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SUMMARY 
Traveltime calculations in 3-D velocity models have become more commonplace 
during the past decade or so. Many schemes have been developed to deal with the 
initial value problem, which consists of tracing rays from a known source position 
and trajectory usually towards some distant surface. Less attention has been given to 
the more difficult problem of boundary value ray tracing in 3-D. In this case, source 
and receiver positions are known and one, or more, minimum time paths are sought 
between fixed endpoints. 

A new technique for boundary value ray tracing is proposed. The scheme uses a 
common numerical integration technique for solving the initial value problem and 
iteratively updates the take-off angles until the ray passes through the receiver. This 
type of ‘shooting’ technique is made efficient by using expressions describing the 
geometrical spreading of the wavefront to determine the relationship between the 
ray position at any time and the take-off angles from the source. The use of 
numerical integration allows the method to be compatible with a wide variety of 
structures. These include models with velocity varying smoothly as a function of 
position and those with arbitrarily orientated surfaces of discontinuity. An examina- 
tion of traveltime accuracy is given as well as a discussion of efficiency for a few 
classes of velocity model. 

To improve upon the first guess pair of take-off angles, a small-scale non-linear 
inverse problem must be solved. The difference between the receiver position and 
the arrival point of a ray, on a plane through the receiver, describe a mis-match 
surface as a function of the two take-off angles of the ray. The shape of this surface 
can possess local minima and multiple ‘global’ minima even for relatively simple 1-D 
velocity models. Its study provides some insight into the non-linearities of a 
small-scale geophysical inverse problem. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Key words: boundary value ray tracing, heterogeneous media. 

1 INTRODUCTION 

In recent years much work has been devoted to the 
production of efficient and accurate ray tracing schemes. 
Many authors have presented algorithms which trace rays 
through complicated heterogeneous structures. [For a 
review of techniques useful for laterally varying layered 
models see Cervenf (1987).] Usually the schemes are 
designed with a particular type of seismic velocity model in 
mind and perform well in that case. In fact many schemes 
are only applicable to a limited class of velocity models, and 
so the usefulness of any particular method will depend on 

Now at Department of Earth Sciences, University of Cambridge, 
Downing Street, Cambridge CB2 3EQ, UK. 

whether the corresponding type of velocity model is 
appropriate for the problem under consideration. In this 
paper we present and discuss a relatively simple algorithm 
which performs two-point ray tracing in heterogeneous 
media and may be applied to a large class of velocity 
structures. It was developed as part of a 3-D traveltime 
inversion study and has been tested using various 
heterogeneous velocity fields, examples of which are 
presented to demonstrate its accuracy and efficiency. 

1.1 Techniques for boundary value ray tracing 

In a two-point, or boundary value ray tracing problem one 
must determine a ray path between fixed source and 

157 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
1
/1

/1
5
7
/7

3
7
1
0
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



158 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  S. Sambridge and B. L. N .  Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
receiver positions through a known velocity structure; 
however, in the initial value case, one specifies the starting 
position and take-off angles and attempts to trace a ray, 
usually towards some target surface. The former problem is 
considerably more difficult to solve than the latter, 
especially when a complex velocity structure is involved. 
The initial value problem has simple analytical solutions 
only in a few special cases e.g. when the velocity V(x ,  y, z), 

or In (V)  take a few special forms (see Cervenf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1987). 
Even in these cases the analytical expression for the ray path 
may become exceedingly complex and there usually exists 
no general solution to the two-point problem. In 
heterogeneous media one normally resorts to some 
numerical method to find a solution. Two types are in 
common use, namely ‘bending’ and ‘shooting’. 

The bending technique involves adjusting an initial path 
between source and receiver until Fermat’s principle of 
stationary time is satisfied. Several algorithms have been put 
forward for 3-D structures; examples are those by Julian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Gubbins (1977), and Pereyra, Lee & Keller (1980) who both 
use a finite difference technique to solve a non-linear system 
of first-order differential equations. The method has been 
shown to work well in cases where the velocity field has no 
discontinuities in wavespeed. However when discontinuities 
are introduced, the formation of the problem becomes more 
complex. Internal boundary conditions have to be perturbed 
and linearized and also the order in which the ray 
encounters different surfaces of discontinuity has to be 
known a priori. These complications make the bending 
method less attractive for complex structures. The technique 
is better suited to simpler velocity models and is usually 
more efficient than the shooting method in these cases. 

The shooting method is intrinsically less complicated than 
the bending method. In this scheme one solves the initial 
value problem using some first guess take-off angles for the 
ray and attempts to iteratively improve upon these until the 
ray hits the target location. The way in which the initial 
value problem is solved, and the improvement to the 
take-off direction obtained, is at the discretion of the user. 
(A fundamental difference between this and the bending 
method is that at each iteration of the shooting method the 
raypath is always a ‘true’ ray i.e. it satisfies Fermat’s 
principle. In the bending method the ray is non-physical 
until convergence. At all intermediate stages the current 
‘ray’ is merely a path connecting source and receiver.) In 
general the usefulness and accuracy of the shooting method 
in different classes of velocity structure will depend on the 
type of technique that is used to solve the initial value 
problem, whereas its efficiency will largely depend on the 
way the ray is improved at each iteration. 

As mentioned above for special forms of velocity 
structure the initial value problem may be solved 
analytically. To extend this technique to more complicated 
structures one usually divides the velocity model into a 
series of cells within which the velocity field takes one of the 
special forms and so an analytical solution is possible. The 
complete ray path is found by combining the individual 
segments from each cell. For a 2-D model the cells are 
usually rectangular or triangular, and for a 3-D model either 
cubic or tetrahedral. This type of technique can be very 
useful for 2-D ray tracing when one wishes to shoot a whole 
family of rays from a shot point at depth to a line of 

geophones on the surface of the Earth, or even to solve the 
two-point problem in 2-D by performing a 1-D interpolation 
between traced rays. It has been applied to reflected rays in 
2-D (Langan, Lerche & Cutler 1985; Williamson 1986) and 
teleseismic rays in 3-D, where rays enter the base of a 
model, made up of cubic cells, and are traced to the surface 
(Koch 1985). Analytical ray tracing is usually the most 
efficient way to shoot rays through a 3-D structure which 
may be conveniently represented by one of the special forms 
for V, or subdivided into cells within which V takes one of 
those forms. However it is not the most versatile of methods 
since a different set of analytical expressions are required for 
different forms of V and usually a structural rearrangement 
of the computational code is required for different cell 
shapes in 2- and 3-D. In cases where such velocity model 
constraints are unacceptable one must turn to other methods 
for solving the initial value problem. Indeed even in 
cases where such constraints are acceptable, a suitable 
procedure for improving the current guess take-off angles 
must be found which is compatible with the initial value 
solver. 

