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Boundary Values of Harmonic Functions
in Mixed Norm Spaces and Their Atomic Structure.

FULVIO RICCI - MITCHELL TAIBLESON (*)

1. - Introduction.

In a recent paper R. R. Coifman and R. Rochberg [1] have obtained
representation theorems for spaces of holomorphic and harmonic functions
that are in 11 with respect to a weight induced by a Bergman kernel. In

this paper we will extend their results to a more general class of « mixed
norm)) Lebesgue spaces of holomorphic and harmonic functions defined on
the upper half-plane

We will also characterize the distributions that arise as boundary values
of functions in these spaces.

It will be convenient to introduce a  norm » for functions defined on R~..
Suppose 0  s, 0, and that f (x, y) is a measurable func-

tion on ~8 + . Then, with the usual conventions if s or r = oo, let

DEFINITIONS (1.2). A:r is the space of holomorphic on R~ such

(*) The work of this author was supported in part by a National Science Foun-
dation Grant MCS75-02411A03.

Pervenuto alla Redazione il 22 Ottobre 1980 ed in forma definitiva il 24 No-
vembre 1982.
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that N~ ( f )  00. Aais the space of harmonic functions on such that

N" (1)  00.
Note that the natural homogeneity of is

in the sense that (f, g) - (N~ ( f - g))’~ is a metric.

It is of interest to observe that these spaces of holomorphic and har-
monic functions are not new. For example in [6] Flett extended a result
of Hardy and Littlewood to the half plane and showed that the Hardy
space HV (consisting of holomorphic functions f such that sup y ) C oo)

v&#x3E;o

is continuously contained in the space we have denoted AO, provided
s &#x3E; p, r&#x3E;p and P + lls = llp.

The main theorems of this part of the paper (the proofs are given in § 6)
are representation theorems for functions in As and A8. These results
extend results of Coifman and Rochberg.

Suppose 0  s, and that A - ~~, ~~, t, j E Z, ( M a posi-
tive integer) is a sequence of complex numbers. Then, with the usual con-
ventions if s or r = oo, let

(1.5) THEOREM. Suppose 0 C s, 0 -~-1~.
Then there is a collection of points in R) such that:

i) If A = is a sequence of complex numbers such that 
then the series 

’

converges absolutely and uni f ormly on compact subsets of lEg+ to a (holomorphic)
f unction f in A6 and there is a constant C &#x3E; 0 that depends only on s, r, fl, rl
and M such that

ii) If f c A 16 then there is a sequence ~, == ~~, ~~, such that
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and there is a constant C &#x3E; 0 that depends only on s, r, P, q and M such that

Recall the definition of the Poisson kernel,

(1.10) THEOREM. Suppose 0  s, 0 and x is a positive integer,
x -~- 1 &#x3E; max {p -~- Ils, p -~- 1~. Then there is a sequence of points {(~k, nk)}
in l~ + such that:

i) If A - satisfies then the series

converges absolutely and uniformly on compact subsets of R 2 to a (harmonic)
function f in and there is a constant C &#x3E; 0 that depends only on s, r, P, x
and M such that

ii) If f E it:, then there is a sequence A - ~~li ~, 8uch that

and there is a constant C &#x3E; 0 that depends only on s, r, fl, x and M such that

In § 7 the spaces are extended to a range of fl and in § 8 we
consider representation theorems for the duals of A:r and A,6 0 C s, r  oo.

Then we prove that it makes sense to talk of « boundary values» of
functions in as linear functionals on certain Banach spaces (or as

distributions), and that there is an atomic description for these objects
which is closely related to the atomic description of the Hardy spaces .HD,
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0  p  1, as in [2, 4, 10]: roughly speaking, a « boundary functional » of a
function in A6 is a sum of atoms for .H~, + lls, with coefficients
satisfying a mixed norm condition involving the exponents s and r (the
precise statement is in Theorems (10.9) and (10.23)). We call the spaces
obtained in this way H’

We point out that, in contrast with the situation for the Hardy spaces,
we can also deal with the case p &#x3E; 1, but on the other hand we require a
very rigid control on the size and the location of the supports of the single
atoms, y in order to control the norm in gs in terms of the mixed norm of
the coefncients. Thus, it is almost impossible to develop an independent
mixed-norm-atomic theory without making use of the theory of the Poisson
integral and harmonic functions.

The dual space of is (naturally) characterized by conditions on the
mean oscillations over intervals (that is why we denote it by the letters MO,
properly decorated with indices, in analogy with BMO), but we use again
Poisson integral together with the results of B. H. Qui [11] to prove that
the MO-spaces are the same as the homogeneous Besov-Lipschitz spaces
(of positive order) introduced by C. Herz [7], and studied and extended
by R. Johnson [9]. We obtain therefore a Campanato-Morrey-type descrip-
tion of these Besov-Lipschitz spaces (see Cor. 12.25). There are a few things
we want to point out:

1) Our theory is independent of the theory of Hardy spaces, but
does not include it.

2) We only define gs for p  s. It would be very interesting to know
if it makes sense to define gs for p &#x3E; s, and to know what kind of spaces
one obtains. Some of these spaces should be in duality with the Morrey
spaces [1]. It would be also interesting to know whether or not ordi-
nary El-spaces, p &#x3E; 1, have an atomic structure.

By an abuse of language, we will refer to (1.1) as « norms when what
we mean is that this quantity induces a metric topology when one uses
the proper homogeneity (see comment ii) following (10.8)).

(1.15) CONVENTION. The fact that there are values of s and r in the

ranges 0  s  1 and 0  r  1 creates some special technical problems that
can be dealt with efficiently by a notational convention. If 0 we

denote by s’ the number which is conjugate to s if + 1Is’= 1)
and oo if 0  s  1. We use the same device for values of r. This conven-

tion will be used throughout the paper, and occasional reference to it will
be made for emphasis.
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2. - Inclusions.

In this section we establish the basic inclusion relations for the A£ and
A’3 spaces. Our basic tool is the following lemma:

~2.1) LEMMA. Suppose B is a ball in with center xo, and u is harmonic

in B and continuous on the closure of B. Then for every p &#x3E; 0 there is a con-

stant 0 &#x3E; 0 that depends only on p and n s2cch that

A proof can be found in the paper of Fefferman and Stein [5], p. 172.

