε0 > 0 and A < B such that
δ ⊂ (A,B) consider the rectangle R = [A,B] × [−iε0, iε0]. Then the function
{t, s, η} �→ gt,s(η) is bounded on [a′, b′]× [a′, b′]×R, and since Δh ∈ L1(a′, b′), it
follows that for each fixed ε such that 0 < ε ≤ ε0

1

2πi

∫
δ

(∫ b

a

∫ b

a

f(t)∗Δ(t)
[
(gt,sMτ )(μ+ iε)− (gt,sMτ )(μ− iε)

]
Δ(s)f(s) ds dt

)
dμ

=
1

2πi

∫ b

a

∫ b

a

f(t)∗Δ(t)

(∫
δ

[
(gt,sMτ )(μ+iε)−(gt,sMτ )(μ−iε)

]
dμ

)
Δ(s)f(s) ds dt.

By the Stieltjes inversion formula in Lemma A.2.7 and Remark A.2.10, one sees

lim
ε ↓ 0

1

2πi

∫
δ

[
(gt,sMτ )(μ+ iε)− (gt,sMτ )(μ− iε)

]
dμ =

∫
δ

gt,s,(μ) dστ (μ)

for all t, s ∈ [a′, b′]. To justify taking the limit ε ↓ 0 inside the integral (7.8.27)
one needs dominated convergence. For this purpose recall from Lemma A.2.7 and
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Remark A.2.10 that there exists m ≥ 0 such that for 0 < ε ≤ ε0 one has∣∣∣∣∫
δ

[
(gt,sMτ )(μ+ iε)− (gt,sMτ )(μ− iε)

]
dμ

∣∣∣∣
≤ m sup

{|gt,s(η)|, |g′t,s(η)| : t, s ∈ [a′, b′], λ ∈ R
}
,

(7.8.28)

where R = [A,B]× [−iε0, iε0]. Since the functions

{t, s, η} �→ gt,s(η) and {t, s, η} �→ g′t,s(η)

are bounded on [a′, b′]× [a′, b′]×R, it follows that the integral in (7.8.28), regarded
as a function in {t, s} on [a′, b′] × [a′, b′], is bounded by some constant for all
0 < ε ≤ ε0. Furthermore, Δf ∈ L1(a′, b′) implies that there is an integrable
majorant for (7.8.27), and so dominated convergence and Fubini’s theorem show
that

(E(δ)f, f)Δ =

∫ b

a

∫ b

a

f(t)∗Δ(t)

∫
δ

gt,s(μ) dστ (μ)Δ(s)f(s) ds dt

=

∫
δ

(∫ b

a

(
V2(t, μ)

∗Δ(t)f(t)
)∗

dt

)(∫ b

a

V2(s, μ)
∗Δ(s)f(s) ds

)
dστ (μ)

for every open interval δ such that the endpoints are not eigenvalues of Aτ . This
gives the formula in (7.8.26). �

The next theorem is a consequence of Lemma 7.8.6 and Theorem B.2.3.

Theorem 7.8.7. Let τ ∈ R ∪ {∞}, let V2(·, μ) be the formal solution in (7.8.17),
and let στ be the function in the integral representation of the Weyl function Mτ .
Then the Fourier transform

f �→ f̂ , f̂(μ) =

∫ b

a

V2(s, μ)
∗Δ(s)f(s) ds, μ ∈ R,

extends by continuity from compactly supported functions f ∈ L2
Δ(ı) to a surjective

partial isometry F from L2
Δ(ı) to L2

dστ
(R) with kerF = mulAτ . The restriction

Fop : L2
Δ(ı) �mulAτ → L2

dστ
(R) is a unitary mapping, such that the self-adjoint

operator (Aτ )op in L2
Δ(ı)�mulAτ is unitarily equivalent to multiplication by the

independent variable in L2
dστ

(R).

Proof. It follows from Lemma 7.8.6 that the condition (B.2.2) is satisfied. Fur-
thermore, for every μ ∈ R there exists a compactly supported function f ∈ L2

Δ(ı)
such that

f̂(μ) =

∫ b

a

V2(s, μ)
∗Δ(s)f(s) ds 	= 0.

To see this, assume that for some μ ∈ R∫ b

a

V2(s, μ)
∗Δ(s)f(s) ds = 0
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for all compactly supported f ∈ L2
Δ(ı). This implies that V2(s, μ)

∗Δ(s) = 0 for
a.e. s ∈ (a, b). By definiteness one has V2(s, μ) = 0 for a.e. s ∈ (a, b), which is a
contradiction. Therefore, condition (B.2.9) is satisfied and the result follows from
Theorem B.2.3. �

In the next lemma the Fourier transform Fγτ of the γ-field in (7.8.16) corre-
sponding to the boundary triplet {C,Γτ

0 ,Γ
τ
1} is computed; this allows to identify

the model in Theorem 7.8.7 with the model for scalar Nevanlinna functions in
Section 4.3.

Lemma 7.8.8. Let τ ∈ R ∪ {∞} and let γτ be the γ-field in (7.8.16). Then for all
λ ∈ C \ R one has almost everywhere in the sense of dστ :[

Fγτ (λ)
]
(μ) =

1

μ− λ
, μ ∈ R,

where F is the Fourier transform from L2
Δ(ı) onto L2

dστ
(R) in Theorem 7.8.7.

Proof. Recall first that for g ∈ L2
Δ(ı) and λ ∈ C \ R the function (Aτ − λ)−1g is

given by the identity (7.8.19), which holds for all t ∈ ı. In fact, the Green function
Gτ in (7.8.19) is a 2× 2 matrix function and the following notation will be useful:

Gτ (t, s, λ) =

(
Gτ,1(t, s, λ)
Gτ,2(t, s, λ)

)
,

where each of these components is a 1×2 matrix function. The fundamental matrix
V (·, λ) in (7.8.17) is written in the form

(
V1(·, λ) V2(·, λ)

)
=

(
V11(·, λ) V12(·, λ)
V21(·, λ) V22(·, λ)

)
.

Now observe that

Gτ,1(t, s, λ) =

{(
V11(t, λ) +Mτ (λ)V12(t, λ)

)
V2(s, λ)

∗, s < t,

V12(t, λ)γτ (s, λ)
∗, s > t,

(7.8.29)

and

Gτ,2(t, s, λ) =

{(
V21(t, λ) +Mτ (λ)V22(t, λ)

)
V2(s, λ)

∗, s < t,

V22(t, λ)γτ (s, λ)
∗, s > t,

(7.8.30)

which follows easily from (7.8.21) and (7.8.22); cf. (7.8.23). Note also that

Vij(·, λ) = Vij(·, λ), i, j = 1, 2,

since the system is real (see Lemma 7.2.8), and that (7.2.10) implies the useful
identity

V11(t, λ)V22(t, λ)− V21(t, λ)V12(t, λ) = 1, t ∈ ı. (7.8.31)
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For λ ∈ C \ R one has

(
(Aτ − λ)−1g

)
(t) =

⎛⎝∫ b

a
Gτ,1(t, s, λ)Δ(s)g(s) ds∫ b

a
Gτ,2(t, s, λ)Δ(s)g(s) ds

⎞⎠ =

(
(g,Gτ,1(t, ·, λ)∗)Δ
(g,Gτ,2(t, ·, λ)∗)Δ

)
.

Since the Fourier transform F : L2
Δ(ı) → L2

dστ
(R) in Theorem 7.8.7 is a partial

isometry with kerF = mulAτ , it follows from (1.1.10) that(
(Aτ − λ)−1g

)
(t) =

(
(Fg,FGτ,1(t, ·, λ)∗)L2

dστ
(R)

(Fg,FGτ,2(t, ·, λ)∗)L2
dστ

(R)

)

=

⎛⎝∫R Fg(μ)
[
FGτ,1(t, ·, λ)∗

]
(μ) dστ (μ)∫

R Fg(μ)
[
FGτ,2(t, ·, λ)∗

]
(μ) dστ (μ)

⎞⎠ (7.8.32)

is valid for all g ∈ (mulAτ )
⊥. It is clear that (7.8.32) is also true for all g ∈ mulAτ ,

since in this case (Aτ − λ)−1g = 0 and Fg = 0. Therefore, (7.8.32) is valid for all
g ∈ L2

Δ(ı). Moreover, if g ∈ L2
Δ(ı) one has for almost all t ∈ ı(

(Aτ − λ)−1g
)
(t) =

∫
R

V2(t, μ)

μ− λ
Fg(μ) dστ (μ)

=

⎛⎝∫R V12(t,μ)
μ−λ Fg(μ) dστ (μ)∫

R
V22(t,μ)
μ−λ Fg(μ) dστ (μ)

⎞⎠ ;

(7.8.33)

see (B.2.5). Furthermore, if Fg has compact support, then the right-hand side of
(7.8.33) is absolutely continuous, and hence in this case the equality holds for all
t ∈ ı. Therefore, when Fg has compact support the right-hand sides of (7.8.32)
and (7.8.33) are equal for all t ∈ ı, and hence one has

V12(t, μ)

μ− λ
=
[
FGτ,1(t, ·, λ)∗

]
(μ) and

V22(t, μ)

μ− λ
=
[
FGτ,2(t, ·, λ)∗

]
(μ)

for all t ∈ ı. These identities hold for all μ ∈ R \Ω(t), where the set Ω(t) ⊂ R has
dστ -measure 0. Hence, (by replacing λ with λ and taking conjugates) one has for
all t ∈ ı and all μ ∈ R \ Ω(t)
V12(t, μ)

μ− λ
=
[
FGτ,1(t, ·, λ)∗

]
(μ) and

V22(t, μ)

μ− λ
=
[
FGτ,2(t, ·, λ)∗

]
(μ). (7.8.34)

By means of (7.8.29), (7.8.30), (7.8.31), and (7.8.34) it is straightforward to
verify that for all t ∈ ı and all μ ∈ R \ Ω(t),

1

μ− λ

(
V11(t, λ)V22(t, μ)− V21(t, λ)V12(t, μ)

)
= V11(t, λ)

[
FGτ,2(t, ·, λ)∗

]
(μ)− V21(t, λ)

[
FGτ,1(t, ·, λ)∗

]
(μ)

= F
[
V11(t, λ)Gτ,2(t, ·, λ)∗ − V21(t, λ)Gτ,1(t, ·, λ)∗

]
(μ)

= F
[
W (t, ·, λ)](μ),

(7.8.35)
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where the 2× 1 matrix function W (·, ·, λ) is given by

W (t, s, λ) =

{
Mτ (λ)V2(s, λ), s < t,

γτ (s, λ), s > t.
(7.8.36)

The above identity and a limit process will give the desired result. In fact, first
observe that according to the definition of W (·, ·, λ) in (7.8.36) one has

‖γτ (·, λ)−W (t, ·, λ)‖2Δ =

∫ t

a

|Δ(s)
1
2V1(s, λ)|2 ds→ 0 as t→ a,

and hence the continuity of F : L2
Δ(ı)→ L2

dστ
(R) implies that∥∥[Fγτ (·, λ)]− [FW (t, ·, λ)]∥∥

L2
dστ

(R) → 0 as t→ a.

Now approximate a by a sequence tn ∈ ı. Then there exists a subsequence, again
denoted by tn, such that pointwise[

Fγτ (·, λ)
]
(μ) = lim

n→∞
[
FW (tn, ·, λ)

]
(μ), μ ∈ R \ Ω,

where Ω is a set of measure 0 in the sense of dστ . Observe that (7.8.35) gives[
FW (tn, ·, λ)

]
(μ) =

1

μ− λ

(
V11(tn, λ)V22(tn, μ)− V21(tn, λ)V12(tn, μ)

)
for all μ ∈ R \ Ω(tn). The limit on the right-hand side as n→∞ gives

1

μ− λ

(
V11(a, λ)V22(a, μ)− V21(a, λ)V12(a, μ)

)
=

1

μ− λ
,

which follows from the form of the fundamental matrix (V1(·,λ)V2(·,λ)) in (7.8.17).
Hence, [

Fγτ (·, λ)
]
(μ) =

1

μ− λ
, μ ∈ R \

(
Ω ∪

∞⋃
n=1

Ω(tn)

)
,

which completes the proof. �

Lemma 7.8.8 will be used to explain the model in Theorem 7.8.7 with the
model for scalar Nevanlinna functions discussed in Section 4.3. Without loss of
generality it is assumed that Tmin is simple; cf. Section 3.4. The Weyl function
Mτ of the boundary triplet {C,Γτ

0 ,Γ
τ
1} for Tmax has the integral representation

(7.8.25). If β = 0, then the discussion in Chapter 6 following Lemma 6.4.8 applies
in this case as well. Hence, assume β > 0 in (7.8.25). Then by Theorem 4.3.4 there
is a closed simple symmetric operator S in L2

dστ
(R)⊕C such that the Nevanlinna

function Mτ in (7.8.25) is the Weyl function corresponding to the boundary triplet
{C,Γ′

0,Γ
′
1} for S∗ in Theorem 4.3.4. The γ-field corresponding to {C,Γ′

0,Γ
′
1} is
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denoted by γ′ and it is given by (4.3.16). Furthermore, the restriction A′
0 corre-

sponding to the boundary mapping Γ′
0 is a self-adjoint relation in L2

dστ
(R) ⊕ C

whose operator part (A′
0)op is the maximal multiplication operator by the inde-

pendent variable in L2
dστ

(R). By comparing with (4.3.16) one sees that, according
to Lemma 7.8.8, the Fourier transform Fop from L2

Δ(ı)�mulAτ onto L2
dστ

(R) as
a unitary mapping satisfies

FopPγτ (λ) = P ′γ′(λ),

where P and P ′ stand for the orthogonal projections from L2
Δ(ı) onto (mulAτ )

⊥

and from L2
dστ

(R)⊕ C onto L2
dστ

(R) = (mulA′
0)

⊥. Recall that

(I − P )γτ (λ) and (I − P ′)γ′(λ)

are independent of λ and belong to mulAτ and mulA′
0, respectively; cf. Corol-

lary 2.5.16. Hence, the mapping Fm from mulAτ to mulA′
0 defined by

Fm(I − P )γτ (λ) = β
1
2 = (I − P ′)γ′(λ)

is a one-to-one correspondence. In fact, Fm is an isometry due to Proposition 3.5.7.
Define the mapping U from the space L2

Δ(ı) to the model space L2
dστ

(R)⊕ C by

U =

(
Fop 0
0 Fm

)
:

(
(mulAτ )

⊥

mulAτ

)
→
(
(mulA′

0)
⊥

mulA′
0

)
.

Then it is clear that U is unitary and that

Uγτ (λ) = γ′(λ).

Hence, by Theorem 4.2.6, it follows that the boundary triplet {C,Γτ
0 ,Γ

τ
1} for Tmax

and the boundary triplet {C,Γ′
0,Γ

′
1} for S∗ are unitarily equivalent under the

mapping U , in particular, one has

(A′
0)op = Fop(Aτ )opF

−1
op and A′

0 = UAτU
−1.

At the end of this section the case where the endpoint a is in the limit-
circle case and the endpoint b is in the limit-point case is briefly discussed. In
a similar way as in the end of Section 7.7 one makes use of the transformation
in Lemma 7.2.5. The next proposition is the counterpart of Theorem 7.8.2; it is
proved in the same way.

Proposition 7.8.9. Assume that a is in the limit-circle case and that b is in the
limit-point case. Let λ0 in R, let U(·, λ0) be a solution matrix as in Lemma 7.2.5,
and consider the limit

f̃(a) = lim
t→a

U(t, λ0)
−1f(t)
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for {f, g} ∈ Tmax ; cf. Corollary 7.4.8. Then {C,Γ0,Γ1}, where
Γ0{f, g} = f̃1(a) and Γ1{f, g} = f̃2(a), {f, g} ∈ Tmax ,

is a boundary triplet for (Tmin )
∗ = Tmax . Let Y (·, λ) be a fundamental matrix

fixed in such a way that Ỹ (·, λ) = U(·, λ0)
−1Y (·, λ) satisfies Ỹ (a, λ) = I. Then for

all λ ∈ C \ R the γ-field γ and Weyl function M corresponding to {C,Γ0,Γ1} are
given by

γ(λ) = Y1(·, λ) +M(λ)Y2(·, λ) and M(λ) =
χ̃2(a, λ)

χ̃1(a, λ)
,

where χ̃(·, λ) = U(·, λ0)
−1χ(·, λ) and χ(·, λ) is a nontrivial element in Nλ(Tmax ).

7.9 Weyl functions and subordinate solutions

Consider the real definite canonical system (7.2.3) on the interval ı = (a, b) and
assume that the endpoint a is regular and that the endpoint b is in the limit-point
case. Let {C,Γ0,Γ1} be the boundary triplet for Tmax in Theorem 7.7.2 with
γ-field γ and Weyl function M . The spectrum of the self-adjoint extension

A0 = ker Γ0 =
{{f, g} ∈ Tmax : f1(a) = 0

}
will be studied by means of subordinate solutions of the equation Jy′−Hy = λΔy.
The discussion in this section is parallel to the discussion in Section 6.7.

It is useful to take into account all self-adjoint extensions of Tmin . As in
Section 7.8, there is a one-to-one correspondence to the numbers τ ∈ R ∪ {∞} as
restrictions of Tmax via

Aτ =
{{f, g} ∈ Tmax : Γ1{f, g} = τΓ0{f, g}

}
, (7.9.1)

with the understanding that A0 corresponds to τ =∞. As before, let the bound-
ary triplet {C,Γτ

0 ,Γ
τ
1} be defined by the transformation (7.8.15) with the Weyl

function and γ-field given by

Mτ (λ) =
1 + τM(λ)

τ −M(λ)
and γτ (λ) =

√
τ2 + 1

τ −M(λ)
γ(λ), λ ∈ C \ R. (7.9.2)

Recall that the Weyl function and the γ-field are connected via

Mτ (λ)−Mτ (μ)
∗

λ− μ
= γτ (μ)

∗γτ (λ), λ, μ ∈ C \ R. (7.9.3)

The transformation (7.8.15) also induces a transformation of the fundamental
matrix Y (·, λ) with Y (a, λ) = I as in (7.8.17):(

V1(·, λ) V2(·, λ)
)
=
(
Y1(·, λ) Y2(·, λ)

) 1√
τ2 + 1

(
τ 1
−1 τ

)
. (7.9.4)
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Recall that
γτ (λ) = V1(·, λ) +Mτ (λ)V2(·, λ)

is square-integrable with respect to Δ, while the second column of V (·, λ) satisfies
the (formal) boundary condition which determines Aτ ; cf. (7.8.18).

In the next estimates it is more convenient to work in the semi-Hilbert space
L2

Δ(ı) rather than in the Hilbert space L2
Δ(ı). In fact, for each x > a the notation

L2
Δ(a, x) stands for the semi-Hilbert space with the semi-inner product

(f, g)x =

∫ x

a

g(t)∗Δ(t)f(t) dt, f, g ∈ L2
Δ(a, x),

and the seminorm corresponding to (·, ·)x will be denoted by ‖ · ‖x; here the index
Δ is omitted. Hence, for fixed f, g ∈ L2

Δ(a, c), a < c < b, the function x �→ (f, g)x
is absolutely continuous and

d

dx
(f, g)x = g(x)∗Δ(x)f(x) (7.9.5)

holds almost everywhere on (a, c).

Definition 7.9.1. Let λ ∈ C. Then a solution h(·, λ) of Jh′ −Hh = λΔh is said to
be subordinate at b if

lim
x→b

‖h(·, λ)‖x
‖k(·, λ)‖x = 0

for every nontrivial solution k(·, λ) of Jk′ − Hk = λΔk which is not a scalar
multiple of h(·, λ).

The spectrum of the self-adjoint extension A0 will be studied in terms of
solutions of the canonical system Jy′−Hy = ξΔy, ξ ∈ R, which do not necessarily
belong to L2

Δ(a, b). Observe that if a solution h(·, ξ) of Jy′ −Hy = ξΔy belongs
to L2

Δ(a, b), then it is subordinate at b since b is in the limit-point case, and hence
any other nontrivial solution which is not a multiple does not belong to L2

Δ(a, b).

By means of the fundamental system (V1(·, λ) V2(·, λ)) in (7.8.17) define for
any λ ∈ C and h ∈ L2

Δ(a, x), a < x < b,

(H(λ)h)(t) = V1(t, λ)

∫ t

a

V2(s, λ)
∗Δ(s)h(s) ds

− V2(t, λ)

∫ t

a

V1(s, λ)
∗Δ(s)h(s) ds, t ∈ (a, x).

Thus, H(λ) is a well-defined integral operator and it is clear that the function
H(λ)h is absolutely continuous. Using the identity (7.2.10) for V (·, λ) (which holds
because V (a, λ)∗JV (a, λ) = J) one sees in the same way as in (7.2.14)–(7.2.16)
that f = H(λ)h satisfies

Jf ′ −Hf = λΔf +Δh, f(a) = 0.
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In particular, H(λ) maps L2
Δ(a, x) into itself. It follows directly that for λ, μ ∈ C

one has
Vi(·, λ)− Vi(·, μ) = (λ− μ)H(λ)Vi(·, μ), i = 1, 2, (7.9.6)

since the functions on the left-hand side and the right-hand side both satisfy the
same equation Jy′ −Hy = λΔy + (λ − μ)ΔVi(·, μ) and both functions vanish at
the endpoint a.

Lemma 7.9.2. Let a < x < b and let h ∈ L2
Δ(a, x). Then the operator H(λ) satisfies

‖H(λ)h‖2x ≤ 2‖V1(·, λ)‖2x ‖V2(·, λ)‖2x ‖h‖2x
for each x > a.

Proof. The definition of H(λ) may be written as

(H(λ)h)(t) = V1(t, λ)g2(t, λ)− V2(t, λ)g1(t, λ), (7.9.7)

with the functions gi(·, λ), i = 1, 2, defined by

gi(t, λ) =

∫ t

a

Vi(s, λ)
∗Δ(s)h(s) ds.

The Cauchy–Schwarz inequality and Corollary 7.2.9 show that

|gi(t, λ)|2 ≤ ‖Vi(·, λ)‖2t‖h‖2t = ‖Vi(·, λ)‖2t‖h‖2t , i = 1, 2. (7.9.8)

Multiplying (H(λ)h)(t) in (7.9.7) on the left by the matrix Δ(t)
1
2 , using the in-

equality |a+ b|2 ≤ 2(|a|2 + |b|2), and using (7.9.8) one obtains

|Δ(t)
1
2 (H(λ)h)(t)|2

≤ 2
(|Δ(t)

1
2V1(t, λ)|2 |g2(t, λ)|2 + |Δ(t)

1
2V2(t, λ)|2 |g1(t, λ)|2

)
≤ 2
(|Δ(t)

1
2V1(t, λ)|2 ‖V2(·, λ)‖2t‖h‖2t + |Δ(t)

1
2V2(t, λ)|2 ‖V1(·, λ)‖2t‖h‖2t

)
.

Integration of this inequality over (a, x) and (7.9.5) lead to

‖H(λ)h‖2x ≤ 2

∫ x

a

(
|Δ(t)

1
2V1(t, λ)|2‖V2(·, λ)‖2t‖h‖2t

+|Δ(t)
1
2V2(t, λ)|2‖V1(·, λ)‖2t‖h‖2t

)
dt

= 2

∫ x

a

(
d

dt
‖V1(·, λ)‖2t‖V2(·, λ)‖2t

)
‖h‖2t dt

≤ 2‖h‖2x
∫ x

a

(
d

dt
‖V1(·, λ)‖2t‖V2(·, λ)‖2t

)
dt,

which implies the desired result. �
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Since the system is assumed to be definite on ı = (a, b), there is a compact
subinterval [α, β] such that the system is definite on [α, β] and hence on any interval
(a, x) with x > β. This implies that for x > β both functions

x �→ ‖V1(·, λ)‖x and x �→ ‖V2(·, λ)‖x
have positive values; cf. (7.5.1) and Lemma 7.5.2.

Lemma 7.9.3. Let ξ ∈ R be a fixed number. The function x �→ ετ (x, ξ) given by

√
2 ετ (x, ξ)‖V1(·, ξ)‖x‖V2(·, ξ)‖x = 1, x > β,

is well defined, continuous, nonincreasing, and satisfies

lim
x→b

ετ (x, ξ) = 0.

Proof. It is clear that ετ (x, ξ) > 0 is well defined due to the assumption that
x > β. Note that x �→ ‖V1(·, ξ)‖x‖V2(·, ξ)‖x is continuous and nondecreasing. The
assumption that b is in the limit-point case implies that not both V1(·, ξ) and
V2(·, ξ) belong to L2

Δ(ı). Thus, the limit result follows. �

The function x �→ ετ (x, ξ) appears in the estimate in the following theorem.

Theorem 7.9.4. Let Mτ be the Weyl function in (7.9.2) corresponding to the bound-
ary triplet {C,Γτ

0 ,Γ
τ
1}. Assume that ξ ∈ R and let ετ (x, ξ) be as in Lemma 7.9.3.

Then for a < β < x < b

1

d0
≤ ‖V2(·, ξ)‖x
‖V1(·, ξ)‖x |Mτ (ξ + iετ (x, ξ))| ≤ d0,

where d0 = 1 + 2
(√

2 +
√

2 +
√
2
)
.

Proof. Assume that ξ ∈ R and let ε > 0. Define the function ψ(·, ξ, ε) by
ψ(·, ξ, ε) = V1(·, ξ) +Mτ (ξ + iε)V2(·, ξ). (7.9.9)

For any a < x < b this leads to∣∣‖V2(·, ξ)‖x|Mτ (ξ + iε)| − ‖V1(·, ξ)‖x
∣∣ ≤ ‖ψ(·, ξ, ε)‖x

or, equivalently, when β < x < a∣∣∣∣ ‖V2(·, ξ)‖x
‖V1(·, ξ)‖x |Mτ (ξ + iε)| − 1

∣∣∣∣ ≤ ‖ψ(·, ξ, ε)‖x
‖V1(·, ξ)‖x . (7.9.10)

The term on the right-hand side of (7.9.10) will now be estimated in a suitable
way. First note that it follows from (7.9.6) that for λ ∈ C and μ ∈ C \ R one
obtains

V1(·, λ) +Mτ (μ)V2(·, λ)− γτ (μ) = (λ− μ)H(λ)γτ (·, μ). (7.9.11)
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Applying the identity in (7.9.11) with λ = ξ and μ = ξ + iε one sees that

ψ(·, ξ, ε) = γτ (·, ξ + iε)− iεH(ξ)γτ (·, ξ + iε),

which expresses the function ψ(·, ξ, ε) in (7.9.9) in terms of the γ-field γτ . Hence,
it follows from Lemma 7.9.2 that

‖ψ(·, ξ, ε)‖x ≤
(
1 +

√
2 ε ‖V1(·, ξ)‖x‖V2(·, ξ)‖x

)‖γτ (·, ξ + iε)‖x.

Therefore, the right-hand side of (7.9.10) is estimated by(
1 +

√
2 ε ‖V1(·, ξ)‖x‖V2(·, ξ)‖x

) ‖γτ (·, ξ + iε)‖x
‖V1(·, ξ)‖x

=
1 +

√
2 ε ‖V1(·, ξ)‖x‖V2(·, ξ)‖x

(‖V1(·, ξ)‖x‖V2(·, ξ)‖x) 1
2

‖V2(·, ξ)‖
1
2
x

‖V1(·, ξ)‖
1
2
x

‖γτ (·, ξ + iε)‖x.

Now observe that ‖γτ (·, ξ+ iε)‖x ≤ ‖γτ (·, ξ+ iε)‖b and it follows from (7.9.3) that

‖γτ (·, ξ + iε)‖b ≤
√

ImMτ (ξ + iε)

ε
≤
√
|Mτ (ξ + iε)|

ε
.

Thus, for any ε > 0 and β < x < b one obtains the inequality∣∣∣∣ ‖V2(·, ξ)‖x
‖V1(·, ξ)‖x |Mτ (ξ + iε)| − 1

∣∣∣∣
≤ 1 +

√
2 ε ‖V1(·, ξ)‖x‖V2(·, ξ)‖x

(ε ‖V1(·, ξ)‖x‖V2(·, ξ)‖x) 1
2

(‖V2(·, ξ)‖x
‖V1(·, ξ)‖x |Mτ (ξ + iε)|

) 1
2

.

Now for ξ ∈ R and β < x < b choose ε = ετ (x, ξ) in this estimate. This choice
minimizes the first factor on the right-hand side to 25/4. Hence, the nonnegative
quantity

Q =
‖V2(·, ξ)‖x
‖V1(·, ξ)‖x |Mτ (ξ + iετ (x, ξ))|

satisfies the inequality

|Q− 1| ≤ 25/4Q
1
2

or, equivalently, Q2−2Q+1 ≤ 4
√
2Q. Therefore, 1/d0 ≤ Q ≤ d0, which completes

the proof. �

The following result is now a direct consequence of Theorem 7.9.4.

Theorem 7.9.5. Let M be the Weyl function corresponding to the boundary triplet
{C,Γ0,Γ1} and let ξ ∈ R. Then the following statements hold:
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(i) If τ ∈ R, then the solution Y1(·, ξ) + τY2(·, ξ) of the boundary value problem

Jf ′ −Hf = ξΔf, f2(a) = τf1(a),

which is unique up to scalar multiples, is subordinate if and only if

lim
ε ↓ 0

M(ξ + iε) = τ.

(ii) If τ =∞, then the solution Y2(·, ξ) of the boundary value problem

Jf ′ −Hf = ξΔf, f1(a) = 0,

which is unique up to scalar multiples, is subordinate if and only if

lim
ε ↓ 0

M(ξ + iε) =∞.

Proof. Since x �→ ετ (x, ξ) is continuous, nonincreasing, and has limit 0 as x→ b,
one obtains the identity

lim
ε ↓ 0

Mτ (ξ + iε) = lim
x→b

Mτ (ξ + iετ (x, ξ)).

(i) Assume that τ ∈ R and note that

V2(·, ξ) = 1√
τ2 + 1

(
Y1(·, ξ) + τY2(·, ξ)

)
by (7.9.4). It will be shown that |Mτ (ξ + iε)| → ∞ for ε ↓ 0 if and only if the
solution V2(·, ξ) is subordinate. To see this, assume first that |Mτ (ξ + iε)| → ∞.
Then, by Theorem 7.9.4, it follows that

lim
x→b

‖V2(·, ξ)‖x
‖V1(·, ξ)‖x = 0. (7.9.12)

Hence, for any c1, c2 ∈ R, c1 	= 0, one obtains from (7.9.12) that

lim
x→b

‖V2(·, ξ)‖x
‖c1V1(·, ξ) + c2V2(·, ξ)‖x = 0, (7.9.13)

and therefore the solution V2(·, ξ) is subordinate. Conversely, assume that V2(·, ξ)
is subordinate, so that (7.9.13) holds for all c1, c2 ∈ R, c1 	= 0. Then clearly (7.9.12)
holds, and therefore it follows from Theorem 7.9.4 that |Mτ (ξ + iε)| → ∞.

It is a consequence of (7.9.2) that for ε ↓ 0 one has

|Mτ (ξ + iε)| → ∞ ⇔ M(ξ + iε)→ τ.

This equivalence leads to the assertion for τ ∈ R.

(ii) The case τ =∞ can be treated in the same way as (i). �
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The self-adjoint extension A0 = ker Γ0 of Tmin is given by

A0 =
{{f, g} ∈ Tmax : f1(a) = 0

}
; (7.9.14)

cf. (7.9.1). The boundary condition

f1(a) = 0 (7.9.15)

plays a central role in the following definition, which is based on Theorem 7.9.5;
cf. Definition 6.7.6.

Definition 7.9.6. With the canonical system Jf ′−Hf = ξΔf , ξ ∈ R, the following
subsets of R are associated:

(i) M is the complement of the set of all ξ ∈ R for which a subordinate solution
exists that does not satisfy (7.9.15);

(ii) Mac is the set of all ξ ∈ R for which no subordinate solution exists;

(iii) Ms is the set of all ξ ∈ R for which a subordinate solution exists that satisfies
(7.9.15);

(iv) Msc is the set of all ξ ∈ R for which a subordinate solution exists that satisfies
(7.9.15) and does not belong to L2

Δ(ı);

(v) Mp is the set of all ξ ∈ R for which a subordinate solution exists that satisfies
(7.9.15) and belongs to L2

Δ(ı).

It is a direct consequence of Definition 7.9.6 that

R = Mc � Mac � Ms, M = Mac � Ms, and Ms = Msc � Mp,

where � stands for disjoint union.

Let the Weyl function M of the boundary triplet {C,Γ0,Γ1} have the integral
representation

M(λ) = α+ βλ+

∫
R

(
1

t− λ
− t

t2 + 1

)
dσ(t), (7.9.16)

where α ∈ R, β ≥ 0, and the measure σ satisfies∫
R

1

t2 + 1
dσ(t) <∞;

cf. Theorem A.2.5. The following proposition is based on Corollary 3.1.8, where
minimal supports for the various parts of the measure σ in the integral represen-
tation of M are described in terms of the boundary behavior of the Nevanlinna
function M . The proof of Proposition 7.9.7 is the same as the proof of Proposi-
tion 6.7.7 and will not be repeated.
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Proposition 7.9.7. Let M be the Weyl function associated with the boundary triplet
{C,Γ0,Γ1} and let σ be the corresponding measure in (7.9.16). Then the sets

M,Mac,Ms,Msc,Mp,

are minimal supports for the measures

σ, σac, σs, σsc, σp,

respectively.

The minimal supports in Proposition 7.9.7 are intimately connected with the
spectrum of A0. For the absolutely continuous spectrum one obtains in the same
way as in Theorem 6.7.8 the following result, where the notion of the absolutely
continuous closure of a Borel set from Definition 3.2.4 is used. Similar statements
(with an inclusion) can be formulated for the singular parts of the spectrum; cf.
Section 3.6.

Theorem 7.9.8. Let A0 be the self-adjoint relation in (7.9.14) and let Mac be as in
Definition 7.9.6. Then

σac(A0) = closac(Mac).

7.10 Special classes of canonical systems

In this section two particular types of canonical systems are studied. First it is
shown how a class of Sturm–Liouville problems, which are slightly more general
than the equations treated in Chapter 6, fit in the framework of canonical systems.
In this context the results from the previous sections can be carried over to Sturm–
Liouville equations. The second class of canonical systems which is discussed here
consists of systems of the form (7.2.3) with H = 0. In this situation a simple
limit-point/limit-circle criterion is provided.

Weighted Sturm–Liouville equations

Let ı ⊂ R be an open interval. Let 1/p, q, r, s ∈ L1
loc (ı) be real functions, assume

r(t) ≥ 0 for almost all t ∈ ı, and define the 2× 2 matrix functions H and Δ by

H(t) =

(−q(t) −s(t)
−s(t) 1/p(t)

)
and Δ(t) =

(
r(t) 0
0 0

)
, (7.10.1)

respectively. Let the 2× 2 matrix J be as in (7.2.2). If the vector functions f and
g satisfy the canonical system Jf ′−Hf = Δg, then their first components f = f1
and g = g1 satisfy the weighted Sturm–Liouville equation

− (f[1])′ + sf[1] + qf = rg, where f[1] = p(f′ + sf), (7.10.2)
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and, since f ∈ AC(ı), it follows that f, f[1] ∈ AC(ı). Conversely, if f, f[1] ∈ AC(ı)
and f, g satisfy (7.10.2), then the vector functions

f =

(
f

f[1]

)
and g =

(
g
0

)
,

satisfy the canonical system (7.2.3) with the coefficients given by (7.10.1). Since
the functions 1/p, q, r, s are assumed to be real, the system Jf ′ − Hf = Δg is
real. Moreover, the canonical system corresponding to (7.10.1) is definite, when
any solution f of Jf ′ −Hf = 0 which satisfies Δf = 0 vanishes or, equivalently,

−f ′
2 + qf1 + sf2 = 0, f ′

1 + sf1 − (1/p)f2 = 0, rf1 = 0 ⇒ f = 0.

In accordance with the definition of definiteness for canonical equations, the
Sturm–Liouville equation (7.10.2) is said to be definite if

−(f[1])′ + sf[1] + qf = 0, rf = 0 ⇒ f = 0.

In particular, the Sturm–Liouville equation (7.10.2) is definite if the weight func-
tion r is positive on an open interval.

The matrix function Δ in (7.10.1) induces the spaces L2
Δ(ı) and L2

Δ(ı). With
the weight r it is natural to introduce the space L2

r(ı) of all complex measurable
functions ϕ for which∫

ı

|ϕ(s)|2r(s) ds =
∫
ı

ϕ(s)∗r(s)ϕ(s) ds <∞.

The corresponding semi-inner product is denoted by (·, ·)r and the corresponding
Hilbert space of equivalence classes of elements from L2

r(ı) is denoted by L2
r(ı). It

is clear that the mapping R defined by

f =

(
f1
f2

)
∈ L2

Δ(ı) �→ f1 ∈ L2
r(ı)

is an isometry with respect to the semi-inner products, thanks to the identity

(f, f)Δ =

∫
ı

(
f1(s)

∗ f2(s)
∗)(r(s) 0

0 0

)(
f1(s)
f2(s)

)
ds = (f1, f1)r.

Furthermore, this mapping is onto, since each function in L2
r(ı) can be regarded as

the first component of an element in L2
Δ(ı) with the understanding that the second

component can be any measurable function. Therefore, the mapping R induces a
unitary operator, again denoted by R, from L2

Δ(ı) onto L2
r(ı).

Assume now that the system or, equivalently, the Sturm–Liouville equation is
definite. In the Hilbert space L2

Δ(ı) there are the preminimal relation T0, minimal
relation Tmin , and maximal relation Tmax associated with the canonical system
Jf ′ −Hf = Δg:

T0 ⊂ T 0 = Tmin ⊂ Tmax = (Tmin )
∗.
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Likewise, one can define corresponding relations in the Hilbert space L2
r(ı). The

maximal relation Tmax is defined as follows:

Tmax =
{{f, g} ∈ L2

r(ı)× L2
r(ı) : −(pf[1])′ + sf[1] + qf = rg

}
,

in the sense that there exist representatives f and g ∈ L2
r(ı) of f and g, respec-

tively, such that f ∈ AC(ı), pf[1] ∈ AC(ı), and (7.10.2) holds. It is clear that
the definiteness of the canonical system or, equivalently, of the equation (7.10.2)
implies that each element f ∈ domTmax has a unique representative f such that
f ∈ AC(ı), pf[1] ∈ AC(ı); cf. Lemma 7.6.1. The preminimal relation T0 and the
minimal relation Tmin are defined by

T0 =
{{f, g} ∈ Tmax : f has compact support

}
and Tmin = T0.

It is not difficult to see that the mapping R̂ defined by

R̂{f, g} = {Rf,Rg}, {f, g} ∈ L2
Δ(ı)× L2

Δ(ı),

takes Tmax one-to-one onto Tmax , including absolutely continuous representatives,
and that with {f, g} = R̂{f, g} and {h, k} = R̂{h, k}:

(g, h)Δ − (f, k)Δ = (g, h)r − (f, k)r, {f, g}, {h, k} ∈ Tmax . (7.10.3)

Similarly, R̂ takes T0 one-to-one onto T0 and hence R̂ takes Tmin one-to-one onto
Tmin .

In the Hilbert space L2
r(ı) the relations T0, Tmin , and Tmax associated with

the Sturm–Liouville equation (7.10.2) satisfy

T0 ⊂ T0 = Tmin ⊂ Tmax = (Tmin )
∗.

Furthermore, R maps ker (Tmax − λ) one-to-one onto ker (Tmax − λ). Since the
functions p, q, s, and r are real, it follows that the defect numbers of Tmin and
Tmin are equal. Let {G,Γ0,Γ1} be a boundary triplet for Tmax and let Tmax be
the corresponding maximal relation for the Sturm–Liouville operator. Then the
mappings Γ′

0 and Γ′
1 from Tmax to G given by

Γ′
0{f, g} = Γ0{f, g} and Γ′

1{f, g} = Γ1{f, g}, {f, g} = R̂{f, g}, (7.10.4)

form a boundary triplet for Tmax ; cf. (7.10.3). The boundary triplet {G,Γ0,Γ1}
and the one in (7.10.4) have the same Weyl function.

Via the above identification, the discussion and the results for canonical
systems with regular, quasiregular, and singular endpoints in Section 7.7 and Sec-
tion 7.8 remain valid for weighted Sturm–Liouville equations of the form (7.10.2).
Note that in the special case where s(t) = 0 and r(t) > 0 for almost all t ∈ ı the
Sturm–Liouville expression (7.10.2) coincides with the Sturm–Liouville expression
studied in Chapter 6.



7.10. Special classes of canonical systems 569

Special canonical systems

This subsection is devoted to the special class of canonical differential equations
which have the form

Jf ′ = λΔf +Δg (7.10.5)

on an open interval ı = (a, b), i.e., the class of canonical systems of the form
(7.2.3) with H = 0. It will be assumed that the system is real and definite on
ı. Here definiteness means that the identity Δ(t)e = 0 for some e ∈ C2 and all
t ∈ ı implies e = 0. Note that Lemma 7.2.5 shows that any real definite canonical
system of the form (7.2.3) can be transformed into the form (7.10.5) with a possible
real shift of the eigenvalue parameter. For this class of equations the limit-point
and limit-circle classification at an endpoint can be characterized in terms of the
integrability of the function Δ.

Theorem 7.10.1. Let the canonical system (7.10.5) be real and definite, and let the
endpoint a be regular. Then there is the alternative:

(i) Δ is integrable and the endpoint b is in the limit-circle case;

(ii) Δ is not integrable and the endpoint b is in the limit-point case.

Proof. By assumption, the canonical system (7.10.5) is real and definite, and the
endpoint a is regular. If Δ is integrable on ı, then b is quasiregular, which implies
that b is in the limit-circle case; see Corollary 7.4.6. Therefore, it suffices to show
that if Δ not integrable, then b is in the limit-point case. Hence, assume that Δ
is not integrable at b, so that

∞ =

∫ b

a

|Δ(s)| ds ≤
∫ b

a

trΔ(s) ds, (7.10.6)

where the estimate |Δ(s)| ≤ trΔ(s) follows from (7.1.6). In order to show that
the endpoint b is in the limit-point case one must verify that

lim
t→b

h(t)∗Jf(t) = 0

for all {f, g}, {h, k} ∈ Tmax ; cf. Lemma 7.6.8. Since the limit on the left-hand side
exists due to Lemma 7.6.4, it suffices to verify the weaker statement

lim inf
t→b

h(t)∗Jf(t) = 0 (7.10.7)

for all {f, g}, {h, k} ∈ Tmax . According to Corollary 7.6.6 and the von Neumann
formula in Theorem 1.7.11, it then suffices to prove (7.10.7) for elements of the
form f = uf + vf and h = uh + vh, where

{uf , λuf}, {uh, λuh} ∈ Tmax and {vf , μvf}, {vh, μvh} ∈ Tmax
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with λ and μ in different half-planes. Finally, by polarization, it is clearly sufficient
to show that

lim inf
t→b

f(t)∗Jf(t) = 0 (7.10.8)

for f = u+ v, where {u, λu}, {v, μv} ∈ Tmax . The proof of (7.10.8) is carried out
in five steps.

Step 1. Let u be a solution of the homogeneous equation Jy′ = λΔy which satisfies
u ∈ L2

Δ(ı). Then

u(t) = u(a) +

∫ t

a

J−1λΔ(s)u(s) ds. (7.10.9)

Hence, it follows from (7.10.9) as in Lemma 7.1.4 that

|u(t)| ≤ |u(a)|+ |λ|
∫ t

a

|Δ(s)u(s)| ds

≤ |u(a)|+ |λ|
(∫ t

a

|Δ(s)| ds
) 1

2
(∫ t

a

|Δ(s)
1
2u(s)|2 ds

) 1
2

≤ |u(a)|+ |λ|
(∫ t

a

|Δ(s)| ds
) 1

2

‖u‖Δ.

Due to the estimate |Δ(s)| ≤ trΔ(s) one obtains

|u(t)| ≤ |u(a)|+ |λ|
(∫ t

a

trΔ(s) ds

) 1
2

‖u‖Δ. (7.10.10)

It is clear that for a solution v of the homogeneous equation Jy′ = μΔy which
satisfies v ∈ L2

Δ(ı) one obtains the similar inequality

|v(t)| ≤ |v(a)|+ |μ|
(∫ t

a

trΔ(s) ds

) 1
2

‖v‖Δ. (7.10.11)

Step 2. Let u and v be as in Step 1 with λ and μ in different half-planes. Due

to the assumption
∫ b

a
trΔ(s) ds = ∞ in (7.10.6), one can choose t0 > a so large

that
∫ t

a
trΔ(s) ds ≥ 1 for t ≥ t0. Then it follows from the estimates (7.10.10) and

(7.10.11) that

|u(t)| ≤
(∫ t

a

trΔ(s) ds

) 1
2 (|u(a)|+ |λ| ‖u‖Δ), t ≥ t0,

|v(t)| ≤
(∫ t

a

trΔ(s) ds

) 1
2 (|v(a)|+ |μ| ‖v‖Δ), t ≥ t0.
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Consequently, for f = u+ v,

|f(t)| ≤ Cf

(∫ t

a

trΔ(s) ds

) 1
2

, t ≥ t0, (7.10.12)

where Cf = |u(a)|+ |λ| ‖u‖Δ + |v(a)|+ |μ| ‖v‖Δ.
Step 3. Define the 2× 2 matrix function Δ0 by

Δ0(t) =

{
(trΔ(t))−1Δ(t), trΔ(t) 	= 0,
1
2I, trΔ(t) = 0,

for almost every t ∈ ı. Since trΔ(t) = 0 implies Δ(t) = 0 (see (7.1.6)), one has
Δ(t) = (trΔ(t))Δ0(t). Then Δ0 is nonnegative and

Δ0 =

(
α β
β δ

)
,

where the functions α and δ are nonnegative with α + δ = 1, and the function β
is real. Define the matrix function Δ1 by

Δ1 =
(
(sgnβ)α

1
2 δ

1
2

)∗ (
(sgnβ)α

1
2 δ

1
2

)
=

(
α (sgnβ)α

1
2 δ

1
2

(sgnβ)α
1
2 δ

1
2 δ

)
;

(7.10.13)

then Δ1 is nonnegative. Moreover, since α
1
2 δ

1
2 ≥ (sgnβ)β it follows that the matrix

2Δ0 −Δ1 =

(
α 2β − (sgnβ)α

1
2 δ

1
2

2β − (sgnβ)α
1
2 δ

1
2 δ

)
is nonnegative. Therefore, Δ1(t) ≤ 2Δ0(t) and one has the estimate

(trΔ(t))Δ1(t) ≤ 2(trΔ(t))Δ0(t) = 2Δ(t) (7.10.14)

for almost every t ∈ ı.

Step 4. It will be shown that

lim inf
t→b

[
f(t)∗Δ1(t)f(t)

∫ t

a

trΔ(s) ds

]
= 0 (7.10.15)

for f ∈ L2
Δ(ı) and, in particular, for f = u+ v as in Step 2. In fact, assume that

(7.10.15) does not hold. Then there exist a < a′ < b and ε > 0 such that for all
t ≥ a′

ε ≤ f(t)∗Δ1(t)f(t)

∫ t

a

trΔ(s) ds
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or, equivalently,

ε
trΔ(t)∫ t

a
trΔ(s) ds

≤ f(t)∗Δ1(t)f(t) trΔ(t). (7.10.16)

Integration of the right-hand side of (7.10.16) together with (7.10.14) lead to∫ b

a′
f(t)∗Δ1(t)f(t) trΔ(t) dt ≤ 2

∫ b

a′
f(t)∗Δ(t)f(t) dt <∞,

while integration of the left-hand side of (7.10.16) gives

ε

∫ b

a′

trΔ(t)∫ t

a
trΔ(s) ds

dt = ε

∫ b

a′

d

dt

(
log

∫ t

a

trΔ(s) ds

)
dt =∞,

due to (7.10.6). This contradiction shows that (7.10.15) is valid.

Step 5. It will be shown that for f = u + v as in Step 2 the limit in (7.10.15)
implies the limit in (7.10.8). It is helpful to introduce the notation

ϕ =
(
(sgnβ)α

1
2 δ

1
2

)(f1
f2

)
,

so that |ϕ|2 = f∗Δ1f ; cf. (7.10.13). Then the limit result (7.10.15) can be written
as

lim inf
t→b

[
|ϕ(t)|2

∫ t

a

trΔ(s) ds

]
= 0. (7.10.17)

Observe that the term f∗Jf in (7.10.8) is given by

f∗Jf = 2iIm (f2f1). (7.10.18)

To estimate the term |Im (f2f1)| note that, by the definition of the function ϕ,

f1ϕ = (sgnβ)α
1
2 f1f1 + δ

1
2 f1f2 and f2ϕ = (sgnβ)α

1
2 f2f1 + δ

1
2 f2f2.

This yields the identities

Im (f1ϕ) = δ
1
2 Im (f1f2) and Im (f2ϕ) = (sgnβ)α

1
2 Im (f2f1).

Therefore, it is clear that

δ
1
2 |Im (f1f2)| = |Im (f1ϕ)| ≤ |f1| |ϕ| (7.10.19)

and
α

1
2 |Im (f2f1)| = |Im (f2ϕ)| ≤ |f2| |ϕ|. (7.10.20)

Since α + δ = 1, one has α < 1
2 if and only if δ ≥ 1

2 . Note that x ≥ 1
2 if and only

if 1/
√
x ≤ √2, so it follows from (7.10.18) and (7.10.19)–(7.10.20) that

|f∗Jf | ≤
{
2
√
2 |ϕ||f2|, α ≥ 1

2 ,

2
√
2 |ϕ||f1|, δ ≥ 1

2 .
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Therefore, if t ≥ t0, then (7.10.12) implies that

|f(t)∗Jf(t)| ≤ 2
√
2Cf |ϕ(t)|

(∫ t

a

trΔ(s) ds

) 1
2

, t ≥ t0.

Combined with (7.10.17) this shows that (7.10.8) is satisfied. �

The next corollary follows from Theorem 7.10.1 and (7.1.6).

Corollary 7.10.2. Let the canonical system (7.10.5) be real and definite, and let the
endpoint a be regular. Assume that Δ is trace-normed in the sense that trΔ = 1.
Then the following alternative holds:

(i) if b ∈ R, then the limit-circle case prevails;

(ii) if b =∞, then the limit-point case prevails.

Next two simple examples for trace-normed canonical systems are discussed.

Example 7.10.3. Let ı = (−1, 1) and define the matrix function Δ by

Δ(t) =

(
1 0
0 0

)
, t ∈ (−1, 0), Δ(t) =

(
0 0
0 1

)
, t ∈ (0, 1).

A measurable function f = (f1, f2)
� belongs to L2

Δ(ı) if and only if∫ 0

−1

|f1(t)|2 dt <∞ and

∫ 1

0

|f2(t)|2 dt <∞,

and for f, g ∈ L2
Δ(ı) the semi-inner product is given by

(f, g)Δ =

∫ 0

−1

g1(t)f1(t) dt+

∫ 1

0

g2(t)f2(t) dt.

Hence, an element f ∈ L2
Δ(ı) has Δ-norm 0 if and only if(

f1(t)
f2(t)

)
=

(
0

f2(t)

)
for a.e. t ∈ (−1, 0)

and (
f1(t)
f2(t)

)
=

(
f1(t)
0

)
for a.e. t ∈ (0, 1),

where f2 on (−1, 0) and f1 on (0, 1) are completely arbitrary complex measurable
functions.

It is straightforward to see that the regular canonical system Jf ′ = Δg is
definite. Hence, in the Hilbert space L2

Δ(ı) the maximal relation

Tmax =
{{f, g} ∈ L2

Δ(ı)× L2
Δ(ı) : Jf

′ = Δg
}
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is well defined and for each {f, g} ∈ Tmax the equivalence class f contains a unique
absolutely continuous representative such that Jf ′ = Δg; cf. Lemma 7.6.1. In fact,
an absolutely continuous function f = (f1, f2)

� satisfies Jf ′ = Δg with g ∈ L2
Δ(ı)

if and only if (
f1(t)
f2(t)

)
=

(
γ1

γ2 +
∫ 0

t
g1(s) ds

)
for a.e. t ∈ (−1, 0)

and (
f1(t)
f2(t)

)
=

(
γ1 +

∫ t

0
g2(s) ds

γ2

)
for a.e. t ∈ (0, 1)

for some constants γ1, γ2 ∈ C. From the equality∫ 1

−1

(
f(t)−

(
γ1
γ2

))∗
Δ(t)

(
f(t)−

(
γ1
γ2

))
dt = 0

it follows that f = (f1, f2)
� and (γ1, γ2)

� are in the same equivalence class in
L2
Δ(ı). Therefore,

dim
(
domTmax

)
= 2,

and the functions ϕ = (1, 0)� and ψ = (0, 1)� form an orthonormal system in
domTmax . Furthermore, it follows from the representation of Tmin in Lemma 7.7.1
that {f, g} ∈ Tmin if and only if

γ1 = 0, γ2 = 0,

∫ 0

−1

g1(t) dt = 0,

∫ 1

0

g2(t) dt = 0.

Hence,
domTmin = {0} and mulTmin = (domTmax )

⊥,

and
mulTmax = (domTmin )

⊥ = L2
Δ(ı).

The boundary mappings in Theorem 7.7.2 are given by

Γ0{f, g} = 1√
2

⎛⎝ 2γ1 +
∫ 1

0
g2(t) dt

2γ2 +
∫ 0

−1
g1(t) dt

⎞⎠ and Γ1{f, g} = 1√
2

⎛⎝∫ 0

−1
g1(t) dt∫ 1

0
g2(t) dt

⎞⎠ .

In order to compute the γ-field and Weyl function corresponding to the boundary
triplet {C2,Γ0,Γ1} fix a fundamental system by Y (−1, λ) = I. Then

Y (t, λ) =

(
1 0

−λt− λ 1

)
for a.e. t ∈ (−1, 0),

Y (t, λ) =

(−λ2t+ 1 λt
−λ 1

)
for a.e. t ∈ (0, 1).
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Hence, it follows from Theorem 7.7.2 that the γ-field γ and the Weyl function M
are given by

γ(·, λ) = Y (·, λ)
√
2

4− λ2

(
2 −λ
λ 2− λ2

)
and M(λ) =

1

4− λ2

(
2λ −λ2

−λ2 2λ

)
.