The two-point method to be presented here places fewer 
constraints on the form of velocity model and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis therefore 
more versatile than the class of methods discussed above. 
This is achieved by using numerical integration to solve the 
initial value problem, together with an efficient procedure to 
improve the take-off angles of the ray at each iteration and a 
modification to allow surfaces of velocity discontinuity in the 
model. Numerical integration has been used to- solve the 
two-point problem in complex 2-D structures (Cervenf & 
PSenNk 1981). The formulation of this approach is 
particularly simple since the equations governing the path of 
a ray may be written as a first-order system of ordinary 
differential equations (ODES), and so the initial value 
problem may be solved by integrating the system 
numerically using either a Runge-Kutta or a Predictor- 
Corrector method. Usually the traveltime of the ray is 
chosen as the independent variable and the parameters 
describing the ray position and direction are solved for at 
successive time steps until some target plane has been 
reached. In order to integrate the ray equations, the velocity 
field must be differentiable. This constraint is not too serious 
since, in theory, it is possible to introduce surfaces of 
discontinuity in those parts of the model where the 
constraint does not hold, or it is not convenient to assume a 
continuous velocity field. When tracing a ray numerically 
between regions with continuous velocity fields the point at 
which the ray hits the interface must be found and the 
appropriate boundary conditions solved. 

The procedure used to improve the ray’s take-off angles at 
each iteration is usually considered the most problematic 
area of any shooting technique. The method employed here 
is similar to the paraxial boundary value :ay tracing of 
eerveng, KlimeS & PSenEik (1984) (see also Cervenf 1987), 
which may be applied to two-point ray tracing in laterally 
varying layered models. The current algorithm differs in that 
one only calculates information about neighbouring rays 
that have a common endpoint, since this is all that is 
required to update the take-off angles at each iteration. The 
algorithm, its various extensions, a discussion of accuracy 
versus efficiency and some example applications appear 
below. 
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2 A TWO-POINT RAY TRACING 
ALGORITHM 

2.1 The initial value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAray tracer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The initial value formulation of the ray equations was first 
presented by Eliseevnin (1965). These may be written 

arx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= v cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ary = v COS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, 
arz = v cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, 

av , av dV (1) 
d,a =-sin CY --cot CY cos /3 --cot acos  y, 

ax aY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.2 

av l3V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAav 
ax 3Y dz 

a,@ =-cot LY cot p --sin p --cot p cos y, 

dV 3 V  dv 
d --cotacoty--cospcoty--siny, 

rY - ax 3Y 3.2 

where a, denotes differentiation with respect to time; x ,  y 
and z describe the endpoint position of the ray at a 
particular time, v(x, y, z )  is the wavespeed; and, cos a; 
cos /3 and cos y are the local direction cosines related by the 
expression, 

cos a2 + cos p’ + cos y* = 1. 

For convenience we use Cartesian coordinates throughout 
although the spherical form of these equations, and many 
others in this section, may be found in Julian (1970). 
Because of the relationship between direction cosines, only 
five of the equations in (1) are independent and therefore 
only five variables are required to describe the ray at any 
point of its trajectory. We introduce two new variables i and 
j ,  where i represents the angle the ray makes with the 
downward vertical, and j the angle between the vertical 
plane tangent to the ray and the x direction (see Fig. 1). 
These are related to the direction cosines by 

cos LY = sin i cos j ,  

cos /3 = sin i sin j ,  

y = i. 

Using (2), the ray equations simplify to 

d,x = v sin i cos j ,  

dry = v sin i sin j ,  

a,z = v cos i, (3) 

Since this is a system of first-order differential equations it 
may be solved with the use of most standard numerical 
integration techniques. Here we use a fourth-order 
Runge-Kutta algorithm throughout [details of which can be 
found in most books on numerical methods e.g. Conte & de 
Boor (1980)l. The method works by integrating the system 
(3) in a series of steps for the independent variable time. 
As we mentioned above, for a numerical integration to be 

Figure 1. Two independent variables azimuth j ,  and declination i 
describing the direction of a ray. 

possible, the right-hand side of (3) must be continuous along 
the ray. Both v(x, y, z) and its gradients must therefore be 
continuous, and hence v must be twice differentiable. To 
handle discontinuities, rays must be traced to the interface 
and the appropriate jump conditions applied to the five 
independent variables x ,  y, z, i and j .  Since the ray path is 
continuous, the spatial coordinates are continuous and jump 
conditions are required only for the angles i and j .  These 
conditions are found by equating the component of the ray’s 
slowness vector parallel to the interface on either side of the 
interface. The slowness vector at any point of the ray is 
defined simply as S ( x ,  y, z, i ,  j )  where 

1 
S =  (cos ai + cos 6 j + cos y k). 

V ( X ,  Y ,  2) 
(4) 

If the normal to the interface is given by n then the resulting 
reflection/transmission law may be written, 

where the indices refer to the media either side of the 
discontinuity and the ray is assumed to be passing from 
medium 1 to 2. The term E equals sign (S, . n) and is known 
as the orientation index; E equals +1 if S, makes an acute 
angle with n, and negative otherwise. All quantities on the 
right-hand side of (5) are known at the boundary and so the 
slowness vector in the new medium is easily determined. 
Once S, is known the new direction angles may be obtained 
using (2) and (4). As it stands equation (5) represents the 
transmission case; for a reflected ray we set v2 equal to v1 
and take the negative root in (5). We obtain 

S2 = S, - 2(S, . n)n. (6) 

Although, strictly speaking, we have only considered a 
plane wave at a planar interface, the above equations are 
locally valid even for curved rays at a curved interface 
(Cervenf 1987). By using (5) or (6) we may model either 
reflected or transmitted P- and S-waves, or even a 
conversion between the two. These expressions are sufficient 
to trace rays through a structure containing an arbitrary 
number of regions with different velocity fields separated by 
planar surfaces, as long as we can calculate the velocity and 
its first derivatives at any point of the model, and determine 
the unit normals to any interface at any point. 