(2.2) PROPOSITION. Suppose
+ 1lsl. Then and the inclusions are continuous.

PROOF. It will suffice to prove the result under the assumption that f
is harmonic. It will also suffice to show the two inclusions, and

A,6 c with the corresponding estimates on the norms.
Assume first that 0  s  r. From Lemma (2.1) we have that if u E ~$ ,

"Thus, since the inner integral can be viewed as the convolution of the Ll

function with the characteristic function of (- y/2, y~2 ), we have

Then use Holder with index rls and we have,

If then we have,
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so that if we first use Minkowski’s integral inequality and then Young’s
theorem (with index we obtain,

which is another version of (2.4). Thus,

and consequently
To show that AI,6, c (where we assume that s  oo, of course), we

again consider two cases: 0  s  r, and r ~ s  oo. When 0  s  r we

have by (2.3) that 
-

so that,

If we start from (2.5) and obtain, using Holder with index slr
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on the inner integral,

and so it follows that

and the rest of the proof goes just as for the case, 0  s  r.

REMARK. It can be proved that if f E A or ££ , s  oo, then for every

y &#x3E; 0 lim + iy) = 0 and therefore A£ and A:, are contained in closed.
subspaces of and ~’~r respectively. The argument is essentially the
same as in [12], p. 80. In the same way, if and or then

y) = 0.

3. - Reproducing kernels for spaces of harmonic functions.

In this section we demonstrate the existence of reproducing kernels for
the it:, spaces. Recall that P(x, y ) is the Poisson kernel.

(3.1 ) THEOREM. If U e A:,. and x is an integer, x --~- 1 &#x3E; max {~8 + 
fl + 1 ~ then

and the integral converges absolutely.

PROOF. Let us first observe that the integral converges absolutely. This

depends on the observation that and on the

inclusions A:,c and ~~~1~$-1, 0  Thus if f e .it:,.
and we have and if we have M1(!;r¡)



8

In the two cases the absolute convergence reduces to con-

sideration of the integrals

respectively and the convergence follows.
A straightforward integration by parts argument shows that if y &#x3E; 0,

N &#x3E; 0 then

The main ingredient here is that so that u (x + iy ) ~ c Cy ~ « + l~s)
and so u(x, y ) is bounded and continuous on each proper subhalfplane of R)
and the semigroup formula for the Poisson integral applies. Namely,

+ ~) = u( ~ , y) ~ whenever y, r¡ &#x3E; 0 and x is a

non-negative integer. From this we find that -E- iy) = O (y - ~" + B + l/s) )
for all non-negative integers x. Consequently, as N --~ c&#x3E;o each of the bound-
ary terms tends to zero and we have

In summary, we have been able to find a reproducing kernel for each

integer x that is large enough.
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4. - Reproducing kernels for spaces of holomorphic functions.

In this section we demonstrate the existence of reproducing kernels for
each r¡, real, that is large enough.

The first thing we do is to construct a subharmonic function that is

non-increasing in y &#x3E; 0 and whose norm is equivalent to that of 

,(4.1) LEMMA. If and + iy ) = SUp -E- i ) ] then + iy )
is defined for E R) and N ( f * ) c CN ( f ) where C &#x3E; 0 is a constant
that depends only on s.

PROOF. Suppose Then from (2.2) we have so +
+ iy) = as y -¿.oo and so + iy) is well defined. But this

also shows that == + iYo)IS, a subharmonic function that is con-

tinuous on the closure of R~, is bounded on M~.. It follows from (2.2) that
f E A:oo so there is a dense (in (0, cxJ)) set of values such ELI.

It now follows by standard arguments that

.and consequently, + iy) dx, which implies that +
for all y &#x3E; 0. Then by continuity if or Fatou’s

Lemma if we get that M8( f ; y) is non-increasing in y &#x3E; 0. From

this it follows that = f (z + iyo) is in the Hardy space HS for all 2/0 &#x3E; 0
and by standard HS arguments it follows that -- iy ) = [
is in LS and Now it follows 

The fact that f * (x + iy ) is subharmonic is an easy exercise and since

we do not use that fact the proof is left to the reader.
The spaces A:2 are Hilbert spaces of functions in L2(R~, y2fJ-l dy dx),

and it follows from the -E- iy) ~ c CN22( f ) y «+~~ that
pointwise evaluation is a continuous linear functional on A§~. Thus, there
is a unique function Q) which is holomorphic in z, antiholomorphic in
I and such that for every f E A:2 and z E R)



10

and it is known that

See [13] for (4.3).

for each z E R2, and the integral converges absolutely.

PROOF. Suppose f E A~ . Then for every E &#x3E; 0 let

It is any easy exercise to show that f s E A22 for every a &#x3E; 0. (If 0  s  1,.
use the inclusion A" c It follows from (4.2) and (4.3) that for-

any r &#x3E; 1,

It is obvious that 1,(z) - f (z) as 8 -~ 0, all z E R~, y so the result will follow
if the integral is dominated by an integrable function. The obvious domi-
nating function is /*(~)(Im~)~~2013~~. Let us first assume that 

We write z = x -~- iy, ~ _ ~ +it. Then

provided only q &#x3E; fJ + 1. This proves the result for 1 If 0  s  1

we use the inclusion A" c so the result follows if q &#x3E; (fl + 1/s:
-1 ) + 1 = p + This completes the proof.
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.’5. - A technical lemma.

The contents of this section is the long proof of a size estimate needed
for the proofs of the main theorems.

(5.1) LEMMA. Suppose are given A = l, j E Z, and 0  s,

r  oo, 0  oo and ?7 &#x3E; max ~~8 + + 1} with II 00. Then let

for (x, y) E R2+ . Then the series defining cp converges uniformly on compact
subsets of l~+ and

where the constant C depends only on q, fl, sand r.

PROOF. We first consider the question of uniform convergence. If

0  s c 1 the proof is particularly simple and we may write Z2’ _ ~ l~ since
the value R plays no role in this case. We will now show that the
series converges uniformly on each proper subhalfplane: ~(x, y) E ~,+ : y ~

0}. Fix 8 &#x3E; 0 and let F be the finite set of indices,

where J2 and are integers which we select below.

where 01 and C2 depend on 77, fl, 8, r and yo, and (in addition) O2 depends
on J1 and J2 . One then chooses J1 « small enough », J2 «large enough ».
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Then choose the and the sum will be less than 8 &#x3E; 0. The only condi-
tions we needed were : q &#x3E; 0, so the proof of uniform convergence
for is complete.

