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Abstract. Operators H satisfying S*H=HS where S is a unilateral shift on
Hubert space are called Hankel operators. For a fixed shift S of arbitrary multiplicity
the Banach spaces of bounded Hankel operators and of compact Hankel operators
are described, and it is shown that the former is always the second dual of the latter.
Representations for bounded and for compact Hankel operators are given in a
standard function space model.

1. Introduction. Let Jf be a separable complex Hubert space and S a shift on
&?. Rosenblum [8, p. 138] has defined a Hankel operator (relative to the shift S)
to be an operator H on 3^ satisfying the operator equation S*H=HS. In this
paper we describe completely the classes of bounded and compact Hankel operators
on -?f and offer representations for such operators in a standard function-space
model.

Whenever S is a shift of multiplicity one, each Hankel operator H may be
identified with a Hankel matrix [am+n]™>m = 0 of complex numbers. In 1957 Nehari
[7, Theorem 1] proved that if H is bounded then there exists a function/in L°°,
the space of essentially-bounded complex-valued functions on the unit circle,
having the property that

(i) for each nonnegative integer n, the nth Fourier coefficient off is an, and
(Ü) ll/lloo = ||Lf||.

Hartman [2, p. 863] showed that the Hankel operator in question is compact if
and only if there is a continuous function on the unit circle satisfying condition (i).
Hevener [4] noted that Nehari's and Hartman's theorems may be used to show
that the Banach space of all bounded Hankel operators relative to a simple shift
is isometrically isomorphic to the second dual of the Banach space of all compact
Hankel operators.

Here we shall use a recent and very elegant result of Sz-Nagy and Foia§ on
extending intertwining maps between contractions [13, Theorem 2] to describe
the class of bounded Hankel operators relative to a nonsimple shift. The result
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(Theorem 2) was obtained originally by us using a dual space argument. Hartman's
theorem is then generalized to allow description of compact Hankel operators,
and finally it is established that the duality relationship between the classes of
bounded and compact Hankel operators holds even for shifts of possibly infinite
multiplicity. The study of compact Hankel operators appearing here is related to
Muhly's independent research on compact operators in the commutant of a
contraction [6].

Let C be a separable complex Hubert space and L2 the space of weakly measurable
functions on the unit circle to C having square-integrable norm. The space L2
and its Hardy subspace H2 are frequently used by Helson [3, Chapter 6] and
others. The standard shift on H% is the operator S defined by S:f(e'*) -+ euf(eu)
for fie He- Representations are given for arbitrary bounded and compact Hankel
operators on H2.

2. Bounded Hankel operators. A unilateral shift S is an isometry having the
property that S*n tends strongly to zero as « -*• oo. Following Rosenblum [9] we
fix a unilateral shift S acting on a separable complex Hubert space $C, so that

CO

■*■ = 2 © s*c   where c ■ (s^y
71 = 0

[1, problem 118].
Occasionally we shall find it convenient to consider the minimal unitary extension

U of S. Thus U is a bilateral shift acting on a Hubert space Jf containing ¿UP
which splits into the orthogonal direct sum Jf = 2™= - « © UnC. Let F+ denote
the orthogonal projection of JF onto 3^.

That such a space $f exists is clear, as it can be constructed as a direct sum of a
countable number of copies of C indexed on the integers. Alternately, U and Jf"
are obtained as the minimal unitary dilation of S in the structure theory of Sz-Nagy
and Foias, [12, Chapter 1].

A frequently encountered function-space model used in studying problems
related to shift operators is obtained as follows: Let C denote the Hubert space
of the preceding paragraphs. Let m denote normalized Lebesgue measure on
[— II, II]. Then L% is the Hubert space of weakly measurable functions (technically
equivalence classes of functions) defined on the unit circle, taking values in the
Hubert space C, and having square integrable norms. The inner product in L%
is given by

<f,g>=  f  </(/'), g(elt)> dm(t).
J -it

The Hardy subspace H§ then consists of those functions in L2 whose negative
Fourier coefficients vanish. These spaces are defined and discussed by Helson
[3, Chapter 6].