In particular, the poles of M are {−2, 2} and hence the spectrum of A0 consists
of the eigenvalues 2 and −2 which both have multiplicity 1.

The next example is a variant of Example 7.10.3 in the limit-point case.

Example 7.10.4. Let ı = (−1,∞) and define the matrix function Δ by

Δ(t) =

(
1 0
0 0

)
, t ∈ (−1, 0), Δ(t) =

(
0 0
0 1

)
, t ∈ (0,∞).

As in Example 7.10.3, a measurable function f = (f1, f2)
� belongs to L2

Δ(ı) if and
only if ∫ 0

−1

|f1(t)|2 dt <∞ and

∫ ∞

0

|f2(t)|2 dt <∞.

The semi-inner product and the elements with Δ-norm 0 are as in Example 7.10.3,
except that the interval (0, 1) has to be replaced by (0,∞). Furthermore, the canon-
ical system Jf ′ = Δg is definite and in the limit-point case; cf. Corollary 7.10.2.
Hence, the maximal relation

Tmax =
{{f, g} ∈ L2

Δ(ı)× L2
Δ(ı) : Jf

′ = Δg
}

is well defined in L2
Δ(ı). In a similar way as in Example 7.10.3 it follows that an

absolutely continuous function f = (f1, f2)
� ∈ L2

Δ(ı) satisfies Jf ′ = Δg with
g ∈ L2

Δ(ı) if and only if(
f1(t)
f2(t)

)
=

(
γ1∫ 0

t
g1(s) ds

)
for a.e. t ∈ (−1, 0)

and (
f1(t)
f2(t)

)
=

(
γ1 +

∫ t

0
g2(s) ds
0

)
for a.e. t ∈ (0,∞)

hold for some constant γ1 ∈ C. The functions f = (f1, f2)
� and (γ1, 0)

� are in
the same equivalence class in L2

Δ(ı) and therefore

dim
(
domTmax

)
= 1,

and domTmax is spanned by the function ϕ = (1, 0)�. It follows from Lemma 7.8.1
that {f, g} ∈ Tmin if and only if

γ1 = 0 and

∫ 0

−1

g1(t) dt = 0.
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Hence, domTmin = {0}, and mulTmin and mulTmax are related as in Exam-
ple 7.10.3.

The boundary mappings in Theorem 7.8.2 are given by

Γ0{f, g} = γ1 and Γ1{f, g} =
∫ 0

−1

g1(t) dt.

To compute the γ-field and Weyl function corresponding to the boundary triplet
{C,Γ0,Γ1} use the fundamental system

Y (t, λ) =

(
1 0

−λt− λ 1

)
for a.e. t ∈ (−1, 0),

Y (t, λ) =

(−λ2t+ 1 λt
−λ 1

)
for a.e. t ∈ (0,∞).

Clearly, not both colums of Y (·, λ) belong to L2
Δ(ı), but the function χ(·, λ)

given by (
1
−λt
)

for a.e. t ∈ (−1, 0),
(
1
0

)
for a.e. t ∈ (0,∞),

belongs to L2
Δ(ı) and satisfies Jχ′(·, λ) = λΔχ(·, λ). Hence, by Theorem 7.8.2, the

γ-field γ and the Weyl function M are given by

γ(·, λ) = Y (·, λ)
(
1
λ

)
and M(λ) = λ.
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Chapter 8

Schrödinger Operators on
Bounded Domains

For the multi-dimensional Schrödinger operator −Δ+ V with a bounded real po-
tential V on a bounded domain Ω ⊂ Rn with a C2-smooth boundary a boundary
triplet and a Weyl function will be constructed. The self-adjoint realizations of
−Δ + V in L2(Ω) and their spectral properties will be investigated. One of the
main difficulties here is to provide trace mappings on the domain of the maxi-
mal realization, in such a way that the second Green identity remains valid in an
appropriate form. It is necessary to introduce and study Sobolev spaces on the
domain Ω and its boundary ∂Ω, which will be done in Section 8.2; in this context
also the rigged Hilbert spaces from Section 8.1 arise as Sobolev spaces and their
duals. The minimal and maximal operators, and the Dirichlet and Neumann trace
maps on the maximal domain will be discussed in Section 8.3, and in Section 8.4
a boundary triplet and Weyl function for the maximal operator associated with
−Δ + V is provided. The self-adjoint realizations, their spectral properties, and
some natural boundary conditions are also discussed in Section 8.4. The class of
semibounded self-adjoint realizations of −Δ + V in L2(Ω) and the correspond-
ing semibounded forms are studied in Section 8.5. For this purpose a boundary
pair which is compatible with the boundary triplet in Section 8.4 is provided.
Orthogonal couplings of Schrödinger operators are treated in Section 8.6 for the
model problem in which Rn decomposes into a bounded C2-domain Ω+ and an
unbounded component Ω− = Rn \ Ω+. Finally, in Section 8.7 the more general
setting of Schrödinger operators on bounded Lipschitz domains is briefly discussed.

8.1 Rigged Hilbert spaces

In this preparatory section the notion of rigged Hilbert spaces or Gelfand triples
is briefly recalled. For this, let G and H be Hilbert spaces and assume that G
is densely and continuously embedded in H, that is, one has G ⊂ H and the

© The Author(s) 2020
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embedding operator ι : G ↪→ H is continuous with dense range and ker ι = {0}.
In the following the dual space H′ is identified with H, but the dual space G′ of
antilinear continuous functionals is not identified with G. Instead, the isometric
isomorphism

I : G′ → G, g′ �→ Ig′, where (Ig′, g)G = g′(g), g ∈ G, (8.1.1)

is written explicitly whenever used. In fact, in this section the continuous (antilin-
ear) functionals on G will be identified via the scalar product in H. In the following
usually the notation

〈g′, g〉G′×G := g′(g) (8.1.2)

is employed for the (antilinear) dual pairing in (8.1.1), and when no confusion can
arise the index is suppressed, that is, one writes 〈g′, g〉 = g′(g) for (8.1.2).

In the above setting the dual operator of the embedding operator ι : G ↪→ H
is given by

ι′ : H ↪→ G′, (ι′h)(g) = (h, ιg)H, g ∈ G, (8.1.3)

and in terms of the pairing 〈·, ·〉 this means

〈ι′h, g〉 = (h, ιg)H, h ∈ H, g ∈ G. (8.1.4)

Since the scalar product (·, ·)H is antilinear in the second argument one has
〈ι′h, λg〉 = λ〈ι′h, g〉 for λ ∈ C, and hence ι′h is indeed antilinear. Observe that
the dual operator ι′ in (8.1.3) is continuous since ι is continuous. Moreover, from
the identity ker ι′ = (ran ι)⊥H it follows that ι′ is injective, and the range of ι′ is
dense in G′ since ker ι′′ = (ran ι′)⊥G′ and ι = ι′′ as G is reflexive. Thus,

G
ι
↪→ H

ι′
↪→ G′ with ran ι ⊂ H dense and ran ι′ ⊂ G′ dense,

and since G can be viewed as a subspace of H, and H can be viewed as a subspace
of G′, instead of (8.1.4) also the notation

〈h, g〉 = (h, g)H, h ∈ H, g ∈ G, (8.1.5)

will be used. The present situation will appear naturally in the context of Sobolev
spaces later in this chapter. First the terminology will be fixed in the next defini-
tion.

Definition 8.1.1. Let G and H be Hilbert spaces such that G is densely and con-
tinuously embedded in H. Then the triple {G,H,G′} is a called a Gelfand triple
or a rigged Hilbert space.

Assume now that {G,H,G′} is a Gelfand triple. Since the embedding operator
ι : G ↪→ H is continuous, one has ‖g‖H ≤ C‖g‖G for all g ∈ G with the constant
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C = ‖ι‖ > 0. Moreover, as G is a Hilbert space it follows from Lemma 5.1.9 that
the symmetric form

t[g1, g2] := (g1, g2)G, dom t = G,

is densely defined and closed in H with a positive lower bound. Hence, by the
first representation theorem (Theorem 5.1.18) there exists a unique self-adjoint
operator T with the same positive lower bound in H, such that domT ⊂ dom t
and

(g1, g2)G = t[g1, g2] = (Tg1, g2)H, g1 ∈ domT, g2 ∈ G.

Moreover, if R := T
1
2 , then the second representation theorem (Theorem 5.1.23)

implies domR = dom t and

(g1, g2)G = t[g1, g2] = (Rg1, Rg2)H, g1, g2 ∈ domR = G. (8.1.6)

Note that R is a uniformly positive self-adjoint operator in H.

In the next lemma some more properties of the Gelfand triple {G,H,G′} and
the operator R are collected.

Lemma 8.1.2. Let {G,H,G′} be a Gelfand triple, let I : G′ → G be the isometric
isomorphism in (8.1.1), and let R be the uniformly positive self-adjoint operator
in H such that (8.1.6) holds. Then the following statements hold:

(i) The Hilbert space G′ coincides with the completion of H equipped with the
inner product (R−1·, R−1·)H.

(ii) The operators ι+ = R : G → H and ι− = R I : G′ → H are isometric
isomorphisms such that

(ι−g′, ι+g)H = 〈g′, g〉, g ∈ G, g′ ∈ G′. (8.1.7)

(iii) For all h ∈ H one has ι−h = R−1h.

(iv) For all h ∈ H and g ∈ G one has ι+ι−h = h and ι−ι+g = g.

(v) The operator R−2 can be extended by continuity to an isometric operator

R̃−2 : G′ → G which coincides with the isometric isomorphism I : G′ → G.

Proof. (i) Consider an element g′ ∈ G′ and assume, in addition, that g′ ∈ H. Then
one has

‖g′‖G′ = sup
g∈G\{0}

|g′(g)|
‖g‖G = sup

g∈G\{0}

|〈g′, g〉|
‖g‖G = sup

g∈G\{0}

|(g′, g)H|
‖g‖G ,

where (8.1.2) was used in the second equality, and g′ ∈ H and (8.1.5) were used
in the last step. Since R is uniformly positive, one has R−1 ∈ B(H), and using
(8.1.6) one obtains

‖g′‖G′ = sup
g∈G\{0}

|(R−1g′, Rg)H|
‖Rg‖H = sup

h∈H\{0}

|(R−1g′, h)H|
‖h‖H = ‖R−1g′‖H.
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Therefore, ‖g′‖G′ = ‖R−1g′‖H for all g′ ∈ H ⊂ G′ and as H is dense in G′ with
respect to the norm ‖ · ‖G′ , one concludes that G′ coincides with the completion
of H with respect to the norm ‖R−1 · ‖H.
(ii) Observe that by the definition of ι+ and (8.1.6) one has

‖ι+g‖H = ‖Rg‖H = ‖g‖G, g ∈ G = dom ι+ = domR,

and hence ι+ : G → H is isometric. Moreover, since R is bijective, it follows that
ι+ is an isometric isomorphism. Similarly, for g′ ∈ G′ one has

‖ι−g′‖H = ‖R Ig′‖H = ‖Ig′‖G = ‖g′‖G′ ,

where in the last step it was used that I : G′ → G is an isometric isomorphism. In
order to check the identity (8.1.7), let g′ ∈ G′ and g ∈ G. Then (8.1.6) and (8.1.1)
imply

(ι−g′, ι+g)H = (R Ig′, Rg)H = (Ig′, g)G = 〈g′, g〉. (8.1.8)

(iii) Let g′ ∈ H ⊂ G′ and g ∈ G. By (8.1.5), one has

〈g′, g〉 = (g′, g)H = (R−1g′, Rg)H = (R−1g′, ι+g)H

and comparing this with (8.1.8) it follows that R−1g′ = ι−g′ for all g′ ∈ H.

(iv) By the definition of ι+ and (iii) it is clear that ι+ι−h = RR−1h = h. Similarly,
ι−ι+g = ι−Rg = R−1Rg = g for g ∈ G by (iii).

(v) For h ∈ H one has ‖R−2h‖G = ‖R−1h‖H = ‖h‖G′ by (8.1.6) and (i), and since
H is dense in G′, it follows that R−2 admits an extension to an isometric operator
R̃−2 : G′ → G. Moreover, for h ∈ H it follows from the definition of ι− in (ii) and
(iii) that

R Ih = ι−h = R−1h, and hence Ih = R−2h.

Thus I and the restriction R−2 of R̃−2 coincide on the dense subspace H ⊂ G′.
This implies I = R̃−2. �

Now a different point of view is taken on Gelfand triples. In the next lemma it
is shown that the powers Rs for s ≥ 0 of a uniformly positive self-adjoint operator
R in H give rise to Gelfand triples with certain compatibility properties.

Lemma 8.1.3. Let H be a Hilbert space and let R be a uniformly positive self-adjoint
operator R in H. Let s ≥ 0 and equip Gs := domRs with the inner product

(h, k)Gs
:= (Rsh,Rsk)H, h, k ∈ domRs. (8.1.9)

Then Gt ⊂ Gs for all t ≥ s ≥ 0 and the following statements hold:

(i) {Gs,H,G
′
s} is a Gelfand triple and the assertions in Lemma 8.1.2 hold with

R, G, and G′ replaced by Rs, Gs, and G′
s, respectively.
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(ii) If ι+ : G1 → H and ι− : G′
1 → H denote the isometric isomorphisms corre-

sponding to the Gelfand triple {G1,H,G
′
1} such that

(ι−g′, ι+g)H = 〈g′, g〉G′
1×G1

, g′ ∈ G′
1, g ∈ G1,

then their restrictions

ι+ = R : Gs+1 → Gs and ι− = R−1 : Gs → Gs+1, s ≥ 0, (8.1.10)

are isometric isomorphisms such that ι+ι−g = g for g ∈ Gs and ι−ι+l = l
for l ∈ Gs+1.

Proof. (i) For s ≥ 0 the self-adjoint operator Rs is uniformly positive in H and
hence Gs = domRs equipped with the inner product (8.1.9) is a Hilbert space
which is dense in H. Moreover, from R−s ∈ B(H) and (8.1.9) one obtains that

‖g‖H = ‖R−sRsg‖H ≤ ‖R−s‖‖Rsg‖H = ‖R−s‖‖g‖Gs
, g ∈ Gs,

which shows that the embedding Gs ↪→ H is continuous. Therefore, if G′
s denotes

the dual of Gs, then {Gs,H,G
′
s} is a Gelfand triple. Comparing (8.1.9) with (8.1.6)

shows that the operator Rs plays the same role as the representing operator of
the inner product in (8.1.6). Hence, the assertions of Lemma 8.1.2 are valid with
R, G, and G′ replaced by Rs, Gs, and G′

s, respectively.

(ii) Let s ≥ 0 and consider l ∈ Gs+1 = domRs+1. It follows from (8.1.9) that

‖Rl‖Gs = ‖RsRl‖H = ‖Rs+1l‖H = ‖l‖Gs+1

and hence ι+ = R : Gs+1 → Gs is isometric. In order to verify that this mapping
is onto let k ∈ Gs. Then k ∈ H, and as R is bijective, there exists l ∈ domR
such that Rl = k. Therefore, l = R−1k and as k ∈ Gs = domRs one concludes
l ∈ domRs+1 = Gs+1. This shows that ι+ = R : Gs+1 → Gs is an isometric
isomorphism for s ≥ 0. A similar reasoning shows that ι− = R−1 : Gs → Gs+1

is an isometric isomorphism for s ≥ 0. The remaining assertions ι+ι−g = g for
g ∈ Gs and ι−ι+l = l for l ∈ Gs+1 follow immediately from (8.1.10). �

8.2 Sobolev spaces, C2-domains, and trace operators

In this section Sobolev spaces on Rn, open subsets Ω ⊂ Rn, and on the boundaries
∂Ω of C2-domains are defined and some of their features are briefly recalled.
Furthermore, the mapping properties of the Dirichlet and Neumann trace map on
a C2-domain Ω are recalled and the first Green identity is established.

For s ≥ 0 the scale of L2-based Sobolev spaces Hs(Rn) is defined with the
help of the (classical) Fourier transform F ∈ B(L2(Rn)) by

Hs(Rn) :=
{
f ∈ L2(Rn) : (1 + | · |2)s/2Ff ∈ L2(Rn)

}
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and Hs(Rn) is equipped with the natural norm

‖f‖Hs(Rn) :=
∥∥(1 + | · |2)s/2Ff∥∥

L2(Rn)
, f ∈ Hs(Rn),

and corresponding scalar product

(f, g)Hs(Rn) :=
(
(1 + | · |2)s/2Ff, (1 + | · |2)s/2Fg)

L2(Rn)
, f, g ∈ Hs(Rn).

Then the space Hs(Rn) is a separable Hilbert space for every s ≥ 0 and one has
H0(Rn) = L2(Rn). It is also useful to note that the space C∞

0 (Rn) is dense in
Hs(Rn) for all s ≥ 0. Since the Fourier transform is a unitary operator in L2(Rn),
it is clear that

R = F−1(1 + | · |2)1/2F
is a uniformly positive self-adjoint operator in L2(Rn) such that domR = H1(Rn).
Furthermore, for each s ≥ 0 one has

Rs = F−1(1 + | · |2)s/2F
and hence Rs for s ≥ 0 is also a uniformly positive self-adjoint operator in L2(Rn)
such that domRs = Hs(Rn). Note that the scalar product in Hs(Rn) satisfies

(f, g)Hs(Rn) = (Rsf,Rsg)L2(Rn), f, g ∈ Hs(Rn),

for all s ≥ 0. In particular, R plays the same role as the operator R in (8.1.6)
and Rs plays the same role as the operator Rs in (8.1.9). Hence, Rs, s ≥ 0,
gives rise to a Gelfand triple {Hs(Rn), L2(Rn), H−s(Rn)}, whereH−s(Rn) denotes
the dual space consisting of continuous antilinear functionals on Hs(Rn). From
Lemma 8.1.3 it is now clear that the restrictions R : Hs+1(Rn) → Hs(Rn) and
R−1 : Hs(Rn)→ Hs+1(Rn) are isometric isomorphisms for s ≥ 0.

For a nonempty open subset Ω ⊂ Rn and s ≥ 0 define

Hs(Ω) :=
{
f ∈ L2(Ω) : there exists g ∈ Hs(Rn) such that f = g|Ω

}
and endow this space with the norm

‖f‖Hs(Ω) := inf
g∈Hs(Rn)

f=g|Ω

‖g‖Hs(Rn), f ∈ Hs(Ω). (8.2.1)

The space Hs(Ω) is a separable Hilbert space; the corresponding scalar product
will be denoted by (·, ·)Hs(Ω). For s ≥ 0 the space C∞(Ω) := {ϕ|Ω : ϕ ∈ C∞

0 (Rn)}
is dense in Hs(Ω). The closure of C∞

0 (Ω) in Hs(Ω) is a closed subspace of Hs(Ω);
it is denoted by

Hs
0(Ω) := C∞

0 (Ω)
‖·‖Hs(Ω)

. (8.2.2)

In order to define Sobolev spaces on the boundary ∂Ω of some domain Ω ⊂ Rn

assume first that φ : Rn−1 → R is a C2-function. The vectors in Rn−1 will be
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denoted by x′ = (x1, . . . , xn−1)
� ∈ Rn−1 and the notation (x′, xn)

� is used for
(x1, . . . , xn)

� ∈ Rn. Then the domain

Ωφ :=
{
(x′, xn)

� ∈ Rn : xn < φ(x′)
}

(8.2.3)

is called a C2-hypograph and its boundary is given by

∂Ωφ =
{
(x′, φ(x′))� ∈ Rn : x′ ∈ Rn−1

}
.

For a measurable function h : ∂Ωφ → C the surface integral on ∂Ωφ is defined as∫
∂Ωφ

h dσ :=

∫
Rn−1

h(x′, φ(x′))
√
1 + |∇φ(x′)|2 dx′. (8.2.4)

If 1B denotes the characteristic function of a Borel set B ⊂ ∂Ωφ, then the surface
integral in (8.2.4) induces a surface measure

σ(B) =

∫
∂Ωφ

1B dσ. (8.2.5)

This surface measure also gives rise to the usual L2-space on ∂Ωφ, which will be
denoted by L2(∂Ωφ). Furthermore, for s ∈ [0, 2] define the Sobolev space of order
s on ∂Ωφ by

Hs(∂Ωφ) :=
{
h ∈ L2(∂Ωφ) : x

′ �→ h(x′, φ(x′)) ∈ Hs(Rn−1)
}

and equip Hs(∂Ωφ) with the corresponding Hilbert space scalar product

(h, k)Hs(∂Ωφ) :=
(
h(·, φ(·)), k(·, φ(·)))

Hs(Rn−1)
, h, k ∈ Hs(∂Ωφ). (8.2.6)

Note that the operator Vφ : Hs(∂Ωφ) → Hs(Rn−1) that maps h ∈ Hs(∂Ωφ) to
the function x′ �→ h(x′, φ(x′)) ∈ Hs(Rn−1) is an isometric isomorphism.

In the next step the notion of C2-hypograph is replaced by a bounded domain
with a C2-smooth boundary, that is, the boundary is locally the boundary of a
C2-hypograph.

Definition 8.2.1. A bounded nonempty open subset Ω ⊂ Rn is called a C2-domain
if there exist open sets U1, . . . , Ul ⊂ Rn and (possibly up to rotations of coordi-
nates) C2-hypographs Ω1, . . . ,Ωl ⊂ Rn such that

∂Ω ⊂
l⋃

j=1

Uj and Ω ∩ Uj = Ωj ∩ Uj , j = 1, . . . , l.

Let Ω ⊂ Rn be a bounded C2-domain as in Definition 8.2.1. Then the bound-
ary ∂Ω ⊂ Rn is compact and there exists a partition of unity subordinate to the
open cover {Uj} of ∂Ω, that is, there exist functions ηj ∈ C∞

0 (Rn), j = 1, . . . , l,
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with supp ηj ⊂ Uj such that 0 ≤ ηj(x) ≤ 1 for all x ∈ Rn and
∑l

j=1 ηj(x) = 1 for
all x ∈ ∂Ω. For a measurable function h : ∂Ω → C the surface integral on ∂Ω is
defined as∫

∂Ω

h dσ :=
l∑

j=1

∫
Rn−1

ηj(x
′, φj(x

′))h(x′, φj(x
′))
√
1 + |∇φj(x′)|2 dx′,

where the C2-functions φj : Rn−1 → R define the C2-hypographs Ωj as in (8.2.3)
and the possible rotation of coordinates is suppressed. This surface integral induces
a surface measure and the notion of an L2-space L2(∂Ω) in the same way as in
(8.2.4) and (8.2.5). In the present setting the Sobolev space Hs(∂Ω) for s ∈ [0, 2]
is now defined by

Hs(∂Ω) :=
{
h ∈ L2(∂Ω) : ηjh ∈ Hs(∂Ωj), j = 1, . . . , l

}
and is equipped with the corresponding Hilbert space scalar product

(h, k)Hs(∂Ω) =
l∑

j=1

(ηjh, ηjk)Hs(∂Ωj), h, k ∈ Hs(∂Ω). (8.2.7)

It follows from the construction that Hs(∂Ω) is densely and continuously embed-
ded in L2(∂Ω) for s ∈ [0, 2]. Furthermore, since ∂Ω is a compact subset of Rn, the
embedding

Ht(∂Ω) ↪→ Hs(∂Ω), 0 ≤ s < t ≤ 2, (8.2.8)

is compact; see, e.g., [774, Theorem 7.10].

For later purposes it is convenient to use an equivalent characterization of
the spaces Hs(∂Ω) via interpolation; cf. [573, Theorem B.11]. More precisely, as in
(8.1.6) it follows that there exists a unique uniformly positive self-adjoint operator
Q in L2(∂Ω) such that

domQ = H2(∂Ω) and (h, k)H2(∂Ω) = (Qh,Qk)L2(∂Ω) (8.2.9)

for all h, k ∈ H2(∂Ω). It can be shown that the spaces Hs(∂Ω) coincide with the
domains domQs/2 for s ∈ [0, 2] and that (Qs/2·, Qs/2·)L2(∂Ω) defines a scalar prod-
uct and equivalent norm in Hs(∂Ω). The dual space of the antilinear continuous
functionals on Hs(∂Ω) is denoted by H−s(∂Ω), s ∈ [0, 2]. Then one obtains the
following statement from Lemma 8.1.2 and Lemma 8.1.3.

Corollary 8.2.2. Let Ω ⊂ Rn be a bounded C2-domain and let s ∈ [0, 2]. Then the
following statements hold:

(i) {Hs(∂Ω), L2(∂Ω), H−s(∂Ω)} is a Gelfand triple and the assertions in Lem-
ma 8.1.2 hold with R, G, and G′ replaced by Qs/2, Hs(∂Ω), and H−s(∂Ω),
respectively.
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(ii) If ι+ : H1/2(∂Ω) → L2(∂Ω) and ι− : H−1/2(∂Ω) → L2(∂Ω) denote the
isometric isomorphisms from Lemma 8.1.2 (ii) corresponding to the Gelfand
triple {H1/2(∂Ω), L2(∂Ω), H−1/2(∂Ω)} such that

(ι−ϕ, ι+ψ)L2(∂Ω) = 〈ϕ,ψ〉H−1/2(∂Ω)×H1/2(∂Ω)

holds for ϕ ∈ H−1/2(∂Ω) and ψ ∈ H1/2(∂Ω), then for s ∈ [0, 3/2] their
restrictions

ι+ = Q1/4 : Hs+1/2(∂Ω)→ Hs(∂Ω)

and
ι− = Q−1/4 : Hs(∂Ω)→ Hs+1/2(∂Ω)

are isometric isomorphisms such that ι+ι−φ = φ for φ ∈ Hs(∂Ω) and
ι−ι+χ = χ for χ ∈ Hs+1/2(∂Ω); here Q is the uniformly positive self-adjoint
operator in (8.2.9).

Assume now that Ω ⊂ Rn is a bounded C2-domain as in Definition 8.2.1.
The weak derivative of order |α| of an L2-function f is denoted by Dαf in the
following; as usual, here α ∈ Nn

0 stands for a multiindex and |α| = α1 + · · ·+ αn.
Then for k ∈ N0 one has

Hk(Ω) =
{
f ∈ L2(Ω) : Dαf ∈ L2(Ω) for all α ∈ Nn

0 with |α| ≤ k
}

and
‖f‖k :=

∑
|α|≤k

‖Dαf‖L2(Ω), f ∈ Hk(Ω), (8.2.10)

is equivalent to the norm on Hk(Ω) in (8.2.1); cf. [573, Theorem 3.30]. Recall also
that for k ∈ N there exists Ck > 0 such that the Poincaré inequality

‖f‖k ≤ Ck

∑
|α|=k

‖Dαf‖L2(Ω), f ∈ Hk
0 (Ω), (8.2.11)

is valid. In particular, for f ∈ C∞
0 (Ω) and k = 2, integration by parts and the

Schwarz theorem give∑
|α|=2

‖Dαf‖2L2(Ω) =
∑
|α|=2

(Dαf,Dαf)L2(Ω)

=

n∑
j,k=1

(∂j∂kf, ∂j∂kf)L2(Ω)

=
n∑

j,k=1

(∂2
j f, ∂

2
kf)L2(Ω)

= ‖Δf‖2L2(Ω),

and this equality extends to all f ∈ H2
0 (Ω) by (8.2.2). As a consequence one

obtains the following useful fact.
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Lemma 8.2.3. The mapping f �→ ‖Δf‖L2(Ω) is a norm on H2
0 (Ω) which is equiv-

alent to the norms ‖ · ‖2 and ‖ · ‖H2(Ω) in (8.2.10) and (8.2.1), respectively.

Let again Ω ⊂ Rn be a bounded C2-domain and denote the unit normal
vector field pointing outwards of ∂Ω by ν. The notion of trace operator or trace
map and some of their properties are discussed next. Recall first that the mapping

C∞(Ω) � f �→
{
f |∂Ω, ∂f

∂ν

∣∣∣
∂Ω

}
∈ H3/2(∂Ω)×H1/2(∂Ω)

extends by continuity to a continuous operator

H2(Ω) � f �→ {τDf, τNf} ∈ H3/2(∂Ω)×H1/2(∂Ω), (8.2.12)

which is surjective; here

τD : H2(Ω)→ H3/2(∂Ω) (8.2.13)

denotes the Dirichlet trace operator and

τN : H2(Ω)→ H1/2(∂Ω) (8.2.14)

denotes the Neumann trace operator. In particular, for all f ∈ C∞(Ω) one has

τDf = f |Ω and τNf =
∂f

∂ν
|∂Ω,

respectively. With the help of the trace operators one has another useful charac-
terization of the space H2

0 (Ω) in (8.2.2), namely,

H2
0 (Ω) =

{
f ∈ H2(Ω) : τDf = τNf = 0

}
. (8.2.15)

It will also be used that the Dirichlet trace operator τD : H2(Ω) → H3/2(∂Ω)
admits a continuous surjective extension

τ
(1)
D : H1(Ω)→ H1/2(∂Ω), (8.2.16)

which, in analogy to (8.2.15), leads to the characterization

H1
0 (Ω) =

{
f ∈ H1(Ω) : τ

(1)
D f = 0

}
. (8.2.17)

Recall next that for f ∈ H2(Ω) and g ∈ H1(Ω) the first Green identity

(−Δf, g)L2(Ω) = (∇f,∇g)L2(Ω;Cn) −
(
τNf, τ

(1)
D g
)
L2(∂Ω)

(8.2.18)
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holds. Note that τNf, τDg ∈ H1/2(∂Ω) by (8.2.14) and (8.2.16). If, in addition,
also g ∈ H2(Ω), then one concludes from (8.2.18) the second Green identity

(−Δf, g)L2(Ω) − (f,−Δg)L2(Ω) = (τDf, τNg)L2(∂Ω) − (τNf, τDg)L2(∂Ω), (8.2.19)

which is valid for all f, g ∈ H2(Ω).

In the next lemma it will be shown that the Neumann trace operator τN
in (8.2.14) admits an extension to the subspace of H1(Ω) consisting of all those
functions f ∈ H1(Ω) such that Δf ∈ L2(Ω), and it turns out that the first Green
identity (8.2.18) remains valid in an extended form. Here, and in the following,
the expression Δf is understood in the sense of distributions. If, in addition, one
has that Δf ∈ L2(Ω), then Δf is a regular distribution generated by the function
Δf ∈ L2(Ω) via

(Δf)(ϕ) =

∫
Ω

(Δf)(x)ϕ(x) dx, ϕ ∈ C∞
0 (Ω). (8.2.20)

Lemma 8.2.4. For f ∈ H1(Ω) with Δf ∈ L2(Ω) there exists a unique element
ϕ ∈ H−1/2(∂Ω) such that

(−Δf, g)L2(Ω) = (∇f,∇g)L2(Ω;Cn) −
〈
ϕ, τ

(1)
D g
〉
H−1/2(∂Ω)×H1/2(∂Ω)

(8.2.21)

holds for all g ∈ H1(Ω). In the following the notation τ
(1)
N f := ϕ will be used.

Proof. Notice that there exists a bounded right inverse of τ
(1)
D in (8.2.16), that is,

there is a bounded operator η : H1/2(∂Ω)→ H1(Ω) with the property

τ
(1)
D ηψ = ψ, ψ ∈ H1/2(∂Ω).

For a fixed f ∈ H1(Ω) such that Δf ∈ L2(Ω) define the antilinear functional
ϕ : H1/2(∂Ω)→ C by

ϕ(ψ) := (∇f,∇ηψ)L2(Ω;Cn) + (Δf, ηψ)L2(Ω), ψ ∈ H1/2(∂Ω). (8.2.22)

Then one has

|ϕ(ψ)| ≤ ‖∇f‖L2(Ω;Cn)‖∇ηψ‖L2(Ω;Cn) + ‖Δf‖L2(Ω)‖ηψ‖L2(Ω)

≤ C‖ηψ‖H1(Ω)

≤ C ′‖ψ‖H1/2(∂Ω)

with some constants C,C ′ > 0, and hence ϕ ∈ H−1/2(∂Ω). Thus, (8.2.22) can also
be written in the form

〈ϕ,ψ〉H−1/2(∂Ω)×H1/2(∂Ω) = (∇f,∇ηψ)L2(Ω;Cn) + (Δf, ηψ)L2(Ω), (8.2.23)

where ψ ∈ H1/2(∂Ω). Now let g ∈ H1(Ω) and set g0 := g− ητ
(1)
D g. Then it follows

from the characterization of the space H1
0 (Ω) in (8.2.17) that g0 ∈ H1

0 (Ω), and
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hence (8.2.2) shows that there is a sequence (gm) ⊂ C∞
0 (Ω) such that gm → g0 in

H1(Ω). It follows that

(∇f,∇g0)L2(Ω;Cn) = lim
m→∞(∇f,∇gm)L2(Ω;Cn)

= − lim
m→∞(Δf, gm)L2(Ω)

= −(Δf, g0)L2(Ω)

and one obtains, together with (8.2.23) (and with ψ = τ
(1)
D g), that

(∇f,∇g)L2(Ω;Cn) =
(∇f,∇(g0 + ητ

(1)
D g
))

L2(Ω;Cn)

= −(Δf, g0)L2(Ω) +
(∇f,∇(ητ (1)D g

))
L2(Ω;Cn)

= −(Δf, g0)L2(Ω) +
〈
ϕ, τ

(1)
D g
〉
H−1/2(∂Ω)×H1/2(∂Ω)

− (Δf, ητ
(1)
D g
)
L2(Ω)

= (−Δf, g)L2(Ω) +
〈
ϕ, τ

(1)
D g
〉
H−1/2(∂Ω)×H1/2(∂Ω)

.

This shows that ϕ ∈ H−1/2(∂Ω) in (8.2.22)–(8.2.23) satisfies (8.2.21).

It remains to check that ϕ ∈ H−1/2(∂Ω) in (8.2.21) is unique. Suppose that
ϕ1, ϕ2 ∈ H−1/2(∂Ω) satisfy (8.2.21). Then〈

ϕ1 − ϕ2, τ
(1)
D g
〉
H−1/2(∂Ω)×H1/2(∂Ω)

= 0

for all g ∈ H1(Ω). As τ
(1)
D : H1(Ω) → H1/2(∂Ω) is surjective it follows that

ϕ1 − ϕ2 = 0 and hence ϕ in (8.2.21) is unique. �

Remark 8.2.5. The assertion in Lemma 8.2.4 and its proof extend in a natural
manner to all f ∈ H1(Ω) such that −Δf ∈ H1(Ω)∗. In this situation there still
exists a unique element ϕ ∈ H−1/2(∂Ω) such that (instead of (8.2.21)) one has
the slightly more general first Green identity

〈−Δf, g〉H1(Ω)∗×H1(Ω) = (∇f,∇g)L2(Ω;Cn) −
〈
ϕ, τ

(1)
D g
〉
H−1/2(∂Ω)×H1/2(∂Ω)

for all g ∈ H1(Ω); cf. [573, Lemma 4.3].

8.3 Trace maps for the maximal Schrödinger operator

The differential expression −Δ+ V is considered on a bounded domain Ω, where
the function V ∈ L∞(Ω) is assumed to be real. One then associates with −Δ+ V
a preminimal, minimal and maximal operator in L2(Ω), which are adjoints of
each other. Furthermore, the Dirichlet and Neumann operators are defined via the
corresponding sesquilinear form and the first representation theorem, and some
of their properties are collected. In the case where Ω is a bounded C2-domain it
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is shown in Theorem 8.3.9 and Theorem 8.3.10 that the Dirichlet and Neumann
trace operators in the previous section admit continuous extensions to the maximal
domain; this is a key ingredient in the construction of a boundary triplet in the
next section.

Let n ≥ 2, let Ω ⊂ Rn be a bounded domain, and assume that the func-
tion V ∈ L∞(Ω) is real. The preminimal operator associated to the differential
expression −Δ+ V is defined as

T0 = −Δ+ V, domT0 = C∞
0 (Ω).

It follows immediately from

(T0f, f)L2(Ω) = (∇f,∇f)L2(Ω;Cn) + (V f, f)L2(Ω), f ∈ domT0,

that T0 is a densely defined symmetric operator in L2(Ω) which is bounded from
below with v− := essinfV as a lower bound, so that T0 − v− is nonnegative.
Actually, for f ∈ domT0 one has(
(T0 − v−)f, f

)
L2(Ω)

= (∇f,∇f)L2(Ω;Cn) +
(
(V − v−)f, f

)
L2(Ω)

≥ ‖∇f‖2L2(Ω;Cn)

and hence, by the Poincaré inequality (8.2.11),(
(T0 − v−)f, f

)
L2(Ω)

≥ C‖f‖21 ≥ C‖f‖2L2(Ω) (8.3.1)

with some constant C > 0. This shows that T0 − v− is uniformly positive.

The closure of T0 in L2(Ω) is the minimal operator

Tmin = −Δ+ V, domTmin = H2
0 (Ω). (8.3.2)

In fact, using Lemma 8.2.3 and the fact that V ∈ L∞(Ω) one obtains that the
graph norm

‖ · ‖L2(Ω) + ‖Tmin · ‖L2(Ω)

is equivalent to the H2-norm on the closed subspace H2
0 (Ω) of H

2(Ω). Hence, Tmin

is a closed operator in L2(Ω) and it follows from (8.2.2) that T 0 = Tmin. Therefore,
Tmin is a densely defined closed symmetric operator in L2(Ω) and Tmin − v− is
uniformly positive.

Besides the preminimal and minimal operator, also the maximal operator
Tmax associated with −Δ + V in L2(Ω) will be important in the sequel; it is
defined by

Tmax = −Δ+ V,

domTmax =
{
f ∈ L2(Ω) : −Δf + V f ∈ L2(Ω)

}
.

(8.3.3)

Here the expression Δf for f ∈ L2(Ω) is understood in the distributional sense.
Since V ∈ L∞(Ω), it is clear that f ∈ L2(Ω) belongs to domTmax if and only
if Δf ∈ L2(Ω), that is, the (regular) distribution Δf is generated by an L2-
function; cf. (8.2.20). Observe that H2(Ω) ⊂ domTmax, and it will also turn out
that H2(Ω) 	= domTmax.
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Proposition 8.3.1. Let T0, Tmin, and Tmax be the preminimal, minimal, and max-
imal operator associated with −Δ + V in L2(Ω), respectively. Then T 0 = Tmin,
and

(Tmin)
∗ = Tmax and Tmin = (Tmax)

∗. (8.3.4)

Proof. It has already been shown above that T 0 = Tmin holds. In particular,
this implies T ∗

0 = (Tmin)
∗ and thus for the first identity in (8.3.4) it suffices to

show T ∗
0 = Tmax. Furthermore, since multiplication by V ∈ L∞(Ω) is a bounded

operator in L2(Ω), it is no restriction to assume V = 0 in the following. Let
f ∈ domT ∗

0 and consider T ∗
0 f ∈ L2(Ω) as a distribution. Then one has for all

ϕ ∈ C∞
0 (Ω) = domT0

(T ∗
0 f)(ϕ) = (T ∗

0 f, ϕ)L2(Ω) = (f, T0ϕ)L2(Ω) = (f,−Δϕ)L2(Ω) = (−Δf)(ϕ),

and hence −Δf = T ∗
0 f ∈ L2(Ω). Thus, f ∈ domTmax and Tmaxf = T ∗

0 f . Con-
versely, for f ∈ domTmax and all ϕ ∈ C∞

0 (Ω) = domT0 one has

(T0ϕ, f)L2(Ω) = (−Δϕ, f)L2(Ω) = (ϕ,−Δf)L2(Ω),

that is, f ∈ domT ∗
0 and T ∗

0 f = −Δf = Tmaxf . Thus, the first identity in (8.3.4)
has been shown. The second identity in (8.3.4) follows by taking adjoints. �

In the following the self-adjoint Dirichlet realization AD and the self-adjoint
Neumann realization AN of −Δ + V in L2(Ω) will play an important role. The
operators AD and AN will be introduced via the corresponding sesquilinear forms
using the first representation theorem. More precisely, consider the densely defined
forms

tD[f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω), dom tD = H1
0 (Ω),

and
tN[f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω), dom tN = H1(Ω),

in L2(Ω). It is easy to see that both forms are semibounded from below and
that v− = essinfV is a lower bound. The same argument as in (8.3.1) using the
Poincaré inequality (8.2.11) on dom tD = H1

0 (Ω) implies the stronger statement
that the form tD − v− is uniformly positive. Furthermore, it follows from the
definitions that the form (∇·,∇·)L2(Ω;Cn) defined on H1

0 (Ω) or H
1(Ω) is closed in

L2(Ω); cf. Lemma 5.1.9. Since V ∈ L∞(Ω), it is clear that the form (V ·, ·)L2(Ω) is
bounded on L2(Ω) and hence it follows from Theorem 5.1.16 that also the forms
tD and tN are closed in L2(Ω). Therefore, by the first representation theorem
(Theorem 5.1.18), there exist unique semibounded self-adjoint operators AD and
AN in L2(Ω) associated with tD and tN, respectively, such that

(ADf, g)L2(Ω) = tD[f, g] for f ∈ domAD, g ∈ dom tD,

and
(ANf, g)L2(Ω) = tN[f, g] for f ∈ domAN, g ∈ dom tN.
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The self-adjoint operators AD and AN are called the Dirichlet operator and Neu-
mann operator, respectively. In the next propositions some properties of these
operators are discussed.

Proposition 8.3.2. Assume that Ω ⊂ Rn is a bounded domain. Then the Dirichlet
operator AD is given by

ADf = −Δf + V f,

domAD =
{
f ∈ H1

0 (Ω) : −Δf + V f ∈ L2(Ω)
}
,

(8.3.5)

and for all λ ∈ ρ(AD) the resolvent (AD−λ)−1 is a compact operator in L2(Ω). The
Dirichlet operator AD coincides with the Friedrichs extension SF of the minimal
operator Tmin in (8.3.2). In particular, AD−v− is uniformly positive. Furthermore,
if Ω ⊂ Rn is a bounded C2-domain, then the Dirichlet operator AD is given by

ADf = −Δf + V f,

domAD =
{
f ∈ H1(Ω) : −Δf + V f ∈ L2(Ω), τ

(1)
D f = 0

}
.

(8.3.6)

Proof. Observe that for f ∈ domAD and g ∈ C∞
0 (Ω) ⊂ dom tD one has

(ADf, g)L2(Ω) = tD[f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω) =
(−Δf + V f

)
(g),

where −Δf + V f is viewed as a distribution. Since this identity holds for all
g ∈ C∞

0 (Ω) and AD is an operator in L2(Ω) it follows that

−Δf + V f = ADf ∈ L2(Ω).

Therefore, AD is given by (8.3.5). In the case that Ω ⊂ Rn has a C2-smooth
boundary the form of the domain of AD in (8.3.6) follows from (8.3.5) and (8.2.17).

Next it will be shown that for λ ∈ ρ(AD) the resolvent (AD − λ)−1 is a
compact operator in L2(Ω). For this observe first that

(AD − λ)−1 : L2(Ω)→ H1
0 (Ω), λ ∈ ρ(AD), (8.3.7)

is everywhere defined and closed as an operator from L2(Ω) into H1
0 (Ω). In fact,

if fn → f in L2(Ω) and (AD − λ)−1fn → h in H1
0 (Ω), then (AD − λ)−1fn → h in

L2(Ω), and since the operator (AD−λ)−1 is everywhere defined and continuous in
L2(Ω), it is clear that (AD−λ)−1f = h. Hence, the operator in (8.3.7) is bounded
by the closed graph theorem. By Rellich’s theorem the embedding H1

0 (Ω) ↪→ L2(Ω)
is compact, and it follows that (AD − λ)−1, λ ∈ ρ(AD), is a compact operator in
L2(Ω).

It remains to verify that AD is the Friedrichs extension SF of Tmin = T 0 or,
equivalenty, the Friedrichs extension of T0; cf. Lemma 5.3.1 and Definition 5.3.2.
For this, consider the form tT0 [f, g] = (T0f, g)L2(Ω), defined for f, g ∈ domT0, and
note that

tT0 [f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω), dom tT0 = C∞
0 (Ω).
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Observe that fm →tT0
f if and only if fm → f in L2(Ω) and (∇fm) is a Cauchy

sequence in L2(Ω;Cn). Hence, fm →tT0
f implies fm → f in the norm of H1(Ω),

and so f ∈ H1
0 (Ω) by (8.2.2). Therefore, by (5.1.16), the closure of the form tT0 is

given by

t̃T0 [f, g] = lim
m→∞ tT0 [fm, gm] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω),

where f, g ∈ H1
0 (Ω) and fm →tT0

f , gm →tT0
g. Hence, t̃T0

= tD, and since by
Definition 5.3.2 the Friedrichs extension of T0 is the unique self-adjoint operator
corresponding to the closed form t̃T0 , the assertion follows. �

In order to specify the Neumann operator AN, the first Green identity and

the trace operators τ
(1)
D : H1(Ω)→ H1/2(∂Ω) and τ

(1)
N : H1(Ω)→ H−1/2(∂Ω) will

be used; cf. Lemma 8.2.4. For this reason in the next proposition it is assumed that
Ω ⊂ Rn is a bounded C2-domain. It is also important to note that the Neumann
operator AN below differs from the Krĕın–von Neumann extension and the Krĕın
type extensions in Definition 5.4.2; cf. Section 8.5 for more details.

Proposition 8.3.3. Assume that Ω ⊂ Rn is a bounded C2-domain. Then the Neu-
mann operator AN is given by

ANf = −Δf + V f,

domAN =
{
f ∈ H1(Ω) : −Δf + V f ∈ L2(Ω), τ

(1)
N f = 0

}
,

(8.3.8)

and for all λ ∈ ρ(AN) the resolvent (AN − λ)−1 is a compact operator in L2(Ω).

Proof. In a first step it follows for f ∈ domAN ⊂ H1(Ω) and all g ∈ C∞
0 (Ω) in

the same way as in the proof of Proposition 8.3.2 that

(ANf, g)L2(Ω) = tN[f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω) =
(−Δf + V f

)
(g),

and hence ANf = (−Δ + V )f ∈ L2(Ω). In particular, for f ∈ domAN one has
f ∈ H1(Ω) and −Δf ∈ L2(Ω), so that Lemma 8.2.4 applies and yields

(ANf, g)L2(Ω) = tN[f, g]

= (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω)

=
(
(−Δ+ V )f, g

)
L2(Ω)

+
〈
τ
(1)
N f, τ

(1)
D g
〉
H−1/2(∂Ω)×H1/2(∂Ω)

for all g ∈ dom tN = H1(Ω). As ANf = (−Δ+ V )f , one concludes that〈
τ
(1)
N f, τ

(1)
D g
〉
H−1/2(∂Ω)×H1/2(∂Ω)

= 0 for all g ∈ H1(Ω).

Since τ
(1)
D : H1(Ω)→ H1/2(∂Ω) is surjective, it follows that τ

(1)
N f = 0. This implies

the representation (8.3.8).
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To show that the resolvent (AN − λ)−1 is a compact operator in L2(Ω) one
argues in the same way as in the proof of Proposition 8.3.2. In fact, the operator

(AN − λ)−1 : L2(Ω)→ H1(Ω), λ ∈ ρ(AN),

is everywhere defined and closed, and hence bounded by the closed graph theorem.
Since Ω ⊂ Rn is a bounded C2-domain, the embeddingH1(Ω) ↪→ L2(Ω) is compact
and this implies that (AN−λ)−1, λ ∈ ρ(AN), is a compact operator in L2(Ω). �

It is known that functions f in domAD or domAN are locally H2-regular,
that is, for every compact subset K ⊂ Ω the restriction of f to K is in H2(K). The
next theorem is an important elliptic regularity result which ensures H2-regularity
of the functions in domAD or domAN in (8.3.6) and (8.3.8), respectively, up to the
boundary if the bounded domain Ω is C2-smooth in the sense of Definition 8.2.1.

Theorem 8.3.4. Assume that Ω ⊂ Rn is a bounded C2-domain. Then one has

ADf = −Δf + V f, domAD =
{
f ∈ H2(Ω) : τDf = 0

}
,

and
ANf = −Δf + V f, domAN =

{
f ∈ H2(Ω) : τNf = 0

}
.

Note that under the assumptions in Theorem 8.3.4 the domain of the Dirichlet
operator AD is H2(Ω) ∩ H1

0 (Ω); cf. (8.2.17). The direct sum decompositions in
the next corollary follow immediately from Theorem 1.7.1 when considering the
operator T = −Δ + V , domT = H2(Ω), and taking into account that AD ⊂ T
and AN ⊂ T .

Corollary 8.3.5. Assume that Ω ⊂ Rn is a bounded C2-domain and denote by
τD : H2(Ω)→ H3/2(∂Ω) and τN : H2(Ω)→ H1/2(∂Ω) the Dirichlet and Neumann
trace operator in (8.2.13) and (8.2.14), respectively. Then for λ ∈ ρ(AD) one has
the direct sum decomposition

H2(Ω) = domAD +
{
fλ ∈ H2(Ω) : (−Δ+ V )fλ = λfλ

}
= ker τD +

{
fλ ∈ H2(Ω) : (−Δ+ V )fλ = λfλ

}
,

(8.3.9)

and for λ ∈ ρ(AN) one has the direct sum decomposition

H2(Ω) = domAN +
{
fλ ∈ H2(Ω) : (−Δ+ V )fλ = λfλ

}
= ker τN +

{
fλ ∈ H2(Ω) : (−Δ+ V )fλ = λfλ

}
.

(8.3.10)

As a consequence of the decomposition (8.3.9) in Corollary 8.3.5 and (8.2.12)
one concludes that the so-called Dirichlet-to-Neumann map in the next definition
is a well-defined operator from H3/2(∂Ω) into H1/2(∂Ω).

Definition 8.3.6. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet operator, and let τD : H2(Ω)→ H3/2(∂Ω) and τN : H2(Ω)→ H1/2(∂Ω)
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be the Dirichlet and Neumann trace operator in (8.2.13) and (8.2.14), respectively.
For λ ∈ ρ(AD) the Dirichlet-to-Neumann map is defined as

D(λ) : H3/2(∂Ω)→ H1/2(∂Ω), τDfλ �→ τNfλ,

where fλ ∈ H2(Ω) is such that (−Δ+ V )fλ = λfλ.

Note that for λ ∈ ρ(AD) ∩ ρ(AN) both decompositions (8.3.9) and (8.3.10)
in Corollary 8.3.5 hold and together with (8.2.12) this implies that the Dirichlet-
to-Neumann map D(λ) is a bijective operator from H3/2(∂Ω) onto H1/2(∂Ω).

A further useful consequence of Theorem 8.3.4 is given by the following a pri-
ori estimates.

Corollary 8.3.7. Assume that Ω ⊂ Rn is a bounded C2-domain and let AD and AN

be the Dirichlet and Neumann operator, respectively. Then there exist constants
CD > 0 and CN > 0 such that

‖f‖H2(Ω) ≤ CD

(‖f‖L2(Ω) + ‖ADf‖L2(Ω)

)
, f ∈ domAD,

and
‖g‖H2(Ω) ≤ CN

(‖g‖L2(Ω) + ‖ANg‖L2(Ω)

)
, g ∈ domAN.

Proof. One verifies in the same way as in the proof of Proposition 8.3.2 that for
λ ∈ ρ(AD) the operator (AD − λ)−1 : L2(Ω) → H2(Ω) is everywhere defined
and closed, and hence bounded. For f ∈ domAD choose h ∈ L2(Ω) such that
f = (AD − λ)−1h. Then

‖f‖H2(Ω) = ‖(AD − λ)−1h‖H2(Ω) ≤ C‖h‖L2(Ω) = CD‖(AD − λ)f‖L2(Ω)

for some C > 0 and CD > 0, and the first estimate follows. The second estimate
is proved in the same way. �

The next lemma is an important ingredient in the following.

Lemma 8.3.8. Let Tmax be the maximal operator associated to −Δ+ V in (8.3.3).
Then the space C∞(Ω) is dense in domTmax with respect to the graph norm.

Proof. Since V ∈ L∞(Ω) is bounded, the graph norms(‖ · ‖2L2(Ω) + ‖Tmax · ‖2L2(Ω)

)1/2
and

(‖ · ‖2L2(Ω) + ‖Δ · ‖2L2(Ω)

)1/2
are equivalent on dom Tmax, and hence it is no restriction to assume that V = 0.
Now suppose that f ∈ domTmax is such that for all g ∈ C∞(Ω)

0 = (f, g)L2(Ω) + (Δf,Δg)L2(Ω). (8.3.11)

Then (8.3.11) holds for all g ∈ C∞
0 (Ω), so that 0 = (f +Δ2f)(g), where f +Δ2f

is viewed as a distribution. As f ∈ L2(Ω), one concludes that

Δ2f = −f ∈ L2(Ω). (8.3.12)
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Next it will be shown that
Δf ∈ H2

0 (Ω). (8.3.13)

In fact, choose an open ball B such that Ω ⊂ B and let h ∈ C∞
0 (B). Let

ÃD = −Δ, dom ÃD = H2(B) ∩H1
0 (B),

be the self-adjoint Dirichlet Laplacian in L2(B); cf. Theorem 8.3.4. Since B is

bounded, one has 0 ∈ ρ(ÃD) by Proposition 8.3.2. As h ∈ C∞
0 (B), elliptic regular-

ity yields Ã−1
D h ∈ C∞(B) and hence (Ã−1

D h)|Ω ∈ C∞(Ω) for the restriction onto

Ω. Denote by f̃ and Δ̃f the extension of f and Δf by zero to B. Then it follows
with the help of (8.3.11) that

(Ã−1
D f̃ , h)L2(B) = (f̃ , Ã−1

D h)L2(B)

=
(
f, (Ã−1

D h)|Ω
)
L2(Ω)

= −(Δf,Δ(Ã−1
D h)|Ω

)
L2(Ω)

= (−Δ̃f, h)L2(B)

holds for h ∈ C∞
0 (B). This yields −Δ̃f = Ã−1

D f̃ ∈ H2(B). Moreover, as Δ̃f
vanishes outside of Ω it follows that Δf ∈ H2

0 (Ω), that is, (8.3.13) holds.

Now choose a sequence (ψk) ⊂ C∞
0 (Ω) such that ψk → Δf in H2(Ω). Then,

by (8.3.12),

0 ≤ (Δf,Δf)L2(Ω) = lim
k→∞

(ψk,Δf)L2(Ω) = lim
k→∞

(Δψk, f)L2(Ω)

= (Δ2f, f)L2(Ω) = −(f, f)L2(Ω) ≤ 0,

that is, f = 0 in (8.3.11). Hence, C∞(Ω) is dense in domTmax with respect to the
graph norm. �

The following result on the extension of the Dirichlet trace operator onto
domTmax is essential for the construction of a boundary triplet for Tmax.