Consider now the case 1  Let i f 
i

 , ( ) = sup 12,jl. We now show that the series converges uniformly on

« proper strips » of R) ; that is, on regions of the form: {(x, y) E R2 : y&#x3E;

&#x3E;- yo &#x3E; 0, Ix oo}. Fix E &#x3E; 0 and let F be the finite set of integer

where Ji J2 and K are integers which we choose below. Let s’ be the

index conjugate to s (lls + 1).

This requires &#x3E; # + -+- 0 and ?7 &#x3E; all of which are satisfied.

One then chooses Ji  small enough », J2 «large enough » and then K «large
enough » and the sum is made less than any prescribed 8 &#x3E; 0. The proof
of uniform convergence is complete.

We now turn to the estimates for 

In this part of the proof one first considers the case 0  with sub-

cases : r = oo,  oo, and 0  then the case s = oo with subcases :

r = oo, 0  and 1  and finally the case 0  

Here the main subcases are: iq &#x3E; (~ + 1Is)(fJ -~- and P + 1  q 
 (~8 + + 1/s’)lfJ. The ultimate subcase is the most difficult and we

provide details for this one subcase.
Thus we have 1  s  0, and 27 --~- ê where 0  

We will select two parameters 0  0, -t  1 that meet certain specifications.
We go through the proof formally and then show that an appropriate choice
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of 6 and c is possible. We have:

The last factor is bounded by provided the fol-
lowing conditions are satisfied:

Thus,

where we need the additional restriction

It is now clear that if 0, z satisfy the additional conditions:

then the rest of the proof will go through as we will show.
We may eliminate v) immediately and then it is clear that vi) implies

iv). Thus, four conditions need to be satisfied: i), ii), iii) and vi) of (5.4)
and (5.6).

p + 1 -~-- s (so that 27 - (~8 -f- lls) = s -~-- lls’) we may rewrite
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-these conditions as follows:

If we rewrite vi) in the form q(0 - c) &#x3E; lls -i(fJ -~- Ils) it

would follow that &#x3E; : But from ii) we have that C ~ 8 - y
so which implies that 13 &#x3E; llflss’. But 0  E 

/ +1/
..so that we are looking for 0 C  6  1 which satisfy the conditions:

.Some simple observations.
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The recipes for the choices of T of 0 are then:

First. Choose z so that 1

From iii) and iv) above this implies

Second. Choose 0 so that

Since

we see (since the intervals defining possible choices for T and 6 are non-
empty) that a suitable choice for T and 0 is possible with q &#x3E; p -]-1.

To verify an estimate of the form:

with a, b &#x3E; 0 it is indeed sufficient to consider three subcases:

0  r  s. Then 0  so

r ~ oo. Observe that

where C &#x3E; 0 does not depend on y. Oonsequently, y

for all y &#x3E; 0, and so
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Then

This completes the proof of the lemma.

(5.9) REMARK. Note that we have shown that the series defining 9? con-
verges absolutely and uniformly, y not only in compact subsets of R2 , but
in each proper infinite strip of the form, where 0.

We will use this remark in § 7 where we consider extensions of the A:, and
Afl spaces to the case where 

6. - The representation theorems.

First we need a lemma for harmonic functions that acts as a replace-
ment for the monotonicity of y ) in y, when f is holomorphic (which
was established in the proof of (4.1 ) ) .

for all j E Z where C &#x3E; 0 is a constant that depends only on rand s.

PROOF. There are several cases where the result is trivial. Thus, if

we can use Holder’s inequality with index and if we can

use the well known monotonicity of the mean y). In any case we
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established in (2.4) and the calculation (2.5) the following inequality if

..
a

Then (6.2) is a trivial consequence of this inequality.
We consider a partition of R) constructed as follows. Divide R ~ into

squares with vertices (l + 1)2i + i2i, 12 i + and (l + l)2i +
+ Then divide each square Qlj into M2 equal squares = 1,
2, ..., M2, each of side length 

PROOF. For the sake of simplicity we will write the proof for the cases
where s, r =A oo. Adjustments for the exceptional cases are trivial.

We now assume that f is harmonic and From (2.1 ) it fol-

lows that if z E QZi and Dz is the disk with center z and of radius 2i-1 then

Consequently,

where ~~: ~Q~)2~}. From (6.2) and (6.4) we have,
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Thus,

Except for minor adjustments in case r or s = oo the proof is complete.

PROOF oF (1.5). We choose be a collection of points in R) such
that Ck is acny point in For part i) of the proof M is any positive in-

teger. For part ii) if must be chosen large enough. To prove part i) just
observe that

One then just applies (5.1) with It follows from the uni-

form convergence on compact subsets of that f is holomorphic and then
°

In order to prove the converse we will construct a sequence of func-

in A:, such that

where we have set cn = ~c ~n~. The result then follows easily. Note that

the homogeneity of II./ls, is h = min {1, s, r}, so that 11 A + 



19

If we now let it follows from (6.4’) ii) that

Thus, by the first part of the theorem

is a function in A£. But then we see that

Thus, for each positive integer n,

Thus, N,6 (f - g) = 0 and so f = g.
The existence of a sequence (fn) follows from the corresponding properties

of an operator S. Given f E A£ there is a function S f E A 16 such that

One then just lets

The construction of the operator S is due to Coifman and Rochberg.
For f E A’6 we just let S f (z) be the Riemann sum of f corresponding to the
partition and the selection of points {~’j. That is,

(we will write out the details only for the oo).
It follows from (5.1) that
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But,

It now follows from (6.3) that Then using (5.1) we see
that Sf E A,6 and parts i) and ii) of (6.5) are verified. We now need to
estimate N$ ( f - Sf). Here we use the reproducing kernel whose existence
was established in (4.4). We have,

Thus,

The strategy is now clear. The sum in the last term does not depend on M.
So all we need to do is to get control of that term and then just take M
large enough.

