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Casopis pro péstovini matematiky, rot. 101 (1976), Praha

BOUNDARY VALUE PROBLEMS WITH JUMPING NONLINEARITIES

SvarorLuk Fucik, Praha
(Received August 30, 1974)

1. INTRODUCTION

Consider the nonlinear two point boundary value problem

(1.1) u'(z) + Y(u(0) = p(7),
u(0) = u(n) = 0,
where V¥ is a continuous real-valued function defined on (— 0, o). If _
tim Y jim ¥ _ 4
b & tmmw ¢

we shall say that the nonlinearity \ is not jumping. The results obtained under various
assumptions may be summarized as follows:

I. If A = oo (see [3]) or A + n?, n is positive integer (see e.g. [6], [10]) then (1.1)
has a solution for any right hand side p.

The assumption A + n® means that A4 is not an eigenvalue of the boundary value
problem

(1.2) u(t) + Au(z) =0,
u(0) = u(n) = 0.

IL If A = n? (see e.g. [4], [5], [9], [13]) then necessary and sufficient conditions
on p have been given for (1.1) to be solvable.

If
lim '—l@ * lim M

v £ - €

we shall say that the nonlinearity ¥ is jumping.
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11I. Under some assumptlons 1t is proved (see [10] for partial differential analogue
see [8]) that if
n* < lim ‘{I(é

- &0

<(n+1)*,

n* < lim ‘[’(C)
)

<(n+ 1)

(n is positive integer) then (1.1) is solvable for any right hand side p.

In this case the nonlinearity may be jumping but it does not jump over an eigenvalue
of (1.2). To the author’s best knowledge, the first result about solvability of (1.1)
with the nonlinearity jumping over an eigenvalue of (1.2) is proved by A. AMBROSETTI
and G. Propi (see [1], for partial differential analogue see [2], a generalization is
given in [12]).

IV (see [1]). Let ¢ be a continuous function of class C? satisfying the following
conditions:

(i) w(0) =0;
(i) ¥"(¢) >0, Ee(—o0, 0);
(iii) 0 < lim ‘/’(5)

§—

(iv) 1<1imlﬁg—)<4

& o0

Then there exists in C<0, n> a closed connected C'-manifold M of codimension 1,
such that C<0, n) \ M consists of exactly two connected components 4, 4, with the
following properties:

() if pe A, then (1.1) has no solution;
(b) if pe 4, then (1.1) has exactly two solutions;
(c) if pe M then (1.1) has a unique solution.

In the last case the nonlinearity  jumps over the least eigenvalue of (1.2). This
paper deals with the following cases:

(o) the nonlinearity ¥ jumps over an eigenvalue of (1.2) which is not the least
(see 2.15, 2.17);

(B) the nonlinearity jumps over more than one eigenvalue of (1.2) (see 2.18);
(y) the nonlinearity jumps from an eigenvalue of (1.2) to another one (see 2.16);

(8) the nonlinearity jumps off an eigenvalue (but not to another) (see 2.15—2.17,
3.9-3.11).
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The paper serves also as an example that the assumptions (iii) and (iv) are essential
for the assertion in 1V since if the nonlinearity jumps over an eigenvalue which is not
the least we obtain solvability of (1.1) for arbitrary right hand side.

The proofs are based on the properties of the Leray-Schauder degree which are
for the reader’s convenience recalled in 2.2. Routine and tedious calculations play
by no means a merely trifling part in the proofs. From this point of view it seems that
it is not possible to obtain the partial differential analogue of the results given here
in the same way. Thus the problem of solvability of boundary value problems for
nonlinear partial differential equations with a nonlinearity of one of the types (o) —(8)
remains open. On the other hand, the partial differential analogues of [—IV (except
the case A = o0) are known. Other open problems are formulated in the ends of
both sections.

2. JUMPING OUTSIDE THE LEAST EIGENVALUE

2.1. Notation and terminology. Unless otherwise stated, we shall suppose that X
and Y are real Banach spaces with the norms H “ x and “ {Y, respectively. Let F be
a mapping with the domain D < X and values in Y (F: D < X — Y). Then F is
said to be completely continuous on D if for each bounded subset M < D, F(M) is
compact and F is continuous on D.