Theorem 8.3.9. Assume that Ω ⊂ Rn is a bounded C2-domain. Then the Dirichlet
trace operator τD : H2(Ω) → H3/2(∂Ω) in (8.2.13) admits a unique extension to
a continuous surjective operator

τ̃D : domTmax → H−1/2(∂Ω),

where domTmax is equipped with the graph norm. Furthermore,

ker τ̃D = ker τD = domAD.

Proof. In the following fix λ ∈ ρ(AD) and consider the operator

Υ := −τN(AD − λ)−1 : L2(Ω)→ H1/2(∂Ω). (8.3.14)
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Since (AD − λ)−1 : L2(Ω) → H2(Ω) is everywhere defined and closed, it is clear
that (AD−λ)−1 : L2(Ω)→ H2(Ω) is continuous and maps onto domAD. Hence, it
follows from Theorem 8.3.4 and (8.2.12) that Υ ∈ B(L2(Ω), H1/2(∂Ω)) in (8.3.14)
is a surjective operator.

Next it will be shown that

kerΥ = Nλ(Tmax)
⊥, (8.3.15)

where Nλ(Tmax) = ker (Tmax−λ). In fact, for the inclusion (⊂) in (8.3.15), assume
that

Υh = −τN(AD − λ)−1h = 0

for some h ∈ L2(Ω). Then it follows from Theorem 8.3.4 that

(AD − λ)−1h ∈ domAD ∩ domAN

and hence (AD − λ)−1h ∈ domTmin by (8.2.15) and (8.3.2). For fλ ∈ Nλ(Tmax)
one concludes, together with Proposition 8.3.1, that

(fλ, h)L2(Ω) =
(
fλ, (Tmin − λ)(AD − λ)−1h

)
L2(Ω)

=
(
(Tmax − λ)fλ, (AD − λ)−1h

)
L2(Ω)

= 0,

which shows h ∈ Nλ(Tmax)
⊥. For the inclusion (⊃) in (8.3.15), let h ∈ Nλ(Tmax)

⊥.
Then h ∈ ran (Tmin − λ), and hence there exists k ∈ domTmin = H2

0 (Ω) such that
h = (Tmin − λ)k. It follows that

Υh = −τN(AD − λ)−1h = −τN(AD − λ)−1(Tmin − λ)k = −τNk = 0,

which shows that h ∈ kerΥ. This completes the proof of (8.3.15).

From (8.3.14) and (8.3.15) it follows that the restriction of Υ to Nλ(Tmax)
is an isomorphism from Nλ(Tmax) onto H1/2(∂Ω). This implies that the dual
operator

Υ′ : H−1/2(∂Ω)→ L2(Ω) (8.3.16)

is bounded and invertible, and by the closed range theorem (see Theorem 1.3.5
for the Hilbert space adjoint) one has

ranΥ′ = (kerΥ)⊥ = Nλ(Tmax).

The inverse (Υ′)−1 is regarded as an isomorphism from Nλ(Tmax) ontoH
−1/2(∂Ω).

Now recall the direct sum decomposition

domTmax = domAD +Nλ(Tmax)

from Theorem 1.7.1 or Corollary 1.7.5, and write the elements f ∈ domTmax

accordingly,
f = fD + fλ, fD ∈ domAD, fλ ∈ Nλ(Tmax).
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Define the mapping

τ̃D : domTmax → H−1/2(∂Ω), f �→ τ̃Df = (Υ′)−1fλ. (8.3.17)

Next it will be shown that τ̃D is an extension of the Dirichlet trace operator
τD : H2(Ω)→ H3/2(∂Ω). For this, consider ϕ ∈ ran τD = H3/2(∂Ω) ⊂ H−1/2(∂Ω)
and note that by (8.3.9) and (8.2.12) there exists a unique fλ ∈ H2(Ω) such that

(−Δ+ V )fλ = λfλ and τDfλ = ϕ. (8.3.18)

Let h ∈ L2(Ω) and set k := (AD−λ)−1h. Then, by (8.3.14), the fact that τDk = 0,
and the second Green identity (8.2.19),

(Υ′ϕ, h)L2(Ω) = 〈ϕ,Υh〉H−1/2(∂Ω)×H1/2(∂Ω)

= (ϕ,Υh)L2(∂Ω)

= −(ϕ, τN(AD − λ)−1h
)
L2(∂Ω)

= −(τDfλ, τNk)L2(∂Ω) + (τNfλ, τDk)L2(∂Ω)

= −((−Δ+ V )fλ, k
)
L2(Ω)

+
(
fλ, (−Δ+ V )k

)
L2(Ω)

= −(λfλ, k)L2(Ω) + (fλ, ADk)L2(Ω)

=
(
fλ, (AD − λ)k

)
L2(Ω)

= (fλ, h)L2(Ω),

and thus Υ′ϕ = fλ. Hence, the restriction of Υ′ to H3/2(∂Ω) maps ϕ ∈ H3/2(∂Ω)
to the unique H2(Ω)-solution fλ of the boundary value problem (8.3.18), that is,
to the unique element fλ ∈ Nλ(Tmax) ∩ H2(Ω) such that τDfλ = ϕ. Therefore,
(Υ′)−1 maps the elements in Nλ(Tmax) ∩ H2(Ω) onto their Dirichlet boundary
values, that is,

(Υ′)−1fλ = τDfλ for fλ ∈ Nλ(Tmax) ∩H2(Ω).

By definition τ̃DfD = 0 = τDfD for fD ∈ domAD. Therefore, if f ∈ H2(Ω) is
decomposed according to (8.3.9) as

f = fD + fλ, fD ∈ domAD, fλ ∈ Nλ(Tmax) ∩H2(Ω),

then
τ̃Df = τ̃D(fD + fλ) = (Υ′)−1fλ = τDfλ = τDf,

so that τ̃D in (8.3.17) is an extension of τD. Note that by construction τ̃D is
surjective. Furthermore, the property ker τ̃D = ker τD is clear from the definition.

It remains to show that τ̃D in (8.3.17) is continuous with respect to the graph
norm on domTmax. For this, consider f = fD + fλ ∈ domTmax with fD ∈ domAD

and fλ ∈ Nλ(Tmax), and note that

fλ = f − fD = f − (AD − λ)−1(Tmax − λ)fD

= f − (AD − λ)−1(Tmax − λ)f.
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Since (Υ′)−1 : Nλ(Tmax)→ H−1/2(∂Ω) is an isomorphism and hence, in particular,
bounded, one has

‖τ̃Df‖H−1/2(∂Ω) = ‖(Υ′)−1fλ‖H−1/2(∂Ω)

≤ C‖fλ‖L2(Ω)

≤ C
(‖f‖L2(Ω) + ‖(AD − λ)−1(Tmax − λ)f‖L2(Ω)

)
≤ C ′(‖f‖L2(Ω) + ‖(Tmax − λ)f‖L2(Ω)

)
≤ C ′′(‖f‖L2(Ω) + ‖Tmaxf‖L2(Ω)

)
with some constants C,C ′, C ′′ > 0. Thus, τ̃D is continuous. The proof of Theo-
rem 8.3.9 is complete. �

The following result is parallel to Theorem 8.3.9 and can be proved in a
similar way.

Theorem 8.3.10. Assume that Ω ⊂ Rn is a bounded C2-domain. Then the Neu-
mann trace operator τN : H2(Ω) → H1/2(∂Ω) in (8.2.14) admits a unique exten-
sion to a continuous surjective operator

τ̃N : domTmax → H−3/2(∂Ω),

where domTmax is equipped with the graph norm. Furthermore,

ker τ̃N = ker τN = domAN.

As a consequence of Theorem 8.3.9 and Theorem 8.3.10 one can also extend
the second Green identity in (8.2.19) to elements f ∈ domTmax and g ∈ H2(Ω).

Corollary 8.3.11. Assume that Ω ⊂ Rn is a bounded C2-domain, and let

τ̃D : domTmax → H−1/2(∂Ω) and τ̃N : domTmax → H−3/2(∂Ω)

be the unique continuous extensions of the Dirichlet and Neumann trace operators

τD : H2(Ω)→ H3/2(∂Ω) and τN : H2(Ω)→ H1/2(∂Ω)

from Theorem 8.3.9 and Theorem 8.3.10, respectively. Then the second Green iden-
tity in (8.2.19) extends to

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω)

= 〈τ̃Df, τNg〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τ̃Nf, τDg〉H−3/2(∂Ω)×H3/2(∂Ω)

for f ∈ domTmax and g ∈ H2(Ω).

Proof. Let f ∈ domTmax and g ∈ H2(Ω). Since C∞(Ω) is dense in domTmax with
respect to the graph norm by Lemma 8.3.8 and C∞(Ω) ⊂ H2(Ω) ⊂ domTmax,
there exists a sequence (fn) ⊂ H2(Ω) such that fn → f and Tmaxfn → Tmaxf
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in L2(Ω). Moreover, τDfn → τ̃Df in H−1/2(∂Ω) and τNfn → τ̃Nf in H−3/2(∂Ω),
because τ̃D and τ̃N are continuous with respect to the graph norm. Therefore, with
the help of the second Green identity (8.2.19), one concludes that

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω)

= lim
n→∞(Tmaxfn, g)L2(Ω) − lim

n→∞(fn, Tmaxg)L2(Ω)

= lim
n→∞

[
(τDfn, τNg)L2(∂Ω) − (τNfn, τDg)L2(∂Ω)

]
= lim

n→∞
[〈τDfn, τNg〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τNfn, τDg〉H−3/2(∂Ω)×H3/2(∂Ω)

]
= 〈τ̃Df, τNg〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τ̃Nf, τDg〉H−3/2(∂Ω)×H3/2(∂Ω),

which completes the proof. �

Note that, by construction, there exists a bounded right inverse for the ex-
tended Dirichlet trace operator τ̃D (see (8.3.16)–(8.3.17)) and similarly there exists
a bounded right inverse for the extended Neumann trace operator τ̃N. This also
implies that the Dirichlet-to-Neumann map in Definition 8.3.6 admits a natural
extension to a bounded mapping from from H−1/2(∂Ω) into H−3/2(∂Ω).

Corollary 8.3.12. Assume that Ω ⊂ Rn is a bounded C2-domain and let τ̃D and τ̃N
be the unique continuous extensions of the Dirichlet and Neumann trace operators
from Theorem 8.3.9 and Theorem 8.3.10, respectively. Then for λ ∈ ρ(AD) the
Dirichlet-to-Neumann map in Definition 8.3.6 admits an extension to a bounded
operator

D̃(λ) : H−1/2(∂Ω)→ H−3/2(∂Ω), τ̃Dfλ �→ τ̃Nfλ,

where fλ ∈ Nλ(Tmax).

For later purposes the following fact is provided.

Proposition 8.3.13. The minimal operator Tmin in (8.3.2) is simple.

Proof. Since AD is a self-adjoint extension of Tmin with discrete spectrum, it suf-
fices to check that Tmin has no eigenvalues; cf. Proposition 3.4.8. For this, assume
that Tminf = λf for some λ ∈ R and some f ∈ domTmin. Since domTmin = H2

0 (Ω),
there exist (fk) ∈ C∞

0 (Ω) such that fk → f in H2(Ω). Denote the zero extensions

of f and fk to all of Rn by f̃ and f̃k, respectively. Then f̃k → f̃ in L2(Rn) and for
all h ∈ C∞

0 (Rn) and α ∈ Nn
0 such that |α| ≤ 2 one computes∫

Rn

f̃(x)Dαh(x)dx = lim
k→∞

∫
Rn

f̃k(x)D
αh(x)dx

= (−1)|α| lim
k→∞

∫
Rn

(Dαf̃k)(x)h(x)dx

= (−1)|α| lim
k→∞

∫
Ω

(Dαfk)(x)h(x)dx
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= (−1)|α|
∫
Ω

(Dαf)(x)h(x)dx

= (−1)|α|
∫
Rn

(̃Dαf)(x)h(x)dx,

where (̃Dαf) denotes the zero extension of Dαf to all of Rn. It follows from this
computation that

Dαf̃ = (̃Dαf) ∈ L2(Rn), |α| ≤ 2,

and hence f̃ ∈ H2(Rn). Furthermore, if Ṽ ∈ L∞(Rn) denotes some real extension

of V , then (−Δ + Ṽ )f̃ = λf̃ and since f̃ vanishes on an open subset of Rn, the

unique continuation principle (see, e.g., [652, Theorem XIII.63]) implies f̃ = 0, so
that f = 0. Therefore, Tmin has no eigenvalues and now Proposition 3.4.8 shows
that Tmin is simple. �

8.4 A boundary triplet for the maximal
Schrödinger operator

In this section a boundary triplet {L2(∂Ω),Γ0,Γ1} for the maximal operator Tmax

in (8.3.3) is provided under the assumption that Ω ⊂ Rn is a bounded C2-domain.
The corresponding Weyl function is closely connected to the extended Dirichlet-
to-Neumann map in Corollary 8.3.12. As examples, Neumann and Robin type
boundary conditions are discussed, and it is also explained that there exist self-
adjoint realizations of −Δ + V in L2(Ω) which are not semibounded and which
may have essential spectrum of rather arbitrary form.

Recall from Corollary 8.2.2 that{
H1/2(∂Ω), L2(∂Ω), H−1/2(∂Ω)

}
is a Gelfand triple and there exist isometric isomorphisms ι± :H± 1

2 (∂Ω)→L2(∂Ω)
such that

〈ϕ,ψ〉H−1/2(∂Ω)×H1/2(∂Ω) = (ι−ϕ, ι+ψ)L2(∂Ω)

holds for all ϕ ∈ H−1/2(∂Ω) and ψ ∈ H1/2(∂Ω). For the definition of the boundary
mappings in the next proposition recall also the definition and the properties of the
Dirichlet operator AD (see Theorem 8.3.4), as well as the direct sum decomposition

domTmax = domAD +Nη(Tmax), (8.4.1)

which holds for all η ∈ ρ(AD). In particular, since AD is semibounded from below,
one may choose η ∈ ρ(AD)∩R in (8.4.1). Further, let τN : H2(Ω)→ H1/2(∂Ω) be
the Neumann trace operator in (8.2.12) and let τ̃D : domTmax → H−1/2(∂Ω) be
the extension of the Dirichlet trace operator in Theorem 8.3.9.
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Theorem 8.4.1. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ + V in L2(Ω) in Theorem 8.3.4, fix η ∈ ρ(AD) ∩ R,
and decompose f ∈ domTmax according to (8.4.1) in the form f = fD + fη, where
fD ∈ domAD and fη ∈ Nη(Tmax). Then {L2(∂Ω),Γ0,Γ1}, where

Γ0f = ι−τ̃Df and Γ1f = −ι+τNfD, f = fD + fη ∈ domTmax,

is a boundary triplet for (Tmin)
∗ = Tmax such that

A0 = AD and A1 = Tmin +̂ N̂η(Tmax). (8.4.2)

Proof. Let f, g ∈ domTmax and decompose f and g in the form f = fD + fη and
g = gD + gη with fD, gD ∈ domAD ⊂ H2(Ω) and fη, gη ∈ Nη(Tmax). Since AD is
self-adjoint,

(Tmax fD, gD)L2(Ω) = (ADfD, gD)L2(Ω) = (fD, AD gD)L2(Ω) = (fD, Tmax gD)L2(Ω)

and since η is real, one also has

(Tmaxfη, gη)L2(Ω) = (ηfη, gη)L2(Ω) = (fη, ηgη)L2(Ω) = (fη, Tmax gη)L2(Ω).

Therefore, one obtains

(Tmax f, g)L2(Ω) − (f, Tmax g)L2(Ω)

=
(
Tmax(fD + fη), gD + gη

)
L2(Ω)

− (fD + fη, Tmax(gD + gη)
)
L2(Ω)

= (Tmax fη, gD)L2(Ω) + (Tmax fD, gη)L2(Ω)

− (fη, Tmax gD)L2(Ω) − (fD, Tmax gη)L2(Ω).

Let τ̃N be the extension of the Neumann trace to dom Tmax from Theorem 8.3.10.
Then it follows together with Corollary 8.3.11 and τDfD = τDgD = 0 that

(Tmax fη, gD)L2(Ω) − (fη, Tmax gD)L2(Ω)

= 〈τ̃Dfη, τNgD〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τ̃Nfη, τDgD〉H−3/2(∂Ω)×H3/2(∂Ω)

= 〈τ̃Dfη, τNgD〉H−1/2(∂Ω)×H1/2(∂Ω)

and

(TmaxfD, gη)L2(Ω) − (fD, Tmaxgη)L2(Ω)

= 〈τDfD, τ̃Ngη〉H3/2(∂Ω)×H−3/2(∂Ω) − 〈τNfD, τ̃Dgη〉H1/2(∂Ω)×H−1/2(∂Ω)

= −〈τNfD, τ̃Dgη〉H1/2(∂Ω)×H−1/2(∂Ω).

Hence,

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω)

= 〈τ̃Dfη, τNgD〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τNfD, τ̃Dgη〉H1/2(∂Ω)×H−1/2(∂Ω)

=
(
ι−τ̃Dfη, ι+τNgD

)
L2(∂Ω)

− (ι+τNfD, ι−τ̃Dgη)L2(∂Ω)
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and, since fD, gD ∈ ker τD = ker τ̃D according to Theorem 8.3.9, one sees that

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω)

=
(
ι−τ̃Df, ι+τNgD

)
L2(∂Ω)

− (ι+τNfD, ι−τ̃Dg)L2(∂Ω)

=
(−ι+τNfD, ι−τ̃Dg)L2(∂Ω)

− (ι−τ̃Df,−ι+τNgD)L2(∂Ω)

= (Γ1f,Γ0g)L2(∂Ω) − (Γ0f,Γ1g)L2(∂Ω)

for all f, g ∈ domTmax, that is, the abstract Green identity is satisfied. To verify
the surjectivity of the mapping(

Γ0

Γ1

)
: domTmax → L2(∂Ω)× L2(∂Ω), (8.4.3)

let ϕ,ψ ∈ L2(∂Ω) and consider ι−1
− ϕ ∈ H−1/2(∂Ω) and −ι−1

+ ψ ∈ H1/2(∂Ω).
Observe that by (8.2.12) the Neumann trace operator τN is a surjective mapping
from {h ∈ H2(Ω) : τDh = 0} onto H1/2(∂Ω), that is, τN : domAD → H1/2(∂Ω) is
onto, and hence there exists fD ∈ domAD such that τNfD = −ι−1

+ ψ. Next recall
from Theorem 8.3.9 that the extended Dirichlet trace operator τ̃D maps domTmax

onto H−1/2(∂Ω) and that ker τ̃D = ker τD = domAD. Hence, it follows from the
direct sum decomposition dom Tmax = domAD + Nη(Tmax) that the restriction
τ̃D : Nη(Tmax)→ H−1/2(∂Ω) is bijective, in particular, there exists fη ∈ Nη(Tmax)
such that τ̃Dfη = ι−1

− ϕ. Now it follows that f := fD + fη ∈ domTmax satisfies

Γ0f = ι−τ̃Df = ι−τ̃Dfη = ι−ι−1
− ϕ = ϕ

and
Γ1f = −ι+τNfD = ι+ι

−1
+ ψ = ψ,

and hence the mapping in (8.4.3) is onto. Thus, {L2(∂Ω),Γ0,Γ1} is a boundary
triplet for (Tmin)

∗ = Tmax, as claimed.

From the definition of Γ0 and ker τ̃D = ker τD = domAD it is clear that
domAD = ker Γ0, and hence the self-adjoint extension corresponding to Γ0 coin-
cides with the Dirichlet operator AD, that is, the first identity in (8.4.2) holds. It
remains to check the second identity in (8.4.2). For this let f = fD + fη ∈ ker Γ1,
which means τNfD = 0. Thus, fD ∈ domTmin by (8.2.15) and it follows that

A1 ⊂ Tmin +̂ N̂η(Tmax). The inclusion Tmin +̂ N̂η(Tmax) ⊂ A1 is clear from the
definition of Γ1. This leads to the second identity in (8.4.2). �

Remark 8.4.2. The boundary triplet {L2(∂Ω),Γ0,Γ1} in Theorem 8.4.1 is closely
related to the boundary triplet {Nη(Tmax),Γ

′
0,Γ

′
1} in Corollary 5.5.12, where

Γ′
0f = fη and Γ′

1f = PNη(Tmax)(AD − η)fD, f = fD + fη ∈ domTmax.

In fact, one has ker Γ0 = ker Γ′
0 and ker Γ1 = ker Γ′

1, and hence(
Γ′
0

Γ′
1

)
=

(
W11 0
0 W22

)(
Γ0

Γ1

)
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with some 2 × 2 operator matrix W = (Wij)
2
i,j=1 as in Theorem 2.5.1, see also

Corollary 2.5.5. In the present situation it follows from Theorem 8.3.9 and (8.4.1)
that the restriction ι−τ̃D : Nη(Tmax) → L2(∂Ω) is bijective and one concludes
W11 = (ι−τ̃D)−1. Now the properties of W imply that W22 = (ι−τ̃D)∗.

With the help of the extended Dirichlet-to-Neumann map in Corollary 8.3.12
one obtains a more explicit description of the domain of the self-adjoint operator
A1 in (8.4.2).

Proposition 8.4.3. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ + V in L2(Ω), and fix η ∈ ρ(AD) ∩ R. Moreover, let

D̃(η) be the extended Dirichlet-to-Neumann map in Corollary 8.3.12. Then the
self-adjoint extension A1 of Tmin in (8.4.2) is defined on

domA1 =
{
f ∈ domTmax : τ̃Nf = D̃(η)τ̃Df

}
. (8.4.4)

In the case that η < m(AD), where m(AD) denotes the lower bound of AD, the op-
erator A1 coincides with the Krĕın type extension SK,η of Tmin in Definition 5.4.2.
In particular, if m(AD) > 0 and η = 0, then A1 = SK,0 is the Krĕın–von Neumann
extension of Tmin.

Proof. It is clear from Theorem 8.4.1 that

domA1 = ker Γ1 =
{
f = fD + fη ∈ domTmax : τNfD = 0

}
.

Let τ̃N be the extension of the Neumann trace τN to the maximal domain in
Theorem 8.3.10. Then the boundary condition τNfD = 0 can be rewritten as
τ̃Nf = τ̃Nfη, where f = fD + fη ∈ domTmax. With the help of the extended
Dirichlet-to-Neumann map

D̃(η) : H−1/2(∂Ω)→ H−3/2(∂Ω), τ̃Dfη �→ τ̃Nfη, fη ∈ Nη(Tmax),

one obtains τ̃Nfη = D̃(η)τ̃Dfη = D̃(η)τ̃Df , which implies (8.4.4).

If η ∈ R is chosen smaller than the lower bound m(AD) of AD, then it follows
from the second identity in (8.4.2), Lemma 5.4.1, and Definition 5.4.2 that the

Krĕın type extension SK,η = Tmin +̂ N̂η(Tmax) of Tmin and A1 coincide. In the
special case m(AD) > 0 and η = 0 one has A1 = SK,0, which is the Krĕın–von
Neumann extension of Tmin; cf. Definition 5.4.2. �

In the next proposition the γ-field and the Weyl function corresponding to
the boundary triplet {L2(∂Ω),Γ0,Γ1} in Theorem 8.4.1 are provided. Note that
for f = fD + fη decomposed as in (8.4.1) one has

Γ0f = ι−τ̃Df = ι−τ̃Dfη,

as ker τ̃D = ker τD = domAD by Theorem 8.3.9. It is also clear from (8.4.1) that
Γ0 is a bijective mapping from Nη(Tmax) onto L2(∂Ω).
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Proposition 8.4.4. Let {L2(∂Ω),Γ0,Γ1} be the boundary triplet for (Tmin)
∗ = Tmax

in Theorem 8.4.1 and let fη(ϕ) be the unique element in Nη(Tmax) such that
Γ0fη(ϕ) = ϕ. Then for all λ ∈ ρ(AD) the γ-field corresponding to the boundary
triplet {L2(∂Ω),Γ0,Γ1} is given by

γ(λ)ϕ =
(
I + (λ− η)(AD − λ)−1

)
fη(ϕ), ϕ ∈ L2(∂Ω), (8.4.5)

and fλ(ϕ) := γ(λ)ϕ is the unique element in Nλ(Tmax) such that Γ0fλ(ϕ) = ϕ.
Furthermore, one has

γ(λ)∗ = −ι+τN(AD − λ)−1, λ ∈ ρ(AD). (8.4.6)

The Weyl function M corresponding to the boundary triplet {L2(∂Ω),Γ0,Γ1} is
given by

M(λ)ϕ = (η − λ)ι+τN(AD − λ)−1fη(ϕ), ϕ ∈ L2(∂Ω).

In particular, γ(η)ϕ = fη(ϕ) and M(η)ϕ = 0 for all ϕ ∈ L2(∂Ω).

Proof. Since by definition γ(η) is the inverse of the restriction of Γ0 to Nη(Tmax),
it is clear that γ(η)ϕ = fη(ϕ), where fη(ϕ) is the unique element in Nη(Tmax) such
that Γ0fη(ϕ) = ϕ. Both (8.4.5) and (8.4.6) are consequences of Proposition 2.3.2.
In order to compute the Weyl function note that

γ(λ)ϕ = fη(ϕ) + (λ− η)(AD − λ)−1fη(ϕ)

is decomposed in (λ− η)(AD − λ)−1fη(ϕ) ∈ domAD and fη(ϕ) ∈ Nη(Tmax), and
hence by the definition of Γ1 it follows that

M(λ)ϕ = Γ1γ(λ)ϕ = −ι+τN
[
(λ− η)(AD − λ)−1fη(ϕ)

]
= (η − λ)ι+τN(AD − λ)−1fη(ϕ).

The assertion M(η)ϕ = 0 for all ϕ ∈ L2(∂Ω) is clear from the above. �

The Weyl function M in Proposition 8.4.4 is closely connected with the
Dirichlet-to-Neumann map D(λ) and its extension D̃(λ), λ ∈ ρ(AD), in Defini-
tion 8.3.6 and Corollary 8.3.12. This connection will be made explicit in the next
lemma. First, consider f = fD + fη ∈ domTmax as in (8.4.1). In the present
situation one has

τNfD = τ̃NfD = τ̃Nf − τ̃Nfη.

Hence, making use of D̃(η)τ̃Dfη = τ̃Nfη (see Corollary 8.3.12) and the identity
ker τ̃D = domAD, it follows that

τNfD = τ̃Nf − D̃(η)τ̃Dfη = τ̃Nf − D̃(η)τ̃Df. (8.4.7)
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Lemma 8.4.5. Let M be the Weyl function corresponding to the boundary triplet
in Theorem 8.4.1 and let D̃(λ), λ ∈ ρ(AD), be the extended Dirichlet-to-Neumann
map in Corollary 8.3.12. Then the regularization property

ran
(
D̃(η)− D̃(λ)

) ⊂ H1/2(∂Ω) (8.4.8)

holds and one has

M(λ)ϕ = ι+
(
D̃(η)− D̃(λ)

)
ι−1
− ϕ, ϕ ∈ L2(∂Ω), (8.4.9)

and

M(λ)ϕ = ι+
(
D(η)−D(λ)

)
ι−1
− ϕ, ϕ ∈ H2(∂Ω), (8.4.10)

Proof. For ψ ∈ H−1/2(∂Ω) choose fλ ∈ Nλ(Tmax) such that τ̃Dfλ = ψ or, equiva-
lently, Γ0fλ = ι−ψ. Decompose fλ in the form fλ = fλ

D + fλ,η with fλ
D ∈ domAD

and fλ,η ∈ Nη(Tmax). Then one computes(
D̃(η)− D̃(λ)

)
ψ = D̃(η)τ̃Dfλ − τ̃Nfλ = −τNfλ

D, (8.4.11)

where (8.4.7) was used in the last step for f = fλ. Since fλ
D ∈ domAD ⊂ H2(Ω),

the regularization property (8.4.8) follows from (8.2.12). From (8.4.11) one also
concludes that

ι+
(
D̃(η)− D̃(λ)

)
ι−1
− Γ0fλ = −ι+τNfλ

D = Γ1fλ,

and since M(λ)Γ0fλ = Γ1fλ by the definition of the Weyl function, this shows
(8.4.9).

It remains to prove the second assertion (8.4.10). For this note that the
restriction of ι−1

− : L2(∂Ω)→ H−1/2(∂Ω) to H2(∂Ω) is an isometric isomorphism

from H2(∂Ω) onto H3/2(∂Ω) by Corollary 8.2.2. Furthermore, it follows from the

definition that the extended Dirichlet-to-Neumann map D̃(λ) coincides with the
Dirichlet-to-Neumann map D(λ) on H3/2(∂Ω). With these observations it is clear
that (8.4.10) follows when restricting (8.4.9) to H2(∂Ω). �

Remark 8.4.6. The boundary mappings in Theorem 8.4.1 and the corresponding
γ-field and Weyl function depend on the choice of η ∈ ρ(AD) ∩R and the decom-
position of f ∈ domTmax as f = fη

D + fη; observe that also fD = fη
D ∈ domAD

depends on η. Suppose now that the boundary mappings are defined with respect

to some other η′ ∈ ρ(AD) ∩ R and decompose f accordingly as f = fη′
D + fη′ . If

Γη
0 ,Γ

η
1 denote the boundary mappings in Theorem 8.4.1 with respect to η, and

Γη′
0 ,Γη′

1 denote the boundary mappings in Theorem 8.4.1 with respect to η′, then
one has (

Γη′
0

Γη′
1

)
=

(
I 0

−M(η′) I

)(
Γη
0

Γη
1

)
. (8.4.12)
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In fact, that Γη′
0 f = Γη

0f for f ∈ domTmax is clear from Theorem 8.4.1, and for
the remaining identity in (8.4.12) it follows from Lemma 8.4.5 that

−M(η′)Γη
0f + Γη

1f = ι+
(
D̃(η′)− D̃(η)

)
ι−1
− Γη

0f + Γη
1f

= ι+
(
D̃(η′)τ̃Df − D̃(η)τ̃Df

)− ι+τNf
η
D

= ι+
(
D̃(η′)τ̃Dfη′ − D̃(η)τ̃Dfη

)− ι+τNf
η
D

= ι+
(
τ̃Nfη′ − τ̃Nfη

)− ι+τNf
η
D

= ι+τN(f
η
D − fη′

D

)− ι+τNf
η
D

= Γη′
1 f.

Finally, note that the γ-fields and Weyl functions of the boundary triplets in
Theorem 8.4.1 for different η and η′ transform accordingly; cf. Proposition 2.5.3.

Next some classes of extensions of Tmin and their spectral properties are
briefly discussed. Let {L2(∂Ω),Γ0,Γ1} be the boundary triplet in Theorem 8.4.1
with corresponding γ-field γ and Weyl function M in Proposition 8.4.4. According
to Corollary 2.1.4, the self-adjoint (maximal dissipative, maximal accumulative)
extensions AΘ ⊂ Tmax of Tmin are in a one-to-one correspondence to the self-
adjoint (maximal dissipative, maximal accumulative) relations Θ in L2(∂Ω) via

domAΘ =
{
f ∈ domTmax : {Γ0f,Γ1f} ∈ Θ

}
=
{
f ∈ domTmax : {ι−τ̃Df,−ι+τNfD} ∈ Θ

}
.

(8.4.13)

If Θ is an operator in L2(∂Ω), then the domain of AΘ is given by

domAΘ =
{
f ∈ domTmax : Θι−τ̃Df = −ι+τNfD

}
. (8.4.14)

Let Θ be a self-adjoint relation in L2(∂Ω) and let AΘ be the corresponding
self-adjoint realization of −Δ+ V in L2(Ω). By Corollary 1.10.9, Θ can be repre-
sented in terms of bounded operators A,B ∈ B(L2(∂Ω)) satisfying the conditions
A∗B = B∗A, AB∗ = BA∗, and A∗A+B∗B = I = AA∗ +BB∗ such that

Θ =
{{Aϕ,Bϕ} : ϕ ∈ L2(∂Ω)

}
=
{{ψ,ψ′} : A∗ψ′ = B∗ψ

}
.

In this case one has

domAΘ =
{
f ∈ domTmax : −A∗ι+τNfD = B∗ι−τ̃Df

}
,

and for λ ∈ ρ(AΘ) ∩ ρ(AD) the Krĕın formula for the corresponding resolvents

(AΘ − λ)−1 = (AD − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗

= (AD − λ)−1 + γ(λ)A
(
B−M(λ)A

)−1
γ(λ)∗

(8.4.15)
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holds by Theorem 2.6.1 and Corollary 2.6.3. Recall that in the present situation the
spectrum of AD = A0 is discrete by Proposition 8.3.2. According to Theorem 2.6.2,
λ ∈ ρ(AD) is an eigenvalue of AΘ if and only if ker (Θ −M(λ)) or, equivalently,
ker (B−M(λ)A) is nontrivial, and that

ker (AΘ − λ) = γ(λ) ker
(
Θ−M(λ)

)
= γ(λ)A ker

(
B−M(λ)A

)
.

Although Ω is a bounded C2-domain, it will turn out in Example 8.4.9 that the
spectrum of AΘ is in general not discrete, and thus continuous spectrum may be
present. It then follows from Theorem 2.6.2 and Theorem 2.6.5 that λ ∈ ρ(AD) be-
longs to the continuous spectrum σc(AΘ) (essential spectrum σess(AΘ) or discrete
spectrum σd(AΘ)) of AΘ if and only if 0 belongs to σc(Θ−M(λ)) (σess(Θ−M(λ))
or σd(Θ−M(λ))).

For a complete description of the spectrum of AΘ recall that the symmetric
operator Tmin is simple according to Proposition 8.3.13 and make use of a trans-
form of the boundary triplet {L2(∂Ω),Γ0,Γ1} as in Chapter 3.8. This reasoning
implies that λ is an eigenvalue of AΘ if and only if λ is a pole of the function

λ �→MΘ(λ) =
(
A∗ +B∗M(λ)

)(
B∗ −A∗M(λ)

)−1
.

It is important to note in this context that the multiplicity of the eigenvalues of
AΘ is not necessarily finite and that the dimension of the eigenspace ker (AΘ−λ)
of an isolated eigenvalue λ of AΘ coincides with the dimension of the range of
the residue of MΘ at λ. Furthermore, the continuous and absolutely continuous
spectrum of AΘ can be characterized as in Section 3.8, e.g., one has

σac(AΘ) =
⋃

ϕ∈L2(∂Ω)

closac
({

x ∈ R : 0 < Im
(
MΘ(x+ i0)ϕ,ϕ

)
L2(∂Ω)

<∞}).
In the special case that the self-adjoint relation Θ in L2(∂Ω) is a bounded opera-
tor the boundary condition reads as in (8.4.14) and according to Section 3.8 the
spectral properties of the self-adjoint operator AΘ can also be described with the
help of the function

λ �→ (Θ−M(λ)
)−1

.

The general boundary conditions in (8.4.13) and (8.4.14) contain also typical
classes of boundary conditions that are treated in spectral problems for partial
differential operators, as, e.g., Neumann or Robin type boundary conditions. In
the following example the standard Neumann boundary conditions are discussed.
Note that the Neumann operator does not coincide with the Krĕın type extension
SK,η or the Krĕın–von Neumann extension SK,0 of Tmin in Proposition 8.4.3.

Example 8.4.7. Let {L2(∂Ω),Γ0,Γ1} be the boundary triplet in Theorem 8.4.1
and choose η ∈ ρ(AD) ∩ R in (8.4.1) in such a way that also η ∈ ρ(AN), where
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AN denotes the Neumann realization of −Δ + V in Proposition 8.3.3 and The-
orem 8.3.4. Since both self-adjoint operators AD and AN are semibounded from
below (or both have discrete spectrum), such an η exists. In this situation it follows
that the Dirichlet-to-Neumann map

D(η) : H3/2(∂Ω)→ H1/2(∂Ω)

in Definition 8.3.6 is a bijective mapping. Furthermore, ι+ : H1/2(∂Ω)→ L2(∂Ω)
is bijective and the restriction of ι−1

− : L2(∂Ω) → H−1/2(∂Ω) to H2(∂Ω) is an

isometric isomorphism from H2(∂Ω) onto H3/2(∂Ω) according to Corollary 8.2.2.
Hence, it is clear that

ΘN := ι+D(η)ι−1
− , domΘN := H2(∂Ω), (8.4.16)

is a densely defined bijective operator in L2(∂Ω). Furthermore, for ϕ ∈ H2(∂Ω)
and ψ = ι−1

− ϕ ∈ H3/2(∂Ω) it follows from Corollary 8.2.2 that(
ι+D(η)ι−1

− ϕ,ϕ
)
L2(∂Ω)

=
(
ι+D(η)ψ, ι−ψ

)
L2(∂Ω)

= (D(η)ψ,ψ)L2(∂Ω). (8.4.17)

Now choose fη ∈ H2(Ω) such that (−Δ + V )fη = ηfη and τDfη = ψ, which is
possible by (8.3.9) and (8.2.12). Then it follows from Definition 8.3.6 and the first
Green identity in (8.2.18) that

(D(η)ψ,ψ)L2(∂Ω) =
(
D(η)τDfη, τDfη

)
L2(∂Ω)

= (τNfη, τDfη)L2(∂Ω)

= ‖∇fη‖2L2(Ω;Cn) + (Δfη, fη)L2(Ω)

= ‖∇fη‖2L2(Ω;Cn) + ((V − η)fη, fη)L2(Ω),

(8.4.18)

so that (D(η)ψ,ψ)L2(∂Ω) ∈ R and hence (ΘNϕ,ϕ)L2(∂Ω) ∈ R by (8.4.16)–(8.4.17)
for all ϕ ∈ H2(∂Ω). It follows that the bijective operator ΘN is symmetric in
L2(∂Ω), and hence ΘN is an unbounded self-adjoint operator in L2(∂Ω) such that
0 ∈ ρ(ΘN).

The self-adjoint realization of −Δ + V in L2(Ω) corresponding to the self-
adjoint operator ΘN in (8.4.16) is denoted by AΘN . A function f ∈ domTmax

belongs to domAΘN if and only if

Γ0f = ι−τ̃Df ∈ domΘN and Γ1f = ΘNΓ0f.

Note that ι−τ̃Df ∈ domΘN forces τ̃Df ∈ H3/2(∂Ω) and hence f ∈ H2(Ω) and
τ̃Df = τDf by (8.2.12) and Theorem 8.3.9. It then follows from (8.4.7) and (8.4.16)
that the boundary condition Γ1f = ΘNΓ0f takes on the form

ι+D(η)τDf − ι+τNf = −ι+τNfD = Γ1f = ΘNΓ0f = ι+D(η)τDf,
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that is, τNf = 0. Hence, it has been shown that domAΘN ⊂ H2(Ω) and that
τNf = 0 for all f ∈ domAΘN

. Therefore, AΘN
⊂ AN and since both operators are

self-adjoint one concludes that AΘN
= AN.

Note also that by (8.4.16) and Lemma 8.4.5 one has(
ΘN −M(λ)

)
ϕ = ι+D(η)ι−1

− ϕ− ι+
(
D(η)−D(λ)

)
ι−1
− ϕ = ι+D(λ)ι−1

− ϕ

for ϕ ∈ H2(∂Ω) and λ ∈ ρ(AD). Hence, it follows that ΘN −M(λ) is a bijec-
tive operator in L2(∂Ω) for all λ ∈ ρ(AD) ∩ ρ(AN) which is defined on H2(∂Ω).
Therefore, (8.4.15) implies that the resolvents of AD and AN are related via

(AN − λ)−1 = (AD − λ)−1 + γ(λ)ι−D(λ)−1ι−1
+ γ(λ)∗,

where γ is the γ-field corresponding to the boundary triplet {L2(∂Ω),Γ0,Γ1} in
Proposition 8.4.4.

The next example is a generalization of the previous example from Neumann
to local and nonlocal Robin boundary conditions.

Example 8.4.8. Let {L2(∂Ω),Γ0,Γ1} be as in the previous example and fix some
η ∈ ρ(AD) ∩ ρ(AN) ∩ R. Then the operator ΘN = ι+D(η)ι−1

− in (8.4.16) is an
unbounded self-adjoint operator in L2(∂Ω) with domain H2(∂Ω), and 0 ∈ ρ(ΘN).
Assume that

B : H3/2(∂Ω)→ H1/2(∂Ω) (8.4.19)

is compact as an operator from H3/2(∂Ω) into H1/2(∂Ω) and that B is symmetric
in L2(∂Ω), that is, (Bψ,ψ)L2(∂Ω) ∈ R for all ψ ∈ domB = H3/2(∂Ω). Then it
follows that

ι+Bι−1
− : H2(∂Ω)→ L2(∂Ω)

is compact as an operator from H2(∂Ω) into L2(∂Ω) and as in (8.4.17) one sees
that ι+Bι−1

− is symmetric in L2(∂Ω). Consider the operator

ΘB := ι+
(
D(η)−B

)
ι−1
− = ΘN − ι+Bι−1

− , domΘB = H2(∂Ω), (8.4.20)

and observe that the symmetric operator ι+Bι−1
− is a relative compact perturba-

tion of the self-adjoint operator ΘN in L2(∂Ω), that is, the operator

ι+Bι−1
− Θ−1

N

is compact in L2(∂Ω). It is well known from standard perturbation results (see,
e.g., [652, Corollary 2 of Theorem XIII.14]) that in this case the perturbed operator
ΘB is self-adjoint in L2(∂Ω).

The self-adjoint realization of −Δ + V in L2(Ω) corresponding to the self-
adjoint operator ΘB in (8.4.20) is denoted by AΘB

. It is clear that a function
f ∈ domTmax belongs to domAΘB

if and only if

Γ0f = ι−τ̃Df ∈ domΘB and Γ1f = ΘBΓ0f. (8.4.21)
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In the same way as in Example 8.4.7 the fact that ι−τ̃Df ∈ domΘB implies that
f ∈ H2(Ω) and τ̃Df = τDf , and the boundary condition Γ1f = ΘBΓ0f takes the
explicit form

ι+D(η)τDf − ι+τNf = Γ1f = ΘBΓ0f = ι+
(
D(η)−B

)
τDf,

that is, τNf = BτDf . Conversely, if f ∈ H2(Ω) is such that τNf = BτDf , then
f satisfies (8.4.21) and hence f ∈ domAΘB

. Thus, it has been shown that the
self-adjoint operator AΘB

is defined on

domAΘB
=
{
f ∈ H2(Ω) : τNf = BτDf

}
.

In the same way as in the previous example one obtains

ΘB −M(λ) = ι+
(
D(λ)−B

)
ι−1
−

and hence for all λ ∈ ρ(AD) ∩ ρ(AΘB
) one has

(AΘB
− λ)−1 = (AD − λ)−1 + γ(λ)ι−

(
D(λ)−B

)−1
ι−1
+ γ(λ)∗.

Finally, note that a sufficient condition for the operator B in (8.4.19) to be
compact is that B : H3/2(∂Ω)→ H1/2+ε(∂Ω) is bounded for some ε > 0, or that
B : H3/2−ε′(∂Ω) → H1/2(∂Ω) is bounded for some ε′ > 0, since the embeddings
H1/2+ε(∂Ω) ↪→ H1/2(∂Ω) and H3/2(∂Ω) ↪→ H3/2−ε′(∂Ω) are compact by (8.2.8).

In the next example it is shown that the (essential) spectrum of a self-adjoint
realization AΘ of −Δ + V can be very general, depending on the properties of
the parameter Θ. In particular, the self-adjoint realization AΘ may not be semi-
bounded.

Example 8.4.9. Let η ∈ ρ(AD)∩R, consider an arbitrary self-adjoint operator Ξ in
the Hilbert space Nη(Tmax) = ker (Tmax−η), and assume that η ∈ ρ(Ξ). Denote by
PNη the orthogonal projection in L2(Ω) onto Nη(Tmax) and let ιNη be the natural
embedding of Nη(Tmax) into L2(Ω).

Let {L2(∂Ω),Γ0,Γ1} be the boundary triplet in Theorem 8.4.1 with corre-
sponding γ-field and Weyl function in Proposition 8.4.4. Note that M(η) = 0 and
that both

PNη
γ(η) : L2(∂Ω)→ Nη(Tmax) and γ(η)∗ιNη

: Nη(Tmax)→ L2(∂Ω)

are isomorphisms. It follows that

Θ :=
(
γ(η)∗ιNη

)
(Ξ− η)

(
PNηγ(η)

)
is a self-adjoint operator in L2(∂Ω) with 0 ∈ ρ(Θ) and

Θ−1 =
(
PNηγ(η)

)−1
(Ξ− η)−1

(
γ(η)∗ιNη

)−1
. (8.4.22)
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Let AΘ be the corresponding self-adjoint realization of −Δ+V in (8.4.13)–(8.4.14)
defined on

domAΘ =
{
f ∈ domTmax : Θι−τ̃Df = −ι+τNfD

}
.

Since M(η) = 0 and η ∈ R, Krĕın’s formula in (8.4.15) takes the form

(AΘ − η)−1 = (AD − η)−1 + γ(η)Θ−1γ(η)∗

= (AD − λ)−1 +

(
PNηγ(η)Θ

−1γ(η)∗ιNη 0
0 0

)
,

where the block operator matrix is acting with respect to the space decomposition
L2(Ω) = Nη(Tmax)⊕ (Nη(Tmax))

⊥. Using (8.4.22) one then concludes that

(AΘ − η)−1 = (AD − η)−1 +

(
(Ξ− η)−1 0

0 0

)
.

In particular, since (AD − η)−1 is compact, well-known perturbation results show
that

σess

(
(AΘ − η)−1

)
= σess

(
(Ξ− η)−1

) ∪ {0},
and hence σess(AΘ) = σess(Ξ).

8.5 Semibounded Schrödinger operators

The semibounded self-adjoint realizations of −Δ + V , where V ∈ L∞(Ω) is real,
and the corresponding densely defined closed semibounded forms in L2(Ω) are
described in this section. For this purpose it is convenient to construct a boundary
pair which is compatible with the boundary triplet in Theorem 8.4.1 and to apply
the general results from Section 5.6. Under the additional assumption that V ≥ 0,
the nonnegative realizations of −Δ+ V and the corresponding nonnegative forms
in L2(Ω) are discussed as a special case. In this situation the Krĕın–von Neumann
extension appears as the smallest nonnegative extension.

Let Ω ⊂ Rn be a bounded C2-domain and let AD be the self-adjoint Dirichlet
realization of −Δ + V . It is clear from Proposition 8.3.2 that AD coincides with
the Friedrichs extension of the minimal operator Tmin in (8.3.2) and that AD

is bounded from below with lower bound m(AD) > v−, where v− = essinfV .
Furthermore, the resolvent of AD is compact since the domain Ω is bounded.
Therefore, the following description of the semibounded self-adjoint extensions of
Tmin is an immediate consequence of Proposition 5.5.6 and Proposition 5.5.8.

Proposition 8.5.1. Let Ω ⊂ Rn be a bounded C2-domain, let {L2(∂Ω),Γ0,Γ1} be
the boundary triplet for (Tmin)

∗ = Tmax from Theorem 8.4.1, and let

AΘ = −Δ+ V,

domAΘ =
{
f ∈ domTmax : {Γ0f,Γ1f} ∈ Θ

}
,
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be a self-adjoint extension of Tmin in L2(Ω) corresponding to a self-adjoint relation
Θ in L2(∂Ω) as in (8.4.13). Then

AΘ is semibounded ⇔ Θ is semibounded.

Recall also from Section 8.3 that the densely defined closed semibounded
form tAD corresponding to AD is defined on H1

0 (Ω). Now fix some η < m(AD), use
the direct sum decomposition

domTmax = Nη(Tmax) + domAD = Nη(Tmax) +
(
H2(Ω) ∩H1

0 (Ω)
)

(8.5.1)

from (8.4.1) and Proposition 8.3.2, and consider the corresponding boundary
triplet {L2(∂Ω),Γ0,Γ1} for (Tmin)

∗ = Tmax in Theorem 8.4.1 given by

Γ0f = ι−τ̃Df and Γ1f = −ι+τNfD, (8.5.2)

where f = fη + fD ∈ domTmax with fη ∈ Nη(Tmax) and fD ∈ domAD; cf.
(8.5.1). It is clear that A0 = AD coincides with the Friedrichs extension of Tmin

and A1 = Tmin +̂ N̂η(Tmax) coincides with the Krĕın type extension SK,η of Tmin;
cf. Definition 5.4.2. In order to define a boundary pair for Tmin corresponding to
A1 = SK,η, consider the densely defined closed semibounded form tSK,η

associated
with SK,η and recall from Corollary 5.4.16 the direct sum decomposition

dom tSK,η = Nη(Tmax) + dom tAD = Nη(Tmax) +H1
0 (Ω) (8.5.3)

of dom tSK,η . Comparing (8.5.1) and (8.5.3) one sees that domTmax ⊂ dom tSK,η

and that the domain of the Dirichlet operator AD in (8.5.1) is replaced by the
corresponding form domain in (8.5.3). The functions f ∈ dom tSK,η will be written
in the form f = fη + fF, where fη ∈ Nη(Tmax) and fF ∈ dom tAD = H1

0 (Ω). Now
define the mapping

Λ : dom tSK,η
→ L2(∂Ω), f �→ Λf = ι−τ̃Dfη. (8.5.4)

It will be shown next that {L2(∂Ω),Λ} is a boundary pair that is compatible with
the boundary triplet {L2(∂Ω),Γ0,Γ1} in the sense of Definition 5.6.4; although
the main part of the proof of Lemma 8.5.2 is similar to Example 5.6.9, the details
are provided.

Lemma 8.5.2. Let Ω ⊂ Rn be a bounded C2-domain and let AD be the self-adjoint
Dirichlet realization of −Δ + V with lower bound m(AD). Fix η < m(AD), let
{L2(∂Ω),Γ0,Γ1} be the corresponding boundary triplet for (Tmin)

∗ = Tmax from
Theorem 8.4.1, and let Λ be the mapping in (8.5.4). Then {L2(∂Ω),Λ} is a bound-
ary pair for Tmin corresponding to the Krĕın type extension SK,η which is compat-
ible with the boundary triplet {L2(∂Ω),Γ0,Γ1}. Moreover, one has

(Tmaxf, g)L2(Ω) = tSK,η
[f, g] + (Γ1f,Λg)L2(∂Ω) (8.5.5)

for all f ∈ domTmax and g ∈ dom tSK,η .
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Proof. According to Lemma 5.6.5 (ii), it suffices to show that for some a < η the
mapping Λ in (8.5.4) is bounded from the Hilbert space

HtSK,η
−a =

(
dom tSK,η , (·, ·)tSK,η

−a

)
to L2(∂Ω) and that Λ extends the mapping Γ0 in (8.5.2). In the present situation
it is clear that the compatibility condition A1 = SK,η is satisfied.

In order to show that Λ is bounded fix some a < η, recall first from (5.1.7)
that the Hilbert space norm on HtSK,η

−a is given by

‖f‖2tSK,η
−a = tSK,η [f ]− a‖f‖2L2(Ω), f ∈ dom tSK,η = HtSK,η

−a.

It follows from Theorem 8.3.9 that the restriction ι−τ̃D : Nη(Tmax) → L2(∂Ω) is
bounded and hence for f = fη + fF ∈ dom tSK,η

, decomposed according to (8.5.3)
in fη ∈ Nη(Tmax) and fF ∈ dom tAD

, one has the estimate

‖Λf‖2L2(∂Ω) = ‖ι−τ̃Dfη‖2L2(∂Ω) ≤ C‖fη‖2L2(Ω). (8.5.6)

Now the orthogonal sum decomposition

dom tSK,η = Na(Tmax)⊕tSK,η
−a dom tAD (8.5.7)

from Corollary 5.4.15 will be used. To this end, define

fa :=
(
I + (a− η)(AD − a)−1

)
fη

and note that f = fa + hF with fa ∈ Na(Tmax) and hF = fη − fa + fF ∈ dom tAD .
Then one has

fη =
(
I + (η − a)(AD − η)−1

)
fa

and Proposition 1.4.6 leads to the estimate

‖fη‖L2(Ω) ≤ m(AD)− a

m(AD)− η
‖fa‖L2(Ω). (8.5.8)

Furthermore, it follows from (5.1.9) and the orthogonal sum decomposition (8.5.7)
that

(η − a)‖fa‖2L2(Ω) ≤ ‖fa‖2tSK,η
−a ≤ ‖fa‖2tSK,η

−a + ‖hF‖2tSK,η
−a = ‖f‖2tSK,η

−a.

From this estimate, (8.5.6), and (8.5.8) one concludes that Λ : HtSK,η
−a → L2(∂Ω)

is bounded.

From the definition of Λ in (8.5.4) and the decompositions (8.5.1) and (8.5.3)
it is clear that Λ is an extension of the mapping Γ0 in (8.5.2). Moreover, by
construction, the condition A1 = SK,η is satisfied. Therefore, Lemma 5.6.5 (ii)
shows that {L2(∂Ω),Λ} is a boundary pair for Tmin corresponding to SK,η which
is compatible with the boundary triplet {L2(∂Ω),Γ0,Γ1}. The identity (8.5.5)
follows from Corollary 5.6.7. �
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The next theorem is a variant of Theorem 5.6.13 in the present situation.

Theorem 8.5.3. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ+V with lower bound m(AD), and fix η < m(AD). Let
{L2(∂Ω),Γ0,Γ1} be the boundary triplet for (Tmin)

∗ = Tmax from Theorem 8.4.1
and let {L2(∂Ω),Λ} be the compatible boundary pair in Lemma 8.5.2. Furthermore,
let Θ be a semibounded self-adjoint relation in L2(∂Ω) and let AΘ be the corre-
sponding semibounded self-adjoint extension of Tmin in Proposition 8.5.1. Then
the closed semibounded form ωΘ in L2(∂Ω) corresponding to Θ and the densely
defined closed semibounded form tAΘ

corresponding to AΘ are related by

tAΘ [f, g] = tSK,η [f, g] + ωΘ[Λf,Λg],

dom tAΘ =
{
f ∈ dom tSK,η : Λf ∈ domωΘ

}
.