It is easy to see that If’(’)1 c C2-i using either the Cauchy_

integral formula or the Poisson integral formula. Thus, if {: d(,
we see that

An easy calculation now shows that

From (5.1) and (6.3) we have,
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The constant C in this last relation does not depend on M, so we may
choose M so large that UJM  2 and the proof is complete.

PROOF OF (1.10 ). The proof of (1.5) was set up so that it carries over
directly for the spaces of harmonic functions. One just uses the reproducing
kernel from (3.1) instead of (4.4) and when one makes estimates on the
gradient of the kernel toward the end of the proof note simply that

P(x - x., y + Yo) is the real part of a constant times ((x + iy)
-- (xo + and use the estimates for the holomorphic kernels.

An immediate consequence of the remarks in the proof of (1.10) above
is the following corollary:

(6.7) COROLLARY. A real valued harmonic function is in $ i f and only
if it is the real part o f a holomorphic f unction in Afl with an equivalent norm.

PROOF. Observe simply that in the representation theorem for harmonic
functions that are real valued, the coefficients (I%) are also real valued.

REMARK. It follows from this corollary that if f E A£ then y)
may not be monotone in y but it is certainly equivalent to a monotone func-
tion. If it is well known that it is monotone (just use the semi-
group property of the Poisson integral operator) and if f is holomorphic
we showed in the proof of (4.1) that it was monotone. But if 0  s  1

and f is harmonic we only have the equivalence with a monotone function.

(6.8) COROLLARY. Derivaction o f order x is an isomorphisme o f A:r onto
sr 

’

PROOF. The result follows from Theorem (1.5) and the part of Lemma

(5.1) concerning uniform convergence on compacta.
Similar results can be obtained for fractional derivations defined nat-

urally on the kernels and then extendend to functions in As and A:,.
REMARK. It is easy to check that if s and r are both finite, the represent-

ing series for f in Afl or AO converges to f in the topology of Afl (resp. 
If at least one of the coefficients is infinity then only the appropriate weak
convergence holds. It is possible to define closed subspaces of these limit-

ing spaces where strong convergence also holds; one simply adds the ap-
propriate « o(l) » condition on the behaviour at infinity.
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7. - Extensions to negative values of ¡3.

Because of Corollary (6.8) one can define for non-positive values
of ~8 as the space of holomorphic functions on R) whose derivative of
order x is in AP+x, as long as p -f- x &#x3E; 0. One should say, in this case, that

A:, consists of equivalence classes of holomorphic functions, modulo poly-
nomials of degree less than x. On the other hand it is always possible, if

fl + 0, to find a unique representative in any such equivalence class
that tends to zero as y -cxJ.

(7.1 ) LEMMA. Let f be a holomorphic function on ~+ such that 
y &#x3E; 0. If y x, there is a unique holomorpkic function g on R) such
that g" = and lim g(x -f- iy) = 0 for every 

PROOF. Let

Since + iy) ) c and so the integral converge
absolutely (y -+- x). Thus, g(x + iy)  OyX-(Y+118) = 0(1 ) as y - 00.

Uniqueness is trivial.

DEFINITION.  we define AO to be the space of holo-

morphic functions f on R~ such that f(x + iy) = 0(1 ) as y for all

x and such that for some x &#x3E; - ~, c- A£+’.
We give it the topology induced by the «norm» N~(f(’)) and it follows

from (6.8) that while the norm depends on x, for any two acceptable choices
of x the norms are equivalent and the spaces of functions are the same.

(7.2) THEOREM. The representation theorem (1.5) extends to the spaces AIO
(with the same restrictions on r~).

PROOF. Suppose f E A-8. Then there is such that if q &#x3E;

&#x3E; max ~~8 -+- x -~- lls, P + x -~- 1} then (by (1.5))

Consider the series
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Using the remark (5.9) following the technical lemma we see that both
series converge uniformly on proper infinite strips so the sum of the second
series represents a holomorphic function vanishing and whose-

k-th derivative is /~. It follows from (7.1) that this holomorphic function
is f.

8. - Duality.

In this section we will characterize the spaces of continuous linear func-

tionals on the A~ spaces for finite values of s and r. We will use the

representation theorem (1.5).
Fix r &#x3E; max I# + + 0 and denote f (z) == (~2013~’~ 

It is easy to check that so that if L is a continuous linear func-

tional on Air we can define Fl1(C) = 
In the rest of this section we let d = max ti/s, 1}.

(8.1) LEMMA. The 1 and Nn,7,(#+c)(F 3 r ,)  
where IILII is the norm of L as a continuous linear functional on .A~ .

PROOF. By the dominated convergence theorem we can see that

This implies that F’(~) = r~.I’~+1(~’), but more importantly, y it implies that

.I’~(~) is holomorphic.
We apply (6.3) and obtain,

where the {~k } are the points in Qk where the maximum is achieved. Several
comments are in order. For the first step we note + 

- r~ - (~ + under convention (1.15). For the second step we need to
observe that even when s’ or r’ = oo and 0  s  1 or 0  r  1, an ele-
mentary computation shows that equality holds.

Since .L is continuous on A ~ we have,
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where ~~ is norm of .L as a continuous linear functional on Afl - The last

step requires the observation that in (1.7) the constant C does not depend
on the choice of the representatives ~~’i ~. This completes the proof of the
lemma.

(8.2) THEOREM. The continuous linear f unetionats on 0  s, r  00,

are in one-to-one correspondence with the functions F E As,~.,~-~, by means of
.the duality :

which is to say that L is a continuous linear functionals on Afl if and only if
it can be represented uniquely in the form (8.3) with F E (s’, r’ and a
as defined prior to the statement of (8.1)) and the norm of F in is

equivalent to the norm of L as a continuous linear functional.

PROOF. Suppose F E The first step is to show that the integral
in (8.3) converges absolutely if f is in AO . Suppose that s &#x3E; 1, Then

F E and we get by a double application of
Hölder’s inequality. For the other cases we just use the continuous inclu-
sions of Proposition (2.2 ). Thus if s  1, F E and so defines a

continuous linear functional on A~ . The other two cases go the
same way. Consequently, if F then I  N:,(f)
where C may depend on the indices but not on .F’ or f.