The spaces L2 and H$ are intimately related to the spaces JT and Jif above.
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Specifically, the mapping 2™= - » Uncn -*■ 2"= - <» cne"" is a unitary mapping of X
onto L2 which sends JF onto /f2. More importantly, if we let x be the identity
function on the unit circle, the above unitary mapping establishes a unitary
equivalence between U and the multiplication operator /-> xf on ¿c- The re-
striction of the unitary mapping to 3f gives a unitary equivalence between the
unilateral shift S on ¿F and the operator /-> x/ on H2. In §§3, 5 and 6 we make
extensive use of the fact that U and S may be realized as the operator /-> y/ on
L2 and Lf2 respectively. In this section, however, we have no need for such a
representation and hence continue in a model-free setting.

A bounded operator H on ^f is S-Hankel if S*H=HS. A bounded operator T
on Jf is S-Toeplitz if S*TS=T; it is analytic if ST=TS. Since the shift 5 is fixed,
the "S1-" of the above definitions will be dropped.

A bounded operator L on ¿f is called e Laurent operator (technically L is
L-Laurent) if UL=LU.

There is the following well-known close connection between Toeplitz and
Laurent operators. For simple shifts, i.e., if dim C= 1, the result may be found in
Halmos [1, problems 193 and 194], and a similar proof works for an arbitrary
shift. (See solution to problem 194 in [1].)

Theorem 1. A bounded operator T on Jf is Toeplitz if and only if there exists a
bounded Laurent operator L on Jf such that T is the projection of L onto J?, i.e.
T=P+L\Jf. In this case \\L\\ = ||L||.

The above theorem asserts that every Toeplitz operator is obtained by projecting
onto &P an operator which commutes with U. The next theorem establishes a
similar result for Hankel operators. Every bounded Hankel operator H may be
obtained by projecting onto 3^ an operator J on Ctif satisfying U*J=JU.

Theorem 2. A bounded operator H on ,W is Hankel if and only if H=P+J\Jt
where J is a bounded operator on JT satisfying U*J=JU.

Whenever H is a bounded Hankel operator then J above may be chosen so that

\n=\\n\\-
This theorem may be obtained as a special case of a very impressive theorem of

Sz-Nagy and Foia§ [13, Theorem 2], one form of which is as follows: For i— 1, 2
let IFj be a contraction on a Hubert space ^, and let Ut acting on the Hubert
space Sf¡ be the minimal unitary dilation of W¡. Let Pt be the orthogonal projection
of Jft onto 3íf¡. Then a bounded operator X on ¿^x to äC2 satisfies W2X= XWy
only if there exists an operator Fon ^ to CX~2 such that U2Y= YUx, \Y\ = \X\,
and P2YPx = XPx.

To obtain the nontrivial half of Theorem 2 we need only note that U is the
minimal unitary dilation for S and U* is the minimal unitary dilation for S*.

It is easily seen that the class of bounded Hankel operators on 2f forms a
Banach space with the standard operator norm. Let 'S/ denote this space. Let 3~
denote the Banach space of all bounded Toeplitz operators on «^ and let &~0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



532 L. B. PAGE [August

denote the subspace of 3~ consisting of those Toeplitz operators whose range is
contained in C1. We describe 'S/ in terms of ST and &~0.

Theorem 3. FAe Banach space 'S/ of bounded Hankel operators on ¿? is iso-
metrically isomorphic to the quotient space ^"/^.

Proof. We define an operator R on Jf by R: 2"=-«, Uncn->2£.-• UnC-n
whenever cn 6 C for each « and 2£= - » ||cn||2 < oo. Then R is clearly both unitary
and selfadjoint.

The relation between Laurent operators and solutions J to the equation

(*) U*J = JU

is as follows: / is a solution to (*) if and only if RJ is a Laurent operator. If J is a
solution to (*), let T, denote the Toeplitz operator Tj=P+RJ\^. For Fa Toeplitz
operator we let [T] denote the equivalence class in ^'/■T0 to which T belongs.

The isometry then between 'S/ and ^"/^ö ¡s the map which associates with each
bounded Hankel operator H the equivalence class [Tj] where H and J are related
as in Theorem 2. We note that this map is well defined ; for if both J and J' are
related to H as in Theorem 2, then for fie 3/F and c e C we have

(TJ, c> = (RJfi c> = .<// c> = </// c>    and similarly   (J,,fi c> = <fl.fi c>.