(8.5.9)

For completeness, the form tAΘ
in Theorem 8.5.3 will be made more explicit

using Corollary 5.6.14. First note that, by the definition of the boundary map Λ
in (8.5.4) and the decomposition (8.5.3), one can rewrite (8.5.9) as

tAΘ [f, g] = tSK,η [f, g] + ωΘ[ι−τ̃Dfη, ι−τ̃Dgη],

dom tAΘ
=
{
f = fη + fF ∈ dom tSK,η

: ι−τ̃Dfη ∈ domωΘ

}
.

(8.5.10)

If m(Θ) denotes the lower bound of the semibounded self-adjoint relation Θ and
μ ≤ m(Θ) is fixed, then the closed semibounded form tAΘ in (8.5.9)–(8.5.10)
corresponding to AΘ is given by

tAΘ [f, g] = tSK,η [f, g] +
(
(Θop − μ)

1
2 ι−τ̃Dfη, (Θop − μ)

1
2 ι−τ̃Dgη

)
L2(∂Ω)

+ μ (ι−τ̃Dfη, ι−τ̃Dgη)L2(∂Ω) ,

dom tAΘ
=
{
f = fη + fF ∈ dom tSK,η

: ι−τ̃Dfη ∈ dom (Θop − μ)
1
2

}
;

as usual, here Θop denotes the semibounded self-adjoint operator part of Θ acting
in L2(∂Ω)op = domΘ. In the special case where Θop ∈ B(L2(∂Ω)op) one has

tAΘ [f, g] = tSK,η [f, g] +
(
Θop ι−τ̃Dfη, ι−τ̃Dgη

)
L2(∂Ω)

,

dom tAΘ =
{
f = fη + fF ∈ dom tSK,η : ι−τ̃Dfη ∈ domΘop

}
,

and if Θ ∈ B(L2(∂Ω)), then

tAΘ [f, g] = tSK,η [f, g] +
(
Θι−τ̃Dfη, ι−τ̃Dgη

)
L2(∂Ω)

, dom tAΘ = dom tSK,η .

Recall also from Corollary 5.4.15 that the form tSK,η can be expressed in terms of
the form tAD

and the resolvent of AD.

Finally, the special case V ≥ 0 will be briefly considered. In this situation the
minimal operator Tmin and the Dirichlet operator AD are both uniformly positive
and hence in the above construction of a boundary triplet and corresponding
boundary pair one may choose η = 0. More precisely, Theorem 8.4.1 has the
following form.
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Corollary 8.5.4. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ+V in L2(Ω) with V ≥ 0, and decompose f ∈ domTmax

according to (8.4.1) with η = 0 in the form f = fD + f0, where fD ∈ domAD and
f0 ∈ kerTmax. Then {L2(∂Ω),Γ0,Γ1}, where

Γ0f = ι−τ̃Df and Γ1f = −ι+τNfD, f = fD + f0 ∈ domTmax,

is a boundary triplet for (Tmin)
∗ = Tmax such that

A0 = AD and A1 = Tmin +̂ N̂0(Tmax)

coincide with the Friedrichs extension and the Krĕın–von Neumann extension of
Tmin, respectively.

It is clear from Proposition 8.4.4 that for all λ ∈ ρ(AD) the γ-field and Weyl
function corresponding to the boundary triplet {L2(∂Ω),Γ0,Γ1} in Corollary 8.5.4
have the form

γ(λ)ϕ =
(
I + λ(AD − λ)−1

)
f0(ϕ), ϕ ∈ L2(∂Ω),

and

M(λ)ϕ = −ι+τNλ(AD − λ)−1f0(ϕ), ϕ ∈ L2(∂Ω), (8.5.11)

respectively, where f0(ϕ) is the unique element in N0(Tmax) with the property
that Γ0f0(ϕ) = ι−τ̃Df0(ϕ) = ϕ.

The next proposition is a variant of Proposition 8.5.1 for nonnegative exten-
sions.

Proposition 8.5.5. Let Ω ⊂ Rn be a bounded C2-domain, assume that V ≥ 0,
and let {L2(∂Ω),Γ0,Γ1} be the boundary triplet for (Tmin)

∗ = Tmax from Corol-
lary 8.5.4. Let

AΘ = −Δ+ V,

domAΘ =
{
f ∈ domTmax : {Γ0f,Γ1f} ∈ Θ

}
,

be a self-adjoint extension of Tmin in L2(Ω) corresponding to a self-adjoint relation
Θ in L2(∂Ω) as in (8.4.13). Then

AΘ is nonnegative ⇔ Θ is nonnegative.

Proof. Note that the Weyl function M in (8.5.11) satisfies M(0) = 0 and that
Tmin is uniformly positive. Therefore, if AΘ is a nonnegative self-adjoint extension
of Tmin, then Proposition 5.5.6 with x = 0 shows that the self-adjoint relation Θ
in L2(∂Ω) is nonnegative. Conversely, if Θ is a nonnegative self-adjoint relation
in L2(∂Ω), then it follows from Corollary 5.5.15 and A1 = SK,0 ≥ 0 that AΘ is a
nonnegative self-adjoint extension of Tmin. �
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In the nonnegative case the boundary mapping Λ in (8.5.4) is given by

Λ : dom tSK,0 → L2(∂Ω), f �→ Λf = ι−τ̃Df0, (8.5.12)

where one has the direct sum decomposition

dom tSK,0
= N0(Tmax) + dom tAD = N0(Tmax) +H1

0 (Ω),

and according to Lemma 8.5.2 {L2(∂Ω),Λ} is a boundary pair that is compatible
with the boundary triplet {L2(∂Ω),Γ0,Γ1} in Corollary 8.5.4.

In the nonnegative case a description of the nonnegative extensions and their
form domains is of special interest. In the present situation Corollary 5.6.18 reads
as follows.

Corollary 8.5.6. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ + V with V ≥ 0, let {L2(∂Ω),Γ0,Γ1} be the bound-
ary triplet for (Tmin)

∗ = Tmax from Corollary 8.5.4, and let {L2(∂Ω),Λ} be the
compatible boundary pair in (8.5.12). Then the formula

tAΘ [f, g] = tSK,0 [f, g] +
(
Θ

1
2
op ι−τ̃Df0,Θ

1
2
op ι−τ̃Dg0

)
L2(∂Ω)

,

dom tAΘ =
{
f = f0 + fF ∈ dom tSK,0 : ι−τ̃Df0 ∈ domΘ

1
2
op

}
,

establishes a one-to-one correspondence between all closed nonnegative forms tAΘ

corresponding to nonnegative self-adjoint extension AΘ of Tmin in L2(Ω) and all
closed nonnegative forms ωΘ corresponding to nonnegative self-adjoint relations Θ
in L2(∂Ω).

8.6 Coupling of Schrödinger operators

The aim of this section is to interpret the natural self-adjoint Schrödinger operator

A = −Δ+ V, domA = H2(Rn), (8.6.1)

in L2(Rn) with a real potential V ∈ L∞(Rn) as a coupling of Schrödinger operators
on a bounded C2-domain and its complement, that is, A is identified as a self-
adjoint extension of the orthogonal sum of the minimal Schrödinger operators on
the subdomains and its resolvent is expressed in a Krĕın type resolvent formula.
The present treatment is a multidimensional variant of the discussion in Section 6.5
and is based on the abstract coupling construction in Section 4.6.

Let Ω+ ⊂ Rn be a bounded C2-domain and let Ω− := Rn \ Ω+ be the
corresponding exterior domain. Since C := ∂Ω− = ∂Ω+ is C2-smooth in the sense
of Definition 8.2.1, the term C2-domain will be used here for Ω−, although Ω−
is unbounded. In the following the common boundary C is sometimes referred
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to as an interface, linking the two domains Ω+ and Ω−. Note that one has the
identification

L2(Rn) = L2(Ω+)⊕ L2(Ω−). (8.6.2)

Consider the Schrödinger operator A = −Δ + V , domA = H2(Rn), in (8.6.1)
with V ∈ L∞(Rn) real. Since the Laplacian −Δ defined on H2(Rn) is unitarily
equivalent in L2(Rn) via the Fourier transform to the maximal multiplication
operator with the function x �→ |x|2, it is clear that −Δ, and hence A in (8.6.1),
is self-adjoint in L2(Rn). Moreover, for f ∈ C∞

0 (Rn) integration by parts shows
that

(Af, f)L2(Rn) = (∇f,∇f)L2(Rn;Cn) + (V f, f)L2(Rn) ≥ v−‖f‖2L2(Rn),

where v− = essinfV . As C∞
0 (Rn) is dense in H2(Rn), this estimate extends to

H2(Rn). Therefore, A is semibounded from below and v− is a lower bound.

The restriction of the real function V ∈ L∞(Ω) to Ω± is denoted by V±
and the same ±-index notation will be used for the restriction f± ∈ L2(Ω±)
of an element f ∈ L2(Rn). The minimal and maximal operator associated with
−Δ+ V+ in L2(Ω+) will be denoted by T+

min and T+
max, respectively, and the self-

adjoint Dirichlet realization in L2(Ω+) will be denoted by A+
D; cf. Proposition 8.3.1,

Proposition 8.3.2, and Theorem 8.3.4. For the minimal operator

T−
min = −Δ+ V−, domT−

min = H2
0 (Ω−),

and the maximal operator

T−
max = −Δ+ V−,

domT−
max =

{
f− ∈ L2(Ω−) : −Δf− + V−f− ∈ L2(Ω−)

}
,

on the unbounded C2-domain one can show in the same way as in the proof of
Proposition 8.3.1 that (T−

min)
∗ = T−

max and T−
min = (T−

max)
∗. Furthermore, since

Ω− has a compact C2-smooth boundary, it follows by analogy to Theorem 8.3.4
that the self-adjoint Dirichlet realization A−

D corresponding to the densely defined
closed semibounded form

t−D[f−, g−] = (∇f−,∇g−)L2(Ω−;Cn) + (V−f−, g−)L2(Ω−), dom t−D = H1
0 (Ω−),

via the first representation theorem (Theorem 5.1.18) is given by

A−
D = −Δ+ V−, domA−

D =
{
f− ∈ H2(Ω−) : τ−D f− = 0

}
,

where τ−D denotes the Dirichlet trace operator on Ω−; cf. (8.2.13). The operator A−
D

is semibounded from below and v− = essinfV is a lower bound. In contrast to the
Dirichlet operator A+

D, the resolvent of A−
D is not compact since Rellich’s theorem

is not valid on the unbounded domain Ω−; cf. the proof of Proposition 8.3.2. Note
also that the Dirichlet trace operator τ−D : H2(Ω−) → H3/2(C) and Neumann
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trace operator τ−N : H2(Ω−)→ H1/2(C) have the same mapping properties as on a
bounded domain. Moreover, both trace operators admit continuous extensions to
domT−

max as in Theorem 8.3.9 and Theorem 8.3.10. With the identification (8.6.2)
it is clear that the orthogonal sum

ÃD =

(
A+

D 0
0 A−

D

)
(8.6.3)

is a self-adjoint operator in L2(Rn) with Dirichlet boundary conditions on C. The
goal of the following considerations is to identify the self-adjoint Schrödinger oper-
ator A in (8.6.1) as a self-adjoint extension of the orthogonal sum of the minimal

operators T±
min and to compare A with the orthogonal sum ÃD in (8.6.3) using a

Krĕın type resolvent formula.

From now on it is assumed that η < essinfV is fixed, so that, in particular,
η ∈ ρ(A+

D) ∩ ρ(A−
D) ∩ R. Consider the boundary triplet {L2(C),Γ+

0 ,Γ
+
1 } for T+

max

in Theorem 8.4.1, that is,

Γ+
0 f+ = ι−τ̃+D f+ and Γ+

1 f+ = −ι+τ+N fD,+, f+ ∈ domT+
max,

where f+ = fD,+ + fη,+ with fD,+ ∈ domA+
D and fη,+ ∈ Nη(T

+
max). In the same

way as in the proof of Theorem 8.4.1 one verifies that {L2(C),Γ−
0 ,Γ

−
1 }, where

Γ−
0 f− = ι−τ̃−D f− and Γ−

1 f− = −ι+τ−N fD,−, f− ∈ domT−
max,

where f− = fD,−+ fη,− with fD,− ∈ domA−
D and fη,− ∈ Nη(T

−
max), is a boundary

triplet for T−
max such that domA−

D = ker Γ−
0 . The γ-fields and Weyl functions

in Proposition 8.4.4 corresponding to the boundary triplets {L2(C),Γ±
0 ,Γ

±
1 } are

denoted by γ± and M±, respectively.
In analogy to Section 4.6, the orthogonal coupling of the boundary triplets

{L2(C),Γ+
0 ,Γ

+
1 } and {L2(C),Γ−

0 ,Γ
−
1 } leads to the boundary triplet{

L2(C)⊕ L2(C), Γ̃0, Γ̃1

}
(8.6.4)

for the orthogonal sum Tmax := T+
max ⊕̂ T−

max of the maximal operator T±
max, where

Γ̃0f =

(
Γ+
0 f+

Γ−
0 f−

)
=

(
ι−τ̃+D f+
ι−τ̃−D f−

)
, f =

(
f+
f−

)
, f± ∈ domT±

max, (8.6.5)

and

Γ̃1f =

(
Γ+
1 f+

Γ−
1 f−

)
=

(−ι+τ+N fD,+

−ι+τ−N fD,−

)
, f =

(
f+
f−

)
, f± ∈ domT±

max. (8.6.6)

It is clear that

domA+
D × domA−

D = ker Γ̃0,
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and hence the self-adjoint operator in (8.6.3) coincides with the self-adjoint ex-

tension of Tmin := T+
min ⊕̂ T−

min corresponding to the boundary condition ker Γ̃0.

Note also that the corresponding γ-field γ̃ and Weyl function M̃ have the form

γ̃(λ) =

(
γ+(λ) 0

0 γ−(λ)

)
and M̃(λ) =

(
M+(λ) 0

0 M−(λ)

)
(8.6.7)

for λ ∈ ρ(A+
D) ∩ ρ(A−

D).

In Lemma 8.6.2 it will be shown that a certain relation Θ̃ is self-adjoint in
L2(C) ⊕ L2(C). This relation will turn out to be the boundary parameter that
corresponds to the Schrödinger operator A in (8.6.1) via the boundary triplet
(8.6.4). The following lemma on the sum of the Dirichlet-to-Neumann maps is
preparatory.

Lemma 8.6.1. Let η < essinfV and let D±(λ) : H3/2(C) → H1/2(C) be the
Dirichlet-to-Neumann maps as in Definition 8.3.6 corresponding to −Δ + V±.
Then for all λ ∈ C \ [η,∞) the operator

D+(λ) +D−(λ) : H3/2(C)→ H1/2(C) (8.6.8)

is bijective.

Proof. First it will be shown that the operator in (8.6.8) is injective. Assume that
(D+(λ)+D−(λ))ϕ = 0 for some ϕ ∈ H3/2(C) and some λ ∈ C\ [η,∞). Then there
exist fλ,± ∈ H2(Ω±) such that

(−Δ+ V±)fλ,± = λfλ,±, τ+D fλ,+ = τ−D fλ,− = ϕ, (8.6.9)

and

0 =
(
D+(λ) +D−(λ)

)
ϕ =

(
D+(λ) +D−(λ)

)
τ±D fλ,± = τ+N fλ,+ + τ−N fλ,−.

As τ+D fλ,+ = τ−D fλ,− and τ+N fλ,+ = −τ−N fλ,− this implies that

fλ =

(
fλ,+
fλ,−

)
∈ H2(Rn). (8.6.10)

In fact, for each h = (h+, h−)� ∈ domA = H2(Rn) one also has τ+D h+ = τ−D h−
and τ+N h+ = −τ−N h− (note that the different signs are due to the fact that the
Neumann trace on each domain is taken with respect to the outward normal
vector) and hence

(Ah,fλ)L2(Rn) − (h, Tmaxfλ)L2(Rn)

= (T+
maxh+, fλ,+)L2(Ω+) − (h+, T

+
maxfλ,+)L2(Ω+)

+ (T−
maxh−, fλ,−)L2(Ω−) − (h−, T−

maxfλ,−)L2(Ω−)

= (τ+D h+, τ
+
N fλ,+)L2(C) − (τ+N h+, τ

+
D fλ,+)L2(C)

+ (τ−D h−, τ−N fλ,−)L2(C) − (τ−N h−, τ−D fλ,−)L2(C)

= 0.
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As the operator A is self-adjoint this shows, in particular, fλ ∈ domA and hence
(8.6.10) holds. Furthermore, from (8.6.9) it follows that

Afλ = (−Δ+ V )fλ = λfλ.

Since σ(A) ⊂ [v−,∞) ⊂ [η,∞) and λ ∈ C \ [η,∞), this implies that fλ = 0 and
hence ϕ = τ±D fλ,± = 0. Thus, it has been shown that the operator in (8.6.8) is
injective for all λ ∈ C \ [η,∞).

Next it will be shown that the operator in (8.6.8) is surjective. For this
consider the space

HC(Rn) :=

{
f =

(
f+
f−

)
: f± ∈ H2(Ω±), τ+D f+ = τ−D f−

}
and observe that as a consequence of (8.2.12) the mapping

τCN : HC(Rn)→ H1/2(C), f �→ τCNf := τ+N f+ + τ−N f−,

is surjective. For λ ∈ C \ [η,∞) it will be shown now that the direct sum decom-
position

HC(Rn) = domA+

{
fλ =

(
fλ,+
fλ,−

)
:
fλ,± ∈ H2(Ω±), τ+D fλ,+ = τ−D fλ,−,

(−Δ+ V±)fλ,± = λfλ,±

}
holds. In fact, the inclusion (⊃) is clear since domA = H2(Rn) and the second
summand on the right-hand side is obviously contained in HC(Rn). The inclusion
(⊂) follows from Theorem 1.7.1 applied to T = −Δ+ V , domT = HC(Rn), after
observing that the space{

fλ =

(
fλ,+
fλ,−

)
:
fλ,± ∈ H2(Ω±), τ+D fλ,+ = τ−D fλ,−,

(−Δ+ V±)fλ,± = λfλ,±

}
(8.6.11)

coincides with Nλ(T ) = ker (T −λ) and λ ∈ ρ(A). Note also that λ ∈ ρ(A) implies
that the sum is direct.

Next observe that for f ∈ domA one has τCNf = 0 and hence also the restric-
tion of τCN to the space (8.6.11) maps onto H1/2(C). Therefore, for ψ ∈ H1/2(C)
there exists fλ = (fλ,+, fλ,−)� such that fλ,± ∈ H2(Ω±), (−Δ+V±)fλ,± = λfλ,±,

τ+D fλ,+ = τ−D fλ,− =: ϕ ∈ H3/2(C) and τCNfλ = τ+N fλ,+ + τ−N fλ,− = ψ.

It follows that(
D+(λ) +D−(λ)

)
ϕ = D+(λ)τ

+
D fλ,+ +D−(λ)τ−D fλ,− = τ+N fλ,+ + τ−N fλ,− = ψ,

and hence the operator in (8.6.8) is surjective.

Consequently, it has been shown that (8.6.8) is a bijective operator for all
λ ∈ C \ [η,∞). �
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Lemma 8.6.1 will be used to prove the following lemma on the self-adjointness
of a particular relation Θ̃ in L2(C)⊕ L2(C).

Lemma 8.6.2. Let η < essinfV and let D±(η) : H3/2(C) → H1/2(C) be the
Dirichlet-to-Neumann maps as in Definition 8.3.6 corresponding to −Δ + V±.
Then the relation

Θ̃ =

{{(
ξ
ξ

)
,

(
ϕ
ψ

)}
: ξ ∈ H2(C), ϕ+ ψ = ι+

(
D+(η) +D−(η)

)
ι−1
− ξ

}
is self-adjoint in L2(C)⊕ L2(C).

Proof. Recall first from Example 8.4.7 that ι+D+(η)ι
−1
− and ι+D−(η)ι−1

− are both
unbounded bijective self-adjoint operators in L2(C) with domain H2(C). Since
η < essinfV , one also sees from (8.4.18) that these operators are nonnegative.
It follows, in particular, that ι+(D+(η) + D−(η))ι−1

− is a symmetric operator in
L2(C). Since

D+(η) +D−(η) : H3/2(C)→ H1/2(C)

is bijective by Lemma 8.6.1 and the restricted operators ι−1
− : H2(C) → H3/2(C)

and ι+ : H1/2(C)→ L2(C) are also bijective, one concludes that

ι+(D+(η) +D−(η))ι−1
− (8.6.12)

is a uniformly positive self-adjoint operator in L2(C) defined on H2(C).

To show that Θ̃ ⊂ Θ̃∗, consider two arbitrary elements{(
ξ
ξ

)
,

(
ϕ
ψ

)}
,

{(
ξ′

ξ′

)
,

(
ϕ′

ψ′

)}
∈ Θ̃,

that is, ξ, ξ′ ∈ H2(C),

ϕ+ ψ = ι+
(
D+(η) +D−(η)

)
ι−1
− ξ and ϕ′ + ψ′ = ι+

(
D+(η) +D−(η)

)
ι−1
− ξ′.

Then one computes((
ξ
ξ

)
,

(
ϕ′

ψ′

))
(L2(C))2

−
((

ϕ
ψ

)
,

(
ξ′

ξ′

))
(L2(C))2

= (ξ, ϕ′ + ψ′)L2(C) − (ϕ+ ψ, ξ′)L2(C)

=
(
ξ, ι+

(
D+(η) +D−(η)

)
ι−1
− ξ′

)
L2(C)

− (ι+(D+(η) +D−(η)
)
ι−1
− ξ, ξ′

)
L2(C)

= 0,

where in the last step it was used that (8.6.12) is a symmetric operator in L2(C).

Hence, the relation Θ̃ is symmetric in L2(C). For the opposite inclusion Θ̃∗ ⊂ Θ̃
consider an element {(

α
β

)
,

(
γ
δ

)}
∈ Θ̃∗, (8.6.13)
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that is, ((
α
β

)
,

(
ϕ
ψ

))
(L2(C))2

=

((
γ
δ

)
,

(
ξ
ξ

))
(L2(C))2

(8.6.14)

holds for all {(
ξ
ξ

)
,

(
ϕ
ψ

)}
∈ Θ̃.

The special choice ξ = 0 yields ϕ + ψ = 0 by the definition of Θ̃ and hence
(α − β, ϕ)L2(C) = 0 for all ϕ ∈ L2(C). This shows α = β and therefore (8.6.14)
becomes(

α, ι+
(
D+(η) +D−(η)

)
ι−1
− ξ
)
L2(C)

= (α,ϕ+ ψ)L2(C) = (γ + δ, ξ)L2(C)

for all ξ ∈ H2(C). Since ι+(D+(η) +D−(η))ι−1
− is a self-adjoint operator in L2(C)

defined on H2(C), it follows that α ∈ H2(C) and

ι+
(
D+(η) +D−(η)

)
ι−1
− α = γ + δ.

This implies that the element in (8.6.13) belongs to Θ̃. Thus, Θ̃ is a self-adjoint
relation in L2(C)⊕ L2(C). �

The following theorem is the main result in this section. It turns out that
the self-adjoint operator corresponding to Θ̃ in Lemma 8.6.2 coincides with the
Schrödinger operator A.

Theorem 8.6.3. Let {L2(C)⊕L2(C),Γ̃0,Γ̃1} be the boundary triplet for T+
max ⊕̂T−

max

from (8.6.4) with γ-field γ̃, let Θ̃ be the self-adjoint relation in Lemma 8.6.2, and
let D±(λ) be the Dirichlet-to-Neumann maps corresponding to −Δ + V±. Then

the self-adjoint operator ÃΘ̃ corresponding to the parameter Θ̃ coincides with the
Schrödinger operator A in (8.6.1) and for all λ ∈ C \ [η,∞) one has the resolvent
formula

(A− λ)−1 = (ÃD − λ)−1 + γ̃(λ)Λ̃(λ)γ̃(λ)∗,

where Λ̃(λ) ∈ B(L2(C)⊕ L2(C)) has the form

Λ̃(λ) =

(
ι−(D+(λ) +D−(λ))−1ι−1

+ ι−(D+(λ) +D−(λ))−1ι−1
+

ι−(D+(λ) +D−(λ))−1ι−1
+ ι−(D+(λ) +D−(λ))−1ι−1

+

)
.

Proof. First it will be shown that the self-adjoint extension ÃΘ̃ and the self-adjoint
Schrödinger operator A in (8.6.1) coincide. Since both operators are self-adjoint,

it suffices to verify the inclusion A ⊂ ÃΘ̃. For this, consider f ∈ domA = H2(Rn)
and note that f = (f+, f−)� satisfies τ+D f+ = τ−D f− and τ+N f+ = −τ−N f−. It will
be shown that {Γ̃0f, Γ̃1f} ∈ Θ̃. By the definition of the boundary mappings Γ̃0

and Γ̃1 in (8.6.5)–(8.6.6), one has

Γ̃0f =

(
ι−τ̃+D f+
ι−τ̃−D f−

)
and Γ̃1f =

(−ι+τ+N fD,+

−ι+τ−N fD,−

)
=:

(
ϕ
ψ

)
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and, as f ∈ H2(Rn), it follows that

ξ := ι−τ+D f+ = ι−τ̃+D f+ = ι−τ̃−D f− = ι−τ−D f− ∈ H2(C).

Since f± = fD,± + fη,± with fD,± ∈ domA±
D and fη,± ∈ Nη(T

±
max), one has

τ±D f± = τ±D fη,± and one concludes that

ι+
(
D+(η) +D−(η)

)
ι−1
− ξ = ι+

(
D+(η)τ

+
D fη,+ +D−(η)τ−D fη,−

)
= ι+

(
τ+N fη,+ + τ−N fη,−

)
= ι+

(
τ+N f+ + τ−N f− − τ+N fD,+ − τ−N fD,−

)
= −ι+τ+N fD,+ − ι+τ

−
N fD,−

= ϕ+ ψ,

where the property τ+N f+ = −τ−N f− for f ∈ domA was used. These considerations

imply {Γ̃0f, Γ̃1f} ∈ Θ̃ and thus f ∈ dom ÃΘ̃. Therefore, domA = H2(Rn) is

contained in dom ÃΘ̃, and since both operators are self-adjoint, it follows that

they coincide, that is, A = ÃΘ̃.

As a consequence of Theorem 2.6.1 one has for λ ∈ ρ(A) ∩ ρ(ÃD) that

(A− λ)−1 = (ÃD − λ)−1 + γ̃(λ)
(
Θ̃− M̃(λ)

)−1
γ̃(λ)∗,

where γ̃ and M̃ are the γ-field and Weyl function, respectively, of the boundary
triplet {L2(C)⊕L2(C), Γ̃0, Γ̃1} in (8.6.7). Here it is also clear from Theorem 2.6.1
that (

Θ̃− M̃(λ)
)−1 ∈ B(L2(C)⊕ L2(C)), λ ∈ ρ(A) ∩ ρ(ÃD).

From now consider only λ ∈ C \ [η,∞). It follows from Lemma 8.6.2 and (8.6.7)
that (

Θ̃− M̃(λ)
)−1

=

{{(
ϕ−M+(λ)ξ
ψ −M−(λ)ξ

)
,

(
ξ
ξ

)}
:

ξ ∈ H2(C),
ϕ+ ψ = ι+

(
D+(η) +D−(η)

)
ι−1
− ξ

}
,

and setting ϑ1 = ϕ−M+(λ)ξ and ϑ2 = ψ −M−(λ)ξ one obtains

ϑ1 + ϑ2 = ϕ+ ψ −M+(λ)ξ −M−(λ)ξ

= ι+
(
D+(η) +D−(η)

)
ι−1
− ξ −M+(λ)ξ −M−(λ)ξ.

Since M±(λ)ξ = ι+(D±(η)−D±(λ))ι−1
− ξ for ξ ∈ H2(C) by Lemma 8.4.5, it follows

that
ϑ1 + ϑ2 = ι+

(
D+(λ) +D−(λ)

)
ι−1
− ξ.

Lemma 8.6.1 implies that ι+(D+(λ) +D−(λ))ι−1
− is a bijective operator in L2(C)

for λ ∈ C \ [η,∞) and hence

ι−
(
D+(λ) +D−(λ)

)−1
ι−1
+ ϑ1 + ι−

(
D+(λ) +D−(λ)

)−1
ι−1
+ ϑ2 = ξ.
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Therefore, one has(
Θ̃− M̃(λ)

)−1
=

(
ι−(D+(λ) +D−(λ))−1ι−1

+ ι−(D+(λ) +D−(λ))−1ι−1
+

ι−(D+(λ) +D−(λ))−1ι−1
+ ι−(D+(λ) +D−(λ))−1ι−1

+

)
.

This completes the proof of Theorem 8.6.3. �

Finally, the boundary triplet in (8.6.4) is modified in the same way as in
Proposition 4.6.4 to interpret the Schrödinger operator A as the self-adjoint ex-
tension corresponding to the boundary mapping Γ̂0. More precisely, the boundary
triplets {L2(C),Γ+

0 ,Γ
+
1 } and {L2(C),Γ−

0 ,Γ
−
1 } lead to the boundary triplet{

L2(C)⊕ L2(C), Γ̂0, Γ̂1

}
(8.6.15)

for Tmax = T+
max ⊕̂ T−

max, where

Γ̂0f =

(−Γ+
1 f+ − Γ−

1 f−
Γ+
0 f+ − Γ−

0 f−

)
=

(
ι+(τ

+
N fD,+ + τ−N fD,−)

ι−(τ̃+D f+ − τ̃−D f−)

)
and

Γ̂1f =

(
Γ+
0 f+

−Γ−
1 f−

)
=

(
ι−τ̃+D f+
ι+τ

−
N fD,−

)
for f = (f+, f−)� with f± ∈ domT±

max. It follows from Proposition 4.6.4 that the
Schrödinger operator A = −Δ+V in (8.6.1) coincides with the self-adjoint exten-

sion defined on ker Γ̂0 and that the Weyl function corresponding to the boundary
triplet in (8.6.15) is given by

M̂(λ) = −
(
M+(λ) −I
−I −M−(λ)−1

)−1

, λ ∈ C \ R,

where M±(λ) = ι+(D̃±(η) − D̃±(λ))ι−1
− is the Weyl function corresponding to

the boundary triplet {L2(C),Γ±
0 ,Γ

±
1 }; cf. Proposition 8.4.4 and Lemma 8.4.5. In

particular, the results in Section 3.5 and Section 3.6 can be used to describe the
isolated and embedded eigenvalues, continuous, and absolutely continuous spec-
trum of A with the help of the limit properties of the Dirichlet-to-Neumann maps
D̃±. For this, however, one has to ensure that the underlying minimal operator
Tmin = T+

min ⊕̂ T−
min is simple, which follows from Proposition 8.3.13 and [120,

Proposition 2.2].

8.7 Bounded Lipschitz domains

In this last section Schrödinger operators −Δ+V with a real function V ∈ L∞(Ω)
on bounded Lipschitz domains are briefly discussed. This situation is more general
than the setting of bounded C2-domains treated in the previous sections. The main
objective here is to highlight the differences to the C2-case and to indicate which
methods have to be adapted in order to obtain results of similar nature as above.
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The notions of a Lipschitz hypograph and a bounded Lipschitz domain are
defined in the same way as C2-hypographs and bounded C2-domains in Section 8.2.
More precisely, for a Lipschitz continuous function φ : Rn−1 → R the domain

Ωφ :=
{
(x′, xn)

� ∈ Rn : xn < φ(x′)
}

is called a Lipschitz hypograph with boundary ∂Ω. The surface integral and surface
measure on ∂Ωφ are defined in the same way as in (8.2.4), and this leads to the
L2-space L2(∂Ωφ) on ∂Ωφ. For s ∈ [0, 1] define the Sobolev space of order s on
∂Ωφ by

Hs(∂Ωφ) :=
{
h ∈ L2(∂Ωφ) : x

′ �→ h(x′, φ(x′)) ∈ Hs(Rn−1)
}

and equip Hs(∂Ωφ) with the corresponding scalar product (8.2.6).

Definition 8.7.1. A bounded nonempty open subset Ω ⊂ Rn is called a Lipschitz
domain if there exist open sets U1, . . . , Ul ⊂ Rn and (possibly up to rotations of
coordinates) Lipschitz hypographs Ω1, . . . ,Ωl ⊂ Rn, such that

∂Ω ⊂
l⋃

j=1

Uj and Ω ∩ Uj = Ωj ∩ Uj , j = 1, . . . , l.

For a bounded Lipschitz domain Ω ⊂ Rn the boundary ∂Ω ⊂ Rn is compact.
Using a partition of unity subordinate to the open cover {Uj} of ∂Ω one defines
the surface integral, surface measure, and the L2-space L2(∂Ω) in the same way
as in Section 8.2. The Sobolev space Hs(∂Ω) for s ∈ [0, 1] is then defined by

Hs(∂Ω) :=
{
h ∈ L2(∂Ω) : ηjh ∈ Hs(∂Ωj), j = 1, . . . , l

}
and equipped with the corresponding Hilbert space scalar product (8.2.7). It fol-
lows that Hs(∂Ω), s ∈ [0, 1], is densely and continuously embedded in L2(∂Ω), and
the embedding Ht(∂Ω) ↪→ Hs(∂Ω) is compact for s < t ≤ 1. As in Section 8.2, the
spaces Hs(∂Ω), s ∈ [0, 1], can be defined in an equivalent way via interpolation.
The dual space of the antilinear continuous functionals on Hs(∂Ω) is denoted by
H−s(∂Ω), s ∈ [0, 1].

For a bounded Lipschitz domain Ω define the spaces

Hs
Δ(Ω) :=

{
f ∈ Hs(Ω) : Δf ∈ L2(Ω)

}
, s ≥ 0,

and equip them with the Hilbert space scalar product

(f, g)Hs
Δ(Ω) := (f, g)Hs(Ω) + (Δf,Δg)L2(Ω), f, g ∈ Hs

Δ(Ω). (8.7.1)

It is clear that Hs(Ω) = Hs
Δ(Ω) for s ≥ 2 and that H0

Δ(Ω) = domTmax for s = 0,
with (8.7.1) as the graph norm; cf. (8.3.3). The unit normal vector field pointing
outwards on ∂Ω will again be denoted by ν. It is known that the Dirichlet trace
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mapping C∞(Ω) � f �→ f |∂Ω extends by continuity to a continuous surjective
mapping

τD : Hs
Δ(Ω)→ Hs−1/2(∂Ω),

1

2
≤ s ≤ 3

2
,

and that the Neumann trace mapping C∞(Ω) � f �→ ν · ∇f |∂Ω extends by conti-
nuity to a continuous surjective mapping

τN : Hs
Δ(Ω)→ Hs−3/2(∂Ω),

1

2
≤ s ≤ 3

2
;

cf. [92, 326]. For the present purposes it is particularly useful to note that the
mappings

τD : H
3/2
Δ (Ω)→ H1(∂Ω) and τN : H

3/2
Δ (Ω)→ L2(∂Ω) (8.7.2)

are both continuous and surjective. Furthermore, the first and second Green iden-
tities remain true in the natural form, that is,

(−Δf, g)L2(Ω) = (∇f,∇g)L2(Ω;Cn) −
〈
τNf, τDg

〉
H−1/2(∂Ω)×H1/2(∂Ω)

and

(−Δf, g)L2(Ω) − (f,−Δg)L2(Ω)

=
〈
τDf, τNg

〉
H1/2(∂Ω)×H−1/2(∂Ω)

− 〈τNf, τDg〉H−1/2(∂Ω)×H1/2(∂Ω)

hold for all f, g ∈ H1
Δ(Ω).

The minimal operator Tmin and maximal operator Tmax associated with
−Δ + V on a bounded Lipschitz domain are defined in exactly the same way
as in the beginning of Section 8.3. The assertions T ∗

min = Tmax and Tmin = T ∗
max in

Proposition 8.3.1 remain valid in the present situation. Furthermore, the Dirich-
let realization AD and Neumann realization AN of −Δ + V are defined as in
Section 8.3, and their properties are the same as in Proposition 8.3.2 and Proposi-
tion 8.3.3. The first remarkable and substantial difference for Schrödinger operators
on a bounded Lipschitz domain appears in connection with the regularity of the
domains of AD and AN when comparing with Theorem 8.3.4. In the present case
one has the following regularity result from [431, 432], see also [92, 323].

Theorem 8.7.2. Assume that Ω ⊂ Rn is a bounded Lipschitz domain. Then one
has

ADf = −Δf + V f, domAD =
{
f ∈ H

3/2
Δ (Ω) : τDf = 0

}
,

and
ANf = −Δf + V f, domAN =

{
f ∈ H

3/2
Δ (Ω) : τNf = 0

}
.

The same reasoning as in Section 8.3 one obtains the following useful decom-

position of the space H
3/2
Δ (Ω).
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Corollary 8.7.3. Assume that Ω ⊂ Rn is a bounded Lipschitz domain. Then for
λ ∈ ρ(AD) one has the direct sum decomposition

H
3/2
Δ (Ω) = domAD +

{
fλ ∈ H

3/2
Δ (Ω) : (−Δ+ V )fλ = λfλ

}
= ker τD +

{
fλ ∈ H

3/2
Δ (Ω) : (−Δ+ V )fλ = λfλ

}
,

and for λ ∈ ρ(AN) one has the direct sum decomposition

H
3/2
Δ (Ω) = domAN +

{
fλ ∈ H

3/2
Δ (Ω) : (−Δ+ V )fλ = λfλ

}
= ker τN +

{
fλ ∈ H

3/2
Δ (Ω) : (−Δ+ V )fλ = λfλ

}
.

For a bounded Lipschitz domain and λ ∈ ρ(AD) the Dirichlet-to-Neumann
map is defined as

D(λ) : H1(∂Ω)→ L2(∂Ω), τDfλ �→ τNfλ, (8.7.3)

where fλ ∈ H
3/2
Δ (Ω) is such that (−Δ+V )fλ = λfλ. This definition is the natural

analog of Definition 8.3.6, taking into account the decomposiion in (8.7.3). As
before, it follows that for λ ∈ ρ(AD)∩ρ(AN) the Dirichlet-to-Neumann map (8.7.3)
is a bijective operator.

For completeness the following a priori estimates are stated.

Corollary 8.7.4. Assume that Ω ⊂ Rn is a bounded Lipschitz domain. Then there
exist constants CD > 0 and CN > 0 such that

‖f‖
H

3/2
Δ (Ω)

≤ CD

(‖f‖L2(Ω) + ‖ADf‖L2(Ω)

)
, f ∈ domAD,

and
‖g‖

H
3/2
Δ (Ω)

≤ CN

(‖g‖L2(Ω) + ‖ANg‖L2(Ω)

)
g ∈ domAN.

Next a variant of Theorem 8.3.9 and Theorem 8.3.10 on the extensions of
the Dirichlet and Neumann trace operators to dom Tmax = H0

Δ(Ω) for bounded
Lipschitz domains is formulated. For this consider the spaces

G0 :=
{
τDf : f ∈ domAN

}
and G1 :=

{
τNg : g ∈ domAD

}
, (8.7.4)

and note that for the special case of a bounded C2-domain the spaces G0 and G1

coincide with the spaces H3/2(∂Ω) and H1/2(∂Ω), respectively. The spaces G0 and
G1 are dense in L2(∂Ω) and, equipped with the scalar products

(ϕ,ψ)G0
:= (Σ−1/2ϕ,Σ−1/2ψ)L2(∂Ω), Σ = Im (D(i)−1),

(ϕ,ψ)G1 := (Λ−1/2ϕ,Λ−1/2ψ)L2(∂Ω), Λ = −ImD(i),
(8.7.5)

they are Hilbert spaces, as was shown in [92, 115]; here both Σ−1/2 and Λ−1/2 are
unbounded nonnegative self-adjoint operators in L2(∂Ω). The corresponding dual
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spaces of antilinear continuous functionals are denoted by G ′
0 and G ′

1, respectively,
and one obtains Gelfand triples {Gi, L

2(∂Ω),G ′
i }, i = 0, 1, which serve as the

counterparts of {Hs(∂Ω), L2(∂Ω), Hs(∂Ω)}, s = 1/2, 3/2. Now one can prove the
variant of Theorem 8.3.9 and Theorem 8.3.10 alluded to above.

Theorem 8.7.5. Assume that Ω ⊂ Rn is a bounded Lipschitz domain. Then the
Dirichlet and Neumann trace operators in (8.7.2) admit unique extensions to con-
tinuous surjective operators

τ̃D : domTmax → G ′
1 and τ̃N : domTmax → G ′

0,

where domTmax is equipped with the graph norm. Furthermore,

ker τ̃D = ker τD = domAD and ker τ̃N = ker τN = domAN.

By analogy to Corollary 8.3.11, the second Green identity extends to elements
f ∈ domTmax and g ∈ domAD in the form

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω) = 〈τ̃Df, τNg〉G ′
1×G1

,

and for f ∈ domTmax and g ∈ domAN the second Green identity reads

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω) = −〈τ̃Nf, τDg〉G ′
0×G0

.

It will also be used that for λ ∈ ρ(AD) the Dirichlet-to-Neumann map in (8.7.3)
admits an extension to a bounded operator

D̃(λ) : G ′
1 → G ′

0, τ̃Dfλ �→ τ̃Nfλ, (8.7.6)

where fλ ∈ Nλ(Tmax).

With the preparations above one can now follow the strategy in Section 8.4
and construct a boundary triplet for the maximal operator Tmax under the as-
sumption that Ω ⊂ Rn is a bounded Lipschitz domain. Consider the Gelfand triple
{G1, L

2(∂Ω),G ′
1} and the corresponding isometric isomorphisms ι+ : G1 → L2(∂Ω)

and ι− : G ′
1 → L2(∂Ω) such that

〈ϕ,ψ〉G ′
1×G1

= (ι−ϕ, ι+ψ)L2(∂Ω), ϕ ∈ G ′
1, ψ ∈ G1;

cf. Lemma 8.1.2. When comparing (8.1.6) and (8.7.5) it is clear that ι+ = Λ−1/2

and ι− is the extension of Λ1/2 onto G ′
1. Recall also the definition and the properties

of the Dirichlet operator AD in Theorem 8.7.2 and the direct sum decomposition
(8.4.1).

Theorem 8.7.6. Let Ω ⊂ Rn be a bounded Lipschitz domain and let AD be the self-
adjoint Dirichlet realization of −Δ+ V in L2(Ω) in Theorem 8.7.2. Fix a number
η ∈ ρ(AD) ∩ R and decompose f ∈ domTmax according to (8.4.1) in the form
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f = fD + fη, where fD ∈ domAD and fη ∈ Nη(Tmax). Then {L2(∂Ω),Γ0,Γ1},
where

Γ0f = ι−τ̃Df and Γ1f = −ι+τNfD, f = fD + fη ∈ domTmax,

is a boundary triplet for (Tmin)
∗ = Tmax such that

A0 = AD and A1 = Tmin +̂ N̂η(Tmax).

The γ-field and Weyl function corresponding to the boundary triplet in The-
orem 8.7.6 are formally the same as in Proposition 8.4.4. In fact, if fη(ϕ) denotes
the unique element in Nη(Tmax) such that Γ0fη(ϕ) = ϕ, then for all λ ∈ ρ(AD)
the γ-field is given by

γ(λ)ϕ =
(
I + (λ− η)(AD − λ)−1

)
fη(ϕ), ϕ ∈ L2(∂Ω),

where fλ(ϕ) := γ(λ)ϕ is the unique element in Nλ(Tmax) such that Γ0fλ(ϕ) = ϕ.
As in Proposition 8.4.4 one also has

γ(λ)∗ = −ι+τN(AD − λ)−1, λ ∈ ρ(AD).

Moreover, the Weyl function M is given by

M(λ)ϕ = (η − λ)ι+τN(AD − λ)−1fη(ϕ), ϕ ∈ L2(∂Ω).

As in the case of bounded C2-domains, the Weyl function can be expressed via the
Dirichlet-to-Neumann map; here the extended mapping D̃(λ) in (8.7.6) is used. In
the same way as in Lemma 8.4.5 one verifies the relation

M(λ) = ι+
(
D̃(η)− D̃(λ)

)
ι−1
− .

With the boundary triplet {L2(∂Ω),Γ0,Γ1} in Theorem 8.7.6 and the cor-
responding γ-field and Weyl function the self-adjoint realizations of −Δ + V on
a bounded Lipschitz domain Ω ⊂ Rn can be parametrized and the spectral prop-
erties can be described in a similar form as in Section 8.4. The discussion of the
semibounded extensions and of the corresponding sesquilinear forms with the help
of a compatible boundary pair is parallel to the considerations in Section 8.5 and
is not provided here. Finally, the coupling technique of Schrödinger operators from
Section 8.6 also extends under appropriate modifications to the general situation
of Lipschitz domains.
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Appendix A

Integral Representations of
Nevanlinna Functions

Operator-valued Nevanlinna functions and their integral representations are pre-
sented in this appendix. First the case of scalar Nevanlinna functions is considered.
Then follows a short introduction to operator-valued integrals; by interpreting
these integrals as improper integrals the methods are kept as simple as possible.
The general operator-valued Nevanlinna functions are treated based on the previ-
ous notions. Special operator-valued Nevanlinna functions such as Kac functions,
Stieltjes functions, and inverse Stieltjes functions are discussed in detail.

A.1 Borel transforms and their Stieltjes inversion

This preparatory section contains a brief discussion of the Stieltjes inversion for-
mula for the Borel transform. The form of the transform and the conditions have
been chosen so that the results are easy to apply. In particular, with the inversion
formula one can prove a weak form of the Stone inversion formula, a useful dense-
ness property, and a general form of the Stieltjes inversion formula for Nevanlinna
functions.

Let τ : R→ R be a nondecreasing function and let g : R→ C be a measurable
function such that ∫

R

|g(t)|
|t|+ 1

dτ(t) <∞. (A.1.1)

The Borel transform G : C \ R→ C of the combination g dτ is defined by

G(λ) =

∫
R

1

t− λ
g(t) dτ(t), λ ∈ C \ R. (A.1.2)

Observe that the Borel transform G of g dτ in (A.1.2) is well defined and holo-
morphic on C \ R. The following result is the Stieltjes inversion formula for the
Borel transform in (A.1.1).
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Proposition A.1.1. Let τ : R → R be a nondecreasing function, let g : R → C be
a measurable function which satisfies (A.1.1), and let G be the Borel transform of
g dτ . Then

lim
ε ↓ 0

1

2πi

∫ b

a

(
G(s+ iε)−G(s− iε)

)
ds

=
1

2

∫
{a}

g(t) dτ(t) +

∫ b−

a+

g(t) dτ(t) +
1

2

∫
{b}

g(t) dτ(t)

holds for each compact interval [a, b] ⊂ R. Furthermore, if g ∈ L1
dτ (R), then for

0 < ε < 1:

1

2π

∣∣∣∣∫ b

a

(
G(s+ iε)−G(s− iε)

)
ds

∣∣∣∣ ≤ ∫
R
|g(t)| dτ(t). (A.1.3)

Proof. For ε > 0 and s ∈ R one has

G(s+ iε)−G(s− iε)

2πi
=

1

π

∫
R

ε

(s− t)2 + ε2
g(t) dτ(t).

Integration of the left-hand side over the interval [a, b] and Fubini’s theorem lead to

1

2πi

∫ b

a

(
G(s+ iε)−G(s− iε)

)
ds

=
1

π

∫
R

(∫ b

a

ε

(s− t)2 + ε2
ds

)
g(t) dτ(t)

=
1

π

∫
R

(
arctan

(
b− t

ε

)
− arctan

(
a− t

ε

))
g(t) dτ(t).

(A.1.4)

In order to justify the use of Fubini’s theorem in (A.1.4) note first that the func-
tions

arctan

(
b− t

ε

)
− arctan

(
a− t

ε

)
, 0 < ε < 1, (A.1.5)

are nonnegative and bounded on R. Furthermore, observe that for 0 < ε < 1 and
x > 0 one has arctanx < arctanx/ε < π/2 and hence the functions in (A.1.5)
have the upper bound

k(t) =

⎧⎪⎨⎪⎩
π
2 − arctan(a− t), t ≤ a,

π, a < t < b,

arctan(b− t) + π
2 , t ≥ b.
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Since

t
(π
2
− arctan(a− t)

)
→ −1, t→ −∞,

t
(
arctan(b− t) +

π

2

)
→ 1, t→∞,

one has kg ∈ L1
dτ (R) by (A.1.1), and it follows that the integral on the right-hand

side in (A.1.4) is finite. Thus, the interchange of integration in (A.1.4) is justified.

Now the dominated convergence theorem will be applied to (A.1.4). For ε ↓ 0
one has

arctan

(
b− t

ε

)
− arctan

(
a− t

ε

)
→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t < a,

π/2, t = a,

π, a < t < b,

π/2, t = b,

0, t > b,

and as an integrable majorant one can use k|g|. The right-hand side of (A.1.4)
then shows that

lim
ε ↓ 0

1

π

∫
R

(
arctan

(
b− t

ε

)
− arctan

(
a− t

ε

))
g(t) dτ(t)

=
1

2

∫
{a}

g(t) dτ(t) +

∫ b−

a+

g(t) dτ(t) +
1

2

∫
{b}

g(t) dτ(t),

which leads to the assertion.

Finally, assume that g ∈ L1
dτ (R) and 0 < ε < 1. Then the estimate (A.1.3)

follows due to (A.1.4) and (A.1.5). �

Observe that when the function g in (A.1.1) is real, then the function G in
(A.1.2) satisfies the symmetry property G(λ) = G(λ), in which case one has that

1

2πi

∫ b

a

(
G(s+ iε)−G(s− iε)

)
ds =

1

π

∫ b

a

ImG(s+ iε) ds.

The special case g(t) = 1 in Proposition A.1.1 is of particular interest; see for
instance Chapter 3.

Corollary A.1.2. Let τ : R → R be a nondecreasing function which satisfies the
integrability condition ∫

R

1

|t|+ 1
dτ(t) <∞ (A.1.6)

and let G be given by

G(λ) =

∫
R

1

t− λ
dτ(t), λ ∈ C \ R.
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Then the inversion formula

lim
ε ↓ 0

1

2πi

∫ b

a

(
G(s+iε)−G(s−iε)

)
ds =

τ(b+) + τ(b−)
2

− τ(a+) + τ(a−)
2

(A.1.7)

holds for every compact interval [a, b] ⊂ R. In particular, if τ : R → R is a
nondecreasing function which is bounded, then (A.1.6) is satisfied and (A.1.7)
holds.

The Stieltjes inversion result in Proposition A.1.1 and Corollary A.1.2 has
a number of interesting consequences. A first observation concerns functions of
bounded variation. Recall that any function of bounded variation on R is a lin-
ear combination of four bounded nondecreasing functions. Hence, the following
corollary is straightforward.

Corollary A.1.3. Let τ : R → C be a function of bounded variation. Then the
function

H(λ) =

∫
R

1

t− λ
dτ(t), λ ∈ C \ R,

is well defined and holomorphic, and for each compact interval [a, b] ⊂ R one has

lim
ε ↓ 0

1

2πi

∫ b

a

(
H(s+ iε)−H(s− iε)

)
ds =

τ(b+) + τ(b−)
2

− τ(a+) + τ(a−)
2

.

Proposition A.1.1 and Corollary A.1.2 can also be used to compute the spec-
tral projection of a self-adjoint relation via Stone’s formula; see Chapter 1.

Example A.1.4. Let H be a self-adjoint relation in a Hilbert space H and let E(·)
be the corresponding spectral measure. For f ∈ H consider the function

G(λ) =
(
(H − λ)−1f, f

)
, λ ∈ C \ R.

It is clear that τ(t) = (E(−∞, t)f, f), t ∈ R, is a bounded nondecreasing function
and that

G(λ) =

∫
R

1

t− λ
dτ(t).

By Proposition A.1.1 with g(t) = 1, t ∈ R, one has for [a, b] ⊂ R

lim
ε ↓ 0

1

2πi

∫ b

a

((
(H − (s+ iε))−1 − (H − (s− iε))−1

)
f, f
)
ds

=
1

2
(E({a})f, f) + (E((a, b))f, f) +

1

2
(E({b})f, f),

which is Stone’s formula in the weak sense; cf. (1.5.4) and (1.5.7) in Section 1.5.

Another consequence is the Stieltjes inversion formula for Nevanlinna func-
tions; see Lemma A.2.7 and Corollary A.2.8. Moreover, there is the following
denseness statement for a space of the form L2

dσ(R) which is used in Section 4.3.
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Corollary A.1.5. Assume that the function σ : R → R is nondecreasing and that
it satisfies ∫

R

1

t2 + 1
dσ(t) <∞. (A.1.8)

Let g be an element in L2
dσ(R) such that∫

R

1

t− λ
g(t) dσ(t) = 0, λ ∈ C \ R. (A.1.9)

Then g = 0 in L2
dσ(R).

Proof. The conditions (A.1.8) and g ∈ L2
dσ(R) show, using the Cauchy–Schwarz

inequality, that∫
R

|g(t)|√
t2 + 1

dσ(t) ≤
(∫

R
|g(t)|2 dσ(t)

)(∫
R

1

t2 + 1
dσ(t)

)
<∞,

which implies that the condition (A.1.1) is satisfied. It follows from (A.1.9) and
Proposition A.1.1 that for each compact interval [a, b] ⊂ R one has

1

2

∫
{a}

g(t) dσ(t) +

∫ b−

a+

g(t) dσ(t) +
1

2

∫
{b}

g(t) dσ(t) = 0. (A.1.10)

Next it will be shown that the contribution of the endpoints a and b in (A.1.10)
is trivial. To see this, suppose that a is a point mass of dσ and choose ηk > 0,
k = 1, 2, . . . , such that ηk → 0, k → ∞, and a ± ηk are not point masses of
dσ, which is possible since the point masses of dσ form a countable subset of R.
Now Proposition A.1.1 for the compact interval [a− ηk, a+ ηk] ⊂ R, (A.1.9), and
dominated convergence lead to

0 =

∫ a+ηk

a−ηk

g(t) dσ(t) = lim
k→∞

∫ a+ηk

a−ηk

g(t) dσ(t) =

∫
{a}

g(t) dσ(t).

The same argument shows that the contribution of the endpoint b in (A.1.10) is
trivial, and hence (A.1.10) reduces to∫ b

a

g(t) dσ(t) = 0 for all a < b.