2.2. Leray-Schauder degree. Let K, = {x € X; ]}x“x <pglandlet F: K, c X - X
(the bar denotes the closure) be a completely continuous mapping. Denote by Id the
identity mapping in X, i.e. Id(x) = x for every x € X. Let x — F(x) % Oy (0, means
the zero element of X) for each x € X with ”xHX = . Then it is possible to define
the Leray-Schauder degree d[Id — F; K,, 04| of the mapping Id — F with respect
to K, and the point Oy so that (see e.g. [7]):

I d[Id;K,, 0x] = 1;
1. d[Id — F; K,, Ox] = 0 implies that there exists at least one X, € K, such that
xo = F(x). _ ‘
II. Let G: K, = X —» X be also a completely continuous mapping. Suppose
that for each x € K,, [|x]x = ¢ and t€ (0,1 it is x — F(x) — ¢ G(x) 4 Oy. Then
d[Id — F; K,, 05] = d[Id — F — G: K,, 0x].

1V. Suppose that for arbitrary k € (0, 1) the equation

has only the trivial solution. Then
d[Id - F;K,, 0] = 0.
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1—1H imply immediately
V (Schauder fixed point theorem). Let F(K,) < K,. Then there exists at least one
xo € K, such that F(x,) = x,.

2.3. Lemma. Let J be an isomorphism between X and Y. Let S : X - Y,R: X - Y
be completely continuous mappings. Suppose that there exist « 20, 20,
y €0, 1) such that

(23.1) IRy < & + Bk

Jor every xe X.
For every xe X and t 2 0, let

(2.3.2) . S(tx) =t S(x) .
Then the equation
(2.3.3) J(x) = S(x) + R(x) = y
is solvable for any right hand side y € Y provided the equations

1
1+ k

(23.4) Jo) = o S) ~ = S(=)

have for each k € 0, 1) the trivial solution only.

Proof. Since the operator J is an isomorphism between X and Y it is sufficient
to show that the equation

(235) X = 07U S() + 7RG =

1

is solvable for any n € X, where J~' is the inverse of J. First of all we notice that

there exists ¢ > 0 such that

(23.6) [x = 774 S()]x 2 ¢fx]«x

for every x € X. Let n € X be arbitrary but fixed. There exists ¢ > 0 such that
(23.7) co > (o + o) I + nlx -

Put K, = {xe X; ”x“x < g}. It is easy to see that the mappings J~'S and J™'R
are completely continuous. From (2.3.6), (2.3.7) according to III (see 2.2) we have

d[x — J71 S(x) + J7' R(x) — n; K,, 04] = d[x — J ™! S(x); K,, 0] .
Now it is sufficient to show (see the property II from 2.2) that

d[x — J7!1 S(x); K,, 0] + 0.
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This fact follows immediately from our assumption that the equations (2.3.4) have
for each k € {0, 1> only the trivial solution and form the property 1V of the Leray-
Schauder degree.

2.4. Notation. In the sequel, L,(0, n) (p = 1) will denote the space of all measurable
real-valued functions u such that |u|” is integrable, with the usual norm

Jils, = { [ o e}

(4, v) = J 0 u(z) oft) de

and with the inner product

if p=2

For k =0,1,2,..., C¥0, n> will denote the space of all functions which are
k-times continuously differentiable on (0, 7) and such that the derivatives can be
extended continuously to <0, n)>. With the usual norm

|#fex = sup sup u(x)],

0<r=<kxe(0,n

C*¢0, ) is a Banach space. C5<0, n) will denote the subspace of C*¢0, ) consisting
of all functions which are zero at 0 and 7.

Denote by W,<0, n> the Sobolev space of all real-valued absolutely continuous
functions u on the interval <0, ) whose derivatives u’ (which exist almost every-
where) are elements of L,(0, 7). Put W30, ) = WiK0, 1) 0 €3¢0, n). It is easy
to see that W;(O, 7y is a Hilbert space with the inner product

Cu,v) = (u',v'), u,ve W;(O, ny "

and that the imbedding i :u — uisa completely continuous mapping from W2<0 )
into C3<0, ).

Let g be a continuous real-valued function defined on (——oo, oo) and such that
there exist ¢; = 0, ¢, = 0 and y € €0, 1) such that

(2'4'1) Ig(é)l Se + Czlély

for every & € (— o0, o0).