In order to apply the reflection/transmission (R/T) laws 
(5) and (6) the ray must be traced to hit the surface. Since 
the numerical integration of the system (3) is a time stepping 
method it is likely that the interface will be crossed during 
one particular step and not hit directly. To force the ‘ray 
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and iteratively solving the system, 

/ a x  ax\ 

where axlai , ,  axlaj , ,  a y l d i ,  and d y l d j ,  are the partial 
derivatives of the calculated endpoint with respect to the 
take-off angles, and the superscripts refer to the iteration 
number. Hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi$'+') and j$'+') may be determined from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ig) and j$") by inverting a simple (2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 2) matrix of partial 
derivatives. Estimates of the partial derivatives are usually 
obtained by tracing three trial rays with slightly varying 
take-off angles, and fitting an imaginary plane through the 
three pairs of calculated x ,  and y,  values. At all subsequent 
iterations the three previous rays are used to calculate the 
new derivatives in a similar way. The accuracy of the partial 
derivative estimation will depend upon the size of increment 
in io and j o  used. Although this may be fixed for the initial 
three trial rays, afterwards it is essentially determined by the 
linearized system (8). A poor estimate of the derivative 
matrix in (8) will at best result in slow convergence of the 
ray (increasing computation) and, at worst, complete 
failure, or divergence. The validity of the linearization 
approximation in (8) and the difficulty in calculating an 
accurate set of derivatives is primarily responsible for the 
notoriously slow nature of this type of procedure. Clearly to 
make the method more attractive a better estimate of the 
partial derivatives is required and may be obtained with a 
little extra work. 

The basic problem is to determine by how much the 
endpoint position on the target plane varies when the 
take-off angles at the source are varied. Since the 
relationship between the position of a ray at any point along 
its trajectory and the direction is described by the curvature 
of the local wavefront, then the required information is 
contained in the curvature of the wavefront at the endpoint 
of the ray. Therefore the partial derivatives in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) may be 
determined by solving the equations describing the 
geometrical spreading of the wavefront. These are given by 
Julian (1970) in spherical coordinates. The Cartesian 
equivalents are obtained from (3) by differentiating both 
sides with respect to the intitial take-off angles i, & j o  and 
reversing the order of differentiation. This produces two 
more systems of first-order differential equations coupled to 
the original system via the ray-path parameters. The first of 
these has as its dependent variables the derivatives of x ,  y ,  

z ,  i and j with respect to i,, and the second the same 
variables with respect to j , .  We write the two sets of 
equations as 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Diagram showing the plane of a ray when crossing the 
interface between medium 1 and 2. In one time step Ar the ray 
endpoint moves from A to B. To force the ray to hit the interface 
the step is repeated with Ar, = At JAA'J/JABI until B moves to T. 
Note all ray-path calculations are performed using the velocity field 
in  medium 1 or its overlap into 2 so that the shape of the ray path 
remains constant and the correct intersection point T is found. 

step' to hit the surface the step must be repeated with a 
reduced step length in order to bring the endpoint of the ray 
closer to the interface (see Fig. 2). This process is continued 
until the distance between the endpoint of the ray and the 
interface satisfies some tolerance condition. In practice a 
linear adjustment is usually sufficient to force the ray to hit 
the interface in two or three repeated steps. In practice it 
makes good sense to assume that medium 1 (in Fig. 2) 
overlaps the interface until the endpoint has converged on 
the interface. In this way all calculations of the ray step are 
performed without being influenced by medium 2 and so the 
correct intersection between the ray and the surface of 
discontinuity is found. 

To complete the initial value part of the ray tracing 
algorithm we must decide when to halt the integration. 
Unless we are exremely fortunate the ray shot from our 'first 
guess' starting direction will not hit the desired target, or 
even come close. One possibility is to halt the ray when it 
reaches the horizontal plane passing through the target. This 
was done in all rays traced with the present algorithm. The 
problem of updating the initial direction then becomes one 
of finding the values of i, and j o  such that the ray emerges at 
the correct x and y location on the target plane. (We could 
equally well stop the ray when it hits some vertical plane 
through the receiver, which may be more appropriate for a 
borehole to borehole experiment.) 

2.2 Solving the two-point boundary value problem 

The most common way of dealing with this problem is by 
the method of False position described by Julian & Gubbins 
(1977). If we let xT and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy,  be the coordinates of the desired 
endpoint of the ray on the horizontal target plane, then we 
have a set of two non-linear simultaneous equations relating 
xT and yT to the ray's take-off angles i ,  and j o  of the form 

(7) 

where x, and y ,  are the endpoint coordinates of the 
calculated ray. Usually one attempts to find the pair of 
take-off angles which satisfy (7) by linearizing the expression 

' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADv di (g) =&sin i  cosj + v cosi cos j -  
34 

' Dv d i  (2) =&sin i sin j + v cosi sin j -  
aq 

+ v sin i cos j - ,  
34 
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ai 

ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAau aj du zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- cos i [ - (-) cos j - sin i-- 

+ - (-) sin j + cos jd' f i ] ,  

Dq ax aq ax 

D au . 

Dq aY a4 aY 

(9) 

- sin j - cos j - 
- cosi ai (au  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2)' - sin* i aq ax 

1 D au aj au + - [ - (-) sin j - cos i- - 

+- - cosj+sinj-- , 

sin I Dq ax aq ax 

Dq aY a9 aY 

where q represents either i ,  or j o ,  ' denotes differentiation 
with respect to time, and 

_=_-  +--+-- D ax a ay a az a 
Dq-aqax aqay aqaz'  

The terms on the right-hand side of (9) contain second-order 
derivatives of velocity and hence second-order smoothness is 
now required in the velocity field to prevent the introduction 
of an internal surface. By solving the two new sets of 
equations together with the original ray equations we have 
the variables on the left-hand side of (9) at any point along 
the ray path. These are closely related to the derivatives 
required in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8), however they apply over a constant time 
surface, i.e. along a wavefront, and not on a constant z 
plane. The appropriate adjustments are made by using the 
chain rule of partial derivatives in the form 

a a az az -' 
a4 I,=& I,-% Ik I,) :I* 
where the time derivatives at constant q are given by the 
left-hand side of (3). 