In other words, g is orthogonal to all characteristic functions in L2
dσ(R) and hence

g = 0 in L2
dσ(R). �

Remark A.1.6. Sometimes it is useful to have a matrix-valued version of the Borel
transform in (A.1.2) and of the Stieltjes inversion formula in Proposition A.1.1;
see also Remark A.2.10. More precisely, if g is a measurable n×n matrix function
on R such that the entries of g satisfy the integrability condition (A.1.1), then
Proposition A.1.1 remains valid with the integrals interpreted in the matrix sense.
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A.2 Scalar Nevanlinna functions

This section contains a brief treatment of the integral representation of scalar
Nevanlinna functions and its consequences.

Lemma A.2.1. Let f : D → C be a holomorphic function and let r ∈ (0, 1). Then
the representation

f(z) = iIm f(0) +
1

2π

∫ 2π

0

reit + z

reit − z
Re f(reit) dt

holds for all z ∈ D with |z| < r.

Proof. Let r ∈ (0, 1) and Tr = {z ∈ C : |z| = r}. Then for z ∈ D, |z| < r, one
obtains by Cauchy’s integral formula

f(z) =
1

2πi

∫
Tr

f(w)

w − z
dw =

1

2π

∫ 2π

0

reit

reit − z
f(reit) dt, (A.2.1)

and, since |r2/z| > r, one obtains in a similar way

f(0) =
1

2πi

∫
Tr

f(w)

w(1− w(z/r2))
dw =

1

2π

∫ 2π

0

re−it

re−it − z
f(reit) dt,

and, by taking complex conjugates,

f(0) =
1

2π

∫ 2π

0

reit

reit − z
f(reit) dt.

Furthermore, it is clear from (A.2.1) that

Re f(0) =
1

2π

∫ 2π

0

Re f(reit) dt.

Therefore,

1

2π

∫ 2π

0

reit + z

reit − z
Re f(reit) dt

=
1

2π

∫ 2π

0

(
2reit

reit − z
− 1

)
f(reit) + f(reit)

2
dt

=
1

2π

∫ 2π

0

reit

reit − z
f(reit) dt+

1

2π

∫ 2π

0

reit

reit − z
f(reit) dt− Re f(0)

= f(z) + f(0)− Re f(0) = f(z)− iIm f(0),

which implies the assertion of the lemma. �
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If f : D → C is a holomorphic function such that Re f(reit) ≥ 0, then the
expression

Re f(reit) dt/2π

in Lemma A.2.1 leads to a measure. This observation is important in the proof of
the next lemma.

Lemma A.2.2. Let f : D → C be a function. Then the following statements are
equivalent:

(i) f has an integral representation of the form

f(z) = ic+

∫ 2π

0

eit + z

eit − z
dτ(t), z ∈ D,

with c ∈ R and a bounded nondecreasing function τ : [0, 2π]→ R.
(ii) f is holomorphic on D and Re f(z) ≥ 0 for all z ∈ D.

Proof. (i)⇒ (ii) It is clear that f is holomorphic on D. For z ∈ D a straightforward
calculation shows that

Re f(z) =

∫ 2π

0

1− |z|2
|eit − z|2 dτ(t) ≥ 0.

(ii)⇒ (i) Since Re f(z) ≥ 0, z ∈ D, it is obvious that for any r ∈ (0, 1) the function

τr : [0, 2π]→ R, t �→ 1

2π

∫ t

0

Re f(reis) ds,

is nondecreasing. Furthermore, Cauchy’s integral formula shows that

τr(2π) =
1

2π

∫ 2π

0

Re f(reis) ds = Re

(
1

2πi

∫
Tr

f(w)

w
dw

)
= Re f(0),

and so
0 = τr(0) ≤ τr(t) ≤ τr(2π) = Re f(0) <∞ (A.2.2)

for t ∈ (0, 2π) and r ∈ (0, 1). Therefore, the Borel measure induced by τr on [0, 2π]
is finite and since Re f is continuous, it follows that τr, r ∈ (0, 1), is a regular
Borel measure on [0, 2π]. Observe that, by Lemma A.2.1,

f(z) = iIm f(0) +
1

2π

∫ 2π

0

reit + z

reit − z
Re f(reit) dt

= iIm f(0) +

∫ 2π

0

reit + z

reit − z
dτr(t)

(A.2.3)

for all z ∈ D, |z| < r. Next it will be verified that the above formula remains valid
when r tends to 1.
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By the Helly selection principle (cf. [763, Theorem 16.2]) and (A.2.2), there
exists a nonnegative nondecreasing sequence (rk), k = 1, 2, . . . , tending to 1 and
a function τ such that τrk(t) → τ(t), 0 ≤ t ≤ 2π. Moreover, according to the
Helly–Bray theorem (cf. [763, Theorem 16.4]), one has

lim
k→∞

∫ 2π

0

h(t) dτrk(t) =

∫ 2π

0

h(t) dτ(t)

for all continuous functions h : [0, 2π]→ C. Observe that, by (A.2.2), in particular

τ(2π)− τ(0) = Re f(0).

Therefore, using the Helly–Bray theorem and the fact that t �→ rke
it+z

rkeit−z converges

uniformly to t �→ eit+z
eit−z , one finds that

lim
k→∞

∫ 2π

0

rke
it + z

rkeit − z
dτrk(t)

=

∫ 2π

0

eit + z

eit − z
dτ(t) + lim

k→∞

∫ 2π

0

(
rke

it + z

rkeit − z
− eit + z

eit − z

)
dτrk(t)

=

∫ 2π

0

eit + z

eit − z
dτ(t).

Hence, (A.2.3) yields

f(z) = ic+

∫ 2π

0

eit + z

eit − z
dτ(t) and c = Im f(0),

as needed. �

Here is the definition of a scalar Nevanlinna function. The operator-valued
version will be considered in Definition A.4.1.

Definition A.2.3. A function F : C \ R→ C is called a Nevanlinna function if

(i) F is holomorphic on C \ R;
(ii) F (λ) = F (λ), λ ∈ C \ R;
(iii) ImF (λ)/Imλ ≥ 0, λ ∈ C \ R.

The next result provides an integral representation for Nevanlinna functions.

Theorem A.2.4. Let F : C \ R→ C. Then the following statements are equivalent:

(i) F has an integral representation of the form

F (λ) = α+ βλ+

∫
R

1 + tλ

t− λ
dθ(t), λ ∈ C \ R, (A.2.4)

with α ∈ R, β ≥ 0, and a bounded nondecreasing function θ : R→ R.
(ii) F is a Nevanlinna function.



A.2. Scalar Nevanlinna functions 639

Proof. (i) ⇒ (ii) It is clear from the representation (A.2.4) that F is holomorphic
on C \ R and that F (λ) = F (λ). Moreover it follows that

ImF (λ)

Imλ
= β +

∫
R

t2 + 1

|t− λ|2 dθ(t), λ ∈ C \ R.

Hence, F is a Nevanlinna function.

(ii) ⇒ (i) Assume that F is a Nevanlinna function and consider the following
transformations

λ = i
1 + z

1− z
, z ∈ D, F (λ) = if(z).

Note that z �→ λ is a bijective mapping from D onto C+ and that the function f
is holomorphic on D. Furthermore, observe that

ImF (λ) ≥ 0 ⇒ Re f(z) ≥ 0.

Hence, according to Lemma A.2.2, there exist c ∈ R and a bounded nondecreasing
function τ : [0, 2π]→ R, such that the function f has the representation

f(z) = ic+

∫ 2π

0

eis + z

eis − z
dτ(s)

= ic+

∫ 2π−

0+

eis + z

eis − z
dτ(s)

+
1 + z

1− z

(
τ(2π)− τ(2π−) + τ(0+)− τ(0)

)
= ic+ β

1 + z

1− z
+

∫ 2π−

0+

eis + z

eis − z
dτ(s),

where β = τ(2π) − τ(2π−) + τ(0+) − τ(0) ≥ 0. Thus, the function F has the
integral representation

F (λ) = −c+ βλ+ i

∫ 2π−

0+

eis + z

eis − z
dτ(s).

Since z = (λ− i)/(λ+ i), one sees that

F (λ) = −c+ βλ+

∫ 2π−

0+

λ cot s/2− 1

cot s/2 + λ
dτ(s).

With the substitutions α = −c, − cot s/2 = t, and the function θ defined by
τ(s) = θ(t), one finds that

F (λ) = α+ βλ+

∫
R

1 + tλ

t− λ
dθ(t).

Note that the function θ : R→ R is bounded since the function τ : [0, 2π]→ R is
bounded. �
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There is an equivalent formulation of this theorem involving the possibly
unbounded measure dσ(t) = (t2 + 1)dθ(t) defined by

σ(t) =

∫ t

0

(s2 + 1)dθ(s),

which is equivalent to

θ(b)− θ(a) =

∫ b

a

dσ(t)

t2 + 1

for every compact interval [a, b] ⊂ R. Hence, one obtains the following variant of
Theorem A.2.4.

Theorem A.2.5. Let F : C \ R→ C. Then the following statements are equivalent:

(i) F has an integral representation of the form

F (λ) = α+ βλ+

∫
R

(
1

t− λ
− t

t2 + 1

)
dσ(t), λ ∈ C \ R, (A.2.5)

with α ∈ R, β ≥ 0, and a nondecreasing function σ : R→ R such that∫
R

dσ(t)

t2 + 1
<∞.

(ii) F is a Nevanlinna function.

It follows from the integral representation (A.2.5) that the imaginary part of
the function F satisfies

ImF (λ)

Imλ
= β +

∫
R

1

|t− λ|2 dσ(t), λ ∈ C \ R. (A.2.6)

With (A.2.5) and (A.2.6) it is possible to recover the ingredients in the integral
formula (A.2.5) directly in terms of the function F . These results are used in
Chapter 3.

Lemma A.2.6. Let F be a Nevanlinna function as in Theorem A.2.5. Then

α = ReF (i) and β = lim
y→∞

F (iy)

iy
= lim

y→∞
ImF (iy)

y
. (A.2.7)

Moreover, for all x ∈ R

lim
y ↓ 0

y ImF (x+ iy) = σ(x+)− σ(x−) (A.2.8)

and
lim
y ↓ 0

yReF (x+ iy) = 0. (A.2.9)
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Proof. The statement concerning α in (A.2.7) is clear. It follows from (A.2.5) that

1

iy
F (iy) =

1

iy
α+ β +

∫
R

1

iy

1 + iyt

(t− iy)

dσ(t)

t2 + 1
. (A.2.10)

An application of the dominated convergence theorem shows the first identity for
β in (A.2.7). The second identity in (A.2.7) follows from (A.2.6). The integral
representation (A.2.6) also shows that

yImF (x+ iy) = βy2 +

∫
R

y2

(t− x)2 + y2
dσ(t),

and the identity (A.2.8) follows from the dominated convergence theorem. One
also sees from (A.2.5) that

yReF (x+ iy) = y (α+ βx) +

∫
R

y[(t− x)(1 + xt)− y2t]

((t− x)2 + y2)(t2 + 1)
dσ(t). (A.2.11)

By writing xt = (t − x)x + x2 it follows that the numerator of the integrand is
equal to

y
[
(t− x)

(
1 + (t− x)x+ x2

)− y2t
]

= y
[
(t− x)

(
1 + (t− x)x+ x2 − y2

)− y2x
]

= y(t− x)[1 + x2 − y2] + (t− x)2xy − y3x.

Now assume that |y| ≤ 1. Then one sees that for a fixed x ∈ R the integrand in
(A.2.11) is dominated by

x2 + 4|x|+ 2

2(t2 + 1)
.

Thus, the identity in (A.2.9) follows from the dominated convergence theorem. �

In addition to Lemma A.2.6, the following Stieltjes inversion formula helps
to recover the essential parts of the function σ.

Lemma A.2.7. Let F : C \ R → C be a Nevanlinna function with the integral
representation (A.2.5). Let U be an open neighborhood in C of [a, b] ⊂ R and let
g : U→ C be holomorphic. Then

lim
ε ↓ 0

1

2πi

∫ b

a

[
(gF )(s+ iε)− (gF )(s− iε)

]
ds

=
1

2

∫
{a}

g(t) dσ(t) +

∫ b−

a+

g(t) dσ(t) +
1

2

∫
{b}

g(t) dσ(t).

(A.2.12)

For any rectangle R = [A,B] × [−iε0, iε0] ⊂ U with A < a < b < B there exists
M ≥ 0 such that, for 0 < ε ≤ ε0,∣∣∣∣∫ b

a

[
(gF )(s+ iε)− (gF )(s− iε)

]
ds

∣∣∣∣ ≤M sup
{|g(λ)|, |g′(λ)| : λ ∈ R

}
, (A.2.13)

where g′ stands for the derivative of g.
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Proof. Consider the Nevanlinna function F given by

F (λ) = α+ βλ+

∫
R

(
1

t− λ
− t

t2 + 1

)
dσ(t), λ ∈ C \ R,

where α ∈ R, β ≥ 0, and σ is a nondecreasing function satisfying the integrability
condition ∫

R

1

t2 + 1
dσ(t);

cf. Theorem A.2.5. Choose an interval (A,B) ⊂ R such that

[a, b] ⊂ (A,B) ⊂ [A,B] ⊂ U

and choose ε0 > 0 such that R = [A,B]× [−iε0, iε0] ⊂ U. Observe that the choice
of A and B leads to the decomposition

g(λ)F (λ) = G(λ) +H(λ) + g(λ)K(λ), λ ∈ (C \ R) ∩ U, (A.2.14)

where the functions G and H are given by

G(λ) =

∫ B

A

1

t− λ
g(t) dσ(t), H(λ) =

∫ B

A

g(λ)− g(t)

t− λ
dσ(t),

while the factor K is given by

K(λ) =

[
α+ βλ−

∫ B

A

t

t2 + 1
dσ(t)

+

(∫ A

−∞
+

∫ ∞

B

)(
1

t− λ
− t

t2 + 1

)
dσ(t)

]
.

The contributions of the functions G, H, and K will be considered separately.

Denote by g̃ the extension of g on [A,B] by zero to all of R. Then G can be
written as

G(λ) =

∫
R

1

t− λ
g̃(t) dσ(t), where

∫
R

|g̃(t)|
|t|+ 1

dσ(t) <∞.

Hence, one concludes from Proposition A.1.1 that

lim
ε ↓ 0

1

2πi

∫ b

a

(
G(s+ iε)−G(s− iε)

)
ds

=
1

2

∫
{a}

g̃(t) dσ(t) +

∫ b−

a+

g̃(t) dσ(t) +
1

2

∫
{b}

g̃(t) dσ(t)

=
1

2

∫
{a}

g(t) dσ(t) +

∫ b−

a+

g(t) dσ(t) +
1

2

∫
{b}

g(t) dσ(t).

(A.2.15)
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Moreover, since g̃ ∈ L1
dσ(R), it follows from the estimate (A.1.3) in Proposi-

tion A.1.1 that∣∣∣∣∫ b

a

(
G(s+ iε)−G(s− iε)

)
ds

∣∣∣∣ ≤M ′ sup
{|g(λ)| : λ ∈ [A,B]

}
≤M ′ sup

{|g(λ)| : λ ∈ R
}
.

(A.2.16)

The function H is defined for λ ∈ (C \ R)∩U and can be extended to U by setting

H(λ) =

∫ B

A

h(t, λ) dσ(t), where h(t, λ) =

{
g(λ)−g(t)

t−λ , t 	= λ,

−g′(t), t = λ.
(A.2.17)

Clearly, the function H in (A.2.17) is bounded on the rectangle R by

L sup
{|g′(λ)| : λ ∈ R

}
,

where L is a constant. Note that for all s ∈ (a, b)

H(s+ iε)−H(s− iε)→ 0, ε→ 0,

and hence dominated convergence yields

lim
ε ↓ 0

1

2πi

∫ b

a

(
H(s+ iε)−H(s− iε)

)
ds = 0. (A.2.18)

Note that it also follows from the above that there exists M ′′ ≥ 0 such that for
all 0 < ε ≤ ε0∣∣∣∣∫ b

a

(
H(s+ iε)−H(s− iε)

)
ds

∣∣∣∣ ≤M ′′ sup
{|g′(λ)| : λ ∈ R

}
. (A.2.19)

The function K has a holomorphic extension to the set (C \ R) ∪ (A,B) and this
extension is uniformly continuous on the rectangle [a, b]× [−iε, iε0]. It is clear that

(gK)(s+ iε)− (gK)(s− iε)→ 0, ε→ 0,

holds for all s ∈ (a, b). Since |g| is also bounded on [a, b] × [−iε, iε0], dominated
convergence shows that

lim
ε ↓ 0

1

2πi

∫ b

a

(
(gK)(s+ iε)− (gK)(s− iε)

)
ds = 0. (A.2.20)

Furthermore, one sees that there exists M ′′′ ≥ 0 such that, for all 0 < ε ≤ ε0,∣∣∣∣∫ b

a

(
(gK)(s+ iε)− (gK)(s− iε)

)
ds

∣∣∣∣
≤M ′′′ sup

{|g(λ)| : λ ∈ [a, b]× [−iε0, iε0]
}

≤M ′′′ sup
{|g(λ)| : λ ∈ R

}
.

(A.2.21)
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Now the assertion (A.2.12) follows from (A.2.14), (A.2.15), (A.2.18), and (A.2.20);
in a similar way the assertion (A.2.13) follows from (A.2.14), (A.2.16), (A.2.19),
and (A.2.21). �

For the special case g(t) = 1 Lemma A.2.7 has the following form.

Corollary A.2.8. Let F : C \ R → C be a Nevanlinna function with the integral
representation (A.2.5). Then

lim
ε ↓ 0

1

π

∫ b

a

ImF (s+ iε) ds =
σ(b+) + σ(b−)

2
− σ(a+) + σ(a−)

2
.

It may happen that a Nevanlinna function has an analytic continuation to a
subinterval of R.

Proposition A.2.9. Let F be a Nevanlinna function as in Theorem A.2.5 and let
(c, d) ⊂ R be an open interval. Then the following statements are equivalent:

(i) F is holomorphic on (C \ R) ∪ (c, d);

(ii) σ is constant on (c, d).

In this case

F (x) = α+ xβ +

∫
R\(c,d)

(
1

t− x
− t

t2 + 1

)
dσ(t), x ∈ (c, d), (A.2.22)

and F is a real nondecreasing function on (c, d).

Proof. (i) ⇒ (ii) By assumption, F (x) is real for every x ∈ (c, d). Now apply
Corollary A.2.8 to any compact subinterval of (c, d). This implies that σ is constant
on every compact subinterval of (c, d).

(ii) ⇒ (i) This is a direct consequence of Theorem A.2.5, since

F (λ) = α+ λβ +

∫
R\(c,d)

(
1

t− λ
− t

t2 + 1

)
dσ(t), λ ∈ C \ R.

If either (i) or (ii) holds, then (A.2.22) follows by a limit process. In particular,
F is real on (c, d). From (A.2.22) one also concludes that for all x ∈ (c, d) the
function F is differentiable and

F ′(x) = β +

∫
R\(c,d)

1

(t− x)2
dσ(t), x ∈ (c, d),

is nonnegative. Hence, F is nondecreasing on (c, d). This completes the proof. �

Assume that ImF (μ) = 0 for some μ ∈ C \ R. Then it follows from (A.2.6)
that in the integral representation (A.2.5) β = 0 and σ(t) = 0, t ∈ R. In other
words, ImF (λ) = 0 for all λ ∈ C \ R and F (λ) = α for all λ ∈ C \ R. If F
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admits an analytic continuation to (c, d) ⊂ R one concludes in the same way that
F (x) = α for x ∈ (c, d). If F ′(x0) = 0 for some x0 ∈ (c, d), then F ′(x) = 0 for
all x ∈ (c, d) and F (λ) = α for all λ ∈ C \ R ∪ (c, d). Finally, observe that if
ImF (μ) 	= 0 for some μ ∈ C \ R, then

Im

(
− 1

F (λ)

)
=

ImF (λ)

|F (λ)|2 , λ ∈ C \ R,

and hence −1/F is also a Nevanlinna function.

Remark A.2.10. This remark is a continuation of Remark A.1.6. If the function
g in Lemma A.2.7 is a holomorphic n× n matrix function on U, then the results
(A.2.12) and (A.2.13) remain valid with the integrals interpreted in the matrix
sense; cf. Remark A.1.6. Furthermore, the function g may be defined on K × U

with some compact space K such that x �→ gx(λ) is continuous for all λ ∈ U and
λ �→ gx(λ) is holomorphic for all x ∈ K. In this case (A.2.12) remains valid for all
x ∈ K, while the upper bound in (A.2.13) must be replaced by

M sup
{|gx(λ)|, |g′x(λ)| : x ∈ K, λ ∈ R

}
.

A.3 Operator-valued integrals

This section is concerned with operator-valued integrals which will be used in
the integral representation of operator-valued Nevanlinna functions. For this pur-
pose the notion of an improper Riemann–Stieltjes integral of bounded continuous
functions is carried over to the case of operator-valued distribution functions.

In order to treat the Riemann–Stieltjes integral in the operator-valued case
one needs the following preparatory observations. A function Θ : R→ B(G) whose
values are self-adjoint operators is said to be nondecreasing if t1 ≤ t2 implies

(Θ(t1)ϕ,ϕ) ≤ (Θ(t2)ϕ,ϕ), ϕ ∈ G.

In general, such a function has limits as t→ ±∞, that are self-adjoint relations; cf.
Chapter 5. In the following Θ will be called a self-adjoint nondecreasing operator
function. Furthermore, Θ will be called uniformly bounded if there exists M such
that for all t ∈ R

|(Θ(t)ϕ,ϕ)| ≤M‖ϕ‖2, ϕ ∈ G.

Lemma A.3.1. Let Θ : R→ B(G) be a self-adjoint nondecreasing operator function.
Then the one-sided limits

Θ(t±), t ∈ R,

exist in the strong sense and are bounded self-adjoint operators. If, in addition,
Θ : R → B(G) is uniformly bounded, then Θ(±∞) exist in the strong sense and
are bounded self-adjoint operators.
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Proof. Let t ∈ R and choose an increasing sequence tn → t−. It is no restriction to
assume that Θ(tn) ≥ 0 for all n ∈ N. Then for every ϕ ∈ G the sequence (Θ(tn)ϕ,ϕ)
is nondecreasing and bounded by (Θ(t)ϕ,ϕ) ≤ ‖Θ(t)‖‖ϕ‖2. Hence, (Θ(tn)ϕ,ϕ)
converges to some νϕ,ϕ ∈ R. Via polarization one finds that (Θ(tn)ϕ,ψ) converges
for all ϕ,ψ ∈ G and therefore

G× G � ϕ× ψ �→ lim
n→∞(Θ(tn)ϕ,ψ)

is a symmetric sesquilinear form which is continuous, because∣∣ lim
n→∞(Θ(tn)ϕ,ψ)

∣∣ ≤ lim
n→∞(Θ(tn)ϕ,ϕ)

1/2(Θ(tn)ψ,ψ)
1/2

≤ ‖Θ(t)‖‖ϕ‖‖ψ‖,
where the Cauchy–Schwarz inequality was used for the nonnegative sesquilinear
form (Θ(tn)·, ·). Thus, there exists a self-adjoint operator Ω ∈ B(G) such that

lim
n→∞(Θ(tn)ϕ,ψ) = (Ωϕ,ψ)

for all ϕ,ψ ∈ G. Then ‖Ω−Θ(tn)‖ ≤ ‖Ω‖+‖Θ(t)‖, while Ω−Θ(tn) ≥ 0. Recall the
Cauchy–Schwarz inequality ‖Af‖2 ≤ ‖A‖(Af, f), f ∈ G, for nonnegative operators
A ∈ B(G). Thus, one obtains

‖(Ω−Θ(tn))ϕ‖2 ≤ (‖Ω‖+ ‖Θ(t)‖)((Ω−Θ(tn))ϕ,ϕ
)→ 0

for n → ∞ and ϕ ∈ G, i.e., Θ(t−) exists in the strong sense. Similar arguments
show that Θ(t+), t ∈ R, exists in the strong sense. If, in addition, Θ is uniformly
bounded one verifies in the same way that the limits Θ(±∞) exist in the strong
sense and are bounded self-adjoint operators. �

Corollary A.3.2. Let Θ : R→ B(G) be a self-adjoint nondecreasing operator func-
tion which is uniformly bounded. Then for every compact interval [a, b] one has

0 ≤ ((Θ(b)−Θ(a))ϕ,ϕ
) ≤ ((Θ(+∞)−Θ(−∞))ϕ,ϕ

)
, ϕ ∈ G,

and consequently

‖(Θ(b)−Θ(a)‖ ≤ ‖Θ(+∞)−Θ(−∞)‖.

After these preliminaries the operator-valued integrals will be introduced. Let
[a, b] be a compact interval and let Θ : [a, b]→ B(G) be a self-adjoint nondecreasing
operator function. Let f : [a, b]→ C be a continuous function. For a finite partition
a = t0 < t1 < · · · < tn = b of the interval [a, b], define the Riemann–Stieltjes sum

Sn :=

n∑
i=1

f(ti)
(
Θ(ti)−Θ(ti−1)

)
. (A.3.1)
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The bounded operators Sn converge in B(G) if max |ti − ti−1| tends to zero. The
limit will be called the operator Riemann–Stieltjes integral of f with respect to Θ
and will be denoted by ∫ b

a

f(t) dΘ(t) ∈ B(G). (A.3.2)

Lemma A.3.3. Let [a, b] be a compact interval and let Θ : [a, b] → B(G) be a
self-adjoint nondecreasing operator function. Let f : [a, b] → C be a continuous
function. Then for all ϕ,ψ ∈ G((∫ b

a

f(t) dΘ(t)

)
ϕ,ψ

)
=

∫ b

a

f(t) d(Θ(t)ϕ,ψ). (A.3.3)

Moreover, for all ϕ ∈ G,∥∥∥∥(∫ b

a

f(t) dΘ(t)

)
ϕ

∥∥∥∥2 ≤ ‖Θ(b)−Θ(a)‖
∫ b

a

|f(t)|2 d(Θ(t)ϕ,ϕ). (A.3.4)

In particular, for all ϕ ∈ G,∥∥∥∥(∫ b

a

f(t) dΘ(t)

)
ϕ

∥∥∥∥ ≤ ( sup
t∈[a,b]

|f(t)|
)
‖Θ(b)−Θ(a)‖‖ϕ‖. (A.3.5)

Proof. It is clear from the definition involving the Riemann–Stieltjes sums in
(A.3.1) that the identity (A.3.3) holds.

To see that (A.3.4) holds, observe first that

‖T1ϕ1 + · · ·+ Tnϕn‖2 ≤ ‖T1T
∗
1 + · · ·+ TnT

∗
n‖
(‖ϕ1‖2 + · · ·+ ‖ϕn‖2

)
, (A.3.6)

where T1, . . . , Tn ∈ B(G) and ϕ1, . . . , ϕn ∈ G. One verifies (A.3.6) by interpreting
the row (T1 . . . Tn) as a bounded operator A from G×· · ·×G to G and recalling that
‖A‖2 = ‖AA∗‖. Now rewrite the following Riemann–Stieltjes sum as indicated:

n∑
i=1

f(ti) (Θ(ti)−Θ(ti−1))ϕ

=
n∑

i=1

(Θ(ti)−Θ(ti−1))
1
2 f(ti) (Θ(ti)−Θ(ti−1))

1
2 ϕ.

The right-hand side may be written as T1ϕ1 + · · ·+ Tnϕn, where

Ti = (Θ(ti)−Θ(ti−1))
1
2 ∈ B(G), ϕi = f(ti) (Θ(ti)−Θ(ti−1))

1
2 ϕ ∈ G

for i = 1, . . . , n. Furthermore, one has

T1T
∗
1 + · · ·+ TnT

∗
n =

n∑
i=1

(Θ(ti)−Θ(ti−1)) = Θ(b)−Θ(a).
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Hence, the general estimate (A.3.6) above gives∥∥∥∥∥
n∑

i=1

f(ti) (Θ(ti)−Θ(ti−1))ϕ

∥∥∥∥∥
2

= ‖T1ϕ1 + · · ·+ Tnϕn‖2

≤ ‖Θ(b)−Θ(a)‖ (‖ϕ1‖2 + · · ·+ ‖ϕn‖2
)
.

Since

‖ϕ1‖2 + · · ·+ ‖ϕn‖2 =

n∑
i=1

|f(ti)|2
∥∥(Θ(ti)−Θ(ti−1))

1
2 ϕ
∥∥2

=
n∑

i=1

|f(ti)|2
(
(Θ(ti)−Θ(ti−1))ϕ,ϕ

)
one concludes (A.3.4) with a limit argument. Finally, (A.3.5) is an immediate
consequence of (A.3.4) and∫ b

a

d(Θ(t)ϕ,ϕ) =
(
(Θ(b)−Θ(a))ϕ,ϕ

) ≤ ‖Θ(b)−Θ(a)‖‖ϕ‖2.

This completes the proof. �

The integral in (A.3.2) enjoys the usual linearity properties. The nonnega-
tivity property

f(t) ≥ 0, t ∈ [a, b] ⇒
∫ b

a

f(t) dΘ(t) ≥ 0

is a direct consequence of (A.3.3) of the previous lemma. Moreover, if c is a point
of the open interval (a, b), then∫ b

a

f(t) dΘ(t) =

∫ c

a

f(t) dΘ(t) +

∫ b

c

f(t) dΘ(t). (A.3.7)

It follows from (A.3.7) that the integral defined in (A.3.2) and the properties
in Lemma A.3.3 remain valid for functions f : [a, b] → C that are piecewise
continuous.

Now the integral in (A.3.2) will be extended to an improper Riemann–
Stieltjes integral on R under the assumption that the self-adjoint nondecreasing
operator function Θ : R → B(G) is uniformly bounded; cf. Lemma A.3.1. Note
that the restriction to bounded continuous functions guarantees the existence of
the improper integral. However, it is clear that the results remain valid for bounded
functions f that are continuous up to finitely many points.
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Proposition A.3.4. Let Θ : R → B(G) be a self-adjoint nondecreasing operator
function which is uniformly bounded and let f : R → C be a bounded continuous
function. Then there exists a unique linear operator∫

R
f(t) dΘ(t) ∈ B(G) (A.3.8)

such that (∫
R
f(t) dΘ(t)

)
ϕ = lim

a→−∞ lim
b→∞

(∫ b

a

f(t) dΘ(t)

)
ϕ (A.3.9)

for all ϕ ∈ G, and((∫
R
f(t) dΘ(t)

)
ϕ,ψ

)
=

∫
R
f(t) d(Θ(t)ϕ,ψ) (A.3.10)

for all ϕ,ψ ∈ G. Moreover,∥∥∥∥(∫
R
f(t) dΘ(t)

)
ϕ

∥∥∥∥2 ≤ ‖Θ(+∞)−Θ(−∞)‖
∫
R
|f(t)|2 d(Θ(t)ϕ,ϕ) (A.3.11)

for all ϕ ∈ G. In particular,∥∥∥∥(∫
R
f(t) dΘ(t)

)
ϕ

∥∥∥∥ ≤ sup
t∈R

|f(t)|‖Θ(+∞)−Θ(−∞)‖‖ϕ‖ (A.3.12)

for all ϕ ∈ G.

Proof. By assumption, there exists some M > 0 such that for all ϕ ∈ G

|(Θ(t)ϕ,ϕ)| ≤M‖ϕ‖2, t ∈ R; (A.3.13)

cf. Lemma A.3.1. First the existence of the limit in (A.3.9) will be verified. With
the estimate (A.3.13) the inequality (A.3.4) may be written as∥∥∥∥(∫ b

a

f(t) dΘ(t)

)
ϕ

∥∥∥∥2 ≤ 2M

∫ b

a

|f(t)|2 d(Θ(t)ϕ,ϕ). (A.3.14)

Now consider two compact intervals [a, b] ⊂ [a′, b′] and observe from (A.3.7) that∫ b′

a′
f(t) dΘ(t)−

∫ b

a

f(t) dΘ(t) =

∫ a

a′
f(t) dΘ(t) +

∫ b′

b

f(t) dΘ(t).

Hence, for every ϕ ∈ G one has∥∥∥∥∫ b′

a′
f(t) dΘ(t)ϕ−

∫ b

a

f(t) dΘ(t)ϕ

∥∥∥∥2
≤ 2

∥∥∥∥∫ a

a′
f(t) dΘ(t)ϕ

∥∥∥∥2 + 2

∥∥∥∥∫ b′

b

f(t) dΘ(t)ϕ

∥∥∥∥2
≤ 4M

∫ a

a′
|f(t)|2 d(Θ(t)ϕ,ϕ) + 4M

∫ b′

b

|f(t)|2 d(Θ(t)ϕ,ϕ),

(A.3.15)
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where the estimate (A.3.14) has been used. The right-hand side of (A.3.15) gives
a Cauchy sequence for a, a′ → −∞ and b, b′ → +∞, since for all ϕ ∈ G∫

R
|f(t)|2 d(Θ(t)ϕ,ϕ) ≤ ‖f‖2∞

∫
R
d(Θ(t)ϕ,ϕ)

= ‖f‖2∞
(
(Θ(+∞)ϕ,ϕ)− (Θ(−∞)ϕ,ϕ)

)
≤ 2M‖f‖2∞‖ϕ‖2 <∞.

Therefore, the strong limit on the right-hand side of (A.3.9) exists. This limit is
denoted by the left-hand side of (A.3.9).

To verify (A.3.10), observe that the left-hand side of (A.3.10) is given by

lim
a→−∞ lim

b→∞

((∫ b

a

f(t) dΘ(t)

)
ϕ,ψ

)
= lim

a→−∞ lim
b→∞

∫ b

a

f(t) d(Θ(t)ϕ,ψ),

where (A.3.3) was used. The statement now follows from the dominated conver-
gence theorem.

Finally, as to (A.3.11) and (A.3.8), recall from (A.3.4) that for every ϕ ∈ G

and for every compact interval [a, b] one has the estimate∥∥∥∥(∫ b

a

f(t) dΘ(t)

)
ϕ

∥∥∥∥2 ≤ ‖Θ(b)−Θ(a)‖
∫ b

a

|f(t)|2 d(Θ(t)ϕ,ϕ)

≤ ‖Θ(+∞)−Θ(−∞)‖
∫
R
|f(t)|2 d(Θ(t)ϕ,ϕ),

(A.3.16)

where in the last inequality Corollary A.3.2 and the dominated convergence the-
orem have been used. Clearly, (A.3.11) follows from (A.3.16). This also leads to
(A.3.12), which implies (A.3.8). �

The linearity and nonnegativity properties are preserved for the improper
Riemann–Stieltjes integral. The adjoint of

∫
R f(t) dΘ(t) is given by(∫

R
f(t) dΘ(t)

)∗
=

∫
R
f(t) dΘ(t). (A.3.17)

Another immediate consequence is the following limit result.

Corollary A.3.5. Let Θ : R→ B(G) be a self-adjoint nondecreasing operator func-
tion which is uniformly bounded. Let fn : R → C be a sequence of continuous
functions which is uniformly bounded. Let f : R → C be a bounded continuous
function such that limn→∞ fn(t) = f(t) for all t ∈ R. Then for all ϕ ∈ G(∫

R
fn(t) dΘ(t)

)
ϕ→

(∫
R
f(t) dΘ(t)

)
ϕ.
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Proof. Use the linearity property and Proposition A.3.4 to conclude that for all
ϕ ∈ G ∥∥∥∥(∫

R
f(t) dΘ(t)

)
ϕ−

(∫
R
fn(t) dΘ(t)

)
ϕ

∥∥∥∥2
≤ ‖Θ(+∞)−Θ(−∞)‖

∫
R
|f(t)− fn(t)|2 d(Θ(t)ϕ,ϕ).

Now apply the dominated convergence theorem. �

The next goal is to extend the operator-valued Riemann–Stieltjes integral to
the case where the self-adjoint nondecreasing B(G)-valued function appearing in
the integral is not uniformly bounded. In principle this more general situation will
be reduced to the case discussed above. In the following consider a (not necessarily
uniformly bounded) self-adjoint nondecreasing operator function Σ : R → B(G).
Let ω : R→ R be a continuous positive function with a positive lower bound, and
define the operator function Θ : R→ B(G) by

Θ(t) =

∫ t

0

dΣ(s)

ω(s)
, t ∈ R. (A.3.18)

The function Θ can be used to extend the definition of the integral in Proposi-
tion A.3.4. First a preliminary lemma is needed.

Lemma A.3.6. Let Σ : R→ B(G) be a self-adjoint nondecreasing operator function
and let ω : R → R be a continuous positive function with a positive lower bound.
Then Θ in (A.3.18) defines a self-adjoint nondecreasing operator function from
R to B(G). Moreover, for every bounded continuous function f : R → C and for
every compact interval [a, b] one has∫ b

a

f(t)
dΣ(t)

ω(t)
=

∫ b

a

f(t) dΘ(t) ∈ B(G). (A.3.19)

Proof. It follows from Lemma A.3.3 that Θ(t), t ∈ R, in (A.3.18) is well defined
and that Θ(t) ∈ B(G). Moreover,

(Θ(t)ϕ,ϕ) =

∫ t

0

d(Σ(s)ϕ,ϕ)

ω(s)
, t ∈ R, (A.3.20)

for all ϕ ∈ G; cf. Lemma A.3.3. Thus, Θ(t) is self-adjoint and it follows that

(Θ(t2)ϕ,ϕ)− (Θ(t1)ϕ,ϕ) =

∫ t2

t1

d(Σ(s)ϕ,ϕ)

ω(s)
, t1 ≤ t2,

so that Θ is a nondecreasing operator function. Since the functions f/ω and f are
continuous on [a, b], Lemma A.3.3 shows that both integrals∫ b

a

f(t)
dΣ(t)

ω(t)
and

∫ b

a

f(t) dΘ(t)
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belong to B(G). Observe that, for all ϕ ∈ G,((∫ b

a

f(t)
dΣ(t)

ω(t)

)
ϕ,ϕ

)
=

∫ b

a

f(t)
d(Σ(t)ϕ,ϕ)

ω(t)

=

∫ b

a

f(t) d(Θ(t)ϕ,ϕ)

=

((∫ b

a

f(t)dΘ(t)

)
ϕ,ϕ

)
.

Here the first and the third equality follow from Lemma A.3.3, while the second
equality uses the Radon–Nikodým derivative in (A.3.20). By polarization,((∫ b

a

f(t)
dΣ(t)

ω(t)

)
ϕ,ψ

)
=

((∫ b

a

f(t)dΘ(t)

)
ϕ,ψ

)
for all ϕ,ψ ∈ G, and hence(∫ b

a

f(t)
dΣ(t)

ω(t)

)
ϕ =

(∫ b

a

f(t)dΘ(t)

)
ϕ (A.3.21)

holds for all ϕ ∈ G. This implies (A.3.19). �

As a consequence of Lemma A.3.6 one may recover the function Σ from the
function Θ, since for every compact interval [a, b] ⊂ R one has∫ b

a

dΣ(t) =

∫ b

a

ω(t) dΘ(t).

Now the definition of the integral in Proposition A.3.4 is extended to “unbounded”
measures by means of a “Radon–Nikodým” derivative.

Proposition A.3.7. Let Σ : R → B(G) be a self-adjoint nondecreasing operator
function, let ω : R → R be a continuous positive function with a positive lower
bound, and let Θ : R→ B(G) be defined by (A.3.18). Then the following statements
are equivalent:

(i) For all ϕ ∈ G one has ∫
R

d(Σ(s)ϕ,ϕ)

ω(s)
<∞. (A.3.22)

(ii) In the sense of strong limits one has∫
R

dΣ(t)

ω(t)
∈ B(G).

(iii) The nondecreasing operator function Θ : R→ B(G) in (A.3.18) is uniformly
bounded.
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Assume that either of the above conditions is satisfied. Let f : R→ C be a bounded
continuous function. Then∫

R
f(t)

dΣ(t)

ω(t)
=

∫
R
f(t) dΘ(t), (A.3.23)

where each side belongs to B(G) and is meant as the strong limit of the correponding
operators in the identity (A.3.19), respectively.

Proof. (i) ⇒ (iii) Assume the condition (A.3.22). Then it follows from (A.3.18)
and the monotone convergence theorem that

‖((Θ(b)−Θ(a))
1
2ϕ‖2 =

∫ b

a

d(Σ(s)ϕ,ϕ)

ω(s)
≤
∫
R

d(Σ(s)ϕ,ϕ)

ω(s)

for every compact interval [a, b]. The assumption (A.3.22) and the uniform bound-
edness principle show the existence of a constant M such that

‖(Θ(b)−Θ(a))
1
2 ‖ ≤M

for every compact interval [a, b]. In particular, this leads to the inequality

|(Θ(b)−Θ(a))ϕ,ϕ)| ≤M2‖ϕ‖2,
which implies that the nondecreasing operator function Θ is uniformly bounded.
This gives (iii).

(iii)⇒ (ii) Assume that Θ : R→ B(G) in (A.3.18) is uniformly bounded. It follows
from (A.3.19) that for every compact interval [a, b] ⊂ R∫ b

a

dΣ(t)

ω(t)
=

∫ b

a

dΘ(t) = Θ(b)−Θ(a),

where each side belongs to B(G). The result now follows by taking strong limits
for [a, b]→ R.

(ii) ⇒ (i) The assumption means that for all ϕ ∈ G(∫
R

dΣ(t)

ω(t)

)
ϕ = lim

a→−∞ lim
b→∞

(∫ b

a

dΣ(t)

ω(t)

)
ϕ,

with convergence in G. In particular, this gives that((∫
R

dΣ(t)

ω(t)

)
ϕ,ϕ

)
= lim

a→−∞ lim
b→∞

((∫ b

a

dΣ(t)

ω(t)

)
ϕ,ϕ

)
= lim

a→−∞ lim
b→∞

∫ b

a

d(Σ(t)ϕ,ϕ)

ω(t)

=

∫
R

d(Σ(t)ϕ,ϕ)

ω(t)
,
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where the second step is justified by Lemma A.3.3 and the last step by the mono-
tone convergence theorem. This leads to (A.3.22).

By Proposition A.3.4, the integral on the right-hand side of (A.3.21) con-
verges strongly to ∫

R
f(t)dΘ(t) ∈ B(G).

Together with the identity (A.3.19) this leads to the assertion in (ii). �

For the reader’s convenience the following facts are mentioned in terms of
Σ : R→ B(G) and ω : R→ R from Proposition A.3.7. They can be easily verified
via the identity (A.3.23). Let f : R→ C be a bounded continuous function. Then(∫

R
f(t)

dΣ(t)

ω(t)

)∗
=

∫
R
f(t)

dΣ(t)

ω(t)
∈ B(G); (A.3.24)

cf. (A.3.17), and for all ϕ ∈ G(∫
R
f(t)

dΣ(t)

ω(t)
ϕ,ϕ

)
=

∫
R
f(t)

d(Σ(t)ϕ,ϕ)

ω(t)
; (A.3.25)

cf. (A.3.10). Furthermore, if fn : R → C is a sequence of continuous functions
which is uniformly bounded and f : R→ C is a bounded continuous function such
that limn→∞ fn(t) = f(t) for all t ∈ R, then for all ϕ ∈ G(∫

R
fn(t)

dΣ(t)

ω(t)

)
ϕ→

(∫
R
f(t)

dΣ(t)

ω(t)

)
ϕ; (A.3.26)

cf. Corollary A.3.5. It is also clear that Proposition A.3.7 and the above properties
of the integral remain true for bounded functions f : R → C with finitely many
discontinuities.

The following notation will be used later: Consider an interval I ⊂ R, let
χI be the corresponding characteristic function, and let f : R→ C be a bounded
continuous function. Then χIf is a piecewise continuous function and one defines∫

I

f(t)
dΣ(t)

ω(t)
=

∫
R
χI(t)f(t)

dΣ(t)

ω(t)
. (A.3.27)

In particular, for c ∈ R integrals of the form∫
[c,∞)

f(t)
dΣ(t)

ω(t)
=

∫
R
χ[c,∞)(t)f(t)

dΣ(t)

ω(t)
(A.3.28)

will appear in the context of Nevanlinna functions that admit an analytic contin-
uation to (−∞, c); see Section A.6.
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A.4 Operator-valued Nevanlinna functions

The notion of scalar Nevanlinna function in Definition A.2.3 is easily carried over
to the operator-valued case. The present section is concerned with developing the
corresponding operator-valued integral representations. The main tool is provided
by Proposition A.3.7.

Definition A.4.1. Let G be a Hilbert space and let F : C \ R→ B(G) be an operator
function. Then F is called a B(G)-valued Nevanlinna function if

(i) F is holomorphic on C \ R;
(ii) F (λ) = F (λ)∗, λ ∈ C \ R;
(iii) ImF (λ)/Imλ ≥ 0, λ ∈ C \ R.

Operator-valued Nevanlinna functions admit integral representations as in
the scalar case; cf. Theorem A.2.5.

Theorem A.4.2. Let G be a Hilbert space and let F : C \ R→ B(G) be an operator
function. Then the following statements are equivalent:

(i) F has an integral representation of the form

F (λ) = α+ λβ +

∫
R

(
1

t− λ
− t

t2 + 1

)
dΣ(t), λ ∈ C \ R, (A.4.1)

with self-adjoint operators α, β ∈ B(G), β ≥ 0, and a nondecreasing self-
adjoint operator function Σ : R→ B(G) such that∫

R

dΣ(t)

t2 + 1
∈ B(G), (A.4.2)

where the integrals in (A.4.1) and (A.4.2) converge in the strong topology.

(ii) F is a Nevanlinna function.

Note that for λ ∈ C \ R the identity (A.4.1) can be rewritten as

F (λ) = α+ λβ +

∫
R
fλ(t) dΘ(t), λ ∈ C \ R, (A.4.3)

where the bounded continuous function fλ : R → C and the “bounded measure”
Θ are given by

fλ(t) =
1 + λt

t− λ
and Θ(t) =

∫ t

0

dΣ(s)

s2 + 1
, t ∈ R, (A.4.4)

respectively; cf. (A.3.18) and (A.3.23) with ω(t) = t2 + 1.
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Proof. (i) ⇒ (ii) Due to the condition (A.4.2) it follows that F (λ) in (A.4.1) is
well defined and represents an element in B(G); cf. (A.4.3), (A.4.4), and Proposi-
tion A.3.7. Moreover, it follows from (A.4.3) and (A.3.25) that for ϕ ∈ G

(F (λ)ϕ,ϕ) = (αϕ,ϕ) + λ(βϕ, ϕ) +

∫
R
fλ(t) d(Θ(t)ϕ,ϕ), λ ∈ C \ R.

Therefore, one sees that the function F is holomorphic on C \ R. It is clear that
F (λ)∗ = F (λ); cf. (A.3.24). Since (αϕ,ϕ) ∈ R and (βϕ, ϕ) ∈ R, one also sees that

Im (F (λ)ϕ,ϕ) = (Imλ)

[
(βϕ, ϕ) +

∫
R

t2 + 1

|t− λ|2 d(Θ(t)ϕ,ϕ)

]
, λ ∈ C \ R.

Therefore, Im (F (λ)ϕ,ϕ)/Imλ ≥ 0 for all λ ∈ C \ R. This implies that F is a
Nevanlinna function.

(ii) ⇒ (i) Let F : C \ R → B(G) be an operator-valued Nevanlinna function.
Then M(λ) = F (λ)−ReF (i) is also a Nevanlinna function and ReM(i) = 0. For
ϕ ∈ G the function (M(λ)ϕ,ϕ) is a scalar Nevanlinna function with the integral
representation

(M(λ)ϕ,ϕ) = λβϕ,ϕ +

∫
R

1 + λt

t− λ
dθϕ,ϕ(t), λ ∈ C \ R,

where βϕ,ϕ ≥ 0 and θϕ,ϕ : R→ R is a nondecreasing function; cf. Theorem A.2.4
and Lemma A.2.6. Then it follows that

Im (M(i)ϕ,ϕ) = βϕ,ϕ +

∫
R
dθϕ,ϕ(t),

where each term on the right-hand side is nonnegative, so that

0 ≤ βϕ,ϕ +

∫
R
dθϕ,ϕ(t) = Im (M(i)ϕ,ϕ) ≤ ‖M(i)‖‖ϕ‖2, ϕ ∈ G.

Without loss of generality it will be assumed that

θϕ,ϕ(−∞) = 0 and θϕ,ϕ(t) =
θϕ,ϕ(t+)− θϕ,ϕ(t−)

2
, t ∈ R, (A.4.5)

(see also the proof of Theorem A.2.4) and thus

0 ≤ βϕ,ϕ ≤ ‖M(i)‖‖ϕ‖2 and 0 ≤ θϕ,ϕ(t) ≤ ‖M(i)‖‖ϕ‖2 (A.4.6)

for all t ∈ R. For ϕ,ψ ∈ G one defines by polarization

βϕ,ψ =
1

4

(
βϕ+ψ,ϕ+ψ − βϕ−ψ,ϕ−ψ + iβϕ+iψ,ϕ+iψ − iβϕ−iψ,ϕ−iψ

)
,
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and similarly

θϕ,ψ =
1

4

(
θϕ+ψ,ϕ+ψ − θϕ−ψ,ϕ−ψ + iθϕ+iψ,ϕ+iψ − iθϕ−iψ,ϕ−iψ

)
. (A.4.7)

Then it follows that

(M(λ)ϕ,ψ) = λβϕ,ψ +

∫
R

1 + λt

t− λ
dθϕ,ψ(t), λ ∈ C \ R, (A.4.8)

where βϕ,ψ is determined by

βϕ,ψ = lim
y→∞

(M(iy)ϕ,ψ)

iy

(see (A.2.10) in the proof of Lemma A.2.6) and θϕ,ψ : R → C is a function of
bounded variation.

Now the representation (A.4.8) will be used to verify that the bounded forms

{ϕ,ψ} �→ βϕ,ψ, {ϕ,ψ} �→ θϕ,ψ(t), (A.4.9)

are sesquilinear. For instance, with ϕ,ϕ′, ψ ∈ G it follows that

λβϕ+ϕ′,ψ +

∫
R

1 + λt

t− λ
dθϕ+ϕ′,ψ(t)

=
(
M(λ)(ϕ+ ϕ′), ψ

)
= (M(λ)ϕ,ψ) + (M(λ)ϕ′, ψ)

= λβϕ,ψ +

∫
R

1 + λt

t− λ
dθϕ,ψ(t) + λβϕ′,ψ +

∫
R

1 + λt

t− λ
dθϕ′,ψ(t)

= λ(βϕ,ψ + βϕ′,ψ) +

∫
R

1 + λt

t− λ
d(θϕ,ψ(t) + θϕ′,ψ(t)).

After dividing this equality by λ = iy and letting y →∞, one concludes that

βϕ+ϕ′,ψ = βϕ,ψ + βϕ′,ψ. (A.4.10)

Setting θ̃ = θϕ+ϕ′,ψ − θϕ,ψ − θϕ′,ψ, one obtains

0 =

∫
R

1 + λt

t− λ
dθ̃(t) =

∫
R

(
λ+

1 + λ2

t− λ

)
dθ̃(t), λ ∈ C \ R,

and hence ∫
R

1

t− λ
dθ̃(t) = −

∫
R

λ

1 + λ2
dθ̃(t), λ ∈ C \ R.

Now it follows from Corollary A.1.3 that for every compact subinterval [a, b] ⊂ R
one has

0 =
θ̃(b+) + θ̃(b−)

2
− θ̃(a+) + θ̃(a−)

2
= θ̃(b)− θ̃(a),
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where (A.4.5) and (A.4.7) were used in the second equality. With the help of

(A.4.5) and (A.4.7) via polarization one also concludes that θ̃(a)→ 0 for a→ −∞
and therefore θ̃(b) = 0 for all b ∈ R. This implies

θϕ+ϕ′,ψ(t) = θϕ,ψ(t) + θϕ′,ψ(t), t ∈ R. (A.4.11)

It follows from (A.4.10), (A.4.11), and similar considerations that the forms in
(A.4.9) are both sesquilinear. Furthermore, these forms are nonnegative and from
the Cauchy–Schwarz inequality and (A.4.6) it follows that they are bounded.
Hence, there exists a uniquely determined nonnegative operator β ∈ B(G) such
that

βϕ,ψ = (βϕ, ψ), ϕ, ψ ∈ G,

and for each fixed t ∈ R there exists a uniquely determined bounded operator
Θ(t) ∈ B(G) such that

θϕ,ψ(t) = (Θ(t)ϕ,ψ) ϕ,ψ ∈ G.

From
(Θ(t)ϕ,ϕ) = θϕ,ϕ(t) = θϕ,ϕ(t) = (ϕ,Θ(t)ϕ), ϕ ∈ G,

one concludes that (Θ(t)ϕ,ψ) = (ϕ,Θ(t)ψ), so that Θ(t) is a self-adjoint operator
in B(G). Furthermore, for t ≤ t′ one sees that

θϕ(t) ≤ θϕ(t
′) ⇒ Θ(t) ≤ Θ(t′)

and therefore Θ : R → B(G), t �→ Θ(t), is a nondecreasing self-adjoint operator
function. Thus, one obtains for all ϕ,ψ ∈ G((

λβ +

∫
R

1 + λt

t− λ
dΘ(t)

)
ϕ,ψ

)
= λβϕ,ψ +

∫
R

1 + λt

t− λ
dθϕ,ψ(t)

=
(
(F (λ)− ReF (i))ϕ,ψ

)
,

which gives (A.4.3) with α = ReF (i). �

The imaginary part ImF (λ) ∈ B(G) of the Nevanlinna function N in Theo-
rem A.4.2 admits the representation

ImF (λ)

Imλ
= β +

∫
R

1

|t− λ|2 dΣ(t), λ ∈ C \ R, (A.4.12)

where the integral exists in the strong sense. In particular, one has for all ϕ ∈ G:

(ImF (λ)ϕ,ϕ)

Imλ
= (βϕ, ϕ) +

∫
R

1

|t− λ|2 d(Σ(t)ϕ,ϕ), λ ∈ C \ R;

cf. (A.3.25). Hence, ImF (λ)/Imλ is a nonnegative operator in B(G).