2.5. Definition. Let p e L,(0, 1), u, v real numbers. The function u, e W3(0, n)
is said to be a weak solution of the boundary value problem

(2.5.1) u'(7) + put(t) — vu(v) + g(u(x)) = p(x),
u(0) = u(n) = 0
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(where u*(7) = max {u(t), 0}, u~(x) = max {—u(z),0}) if for every ve W10, n)
the integral identity

@52~ [ utv@dr s u[ w5 ¢ - [ e oc +

0

+ f 0 9(uo(?)) v(r) dr = '[ 0 p(x) o(z) dr
holds.

The existence of a weak solution of the boundary value problem (2.5.1) will be

proved (under some assumptions) by means of Lemma 2.3 the assumptions of which
will be verified in 2.6 and 2.8.

Let ue W!<0, 7> and pe L,(0, ) be fixed. It is easy to see that

Jyivieo — j u'(7) v'(r) dr,
0

sum4~urwﬁﬁwm+vrwﬁﬂﬁﬁ»

¢ [¢]

mwhjkwmmmu

cwwmeMr

0

are continuous linear functionals on the space W1(0,7> = X = Y. By the Riesz

representation theorem there exist uniquely determined elements J(u), S(u), R(u),
¥y € X such that

), 0> = o), <Sm), 0> = s5,0), <R@),v> =rfo), <y =E0)

for any v € X.

2.6. Lemma. a) The mapping J is an isomorphism on W3(0, 7);
b) the mappings S and R are completely continuous;
¢) there exist a 2 0, B 2 0, y€<0, 1) such that
| IR@lss = + Bluli

for every ue Wi(0, n); ‘
d) S(tu) = t S(u) for every u e Wi(0,7) and t 2 0.
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Proof. The assertions a), ¢) and d) are obvious. The assertion b) follows im-
mediately from the complete continuity of the imbedding from W3<0, ) into
€3¢0, 1.

2.7. Lemma. Let pe C°(0, n) and let uy€ W;(O, n) be a weak solution of the
boundary value problem (2.5.1). Then uge C}<0, ) and the equation in (2.5.1)
is satisfied at every v € {0, n).

(This regularity result can be obtained immediately by integrating by parts in the
integral identity (2.5.2).)
Denote by N the set of all positive integers.

2.8. Lemma. The boundary value problem
(2.8.1) W'(t) + put(t) = vu(r) =0,
u(0) = u(n) =0

has a nontrivial weak solution if and only if.one from the following conditions is
satisfied:

a) ¥ =1, i is arbitrary;
b) ¥ is arbitrary, i = 1;

Gis1 >0 e = AT ey

\/#+\/V
dya>1,7>1, wz(v,g)=ﬂ.‘/—ﬁ—lQeN;
NFEINE
e) i>1,7>1, wiﬁ,ﬁ):ilz(:‘_/_v;ﬁ__l_)ef\l.
VE+ P

Proof. Let u, € W10, n> be a nontrivial weak solution of (2.8.1). In virtue of the
assertion of Lemma 2.7 it is u, € C5<0, =) and u, is a nontrivial classical solution of
(2.8.1). According to the Uniqueness Theorem for ordinary differential equations the
function u, has a finite number of zero points in the interval (0, n). If u, has no zero
point in (0, 7) then we obtain either a) or b). If u, has a zero point in (0, 7) then
¥ > 0, g > 0 and the function u, is periodic with the period

i ( 1 + 1
AR
(since on the interval where the function u, is positive there exists a constant m > 0
such that uo(t) = m sin /(f) © and analogously u(t) = nsin \/(¥) © with a suitable
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constant n < 0 on the interval where uo(1) < 0). Hence one of the equations

(e )=t
v
1
v \//1

1 1 + o (
\/ v \/ ﬁ VY
must have a positive integer k for a solution. Thus one of the conditions ¢)—e) is

fulfilled.
Conversely, if one of the conditions a)—e) is fulfilled then it is easy to construct

a nontrivial classical solution of (2.8.1) and thus also a nontrivial weak solution.