Thus <(Tj-T}.)fi c> = 0, or p*/]-P*rl
That the map is isometric and that its range is all of ^/^o can be deduced from

Theorem 1 and Theorem 2. The simple observation that the map is linear completes
the proof.

Note that to this point separability of the underlying Hubert space Jt° has not
been invoked. The separability of 3/P permits !T and 3~o to be described as spaces
of weakly measurable operator-valued functions. Let L°° [-0(C)] denote the algebra
of essentially-bounded functions from the unit circle to the set B(C) of bounded
operators on the Hubert space C. Let //¿° [B(C)] denote the subspace of L°°[B(C)]
consisting of those operator-valued functions whose nonpositive Fourier coefficients
vanish.

Corollary. FAe space 9 is isometrically isomorphic to the quotient space
L°°[B(C)]/HS'[B(C)].

Proof. The space &~ and LX[B(C)] are isometrically isomorphic under an
isomorphism that carries ^ onto Hg[B(C)]. This follows from Theorem 1 and a
standard argument which shows that every bounded Laurent operator on Jf" is
unitarily equivalent to multiplication by an ¿"[¿(C)] function in the model L%-

We will indicate that the preceding results yield a solution to a related extremal
problem. It will first be necessary to discuss briefly linear transformations which
are "analytic" but unbounded.
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Any operator A on Ccan be extended "analytically" so that its domain includes
all "analytic trigonometric polynomials," i.e. all feJif of the form/=2n = o Sncn
where N is a positive integer and cneC for n = 0, I,..., N, by defining

A: 2 S*cn-+ 2 snAc*-
n=0 n=0

The transformation A then is densely defined in 3^C but in general unbounded.
The following properties are obviously satisfied :

(i) The domain of A contains C and is invariant under S.
(ii) If/ is in the domain of A, then SAf=ASf.

(iii) The restriction of A to C is a bounded operator.
An operator on J#* which satisfies these conditions will be called an analytic
transformation.

Lemma 1. If A is any analytic transformation, then the domain of A* includes all
analytic trigonometric polynomials, and A* is bounded on C.

Proof. For each nonnegative integer N, let PN be the orthogonal projection of
Jt onto 2ñ=o©'S"lC, and let AN=PNA. Then AN is bounded. Suppose that
g = 2^=0 Sncn is an analytic trigonometric polynomial. Then iff is any element in
the domain of A,

(Äf, g} = (Af, PMg> = <PMAf g> = (AMf g} = </ Alg).

Thus g is in the domain of A* and A*g=A%g. In particular A*c — A*c for ce C,
and hence A* is bounded on C.

Of interest to us are analytic transformations obtained by first restricting a
bounded Hankel operator to C and then extending this restriction analytically. The
following theorem indicates that the norm of the Hankel operator occurs as the
solution to an extremal problem involving the analytic transformation.

Theorem 4. Let H be a bounded Hankel operator on dP and let A be an analytic
transformation which agrees with H on the subspace C.

Then \H\ =infB ||/4+L*|| where the infimum is taken over the set of all analytic
transformations with range contained in C1. There exists a transformation B for
which the infimum is achieved.

(Note. For any B the domain of A +B* is dense by the lemma.)
Proof. Suppose B is an analytic transformation with range contained in Cx

and such that ,4 + 2?* is bounded.
Since A + B* is Toeplitz, by Theorem 1 it follows that A + B* is the projection

onto 3tf of a Laurent operator L defined on Jf¡ and ||L|| = ||y4 + L*||. It is easily
checked that on the dense set of analytic trigonometric polynomials H agrees
with P+ RL* where R is as in the proof of Theorem 3. Thus || H || ̂  || A + B* \\.
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The existence of an analytic transformation B for which equality holds in the
inequality \\H\\ ^ |^ + 5*|| follows from Theorem 2. For by Theorem 2 there
exists an operator J onJf with U*J=JU and \\J\\ = \\H\\.

Define B on the dense set of analytic trigonometric polynomials by B=P+RJ*
— A*. It is a routine matter to verify that B so defined commutes with the shift S
and has range contained in C1. Finally, \\H\\ = \\J\\ = \\J*\\ ^ ||^+5*||, so in fact
\\H\\ = \\A+B*\\.

Theorem 4 can be restated as a solution to an extremal problem concerning
operator-valued analytic functions defined in the unit disk. Such a statement is
the operator-valued analogue of the Nehari theorem [7, Theorem 1].