The next lemma is the counterpart of Lemma A.2.6 for operator-valued
Nevanlinna functions.
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Lemma A.4.3. Let F be a B(G)-valued Nevanlinna function with integral repre-
sentation (A.4.1). The operators α, β, and the nondecreasing self-adjoint operator
function Σ : R→ B(G) are related to the function F by the following identities:

α = ReF (i), (A.4.13)

βϕ = lim
y→∞

F (iy)

iy
ϕ = lim

y→∞
ImF (iy)

y
ϕ, ϕ ∈ G. (A.4.14)

Moreover, for all x ∈ R

lim
y ↓ 0

y
(
ImF (x+ iy)ϕ,ϕ

)
= (Σ(x+)ϕ,ϕ)− (Σ(x−)ϕ,ϕ), ϕ ∈ G. (A.4.15)

Proof. It is clear from (A.4.1) that (A.4.13) holds. The identities for β in (A.4.14)
follow with the help of (A.3.26) in the same was as in the proof of Lemma A.2.6.
Finally, note that the statement (A.4.15) is a direct consequence of Lemma A.2.6
and Lemma A.3.1. �

In the present context the Stieltjes inversion formula has the following form;
cf. Lemma A.2.7.

Lemma A.4.4. Let F : C \ R → C be a B(G)-valued Nevanlinna function with
the integral representation (A.4.1) and let [a, b] ⊂ R. Assume that U is an open
neighborhood of [a, b] in C and that g : U→ C is holomorphic. Then

lim
ε ↓ 0

1

2πi

∫ b

a

((
(gF )(s+ iε)− (gF )(s− iε)

)
ϕ,ϕ
)
ds

=
1

2

∫
{a}

g(t) d(Σ(t)ϕ,ϕ) +

∫ b−

a+

g(t) d(Σ(t)ϕ,ϕ) +
1

2

∫
{b}

g(t) d(Σ(t)ϕ,ϕ)

(A.4.16)

holds for all ϕ ∈ G. If the function g is entire, then (A.4.16) is valid for any
compact interval [a, b]. In particular,

lim
ε ↓ 0

1

π

∫ b

a

(ImF (s+ iε)ϕ,ϕ) ds

=
(Σ(b+)ϕ,ϕ) + (Σ(b−)ϕ,ϕ)

2
− (Σ(a+)ϕ,ϕ) + (Σ(a−)ϕ,ϕ)

2

for all ϕ ∈ G.

For operator-valued Nevanlinna functions Proposition A.2.9 has the following
form.

Proposition A.4.5. Let F be a Nevanlinna function as in Theorem A.4.2 and let
(c, d) ⊂ R be an open interval. Then the following statements are equivalent:

(i) F is holomorphic on (C \ R) ∪ (c, d).

(ii) For every ϕ ∈ G the function t �→ Σ(t)ϕ is constant on (c, d).
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In this case

F (x) = α+ xβ +

∫
R\(c,d)

(
1

t− x
− t

t2 + 1

)
dΣ(t), x ∈ (c, d), (A.4.17)

is self-adjoint; the integral in (A.4.17) converges in the strong topology. Moreover,
F is nondecreasing on (c, d):

(F (x1)ϕ,ϕ) ≤ (F (x2)ϕ,ϕ), c < x1 < x2 < d.

Proof. The implication (i) ⇒ (ii) follows from the Stieltjes inversion formula in
Lemma A.4.4, which implies that t �→ (Σ(t)ϕ,ϕ) is constant for t ∈ (c, d) and
ϕ ∈ G. For c < t1 < t2 < d one concludes from the inequality∣∣((Σ(t2)− Σ(t1))ϕ,ψ

)∣∣ ≤ ((Σ(t2)− Σ(t1))ϕ,ϕ
)(
(Σ(t2)− Σ(t1))ψ,ψ

)
= 0

that the function t �→ Σ(t)ϕ is constant on (c, d) for all ϕ ∈ G. For the implication
(ii)⇒ (i) consider the integral representation (A.4.1) in Theorem A.4.2, where the
integral converges in the strong sense. Since t �→ Σ(t)ϕ is constant on (c, d), this
representation takes the form

F (λ) = α+ λβ +

∫
R
χR\(c,d)(t)

(
1

t− λ
− t

t2 + 1

)
dΣ(t)

= α+ λβ +

∫
R\(c,d)

(
1

t− λ
− t

t2 + 1

)
dΣ(t)

(A.4.18)

for all λ ∈ C \ R; cf. (A.3.27). It follows that λ �→ (F (λ)ϕ,ϕ) is holomorphic on
(C \ R) ∪ (c, d) for all ϕ ∈ G and hence F is holomorphic on (C \ R) ∪ (c, d).

To obtain (A.4.17), observe that for x ∈ (c, d) one has

χR\(c,d)(t)
(

1

t− λ
− t

t2 + 1

)
→ χR\(c,d)(t)

(
1

t− x
− t

t2 + 1

)
when λ → x, λ ∈ C \ R, and the functions are uniformly bounded in t. Hence,
(A.3.26) and (A.4.18) imply (A.4.17), where the integral in (A.4.17) converges in
the strong topology by Proposition A.3.7. Furthermore, the bounded operators
F (x), x ∈ (c, d), are self-adjoint by (A.3.24) and Proposition A.2.9 shows that
x �→ (F (x)ϕ,ϕ) is nondecreasing on (c, d). �

If F has an analytic continuation to (c, d) ⊂ R, then it follows from (A.4.17)
that F is differentiable on (c, d) and that

F ′(x) = β +

∫
R

1

|t− x|2 dΣ(t), x ∈ (c, d), (A.4.19)
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where the integral exists in the strong sense. In particular, one has for all ϕ ∈ G:

(F ′(x)ϕ,ϕ) = (βϕ, ϕ) +

∫
R

1

|t− x|2 d(Σ(t)ϕ,ϕ), x ∈ (c, d);

cf. (A.3.25). It is clear that F ′(x) is a nonnegative operator in B(G).

The next observation on isolated singularities of F is useful. If (c, d) ⊂ R
and F admits an analytic continuation to (c, d) \ {y} for some y ∈ (c, d), then
Proposition A.4.5 implies

F (λ) = α+ λβ +

∫
R\((c,y)∪(y,d))

(
1

t− λ
− t

t2 + 1

)
dΣ(t)

for all λ ∈ (C \ R) ∪ (c, y) ∪ (y, d). Dominated convergence shows that

− lim
λ→y

(λ− y)(F (λ)ϕ,ψ) =
(
Σ(y+)ϕ,ψ

)− (Σ(y−)ϕ,ψ), ϕ, ψ ∈ G,

whence
lim
λ→y

∥∥(λ− y)F (λ)
∥∥ = ∥∥Σ(y+)− Σ(y−)∥∥.

The following result establishes an important property of operator-valued
Nevanlinna functions which will be characteristic for the Weyl functions in this
text; see Chapter 4. The proof given here depends on the integral representation
of a Nevanlinna function.

Proposition A.4.6. Let F be a B(G)-valued Nevanlinna function. Then the follow-
ing statements hold:

(i) If ImF (μ) is boundedly invertible for some μ ∈ C \ R, then ImF (λ) is bound-
edly invertible for all λ ∈ C \ R.

(ii) Assume that F has an analytic continuation to the interval (c, d) ⊂ R. If
either ImF (μ) is boundedly invertible for some μ ∈ C \ R or F ′(x0) is bound-
edly invertible for some x0 ∈ (c, d), then ImF (λ) is boundedly invertible for
all λ ∈ C \ R and F ′(x) is boundedly invertible for all x ∈ (c, d).

Proof. The proof will be given in three steps and involves the nonnegativity of the
operators in (A.4.12) and (A.4.19).

Step 1. Assume for some μ ∈ C \ R that 0 ∈ σp(ImF (μ)). Then there exists a
nontrivial element ϕ ∈ ker (ImF (μ)). Since β ≥ 0, it follows from (A.4.12) that

(βϕ, ϕ) = 0 and

∫
R

1

|t− μ|2 d(Σ(t)ϕ,ϕ) = 0,

and therefore ϕ ∈ kerβ and (Σ(t)ϕ,ϕ) = 0 for all t ∈ R. Hence, due to (A.4.12)
one sees that (ImF (λ)ϕ,ϕ) = 0 for all λ ∈ C \ R. For λ ∈ C+ one concludes



662 Appendix A. Integral Representations of Nevanlinna Functions

by the nonnegativity of ImF (λ) that ImF (λ)ϕ = 0. For λ ∈ C− one has that
ImF (λ)ϕ = ImF (λ)ϕ = 0. Therefore, it follows that 0 ∈ σp(ImF (λ)) for all
λ ∈ C \ R. Moreover, in case there is an analytic continuation to (c, d), (A.4.19)
implies that (F ′(x)ϕ,ϕ) = 0 for all x ∈ (c, d). For x ∈ (c, d) one now concludes by
the nonnegativity of F ′(x) that F ′(x)ϕ = 0. Hence, it follows that 0 ∈ σp(F

′(x))
for all x ∈ (c, d).

If F admits an analytic continuation to (c, d), then the above arguments show
that the assumption 0 ∈ σp(F

′(x0)) for some x0 ∈ (c, d) leads to 0 ∈ σp(ImF (λ))
for all λ ∈ C \ R and 0 ∈ σp(F

′(x)) for all x ∈ (c, d).

Step 2. Assume for some μ ∈ C \ R that 0 ∈ σc(ImF (μ)). Then there exists a
sequence ϕn ∈ G, ‖ϕn‖ = 1, such that ImF (μ)ϕn → 0 for n→∞. It follows from
(A.4.12) that

(βϕn, ϕn)→ 0 and

∫
R

1

|t− μ|2 d(Σ(t)ϕn, ϕn)→ 0, n→∞,

and hence also (ImF (λ)ϕn, ϕn) → 0 for any λ ∈ C \ R. Thus, for λ ∈ C+ one
concludes from the nonnegativity of ImF (λ) that ImF (λ)ϕn → 0. Hence, one
concludes that 0 ∈ σc(ImF (λ)) for all λ ∈ C \ R. Moreover, if there is an analytic
continuation to (c, d), then it follows from (A.4.19) that

(βϕn, ϕn)→ 0 and

∫
R

1

|t− x|2 d(Σ(t)ϕn, ϕn)→ 0, n→∞,

and hence also (F ′(x)ϕn, ϕn) → 0 for any x ∈ (c, d). Thus, for x ∈ (c, d) one
concludes by the nonnegativity of F ′(x) that F ′(x)ϕn → 0. Hence, x ∈ σc(F

′(x))
for all x ∈ (c, d).

Therefore, it has been shown that the assumption 0 ∈ σc(ImF (μ)) for some
μ ∈ C \ R leads to

0 ∈ σc(ImF (λ)), λ ∈ C \ R, and 0 ∈ σc(F
′(x)), x ∈ (c, d).

It is clear that if F admits an analytic continuation to (c, d), the above argu-
ments show that the assumption 0 ∈ σc(F

′(x0)) for some x0 ∈ (c, d) leads to
0 ∈ σc(ImF (λ)) for all λ ∈ C \ R and 0 ∈ σc(F

′(x)) for all x ∈ (c, d).

Step 3. Now assume that ImF (μ) is boundedly invertible for some μ ∈ C \ R or, if
there is an analytic continuation to (c, d), that F ′(x0) is boundedly invertible for
some x0 ∈ (c, d), in other words, 0 ∈ ρ(ImF (μ)) or 0 ∈ ρ(F ′(x0)). Since ImF (λ),
λ ∈ C \ R, and F ′(x), x ∈ (c, d), are self-adjoint operators in B(G), it follows that
σr(ImF (λ)) = ∅ and σr(F

′(x)) = ∅. The assertions (i) and (ii) of the proposition
now follow from Step 1 and Step 2. �

Next the notion of a uniformly strict Nevanlinna function will be defined. It
can be used in conjunction with Proposition A.4.6.
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Definition A.4.7. Let G be a Hilbert space and let F : C \ R→ B(G) be a Nevan-
linna function. The function F is said to be uniformly strict if its imaginary part
ImF (λ) is boundedly invertible for some, and hence for all λ ∈ C \ R.

In this context it is helpful to recall the following facts. Let A ∈ B(G) with
ImA ≥ 0. Then clearly ImA is boundedly invertible if and only if ImA ≥ ε for
some ε > 0. Note that if ImA ≥ ε for some ε > 0, then

ε‖ϕ‖2 ≤ (ImAϕ,ϕ) ≤ |(Aϕ,ϕ)| ≤ ‖Aϕ‖‖ϕ‖, ϕ ∈ G,

yields that ε‖ϕ‖ ≤ ‖Aϕ‖, ϕ ∈ G. Therefore, if ImA is boundedly invertible, then
so is A itself, i.e., A−1 ∈ B(G), and furthermore

Im (−A−1) = A−1(ImA)A−∗,

so that Im (−A−1) ≥ 0, and in fact Im (−A−1) ≥ ε′ for some ε′ > 0. The next
lemma is now clear.

Lemma A.4.8. Let G be a Hilbert space and let F : C \ R→ B(G) be a Nevanlinna
function. If the function F is uniformly strict, then its inverse −F−1 is a uniformly
strict B(G)-valued Nevanlinna function and

Im (−F (λ)−1) = F (λ)−1(ImF (λ))F (λ)−∗, λ ∈ C \ R.

In general, for an operator-valued Nevanlinna function F with values in B(G)
the values of the inverse −F−1 need not be bounded operators.

A.5 Kac functions

The notion of operator-valued Nevanlinna function in Definition A.4.1 gave rise to
the integral representation of Nevanlinna functions in Theorem A.4.2. Next special
subclasses of Nevanlinna functions with corresponding integral representations will
be considered. Whenever one deals with “unbounded measures” the interpretation
of the integrals is again via Proposition A.3.7.

Definition A.5.1. Let G be a Hilbert space and let F : C \ R→ B(G) be a Nevan-
linna function. Then F is said to belong to the class of Kac functions if for all
ϕ ∈ G ∫ ∞

1

Im (F (iy)ϕ,ϕ)

y
dy <∞. (A.5.1)

Note that every B(G)-valued Nevanlinna function F that satisfies

sup
y>0

y
(
Im (F (iy)ϕ,ϕ)

)
<∞, ϕ ∈ G, (A.5.2)

is a Kac function.
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Theorem A.5.2. Let G be a Hilbert space and let F : C \ R→ B(G) be an operator
function. Then the following statements are equivalent:

(i) F has an integral representation of the form

F (λ) = γ +

∫
R

1

t− λ
dΣ(t), λ ∈ C \ R, (A.5.3)

with a self-adjoint operator γ ∈ B(G) and a nondecreasing self-adjoint oper-
ator function Σ : R→ B(G) such that∫

R

dΣ(t)

|t|+ 1
∈ B(G), (A.5.4)

where the integrals in (A.5.3) and (A.5.4) converge in the strong topology.

(ii) F is a Kac function.

If either of these equivalent conditions is satisfied, then γ = limy→∞ F (iy) in the
strong sense.

Proof. It is helpful to recall the identity∫ ∞

1

1

t2 + y2
dy =

1

|t|
(
π

2
− arctan

1

|t|
)
, t 	= 0, (A.5.5)

and the fact that

lim
|t|→0

1

|t|
(
π

2
− arctan

1

|t|
)

= 1. (A.5.6)

(i) ⇒ (ii) Write the representation (A.5.3) as

F (λ) = γ +

∫
R
gλ(t)

dΣ(t)

|t|+ 1
, λ ∈ C \ R,

where the bounded continuous function gλ : R→ C is given by

gλ(t) =
|t|+ 1

t− λ
.

Due to the condition (A.5.4) it follows that F (λ) in (A.5.3) is well defined and rep-
resents an element in B(G); cf. Proposition A.3.7. Moreover, (A.5.3) and (A.3.25)
imply that for ϕ ∈ G

(F (λ)ϕ,ϕ) = (γϕ, ϕ) +

∫
R
gλ(t)

d(Σ(t)ϕ,ϕ)

|t|+ 1
, λ ∈ C \ R.

Therefore, one sees that the function F is holomorphic on C \ R. Furthermore, it
is clear that F (λ)∗ = F (λ); cf. (A.3.24). Since (γϕ, ϕ) ∈ R, one also sees that

Im (F (λ)ϕ,ϕ)

Imλ
=

∫
R

1

|t− λ|2 d(Σ(t)ϕ,ϕ).
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Thus, F is a Nevanlinna function. Furthermore, integration of this identity shows,
after a change of the order of integration, that∫ ∞

1

Im (F (iy)ϕ,ϕ)

y
dy =

∫
R

1

|t|
(
π

2
− arctan

1

|t|
)

d(Σ(t)ϕ,ϕ) <∞.

Here the identity (A.5.5) was used in the first equality and (A.5.4), (A.5.6), and
arctan 1/|t| → 0 for |t| → ∞ were used to conclude that the last integral is finite;
cf. Proposition A.3.7. This shows that F is a Kac function.

(ii) ⇒ (i) Since F is a Nevanlinna function, it follows from the integral represen-
tation (A.4.1) and (A.3.25) that for all ϕ ∈ G

Im (F (iy)ϕ,ϕ)

y
= (βϕ, ϕ) +

∫
R

1

t2 + y2
d(Σ(t)ϕ,ϕ).

Each of the terms on the right-hand side is nonnegative. Hence, the integrability
condition (A.5.1) implies that β = 0 and furthermore∫ ∞

1

(∫
R

1

t2 + y2
d(Σ(t)ϕ,ϕ)

)
dy <∞.

Changing the order of integration and using (A.5.5) gives∫
R

1

|t|
(
π

2
− arctan

1

|t|
)

d(Σ(t)ϕ,ϕ) <∞,

and hence
∫
R(1 + |t|)−1 d(Σ(t)ϕ,ϕ) < ∞. By Proposition A.3.7, this implies that

(A.5.4) is satisfied. Observe that for each compact interval [a, b] ⊂ R one has the
identity ∫ b

a

1 + λt

t− λ

dΣ(t)

t2 + 1
=

∫ b

a

|t|+ 1

t− λ

dΣ(t)

|t|+ 1
−
∫ b

a

|t|+ 1

t2 + 1

dΣ(t)

|t|+ 1
,

and now all integrals have strong limits as [a, b]→ R by Proposition A.3.7. Hence,
one obtains from (A.4.1) with β = 0 that

F (λ) = α+

∫
R

1 + λt

t− λ

dΣ(t)

t2 + 1
= α+

∫
R

dΣ(t)

t− λ
−
∫
R

t

t2 + 1
dΣ(t).

Observe that ∫
R

t

t2 + 1
dΣ(t) =

∫
R

t(|t|+ 1)

t2 + 1

dΣ(t)

|t|+ 1

is a self-adjoint operator in B(G). Hence, with γ defined by

γ = α−
∫
R

t

t2 + 1
dΣ(t)

one sees that γ ∈ B(G) is self-adjoint and the assertion (i) follows.
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Finally, observe that by means of (A.3.26) one has

lim
y→∞(F (iy)− γ)ϕ = lim

y→∞

(∫
R

1

t− iy
dΣ(t)

)
ϕ = 0

for all ϕ ∈ G. This gives the last assertion. �

A subclass of the Kac functions in Theorem A.5.2 concerns the case with
bounded “measures”.

Proposition A.5.3. Let G be a Hilbert space and let F : C \ R → B(G) be an
operator function. Then the following statements are equivalent:

(i) F has an integral representation of the form

F (λ) = γ +

∫
R

1

t− λ
dΣ(t), λ ∈ C \ R,

with a self-adjoint operator γ ∈ B(G) and a nondecreasing self-adjoint oper-
ator function Σ : R→ B(G) such that

∫
R dΣ(t) ∈ B(G).

(ii) F is a Kac function satisfying (A.5.2).

If either of these equivalent conditions is satisfied, then γ = limy→∞ F (iy) in the
strong sense, and furthermore, for all ϕ ∈ G∫

R
d(Σ(t)ϕ,ϕ) = sup

y>0
y(ImF (iy)ϕ,ϕ) <∞. (A.5.7)

Proof. (i)⇒ (ii) It follows from Theorem A.5.2 that F is a Kac function. Moreover,

sup
y>0

y
(
ImF (iy)ϕ,ϕ

)
= sup

y>0

∫
R

y2

t2 + y2
d(Σ(t)ϕ,ϕ)

=

∫
R
d(Σ(t)ϕ,ϕ)− inf

y>0

∫
R

t2

t2 + y2
d(Σ(t)ϕ,ϕ)

=

∫
R
d(Σ(t)ϕ,ϕ),

(A.5.8)

which shows that the condition (A.5.2) is satisfied.

(ii)⇒ (i) Since F is a Kac function, the integral representation follows from Theo-
rem A.5.2 with a nondecreasing self-adjoint operator function Σ : R→ B(G) which
satisfies the integrability condition (A.5.4). Now it follows from the assumption
(A.5.2) and (A.5.8) that

∫
R dΣ(t) ∈ B(G).

Moreover, the identity γ = limy→∞ F (iy) in the strong sense is clear from
Theorem A.5.2 and (A.5.7) was shown in (A.5.8). �
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The previous proposition has an interesting consequence for a further sub-
class of the Kac functions which satisfy (A.5.2). The following result is connected
with the characterization of generalized resolvents; see Chapter 4, where also
the Sz.-Nagy dilation theorem is treated. Note that the conditions γ = γ∗ and∫
R dΣ(t) ∈ B(G) in Proposition A.5.3 are now specialized to the conditions γ = 0
and ‖ ∫R dΣ(t)‖ ≤ 1.

Proposition A.5.4. Let G be a Hilbert space and let F : C \ R → B(G) be an
operator function. Then the following statements are equivalent:

(i) F has an integral representation of the form

F (λ) =

∫
R

1

t− λ
dΣ(t), λ ∈ C \ R,

with a nondecreasing self-adjoint operator function Σ : R → B(G) such that∫
R dΣ(t) ∈ B(G) and ‖ ∫R dΣ(t)‖ ≤ 1.

(ii) F is a Nevanlinna function which satisfies

ImF (λ)

Imλ
− F (λ)∗F (λ) ≥ 0, λ ∈ C \ R.

Proof. (i) ⇒ (ii) It is clear from Proposition A.5.3 that F is a Kac function and
hence a Nevanlinna function. Moreover, for all λ ∈ C \ R one has

(ImF (λ)ϕ,ϕ)

Imλ
=

∫
R

1

|t− λ|2 d(Σ(t)ϕ,ϕ), ϕ ∈ G.

Since ‖Θ(+∞)−Θ(−∞)‖ ≤ 1, it follows from Proposition A.3.4 that

(F (λ)∗F (λ)ϕ,ϕ) = ‖F (λ)ϕ‖2 =

∥∥∥∥(∫
R

1

t− λ
dΣ(t)

)
ϕ

∥∥∥∥2
≤
∫
R

1

|t− λ|2 d(Σ(t)ϕ,ϕ), ϕ ∈ G,

which gives the desired result.

(ii) ⇒ (i) Let F be a Nevanlinna function which satisfies

|Imλ| ‖F (λ)ϕ‖2 ≤ |Im (F (λ)ϕ,ϕ)|, ϕ ∈ G, λ ∈ C \ R.

Then
|Imλ| ‖F (λ)ϕ‖ ≤ ‖ϕ‖, ϕ ∈ G, λ ∈ C \ R,

which leads to

|Imλ| |(F (λ)ϕ,ϕ)| ≤ ‖ϕ‖2, ϕ ∈ G, λ ∈ C \ R.
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In particular, one has

|Imλ| |Im (F (λ)ϕ,ϕ)| ≤ ‖ϕ‖2, ϕ ∈ G, λ ∈ C \ R, (A.5.9)

and
|Imλ| |Re (F (λ)ϕ,ϕ)| ≤ ‖ϕ‖2, ϕ ∈ G, λ ∈ C \ R. (A.5.10)

The inequality (A.5.9) and Proposition A.5.3 imply that F admits the integral
representation

F (λ) = γ +

∫
R

1

t− λ
dΣ(t), λ ∈ C \ R,

with
∫
R dΣ(t) ∈ B(G), and hence

∫
R d(Σ(t)ϕ,ϕ) < ∞. Moreover, it follows from

(A.5.9) and (A.5.7) that∫
R
d(Σ(t)ϕ,ϕ) = sup

y>0
y
(
ImF (iy)ϕ,ϕ

) ≤ ‖ϕ‖2.
Hence, one sees that ‖ ∫R dΣ(t)‖ ≤ 1. Finally, note that

Re (F (iy)ϕ,ϕ) = (γϕ, ϕ) +

∫
R

t

t2 + y2
d(Σ(t)ϕ,ϕ), y > 0.

Now (A.5.10) and the dominated convergence theorem show that γ = 0. �

A.6 Stieltjes and inverse Stieltjes functions

Let F be a B(G)-valued Nevanlinna function F with the integral representation
(A.4.1) as in Theorem A.4.2. Recall from Proposition A.4.5 that F is holomorphic
on C \ [c,∞) if and only if the function t �→ Σ(t)ϕ is constant on (−∞, c) for all
ϕ ∈ G, and in this case one has the integral representation

F (λ) = α+ λβ +

∫
[c,∞)

(
1

t− λ
− t

t2 + 1

)
dΣ(t), (A.6.1)

where the integral converges in the strong topology for all λ ∈ C \ [c,∞); cf.
(A.3.28). Note that (A.6.1) implies

βϕ = lim
x ↓−∞

F (x)

x
ϕ, ϕ ∈ G. (A.6.2)

This identity can be verified in the same way as in the proof of Lemma A.2.6
using (A.3.26); cf. Lemma A.4.3. Moreover, x �→ F (x) is a B(G)-valued operator
function on (−∞, c) with self-adjoint operators as values and one has

F (x1) ≤ F (x2), x1 < x2 < c, (A.6.3)

by Proposition A.4.5. In the present section this class of Nevanlinna functions
F will now be further specified by requiring, in addition to holomorphy of F on
C \ [c,∞), a sign condition for the values F (x) for x ∈ (−∞, c).
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Definition A.6.1. Let G be a Hilbert space and let c ∈ R be fixed. A Nevanlinna
function F : C\ [c,∞)→ B(G) is said to belong to the class SG(−∞, c) of Stieltjes
functions if

(i) F is holomorphic on C \ [c,∞);

(ii) F (x) ≥ 0 for all x < c.

Similarly, a Nevanlinna function F : C \ [c,∞) → B(G) is said to belong to the
class S−1

G (−∞, c) of inverse Stieltjes functions if

(i) F is holomorphic on C \ [c,∞);

(ii) F (x) ≤ 0 for all x < c.

Thus, if F ∈ SG(−∞, c), then x �→ F (x) is an operator function on (−∞, c)
and

0 ≤ F (x1) ≤ F (x2), x1 < x2 < c.

In particular, limx↓−∞ F (x) exists in the strong sense and defines a nonnegative
self-adjoint operator in B(G); cf. Lemma A.3.1. There is also a limit as x ↑ c
in the sense of relations, see for details Chapter 5. Similarly, one sees that if
F ∈ S−1

G (−∞, c), then x �→ F (x) is an operator function on (−∞, c) and

F (x1) ≤ F (x2) ≤ 0, x1 < x2 < c.

In particular, limx↑c F (x) exists in the strong sense and defines a nonnegative self-
adjoint operator in B(G); cf. Lemma A.3.1. There is also a limit as x ↓ −∞ in the
sense of relations, see for details Chapter 5.

The characterization of Nevanlinna functions in Theorem A.4.2 can be spe-
cialized for Stieltjes functions and, in fact, the following result also shows that the
Stieltjes functions form a subclass of the Kac functions; cf. Theorem A.5.2.

Theorem A.6.2. Let G be a Hilbert space, let F : C \ R → B(G) be an operator
function, and let c ∈ R. Then the following statements are equivalent:

(i) F has an integral representation of the form

F (λ) = γ +

∫
[c,∞)

1

t− λ
dΣ(t), λ ∈ C \ [c,∞), (A.6.4)

with a nonnegative self-adjoint operator γ ∈ B(G), a nondecreasing self-
adjoint operator function Σ : R → B(G) such that t �→ Σ(t)ϕ, ϕ ∈ G, is
constant on (−∞, c), and∫

[c,∞)

d(Σ(t)ϕ,ϕ)

|t|+ 1
<∞, ϕ ∈ G, (A.6.5)

where the integral in the representation (A.6.4) is interpreted in the weak
topology for all λ ∈ C \ [c,∞).

(ii) F is a Stieltjes function in SG(−∞, c).



670 Appendix A. Integral Representations of Nevanlinna Functions

Proof. (i) ⇒ (ii) Assume that the function F has the integral representation
(A.6.4) with γ ∈ B(G) and Σ : R → B(G) as above, such that (A.6.5) holds.
The condition (A.6.5) ensures that the integral in (A.6.4) is well defined in the
weak sense. From the integral representation (A.6.4) one sees that F is holomor-
phic on C \ [c,∞),

(ImF (λ)ϕ,ϕ)

Imλ
=

∫
[c,∞)

1

|t− λ|2 d(Σ(t)ϕ,ϕ) ≥ 0, λ ∈ C \ R, ϕ ∈ G,

and F (λ)∗ = F (λ) for λ ∈ C \ R. Hence, F is a B(G)-valued Nevanlinna function.
Moreover, γ ≥ 0 and

(F (x)ϕ,ϕ) = (γϕ, ϕ) +

∫
[c,∞)

1

t− x
d(Σ(t)ϕ,ϕ), x ∈ (−∞, c), ϕ ∈ G,

imply F (x) ≥ 0 for all x < c. Thus, F ∈ SG(−∞, c).

(ii) ⇒ (i) Assume that F is a Nevanlinna function in SG(−∞, c). Then F has the
integral representation (A.6.1), the operators F (x) defined for −∞ < x < c satisfy
(A.6.3), and they are all nonnegative. Hence, the limit

γ = lim
x ↓−∞

F (x) ∈ B(G) (A.6.6)

exists in the strong sense and one has γ ≥ 0 by Lemma A.3.1. Note that (A.6.2)
implies β = 0 in (A.6.1). Therefore, (A.6.1) implies that for all x < c:

−
∫
[c,∞)

1 + tx

t− x

d(Σ(t)ϕ,ϕ)

t2 + 1
≤ (αϕ,ϕ), ϕ ∈ G.

Letting x ↓ −∞ and using the monotone convergence theorem one obtains∫
[c,∞)

t

t2 + 1
d(Σ(t)ϕ,ϕ) ≤ (αϕ,ϕ), ϕ ∈ G. (A.6.7)

Since
d(Σ(t)ϕ,ϕ)

|t|+ 1
=

t2 + 1

t(|t|+ 1)

t

t2 + 1
d(Σ(t)ϕ,ϕ)

for large t, one concludes from (A.6.7) that (A.6.5) holds. Moreover, one obtains
from (A.6.6) and (A.6.1) that

γ = α−
∫
[c,∞)

t

t2 + 1
dΣ(t).

Thus, one may rewrite the integral representation (A.6.1) in the form (A.6.4). �
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The inverse Stieltjes functions can also be characterized by integral represen-
tations. Here is the analog of Theorem A.6.2.

Theorem A.6.3. Let G be a Hilbert space, let F : C \ R → B(G) be an operator
function, and let c ∈ R. Then the following statements are equivalent:

(i) F has an integral representation of the form

F (λ) = L+β(λ−c)+
∫
[c,∞)

(
1

t− λ
− 1

t− c

)
dΣ(t), λ ∈ C\[c,∞), (A.6.8)

with L, β ∈ B(G), L ≤ 0, β ≥ 0, a nondecreasing self-adjoint operator func-
tion Σ : R → B(G) such that t �→ Σ(t)ϕ, ϕ ∈ G, is constant on (−∞, c),
and ∫

[c,∞)

d(Σ(t)ϕ,ϕ)

(t− c)(|t|+ 1)
<∞, ϕ ∈ G, (A.6.9)

where the integral in the representation (A.6.8) is interpreted in the weak
topology for all λ ∈ C \ [c,∞).

(ii) F is an inverse Stieltjes function in S−1
G (−∞, c).

Proof. (i) ⇒ (ii) Assume that the function F has the integral representation
(A.6.8) with L, β ∈ B(G) and Σ : R → B(G) as above such that the condition
(A.6.9) holds. First observe that∫

[c,∞)

(
1

t− λ
− 1

t− c

)
d(Σ(t)ϕ,ϕ) =

∫
[c,∞)

(λ− c)(|t|+ 1)

t− λ

d(Σ(t)ϕ,ϕ)

(t− c)(|t|+ 1)

for ϕ ∈ G, and hence condition (A.6.9) ensures that the integral in (A.6.8) con-
verges in the weak topology for all λ ∈ C \ [c,∞). It also follows from (A.6.8) that
F is holomorphic on C \ [c,∞),

(ImF (λ)ϕ,ϕ)

Imλ
= (βϕ, ϕ) +

∫
[c,∞)

1

|t− λ|2 d(Σ(t)ϕ,ϕ) ≥ 0

for λ ∈ C \ R and ϕ ∈ G, and F (λ)∗ = F (λ) for Imλ 	= 0. This shows that F
is a B(G)-valued Nevanlinna function. Now if x < c, then β(x − c) ≤ 0 and the
integrand in (A.6.8) is nonpositive. Since also L ≤ 0, one concludes that F (x) ≤ 0
for all x < c. Thus, F ∈ S−1

G (−∞, c).

(ii) ⇒ (i) Assume that the function F is a Nevanlinna function in S−1
G (−∞, c).

Then F has the integral representation (A.6.1) and the operators F (x) defined for
−∞ < x < c satisfy (A.6.3) and they are all nonpositive. Hence, the limit

L = lim
x ↑ c

F (x) ∈ B(G)
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exists in the strong sense and one has L ≤ 0 by Lemma A.3.1. Furthermore, for
ϕ ∈ G and −∞ < x < c one has

(F (x)ϕ,ϕ) = (αϕ,ϕ) + x(βϕ, ϕ) +

∫
[c,∞)

(
1

t− x
− t

t2 + 1

)
d(Σ(t)ϕ,ϕ),

so that for x ↑ c the monotone convergence theorem gives

(Lϕ,ϕ) = (αϕ,ϕ) + c(βϕ, ϕ) +

∫
[c,∞)

(
1

t− c
− t

t2 + 1

)
d(Σ(t)ϕ,ϕ). (A.6.10)

In particular, the integral on the right-hand side of (A.6.10) exists for all ϕ ∈ G.
From

d(Σ(t)ϕ,ϕ)

(t− c)(|t|+ 1)
=

t2 + 1

(1 + tc)(|t|+ 1)

(
1

t− c
− t

t2 + 1

)
d(Σ(t)ϕ,ϕ)

one then concludes that (A.6.9) holds. Using (A.6.10) the integral representation
(A.6.1) can be rewritten as

(F (λ)ϕ,ϕ) = (Lϕ,ϕ) + (λ− c)(βϕ, ϕ) +

∫
[c,∞)

(
1

t− λ
− 1

t− c

)
d(Σ(t)ϕ,ϕ)

for λ ∈ C \ [c,∞) and ϕ ∈ G. This proves (A.6.8). �

Remark A.6.4. The integral representations in (A.6.4) and (A.6.8) are understood
in the weak sense. Using Proposition A.3.7 one can verify that the integral repre-
sentation for Stieltjes functions in (A.6.4) remains valid in the strong sense and
that the integrability condition (A.6.5) can be replaced by the condition∫

[c,∞)

dΣ(t)

|t|+ 1
∈ B(G),

where the integral exists in the strong sense. Within the theory of operator-valued
integrals developed in Section A.3, the integral representation (A.6.8) for inverse
Stieltjes functions and the integrability condition (A.6.9) cannot be interpreted
directly in the strong sense.

Let F be a Nevanlinna function and let c ∈ R. Define the functions Fc and
F−
c by

Fc(λ) = (λ− c)F (λ), λ ∈ C \ R,
and

F−
c (λ) = (λ− c)−1F (λ), λ ∈ C \ R.

The class of Nevanlinna functions is not stable under either of the mappings

F �→ Fc or F �→ F−
c .

In fact, the next results show that the set of Nevanlinna functions that is stable
under these mappings coincides with SG(−∞, c) or S−1

G (−∞, c), respectively.
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Proposition A.6.5. Let G be a Hilbert space, let F be a B(G)-valued Nevanlinna
function F , and let c ∈ R. Then the following statements are equivalent:

(i) F belongs to the class SG(−∞, c);

(ii) Fc is a Nevanlinna function.

In fact, if F ∈ SG(−∞, c), then Fc ∈ S−1
G (−∞, c).

Proof. (i) ⇒ (ii) Assume that F belongs to the class SG(−∞, c). Then, by The-
orem A.6.2, the function F has the integral representation (A.6.4) interpreted in
the weak sense. This implies that Fc has the representation

Fc(λ) = γ(λ− c) +

∫
[c,∞)

λ− c

t− λ
dΣ(t), λ ∈ C \ [c,∞), (A.6.11)

in the weak sense. It follows that Fc is holomorphic on C \ [c,∞),

(ImFc(λ)ϕ,ϕ)

Imλ
= (γϕ, ϕ) +

∫
[c,∞)

t− c

|t− λ|2 d(Σ(t)ϕ,ϕ) ≥ 0

for λ ∈ C \ R and ϕ ∈ G, and Fc(λ)
∗ = Fc(λ) for λ ∈ C \ R. Therefore, Fc is a

B(G)-valued Nevanlinna function. It is also clear from (A.6.11) that Fc(x) ≤ 0 for
x < c, and hence Fc ∈ S−1

G (−∞, c).

(ii) ⇒ (i) Assume that with F also Fc is a Nevanlinna function. Let ϕ ∈ G and
express the scalar Nevanlinna function fϕ(λ) = (F (λ)ϕ,ϕ) with its integral rep-
resentation

fϕ(λ) = αϕ + βϕλ+

∫
R

(
1

t− λ
− t

t2 + 1

)
dσϕ(t), λ ∈ C \ R,

in Theorem A.2.5. The function g(λ) = λ − c, c ∈ R, is entire and real on R.
According to the Stieltjes inversion formula in Lemma A.2.7, for any compact
subinterval [a, b] ⊂ (−∞, c) one obtains

lim
ε ↓ 0

1

2πi

∫ b

a

[
(gfϕ)(s+ iε)− (gfϕ)(s− iε)

]
ds

=
1

2

∫
{a}

(t− c) dσϕ(t) +

∫ b−

a+

(t− c) dσϕ(t) +
1

2

∫
{b}

(t− c) dσϕ(t).

(A.6.12)

Since the function g(λ)fϕ(λ) = (Fc(λ)ϕ,ϕ) is also a Nevanlinna function, the limit
in (A.6.12) is nonnegative. However, since t− c < 0 for all t ∈ [a, b] one concludes
that the right-hand side in (A.6.12) is nonpositive and consequently σ(t) must
take a constant value on the whole interval [a, b]. Proposition A.2.9 implies that
fϕ is holomorphic on C \ [c,∞) for all ϕ ∈ G. This shows that F is holomorphic
on C \ [c,∞).
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Finally, to see that F takes nonnegative values on the interval (−∞, c)
Proposition A.2.9 will be applied. Again consider the two functions fϕ(λ) and
(λ − c)fϕ(λ). Both of them are differentiable and nondecreasing on the interval
(−∞, c). In particular, for all x < c one has f ′

ϕ(x) ≥ 0 and

fϕ(x) + (x− c)f ′
ϕ(x) =

d

dx
((x− c)fϕ(x)) ≥ 0.

Since x < c, this implies that

fϕ(x) ≥ (c− x)f ′
ϕ(x) ≥ 0,

and hence (F (x)ϕ,ϕ) ≥ 0 for all ϕ ∈ G. Therefore, F (x) ≥ 0 for all x < c and the
claim F ∈ SG(−∞, c) is proved. �

The next proposition is a variant of Proposition A.6.5 for inverse Stieltjes
functions.

Proposition A.6.6. Let G be a Hilbert space, let F be a B(G)-valued Nevanlinna
function F , and let c ∈ R. Then the following statements are equivalent:

(i) F belongs to the class S−1
G (−∞, c);

(ii) F−
c is a Nevanlinna function.

In fact, if F ∈ S−1
G (−∞, c), then F−

c ∈ SG(−∞, c).

Proof. (i) ⇒ (ii) Assume that F belongs to the class S−1
G (−∞, c). Then, by The-

orem A.6.3, the function F has the integral representation (A.6.8) interpreted in
the weak sense. This implies that F−

c has the representation

F−
c (λ) =

−L
c− λ

+ β +

∫
(c,∞)

dΣ(t)

(t− c)(t− λ)
, λ ∈ C \ [c,∞), (A.6.13)

in the weak sense. It follows that F−
c is holomorphic on C \ [c,∞),

(ImF−
c (λ)ϕ,ϕ)

Imλ
=

(−Lϕ,ϕ)
|c− λ|2 +

∫
[c,∞)

1

(t− c)|t− λ|2 d(Σ(t)ϕ,ϕ) ≥ 0

for λ ∈ C \ R and ϕ ∈ G, and F−
c (λ)∗ = F−

c (λ) for λ ∈ C \ R. Therefore, F−
c is

a B(G)-valued Nevanlinna function. It is also clear from (A.6.13) that F−
c (x) ≥ 0

for x < c, and hence F−
c ∈ SG(−∞, c).

(ii) ⇒ (i) Assume that with F also F−
c is a Nevanlinna function. Let ϕ ∈ G and

express the scalar Nevanlinna function fϕ(λ) = (F (λ)ϕ,ϕ) with its integral rep-
resentation in Theorem A.2.5. Since the function g(λ) = (λ− c)−1 is holomorphic
when λ 	= c and real on R \ {c}, the same argument as in the proof of Theo-
rem A.6.5 shows that fϕ is holomorphic on C \ [c,∞) for all ϕ ∈ G, and hence F
is holomorphic on C \ [c,∞).
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To see that F takes nonnegative values on the interval (−∞, c) one applies
Proposition A.2.9. Consider the functions fϕ(λ) and (λ−c)−1fϕ(λ). Both of them
are differentiable and nondecreasing on the interval (−∞, c). In particular, for all
x < c one has f ′

ϕ(x) ≥ 0 and

f ′
ϕ(x)

x− c
− fϕ(x)

(x− c)2
=

d

dx

(
(x− c)−1fϕ(x)

) ≥ 0.

Since x < c, this implies that

fϕ(x) ≤ (x− c)f ′
ϕ(x) ≤ 0

and hence (F (x)ϕ,ϕ) ≤ 0 for all ϕ ∈ G. Therefore, F (x) ≤ 0 for all x < c and the
claim F ∈ S−1

G (−∞, c) is proved. �

The classes of Stieltjes functions and inverse Stieltjes functions are also con-
nected to each other by inversion. For an operator-valued Nevanlinna function F
with values in B(G) the values of the inverse −F−1 need not be bounded operators.
For simplicity, it is assumed here that the relevant functions are uniformly strict,
see Definition A.4.7. Recall that if F is a uniformly strict B(G)-valued Nevanlinna
function, then so is the function −F−1; cf. Lemma A.4.8.

Proposition A.6.7. Let G be a Hilbert space, let F be a B(G)-valued Nevanlinna
function, and assume that F is uniformly strict. Then the following statements
hold:

(i) if F ∈ SG(−∞, c), then −F−1 ∈ S−1
G (−∞, c);

(ii) if F ∈ S−1
G (−∞, c), then −F−1 ∈ SG(−∞, c).

Proof. (i) Let F ∈ SG(−∞, c) and note first that in the integral representation
(A.6.1) one has β = 0, as follows from (A.6.2); cf. the proof of Theorem A.6.2.
Hence, one concludes from (A.6.1) that

ImF (i) =

∫
[c,∞)

dΣ(t)

t2 + 1
,

which by assumption is a nonnegative boundedly invertible operator. Recall that
F has the integral representation (A.6.4) with the same Σ as in (A.6.1). It is
straightforward to see that for every x < c there exists a constant Cx > 0 such
that

t− x

t2 + 1
≤ Cx for all t ≥ c.

Thus, one concludes that

(F (x)ϕ,ϕ) = (γϕ, ϕ) +

∫
[c,∞)

1

t− x
d(Σ(t)ϕ,ϕ)

≥ (γϕ, ϕ) +
1

Cx

∫
[c,∞)

d(Σ(t)ϕ,ϕ)

t2 + 1
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for all ϕ ∈ G. It follows that (F (x)ϕ,ϕ) ≥ δx‖ϕ‖2, ϕ ∈ G, for some δx > 0.
Therefore, F (x)−1 ∈ B(G) for all x < c. Thus, the function −F−1 is holomorphic
in the region C\ [c,∞). Since F (x) ≥ 0, it is clear that −F−1(x) ≤ 0 for all x < c.
Therefore, −F−1 ∈ S−1

G (−∞, c).

(ii) Let F ∈ S−1
G (−∞, c). Then it follows from Theorem A.6.3 that for all x < c

F (x) = L+ (x− c)

(
β +

∫
[c,∞)

dΣ(t)

(t− x)(t− c)

)
≤ 0, (A.6.14)

where the integral is interpreted in the weak sense. Since F is uniformly strict,
Proposition A.4.6 asserts that for all x < c

F ′(x) = β +

∫
[c,∞)

dΣ(t)

(t− x)2

is a nonnegative boundedly invertible operator. It follows that

(βϕ, ϕ) +

∫
[c,∞)

d(Σ(t)ϕ,ϕ)

(t− x)(t− c)
≥ (βϕ, ϕ) +

∫
[c,∞)

d(Σ(t)ϕ,ϕ)

(t− x)2
≥ δx‖ϕ‖2

for all ϕ ∈ G and for some δx > 0, x < c. This implies that F (x) in (A.6.14)
has a bounded inverse for every x < c. Thus, −F−1 is holomorphic in the region
C \ [c,∞). Since F (x) ≤ 0, it is clear that 0 ≤ −F (x)−1 for all x < c. Therefore,
−F−1 ∈ SG(−∞, c). �



Appendix B

Self-adjoint Operators and
Fourier Transforms

Let A be a self-adjoint operator in the Hilbert space H and let E(·) be the cor-
responding spectral measure. The operator A will be diagonalized by means of
a self-adjoint operator Q in a Hilbert space L2

dρ(R), where ρ is a nondecreasing
function on R. Here Q stands for multiplication by the independent variable in
L2
dρ(R). By means of the spectral measure one constructs an integral transform F

which maps H unitarily onto L2
dρ(R) such that A = F∗QF. This transform shares

the diagonalization property with the classical Fourier transform and hence, for
convenience, it will be referred to as Fourier transform in the following. There are
two cases of interest in the present text.

The first (scalar) case is where H = L2
r(a, b) and r is a locally integrable

function that is positive almost everywhere, and where A is a self-adjoint operator
in H with spectral measure E(·). The Fourier transform is initially defined on the
compactly supported scalar functions in L2

r(a, b) by

f̂(x) =

∫ b

a

ω(t, x)f(t) r(t) dt,

where (t, x) �→ ω(t, x) is a continuous real function defined on the square (a, b)×R.
The spectral measure of A and the Fourier transform are assumed to be connected
by

(E(δ)f, f) =

∫
δ

f̂(x)f̂(x) dρ(x), δ ⊂ R, (B.0.1)

for all f ∈ L2
r(a, b) with compact support. Due to this condition the Fourier

transform can be extended to an isometry on all of L2
r(a, b). Under an additional

assumption on ω it is shown that the Fourier transform is a unitary map.

The second (vector) case is where H = L2
Δ(a, b) and Δ is a nonnegative 2× 2

matrix function with locally integrable coefficients and where A is a self-adjoint

© The Editor(s) (if applicable) and The Author(s) 2020
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relation. Then Aop is a self-adjoint operator in H�mulA with the spectral measure
E(·). The Fourier transform is initially defined on the compactly supported 2 × 1
vector functions in L2

Δ(a, b) by

f̂(x) =

∫ b

a

ω(t, x)Δ(t)f(t) dt,

where (t, x) �→ ω(t, x) is a continuous 1× 2 matrix function defined on the square
(a, b) × R. The spectral measure and the Fourier transform are assumed to be
connected by (B.0.1) for all f ∈ L2

Δ(a, b) with compact support. Due to this
condition, the Fourier transform can be extended to a partial isometry on all
of L2

Δ(a, b). Under an additional assumption on ω it is shown that the Fourier
transform is onto.

For the scalar case the theory will be developed in detail; the results in the
vector case will be only briefly explained, as the details are very much the same.

B.1 The scalar case

Let (a, b) be an open interval and let r be a locally integrable function that is
positive almost everywhere. Let A be a self-adjoint operator in the Hilbert space
L2
r(a, b) and let E(·) be the spectral measure of A. The basic ingredient is a

continuous real function (t, x) �→ ω(t, x) on (a, b)×R. Hence, the Fourier transform
f̂ of a compactly supported function f ∈ L2

r(a, b) defined by

f̂(x) =

∫ b

a

ω(t, x)f(t)r(t) dt, x ∈ R, (B.1.1)

is a well-defined complex function which is continuous on R. The main assumption
is that there exists a nondecreasing function ρ on R such the identity

(E(δ)f, g) =

∫
δ

f̂(x)ĝ(x) dρ(x), δ ⊂ R, (B.1.2)

holds for all f, g ∈ L2
r(a, b) with compact support and all bounded open intervals

δ ⊂ R, whose endpoints are not eigenvalues of A. Since the eigenvalues of A are dis-
crete, an approximation argument and the dominated convergence theorem show
that the identity (B.1.2) is in fact true for all f, g ∈ L2

r(a, b) with compact support
and all bounded open intervals δ ⊂ R, regardless of whether their endpoints being
eigenvalues or not.

It follows from the assumption (B.1.2) that for every function f ∈ L2
r(a, b)

with compact support the continuous function f̂ belongs to L2
dρ(R). In fact, the

following result is valid.
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Lemma B.1.1. The Fourier transform f → f̂ in (B.1.1) extends by continuity from
the compactly supported functions in L2

r(a, b) to an isometric mapping

F : L2
r(a, b)→ L2

dρ(R)

such that for all f ∈ L2
r(a, b)

lim
α→a,β→b

∫
R

∣∣∣∣ (Ff)(x)− ∫ β

α

ω(t, x)f(t)r(t) dt

∣∣∣∣2 dρ(x) = 0. (B.1.3)

The Fourier transform and the spectral measure E(·) are related via

(E(δ)f, g) =

∫
δ

(Ff)(x)(Fg)(x) dρ(x) (B.1.4)

for all f, g ∈ L2
r(a, b), where δ ⊂ R is any bounded open interval.

Proof. Step 1. The mapping f �→ f̂ is a contraction on the functions in L2
r(a, b)

that have compact support. To see this, let f ∈ L2
r(a, b) have compact support.

Then it follows from the assumption (B.1.2) that∫
δ

f̂(x)f̂(x) dρ(x) = (E(δ)f, f) ≤ (f, f),

where δ is an arbitrary bounded open interval. The monotone convergence theorem
shows that f̂ belongs to L2

dρ(R) and

(f̂ , f̂)ρ ≤ (f, f),

when f ∈ L2
r(a, b) has compact support.

Step 2. The mapping f �→ f̂ , defined on the functions in L2
r(a, b) that have compact

support, can be extended as a contraction to all of L2
r(a, b). For this, let f ∈ L2

r(a, b)
and approximate f in L2

r(a, b) by functions fn ∈ L2
r(a, b) with compact support.

Then fn − fm is a Cauchy sequence in L2
r(a, b) and since

‖f̂n − f̂m‖ρ ≤ ‖fn − fm‖,

there is an element ϕ ∈ L2
dρ(R) such that f̂n → ϕ in L2

dρ(R). It follows from

‖f̂n‖ρ ≤ ‖fn‖ that, in fact,
‖ϕ‖ρ ≤ ‖f‖.

In particular, the mapping f �→ ϕ from L2
r(a, b) to L2

dρ(R) is a contraction. Hence,

the operator F given by Ff = ϕ is well defined and takes L2
r(a, b) contractively

to L2
dρ(R). The assertion in (B.1.3) is clear by multiplying f ∈ L2

r(a, b) with
appropriately chosen characteristic functions.
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Step 3. The operator F is an isometry. To see this, let f, g ∈ L2
r(a, b) and ap-

proximate them by compactly supported functions fn, gn ∈ L2
r(a, b). Then by the

assumption (B.1.2) one obtains

(E(δ)fn, gn) =

∫
δ

(Ffn)(x)(Fgn)(x) dρ(x). (B.1.5)

Taking limits in (B.1.5) yields (B.1.4). It follows from (B.1.4) and the dominated
convergence theorem that

(f, g) =

∫
δ

(Ff)(x)(Fg)(x) dρ(x)

holds for all functions f, g ∈ L2
r(a, b). Therefore, F is an isometry. �

The following simple observation is a direct consequence of Lemma B.1.1.

Corollary B.1.2. For any bounded open interval δ ⊂ R one has

F(E(δ)f) = χδ Ff, f ∈ L2
r(a, b).

Proof. It follows from (B.1.4) that

(E(δ)f, g) =

∫
δ

(Ff)(x)(Fg)(x)dρ(x) = (χδFf,Fg)ρ

for all f, g ∈ L2
r(a, b). Consequently,

‖E(δ)f − g‖2 = (E(δ)f − g,E(δ)f − g)

= (E(δ)f, f)− (E(δ)f, g)− (g,E(δ)f) + (g, g)

= (χδFf,Ff)ρ − (χδFf,Fg)ρ

− (Fg, χδFf)ρ + (Fg,Fg)ρ

= ‖χδFf − Fg‖2ρ.

Setting g = E(δ)f , the desired result follows. �

Let δ ⊂ R be a bounded open interval. The identity (B.1.4) is now written
in the equivalent form∫

R
χδ(t)d(E(t)f, g) =

∫
R
χδ(x)(Ff)(x)(Fg)(x) dρ(x)

for all f, g ∈ L2
r(a, b). Let Ξ be a bounded Borel measurable function on R. An

approximation argument involving characteristic functions shows that then also∫
R
Ξ(t)d(E(t)f, g) =

∫
R
Ξ(x)(Ff)(x)(Fg)(x) dρ(x) (B.1.6)
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for all f, g ∈ L2
r(a, b). As a particular case of (B.1.6) one has

(
(A− λ)−1f, g

)
=

∫
R

Ff(x)Fg(x)

x− λ
dρ(x) (B.1.7)

for f, g ∈ L2
r(a, b) and λ ∈ ρ(A). Moreover, if g ∈ L2

r(a, b) has compact support
one obtains∫ b

a

(
(A− λ)−1f

)
(t)g(t) r(t) dt =

∫
R

Ff(x)

x− λ

(∫ b

a

ω(t, x)g(t) r(t) dt

)
dρ(x)

=

∫ b

a

(∫
R

Ff(x)

x− λ
ω(t, x) dρ(x)

)
g(t) r(t) dt.