-

Let k € (0, 1) and let us consider the equation (2.3.4) in our special case, i.e. we
shall seek the nontrivial v € W; <0, 7> such that the integral identity

_ J':u'(f) (e de = — Mf:u+(r) o) dr + %’%f u™() of) dr

1+ k .

holds for all v e W10, n). (According to the assertion of Lemma 2.7, u € C2{0, ©)
and satisfies at every point 7 € {0, > the equation

" u+ kv v+ ku _
u'(t) + u(t) — ~u (1) =0.
O+ v - w9 = 0)

2.9. Theorem. Let u < 1, v < 1, let a continuous function g satisfy the condition
(2.4.1). Then the boundary value problem (2.5.1) is weakly solvable for every

pe L0, n).

Proof. If u < 1 and v < 1 then also

prky g ovEke

1+k 1+ k

With respect to the assertion of Lemma 2.8, the equations (2.3.4) have for arbitrary
k € {0, 1) the trivial solution only. The other assumptions of Lemma 2.3 are verified
in Lemma 2.6. Thus the assertion of Theorem follows from Lemma 2.3.

2.10. Remark. The assertion of the previous theorem is well-known. It follows
immediately from the Leray-Lions theorem (see [11]).
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Eet u > 1, v > 1 and put

t +1
o (v, p) = max o, (»v»tit JE Y),

(0,1 P+t 1+t
. ! ! t
v, t) = min o, Li_i" B+ )
1¢0.1> L+t 141t
fori=1,2,3. N

Analogously as Theorem 2.9, we obtain immediately from the above lemmas the
following result.

2.11. Theorem. Let & > 1, v > | and let the continuous function g satisfy the
condition (2.4.1). Then the boundary value problem (2.5.1) is weakly solvable
for every pe L,(0, ) provided

(2.11.1), <opiv, ), Dy, )y NN = (D‘
for i =1,23.
2.12. Corollary. Let pu=v = m? m¢N and let the continuous function g

satisfy the condition (2.4.1). Then the boundary value problem (2.5.1) is weakly
solvable for every p e L (0, n).

2.13. Remark. It is possible to obtain the assertion of the previous corollary also
from the so-called “Fredholm alternative for nonlinear operators” (see e.g. [6,
Chapter I1]).

2.14. Remark. Let | < u < v, k =v+ u. By elementary calculation we obtain:

(v ) = max evlk—o 1 \/(&1);

ocCuk/2) Ve +J(k — o) 2 2
. k — :
(Pl("’ l,[) = min \/Q \/( Q) —_ \/V \/y; ;
cccukiyJo + Sk —@) v+ b

®,(v, p) = max Jik - o) (We - 1) = l( /(Hl) - 1) ;
N

cccukizy o + (k= o) 2 2

o p) = min YE=QWe=1 _Jv(u-1)

oedp k)2 \/Q + \/(k - Q) \/v + \/u .

In the same way we have

®5(v, p) = max z(p)
oelu.k/2)
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and
@3(1’, ,u) = min Z(Q) s

eeln.k/2)
where
—90)—1
Celk-9 -1
Vo + Jk— o)
It is

(k _ 0)3/2 - Q3/2 —k

O e+ e o7 e i

on {u, k|2). If w(/v — 1) < p(/u + 1) then z'(g) < 0 and

O, ) = J—:‘—y:-}ﬂ

o139

If v(/v—1)> w1 + 1) then there exists exactly one go € (u, k/2) such that
Z'(o) = 0 and

z(go) = max z(g) = ¢3'*[k .
oelp /2%

Thus
®4(v, u) = z(0o) ,

oo -mfi (59 5252

It follows from the previous calculation that the conditions (2.11.1), (i=1,2, 3)
assume that form :

(s e
and .

(2.142) <i\”7l%x/f-;v_‘) Ay, u)> AN=0,
where

M if v —1) < p(Jpr+1)
A(v,u)={ NITEINA (\/‘ ) = uu
2(o) if /v~ 1) > u(u + 1),
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for @,(v, n) £ @5(v, 1) £ ®,(v, ) £ D3(v, p). It is easy to see that

2(e0) = 03"%[k < % \/(v ; u)_

Since @,(v, ) < @,(v, 1) and P3(v, ) < @,(v, 1), we shall consider the condition

(2.14.3) <_1/.:’/_ﬁ/{_:7v1_) _;. \/(L‘Zt_&» AN =0

instead of (2.14.1) and (2.14.2) if (/v — 1) > p(y/u + 1). 1t is possible to con-
sider the condition (2.14.3) also if

Wy = 1) S i+ ).