By introducing the two extra systems of equations (7) we 
are able to calculate the partial derivative terms in (8) 
directly, without making any crude approximation, and so 
the linerized system may be solved exactly. There is also no 
need to trace any trial rays, although it must be remembered 
that a system three times the size of the original is now 
being solved. The larger system of 15 equations is still of the 
same form as the original set in (3) and so exactly the same 
numerical integration technique may be used to solve it. 

To deal with internal surfaces of discontinuity we must 
derive two new sets of boundary conditions for the 10 
equations in (9). (Note we now treat an interface as a 
discontinuity in either the wavespeed or its first or second 
spatial derivatives.) These are obtained by considering the 
jump conditions of the ray equations at the interface and are 
given in the Appendix. It turns out that, in general, all of 
the terms involving dildq, a j laq etc. are discontinuous 

across an interface, for q =i, or j,. These extra jump 
conditions introduced by (9) can easily be solved. 

3 IMPLEMENTATION OF THE RAY 
TRACING SCHEME 

3.1 Accuracy and efficiency 

To try and describe how accurate traveltimes or ray paths 
will be in all situations would be futile. The size of errors 
introduced will depend almost entirely on the type of 
velocity model that rays are being traced through. However 
it is possible to give some indication of how error 
introduction may be monitored and minimized in any given 
situation. The shooting part of the procedure (the initial 
value solver) is the most important in terms of error 
introduction, since it is here that all ray tracing is 
performed. The numerical solution of (3) and (9) introduces 
an error into each of the dependent variables which is a 
function of the type of integration formula used and the size 
of the step taken. The error characteristics of the 
Runge-Kutta technique as a function of step size are well 
known and may be found in any numerical textbook dealing 
with the method. Usually the greatest concern is with the 
traveltime calculation, and how the error in the total 
traveltime varies with the step size in the numerical 
integration. Once this is understood then the largest step 
length (most efficient) numerical integration could be used 
that ensured a traveltime to within a specified accuracy. In 
the system (3) we have cast time as the independent variable 
and so a direct application of the Runge-Kutta error 
characteristics is not possible, since errors are estimated in 
the dependent variables for a given value of the independent 
variable. Obviously it is possible to recast the system with 
path length as the independent variable and introduce an 
extra equation in (3) to represent the traveltime (which 
would allow the cumulative traveltime errors to be 
monitored); however, in practice this problem can usually 
be solved with a few simple tests with the velocity model. 

The accuracy with which a ray may be traced depends on 
the time step used in the numerical integration. Each time 
step corresponds to a movement of the ray endpoint 
(wavefront) and so the ratio of this distance to the scale 
length of velocity variation will determine the accuracy with 
which the ray path and traveltime may be calculated. Since 
vertical velocity gradients are likely to be much larger than 
lateral ones in most regional scale earth models then 1-D 
velocity models will provide a useful testing ground for the 
accuracy of the initial value solver. Tests were carried out 
using 1-D models, with constant vertical velocity gradients, 
and 3-D models with constant horizontal and vertical linear 
gradients. Source/receiver separations of between -50 and 
140km were used which corresponded to travel times of 
between -10 and 30s. These indicated that for horizontal 
velocity gradients -0.02 s-l and vertical gradients -0.05 s-l 
a time step of 2.0s resulted in a maximum error in 
traveltime of less than 0.02s. The traveltime errors were 
calculated exactly by using analytical solutions. Again the 
results are dependent on the size of velocity gradients 
present in the model; however, they show that the time step 
can be much larger than the required error bound on 
traveltime. 
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The second factor which affects the accuracy of the 
traveltimes and the efficiency of the algorithm is the 
convergence criteria employed. (Note: since two-point ray 
tracing necessarily involves initial value ray tracing, then all 
error characteristics for the two-point case will include the 
effect of the initial value solver.) A prerequisite for the 
initial value solver is a tolerance allowed in the target plane 
position with respect to the target plane. The ray is defined 
to have hit the target plane when 

5 6.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 5  7.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.5 8.0 8.5 
I I I I I I  

A 

For the complete two-point ray tracing, a tolerance in the 
position of the target on that plane must be decided, i.e. 

where x?)  and y p )  are the endpoints of the calculated ray, 
on the target plane, after the nth iteration of the algorithm. 
For each new iteration of the two-point ray tracer a new ray 
must be shot through the structure which requires more 
computation. If the area on the target plane defined by 
X,,, and YToL is large then the ray is more likely to 
converge on this area more quickly. However if the target 
area is too large then the difference in traveltime between 
the desired ray, which hits the receiver, and one which 
merely hits the target area may be larger than the required 
traveltime accuracy. Again the relationship between the 
traveltime error and the size of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,,, and YToL will depend 
on the velocity model under consideration. Some test results 
are displayed for three 3-D linear gradient models (Table 
la), a complex 1-D model shown in Fig. 3 (Table lb) and a 
smoothly varying 3-D heterogeneous model represented by 
a set of 3-D splines on a regular cubic mesh of knots (Table 

The 3-D linear gradient models used in Table l(a) have 
horizontal gradients in the range 0.03-0.045 s-I, and 
vertical gradients in the range 0.06-0.09 s-'. The ray traced 
in Table l(a) has an epicentral range of 100 km and 
therefore experiences lateral velocity increases of between 
3.0 and 4.5kms-I. Although these are abnormally high 
values, the model is only used to test the performance of the 
two-point ray tracer in a linear gradient velocity field. The 
laterally heterogeneous velocity field was obtained by 
randomly perturbing the model in Fig. 3 at each node of a 
cubic mesh. The node spacing in the mesh was 30km in 
both x and y directions and 10 km in I, and the maximum 
velocity perturbation at each node was fixed at 3 per cent. In 
all trials, rays were traced with source/receiver separations 
of about 170km (simply because this scale length was 
appropriate for the application to which the ray tracing was 
designed). In the 3-D model the ray spans at least five mesh 
points, and therefore samples a reasonably heterogeneous 
velocity field in between. Both the 3-D linear gradient and 
laterally heterogeneous models contain a velocity jump 
across a horizontal surface at depth. The 3-D splines used in 
the latter impose second-order smoothness in the velocity 
field on either side of the interface. In this case no analytical 
traveltime calculations are possible, and so the traveltime 
'error' here is merely a comparison to the calculated ray 
with a time step of 0.5s. The considerable difference in 
traveltime error between the rays shown in Table l(a) and 

lc). 