For the converse, suppose .L is a continuous linear functional on A£.
Then by Lemma (8.1) there is an associated function F~ (n &#x3E; ma-x ~~ -f- 1,

where = Lfi&#x3E; , and Using
the reproducing formula of Lemma (4.4) we have

.since n &#x3E; (q - fl - d) +1. We take complex conjugates and write this

The formula then extends to all f E A:, by means of the representation
theorem, (1.5). It is now clear that the representing function is unique,
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since the difference of two such functions would represent the zero linear
functional which by what we have proven would have norm zero in 
and by continuity considerations this implies that the difference is zero.

REMARK. The results of this section as well as the previous one for
negative can all be extended to the spaces of harmonic functions.

9. - Boundary values of functions in A£.

Let ~&#x3E;0y0~oo and f E Afl. For y &#x3E; 0, we denote by fy(r) the
function f (x + iy). We prove in this section that one can give a meaning
to to and that one can obtain f from f o by means of the Poisson

V-0

integral.
We start with the definition of the oscillation spaces where 

and a 

Let t be a positive number and 3 = (Ii) be a covering of the line with
intervals such that = t and no point belongs to more than three
of the intervals 1,. In this case we say that 3 is an admissible covering
of length 131 = t. Given a locally integrable function g on the line, an in-
terval I and an integer m &#x3E; 0, let be the unique polynomial of degree
less than or equal to m such that

Define

and

DEFINITION. Let 1~, r c oo and is the space of equi-
valence classes o f locally integrable f unctions g, modulo polynomials o f degree
less than or equal to r DC + such that

where m = m(a, s) = [oc + 1/s].
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We need two other descriptions of which will be useful in the-

sequel (see (9.9) and (9.12) below). Given an interval I centered at x, we
denote by IQ, e &#x3E; 0, the interval obtained from I by a dilation of a fac-

tor e about x.

(9.5) LEMMA. Let I be an interval, 1* another interval containing I and
contained in 14 and e &#x3E; 1. Then for a locally integrable function g and an
integer m ~ 0,

PROOF. We can assume that I is centered at 0. Let 

be the polynomials with the properties: 

Therefore

Also let , We have that

Now we evaluate

Observe that if 11 and 7s are two intervals centered at 0 and 
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the corresponding dual bases to the monomials, then

because conditions (9.6) completely determine the polynomials.
Therefore the quantity in (9.8) equals el times a constant OJ independent

of I. This gives

-which proves the Lemma, since ~O &#x3E; 1.

Let be the interval [(l-1)2i, (l + 2)2j], j, I E Z. For each fixed j,
the covering Jj = is an admissible covering of lenght 3 2i.

~(9.9) LEMMA. Let g be a locally integrable f unction on the line. Then g E

E if and only if the quantity

is finite. In this case (9.10) provides a norm on equivalent to (9.4).

PROOF. Let a - (Jg) be an admissible covering of lenght t, 2~ 
Then any interval Jg is contained in either one or two of the intervals in 3j
and no more than six of the intervals in a are contained in the same in-
terval On the other hand, if then In this case

one has

by Lemma (9.5). Therefore
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and

This shows that

The converse estimate makes use of the same considerations and is even

simpler. For 2 j+1/3 G t  2j+2 /3, let 31 = where I t i = ~(Z -1 ) t~ (1 + 2) tj
so that 31 is an admissible covering if lenght at. The same argument as
before shows that

which gives

We will also need the following characterization of which extends

the characterization of BMO given by Fefferman and Stein [5], page 142.

(9.12) LE&#x3E;IxrA. Let g be a locally integrable function on the line. Then

g E if and only if given a number q &#x3E; a + 1 -~- lls, the quantity

is finite. In this cause (9.13) provides ac norm on which is equivalent
to (9.4).

PROOF. Let I be an interval and I2k be that obtained by dilation of a
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factor 2k around its center. Using Lemma (9.5) one obtains:

Iij~,==[(~20131)2~+2)2~ we denote by I i the interval We-

also set

We have (calling 0)

is positive after our assumptions on q and m.
Observe now that for a fixed h any point on the line belongs to note

more than 3-2~ intervals in ~I ~~1,~ . Therefore the collection is the

union of 2h admissible coverings of the line of lenght 3. 2i +1£. Summing
over 1, we then obtain that
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Summing now over j,

by (9.11 ). Lemma (9.9) implies at this point that the expression (9.13 ) is

majorized by a constant times 
The majorization in the other direction is trivial, since by (9.14)

We are now in a position to prove the existence of boundary values for
functions in AO

(9.15) THEOREM. Let f be in 0, 0  s, r c oo..Let s’ r’ be

the conjugate exponents of sand r (in the sense of (1.15)). For any fixed y &#x3E; 0,
= f(x, y) determines a continuous linear funotional on ~O8 r 1is-1 and

the limit lim g _ f o , g) exists for every g E 1V10 r 1-1 and defines a
W-0 9 s r

continuous linear functional f o on the same space.

PROOF. We use the representation theorem (1.10). The function f can
be decomposed as a sum

in this expression the coefficients Âli satisfy the condition

and the functions cpZj are obtained as convex combinations of .lVl2 func-

tions of the form
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where P(x, y) == is the Poisson kernel for the upper half-

plane and for given j and 1, x ~ + iy ~ are M2 fixed points in the square
with vertices l2i + i2i, (1 + 1 ) 2 ~ + i2i, l2i + and (I + 1 ) 2 ~ ~-- i2i+l.

Also let m = max + -1], [~8]}.
What is relevant for us is that

and that

Using these properties of and Lemma (9.12 ), one can see that f v
defines a continuous linear functional on by the formula

where the integral and the sum in the last member are absolutely conver-

gent. Also

The estimate (9.19) yields

which allows us to use the dominated convergence theorem to pass to the

limit for y - 0 in (9.20):

Formula (9.22) defines the boundary functional f o .
We prove now that f is the Poisson integral of f o .

(9.23) LEMMA. The Poisson P(x) _ + y2)) is in MO$
for every s, r, Ct, 1 c s, r c oo, a 
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PROOF. We may restrict ourselves to y = 1 and call P(x) = 
For any given interval I and any integer m &#x3E; 0 we obtain two estimates:

because (9.7) gives, for any function g and any interval J centered at 0,
that

(see the discussion with respect to (9.8)).
The second estimate we need is

which can be proved as follows: let T(x) be the Taylor polynomial of or-
der m obtained by the expansion of P from the left end point so of I ;
arguing as above, y

which gives (9.25).
From (9.24) one obtains
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and from (9.25)

Because of Lemma (9.9), for

which is finite.