The Fubini theorem now implies that

(
(A− λ)−1f

)
(t) =

∫
R

ω(t, x)

x− λ
Ff(x) dρ(x) (B.1.8)

for almost all t ∈ (a, b) and, in particular, the integrand on the right-hand side is
integrable for almost all t ∈ (a, b).

Parallel to the Fourier transform one may also introduce a reverse Fourier
transform acting on the space L2

dρ(R). Let ϕ ∈ L2
dρ(R) have compact support and

define the reverse Fourier transform ϕ̆ by

ϕ̆(t) =

∫
R
ω(t, x)ϕ(x) dρ(x), t ∈ (a, b). (B.1.9)

Then ϕ̆ is a well-defined function which is continuous on (a, b). By means of
Lemma B.1.1 one can now prove the following result.

Lemma B.1.3. The reverse Fourier transform ϕ→ ϕ̆ in (B.1.9) extends by conti-
nuity from the compactly supported functions in L2

dρ(R) to a contractive mapping

G : L2
dρ(R)→ L2

r(a, b) such that for all ϕ ∈ L2
dρ(R)

lim
η→R

∫ b

a

∣∣∣∣Gϕ(t)− ∫
η

ω(t, x)ϕ(x) dρ(x)

∣∣∣∣2r(t)dt = 0. (B.1.10)

In fact, the extension G satisfies GFf = f for all f ∈ L2
r(a, b).

Proof. Step 1. The mapping ϕ �→ ϕ̆ takes the compactly supported functions
in L2

dρ(R) contractively into L2
r(a, b). To see this, let ϕ ∈ L2

dρ(R) have compact
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support and let [α, β] ⊂ (a, b) be a compact interval. Then∫ β

α

|ϕ̆(t)|2r(t) dt =
∫ β

α

ϕ̆(t)

(∫
R
ω(t, x)ϕ(x) dρ(x)

)
r(t) dt

=

∫
R

(∫ β

α

ω(t, x)ϕ̆(t)r(t) dt

)
ϕ(x) dρ(x)

=

∫
R
(F(χ[α,β]ϕ̆))(x)ϕ(x) dρ(x)

≤ ‖F(χ[α,β]ϕ̆)‖ρ‖ϕ‖ρ = ‖χ[α,β]ϕ̆‖‖ϕ‖ρ,

where Lemma B.1.1 was used in the last step. This estimate gives that for any
compact interval [α, β] ⊂ (a, b),√∫ β

α

|ϕ̆(t)|2r(t) dt ≤ ‖ϕ‖ρ.

By the monotone convergence theorem this leads to the inequality

‖ϕ̆‖ ≤ ‖ϕ‖ρ.

Hence, the mapping ϕ �→ ϕ̆ takes the compactly supported functions in L2
dρ(R)

contractively into L2
r(a, b).

Step 2. The mapping ϕ �→ ϕ̆ defined on the functions in L2
dρ(R) that have compact

support can be contractively extended to all of L2
dρ(R). For this, let ϕ ∈ L2

dρ(R)
and approximate ϕ in L2

dρ(R) by functions ϕn ∈ L2
dρ(R) with compact support.

Then ϕn − ϕm is a Cauchy sequence in L2
dρ(R) and since

‖ϕ̆n − ϕ̆m‖ ≤ ‖ϕn − ϕm‖ρ,

there is an element f ∈ L2
r(a, b) such that ϕ̆n → f in L2

r(a, b). It follows from
‖ϕ̆n‖ ≤ ‖ϕn‖ρ that, in fact,

‖f‖ ≤ ‖ϕ‖ρ.
In particular, the mapping ϕ �→ f from L2

dρ(R) to L2
r(a, b) is a contraction. Hence,

the operator G given by Gϕ = f is well defined and takes L2
dρ(R) contractively to

L2
r(a, b). The assertion in (B.1.10) is clear by multiplying ϕ ∈ L2

dρ(R) by appro-
priately chosen characteristic functions.

Step 3. The extended mapping G is a left inverse of the Fourier transform F. For
this, observe that

(f, g) =

∫
R
(Ff)(x)(Fg)(x) dρ(x)
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for all f, g ∈ L2
r(a, b), since F is isometric by Lemma B.1.1. Thus, by means of

the Fubini theorem one concludes that for f, g ∈ L2
r(a, b) and g having compact

support,

(f, g) = lim
η→R

∫
η

(Ff)(x)

(∫ b

a

ω(t, x)g(t)r(t)dt

)
dρ(x)

= lim
η→R

∫ b

a

(∫
η

ω(t, x)(Ff)(x) dρ(x)

)
g(t)r(t)dt

= (GFf, g),

where, in the last step, (B.1.10) and the continuity of the inner product have been
used. Since the functions with compact support are dense in L2

r(a, b), one obtains
GFf = f for all f ∈ L2

r(a, b). �

Recall that multiplication by the independent variable in the Hilbert space
L2
dρ(R) generates a self-adjoint operator Q whose resolvent is given by

(Q− λ)−1 =
1

x− λ
, λ ∈ C \ R.

Hence, by (B.1.7), one sees that(
(A− λ)−1f, g

)
=
(
(Q− λ)−1Ff,Fg

)
ρ
=
(
F∗(Q− λ)−1Ff, g

)
for all f, g ∈ L2

r(a, b), which leads to

(A− λ)−1 = F∗(Q− λ)−1F, λ ∈ C \ R. (B.1.11)

In general, here the Fourier transform F is an isometry, which is not necessarily
onto.

The above results have been proved under the assumption that ω is a con-
tinuous function on (a, b) × R which satisfies (B.1.2). For the following theorem
one needs the additional condition:

for each x0 ∈ R there exists a compactly
supported function f ∈ L2

r(a, b) such that (Ff)(x0) 	= 0.
(B.1.12)

In the present situation this condition is equivalent to the following:

for each x0 ∈ (a, b) there exists t0 ∈ R such that ω(t0, x0) 	= 0. (B.1.13)

Theorem B.1.4. Let ω be continuous on (a, b)×R and assume that (B.1.2) and one
of the equivalent conditions (B.1.12) or (B.1.13) are satisfied. Then the Fourier
transform

f �→ f̂ , f̂(x) =

∫ b

a

ω(t, x)f(t) r(t) dt, x ∈ R,
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extends by continuity from the compactly supported functions f ∈ L2
r(a, b) to a

unitary mapping F : L2
r(a, b) → L2

dρ(R). Moreover, the self-adjoint operator A in

L2
r(a, b) is unitarily equivalent to the multiplication operator Q by the independent

variable in L2
dρ(R) via the Fourier transform F:

A = F∗QF. (B.1.14)

Proof. It is clear from Lemma B.1.1 that F : L2
r(a, b) → L2

dρ(R) is isometric and
hence it remains to show for the first part of the theorem that F is surjective.

Assume that ψ ∈ L2
dρ(R), ψ 	= 0, is orthogonal to ranF. Note that

(ψ,Ff)ρ = 0 ⇒ (ψ,Ff)ρ = 0

and thus it follows that Reψ and Imψ are also orthogonal to ranF; hence it is no
restriction to assume that ψ ∈ L2

dρ(R) is real. Since ψ 	= 0, there exist an interval
I = [α, β] and a Borel set B ⊂ I with positive ρ-measure, such that ψ(x) > 0
(or ψ(x) < 0) for all x ∈ B. By the condition (B.1.12), there exists for each
x0 ∈ I a compactly supported function fx0

∈ L2
r(a, b) such that (Ffx0

)(x0) > 0.
Since Ffx0 is continuous, there exists an open interval Ix0 containing x0 such that
(Ffx0)(x) > 0 for all x ∈ Ix0 . As I is compact there exist finitely many points
x1, . . . , xn ∈ I such that

I ⊂
n⋃

i=1

Ixi .

Hence, B ∩ Ixj
has positive ρ-measure for some j ∈ {1, . . . , n} and therefore

(χB∩Ixj
ψ,Ffxj

)ρ =

∫
R
χB∩Ixj

(x)ψ(x)(Ffxj
)(x) dρ(x) 	= 0. (B.1.15)

On the other hand, since ψ⊥ ranF, Corollary B.1.2 implies that

(χδψ,Ff)ρ = (ψ, χδFf)ρ = (ψ,FE(δ)f)ρ = 0

for all f ∈ L2
r(a, b) and all bounded open intervals δ ⊂ R. Hence, by the regularity

of the Borel measure ρ, also (χB∩Ixj
ψ,Ff)ρ = 0 for all f ∈ L2

r(a, b); this contra-

dicts (B.1.15). Therefore, ranF is dense in L2
dρ(R), and since F : L2

r(a, b)→ L2
dρ(R)

is isometric, one obtains that F is surjective.

The identity (B.1.14) follows from (B.1.11), the fact that F is unitary, and
Lemma 1.3.8. �

In the situation of Theorem B.1.4 the inverse of the Fourier transform F is
actually given by the reverse Fourier transform G in Lemma B.1.3, which is now
a unitary mapping from L2

dρ(R) to L2
r(a, b). Thus, for all ϕ ∈ L2

dρ(R) one has

lim
η→R

∫ b

a

∣∣∣∣F−1ϕ(t)−
∫
η

ω(t, x)ϕ(x) dρ(x)

∣∣∣∣2 r(t)dt = 0.
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B.2 The vector case

Let (a, b) be an open interval and let Δ be a measurable nonnegative 2× 2 matrix
function on (a, b). Let A be a self-adjoint relation in the corresponding Hilbert
space L2

Δ(a, b) and assume that its multivalued part is at most finite-dimensional.
Let E(·) be the spectral measure of Aop, where Aop is the orthogonal operator
part of A: it is a self-adjoint operator in L2

Δ(a, b) �mulA. In this case the basic
ingredient is a continuous 1×2 matrix function (t, x) �→ ω(t, x) on (a, b)×R whose

entries are real. Hence, the Fourier transform f̂ of a compactly supported function
f ∈ L2

Δ(a, b) given by

f̂(x) =

∫ b

a

ω(t, x)Δ(t)f(t) dt, x ∈ R, (B.2.1)

is a well-defined complex function that is continuous on R. The main assumption
is that there exists a nondecreasing function ρ on R such the identity

(E(δ)f, g) =

∫
δ

f̂(x)ĝ(x) dρ(x), δ ⊂ R, (B.2.2)

holds for all f, g ∈ L2
Δ(a, b) with compact support and all bounded open intervals

δ ⊂ R, whose endpoints are not eigenvalues of Aop. An approximation argument
shows that (B.2.2) remains valid for all f, g ∈ L2

Δ(a, b) with compact support and
all bounded open intervals δ ⊂ R.

It follows from the assumption (B.2.2) that for every function f ∈ L2
Δ(a, b)

with compact support the continuous function f̂ belongs to L2
dρ(R). In the present

situation Lemma B.1.1 remains valid in a slightly modified form; here F is a partial
isometry with kerF = mulA.

Lemma B.2.1. The Fourier transform f �→ f̂ in (B.2.1) extends by continuity from
the compactly supported functions in L2

Δ(a, b) to a partial isometry

F : L2
Δ(a, b)→ L2

dρ(R)

with kerF = mulA such that for all f ∈ L2
Δ(a, b)

lim
α→a,β→b

∫
R

∣∣∣∣ (Ff)(x)− ∫ β

α

ω(t, x)Δ(t)f(t) dt

∣∣∣∣2 dρ(x) = 0.

The Fourier transform F and the spectral measure E(·) are related via

(E(δ)f, g) =

∫
δ

(Ff)(x)(Fg)(x) dρ(x) (B.2.3)

for all f, g ∈ L2
Δ(a, b), where δ ⊂ R is any bounded open interval.
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Next one verifies as in the proof of Corollary B.1.2 that the identity

F(E(δ)f) = χδ Ff, f ∈ L2
Δ(a, b),

holds for bounded open intervals δ ⊂ R. Further, (B.2.3) and an approximation
argument using characteristic functions show that

(
(A− λ)−1f, g

)
=

∫
R

Ff(x)Fg(x)

x− λ
dρ(x) (B.2.4)

for all f, g ∈ L2
Δ(a, b) and λ ∈ ρ(A). Moreover,

(
(A− λ)−1f

)
(t) =

∫
R

ω(t, x)∗

x− λ
Ff(x) dρ(x), λ ∈ C \ R, (B.2.5)

for almost all t ∈ (a, b) and, in particular, the integrand on the right-hand side is
integrable for almost all t ∈ (a, b).

The reverse Fourier transform of a function ϕ ∈ L2
dρ(R) with compact sup-

port is defined by

ϕ̆(t) =

∫
R
ω(t, x)∗ϕ(x) dρ(x), t ∈ (a, b). (B.2.6)

Then ϕ̆ is a well-defined 2 × 1 matrix function which is continuous on (a, b). By
means of Lemma B.2.1 one now obtains the following result, which is similar to
Lemma B.1.3. There are some slight differences in the proof for the vector case,
which is provided here for completeness.

Lemma B.2.2. The reverse Fourier transform ϕ �→ ϕ̆ in (B.2.6) extends by conti-
nuity from the compactly supported functions in L2

dρ(R) to a contractive mapping

G : L2
dρ(R)→ L2

Δ(a, b) such that for all ϕ ∈ L2
dρ(R)

lim
η→R

∫ b

a

∣∣∣∣Gϕ(t)− ∫
η

ω(t, x)∗ϕ(x) dρ(x)
∣∣∣∣2dt = 0. (B.2.7)

In fact, the extension G satisfies GFf = f for all f ∈ L2
Δ(a, b)�mulA.

Proof. Step 1. The mapping ϕ �→ ϕ̆ takes the compactly supported functions in
L2
dρ(R) contractively into L2

Δ(a, b). For this, let ϕ ∈ L2
dρ(R) have compact support

and let [α, β] ⊂ (a, b) be a compact interval. First observe that χ[α,β]ϕ̆ ∈ L2
Δ(a, b),

so that indeed ∫ β

α

ω(t, x)Δ(t)ϕ̆(t) dt = (F(χ[α,β]ϕ̆))(x).
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Therefore, one obtains∫ β

α

ϕ̆(t)∗Δ(t)ϕ̆(t) dt =

∫ β

α

(∫
R
ω(t, x)∗ϕ(x) dρ(x)

)∗
Δ(t)ϕ̆(t) dt

=

∫
R

(∫ β

α

ω(t, x)Δ(t)ϕ̆(t) dt

)
ϕ(x) dρ(x)

=

∫
R
(F(χ[α,β]ϕ̆))(x)ϕ(x) dρ(x)

≤ ‖F(χ[α,β]ϕ̆)‖ρ‖ϕ‖ρ ≤ ‖χ[α,β]ϕ̆‖‖ϕ‖ρ,

where Lemma B.2.1 was used in the last step. The above estimate gives for any
compact interval [α, β] ⊂ (a, b)√∫ β

α

ϕ̆(t)∗Δ(t)ϕ̆(t) dt ≤ ‖ϕ‖ρ.

By the monotone convergence theorem this leads to the inequality

‖ϕ̆‖ ≤ ‖ϕ‖ρ.

Hence, the mapping ϕ �→ ϕ̆ takes the compactly supported functions in L2
dρ(R)

contractively into L2
Δ(a, b).

Step 2. The mapping ϕ �→ ϕ̆ defined on the functions in L2
dρ(R) that have compact

support can be contractively extended to all of L2
dρ(R). To see this, let ϕ ∈ L2

dρ(R)
and approximate ϕ in L2

dρ(R) by functions ϕn ∈ L2
dρ(R) with compact support.

Then ϕn − ϕm is a Cauchy sequence in L2
dρ(R) and since

‖ϕ̆n − ϕ̆m‖ ≤ ‖ϕn − ϕm‖ρ,

there is an element f ∈ L2
Δ(a, b) such that ϕ̆n → f in L2

Δ(a, b). It follows from
‖ϕ̆n‖ ≤ ‖ϕn‖ρ that in fact

‖f‖ ≤ ‖ϕ‖ρ.
In particular, the mapping ϕ �→ f from L2

dρ(R) to L2
Δ(a, b) is a contraction. Hence,

the operator G given by Gϕ = f is well defined and takes L2
dρ(R) contractively to

L2
Δ(a, b). The assertion in (B.2.7) is clear by multiplying ϕ ∈ L2

dρ(R) by appropri-
ately chosen characteristic functions.

Step 3. The extended mapping G is a left inverse of the Fourier transform F. For
this, first note that it follows from (B.2.3) and dominated convergence that

(f, g) =

∫
R
(Ff)(x)(Fg)(x) dρ(x)
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for all f ∈ L2
Δ(a, b) � mulA and g ∈ L2

Δ(a, b). Thus, by means of the Fubini
theorem, one concludes for f ∈ L2

Δ(a, b) � mulA and g ∈ L2
Δ(a, b), each having

compact support, that

(f, g) = lim
η→R

∫
η

(Ff)(x)

(∫ b

a

g(t)∗Δ(t)ω(t, x)∗ dt

)
dρ(x)

= lim
η→R

∫ b

a

g(t)∗Δ(t)

(∫
η

ω(t, x)∗(Ff)(x) dρ(x)
)
dt

= (GFf, g),

where, in the last step, (B.2.7) and the continuity of the inner product have been
used. This implies

GFf = f

for all f ∈ L2
Δ(a, b)�mulA with compact support. Since the functions in L2

Δ(a, b)
with compact support are dense in L2

Δ(a, b) and mulA is finite-dimensional by
assumption, it follows that the functions with compact support are also dense in
L2
Δ(a, b) � mulA. Therefore, one obtains from the contractivity of F and G that

GFf = f for all f ∈ L2
Δ(a, b)�mulA. �

Recall that multiplication by the independent variable in the Hilbert space
L2
dρ(R) generates a self-adjoint operator Q whose resolvent is given by

(Q− λ)−1 =
1

x− λ
, λ ∈ C \ R.

Hence, by (B.2.4), one sees that(
(A− λ)−1f, g

)
=
(
(Q− λ)−1Ff,Fg

)
ρ
=
(
F∗(Q− λ)−1Ff, g

)
for all f ∈ L2

Δ(a, b) and g ∈ L2
Δ(a, b), which leads to

(A− λ)−1 = F∗(Q− λ)−1F, λ ∈ C \ R. (B.2.8)

Consider the restriction Fop : L2
Δ(a, b) �mulA → L2

dρ(R) of the partial isometry

F onto L2
Δ(a, b)�mulA and recall that

kerF = mulA = ker (A− λ)−1, λ ∈ C \ R.
Then Fop is an isometry and (B.2.8) leads to

(Aop − λ)−1 = F∗
op(Q− λ)−1Fop, λ ∈ C \ R.

In general, here the restricted Fourier transform Fop is not necessarily onto.

In order to prove that Fop is surjective one needs an additional condition:

for each x0 ∈ R there exists a compactly
supported function f ∈ L2

Δ(a, b) such that (Fopf)(x0) 	= 0.
(B.2.9)
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For the following result, recall that it is assumed that mulA is finite-dimen-
sional.

Theorem B.2.3. Let ω be a continuous 1 × 2 matrix function (t, x) �→ ω(t, x)
on (a, b) × R whose entries are real, and assume that the conditions (B.2.2) and
(B.2.9) are satisfied. Then the Fourier transform

f �→ f̂ , f̂(x) =

∫ b

a

ω(t, x)Δ(t)f(t) dt, x ∈ R,

extends by continuity from the compactly supported functions f ∈ L2
Δ(a, b) to a

surjective partial isometry F from L2
Δ(a, b) to L2

dρ(R) with kerF = mulA, that is,
the restriction

Fop : L2
Δ(a, b)�mulA→ L2

dρ(R)

is a unitary mapping. Moreover, the self-adjoint operator Aop in L2
Δ(a, b)�mulA

is unitarily equivalent to the multiplication operator Q by the independent variable
in L2

dρ(R) via the restricted Fourier transform Fop:

Aop = F∗
opQFop. (B.2.10)

Proof. Is is clear from Lemma B.2.1 that F : L2
Δ(a, b) → L2

dρ(R) is a partial
isometry with kerF = mulA. One verifies in the same way as in the proof of
Theorem B.1.4 that F is surjective, and hence Fop is unitary. The identity (B.2.10)
follows from (B.2.8). �

In the situation of Theorem B.2.3 the inverse of the Fourier transform Fop is
actually given by the reverse Fourier transform G in Lemma B.2.2, which is now
a unitary mapping from L2

dρ(R) to L2
Δ(a, b)�mulA. Thus, for all ϕ ∈ L2

dρ(R) one
has

lim
η→R

∫ b

a

∣∣∣∣Δ(t)
1
2

(
F−1
op ϕ(t)−

∫
η

ω(t, x)∗ϕ(x) dρ(x)
)∣∣∣∣2 dt = 0.



Appendix C

Sums of Closed Subspaces
in Hilbert Spaces

In this appendix the sum of closed (linear) subspaces in a Hilbert space is discussed
and, in particular, conditions are given so that sums of closed subspaces are closed.
There is also a brief review of the opening and gap of closed subspaces.

In the following M and N will be closed subspaces of a Hilbert space H. The
first lemma on the sum of closed subspaces is preliminary.

Lemma C.1. Let M and N be closed subspaces of H. Then the following statements
are equivalent:

(i) M+N is closed and M ∩N = {0};
(ii) there exists 0 < ρ < 1 such that

ρ
√
‖f‖2 + ‖g‖2 ≤ ‖f + g‖, f ∈M, g ∈ N. (C.1)

Proof. (i) ⇒ (ii) Assume that M+N is closed and M ∩N = {0}. The projection
from the Hilbert space M+N onto M parallel to N is a closed, everywhere defined
operator. Hence, by the closed graph theorem, the projection is bounded and there
exists C > 0 such that

‖f‖ ≤ C‖f + g‖, f ∈M, g ∈ N.

Likewise, there exists D > 0 such that

‖g‖ ≤ D‖f + g‖, f ∈M, g ∈ N.

A combination of these inequalities leads to

‖f‖2 + ‖g‖2 ≤ (C2 +D2)‖f + g‖2, f ∈M, g ∈ N.

By eventually enlarging C2 +D2 the inequality (C.1) follows with 0 < ρ < 1.
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(ii) ⇒ (i) Let (hn) be a sequence in M+N converging to h ∈ H. Decompose each
element hn as

hn = fn + gn, fn ∈M, gn ∈ N.

Since (hn) is a Cauchy sequence in H it follows from (C.1) that (fn) and (gn) are
Cauchy sequences in M and N, respectively. Therefore, there exist elements f ∈M
and g ∈ N, so that fn → f in M and gn → g in N. Hence, h = f + g ∈ M +N.
Thus, M + N is closed. To see that the sum is direct, assume that h ∈ M ∩ N.
Then, in particular, h ∈M and −h ∈ N and the inequality (C.1) with f = h and
g = −h implies h = 0. �

Let M and N be closed subspaces of H. Then the intersection M ∩ N is a
closed subspace which generates an orthogonal decomposition of the Hilbert space:

H = (M ∩N)⊥ ⊕ (M ∩N).

In order to study properties of the sums M + N and M⊥ + N⊥ it is sometimes
useful to reduce to a direct sum.

Lemma C.2. Let M and N be closed subspaces of H. Then the subspaces

M ∩ (M ∩N)⊥ and N ∩ (M ∩N)⊥

have a trivial intersection and due to

(M ∩N)⊥ = [M ∩ (M ∩N)⊥]⊕M⊥ = [N ∩ (M ∩N)⊥]⊕N⊥ (C.2)

their orthogonal complements in the subspace (M ∩ N)⊥ coincide with M⊥ and
N⊥, respectively. Moreover,

M = [M ∩ (M ∩N)⊥]⊕ (M ∩N),

N = [N ∩ (M ∩N)⊥]⊕ (M ∩N),
(C.3)

and, consequently, M+N has the decomposition

M+N =
[
M ∩ (M ∩N)⊥ +N ∩ (M ∩N)⊥

]⊕ (M ∩N). (C.4)

Proof. It is clear that M∩ (M∩N)⊥ and N∩ (M∩N)⊥ have a trivial intersection.
To see the first identity in (C.2) note that

M ∩ (M ∩N)⊥ ⊂ (M ∩N)⊥ and M⊥ ⊂ (M ∩N)⊥,

so that the right-hand side is contained in the left-hand side. To see the other
inclusion, decompose H as

H = M⊕M⊥.

Let f ∈ (M ∩N)⊥. Then according to this decomposition one has

f = g + h, g ∈M, h ∈M⊥.
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Since M⊥ ⊂ (M ∩ N)⊥ one sees that g ∈ M ∩ (M ∩ N)⊥. Hence, the left-hand
side is contained in the right-hand side. The second identity in (C.2) follows by
interchanging M and N.

SinceM∩N is a closed subspace, it is clear that H has the following orthogonal
decomposition

H = (M ∩N)⊥ ⊕ (M ∩N).

Hence, in an analogous way as above, the decompositions (C.3) are clear. Thus,
(C.4) follows. �

The above reduction process will play a role in the following theorem.

Theorem C.3. Let M and N be closed subspaces of H. Then the following state-
ments are equivalent:

(i) M+N is closed;

(ii) M⊥ +N⊥ is closed.

Furthermore, the following statements are equivalent:

(iii) M+N is closed and M ∩N = {0};
(iv) M⊥ +N⊥ = H,

and the following statements are equivalent:

(v) M+N = H and M ∩N = {0};
(vi) M⊥ +N⊥ = H and M⊥ ∩N⊥ = {0}.
Proof. (iii)⇒ (iv) Assume that M∩N = {0}. It will be shown that H = M⊥+N⊥

or, equivalently, that H ⊂M⊥+N⊥. To see this, choose h ∈ H. The element h ∈ H
induces two linear functionals F and G on M+N by

F (γ) = (α, h), G(γ) = (β, h), γ = α+ β, α ∈M, β ∈ N. (C.5)

Since M+N is closed and M∩N = {0}, it follows from the inequality (C.1) that
the functionals F and G are bounded on M + N. Extend the functionals F and
G trivially to bounded linear functionals on all of H, and denote the extensions
by F and G, respectively. By the Riesz representation theorem there exist unique
elements f, g ∈ H such that

F (γ) = (γ, f), G(γ) = (γ, g), γ ∈ H. (C.6)

The definition in (C.5) implies that F (γ) = 0, γ ∈ N, and G(γ) = 0, γ ∈M. For
the corresponding elements f and g in (C.6) this means that f ∈ N⊥ and g ∈M⊥.
Now for γ = α+ β, α ∈M, β ∈ N, it follows from (C.5) and (C.6) that

(γ, h) = (α, h) + (β, h) = F (γ) +G(γ) = (γ, f) + (γ, g).
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This implies that k = h− f − g ∈ (M+N)⊥ ⊂M⊥ and hence h = f + g+ k with
f ∈ N⊥ and g + k ∈M⊥. Therefore, H ⊂M⊥ +N⊥, which completes the proof.

(i) ⇒ (ii) Use the reduction process from Lemma C.2. Since M+N is assumed to
be closed it follows from (C.4) that

M ∩ (M ∩N)⊥ +N ∩ (M ∩N)⊥

is closed in (M ∩ N)⊥. Since this is a direct sum, the sum of their orthogonal
complements is closed in (M∩N)⊥ by the implication (iii) ⇒ (iv). Recall that the
sum of their orthogonal complements coincides with M⊥ +N⊥.

(ii) ⇒ (i) This follows from the previous implication by symmetry.

(iv) ⇒ (iii) Apply (ii) ⇒ (i) to conclude that M+N is closed. This sum is direct
since {0} = (M⊥ +N⊥)⊥ by assumption.

(v)⇔ (vi) It suffices to show (v)⇒ (vi). Note that it follows from (iii)⇒ (iv) that
M⊥ + N⊥ = H. Moreover, M⊥ ∩ N⊥ = (M + N)⊥ = {0} by assumption, which
completes the argument. �

Let again M and N be closed subspaces of H and assume that M + N is
closed. It follows from (C.3) that M+N can be written as

M+N =
(
[M ∩ (M ∩N)⊥]⊕ (M ∩N)

)
+N

= [M ∩ (M ∩N)⊥] +N.
(C.7)

Since M+N is closed, the orthogonal decomposition H = (M+N)⊥ ⊕ (M+N)
and (C.7) show that

H = (M+N)⊥ ⊕ ([M ∩ (M ∩N)⊥] +N
)

=
(
(M+N)⊥ ⊕ [M ∩ (M ∩N)⊥]

)
+N.

(C.8)

The sum in the identity (C.8) is direct. To see this, assume that

f + g + ϕ = 0, f ∈ (M+N)⊥, g ∈M ∩ (M ∩N)⊥, ϕ ∈ N.

Then f = −g−ϕ, where −g−ϕ ∈M+N. Hence, f = 0 and g = −ϕ implies that
g = 0 and ϕ = 0.

The decompositions (C.7) and (C.8) will be used in the proof of the next
lemma.

Lemma C.4. Let B ∈ B(H,K) have a closed range and let M be a closed subspace
of H. Then M+ kerB is closed if and only if B(M) is closed.

Proof. Assume that M + kerB is closed and set N = kerB. It follows from the
direct sum decomposition (C.8) that B maps

(M+N)⊥ ⊕ [M ∩ (M ∩N)⊥]
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bijectively onto the closed subspace ranB and hence B also provides a bijection
between the closed subspaces of (M+N)⊥ ⊕ [M∩ (M∩N)⊥] and those of ranB.
In particular, it follows from this observation and (C.7) that

B(M) = B
(
M ∩ (M ∩N)⊥

)
is closed in K.

For the converse statement assume that B(M) is closed. In order to show
that M+ kerB is closed, let fn ∈M and ϕn ∈ kerB have the property that

fn + ϕn → χ

for some χ ∈ H. In particular, this shows that Bfn → Bχ. The assumption that
B(M) is closed implies that Bfn → Bf for some f ∈M. Hence,

χ− f = ϕ ∈ kerB or χ = f + ϕ ∈M+ kerB.

It follows that M+ kerB is closed. �

There is another way to approach the topic of sums of closed subspaces,
namely via various notions of opening or gap between closed subspaces.

Definition C.5. Let M and N be closed subspaces of H with corresponding orthog-
onal projections PM and PN, respectively. The opening ω(M,N) between M and
N is defined as

ω(M,N) = ‖PMPN‖.
It is clear that 0 ≤ ω(M,N) ≤ 1 and that ω(M,N) = ω(N,M), since one

has ‖A‖ = ‖A∗‖ for any A ∈ B(H).

Proposition C.6. Let M and N be closed subspaces of H. Then the following state-
ments are equivalent:

(i) ω(M,N) < 1;

(ii) M+N is closed and M ∩N = {0}.
Proof. (i) ⇒ (ii) Assume that ω(M,N) < 1. Observe that for f ∈ M and g ∈ N
one has

|(f, g)| = |(PMf, PNg)| ≤ ω(M,N)‖f‖‖g‖.
It follows that for all f ∈M and g ∈ N

‖f‖2 + ‖g‖2 = ‖f + g‖2 − 2Re (f, g)

≤ ‖f + g‖2 + 2|(f, g)|
≤ ‖f + g‖2 + 2ω(M,N)‖f‖‖g‖
≤ ‖f + g‖2 + ω(M,N)

(‖f‖2 + ‖g‖2).
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In particular, this shows that

(1− ω(M,N))
(‖f‖2 + ‖g‖2) ≤ ‖f + g‖2, f ∈M, g ∈ N.

Hence, Lemma C.1 implies that M ∩ N = {0} and that M + N is closed, which
gives (ii).

(ii) ⇒ (i) Assume that M + N is closed and M ∩ N = {0}. By Lemma C.1, the
inequality (C.1) holds for some 0 < ρ < 1, hence for all f ∈M and g ∈ N

ρ2
(‖f‖2 + ‖g‖2) ≤ ‖f‖2 + 2Re (f, g) + ‖g‖2

or, equivalently,

− 2Re (f, g) ≤ (1− ρ2)
(‖f‖2 + ‖g‖2) . (C.9)

Now let h, k ∈ H with ‖h‖ ≤ 1 and ‖k‖ ≤ 1 and choose θ ∈ R such that

eiθ(PMh, PNk) = −|(PMh, PNk)|.

Then (eiθPMh, PNk) ∈ R and (C.9) with f = eiθPMh and g = PNk yields

|(h, PMPNk)| = |(PMh, PNk)|
= −Re (eiθPMh, PNk)

≤ 1− ρ2

2

(‖eiθPMh‖2 + ‖PNk‖2)
≤ 1− ρ2.

This implies ‖PMPN‖ ≤ 1− ρ2 < 1 and hence (i) holds. �

Corollary C.7. Let M and N be closed subspaces of H such that M+N is closed
and M ∩ N = {0}. Then for closed subspaces M1 ⊂ M and N1 ⊂ N also the
subspace M1 +N1 is closed.

Proof. This statement follows immediately from Proposition C.6 by noting that
ω(M1,N1) ≤ ω(M,N) < 1. �

Proposition C.6 and the reduction of closed subspaces in Lemma C.2 leads
to the following corollary.

Corollary C.8. Let M and N be closed subspaces of H. Then the following state-
ments are equivalent:

(i) ω
(
M ∩ (M ∩N)⊥,N ∩ (M ∩N)⊥

)
< 1;

(ii) M+N is closed.
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Proof. Since the closed subspaces M ∩ (M ∩N)⊥ and N ∩ (M ∩N)⊥ have trivial
intersection, it follows from Proposition C.6 that (i) is equivalent to

M ∩ (M ∩N)⊥ +N ∩ (M ∩N)⊥ (C.10)

is closed. Furthermore, the decomposition (C.4) shows that the space in (C.10) is
closed if and only if M+N is closed. �

The notion of opening is now supplemented with the notion of gap between
closed subspaces.

Definition C.9. Let M and N be closed subspaces of H with corresponding orthog-
onal projections PM and PN, respectively. The gap g(M,N) between M and N is
defined as

g(M,N) = ‖PM − PN‖.
Note that it follows directly from the definition that

g(M,N) = g(N,M) and g(M⊥,N⊥) = g(M,N). (C.11)

The connection between the gap and the opening between closed subspaces is
contained in the following proposition.

Proposition C.10. Let M and N be closed subspaces in H. Then

g(M,N) = max
{
ω(M,N⊥), ω(M⊥,N)

}
(C.12)

and, in particular, g(M,N) ≤ 1.

Proof. First observe that

PN⊥PM = (I − PN)PM = (PM − PN)PM,

so that ω(M,N⊥) = ω(N⊥,M) ≤ g(M,N)‖PM‖ ≤ g(M,N). Therefore, also

ω(M⊥,N) ≤ g(M⊥,N⊥) = g(M,N)

and hence

max
{
ω(M,N⊥), ω(M⊥,N)

} ≤ g(M,N).

Furthermore, observe that for all h ∈ H

‖(PM − PN)h‖2 = ‖(I − PN)PMh− PN(I − PM)h‖2
= ‖PN⊥PMh‖2 + ‖PNPM⊥h‖2
= ‖PN⊥PMPMh‖2 + ‖PNPM⊥PM⊥h‖2
≤ ω(M,N⊥)2‖PMh‖2 + ω(M⊥,N)2‖PM⊥h‖2,
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and the last term is majorized by

max
{
ω(M,N⊥)2, ω(M⊥,N)2

}(‖PMh‖2 + ‖PM⊥h‖2).
It follows that

g(M,N) ≤ max
{
ω(M,N⊥), ω(M⊥,N)

}
.

Therefore, (C.12) has been established. �

Proposition C.11. Let M and N be closed subspaces of H. Then

g(M,N) < 1 ⇒ dimM = dimN.

Proof. If g(M,N) = ‖PM − PN‖ < 1, then the bounded operator

I − (PM − PN)

maps H onto itself with bounded inverse. Hence,

PMPN H = PM

[
I − (PM − PN)

]
H = PM H,

so that PM maps ranPN onto ranPM. Observe that for h ∈ ranPN

‖PMh‖ = ‖h+ (PM − PN)h‖ ≥ (1− ‖PM − PN‖
)‖h‖

and hence PM maps ranPN boundedly and boundedly invertible onto ranPM.
This implies that the dimensions of M = ranPM and N = ranPN coincide. �

Theorem C.12. Let M and N be closed subspaces of H. Then the following state-
ments are equivalent:

(i) g(M,N⊥) < 1;

(ii) M+N = H and M ∩N = {0},
and in this case dimM = dimN⊥ and dimM⊥ = dimN.

Proof. (i) ⇒ (ii) Proposition C.10 implies ω(M,N) < 1 and ω(M⊥,N⊥) < 1. By
Proposition C.6, the condition ω(M,N) < 1 implies that M+N is closed and that
M∩N = {0}, and in the same way ω(M⊥,N⊥) < 1 yields that M⊥+N⊥ is closed
and that M⊥ ∩N⊥ = {0}. The identity M⊥ ∩N⊥ = {0} implies that M +N is
dense in H. Therefore, M+N = H.

(ii) ⇒ (i) It follows from Proposition C.6 that ω(M,N) < 1. Moreover, the equiv-
alence of (v) and (vi) in Theorem C.3 shows M⊥ +N⊥ = H and M⊥ ∩N⊥ = {0},
and therefore ω(M⊥,N⊥) < 1 by Proposition C.6. Now Proposition C.10 implies
that g(M,N⊥) < 1.

It is clear from (i) and Proposition C.11 that dimM = dimN⊥. Furthermore,
as g(M⊥,N) = g(M,N⊥) by (C.11), the same argument gives dimM⊥ = dimN.

�



Appendix D

Factorization of Bounded
Linear Operators

This appendix contains a number of results pertaining to the factorization of
bounded linear operators based on range inclusions or norm inequalities. These
results will be useful in conjunction with range inclusions or norm inequalities for
relations.

Let H and K be Hilbert spaces and let H ∈ B(H,K). The restriction of H to
(kerH)⊥ ⊂ H,

H : (kerH)⊥ → ranH,

is a bijective mapping between (kerH)⊥ and ranH. The inverse of this restriction
is a (linear) operator from ranH onto (kerH)⊥ and is called the Moore–Penrose
inverse of the operator H, which in general is an unbounded operator. Since
H = kerH ⊕ (kerH)⊥, one sees immediately that

H(−1)H = P(kerH)⊥ . (D.1)

Moreover, the closed graph theorem shows that ranH is closed if and only if H(−1)

takes ranH boundedly into (kerH)⊥. Hence, if ranH is closed, then

H(−1) ∈ B
(
ranH, (kerH)⊥

)
and (H(−1))× ∈ B

(
(kerH)⊥, ranH

)
, (D.2)

where × denotes the adjoint with respect to the scalar products in ranH and
(kerH)⊥.

Lemma D.1. Let H and K be Hilbert spaces and let H ∈ B(H,K). Then ranH is
closed if and only if ranH∗ is closed.

Proof. Since H ∈ B(H,K), it suffices to show that if ranH is closed in K, then
ranH∗ is closed in H. Since ranH∗ = (kerH)⊥, one only needs to show

(kerH)⊥ ⊂ ranH∗.
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For this let h ∈ (kerH)⊥ and f ∈ H. Then it follows from (D.1) and (D.2) that
with (H(−1))× ∈ B((kerH)⊥, ranH) in (D.2) one has

(h, f)H = (h, P(kerH)⊥f)(kerH)⊥

=
(
h,H(−1)Hf

)
(kerH)⊥

=
(
(H(−1))×h,Hf

)
ranH

=
(
(H(−1))×h,Hf

)
K

=
(
H∗(H(−1))×h, f

)
H

and it follows that h = H∗(H(−1))×h. Hence, h ∈ ranH∗ and therefore ranH∗ is
closed. �

Lemma D.1 has a direct consequence, which is useful.

Lemma D.2. For H ∈ B(H,K) there are the inclusions

ranHH∗ ⊂ ranH ⊂ ranH = ranHH∗. (D.3)

Moreover, the following statements are equivalent:

(i) ranHH∗ is closed;

(ii) ranH is closed;

(iii) ranHH∗ = ranH,

in which case all inclusions in (D.3) are identities.

Proof. The chain of inclusions in (D.3) is clear; the last equality is a consequence
of the identity kerH∗ = kerHH∗.

(i) ⇒ (iii) Assume that ranHH∗ is closed. Then all inclusions in (D.3) are equal-
ities and, in particular, (iii) follows.

(iii) ⇒ (ii) Assume that ranHH∗ = ranH. It will be sufficient to show that
ranH∗ ⊂ ranH∗, which implies that ranH∗ is closed and hence also ranH is
closed by Lemma D.1. Assume that h ∈ ranH∗ = (kerH)⊥. By the assumption,
it follows that Hh = HH∗k for some k, which gives H(h −H∗k) = 0. Note that
h ∈ (kerH)⊥ and H∗k ∈ ranH∗ ⊂ ranH∗ = (kerH)⊥, and hence h = H∗k. Thus,
ranH∗ ⊂ ranH∗ which implies that ranH∗ is closed, so that also ranH is closed
by Lemma D.1.

(ii) ⇒ (i) Assume that ranH is closed. Then it follows from (D.3) that

ranHH∗ = ranH. (D.4)

It will suffice to show that ranHH∗ ⊂ ranHH∗. Assume that k ∈ ranHH∗. Then
k = Hh for some h ∈ (kerH)⊥ by (D.4). As (kerH)⊥ = ranH∗ = ranH∗ by the
assumption (ii) and Lemma D.1, one has h ∈ ranH∗ and therefore k ∈ ranHH∗.
This shows that ranHH∗ ⊂ ranHH∗ which implies that ranHH∗ is closed. �
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Let F, G, and H be Hilbert spaces, let A ∈ B(F,H), B ∈ B(G,H), and
C ∈ B(F,G), and assume that the following factorization holds:

A = BC. (D.5)

Then it follows from (D.5) that kerC ⊂ kerA. Note that the orthogonal decompo-
sition G = kerB⊕ranB∗ allows one to write A = BPC, where P is the orthogonal
projection in G onto ranB∗. Hence, one may always assume that ranC ⊂ ranB∗.
In this case kerC = kerA and hence C maps (kerA)⊥ = ranA∗ into ranB∗ injec-
tively. Moreover, in this case the operator C in (D.5) is uniquely determined. The
following proposition is a version of the well-known Douglas lemma.

Proposition D.3. Assume that A ∈ B(F,H) and B ∈ B(G,H). Let ρ > 0, then the
following statements are equivalent:

(i) A = BC for some C ∈ B(F,G) with ranC ⊂ ranB∗ and ‖C‖ ≤ ρ;

(ii) ranA ⊂ ranB and ‖B(−1)ϕ‖ ≤ ρ ‖A(−1)ϕ‖, ϕ ∈ ranA;

(iii) AA∗ ≤ ρ2 BB∗.

Moreover, if ranA ⊂ ranB, then ‖B(−1)ϕ‖ ≤ ρ ‖A(−1)ϕ‖, ϕ ∈ ranA, for some
ρ > 0.

Proof. (i) ⇒ (ii) It is clear that ranA ⊂ ranB and therefore also

B(−1)A = B(−1)BC = P(kerB)⊥C = PranB∗C = C.

From the last identity one sees that

‖B(−1)Aψ‖ ≤ ‖C‖ ‖ψ‖, ψ ∈ F.

Now let ϕ ∈ ranA. Then there exists ψ ⊥ kerA such that ϕ = Aψ. Therefore,
ψ = A(−1)ϕ and it follows immediately that

‖B(−1)ϕ‖ ≤ ‖C‖ ‖A(−1)ϕ‖, ϕ ∈ ranA.

Hence, (ii) has been shown.

(ii)⇒ (i) It follows from (ii) that for each h ∈ F there exists a uniquely determined
element k ∈ (kerB)⊥ = ranB∗ such that Ah = Bk. Hence, the mapping h �→ k
from F to ranB∗ ⊂ G defines a linear operator C with domC = F and one has
A = BC. To show that the operator C is closed, assume that

hn → h and kn = Chn → k,

where kn ∈ ranB∗. Since A and B are bounded linear operators, it follows from
from Ahn = Bkn that Ah = Bk. Furthermore, ranB∗ is closed, which implies that
k ∈ ranB∗. Hence, k = Ch and thus C is closed. By the closed graph theorem,
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it follows that C ∈ B(F,G). The property ranC ⊂ ranB∗ holds by construction.
Furthermore, one sees that for ψ ∈ F

‖Cψ‖ = ‖PranB∗Cψ‖
= ‖P(kerB)⊥Cψ‖
= ‖B(−1)BCψ‖
≤ ρ ‖A(−1)Aψ‖
= ρ ‖P(kerA)⊥ψ‖
≤ ρ ‖ψ‖,

and so ‖C‖ ≤ ρ.

(i) ⇒ (iii) It is clear that AA∗ = BCC∗B∗. For ψ ∈ F one has(
AA∗ψ,ψ

)
= ‖C∗B∗ψ‖2 ≤ ‖C∗‖2‖B∗ψ‖2 = ‖C∗‖2(BB∗ψ,ψ

)
and hence AA∗ ≤ ‖C∗‖2BB∗. Since ‖C∗‖ = ‖C‖ ≤ ρ this leads to (iii).

(iii) ⇒ (i) The mapping D from ranB∗ to ranA∗ given by

B∗h �→ A∗h, h ∈ H,

is well defined and linear. To see that it is well defined observe that B∗h = 0
implies AA∗h = 0 and hence A∗h = 0. Then DB∗h = A∗h for h ∈ H and one has
D ∈ B(ranB∗, ranA∗) with ‖DB∗h‖ ≤ ρ2‖B∗h‖. Due to the boundedness, this
operator has a unique extension in B(ranB∗, ranA∗), denoted again by D, and
‖D‖ ≤ ρ2. Finally, this mapping has a trivial extension D ∈ B(G,F), satisfying
DB∗h = A∗h for h ∈ H and again ‖D‖ ≤ ρ2. With C = D∗ one obtains that
C ∈ B(F,G), A = BC, and ‖C‖ ≤ ρ2. In view of the construction of D one has
kerB = (ranB∗)⊥ ⊂ kerD, so that ranC = ranD∗ ⊂ ranB∗.

For the last statement it suffices to observe that the inclusion ranA ⊂ ranB
implies A = BC for some C ∈ B(F,G) (see (ii) ⇒ (i)). However, this implies
AA∗ ≤ ρ2 BB∗ for some ρ > 0 (see (i) ⇒ (iii)). �

The next result contains a strengthening of Proposition D.3. Recall that
ranC ⊂ ranB∗ implies that kerC = kerA. Hence, if C maps ranA∗ onto ranB∗,
then C maps ranA∗ onto ranC = ranB∗ bijectively.

Corollary D.4. Assume that A ∈ B(F,H) and B ∈ B(G,H). Let ρ > 0. Then the
following statements are equivalent:

(a) A = BC for some C ∈ B(F,G) with ranC = ranB∗ and ‖C‖ ≤ ρ;

(b) ranA = ranB and ‖B(−1)ϕ‖ ≤ ρ ‖A(−1)ϕ‖, ϕ ∈ ranA;

(c) ε2BB∗ ≤ AA∗ ≤ ρ2 BB∗ for some 0 < ε < ρ.

Moreover, if ranA = ranB, then ‖B(−1)ϕ‖ ≤ ρ ‖A(−1)ϕ‖, ϕ ∈ ranA, for some
ρ > 0.
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Proof. The assertions in Proposition D.3 will be freely used in the arguments
below.

(a) ⇒ (c) Recall that C maps ranA∗ bijectively onto ranB∗. Since

ranC∗ = ranA∗ and kerC∗ = kerB,

one sees that C∗ maps ranB∗ bijectively onto ranA∗, as ranC∗ is closed by
Lemma D.1. Thus, CC∗ is a bijective mapping from ranB∗ onto itself and hence

(AA∗h, h) = (CC∗B∗h,B∗h) ≥ ε2(B∗h,B∗h) = ε2(BB∗h, h), h ∈ H.

Therefore, (c) follows.

(c) ⇒ (b) The inequality BB∗ ≤ ε−2AA∗ implies ranB ⊂ ranA.

(b)⇒ (a) It suffices to show that ranB∗ ⊂ ranC. Let k ∈ ranB∗. The assumption
ranB ⊂ ranA implies that Bk = Ah for some h ∈ F. Since A = BC, one sees
that Bk = BCh, and hence k − Ch ∈ kerB. On the other hand, k ∈ ranB∗ and
Ch ∈ ranC ⊂ ranB∗ yield k − Ch ∈ ranB∗ = (kerB)⊥. Therefore, k = Ch and
it follows that ranB∗ ⊂ ranC holds. �

An operator T ∈ B(F,G) is said to be a partial isometry if the restriction of
T to (kerT )⊥ is an isometry. The initial space is (kerT )⊥ and the final space is
ranT , which is automatically closed since (ker T )⊥ is closed and the restriction of
T is isometric. Let T ∈ B(F,G), then the following statements are equivalent:

(i) T is a partial isometry with initial space M and final space N;

(ii) T ∗T is an orthogonal projection in F onto M;

(iii) T ∗ is a partial isometry with initial space N and final space M;

(vi) TT ∗ is an orthogonal projection in G onto N.

The next result can be considered to be a special case of Proposition D.3 and
Corollary D.4.

Corollary D.5. Assume that A ∈ B(F,H) and B ∈ B(G,H). Then the following
statements are equivalent:

(i) A = BC for some C ∈ B(F,G), where C is a partial isometry with initial
space ranA∗ and final space ranB∗;

(ii) AA∗ = BB∗.

Proof. (i) ⇒ (ii) Observe that AA∗ = BCC∗B∗. By assumption, C is a partial
isometry with initial space ranA∗ and final space ranB∗. Therefore, C∗ is a partial
isometry with initial space ranB∗ and final space ranA∗, and it follows that CC∗

is the orthogonal projection onto the final space ranB∗ of C. Hence, AA∗ = BB∗.

(ii) ⇒ (i) It follows from Corollary D.4 that A = BC for some C ∈ B(F,G) with
ranC = ranB∗ and ‖C‖ ≤ 1. Moreover

‖C∗B∗h‖ = ‖A∗h‖ = ‖B∗h‖, h ∈ H,
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shows that C∗ is a partial isometry with initial space ranB∗ and final space
ranA∗. Therefore, C is a partial isometry with initial space ranA∗ and final space
ranB∗. �

The following polar decomposition of H ∈ B(F,H) can be seen as a con-
sequence of the previous corollaries. Recall that |H∗| ∈ B(H) is a nonnegative

operator in H defined by |H∗| = (HH∗)
1
2 .

Corollary D.6. Let H ∈ B(F,H). Then H = |H∗|C and |H∗| = HC∗ for some
partial isometry C ∈ B(F,H) with initial space ranH∗ and final space ran |H∗|.
In addition, one has ranH = ran |H∗|.

The following corollary is a direct consequence of Lemma D.2.

Corollary D.7. Let H ∈ B(H) be self-adjoint and nonnegative and let H
1
2 be its

square root. Then there are the inclusions

ranH ⊂ ranH
1
2 ⊂ ranH

1
2 = ranH. (D.6)

Moreover, the following statements are equivalent:

(i) ranH is closed;

(ii) ranH
1
2 is closed;

(iii) ranH = ranH
1
2 ,

in which case all the inclusions in (D.6) are identities.

Recall that the Moore–Penrose inverse of H
1
2 is the uniquely defined inverse

of the restriction

H
1
2 : (kerH

1
2 )⊥ = (kerH)⊥ → ranH

1
2 .

In the sequel the Moore–Penrose inverse of H
1
2 will be denoted by H(− 1

2 ), i.e.,

H(− 1
2 ) := (H

1
2 )(−1).

It is clear that

H(− 1
2 ) ∈ B(ranH

1
2 , (kerH)⊥) ⇔ ranH

1
2 is closed.

Here is the version of Proposition D.3 for nonnegative operators.

Proposition D.8. Let A,B ∈ B(H) be self-adjoint and nonnegative, and let ρ > 0.
Then the following statements are equivalent:

(i) A
1
2 = B

1
2C for some C ∈ B(H) with ranC ⊂ ranB

1
2 and ‖C‖ ≤ ρ;

(ii) ranA
1
2 ⊂ ranB

1
2 and ‖B(− 1

2 )ϕ‖ ≤ ρ ‖A(− 1
2 )ϕ‖, ϕ ∈ ranA

1
2 ;

(iii) A ≤ ρ2 B.

Morover, if ranA
1
2 ⊂ ranB

1
2 , then ‖B(− 1

2 )ϕ‖ ≤ ρ ‖A(− 1
2 )ϕ‖, ϕ ∈ ranA

1
2 , for

some ρ > 0.



Notes

These pages contain a number of comments about the various results in this mono-
graph and some further developments. We also give some historical remarks with-
out any claim of completeness; the history of this area is complicated, also because
of the limited exchange of ideas that has existed between East and West. The main
setting of the book is that of operators and relations in Hilbert spaces. For an in-
troduction and comprehensive treatment of linear operators in Hilbert spaces and
related topics we refer the reader to the standard textbooks [2, 133, 141, 272, 276,
341, 348, 598, 649, 650, 651, 652, 673, 691, 723, 738, 743, 752, 756, 757]. We shall
occasionally address topics that fall outside the scope of the monograph itself, e.g.,
the role of operators and relations in spaces with an indefinite inner product is
indicated with proper references.

Notes on Chapter 1

Linear relations in Hilbert spaces go back at least to Arens [42]; they attracted
attention because of their usefulness in the extension theory of not necessarily
densely defined operators; see for instance [82, 128, 202, 218, 266, 297, 523, 619,
638]. Linear relations also appear in a natural way in the description of boundary
conditions; cf. [2, 660]. Related material can be found in [74, 298, 406, 512, 513,
514, 515, 516, 576, 683, 685, 686]. The description of self-adjoint, maximal dissi-
pative, or accumulative extensions of a symmetric operator (see Sections 1.4, 1.5,
and 1.6) in terms of operators between the defect spaces in Theorem 1.7.12 and
Theorem 1.7.14 goes back to von Neumann and Štraus [610, 731] in the densely
defined case and was worked out in the general case by Coddington [202, 203];
see also [266, 490, 733]. These descriptions may be seen as building stones for the
extension theory via boundary triplets in Chapter 2.