Table 1. (a) Summary of ray tracing trials using three linear 
gradient models: AT is the traveltime error, AD is the distance 
between endpoint and target in km, and 1tn.s is the number of 
iterations required to converge to within 0.5 kin of the target. (b) 
Summary of rays traced through a complex 1-D model where the 
ray is now forced to converge to within 0.05 km from the target, and 
(c) heterogeneous 3-D model for the same tolerance. 

a &fQ&!J 

Step length (5) AT AD 

1.0 ,038 .37 

0.5 .046 .4l 

0.2 ,026 .I3 

0.1 .022 .I0 

I VV I Horiz 

I VV I Vert 

b 

Step length Max AT 

1.0 - 0.01 

2.0 - 0.015 

3.0 - 0.01 

4.0 - 0.02 

C 

Step length Max AT 

0.5 

1.0 - 0.01 5 

4.0 - 0.01 s 

Model2 J!k&!.3 

llns AT AD ltns AT AD Ilns 

4 ,031 .038 3 .04 .38 4 

4 .004 ,042 3 .05 .42 4 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,009 ,009 3 .03 .I2 4 

4 .017 ,046 3 .02 .I0 4 

- 0.03 - 0.045 s-' 

- 0.06 - 0.09 , - I  

.(&&x 1 -D modd 

Average AD Average Itns No. of rays traced 

< 0.05 - 5  25 

< 0.05 - 5  25 

< 0.05 - 4  - 5 25 

< 0.05 - 4  25 

Heteroeeneous 3-D model 

Average AD Average Irns No. of rays traced 

< 0.05 - 7  24 

< 0.05 - 1  24 

< 0.0s - 8  25 

those in Tables l(b) and (c) is entirely due to the differences 
in tolerance levels for the target convergence X,,, and 
Y,,,. Even in the results for the largest time step it is clear 
that the errors due to the initial value solver are swamped 
by those due to the error in the target position. Tables l(b) 
& (c) show much smaller traveltime errors because of the 
demand for an arrival closer to the target. It therefore seems 
reasonable to expect that, in most applications, the 
tolerance on target position will control the overall size of 

Figure 3. 1-D velocity model used in demonstration of the ray 
tracing algorithm. 
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traveltime error produced by the algorithm. When tuning 
the ray tracer to a particular type of velocity model this 
aspect must be kept in mind. 

The calculations described here serve only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas an 
illustration of the type of errors that may be introduced into 
the algorithm. All errors in traveltime will be reduced by 
decreasing the step length of the numerical integration, but 
obviously this will increase the computational cost. The best 
combination of step length and tolerances must be sort in 
any particular application. In the tests performed here, each 
two-point ray was found in under 0.5s CPU on a 
Perkin-Elmer 3230. It is likely that some increase in 
efficiency could be gained by changing the time step as the 
take-off angles are improved i.e. beginning with a large 
step and improving the accuracy as the ray converged, since 
an accurate traveltime is only required when the final ray is 
traced. This has not been used in any of the trials performed 
here. The success of the two-point ray tracing is dependent 
on the update of take-off angles at each iteration. An 
examination of this area in more detail provides some 
interesting insight into the workings of the algorithm. 

3.2 Updating the take-off angles: a geophysical 
optimization problem 

To update the initial take-off angles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, and j o  the linear 
system (8) must be solved at each iteration of the algorithm. 
In general, the relationship between i, and j o  and the 
endpoint coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  and y ,  on the target plane is 
non-linear, and so (8) is merely a local linearization about 
the current best guess ig) and jg’. At each iteration we seek 
to reduce the mis-match between the calculated endpoint, 
determined by x ,  and y, ,  and the desired coordinates xT and 
y,. We may therefore view this problem as one of 
optimization. Equation (8) is rewritten in the form 

G,Am, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ , = Ad, 

where Am,,, is the vector representing the perturbation of 
the two parameters ig) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjg),  Ad,, is the vector with 
components x ,  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxp )  and y ,  - y p ) ,  and G, is the matrix of 
partial derivatives calculated from the nth iteration. The 
distance between the endpoint of the ray on the target plane 
and the target is given by (AdTAd)”’, which may be 
represented as a surface in 3-D when plotted as a function of 
i, and j,. For some simple velocity models it is possible to 
calculate the shape of the ‘misfit surface’ and thereby 
directly examine the type of optimization problem which 
results from (8). 

As an example, consider the five-layer 1-D model in Fig. 
3. By placing a source at a point ( O , O ,  2,) in the first layer 
we can calculate the range as a function of i, & j o .  In this 
case the correct azimuth j o  is known immediately from the 
position of the target (xT, yT, 0) and so we really have to 
consider only a 1-D optimization problem. Fig. 4 shows a 
plot of the distance of the calculated endpoint, from a 
source at 2 km depth and target at 167 km, as a function of 
i,, and Fig. 5 shows how the misfit surface varies as a 
function of i, and j,. A rather complex shape results even 
though the velocity model is relatively straightforward. The 
five distinctive sections of the curve (labelled A-E) may be 
directly attributed to the five segments of the velocity 
model. There are in fact three places where the curve 

300. 

1 

2 150. 

m 0 - s 100. 
v) a 

50. 