(9.28) THEOREM. Let f E s and fo be its boundary functional on 
Then f (x, y) = f o ~ and therefore the correspondence between f and f o is
one-to-one.

PROOF. From Lemma (9.23), and therefore the convolu-

tion f o ~ P~ is a well defined continuous function of x. By (9.22) .

since ffJz; is a bounded harmonic function on R~ and Poisson integral for-
mula holds.

10. - The spaces gs .

In this section we characterize the functionals f o which arise as boundary
values of functions in A:r among all the linear functionals on 

DEFINITION. Let An fonction
a(x) supported on an interval I and such that

and
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This definition extends to the case 0  p  oo the one given by Coif-
man and Weiss [4].

is the space of continuous linear functionals f on 
which can be represented as sums

where ali is an H:r-atom supported on

The norm of f in Hs is given by

Some comments are in order:

i) Formula (10.3) defines a linear functional by setting

where g
it is easy to check that

which yields, by (10.5)

ii) HI is a linear space:

as in (10.3), then
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where ci; is an H’-atom supported on 1~;,

iii) H" is a complete metric space. For s, it is a Banach space;
in general, if h = min 1}

(10.9) THEOREM. Let f be and let to be its boundary functional (on
and 

PROOF. Consider one of the functions introduced in the proof of
Theorem (9.15). Because of (9.18) and (9.19) they are, in the terminology
of Taibleson and Weiss [14], (p, oo, -1 + + 1Is’])-molecules.
Using Theorem (2.9) in [14] (the proof extends to p &#x3E; 1 ), one sees that

can be decomposed, as a function, as

where is an H:,-atom supported on and

where m = [lIp + 1 + 
Now let f e .:It:, and write, as in (9.16),

so that, by Theorem (9.15),

We show first that the formal substitution suggested by (10.10)

gives a decomposition of to as a linear functional, and that the sum in the
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second term in (10.12) can be rearranged as a linear functionals. A proper
rearrangement of the sum will provide the atomic decomposition.

For any g E the sum

is convergent. In fact, (10.13) can be majorized by

As we observed in the proof of Lemma (9.12 ), for any given k, ~I a ~i,~
is the union of 2 k admissible coverings of lenght 3 ~ 2 ~+k, so that (10.13) is

less than

We used in the last two steps (9.11), Lemma (9.9) and the fact that m =

- Cl~p --1 + lis’].
We can now regroup the summands in (10.12): given the interval

7~ ==[(~20131)2~(~+2)2~ consider a partition of the family of

intervals such that 3 consists of intervals of lenght 2 2" contained
in We can write
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The function

is supported on and

so that the function

is an gs -atom supported on 1,,,. Therefore (10.14) becomes

We compute now Observe that, in order to have IE 3/"" it must

be so that i+ k = ’)1-1 and (~-l)2~i~(~ + 2)2k+l. We have to con-
sider four cases:

where we set

It follows that

This implies that 
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2nd case: Instead of (10.18), one estimates

and obtains the same conclusion.

3rd case: Instead of (10.17) one evaluates

Hence,

4th case: 0   1. From (10.19) one derives

We prove now that the Poisson integral of an element in gs is in r

= p -~-- Ils. This will provide the identification between the two spaces.

(10.20) LEMMA. Suppose a(x) is an supported on [- r, r], r &#x3E; 0.

There is a constant c &#x3E; 0 such that, if a(x, y) is the Poisson integral of a(x)r
then
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PROOF. The second estimate follows immediately from the fact that

I a (x) I  (2r) -’I’ and that dx = 1.

To prove the first estimate, it is convenient to assume that a is real

valued (which does not cause a loss of generality) and to take the Cauchy
integral of a, recalling that the Poisson kernel is essentially the real parts
of the Cauchy kernel. Let therefore, for z = x -~--’iy

Since

Consequently,

By taking the real part of A(z), one obtains (10.21).

(10.23) THEOREM. Let f E HS and Pf be its Poisson integral. Then Pf E
E ~~ , ~ = 0, and N~ (P f )  OH:,(f).

PROOF. Suppose f (x) = .1 as in (10.3). Then
li

(10.21) implies that

We can therefore apply Lemma (5.1), to have
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which yields the same Lemma asserts that the

convergence of the series in (10.24) is uniform on compact sets in R¡.
Since the functions y) are harmonic, P f is also harmonic. Then

REMARK. Because of the definition of gs spaces, as linear functionals
on different spaces, one can not compare two of them directly in terms
of inclusion. But, if and are given, one can consider the intersec-
tion X of the corresponding and the elements of the two spaces
as linear functionals on .X. What is important is that the restrictions of
these functionals to X completely determines them. In fact, this follows
from Lemma (9.23) and Theorem (9.28), namely that a functional is

determined by its restriction to the subset O}. One obtains the

following inclusions :

(10.25) THEOREM. a) Let and Then contained

in 

b) If p cr, then the Hardy space HV is contained in 

The proof follows immediately from the definition of Hs and the atomic
characterization of Hardy spaces [4].

Because of the identification of with = Theorem

(10.25) a) is a restatement of Proposition (2.2) and b ) is Flett’s theorem [6].

11. - Extensions.

In the theory of Hardy spaces one shows that one can modify (10.1 )
and (10.2) in the definition of an atom ([4] and [14]) and still obtain the
same atomic space. In the same way, the definitions of the Campanato-
Morrey spaces [1] and of BMO [8] also allow the possibility of taking other
means, or higher order polynomials. The same can be done with the spaces
with which we are dealing.

DEFINITIONS. a) Let and

s) == ~a + The space consists of the equivalence classes,
modulo polynomials of degree at most m, of those locally integrable 
for which
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-is finite, where

and, for

b) A (p, q, m)-atom is a function a(x) supported on an interval I such
that

c) For 0  p  s c oo, 0  r c oo, q &#x3E; p, and m ~ C1 ~p -1 + lls’],
is the space of continuous linear f unctionats f on which

can be written as

where at~ is a (p, q, m)-atom supported on ~(Z -1 ) 2 ~, (l + 2 ) 2 ~], and
00.