3. A representation theorem for bounded Hankel operators. Recall that y is the
identity function on the unit circle, y(e") = e". We now make use of the fact that
the bilateral shift U and the unilateral shift S of the preceding section may be
realized as multiplication by y on L2 and H2 respectively, and in this section we
use the symbols U and S to denote the aforementioned multiplication operators.
Thus a bounded operator H on H§ will be Hankel if and only if S*H=HS where
sf=xf-

We now give a description of the completely general bounded Hankel operator

Theorem 5. A bounded operator H on H2 is Hankel if and only if there exists a
function F in L°°L5(C)] such that

(Hfi g} = J"   <F(e«)/(e-"), g(eu)> dm(t)      for all fi g e HI

If H is a bounded Hankel operator on H§ then the function F in ¿"[^(C)] may be
chosen so that \\F\\00 = \\H\\.

Proof. In this setting the extension space X" is just L2. and U is the operator
defined by U:f—> y/for all/in L2. By Theorem 2 there exists an operator J on
F§ such that the projection of J onto //2 is H, U*J=JU, and \\J\\ = \\H\\. Using
the known fact that the commutant of U consists of all multiplications by F°°[5(C)]
functions, it is not difficult to check that any such operator J must be of the form

/: /(e«) -* F(e")fi(e~»)       for fie L%,

and that |/|| = \\F\\X. Thus \\H\\ = ||f I. and

<Hfig>=  ¡"  <F(e«)/(e-"), g(eu)> dm(t).
J -71

4. Compact Hankel operators. In §2 the Banach space 'S/ of bounded Hankel
operators was studied. Now we describe the Banach space of compact Hankel
operators on JÍ? which we denote by ®¡,.
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As a preliminary we fix the additional notation used in this section. We will
denote by ©j the ideal of trace-class operators in the algebra B(C) of bounded
operators on C. If B e ®u we denote the ©^norm oFJ? by \\B\\i. The ideal of
compact operators in B(C) we denote by ©„.

A Banach space which is of fundamental importance in the discussion of com-
pact Hankel operators is the space of all functions defined on the unit circle and
taking values in © „ which are continuous relative to the uniform operator topology
on ©„. This linear space is a Banach space under the sup norm and will be denoted
here by Ci©»). We let C + (@00) = C(@M) n H^BiC)], the subspace of C(©M)
consisting of those functions whose nonpositive Fourier coefficients vanish.

The Banach space ^0 of compact Hankel operators is described in terms of
C(©œ) just as &, the space of bounded Hankel operators, is described in terms of
L^^iC)] in the corollary to Theorem 3.

Theorem 6. The Banach space <&0 of compact Hankel operators on 3F is iso-
metrically isomorphic to the quotient space C(©„)/C+(©<„).

Theorem 6 will be proved in the next section. With the description of&0 provided
by Theorem 6 we can now examine the duality relationships existing between the
spaces considered above.

LetL1(©1) denote the space of all weakly measurable operator-valued functions
L on the unit circle with values in <&i satisfying

\\P\\l\^)=  f   \\Fieu)\\xdmit)<cx>.
J -n

This space is defined by Sarason [11] who states the following proposition and
notes that the proof is an easy corollary to the analogous well-known theorem for
scalar-valued functions.

Theorem 7. The space L°°[L(C)] is the dual o/Ll(©i). An element Q in L^tfiC)]
corresponds to the linear functional

F-» i*   tr [Qielt)Fielt)]dmit),       FeL\<Bx).
J -71

We denote by //1(©1) the subspace of L1i<B1) consisting of those functions in
L1(©1) whose negative Fourier coefficients vanish. It is not difficult to verify that
rL0°°[L(C)] is the annihilator in Lm[BiC)] of the subspace H\<&x) of L\<Bi). Then
it follows that Lœ[L(C)]///o°[L<(C)] is the dual space of H\<Bx).

The next theorem completes the picture by describing L/1(©1) as the dual
space of C(© X)/C + (© „„) and thus yielding Theorem 9 as an immediate consequence.