Figure 4. A plot of the distance from the target against declination 
angle of a ray io for the correct azimuth of the target (taken as 
zero). The curve is a cut through the surface shown in Fig. 5 at 
j o  = 0. Note the three places the curve touches the zero distance line 
and the two local minima. 

touches the zero-distance line. The first two are close 
together in sections C and D respectively (see inset) and the 
third is within segment E. Each of these corresponds to a 
physical ray between source and target. In addition there 
exist two local minima, a minor one in section E and the 
more prominent one between sections A and B. Overall this 
presents a rather difficult optimization problem. The 
iterative solution of (8) will therefore depend crucially on 
the quality of the starting guess of i,. Since the distance 
between the target and the endpoint of the ray is the square 
root of (AdTAd), then a single iteration of (8) is 
approximately equivalent to moving along the tangent of the 
curve in Fig. 4, at the current i,, until it crosses the axis. 
Obviously if our starting guess lies in segment C or the 
right-hand portion of segment D then we might expect to 
converge to either of the two closely space minima, whereas 
a value less than 40” would converge to the single minima. 
Any other would most probably lead to either of the local 
minima. 

The existence of three physical rays between source and 
target is somewhat of a special case. It arises because the 
range of the target lies within a triplication of the traveltime 
curve for the velocity model. The single minima is actually 
the earliest arrival and is due to a ray bottoming in the 
deepest layer E ,  while the double minima are due to two 
near identical rays, one which grazes the interface between 
segments C and D from just above, and the other from just 
below. The triplication in the traveltime curve is a result of 
the velocity gradient in layer D being larger than both of its 
neighbours. The minor local minimum is also a consequence 
of the triplication. However, the major one is a result of the 
discontinuity in the model and poses some difficulties for 
the ray-tracing algorithm. If the initial guess for io is a poor 
one then the algorithm may well become trapped in the 
significant local minimum. Unlike with most optimization 
problems, in this case it is possible to detect whether the 
algorithm is trapped in a local minimum of the misfit 
surface, since the distance to the target must be zero for a 
physical ray and all local minima have non-zero values. If a 
non-zero minimum is detected during the iterative solution 
of (8) we should invoke some sort of ‘climb out’ procedure 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
1
/1

/1
5
7
/7

3
7
1
0
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



164 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  S.  Sambridge and B. L. N .  Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5. A plot of the misfit surface against the take-off angles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, 
and j ,  of a ray for the ranges 3Oo<i,<7O0, -22.5”<j0<22.5”. 
Note that amplitude of the major ridge decreases for an increase, or 
decrease, of j o  away from the central zero value. 

to escape i.e. force a perturbation to the current take-off 
angles sufficient to move them out of the local minimum. 
Obviously the size and direction of the perturbation 
necessary to overcome the effects of a local minimum will 
vary for different target distances and different velocity 
models. The procedure which has been most effective in the 
models considered here is to perturb only the initial 
declination ig) by a pre-determined magnitude Ai,, in a 
direction which depends on the horizontal range of the 
calculated ray. More precisely, if a local minimum is 
detected and 

then i$’) is decreased by Ai,,, otherwise it is increased by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A&,. One can introduce additional refinements by requiring 
that the perturbation, Ai,, increase in magnitude if the 
algorithm falls back into the same local minimum, or even 
vary with target range. For the case in Fig. 4 a perturbation 
of -6” is sufficient to move out of the local minimum. [It is 
interesting to note that the depth of the major local 
minimum seen in Fig. 5 actually decreases as the azimuth j o  

varies away from the true (central) value. In fact the ‘valley’ 
feature disappears completely when the azimuthal param- 
eter is in error by about 50” (not shown), which suggests that 
one might overcome a local minima by making large swings 
in azimuth (at least in laterally homogeneous models).] For 
most rays, however, local minima can be avoided altogether 
if a reasonable starting value for i, is used. This value will 
also determine to which of the physical rays the algorithm 
converges and so some procedure for choosing an initial i, 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  will be important in heterogeneous 3-D models. 

The existence of multiple phases is a real feature of the 
model and cannot be avoided. If one merely wishes to 
determine the earliest arrival and no other phases, then a 
procedure, which has proven to be useful in trials performed 
here, is to use the take-off angles of the ray which arrives 
first in the laterally averaged velocity model, as a first guess 
for i,, and j,. This is equivalent to Thurber zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Ellsworth’s 
(1980) ‘ray initializer method’. For the 1-D problem 
described above these starting angles would be the correct 
values for the target and so no iteration would be required. 

It seems likely that the approach will be most useful for 3-D 
models when lateral velocity gradients are small compared 
with the vertical gradients. Another useful extension is to 
apply some step length damping i.e. take a fraction of the 
perburbation to i, and j ,  suggested by (8). Step length 
damping is commonly applied to locally linearized 
problems of this type to aid stability and increase efficiency. 
In trials performed here, damping was introduced if the 
misfit distance increased over any iterative step. In this case 
the step was repeated with half or three quarters of the 
original step length until the misfit decreased. 

It is perhaps interesting to note that the determination of 
the initial take-off angles which give a physical ray is an 
example of a geophysical non-linear inverse problem whose 
exact solution can be found for some simple velocity 
models. In this discrete problem the ‘data’ are represented 
by the coordinates of the ray on the target plane and the 
sought after parameters are obviously i, and j,. The study of 
this type of problem has been of interest to geophysicists for 
a number of years, and much literature has been devoted to 
the subject [see Menke (1984) for a review of discrete 
theory]. The most common approach is to cast the problem 
as one of optimization (as we have done here); however, it 
is rarely possible to examine the shape of the misfit function 
to determine whether any particular method has a 
reasonable chance of success. The relatively simple 
two-parameter problem dealt with here generates a rather 
complicated misfit surface even though it is the result of a 
very straightforward seismic problem. In particular we note 
that the surface contains not only significant local minima 
but also discontinuities in its first derivative which are 
manifested as ‘crease’- like features in the misfit surface (see 
Figs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 5). With this example in mind then we should 
perhaps be rather cautious when approaching other 
geophysical inverse problems which are ‘solved’ by means of 
optimization techniques. 