2.15. Corollary. Let a continuous function g satisfy the condition (2.4.1). Let
m > 1. Then there exists e, > 0 such that for every ¢ € (0, &,) the boundary value
problem (2.5.1) is weakly solvable for every pe L,(0,n) provided p = m?, v =
= (m + ¢)*.

Proof. It is sufficient (see 2.11 and 2.14) to show that there exists &, such that for
ee(0, g,) we have

(m+ef(m+e—1)<m’(m+1),
(m/2,(m + &)2)AN=90,
((m =12, (m+e—-1)2)AnN=90.

The existence of ¢, with the previous properties is trivial.

2.16. Corollary. Let a continuous function g satisfy the condition (2.4.1). Suppose
that € 20, 6 20, e + 6 <1 and let n be an odd positive integer, n = 3. Put
i=(n+eP v=(n+1—05)% Then the boundary value problem (2.5.1) has
a weak solution for arbitrary p e L,(0, ).

Proof. According to 2.11 and 2.14 it is sufficient to verify the condition (2.14.3).
It is easy to see that

<(n+1—5)(n+8——1)’ l\/((n+8)2+(n+1——6)2>>mNc

2n+1—-9d0+e¢ 2 2

- n+s—1, n+1-96§ AN =0
2 2

for n is odd.

2.17. Corollary. Let a continuous function g satisfy the condition (2.4.1). Sup-
pose that 1 >¢20, 1>820, e+8>0. Put p=(n—¢)? v=(n+3)?
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where n is an odd positive integer, n = 3. Moreover, let
(2.17.1) 8(n—1-2)>¢en+1).
Then the boundary value problem (2.5.1) has a weak solution for arbitrary

p e L,(0, m).

-

Proof. Similarly as in the proof of 2.16 we have

<(n +2i) in 6—__8 8— n % \/((n — &)’ ; (m + 5)2>> AN e

for n is odd.

2.18. Example. In the previous corollaries we solved the problem when the non-
linearity jumps over one eigenvalue (see 2.15 and 2.17) or jumps from an eigenvalue
to the next one (see 2.16). 2.11 and 2.14 imply also the weak solvability of (2.5.1)
if the nonlinearity jumps over two eigenvalues. An example is provided by the case
u =275, v = 4.75% for

2 2
<:4_7§__._11§ 1J(2-75 4TS >>nNc<1,z>nN=o.

275 + 475 2 2

2.19. Remark. Let g be a continuous function satisfying (2.4.1). Let the couple p, v
satisfy the assumptions from one of the parts 2.15—2.18. Then the boundary value
problem

(2.19.1) u'(t) + vut(e) — pu(v) + g(u(x)) = p(r),
u(0) = u(n) =0
has a weak solution for arbitrary p € L,(0, r).

Proof. Let p € L,(0, n). The continuous function & — —g(—¢) satisfies the con-
dition (2.4.1). By 2.15~2.18, the boundary value problem

@)+ ) = vur (@) — o) = (o),
u(0) = u(n) = 0

has a weak solution u, e H?;(O, ny. Thus the function —u, is a weak solution of
(2.19.1).

2.20. Open problems. a) Are the assertions of 2.16 and 2.17 true also if n is an even
integer?
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b) Is true that the boundary value problem (2.5.1) is weakly solvable for arbitrary
peL (0, n)ifonly p> 1, v> 1, u+v?

3. JUMPING OFF THE LEAST EIGENVALUE

3.1. Notation. Let g be a continuous function defined on (— o0, o) and suppose
that there exist ¢; = 0, ¢, = 0 such that

(G.1.1) l9(@)] £ e + eaft]

for every ¢e(—oc, ). Let v > | be a real number. Define the mappings
L:C30, my - C%0, n), N : C3<0, > — C°¢0, n) by the formulas

(3.1.2) . Liu—u"+u,
(3.1.3) : N:iu=vou(7) - gu(r)),

where v, = v — L.
To obtain the (classical) solution of the boundary value problem

(3.1.4) Cu'(n) + ut () — vu (1) + g(u(x)) = p(r),
u(0) = u(n) = 0

for pe C%0, n) we have to show that the operator equation

(3.1.5) L(u) = N(u) + p

is solvable in CZ0, n).

