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Abstract. Sufficient conditions are obtained for the existence of bounded and periodic 
solutions of linear and weakly non-linear differential equations with impulse effect in a 
Banach space on the axis or the semi-axis. The main results are new for equations in Rn 
as well. 

1. Introduction. Differential equations with impulse effect describe the evolution of 
systems subject to perturbations of negligible duration. Systems with a finite number of 
degrees of freedom were considered in [1, 2] and a number of subsequent works by many 
authors. 

In the present paper sufficient conditions are given for the existence of bounded and 
periodic solutions of linear and weakly non-linear differential equations with impulse effect 
in a Banach space on the axis or semi-axis. Moreover, the main results obtained are new 
for equations in Rn as well. 

2. Preliminary notes. Let X be a complex Banach space, L(X) be the set of all linear 
bounded operators X ---> X. Consider the equation with impulse effect 

d 00 

dx =Ax+F(t,x)+ 2::: [Bx+Hj(x)]8(t-tj)· 
t . 

(1) 
J=-oo 

Here 8 is Dirac's delta-function; the points tj are fixed so that 
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the function F: (R\{tj}) x X-+ X is continuously continuable in each layer [tj, t1+ 1] x 
X and satisfies there the local Lipschitz condition on x; the functions H1 : X -+ X are 
continuous; A, B E L(X) and there exists an operator S E L(X), such that 

e8 =I+ B (I= Idx), AS= SA. 

The solution x(-): J-+ X of equation (I) (we denote x E (I);) will be assumed defined 
in some interval J, continuously differentiable except for the points tj in which it may have 
discontinuities of first type, left continuous and moreover we assume that it satisfies the 
relation 

~x(t1 ) := x(tj)- x(tj) = Bx(tj) + Hj(x(tj)). 

Under the conditions formulated and an arbitrary initial condition x(t0 ) = x0 , the solution 
exists and is unique in some right half-neighbourhood of the point t0 . For the solution which 
exists in the interval [ t0 , oo) the definitions of stability and asymptotic stability by Lyapunov 
are extended in a natural way. 

Denote by C B( J, X) the Banach space of the bounded piecewise continuous functions 
x : J -+ X with possible discontinuities of first type in the points tj and with the norm 
lllxlll = lllxlll;. Along with equation (I) we consider the respective linear non-homogeneous 
equation 

d ()() 
d; =Ax+ f(t) + L (Bx + hj)D(t- tj) (2) 

J=-oo 

(J E CB(R, X), h1 EX) and homogeneous equation 

dy 2:()() 
-=Ay+ By·8(t-tj)-
dt 

j=-oo 

(3) 

The solution of equation (2) with initial condition x(t0 ) = x0 exists and is unique fortE R 
and the assertion about its stability (asymptotic stability) does not depend on the choice of 
t0 , x0 , f and { h1 }; that is why we shall speak of stability (asymptotic stability) of equation 
(2). 

3. Main results. 
3.1. Existence of a bounded solution of equation (2) on the axis. Denote by 

v(t, T) fort~ T the number of points tj in the interval (t, Tj; fort> T we set v(t, T) = -v(T, t). 

Theorem 1. Let the following conditions be fulfilled: 

( 1) Uniformly on t E R there exists 

p := lim v(t, t + T) < oo. 
T-->oo T 

(2) The spectrum a(A) of the operator A:= A+ pS has no points on the imaginary axis. 
(3) sup II hill < oo. 

jEZ 
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Then equation (2) has in CB(R,X) a unique solution x(·) such that 

lllxlll:::; C max{ Ill/Ill , sup llhJII}, 
j 

and C does not depend on f and { h1}. 
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(4) 

Proof: From condition (2) it follows that u(A) = u+(A) Uu_(A) where u+(A) (u_(A)) is 
the part of u(A) which lies in the right (left) half-plane. Accordingly, X splits up into a 
direct sum of the subspaces X+ and X_ which generates projectors of the form 

P± = -~ j R;,d>., 
21rz !r ± 

(5) 

where r ± are contours surrounding u±(A) in the respective half-planes and R;, is the resol
vent of the operator A. Moreover, all operators P±, A, S, A commute two by two. 