In light of the above comments, the two-point ray tracer 
should be put to a more thorough test to see whether it is 
able to avoid local minima in the ways suggested. An 
additional 5000 rays were traced through the model in Fig. 3 
using varying source-receiver distances and source depths. 
In this test a total of 20 rays failed to converge (0.4 per cent) 
on the correct first arrival between source and receiver. 
These were all found to be cases where the climb-out 
procedure (f6“) was insufficient to escape from the local 
minima. In fact all of these local minima possessed a misfit 
value very close to zero i.e. the ray converged on a position 
close to the target but outside of our tolerance limits. The 
efficiency of the algorithm also decreased considerably for 
rays whose true declination i, was close to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/2 i.e. a near 
horizontal take-off from the source. Even though the model 
is actually 1-D here, the few cases of failure give a good 
indication of when the two-point algorithm has difficulties in 
finding a solution. Experience with fully 3-D laterally 
heterogeneous models shows that the cases of failure 
increase by at least a factor of two or three. In these trials 
the heterogeneous models were obtained by maximum 3 per 
cent random perturbations of the model in Fig. 3 in the 
same way as described above, although it is important to 
note that the cases of failure were again associated with 
local minima caused by discontinuities in the original 1-D 
model and not due to the lateral heterogeneity alone. The 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
1
/1

/1
5
7
/7

3
7
1
0
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



An algorithm for  boundary value ray tracing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA165 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
more complex laterally heterogeneous model simply causes 
more rays to be trapped in the minima produced by 
discontinuities. 

Overall the two-point ray tracer proposed has been 
reasonably successful in complex 1-D media and moderately 
perturbed 3-D media. In the types of velocity model 
considered here, no shadow zones were generated. However 
in general 3-D heterogeneous media such effects may well 
be present. In such cases no ray can be found if the receiver 
lies in a shadow of the source, and the algorithm proposed 
here will, at best, merely oscillate about the boundary of the 
shadow zone on the target plane. However, because the 
proposed two-point scheme is of a shooting type, it is 
possible to investigate whether shadow zones are likely to 
exist beforehand i.e. by shooting a spread of rays through 
the structure and examining the arrival distribution on the 
target plane. In this way the user may at least be aware of 
their existence and avoid needless calculations with the 
two-point scheme. 

For highly irregular 3-D velocity fields i t  is conceivable 
that the take-off angle/endpoint relationship may become 
chaotic i.e. small perturbations of the take-off angles lead to 
large and mostly uncorrelated variations in the position of 
the ray on the target plane. This effect has not occurred in 
any of the tests performed here; however, if it had, then the 
ray tracing technique would obviously fail. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 DISCUSSION 

In the preceding section we have attempted to point out the 
areas where the proposed technique may suffer from error 
introduction and the type of situations where it is likely to 
encounter difficulty. We have been able to make several 
suggestions for dedhng with these situations as they arise. 
The major strengths of the approach lie in its versatility and 
to a certain extent in its 'tunable accuracy'. Its versatile 
nature is a result of using numerical integration for the 
initial value solver. In this way few demands are made on 
the form of the velocity model; in particular, one does not 
have to divide it up into a series of regular shaped cells, and 
so the algorithm may be applied to a wide class of velocity 
models. Discontinuities in the velocity field can be handled by 
using the appropriate expressions in the Appendix, although 
it is incumbent upon the user to provide the value of the 
local wavespeed and derivatives in all parts of the velocity 
model and to detect when the ray has crossed a pre-defined 
discontinuous surface. Even in 3-D, this is essentially a 
geometrical problem and can usually be solved in most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA120 180 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 240 280 

120+---- 

Figure 6. A diagram to illustrate the type of velocity model with 
many planar interfaces that can be handled by the initial value ray 
tracer. Across each interface the local velocity is discontinuous. The 
velocity vanes in only two dimensions although the model itself is 
extended out of the plane in the diagram, and rays may be traced in 
all three dimensions. 

cases. [For a typical example see the 3-D crustal velocity 
model in Fig. 6 (derived from the work of Lambeck, 
Burgess & Shaw 1988) which contains many intersecting 
planes across which the velocity is discontinuous. In this 
case it is possible to detect in which region the end point of 
the ray lies by subdividing the model into a group of 
concave prisms i.e. all vertices are less than or equal to 90". 
Any type of velocity field may then be used inside of each 
prism and the initial value ray tracing is accomplished 
without difficulty.] Finally it is worthwhile noting that the 
partial derivatives in (8) may be used to calculate amplitude 
attenuation due to geometrical spreading (see Julian 1970). 

Although a Cartesian coordinate system has been used 
throughout, equations (3) and (9) may equally well be 
formulated in spherical coordinates, which can also be found 
in Julian (1970). However to ensure numerical stability, the 
initial value problem may require a coordinate transforma- 
tion when rays are close to turning points (see Cervenq 
1987). The two-point ray tracing scheme proposed here has 
been successful in the velocity models described above. 
However there can be no guarantee that it will be equally 
successful in all cases. Ultimately the user must decide 
whether it forms a viable approach for his or her own 
particular problem. 
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APPENDIX: JUMP CONDITIONS FOR THE 
GEOMETRICAL SPREADING EQUATIONS 
ACROSS A N  INTERNAL SURFACE OF 
DISCONTINUITY 

Here we give the jump conditions for all ten dependent 
variables of the geometrical spreading equations (9) across 
an interface involving a discontinuity in wavespeed, its first 
or second derivatives. These expressions are well known and 
may be derived from the R/T law, equations (5) and (6), for 
both a reflected and transmitted ray. 