Theorem 8. The space LLX©!) is the dual space ofCi(B00)/C+i<SQO).
The correspondence is the following: Let [F] denote the equivalence class in the
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above quotient space to which a function Fin C(<3œ) belongs. A function G in H\<BX)
then corresponds to the linear functional

F^r  tr [G(eu)F(eu)] dm(t),       FeC(<5«,).
J -X

Ryan [10] offers an account of the study of dual spaces of spaces of continuous
functions from a compact Hausdorff space to a Banach space X. These results
describe the dual as a space of vector-valued measures taking values in X*.

We are interested in the space Ci©«,). The conclusion of Ryan's Theorem 1
in the present context is as follows: The annihilator in [C(©œ)]* of C +(©„,,) is the
space of all bounded linear functionals of the form

F-+ C  tr [F(eu)G(eu)] dm(t),       Fe C(@œ) where G is in H\<SX).

The norm of such a linear functional is equal to ¡"_u \G(eil)\x dm(t). But for any
Banach space X with closed subspace X0, (X/X0)* is isometrically isomorphic
to the annihilator of X0 in X*. Letting X=C(<S>X) and X0 = C+(<Bœ) we obtain
Theorem 8.

Theorem 9. The space 'S/ is isometrically isomorphic to the second dual space of
%■

5. Proof of Theorem 6. Theorem 6 will, follow from the four lemmas below
which also yield the representation theorem for compact Hankel operators appear-
ing in §6. In this section we take the model Hg of §3 as the underlying space so
that 41/ and % are now considered to be the classes of bounded and compact
Hankel operators on H§.

Lemma 2. Suppose Fe C(©œ) and H is an operator on H2 satisfying

<Hf, g> =  f*  <F(e«)f(e-u), g(e«)} dm(t),      fige He.
J —n

Then H is a compact Hankel operator.

Proof. Set WJ=j"_xF(eit)e~Mdm(t). Thus Wh being a norm limit of compact
Riemann sums, is compact.

We may extend F continuously to the closed unit disk so that F(rett) =
*¿j=-a,r]i]emWj where the series converges (in operator norm) uniformly on
compact subsets of the open unit disk.

Define Fp(z) = F(pz) for 0<p<l and zgl, and Ff\re't) = ^fi=.np^r^eiliWj
for each positive integer «.

Now define Hankel operators Hp and Hpn) for 0 <p < 1 and n a positive integer
by

(1) <Hpfi g> = f  <F¿é*)f\e-«), g(e«Y dm(t) for/ g e H§,
J -x
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(2) <//<"'/ g} =  f   (FfXe«)fie-*), g(e«)> dmit)       for/ g e H*.
J —a

Notice that xn + 1Hc is contained in the kernel of Hp"\ and if O^j+k^n and cl5
c2eC,

<jijVcj, x^2> = />***< »w* c2>.
(The term on the left is zero if j+k>n since <//¿nVci> Xkc2> = (.H™x?*kCx, c2>.)
Thus 7L¿n) is a finite sum of compact operators and is hence compact.

For a fixed /7, 0</7< 1, Fpn) converges uniformly to Fp as n —> oo, and so from
(1) and (2) above we deduce that || Hp — Hpn) || -> 0 as n -* oo and thus Lfp is compact.

Finally, a standard approximate identity argument (Hoffman [5, p. 17]) shows
that Fp —> F uniformly as p -+ 1 —.

But ||//p-L/|| ^sup, ||FPiett)-Fieu)||, and so \\HP-H\\ -^0 and L/ is compact.

Lemma 3. LAe transformation [F] ->■ L/ wAere L ana" // are related by

(*) <#/, S> =  f*  <F(e-«)f(e-% gie")) dmit),      fige H2C,

is an isometry of the Banach space C(©00)/C+(@00) into the Banach space &0.

Proof. If L e C + (© m) then J* „ <L(e " ")/(e " «), g(e")> «*n(f ) = 0 for all fige Hg.
Thus the above transformation is well defined. Its range is contained in ®¡, by
Lemma 2.

Clearly if H and F are related by (*) then \\H\\ ̂ sup, ||L(e«)|. If Fx e CÍ©«,)
and f-LeC+(S„) then (*) holds with F replaced by L1; and hence ||L/||
^sup( ¡Ljie")!. Thus ||//|| ^ ||[L]|| where the term on the right is the norm in the
quotient space. We must yet establish the reverse inequality.