One can easily modify the proofs of Lemma (9.9) and Lemma (9.12)
to obtain the following lemma:

(11.7) LEMMA. The following are equivalent, for a locally integrable func-
tion g:

_.hor g E (11.8) and (11.9) provide norms equivalent to 
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The extension of Lemma (9.23) is the following

(11.10) LEMMA. The Poisson + y2)) is in 
f or any choice of admissible exponents as given in Definition a).

PROOF. One can obtain, as in the proof of Lemma (9.3), the substitutes.,
for (9.24) and (9.25); namely,

and

valid for any interval I. Now one has to obtain the corresponding estimates-
to (9.26) and (9.27) for 

If one obtains exactly the same estimates, using Holder’s inequality.
For q &#x3E; s, one obtains by interpolation:

Using (11.11) 

Hence for j &#x3E; 0 and q &#x3E; s, using also (9.26), we have

For j  0, one proceeds as before using (11.12) and (9.27). In particular,.
observe that, since 1/(1 + x2) = 1m 1l(x - i),
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~o that

Therefore, for q &#x3E; sand j  0,

and the proof now continues as in Lemma (9.23).
Using Lemmas (11.7) and (11.10), one can extend Theorems (9.15) and

(9.28) as follows:

(11.17 ) THEOREM. exists

as ac continuous linear functional on for every q such that

1 - fJ and every -]- -1], [~8]~. Also + iy) ==

fo * -Py(x).

One simply has to observe that the functions qJZi which appear in the

proof of Theorem (9.15) can be chosen in such a way that (9.18) and (9.19)
hold for any given integer -~- by taking k
large enough in Theorem (1.10 ). Then the proof goes as in Theorems (9.15)
and (9.28).

At this point one obtains the exact analogue of Theorem (10.9) with
the space H:r== replaced by by means of the decom-

-position of a molecule into atoms given by Taibleson and Weiss [14].
More delicate estimates are necessary to show that the Poisson integral

of an element of is in = and we give them in detail.

(11.18) LEMMA, Suppose a(x) is a (p, q, m)-atom supported o~2 the intervals

[- r, r], r &#x3E; 0. Then there is a constant a, depending only on p, q and m,
.so that if a(x, y) is the Poisson integral o f a,
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Furthermore, if

PROOF. The first estimate in (11.19) can be proved as in Lemma (10.20).
The second estimate is proved using Holder’s inequality:

To obtain (11.20), note that

At this point we can prove

(11.21) THEOREM. Let f E gs r ~’~ and Pf be its Poisson integral. Then

PROOF. Suppose as in (11.6). Then

where y ) is the Poisson integral of 
Lemma (11.18) can be applied to au and restated in the following way:

it is possible to decompose y) into the sum

for all (x, y) E R~ and is supported in the ((window))
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and satisfies the two conditions

and for I

To obtain such a decomposition, one can take as the function atr
times the characteristic function of tVz;. One can now apply Lemma (~.1 ~
to show that the sum

converges absolutely and uniformly on compact sets and that

To complete the proof we need the same result for

Once we have proved that, the uniform convergence will provide the har-
monicity of Pf. Also, by the definition of the « norm)) in we will

obtain

The estimates for P f ~2~ follow from a variant of Lemma (5.1). Since

a detailed proof will require almost as much as the proof of the lemma
itself, we will only give a series of hints that will allow the interested

reader to carry out all the details, vis-h-vis with the proof of Lemma (5.1).
We observe that for q = oo we have no need for such a proof, and

in fact the proof in this case is the same as in Theorem (10.23).
The estimate (11.25) suffices to show the uniform and absolute con-

vergence. It also allows us to obtain the estimate for when

s = oo. For other values of s, (11.26) is also required.
For absolute and uniform convergence, in the case 0 C s c 1, the sum

is split into three terms with respect to the summation index j. The first;

term disappears if the parameter J1 is chosen small enough, and the other
two can be controlled in the same way as in Lemma (5.1)y using the fact
that IIp - 11q &#x3E; 0.
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For the case 1  s  oo, one controls the first two terms as for the

case 0  and the third term vanishes if K &#x3E; 5.

For the norm estimate, in the case 0 C s c 1, one has

so that

and taking t = s in (11.25), one obtains

.and the proof continues essentially as in Lemma (5.1).
Finally, y if 1  s  oo, we consider a parameter 0, 0  0  1 (which will

be determined later) and write

Now,

~Thus,

and taking t = Os in (11.26) (which assumes 0 C Os  q),

The rest of the proof goes through if we have s0fp -1 &#x3E; 0. Therefore

the two conditions we have to impose on 0 are
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Since p  q and p  s, such a choice for 0 in (0, 1) is always possible.
The proof of the theorem is therefore complete.

We can apply to the spaces the observations we made in the

Remark at the end of Section 10.

In particular, for fixed p, s and r, we can say that if and ml ~ m2 ,
then is contained in (we want to recall that we defined these

spaces only for some admissible values of the exponents).
This inclusion has a meaning if we look at the elements in these spaces

as continuous linear functionals on This

space is contained in both and M0~~~% but contains

the Poisson kernels, so that, by Theorems (11.17 ) and (11.21), an element
of is completely determined by its restriction to 

On the other hand, comparing Theorems (10.9), (10.23), (11.17) and

(11.21), we obtain the following corollary:

’p T’TTATTT crnmn icr --r7o ,- -toM;. rAiREMARK. The same statement is true for atomic Hardy spaces L,-17
and can be obtained without Poisson integral, by decomposing the atoms.
We cannot use this proof here, since we would lose control of the supports
of the atoms, which is of extreme importance when s # r and when s =
==~&#x3E;1.

12. - The dual space of Hs .

We show in this section that for s, r  oo the dual space of is

Since we have proved that the former spaces do not depend
on q or m (Corollary (11.27)), we will have obtained the result that the
latter spaces do not depend on q’ or m, as far as these exponents are in the
range in which the spaces have been defined.