(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe transmitted ray 

For a known source and velocity field, the position of a ray’s 
endpoint is completely determined by its take-off angles at 
the source, (i,, j , ) ,  and the traveltime zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto. We may therefore 
write x ( j o ,  j , ,  to), where x is the vector representing the 
endpoint coordinates. The position of the endpoint at some 
later time t ,  is written x( io ,  j , ,  t ) .  Performing a first-order 
Taylor expansion of x about to gives 

= x( io ,  j , ,  to) + u2S(t - to) ( A l l  

where S is the slowness vector at time to, given by (4), and 
we have made use of the first three equations in (1). If we 
let fa be the traveltime at the interface between media 1 and 
11, then from (A l )  we find that the position of the ray at a 
later time t ,  in medium 11, is given by 

x I I ( i o ,  j o ,  I )  = x&,, j o ,  to)  + u$S2(io, j o ,  to)(f  - to). (A2) 

Since the ray is continuous across the interface we have 

x11(io7 j o ,  t )  = xI(io, lo,  to) + vSS2(iO, j o 9  to)(t - to). (‘43) 

If we write q as either i ,  or j , ,  then the jump conditions for 
the first six dependent variables in (9) are found by 
differentiating (A3) with respect to q along the interface. To 
do this we must remember that at the interface the 
traveltime to is a function of the take-off angles i ,  and j o ,  
and so the interface derivative takes the form 

Using (A4) we obtain upon differentiation of (A3) with 
respect to q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d dtn + - (UZS, ) ( t  - I,) - u:s2 - 
34 34 

where we have dropped the arguments in and j o  for 
convenience. Evaluating this expression at t = f, and using 
the first three equations from ( l ) ,  in medium I, we have 

Equation (A5) (for q =io or j , )  provides the jump 
conditions for the six spatial derivative variables in the 
geometrical spreading equations (9). All terms on the 
right-hand side are known except dt,/aq which can be 
obtained from the equation of the interface. 

Z { x [ i , ,  j o ,  fo(io, i d ] )  = 0 (A61 

and so 

or 

where we have again used equation (1) and n is the unit 
normal to the interface at the point of intersection. Since all 
terms on the right-hand side of (A8) are known, the 
interface derivative dto/aq may be calculated for q = i ,  

or j , .  
The jump conditions for the remaining four angular 

derivatives in (9) are found in a similar way to the spatial 
derivatives. First we expand the slowness vector at the 
interface, in medium 11, using a first order Taylor series 

where to is again the traveltime to the interface. Using the 
R/T law for transmission, equation (9, and the last three 
ray equations in (1) we may rewrite (A9) in the form, 

S2(io,  j o ,  I )  = Sl(io, j o ,  to)  + ( E Q  - P)n - u;*Vuz(t - to) 

where P = (S, . n), Q = (uY2 - u;’+ P2)1’2 and both de- 
pend on i,, j ,  and t,. Differentiating (A10) with respect to q 
along the interface using (A4) we obtain 

( A m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as, dS aQ d P  dn 
- ( t ) = L ( t , ) +  
dq aq 

a dto - - (u;’vu,)(t - to) + u;’vu, - . 
34 aq 

Evaluating this expression for t = t,, we get 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A4) is used to give This vector equation has three components which allow us 

to determine the new values of a i laq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI l l  and a j laq Ill (for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= i, or j,) from known quantities in medium I. When all 
terms are evaluated it will simply be a system of three linear 
equations in two unknowns (one equation is redundant) and 
can therefore be solved easily. To complete the description 
of the jump conditions for the angular derivatives we must 
write all remaining unknowns in (A l l )  either in terms of 
known quantitites in medium I, or the unknown variables 
di/dq I l l  and a j laq I l l .  We consider each term in succession. 
The left-hand side can be rewritten by using the definition of 
the slowness vector in (4). The three components become 

(y): u;’ cos j sin + ui’sin j cos i- (A12a) 

and 

The q derivatives in brackets are taken along the interface 
and so we again use (A4) to get 

All terms in equations (A14)-(A16) that are not already 
known, may be obtained directly from the ray and 
geometrical spreading equations (3) and (9) respectively. All 
three components of the first term in (Al l )  may therefore 
be evaluated. The second term in (A l l )  requires the 
derivative of P(to) and Q(t,) with respect to q along the 
interface. We have 

where 

and the terms in brackets are given by the jump conditions 
already determined in (AS). [Note: since the left-hand side 
of (A l l )  is, in general, a function o f t  and not to,  we did not 
have to invoke (A4) in differentiating S 2 ( t ) . ]  Since all other 
terms are known, the three expressions in (A12a) are linear 
functions of the unknowns di laq I l l  and a j laq I l l .  The 
right-hand side of (A l l )  is more involved but can be written 
entirely in terms of known quantities. The last vector term is 
already known from the derivatives of the velocity field 
and equation (A8). The three components of the first term 
may be expanded in a similar way to the left-hand side, only 
now both i and j are functions of to. We have 

(x): u;‘cos j cos i- - u;’sin j sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi- 
Dq Di I I 

-u l  -2 -1 DUI sinicosj, 

Dq I 

+ u;’ sin j cos i- (‘413) 
Dq Di I 1 

- 2  Dv, 
- u1 Dq I sin i sin j, 

sini Di 
cos i, 

Since the derivative of S, is the same as the first term in 
(All), this is already known, and we require only the 
derivative on the unit normal, which is found by inserting 
each component of n for G in the expression 

where the components of the last term are given by (A16). 
Note the components of h / a q  describe the change in 
curvature of the interface at the point of contact with the ray 
and are zero for a planar interface. [In the more general 
case of a curved interface one must know spatial derivatives 
of the components of n, which are represented by the VG 
term in (A18).] The derivative of P may now be evaluated 
from (A17) and the derivative of Q is given by 

The only new term here is Du2/Dq I I  which is found using 
(A15) with u, replaced by u2. With the derivatives of P and 
Q both known, all three components of the second term in 
(Al l )  can be evaluated. The third term in (A l l )  introduces 
no new terms and so may be evaluated easily. (It is zero for 
a planar interface.) All terms on the right-hand side of 
(-411) have now been dealt with and so the complete 
three-component vector may now be evaluated and the 
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linear system solved for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi /3q  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3j/3q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI l l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(q equal to i, 
or lo). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) Tbe reflected ray 
The jump conditions for the geometrical spreading variables 
in the reflection case can be easily obtained from the 

M .  S.  Sambridge and B. L. N. Kennetf 

corresponding conditions in the transmission case. The  only 
modification required to the above is the use of the 
reflection law equation (6) instead of the transmission law 
(5 ) .  Since (6) is a special case of (9, we need only replace 
u2 by u1 in all of the above expressions and substitute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Q 
for Q in (A10) and all subsequent equations. 
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