3.2. Lemma. a) The mapping L defined by the formula (3.1.2) is linear and
continuous. The null-space Ker [L] of Lis a linear hull generated by the function
T sin7, ie.,

Ker [L] = {Asint; Ae(—o0, 0)}.

b) The image Im [L] of Lis
{z € C%0, m); J. z(r)sintdr = 0} .
]

c) The mappings

(3.2.1) 0z 2SNt J ) 2(¢)sin ¢ dE, zeC%0,n),
n o -

(3.2.2) Pix 2SNt j " x(¢)sin ¢ d&, x e CiO, )
n 0
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are continuous linear projections in the spaces considered and
Im[P] = Ker[L], Im[Q] =1Im[L],
where Q° = Id — Q.
d) The mapping N-is completely continuous. Moreover,
INWco S €1 + (e + v) [u]ee
for every u e C30, n).

(The assertions a)—c) are well-known. The proof of d) is trivial.)

3.3. Remark. The restriction L of the operator L to
X, = (Id — P)(C30, n))

is one-to-one and according to the Closed Graph Theorem the mapping Lis an iso-
morphism between X, and Im [L]. Denote its inverse by K (the so-called right

inverse of L). Considering the same norm on X as in C<0, n), let | K[| be the norm
of K.

3.4. Lemma. Let there exist 1y € (— 0o, o0) and vy € X such that
(3.4.1) ON(rsint + o(t)) + Q(p) = 0,
(3.4.2) KQ*N(rsint + oft)) + K Q°(p) = v
hold with t = ty, v = vg.
Then uyt) = tosint + vy(t) is a solution of the equation (3.1.5).
Proof. L{so) = Nluo) = p = L(vo) = @ N(uo) = @° N(uo) = Q(p) = €(p) = O
3.5. Lemma. Let ve X,. Define

(3.5.1) @, :t— VIJ\ (tsint + v(r))” sintdr — J g(tsint + v(7)) sin  de
0

0

(i.e., ON(tsin T + v(z)) = (2 sin t/n) (1))
Let

(3.5.2) < ty=g(t)) < g(1y) .
Then:

(a) o, is continuous;

(b) lim ¢ (1) = —2 g(0), (g(0) =§l§: 9(9));
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(¢) lim @ t) = oo.

= —w

(The assertions follow immediately from the classical theorems about interchanging
the integration and the limit process.)

3.6. Remark. From the previous lemma we see that a necessary condition for the
solvability of (3.4.1) is

J " p(t) sin « de < 2 g(0)

0

provided g(co) is finite.

3.7. Lemma. Suppose in addition that the function g satisfies the following
condition:

(3.7.1) g(o) < o0 1+ 15, g(ty) = g(t;) = g(t1,) = g(0).
Let pe C°0,n) and
(3.7.2) Jn p(r)sintdr < 2g(0).

0

Then for every ve X, there exists exactly one t(v) e (— oo, o) such that
(3.7.3) o.(t(v)) + J p(t)sintdr =0.
0

The mapping v — t(v) is continuous.
Proof. The existence of t such that
T
o.(t) + j p(t)sintdr =0
0
is evident. Suppose t; < t,. Obviously ¢,(t,) = ¢,(t,). Let
(3.7.4) ot + f p(t)sintdr = o t,) + J p(r)sintdr = 0.
0 0

Thus ¢,(t,) = ¢,(t,) which implies

(3.7.5) - J (tysint + v(r))” sintdr = J‘ (tysint + v(r))” sintde

0 0

and

(3.7.6) j g(ty sint + u(7))sintde = f g(ty sin t + v(r)) sin rdr .
0 0
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From (3.7.5) we have 0 <, sint + (1) < fysin 7 + »(r) and from (3.7.6) we
have g(t, sin © + v(1)) = g(oo). Substituting into (3.7.4) we obtain

—2g(w) = j p(r)sintdr = 0
0

which contradicts (3.7.2).