When talking of inclusions or equalities of different mean oscillation

spaces, we have to keep in mind that the elements of these spaces are
equivalence classes of functions, modulo polynomials of a certain maximum
degree, which depends on the space. Therefore identification of two ele-

ments from two different spaces may mean inclusion of an equivalence
class into the other. Between any pair of spaces for which only
the q changes or the m changes, there is a natural inclusion with respect
to the equivalence classes. It will not be difficult to check that this inclu-

sion is a one-to-one onto map that corresponds to the identification of the
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spaces as dual objects of the spaces. The argument follows the same-
lines as in [14].

The natural duality between an element of H:;a,m and an element in
already included in the definition of if is a.

sum of (p, q, m)-atoms,

and then

It follows from the definition of f E H",’,’ as a linear functional (with a
particular decomposition) that the value of f, g) does not depend on the
specific atomic decomposition of f.

(12.2 ) THEOREM. Assunze s, r C 00. Given g ", the 
defined as in (12.1 ), defines ac continuous linear f unctionat on H:tl,m. Con-

versely, given a continuous linear functionals .L on there is ac unique g
in such that Lf = ~ f , g), and the norm of L as a linear func-
tional is equivalent to the norm of g.

PROOF. The first statement is trivial (see also (10.8)).
In order to prove the second part of the theorem, assume first that

q  00. If ac is a (p, q, m)-atom supported on we must have ilal  JILIJ, ,
where ilL I! denotes the operator norm of L. This means that L induces a
continuous linear functional on the closed subspace of dx) consisting
of functions (p such that

If we use the same letter .L for this functional, there is a function

dx ) such that

This function gt~ is unique modulo polynomials of degree at most m.
It is possible to define a locally integrable function g on the line such that
the restriction of g to each represents the functional .L as in (12.4).
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Now, for each 7 pick a (p, q, m)-atom a,, such that

where C is a positive constant. One obtains (12.5) as follows: for cp in
(1~ ~I t~ ~ ) dx) satisfying (12.3 ),

where the infimum is taken over all the polynomials P of degree less than
or equal to m. Also, it is possible to pick up a particular q such that

Arguing as in the proof of formula (9.24), one can show that for any
polynomial P of degree less than or equal to m

Normalizing 99 so that it becomes a (p, q, m)-atom supported on Ii; and
using (12.7), formula (12.6) immediately gives (12.5).

If now {A,,} is a finite sequence of positive numbers,

We choose now a particular sequence for any j fix a finite sequence
~,ul~~ of positive numbers, such that

and I (This is possible since s  oo).
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Next we choose a finite sequence of positive numbers such that

Let vjulj. We put together (12.8), (12.9) and (12.10), and we have

This shows that 

To deal with the case q = cxJ, w e use the result for the case q  oo,

together with Corollary (11.2 7 ) : we take an exponent q larger than both p
and 1, but finite. Then we know that 1~~ ~ °,"z = HS q,"2, so that if L is a

continuous linear functional on there is a function g in 
which represents L.

The proof is complete if we observe that is contained

continuously in 

REMARK. It is not difficult to prove that the norm of L as a functional

on in terms of the representing function is given
by the expression

where the infima are taken over all polynomials of degree less than or

equal to m.

REMARK. If either s or r is infinity, one can consider the closed sub-

space of built up with the same atoms, but with sequences 
satisfying a o(l)-conditioii in the appropriate index. It can be shown that

these spaces do not depend on q or m, if these exponents are in the ad-
missible range, and that their dual space is s r
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The last remark allows us to state the following theorem also for s and r
equal to one:

(12.13) THEOREM. For fixed a, s, r, the spaces all coincide, provided
llq + a &#x3E; 0 and m &#x3E; roc --~- Ils].

This is an obvious consequence of Theorem (12.2).
vVe want to make a connection between Theorem (12.2) and the duality

-Theorem (8.2 ), or, speaking more properly, with its analogue for the ,~s
spaces. For convenience, we state that result here explicitely.

(12.14) THEOREM. Let m be a positive integer, m &#x3E; max ~~B -f- 1/s -1, ~~.
The continuous linear functional on 0  s, r  00, are in one-to-one

correspondence zuith the in if 0  s  1, or s r . o C S C 1, Or .sr 2

1 C s  00, by means of the duality

The norm of L as a linear functional is equivalent to the norm of g in
or respectively.

This theorem, together with Theorem (12.2) and the fact that HI and
Afl can be identified, for ~8 lls, by means of the Poisson integral,
shows that there is a one-to-one correspondence between and

(resp. We give an explicit description of this corre-

spondence.

(12.16) Let 1 c s, roo and g be in Let x be an integer,
x ~ ~a -+- l/s -~- 1]. The convolution of g with the derivative of order x in y
of the Poisson kernel Py(x),

is in and 

PROOF. First of all observe that is well defined, since as a

function of x, is in 

Consider the partition of R~, where Qh is the square with vertices
l2i + i2i, (1 + 1)2~’ + i2i, l2i + (1 + 1)2j + i2j+l, and assume that
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. We have

where m = [0153 -~- since a’Play’ has vanishing moments up to the order
x-1.

It follows from (12.17) that

The estimate we need at this point is

which can be obtained as we obtained (11.15). Therefore

Using Lemma (9.12) and Lemma (6.3), we have

This immediately gives us the following identity:

f or every x&#x3E; [lip -~- Ils’], and the integral converges absolutely.
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PROOF. The last statement is a consequence of Theorem (8.2), Theorem
~10.23 ) and Lemma (12.16).

In order to prove the identity (12.21) write

as in Theorem (1.10). Since

and one can interchange the sum in (12.22) with the integral in (12.21),
it is enough to prove (12.21) when f (x) _ r~). In this case

by Theorem (3.1 ).
The final result is the following:

(12.24) THEOREM. The linear map T~ which assigns to every g e MO r
the function ,,&#x3E; [0: -~-- 1~s --~- 1], is an isomorphism between the
two spaces.

PROOF. By (12.23), if g~"~ = 0, then g = 0. To show that Tx is onto,
Take any so that the Poisson integral of f

is in ~~’. The map

is a continuous linear functional on .Hs"r 1&#x3E;-1, so there is g E MO’ such. that

By Lemma (12.20) and the fact that T,, is one-to-one it follows that

1jJ - Txg.
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The description of the homogeneous Besov spaces given by B. H. Qui 
provides the following consequence:

(12.25) COROLLARY. The space NO’ coincides with the homogeneous Besov-
Lipschitz space 
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