Sections 1.1, 1.2, and 1.3 present elementary facts. The identity (1.1.10) goes
back to Štraus [726]. The notions of spectrum and points of regular type for a
linear relation in Definition 1.2.1 and Definition 1.2.3 are introduced as in the op-
erator case [268, 269, 404], while the adjoint of a linear relation in Definition 1.3.1
is introduced as in [611], see also [42, 659] and [396, 599]. Note that in Propo-
sition 1.2.9 one sees a “pseudo-resolvent” which already shows that there is a
relation in the background; cf. [421]. In Theorem 1.3.14 we present the notion of
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the operator part of a relation and the corresponding Hilbert space decomposi-
tion in the spirit of the Lebesgue decomposition of a relation [397, 398]; see also
[439, 621, 622, 623] for the operator case. Operator parts have a connection with
generalized inverses (see for instance [127, 609]), such as the Moore–Penrose in-
verse in Definition 1.3.17. Note that the more general definition PkerHH−1 gives
a Moore–Penrose inverse that is a closable operator. The special classes of rela-
tions and their transforms are developed in the usual way; see [660, 705, 706].
The presentation is influenced by personal communication with McKelvey (see
also [572]) and lecture notes by Kaltenbäck [451] and Woracek [775, 776]; see also
[365, 556, 662] for more references. Although we assume a working knowledge of
the spectral theory of self-adjoint operators in Hilbert spaces, we highlight in Sec-
tion 1.5 a couple of useful facts, with special attention paid to the semibounded
case. Lemma 1.5.7 goes back to [210], Proposition 1.5.11 is a consequence of the
Douglas lemma in Appendix D, and Lemma 1.5.12 is taken from [95]. The exten-
sion theory in the sense of von Neumann can be found in Section 1.7. Note that
extensions of a symmetric relation may be disjoint or transversal. Our present
characterization of these notions in Theorem 1.7.3 seems to be new; see also [391].

For the development of boundary triplets we only need a few basic facts
concerning spaces with an indefinite inner product, see Section 1.8. A typical result
in this respect is the automatic boundedness property in Lemma 1.8.1; see [73,
77, 235, 236]. The transform in Definition 1.8.4 goes back to Shmuljan [506, 705,
706]. The notions of strong graph convergence and strong resolvent convergence of
relations are treated in Section 1.9 (see [650] for the case of self-adjoint operators).
Here we prove the equivalence of the two notions when there is a uniform bound.
For Corollary 1.9.5 see [755]. The parametric representation of linear relations in
Section 1.10 is closely connected with the theory of operator ranges. Here we only
consider such representations from the point of view of boundary value problems;
see also [2, 660] and Chapter 2. However, these parametric representations also play
an important role in the above mentioned Lebesgue decompositions of relations
and, more generally, in the Lebesgue type decompositions of relations; cf. [397].
Most of the material in the beginning of Section 1.11 consists of straightforward
generalizations of properties of the resolvent. Lemma 1.11.4 is well known for
the usual resolvent and seems to be new in the generalized context; it is used in
Section 2.8. Lemma 1.11.5 was inspired by [523]. Nevanlinna families and pairs
are generalizations of operator-valued Nevanlinna functions; cf. Appendix A. The
notion of Nevanlinna pair goes back to [617]. The notion of Nevanlinna family
appears already in [523] (and in a different guise in [266]) and was later more
systematically studied in [20, 21, 22, 89, 94, 95, 234, 246].

Although in this monograph we will restrict ourselves mainly to Hilbert
spaces, we will make some comments in the notes concerning the setting of in-
definite inner product spaces; see for instance [31, 77, 79, 142, 430, 452] and also
[775, 776] for Pontryagin spaces, almost Pontryagin spaces, Krĕın spaces, and al-
most Krĕın spaces. The spectral theory of operators and relations in such spaces
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has been studied extensively; in Krĕın spaces the operators are often required to
have (locally) finitely many negative squares or to be (locally) definitizable, that
is, roughly speaking some polynomial (or rational function) of the operator or re-
lation under consideration is (locally) nonnegative in the Krĕın space sense. Here
we only mention work related to the present topics [75, 78, 79, 99, 220, 222, 253,
260, 264, 268, 269, 274, 275, 434, 435, 436, 437, 497, 498, 499, 500, 501, 502, 503,
519, 522, 631, 632, 633, 634, 674, 717, 718, 719, 720, 721, 722, 764, 765].

Notes on Chapter 2

Boundary triplets were originally introduced in the works of Bruk [176, 177, 178]
and Kochubĕı [466] and were used in the study of operator differential equations
in the monograph [346]; see also [509]. The notion of boundary triplet appeared
implicitly in a different form already much earlier in the work of Calkin [186, 187]
(see also [276, Chapter XII] and [410]). The Weyl function was introduced by
Derkach and Malamud in [243, 244]; it can also be interpreted as the Q-function
from the works of Krĕın [491, 492] (see also [679]) and, e.g., the papers [499, 500,
501, 502, 503, 504] of Krĕın and Langer, and [523] of Langer and Textorius. We
also mention the more recent monographs [359, 691], where boundary triplets and
Weyl functions are briefly discussed, as well as the very recent monograph by
Derkach and Malamud [247] (in Russian), in which a more detailed exposition and
more than 400 references (also many older papers published in Russian) can be
found. From our point of view the most influential general papers on boundary
triplets and Weyl functions area are [245, 246] and [184], the latter also has an
introduction to the basic notions.

While a large part of the material in this chapter can be found in the lit-
erature, the presentation here is given in a unified form for general symmetric
relations. The connection between the abstract Green identity and the appropri-
ate indefinite inner products (see Section 1.8) is used in Section 2.1 when deriving
some of the basic properties of boundary triplets and their transforms. The in-
verse result for boundary triplets in Theorem 2.1.9 is taken from [103, 104]. The
discussion in Section 2.2 on parametric representations of boundary conditions
is given to establish a connection between abstract and concrete boundary value
problems. The definitions and the central properties of γ-fields and Weyl func-
tions are presented in Section 2.3 and these results can be found in [245, 246].
In particular, Proposition 2.3.2 (part (ii)) and Proposition 2.3.6 (parts (iii), (v))
show the connection with the notion of Q-function (see [184, 245, 246]), while the
formula in part (vi) of Proposition 2.3.6 is taken from [265]. Without specifica-
tion of the γ-field and Weyl function, constructions of boundary triplets appear
already in the early literature; see [176, 466, 577] and the monographs [346, 509].
Here the constructions are based on decompositions that are closely related to the
von Neumann formulas in Section 1.7. The Weyl function in Theorem 2.4.1 coin-
cides with the abstract Donoghue type M -function that was studied, for instance,
in [317, 320, 327]. Transformations of boundary triplets and the corresponding
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γ-fields and Weyl functions have been treated in [234, 237, 245, 246]. In partic-
ular, the description of boundary triplets in Theorem 2.5.1 is taken from [246].
We make the precise connection with Q-functions in Corollary 2.5.8. The present
notion of unitary equivalence of boundary triplets in Definition 2.5.14 is slightly
more general than the definition used in [382].

Section 2.6 is devoted to Krĕın’s formula for intermediate extensions. The
Krĕın type formula (for intermediate extensions) phrased in terms of boundary
triplets in Theorem 2.6.1 is adapted to the present setting from [233]. This yields
new simple proofs for the description of various parts of the spectra of inter-
mediate extensions in Theorem 2.6.2. This description appears in a similar form
in [243, 244, 245, 246] and is treated for dissipative extensions in [346, 468] by
means of characteristic functions. The same remark applies to the proof of Theo-
rem 2.6.5, which can be found in a different form in [184]. These results indicate
the importance of Krĕın’s formula for the spectral analysis of self-adjoint exten-
sions of symmetric operators. Closely related is the completion problem, briefly
touched upon in Remark 2.4.4, which is investigated in [383], where also an anal-
ogous boundary triplet appears for the nonnegative case. This case of extensions
of a bounded symmetric operator was studied earlier in, for instance, [735, 736].

Section 2.7 is devoted to the Krĕın–Năımark formula, which is our terminol-
ogy for the Krĕın formula for compressed resolvents of self-adjoint exit space exten-
sions, in short, Krĕın’s formula for exit space extensions. Actually, it was Năımark
[605, 606, 607] who investigated different types of extensions (with exit) and a
proper interpretation then yields the corresponding resolvent formula. For the no-
tion of Štraus family and for Krĕın’s formula for exit space extensions we refer to
[491, 492, 679] and to [726, 727, 728, 729, 730, 731, 732, 733]; some other related pa-
pers are [51, 121, 126, 219, 234, 237, 254, 266, 320, 497, 523, 554, 595, 596, 624]. The
Štraus families are restrictions of the adjoint in terms of “λ-dependent boundary
conditions” given by a Nevanlinna family or corresponding Nevanlinna pair. When
the exit space is a Pontryagin space, the same mechanism is in force and the bound-
ary conditions are now given by a generalized Nevanlinna family or correspond-
ing Nevanlinna pair (generalized in the sense that the family or pair has negative
squares); we mention [76, 100, 111, 253, 257, 258, 259, 260, 261, 263, 290, 521, 523]
and [664] for the special case of a finite-dimensional exit space. Boundary triplets
for symmetric relations in Pontryagin and even in Krĕın spaces were introduced by
Derkach (see [101, 227, 228, 229, 230]) and for isometric operators in Pontryagin
spaces see [80]; cf. Chapter 6 for concrete λ-dependent boundary conditions.

The perturbation problems in Section 2.8 and Krĕın’s formula are closely
related. The Sp-perturbation result in Theorem 2.8.3 appears in a similar form
in [245]. Standard (additive) perturbations of an unbounded self-adjoint operator
yield an analogous situation, where the symmetric operator is maximally non-
densely defined [405].

Rigged Hilbert spaces offer a framework where extension theory of unbounded
symmetric operators can be developed in a somewhat analogous manner as in the
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bounded case; see [371, 400, 401, 746]. A closely related approach to extensions
of symmetric relations relies on the concept of graph perturbations studied in
[203, 204, 205, 206, 238, 264, 267, 270, 399, 403]. There has been a consider-
able interest in the related concept of singular perturbations, where perturbation
elements belong to rigged Hilbert spaces with negative indices; see [10], which con-
tains an extensive list of earlier literature, and see also the notes to Chapter 6 and
Chapter 8 in the context of differential operators with singular potentials. General
operator models for highly singular perturbations involve lifting of operators in
Pontryagin spaces [117, 239, 240, 241, 252, 256, 640, 641, 707].

The interest in boundary triplets and Weyl functions has substantially grown
in the last decade, so a complete list of references is beyond the scope of these
notes. However, for a selection of papers in which boundary triplet techniques
were applied to differential operators and other related problems we refer to [28,
50, 86, 87, 97, 112, 113, 123, 143, 144, 155, 169, 170, 173, 174, 184, 185, 241, 288,
307, 342, 343, 344, 377, 461, 475, 477, 478, 483, 511, 529, 551, 562, 563, 564, 565,
589, 590, 591, 626, 627, 642, 644, 677, 750, 751]. For boundary triplets and similar
techniques in the analysis of quantum graphs see [110, 134, 172, 183, 196, 287,
289, 294, 536, 625, 637, 645, 646].

Boundary triplets and their Weyl functions for symmetric operators have
been further generalized in [103, 105, 109, 110, 115, 233, 236, 237, 246] by relaxing
some of the conditions in the definition of a boundary triplet. Moreover, in the set-
ting of dual pairs of operators (see [525]) boundary triplets have been introduced in
[559, 560] and applied, e.g., in [170, 173, 300, 302, 381]; they were specialized to the
case of isometric operators in [561]. Boundary triplets and their extensions also oc-
cur naturally in a system-theoretic environment, where the underlying operator is
often isometric, contractive, or skew-symmetric; cf. [65, 66, 67, 102, 394, 750, 751].

By applying a transform of the boundary triplet, resulting in a Cayley trans-
form of the Weyl function, one gets a connection with the notion of characteristic
function, which was used to elaborate an alternative analytic tool for studying ex-
tension theory for symmetric operators, for some literature in this direction, see,
e.g., [165, 166, 246, 346, 468, 509, 603, 728].

Notes on Chapter 3

Most of the material in Section 3.1 and Section 3.2 is working knowledge from
measure theory. Typical classical textbooks providing a more detailed exposition
on Borel measures are [272, 335, 416, 676, 682] and the papers [61, 60, 271] are
listed here for symmetric derivatives and the limit behavior of the Borel trans-
form (see Appendix A). We also recommend the more recent monograph [738].
Section 3.3 is a brief exposition of the notions of absolutely continuous and singu-
lar spectrum of self-adjoint operators (see [649, 691, 738, 757]) in the context of
self-adjoint relations; cf. Section 1.5 and Theorem 1.5.1.

Simplicity of symmetric operators and the decomposition of a symmetric
operator into a self-adjoint and a simple symmetric part in Theorem 3.4.4 go back
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to [496]; cf. [523] for a version of this result for symmetric relations. The local
version of simplicity in Definition 3.4.9 appears in papers of Jonas (see, e.g., [437])
and was more recently considered in [119].

The characterization of the spectrum via the limit properties of the Weyl
function in Section 3.5 and Section 3.6 is well known for the special case of singular
Sturm–Liouville differential operators and the Titchmarsh–Weyl m-function; cf.
Chapter 6 and the classics [209, 740, 741] and, e.g., [60, 97, 175, 224, 321, 328,
335, 333, 334, 426, 479, 711, 712] and also [195]. This description was extended in
[155] to the abstract setting of boundary triplets and Weyl functions in the case
where the underlying symmetric operator is densely defined and simple (on R).
These ideas where further generalized in [119, 120] and applied to elliptic partial
differential operators. The present treatment in the context of linear relations
seems to be new; cf. [265] for Theorem 3.6.1 (i).

Our presentation of the material in Section 3.7 is strongly inspired by the
contribution [523] of Langer and Textorius. Due to the limit properties in this
section there are important connections between analytic properties of the Weyl
functions and the geometric properties of the associated self-adjoint extensions.
The characterizations stated in Proposition 3.7.1 and Proposition 3.7.4 have been
established initially in [371, 374, 379], where they were used to introduce the
notions of generalized Friedrichs and Krĕın–von Neumann extensions for non-
semibounded symmetric operators or relations; see the notes on Chapter 5.

Finally, the translation of the results in Section 3.5 and Section 3.6 to arbi-
trary self-adjoint extensions in Section 3.8 based on the corresponding transfor-
mation of the Weyl function (see Section 2.5) is immediate.

Notes on Chapter 4

One of the central themes in this chapter is the construction of a Hilbert space
via a nonnegative reproducing kernel; such a construction has been studied in-
tensively after Aronszjan [59]. For some introductory texts on this topic we refer
the reader to [32, 272, 277, 278, 680, 737]. It should be mentioned that there are
different approaches avoiding the mechanism of reproducing kernel Hilbert spaces;
see for instance Brodskĭı [165] and for another method Sz.-Nagy and Korányi [604]
(sometimes called the ε-method).

Section 4.1 gives a short review of all the facts about reproducing kernel
Hilbert spaces that are needed in the monograph. We remind the reader that
special reproducing kernels were considered by de Branges and Rovnyak for the
setting of Nevanlinna functions or Schur functions [146, 147, 148, 149, 150, 151,
152, 153]; see also [24, 25, 33].

In Section 4.2 the case of operator-valued Nevanlinna functions is taken up
first. Theorem 4.2.1 states that the Nevanlinna kernel of a Nevanlinna function
M is nonnegative; the proof can be found in [450]. In this case the reproducing
kernel approach leads to the realization of the function −(M(λ)+λ)−1 in terms of
compressed resolvents in Theorem 4.2.2; see [231, Theorem 2.5 and Remark 2.6]
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and also [409]. The unitary equivalence of different models in Theorem 4.2.3 is
based on a standard argument. If the Nevanlinna function is uniformly strict, then
it can be regarded as a Weyl function; see Theorem 4.2.4 as follows by an inspection
of the proof of Theorem 4.2.2. The uniqueness of the model in Theorem 4.2.6 is
obtained by a further specialization of the proof of Theorem 4.2.3.

Section 4.3 presents a reproducing kernel approach for scalar Nevanlinna
functions via their integral representation (see Appendix A) as can be found in
[246]; cf. [19, 379, 530]. In the present monograph only the case of scalar Nevanlinna
functions is treated in this way; the matrix-valued case is a straightforward gener-
alization. For a rigorous treatment involving operator-valued Nevanlinna functions
one should apply [558].

Parallel to the above treatment of operator-valued Nevanlinna functions the
case of Nevanlinna families or Nevanlinna pairs is taken up in Section 4.4. The
nonnegativity of the Nevanlinna kernel for a Nevanlinna family or Nevanlinna pair
in Theorem 4.4.1 is proved via a simple reduction argument. The representation
model for Nevanlinna pairs in Theorem 4.4.2 is again given along the lines of
Derkach’s work [231]; see also [265]. In fact, the proof can be carried forward to
show that any Nevanlinna family is the Weyl family of a boundary relation (see
the notes for Chapter 2). Another reproducing kernel approach was followed in
[95, Theorem 6.1] by a reduction to the corresponding case of Schur functions;
cf. [152, 153]. Closely connected is the notion of generalized resolvents given in
Definition 4.4.5. It was formalized by McKelvey [572], see also [207]. Its represen-
tation in Corollary 4.4.7 is equivalent to the representation of Nevanlinna pairs in
Theorem 4.4.2. In Corollary 4.4.9 we present Năımark’s dilation result [606, 607]
as a straightforward consequence of the characterization of generalized resolvents
in Theorem 4.4.8; cf. [659].

Our construction of the exit space extension in Theorem 4.5.2 uses the above
representation of generalized resolvents; cf. [497]. The identity in (4.5.3) gives
the precise connection between the exit space and the Nevanlinna pair leading
to the exit space. Closely related is an interpretation via the coupling method in
Section 4.6. By taking an “orthogonal sum of two boundary triplets” as in Propo-
sition 4.6.1 one obtains an exit space extension for one of the original symmetric
relations whose compressed resolvent is described in Corollary 4.6.3. This leads to
an interpretation of the Krĕın formula when the parameter family coincides with
a uniformly strict Nevanlinna function; see [373, 375, 376, 630]. However, a similar
interpretation exists when the parameter family is a general Nevanlinna family,
once it is interpreted as the Weyl family of a boundary relation; see [236, 237, 238].
It has already been explained in the notes on Chapter 2 that it is quite natural
to have exit spaces which may be indefinite, in which case the Nevanlinna family
must be replaced by a more general object.

And, indeed, more general reproducing kernel spaces can be constructed.
For the Pontryagin space situation and reproducing kernels with finitely many
negative squares one may consult the monograph [23] and the papers [89, 232,
409, 497, 499, 500]; see also [454, 455, 456, 457, 458, 459]. For the setting of



712 Notes

almost Pontryagin spaces, see [452, 775, 777]. Finally, for Krĕın spaces we refer to
[15, 16, 17, 262, 434, 435, 437, 778].

Notes on Chapter 5

The approach to semibounded forms in Section 5.1 follows the lines of Kato’s
work [462], where densely defined semibounded and sectorial forms are treated;
see also [2, 49, 246, 346, 359, 552, 649, 650, 690, 691]. An arbitrary form is not
necessarily closable, but there is a Lebesgue decomposition into the sum of a
closable form and a singular form; see [395, 397, 404, 476, 710]. Versions of the
representation theorems for nondensely defined closed forms appear in [14, 44,
393, 661, 710]; see Theorem 5.1.18 and Theorem 5.1.23. Nondensely defined forms
appear, for instance, when treating sums of densely defined forms, leading to a
representation problem for the form sum; see [295, 296, 389, 390, 392]. The ordering
of semibounded forms and semibounded self-adjoint relations in Section 5.2 results
in Proposition 5.2.7; the present simple treatment via the Douglas lemma extends
[390]; see Proposition 1.5.11. The characterization in terms of the corresponding
resolvent operators goes back to Rellich [654]; see also [210, 390, 412, 462]. For
the monotonicity principle (Theorem 5.2.11) see [96], and for similar statements
[83, 245, 246, 618, 661, 709, 710, 753].

The main properties of the Friedrichs extension, namely Theorem 5.3.3 and
Proposition 5.3.6, follow from the present approach via forms; cf. [202, 370, 734].
The square root decomposition approach involving resolvents to describe those
semibounded self-adjoint extensions which are transversal with the Friedrichs ex-
tension extends [391] (for the nonnegative case). The transversality criterion in
Theorem 5.3.8 is an extension of Malamud’s earlier result [553]. The introduction
of Krĕın type extensions in Definition 5.4.2 is inspired by [210]. The minimality
of the Krĕın type extension is inherited from the maximality of the Friedrichs
extension and this yields a characterization of all semibounded extensions whose
lower bounds belong to a certain prescribed interval in Theorem 5.4.6. This is
the semibounded analog of a characterization of nonnegative self-adjoint exten-
sions in the nonnegative case [210]. The interpretation of the Friedrichs and Krĕın
type extensions as strong resolvent limits in Theorem 5.4.10 goes back in the
operator case to [34] and in the general case to [383]. The present treatment
is based on the general monotonicity principle in Theorem 5.2.11. The concept
of a positively closable operator (see (iii) of Corollary 5.4.8) was introduced in
[34] to detect the nonnegative self-adjoint operator extensions. This notion is
closely connected with [490], where self-adjoint operator extensions were deter-
mined. Closely related to the Friedrichs and the Krĕın–von Neumann extensions
is the study of all extremal extensions of a nonnegative or a sectorial operator in
[43, 44, 45, 46, 47, 53, 55, 383, 389, 391, 392, 393, 510, 648, 702, 703].

If a symmetric relation is semibounded, then a boundary triplet can be chosen
so that A0 is the Friedrichs extension and A1 is a semibounded self-adjoint exten-
sion (for instance, a Krĕın type extension, when transversality is satisfied). This
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type of boundary triplet serves as an extension of the notions of positive boundary
triplets introduced in [43, 467]. The main part of the results in Section 5.5 when
specialized to the nonnegative case, reduce to the results in [245, 246]. A result
similar to Proposition 5.5.8 (ii) can be found in [349, 355], see also the more recent
contribution [362] that deals with elliptic partial differential operators on exterior
domains. We remark that the sufficient condition in Lemma 5.5.7 is also necessary
for the extension AΘ to be semibounded for every semibounded self-adjoint rela-
tion Θ in G; see [245, 246]. For an example where Θ is a nonzero bounded operator
with arbitrary small operator norm ‖Θ‖, while AΘ is not semibounded from below,
see [378]. In the context of elliptic partial differential operators on bounded do-
mains the boundary triplet in Example 5.5.13 appears implicitly already in Grubb
[352]; see also [169, 359, 557] and the notes to Chapter 8 for more details.

The first Green identity appearing in Theorem 5.5.14 establishes a link with
the notion of boundary pairs for semibounded operators and the corresponding
semibounded forms in Section 5.6. Definition 5.6.1 of a boundary pair for a semi-
bounded relation S is adapted from Arlinskĭı [44], see also [50] for the context of
generalized boundary triplets. This notion makes it possible to describe the closed
forms associated with all semibounded self-adjoint extensions of a given semi-
bounded relation S by means of closed semibounded forms in the parameter space.
In particular, Theorem 5.6.11 contains the description of all nonnegative closed
forms generated by the nonnegative self-adjoint extensions in [53]; for a similar
result in the case of maximal sectorial extensions see [44]. By connecting boundary
pairs with compatible boundary triplets (see Theorem 5.6.6 and Theorem 5.6.10)
one obtains an explicit description of the forms associated with all semibounded
self-adjoint extensions by means of the boundary conditions, see Theorem 5.6.13.

We remind the reader of the study of nonnegative self-adjoint extensions of
a densely defined nonnegative operator as initiated by von Neumann [610]; see
[280, 309, 310, 724, 773] and the papers by Krĕın [491, 492, 493, 494]. Krĕın’s
analysis was complemented by Vishik [747] and Birman [139]; see also [2, 14, 58,
157, 217, 295, 346, 347, 352, 354, 372, 464, 714]. For an operator matrix completion
approach see [383, 472], see also [81] for an extension in a Pontryagin space setting.
This approach has its origin in the famous paper of Shmuljan [704]. The notion
of boundary pairs for forms can also be traced back to Krĕın [493, 494], Vishik
[747], and Birman [139]. Some further developments can be found, e.g., in [36,
43, 44, 47, 48, 54, 56, 57, 248, 301, 357, 359, 363, 553, 555, 556], where also
accretive and sectorial extensions, and associated closed forms are treated, and see
also [552, 580, 581, 582, 636, 725]. A related concept of boundary pairs designed
for elliptic partial differential operators and corresponding quadratic forms was
recently proposed by Post [647].

A study of symmetric forms which are not semibounded and concepts of
generalized Friedrichs and Krĕın–von Neumann extensions goes beyond the scope
of the present text. However, an interested reader may consult in this direction,
e.g., [125, 215, 216, 303, 306, 364, 371, 374, 379, 570, 571].
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Notes on Chapter 6

The main textbooks in this area are [2, 26, 72, 208, 281, 284, 414, 420, 438,
489, 542, 574, 608, 663, 724, 740, 741, 754, 757, 782]. The Sturm–Liouville dif-
ferential expressions that we consider here have coefficients which are assumed to
satisfy some weak integrability conditions giving rise to quasiderivatives (where
under stronger smoothness conditions ordinary derivatives would suffice); see for
instance [724] where already such quasiderivatives were used. Most of the material
concerning singular Sturm–Liouville equations has been stimulated by the work
of Weyl [758, 759, 760]; see also [761]. For later work on operators of higher order
see, for instance, [200, 201, 465, 469, 470].

Section 6.1 and Section 6.2 contain standard material, where we follow parts
of [414, 757]; for the quasiderivatives in the limit-circle case we refer to [312]. The
treatment of the regular and limit-circle cases in Section 6.3 is straightforward; see
[312] and also [12] for a boundary triplet in the limit-circle case. For an alternative
description of boundary conditions and Weyl functions in the regular case we
mention the recent papers [197, 199, 332] using the concept of boundary data maps.
The limit-point case is treated in Section 6.4. In the proof of Proposition 6.4.4
concerning the simplicity of the minimal operator we follow the arguments of
R.C. Gilbert [336]; cf. [263]. The treatment of the Fourier transform in Lemma 6.4.6
and Theorem 6.4.7 uses the theory in Appendix B. The surjectivity is direct in
this case. The statement in Lemma 6.4.8 that the Fourier transform provides a
model for the Weyl function uses an argument provided in [281].

In general, interface conditions are a tool to paste together several boundary
value problems. The interface conditions which we consider in Section 6.5 make it
possible in the case of two endpoints in the limit-point case to consider minimal
operators [339, 740] and to apply the coupling of boundary triplets as explained
in Section 4.6. This automatically leads to some kind of exit space extensions. As
this goes beyond the present text, we only refer to [336, 338, 441, 713].

The present theory of subordinate solutions in Section 6.7 goes back to
D.J. Gilbert and D.B. Pearson [335]; see also [333, 334, 463]. Further contribu-
tions can be found in [433, 533, 655, 656, 657]; see also [738]. Our presentation is
modelled on [388].

If the minimal operator is semibounded one can apply the form methods
from Chapter 5. In the regular case the treatment of the forms associated with the
Sturm–Liouville expression in Section 6.8 is based on the inequality in Lemma 6.8.2
and Theorem 5.1.16; see [212, 493, 494, 757]. This makes it possible to introduce
boundary pairs which are compatible with the given boundary triplet. Section 6.9
and Section 6.10 contain preparatory material so that boundary pairs can be
introduced also when the endpoints are singular. Section 6.9 on Dirichlet forms is
inspired by Rellich [654] and Kalf [448]. The proof of Lemma 6.9.7 seems to be new.
Section 6.10 is concerned with principal and nonprincipal solutions; cf. [198, 368,
369, 535] and, in particular, [616]. The Hardy type inequalities in Lemma 6.10.1 go
back to [449]. The treatment is in some sense folklore, but Theorem 6.10.9 seems
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to be new. Our handling of the regular case in Section 6.8 serves as model for the
semibounded singular cases in Section 6.11 and Section 6.12. These two sections
are influenced by Kalf [448]; see also [671, 672] and a recent contribution [168].
The determination of the Friedrichs extension in our treatment goes hand in hand
with the boundary pair; see also [310, 311, 508, 597, 600, 601, 615, 616, 654, 661,
671, 672, 779, 782].

The case of an integrable potential on a half-line is treated in Section 6.13. It
appears already in [740], where the corresponding spectral measure is determined.
The construction of solutions with a given asymptotic behavior can be found for
instance in [542, 740]. The example with the Pöschl–Teller potential at the very
end of Section 6.13 can be found in, e.g., [2].

There is a large amount of literature devoted to special topics. For λ-depen-
dent boundary conditions we just refer to [117, 313, 314, 675, 687, 688, 689, 749]
and [261, 263] for Pontryagin exit spaces. The determination of the Krĕın–von
Neumann extension and other nonnegative extensions can be found in [212, 350].
For singular perturbations associated with Sturm–Liouville operators, see for in-
stance [331] and the later papers [9, 28, 29, 124, 171, 182, 282, 315, 316, 479, 480,
481, 482, 507, 531, 532, 549, 550]; for δ-point interactions we refer to [8, 293].
Special properties of the Titchmarsh–Weyl coefficient have been studied in many
papers; we just mention [130, 292, 366, 367]. Already early in the 20th century
there was an interest in boundary value problems with conditions at interior points
and, more general, integral boundary conditions; for instance, see [135, 583] and
for a later review [762]. It was pointed out by Coddington [203, 204] that such
conditions can be described in tems of relation extensions of a restriction of the
usual minimal operator; see for a brief selection also [188, 189, 190, 203, 204, 205,
206, 238, 264, 267, 270, 399, 403, 484, 485, 486, 697, 784].

The topic of semibounded self-adjoint extensions in Section 5.5 and Sec-
tion 5.6 is closely related to problems that are called left-definite in the literature;
we only mention [13, 131, 473, 474, 488, 545, 698, 699, 708, 748] and the references
therein. Another case of interest is when the weight function in the Sturm–Liouville
equation changes sign, in which case Krĕın spaces come up naturally: the following
is just a limited selection [116, 122, 123, 138, 223, 225, 304, 305]. Under certain cir-
cumstances the Weyl function in the limit-point case (of a usual Sturm–Liouville
operator) belongs to the Kac class; see for instance [420]. For further results in
this direction, see [384, 385, 386, 387]; in these cases there is a distinguished self-
adjoint extension, namely the generalized Friedrichs extension; see the notes on
Chapter 5. Sturm–Liouville equations with vector-valued coefficients are beyond
the scope of this text; see [345, 346] and for a recent contribution [330].

Notes on Chapter 7

Canonical systems of differential equations are discussed in the monographs [72,
340, 653, 681]. The spectral theory for such systems has been developed in vary-
ing degrees of generality in an abundance of papers [62, 63, 64, 85, 161, 162, 163,
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213, 263, 265, 279, 422, 423, 424, 425, 427, 428, 487, 575, 592, 612, 613, 614, 620,
667, 668, 669, 687, 688, 689, 692, 693, 694, 695, 696]. In [520] there is a general
procedure to reduce systems to a canonical form. Many investigations concerning
boundary problems can be written in terms of canonical systems; see for a general
procedure [619, 693], so that for instance [129, 211] can be subsumed. As a partic-
ular example we mention the system of second-order differential equations studied
in the dissertation of a student of Titchmarsh [191, 192, 193, 194]. Frequently con-
ditions are imposed on the canonical system so that there is a full analogy with
the usual operator treatment. However, in general one is confronted with relations.

The first treatment of canonical systems in terms of relations is due to Orcutt
[619]; see also [97, 408, 471, 524, 538] and [11, 593, 594]. In our opinion the present
case of 2×2 systems already serves as a good illustration of the various phenomena
that may occur. The interest in 2×2 systems is justified by the work of de Branges
[146, 147, 148, 149]; see also [278, 504, 528, 715, 716, 766, 767, 768, 769, 770, 771,
772]. Via these systems one may also approach Sturm–Liouville equations with
distributional coefficients as, for instance, in [281, 283]. In Remling [658] and the
forthcoming book [666] by Romanov our systems are treated with the de Branges
results in mind. For a number of topics we rely on the lecture notes by Kaltenbäck
and Woracek [460].

Sections 7.1, 7.2, and 7.3 contain preparatory material. The inequalites (7.1.1)
and (7.1.3) are standard for Bochner integrals. The construction of the Hilbert
space L2

Δ(ı) follows the treatment in [460]; see also [276, 670]. For further infor-
mation concerning these and more general spaces, see [440] and the expositions in
[2, 276]. The treatment of the square-integrable solutions in Section 7.4 is based on
the monotonicity principle in Theorem 5.2.11; cf. [97]. For a different treatment,
see for instance [612]. Section 7.5 is devoted to definite systems. The present no-
tion of definiteness can be found in [340, 619]; in the literature sometimes a more
restrictive form of definiteness is used. Proposition 7.5.4 can be found in [614,
Hilfsatz (3.1)] and [471]; for a more abstract treatment, see [98]. The modifica-
tion of solutions is avoided in [619]; the present argument in Proposition 7.5.6
seems to be new. The minimal and maximal (multivalued) relations associated
with canonical systems can be found in Section 7.6. They were originally intro-
duced by Orcutt [619]; see also Kac [442, 443, 444, 445] and [408]. The extension
theory for them naturally involves (multivalued) relations. In [97] it is indicated
how all such systems fit in the boundary triplet scheme; see also [471, 538].

In Section 7.7 it is assumed that the endpoints are (quasi)regular, in which
case a boundary triplet is constructed in Theorem 7.7.2. The resolvent of the
self-adjoint extension ker Γ0 is an integral operator whose kernel belongs to the
Hilbert–Schmidt class. In this way we can show that the operator part of the
minimal relation is simple. In Section 7.8 it is assumed that one of the endpoints
is in the limit-point case. We prove the simplicity of the operator part of the
minimal relation along the lines of [337], cf. [263] (see also Chapter 6 for the Sturm–
Liouville case). The treatment of the Fourier transform in the limit-point case uses
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Appendix B and parallels the treatment in Chapter 6. Subordinate solutions for
canonical systems are introduced in Section 7.9; cf. [388]. Here again we follow
the results for the Sturm–Liouville case in Section 6.7; see also the corresponding
notes in Chapter 5, where the appropriate references can be found.

The discussion of the special cases in Section 7.10 is just an indication of
the possibilities; we could also pay attention to, for instance, the so-called Dirac
systems. The connection with the Sturm–Liouville case and its generalization in
[281] is only briefly indicated. The special case in Theorem 7.10.1 is modelled
on [460]. For the connection of canonical systems with strings see, for instance,
[453]. Finally, we would like to mention that the approach via boundary triplets
allows also λ-dependent boundary conditions; for some related papers we refer to
[221, 263, 265, 675, 687, 688, 689, 742].

Notes on Chapter 8

The notion of Gelfand triples or riggings of Hilbert spaces in Section 8.1 is often
used in the treatment of partial differential equations and Sobolev spaces, and can
be found in a similar form in Berezanskĭı’s monograph [133] (see also the textbook
[774]); cf. [132] and the contributions [534, 537] by Lax and Leray. There are many
well-known textbooks on Sobolev spaces, among which we mention here only the
monographs [3, 5, 164, 136, 284, 291, 351, 569, 584, 744, 783]. In our opinion a
very useful source for trace maps, the Green identities, and similar related results
(also for nonsmooth domains) is the monograph [573] by McLean, see also the list
of references therein. For the description of the spaces Hs(∂Ω) in Corollary 8.2.2
as domains of powers of the Laplace–Beltrami operator on ∂Ω see [322, 544, 567].
In some cases it is also convenient to use powers of a Dirichlet-to-Neumann map,
as in [114].

The discussion of the minimal and maximal operators in Section 8.3 is stan-
dard, e.g., Proposition 8.3.1 can be found in Triebel’s textbook [745]. The H2-
regularity in Theorem 8.3.4 for smooth domains can be found in [167] and [84],
see also [4, 308, 544, 517] or [1, Theorem 7.2] for a recent very general result on
the H2-regularity of the Neumann operator (and more general) on certain classes
of nonsmooth bounded and unbounded domains. As explained in Section 8.7, for
the class of Lipschitz domains the H2-regularity of the Dirichlet and Neumann
Laplacian up to the boundary fails and has to be replaced by the weaker H3/2-
regularity; cf. [431, 432] and [92, 115, 323, 324, 325, 326] for some recent closely
related works dealing with Schrödinger operators on Lipschitz domains. In this
context we also mention the papers [585, 586, 587, 588] by Mitrea and Taylor for
general layer potential methods in Lipschitz domains on Riemannian manifolds.
It is worth mentioning that the resolvent of the Neumann Laplacian in Proposi-
tion 8.3.3 is not necessarily compact if the boundary of the bounded domain Ω is
not of class C2 (or not Lipschitz), see [415] for a well-known counterexample us-
ing a rooms-and-passages domain. For similar unusual spectral properties we also
mention Example 8.4.9 on the essential spectrum of self-adjoint realizations of the
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Laplacian on a bounded domain, which however is very different from a technical
point of view. In a related context the existence of self-adjoint extensions with pre-
scribed point spectrum, absolutely continuous, and singular continuous spectrum
in spectral gaps of a fixed underlying symmetric operator was also discussed in
[6, 7, 154, 156, 158, 159, 160]. For our purposes Theorem 8.3.9 and Theorem 8.3.10
play an important role; for the case of C∞-smooth domains such results can be
found in [544], see also [352, 354]. The present versions of the extension theorems
are inspired by slightly different considerations in [115]; the variant for Lipschitz
domains in Theorem 8.7.5 can be proved by means of a similar technique (see also
[92] for a comprehensive discussion). We remark that the definition and topolo-
gies on the spaces G0 and G1 in (8.7.4)–(8.7.5) from [92, 115] are partly inspired
by abstract considerations in [246] for generalized boundary triplets. Concerning
Section 8.3, as a final comment we mention that for more general second-order
elliptic operators in bounded and unbounded domains Proposition 8.3.13 can be
found in [118, 119, 120].

The boundary triplet in Theorem 8.4.1 can also be found in, e.g., [105, 169,
173, 359, 557, 643] and extends with some simple modifications to second-order
and 2m-th order elliptic operators with variable coefficients. In a different form
this boundary triplet is already essentially contained in the well-known work of
Grubb [352], where all closed extensions of a minimal operator elliptic partial
differential operator were characterised by nonlocal boundary conditions; see also
the early contribution [747] by Vishik and the fundamental paper [140] by Birman.
In fact, it seems that the more recent paper [27] by Amrein and Pearson on a
generalisation of Weyl–Titchmarsh theory for Schrödinger operators inspired many
operator theorists to investigate partial differential operators from an extension
theory point of view. Various papers based on boundary triplet techniques and
related methods were published in the last decade; besides those papers listed
before we mention as a selection here [18, 90, 91, 103, 107, 108, 251, 323, 324, 360,
429, 566, 568, 635, 647, 678] in which, e.g., Dirichlet-to-Neumann maps and Krĕın
type resolvent formulas are treated. For self-adjoint realizations of the Laplacians,
Schrödinger operators, and more general second-order elliptic differential operators
in nonsmooth domains we refer to, e.g., [1, 92, 115, 326, 358]. Particular attention
has been paid to the spectral properties of realizations with local and nonlocal
Robin boundary conditions in [41, 106, 179, 180, 226, 325, 361, 413, 543, 628,
629, 665]. Furthermore, the recent contributions [35, 36, 37, 38, 39, 40] by Arendt,
ter Elst, and coauthors form an interesting series of papers on elliptic differential
operators and Dirichlet-to-Neumann operators based mainly on form methods.

The present treatment of semibounded Schrödinger operator in Section 8.5
with the help of boundary pairs and boundary triplets seems to be new. However,
the problem of lower boundedness was also discussed with different methods in
[349, 355, 362]. The Krĕın–von Neumann extension which is of special interest in
this context was investigated in, e.g., [14, 68, 69, 70, 71, 93, 181, 356, 362, 578, 579].
For coupling methods for elliptic differential operators based on boundary triplet
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techniques in the spirit of Section 8.6 we refer to the recent paper [88], where also
an abstract version of the third Green identity was proved. Finally, we mention
that various classes of λ-dependent boundary value problems for elliptic operators
can be treated in such a context, see, e.g., [87, 103, 137, 285, 286].

Notes on Appendices A–D

The appendices were included for the convenience of the reader. Here we collect
some notes for each of the appendices A–D.

In Appendix A we present the basic properties of Nevanlinna functions that
are needed in the text. The Stieltjes inversion formula for the Borel transform is
folklore. The integral representation of scalar Nevanlinna functions is derived in a
classical way involving the Helly and Helly–Bray theorems; see [72, 763]. The inver-
sion formula in Lemma A.2.7 is standard; see [272, 446]. For the present purposes
it suffices to approach the integration with respect to operator-valued measures in
terms of improper Riemann integrals. For the operator measure version see for in-
stance [691]. For Kac functions, Stieltjes functions, and inverse Stieltjes functions
see [49, 52, 329, 407, 446, 447, 505]. As far as we know, the proof of Proposi-
tion A.5.4 is new; cf. [572]. For related work see [318, 319, 329, 602]. The case of
generalized Nevanlinna functions was initiated in the works of Krĕın and Langer
[499, 500]; see [145, 225, 232, 239, 242, 255, 380, 411, 434, 435, 437, 546, 547, 548]
for further developments.

For the general notion of Fourier transforms in Appendix B associated with
Sturm–Liouville equations, see [539, 540, 542, 700, 701, 740, 780, 781]. Our basic
idea here is inspired by the treatment in [208]. The arguments establishing the
surjectivity of the Fourier transform are also inspired by [281, 715, 716]. Fourier
transforms that are partially isometric go back at least to [204] in a treatment con-
nected with multivalued operators. The discussion in this section has connections
with the treatment of Krĕın’s directing functionals in [495, 518, 526, 527].

Necessary and sufficient conditions (as in Appendix C) for the sum of closed
subspaces have a long history. The concept of opening of a pair of subspaces goes
back to Friedrichs and Dixmier; see for instance [214, 249, 250]. Lemma C.4 goes
back to [246].

The main reference for Appendix D is the paper by Douglas [273]; see also
[30, 299]. There have been many generalizations of the Douglas paper. We only
mention a particular direction of extension, namely [639, 684]; see also [402]. The
application in Proposition 1.5.11 in Chapter 1 has the same flavor, but is obtained
by reduction to the case in this appendix; see [390].
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[27] W.O. Amrein and D.B. Pearson. M -operators: a generalisation of Weyl–Titch-
marsh theory. J. Comp. Appl. Math. 171 (2004) 1–26.

[28] A.Yu. Ananieva and V. Budyika. To the spectral theory of the Bessel operator on
finite interval and half-line. J. Math. Sciences 211 (2015) 624–645.

[29] A.Yu. Ananieva and V.S. Budyika. On the spectral theory of the Bessel operator
on a finite interval and the half-line (Russian). Differ. Uravn. 52 (2016) 1568–1572
[Differential Equations 52 (2016) 1517–1522].



Bibliography 723

[30] W.N. Anderson Jr. and G.E. Trapp. Shorted operators. II. SIAM J. Appl. Math.
28 (1975) 60–71.

[31] T. Ando. Linear operators on Krein spaces. Division of Applied Mathematics, Re-
search Institute of Applied Electricity, Hokkaido University, Sapporo, 1979.

[32] T. Ando. Reproducing kernel spaces and quadratic inequalities. Division of Ap-
plied Mathematics, Research Institute of Applied Electricity, Hokkaido University,
Sapporo, 1987.

[33] T. Ando. De Branges spaces and analytic operator functions. Division of Applied
Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sap-
poro, 1990.

[34] T. Ando and K. Nishio. Positive selfadjoint extensions of positive symmetric oper-
ators. Tohoku Math. J. 22 (1970) 65–75.

[35] W. Arendt and A.F.M. ter Elst. The Dirichlet-to-Neumann operator on rough
domains. J. Differential Equations 251 (2011) 2100–2124.

[36] W. Arendt and A.F.M. ter Elst. Sectorial forms and degenerate differential opera-
tors. J. Operator Theory 67 (2012) 33–72.

[37] W. Arendt and A.F.M. ter Elst. From forms to semigroups. Oper. Theory Adv.
Appl. 221 (2012) 47–69.

[38] W. Arendt and A.F.M. ter Elst. The Dirichlet-to-Neumann operator on exterior
domains. Potential Analysis 43 (2015) 313–340.

[39] W. Arendt, A.F.M. ter Elst, J.B. Kennedy, and M. Sauter. The Dirichlet-to-
Neumann operator via hidden compactness. J. Functional Analysis 266 (2014)
1757–1786.

[40] W. Arendt, A.F.M. ter Elst, and M. Warma. Fractional powers of sectorial opera-
tors via the Dirichlet-to-Neumann operator. Comm. Partial Differential Equations
43 (2018) 1–24.

[41] W. Arendt and M. Warma. The Laplacian with Robin boundary conditions on
arbitrary domains. Potential Analysis 19 (2003) 341–363.

[42] R. Arens. Operational calculus of linear relations. Pacific J. Math. 11 (1961) 9–23.
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[166] M.S. Brodskĭı. Unitary operator colligations and their characteristic functions
(Russian). Uspekhi Mat. Nauk 33 (1978) 141–168 [Russian Math. Surveys 33 (1978)
159–191].

[167] F.E. Browder, On the spectral theory of elliptic differential operators. I. Math.
Ann. 142 (1961) 22–130.

[168] B.M. Brown and W.D. Evans. Selfadjoint and m-sectorial extensions of Sturm–
Liouville operators. Integral Equations Operator Theory 85 (2016) 151–166.

[169] B.M. Brown, G. Grubb, and I. Wood. M -functions for closed extensions of adjoint
pairs of operators with applications to elliptic boundary problems. Math. Nachr.
282 (2009) 314–347.

[170] B.M. Brown, J. Hinchcliffe, M. Marletta, S. Naboko, and I. Wood. The abstract
Titchmarsh–Weyl M -function for adjoint operator pairs and its relation to the
spectrum. Integral Equations Operator Theory 63 (2009) 297–320.



Bibliography 731

[171] B.M. Brown, H. Langer, and M. Langer. Bessel-type operators with an inner sin-
gularity. Integral Equations Operator Theory 75 (2013) 257–300.

[172] B.M. Brown, H. Langer, and C. Tretter. Compressed resolvents and reduction of
spectral problems on star graphs. Complex Anal. Oper. Theory 13 (2019) 291–320.

[173] B.M. Brown, M. Marletta, S. Naboko, and I. Wood. Boundary triplets and M -
functions for non-selfadjoint operators, with applications to elliptic PDEs and block
operator matrices. J. London Math. Soc. (2) 77 (2008) 700–718.

[174] B.M. Brown, M. Marletta, S. Naboko, and I. Wood. Inverse problems for boundary
triples with applications. Studia Mathematica 237 (2017) 241–275.

[175] B.M. Brown, D.K.R. McCormack, W.D. Evans, and M. Plum. On the spectrum
of second-order differential operators with complex coefficients. Proc. Roy. Soc.
London A 455 (1999) 1235–1257.

[176] V.M. Bruk. A certain class of boundary value problems with a spectral parameter
in the boundary condition (Russian). Mat. Sb. 100 (1976) 210–216 [Sb. Math. 29
(1976) 186–192].

[177] V.M. Bruk. Extensions of symmetric relations (Russian). Mat. Zametki 22 (1977)
825–834 [Math. Notes 22 (1977) 953–958].

[178] V.M. Bruk. Linear relations in a space of vector functions (Russian). Mat. Zametki
24 (1978) 499–511 [Math. Notes 24 (1978) 767–773].

[179] V. Bruneau, K. Pankrashkin, and N. Popoff. Eigenvalue counting function for
Robin Laplacians on conical domains. J. Geom. Anal. 28 (2018) 123–151.

[180] V. Bruneau and N. Popoff. On the negative spectrum of the Robin Laplacian in
corner domains. Anal. PDE. 9 (2016) 1259–1283.

[181] V. Bruneau and G. Raikov. Spectral properties of harmonic Toeplitz operators and
applications to the perturbed Krein Laplacian. Asymptotic Analysis 109 (2018) 53–
74.

[182] R. Brunnhuber, J. Eckhardt, A. Kostenko, and G. Teschl. Singular Weyl–
Titchmarsh–Kodaira theory for one-dimensional Dirac operators. Monatsh. Math.
174 (2014) 515–547.
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[220] B. Ćurgus. Definitizable extensions of positive symmetric operators in a Krĕın
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[221] B. Ćurgus, A. Dijksma, and T. Read. The linearization of boundary eigenvalue
problems and reproducing kernel Hilbert spaces. Lin. Alg. Appl. 329 (2001) 97–
136.
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for indefinite quadratic forms revisited. Mathematika 59 (2013) 169–189.

[365] M. Haase. The functional calculus for sectorial operators. Oper. Theory Adv. Appl.,
Vol. 169, Birkhäuser, 2006.
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[441] I.S. Kac. Spectral multiplicity of a second-order differential operator and expansion
in eigenfunctions. Izv. Akad Nauk. SSSR Ser. Mat 27 (1963) 1081–1112.

[442] I.S. Kac. Linear relations generated by canonical differential equations (Russian).
Funktsional. Anal. i Prilozhen 17 (1983) 86-87.

[443] I.S. Kac. Linear relations, generated by a canonical differential equation on an
interval with regular endpoints, and the expansibility in eigenfunctions (Russian).
Deposited Paper, Odessa, 1984.

[444] I.S. Kac. Expansibility in eigenfunctions of a canonical differential equation on
an interval with singular endpoints and associated linear relations (Russian).
Deposited in Ukr NIINTI, No. 2111, 1986. (VINITI Deponirovannye Nauchnye
Raboty, No. 12 (282), b.o. 1536, 1986).

[445] I.S. Kac. Linear relations, generated by a canonical differential equation and ex-
pansibility in eigenfunctions (Russian). Algebra i Analiz 14 (2002) 86–120 [St.
Petersburg Math. J. 14 (2003) 429–452].
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[508] T. Kusche, R. Mennicken, and M. Möller. Friedrichs extension and essential spec-
trum of systems of differential operators of mixed order. Math. Nachr. 278 (2005)
1591–1606.



750 Bibliography

[509] A. Kuzhel and S. Kuzhel. Regular extensions of Hermitian operators. Kluwer, 1998.

[510] S. Kuzhel. On some properties of unperturbed operators. Methods Funct. Anal.
Topology 2 (1996) 78–84.

[511] S. Kuzhel and M. Znojil. Non-self-adjoint Schrödinger operators with nonlocal one-
point interactions. Banach J. Math. Anal. 11 (2017) 923–944.

[512] J.Ph. Labrousse. Geodesics in the space of linear relations in a Hilbert space. 18th
Oper. Theory Conf. Proc. (2000) 213–234.

[513] J.Ph. Labrousse. Idempotent linear relations. In: Spectral theory and its applica-
tions. The Theta Foundation, 2003, pp. 121–141.

[514] J.Ph. Labrousse. Bisectors, isometries and connected components in Hilbert spaces.
Oper. Theory Adv. Appl. 198 (2009) 239–258.

[515] J.Ph. Labrousse, A. Sandovici, H.S.V. de Snoo, and H. Winkler. The Kato decom-
position of quasi-Fredholm relations. Operators Matrices 4 (2010) 1–51.

[516] J.Ph. Labrousse, A. Sandovici, H.S.V. de Snoo, and H. Winkler. Closed linear
relations and their regular points. Operators Matrices 6 (2012) 681–714.

[517] O.A. Ladyzhenskaya and N.N. Uraltseva. Linear and quasilinear elliptic equations.
Mathematics in Science and Engineering, Vol. 46, Academic Press, 1968.
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[561] M.M. Malamud and V.I. Mogilevskĭı. Generalized resolvents of an isometric oper-
ator (Russian). Mat. Zametki 73 (2003) 460–465 [Math. Notes 73 (2003) 429–435].

[562] M.M. Malamud and H. Neidhardt. On the unitary equivalence of absolutely con-
tinuous parts of self-adjoint extensions. J. Functional Analysis 260 (2011) 613–638.

[563] M.M. Malamud and H. Neidhardt. Perturbation determinants for singular pertur-
bations. Russ. J. Math. Phys. 21 (2014) 55–98.

[564] M.M. Malamud and H. Neidhardt. Trace formulas for additive and non-additive
perturbations. Adv. Math. 274 (2015) 736–832.
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manifolds: Hölder continuous metric tensors. Comm. Partial Differential Equations
25 (2000) 1487–1536.

[588] M. Mitrea and M. Taylor. Potential theory on Lipschitz domains in Riemannian
manifolds: Lp, Hardy and Hölder type estimates. Commun. Anal. Geometry 9
(2001) 369–421.
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[597] M. Möller. On the unboundedness below of the Sturm–Liouville operator. Proc.
Roy. Soc. Edinburgh 129A (1999) 1011–1015.
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[608] M.A. Năımark. Linear differential operators II. Ungar Pub. Co., 1967.

[609] M.Z. Nashed (editor). General inverses and applications. Academic Press, 1976.

[610] J. von Neumann. Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren.
Math. Ann. 102 (1930) 49–131.
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[664] H. Röh. Self-adjoint subspace extensions satisfying λ-linear boundary conditions.
Proc. Roy. Soc. Edinburgh 90A (1981) 107–124.

[665] J. Rohleder. Strict inequality of Robin eigenvalues for elliptic differential operators
on Lipschitz domains. J. Math. Anal. Appl. 418 (2014) 978–984.

[666] R. Romanov. Canonical systems and de Branges spaces. arXiv:1408.6022.

[667] B.W. Roos and W.C. Sangren. Spectra for a pair of singular first order differential
equations. Proc. Amer. Math. Soc. 12 (1961) 468–476.

[668] B.W. Roos and W.C. Sangren. Three spectral theorems for a pair of singular first
order differential equations. Pacific J. Math. 12 (1962) 1047–1055.

[669] B.W. Roos and W.C. Sangren. Spectral theory of Dirac’s radial relativistic wave
equation. J. Math. Phys. 3 (1962) 882–890.

[670] M. Rosenberg. The square-integrability of matrix-valued functions with respect to
a non-negative Hermitian measure. Duke Math. J. 31 (1964) 291–298.

[671] R. Rosenberger. Charakterisierungen der Friedrichsfortsetzung von halbbeschränk-
ten Sturm–Liouville Operatoren. Doctoral dissertation, Technische Hochschule
Darmstadt, 1984.

[672] R. Rosenberger. A new characterization of the Friedrichs extension of semibounded
Sturm–Liouville operators. J. London Math. Soc. 31 (1985) 501–510.

[673] M. Rosenblum and J. Rovnyak. Hardy classes and operator theory. Oxford Univer-
sity Press, 1985.
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