The continuity of v — t(v) is obvious.
3.8. Lemma. There exist c;(v,) = 0 and ¢, 2 0 such that
[t(v)l < cyvy) + C4”U”Coz
for every ve X,.

Proof. Since there exists M > 0 such that

oft)

| < Mv]c,e
sint

for t€ (0, n) and v e C3<0, ) we have

VIJw (t(v) sin T — M|v||c,2 sin 7)™ sintdr 2
0

= jn g(t(v) sint — M“U”COz sin t) sin 7 dt — J’: p(r)sintdr.
Let #(v) > M||v|c,2. Then

f g(2 sin 7)sintdr = J p(t)sintdr 2 J‘ g((t(v) — M|v]c,2) sin ) sin ¢ de
0 0 0

and thus #(v) < 7 + M"v”coz for every ve X .
On the other hand, A

- t(u)J‘ sin? tdr = —VI_[ (((v)sinT + v(7)) sinTdr <
0 0

< r (#(v) sin T+ u(z))” sin 7dr < 29(0) — Jm p(t)sinz dt

0

and

() z = { J " p(e) sin  de — 2 g(oo)} .

vy 0
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3.9. Theorem. Suppose (3.1.1), (3.5.2), (3.7.1), (3.7.2) and
(3.9.1) K] [Ql (2 + vi)(ea + 1) < 1.
Then the boundary value problem (3.1.4) has a solution.

Proof. The foregoing consideration shows that it is sufficient to prove that the
mapping '

F :v— KQ°N(t(v) sin t + vr)) + K Q°(p)
has at least one fixed point in X ;. Obviously, F is completely continuous. Moreover,

F@le = e + K[ Q7] ez + vi) (ea + 1) o] e
(e7 = |K Qe + IK[ QY e + (e2 + v1) e3(1))

for every ve X,.

Now it is easy to see that there exists ¢ > 0 such that

IF@)ee =

for each ve X, U”Coz < ¢. The Schauder fixed point theorem (see 2.2) implies our

assertion.

3.10. Corollary. Suppose (3.1.1), (3.5.2), (3.7.1), (3.9.1) and
(3.10.1) g(0) + g(o0).

Then the condition (3.7.2) is necessary and sufficient for the solvability of (3.1.4).
Proof. Let

j" p(z) sin © dr = 2 g(o0)

0
and suppose that uo(t) = f,sin T + y(t) is a solution of (3.1.4). From
V1_r (to sin T + vo(1r)) " sintdr = -r g(ty sin T + vo(t)) sintdr — 2g(0) £ 0
0 0

it follows that (fo sin T + vo(1))” = 0 and 1, sin T + vo(t) = 0. Thus

Jm g(to sin T + vy(r)) sin 1 dr = 2 g(e0) = Jw g(o0) sin T dt

0 0

and g(t, sin T + vo(1)) = g(0) for every 1 ¢ €0, 7). The 1as£ fact is in contradiction

with (3.10.1).
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3.11. Corollary. Suppose (3.1.1), (3.5.2), (3.7.1), (3.9.1) and
(3.1L.1) g(&) =0 for £20.

Then the condition

(3.11.2) : f p(t)sintdr £ 0

0

is necessary and sufficient for the solvability of (3.1.4).

Proof. It remains to show that if

(3.11.3) I p(t)sintdr =0

0
then (3.1.4) has a solution. But this follows from the fact that if (3.11.3) is fulfilled
then '

w'(1) + u(r) = p(r), u(0) = u(n)=0

has a nonnegative solution.

3.12. Remark. In the same way as in 3.9, it is possible to introduce an analogous
condition to (3.9.1) to obtain the solvability of (3.1.4) for arbitrary p e C°(0, n)
if the assumption (3.7.1) is replaced by '

g(oo) = 0 ; 1, <t =g(t;) < g(t2).

3.13. Open problem. Let g = 0. Is the condition (3.11.2) necessary and sufficient
for the solvability of (3.1.4) with no restriction on v > 1?

Note added in September 1975. The problems in 2.20 are solved negatively by E. N. DANCER
(see ““On the Dirichlet problem for weakly nonlinear elliptic partial differential equations” — to
appear). The periodic problem and boundary value problems for partial differential equations
of the elliptic type are also solved in Dancer’s paper.
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