We continue to assume that H and L are related by (*) where LeCX©«,).
Theorem 5 offers an alternate representation for H. It asserts that there exists a
function Fx in L°°[L(C)] such that

</// g} = f   <Fxie-u)fie-«), g(e«)> dmit)       for/ g e HI
J -a

and such that \\H\\ =ess-sup( ||L(e")||. But then

f  <[L(e-«)-L1(e-«)]/(e-it), g(<ñ> dmit) = 0       for all/ g e H§,

from which it follows that F-Fx is in L/0°°[L(C)].
Recall now that any Banach space may be embedded isometrically in its second

dual in a natural way. Theorem 8, used in conjunction with the remark immediately
following Theorem 7, shows that Lœ [L(C)]/Lf0°° [L(C)] is the second dual of
C(©co)/C+(©0O). An examination of the manner in which the dual spaces act
indicates that the natural embedding of Ci<Ba>)/C+i'Sa>) is as follows: If G is a
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function in C(@„), then the coset G+ C +(<Zo0) is sent into the coset G + Hr?[B(C)].
Since the natural embedding is isometric, it follows that the cosets G + C+(<BX)
and G + Ho[B(C)] have the same norms in their respective spaces.

Returning now to F and Fx above, since F and Fx are in the same coset in
Fco[5(C)]///oeo[5(C)] and since 11/^«, = \\H\\, it follows that the norm of the coset
F+ Ho [B(C)] is not greater than || H |. But by the general remarks in the preceding
paragraph, this implies that the norm of the coset F+C + (<Bai) is not greater than
||//|,i.e.||[F]||^||Jf/||._

The techniques used in Lemma 3 were used by Hevener [4]. Lemma 4 is essentially
due to Hartman. Hartman's proof [2 Lemma 2] is for scalar Hankel operators
but applies just as well in the present setting.

Lemma 4. Suppose H is a compact Hankel operator on H§ and

(Hfi, g> =  P   <F(e")/(e " "), g(e")> dm(t)      for figeHë
J -X

where F is in L°°[5(C)].
For 0<p<l, let Fp(eu) = F(peu). (It is assumed here that F has been extended to

the unit disk in the natural manner via the Poisson kernel as in [5].) Let Hp be defined
for 0 <p < 1 by

<Hpfigy=\     <.F¿f*)f{e-«), g(eitY dm(t)      for fige HI
J —31

Then Hp converges to H in operator norm as p —> 1 —.

Lemma 5. The range of the transformation of Lemma 3 is 4i/0.

Proof. Let H e %. By Theorem 5 there exists a function Fin Lœ[B(C)] such that
H and F are related as in Lemma 4. Let Hp be as in Lemma 4 for 0 <p < 1.

For each integer «, let IFn be the «th Fourier coefficient of F. Thus if cx, c2e C,

<Wncx,c2}=  i*   <,F(e")cx, c2}e-™ dm(t).
J -x

If «^0, {Wncx, c2y = (Hcx, ync2> and hence IFn is compact.
The function Fp is given by Fp(elt) = 2™= -» pweintWn. Let Gp, for 0<p< 1, be

the function defined by

GP(eu) =  2 FVntIFn.

Since Wn is compact for « ̂  0 and since the series converges in the uniform operator
topology, it follows that Gp e C(<Bœ). Also

<Hpfi gy = f   <,Gp(e«)fi(e-% g(e»Y dm(t)       for fige Hl
J-x

Thus the transformation of Lemma 3 sends [Gp(e~u)] onto Hp.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1970]      BOUNDED AND COMPACT VECTORIAL HANKEL OPERATORS 539

We have established that each Hp, 0 <p < 1, is in the range of the transformation
of Lemma 3. The transformation is already known to be isometric, and hence its
range is closed. From Lemma 4 it now follows that H is in the range.

6. A representation theorem for compact Hankel operators. The above lemmas
which have been used to prove Theorem 6 also yield a representation for the
compact Hankel operators on H2.

Theorem 10. A bounded operator H on H2 is a compact Hankel operator if and
only if there exists a function F in C(©oo) such that

<Hf g} =  f"   <L(eif)/(e-it), g(eft)> dmit)      for fige ffl.
J -n

If H is compact Hankel and e > 0, then F may be chosen so that

\\H\\ Z sup ||L(e«)|| ^ \\H\\+e.
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