Introduce the operator-valued function G: R 2 ---> L(X) by the formula 

G(t,r) = +' -{ 
-e(t-T)A-v(t,T)S p -OO < t < T < OO 

e(t-T)A-v(t,T)S p_, _ 00 < T:::; t < oo. 

It is continuous in the whole plane t, T except for discontinuities of first type on the straight 
lines t = t1 . It is not difficult to prove the following properties of this function: 

dG(t, r) _ AG( ) 
dt - t,T, 

G(tj,r)- G(t"j,r) = BG(t"j,r), 

G(t+,t)- G(C,t) =I, 

(here it is necessary to use the equality P+ + P_ =I); 

(VtE:{tJ }, T =I= t); 

(Vj E z, T =I= tj): 

(VtE:{t1}), 

G(tj, t1 ) - G(tj, t1) = BG(tj, tJ) +I, 

:JK > 0, JJ > 0: IIG(t, r)ll :::; Ke-Mit-Ti 

(Vj E Z); 

(Vt, T E R); (6) 

here the exponentially decreasing estimate of lletAp±ll fort---> =t=oo is used which follows 
from (5) and the representation 

(t- r)A + v(r, t)S = (t- r)A + o(t- r)S (lt-rl->oo). 

The assertion of theorem 1 follows from the formula 

/

00 00 

x(t) = G(t, r)f(r) dr + 2": G(t, t1)h1 
-oo J=-oo 

(t E R). (7) 

Last integral and series are convergent because of esimate (6) and in view of the following 
lemma: 
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Lemma 1. Let the conditions of Theorem 1 hold. Then 

(7) ¢:=;> (x E CB(R, X) and x E (2)R). 

Proof: For (7) the inclusion x E CB(R, X) (and estimate (4)) follow from (6) and assertion 
x E (2)R follows from the representation 

! t 1()() ()() 
x(t) = -oo G(t,r)f(r)dr+ t G(t,r)f(r)dr+ L G(t,tj)hj, 

J=-oo 

and the properties of the operator-valued function G. Inversely, let x E CB(R,X), x E (2)R· 
We define x by formula (7) and denote y = x- x. Then y E CB(R,X), y E (3)R· It is not 
difficult to verify that 

y(t) = e(t-t0 )A+v(to,t)Sy(to) (Vt E R), (8) 

whence it follows that 

lletAy(to)ll =II{ exp [P- v(to, t) tS + tov(to, t) S + toA] }y(t)ll = eo(t) (t----+ ±oo); (9) 
t- to t- to 

that is why P±y(t0 ) = 0; i.e, y(t0 ) = 0, hence y = 0. 
Lemma 1, and together with it, Theorem 1, is proved. 

Corollary 1. If the conditions of Theorem 1 hold and a+ (A) = 0, then equation (2) is 
asymptotically stable. 

In fact, it suffices to consider equation (3). We write down formula (8) in the form 

y(t) = e(t-to)A elv(to,t)-p(t-to)]S y(to). 

The assertion of Corollary 1 follows from the last formula and the fact that v(to, t)- P(t
to)= o(t) fort----+ oo. 

3.2. Existence of a periodic solution of periodic equation (2). We shall call 
equation (2) T-periodic (T > 0), if j(t + T) = f(t) and there exists a number r EN such 
that 

tj+r = t1 + T, hj+r = h1 (Vj E Z). (10) 

Theorem 2. If for the T-periodic equation (2) 

2briE_ a(A) (Vk Z A A S r) T E; =- +p,p=T, 

then it has a unique T-periodic solution. 

Proof: We choose x(t0 ) and by induction obtain 

k-1 1tJ+1 
x(t) = etA+kS [e-t 0 Ax(t0 ) + L e-jS . e-rA f(r) dr 

j=O tJ 

t k 

+e-kS ~k e-rAJ(r)dr+ _f;e-tJA-jShj] 

(tk~t<tk+l; k=0,1 ... ). 
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The condition x(t + T) = x(t) is equivalent to the relation x(tr) = x(t0 ), i.e., 

r 

+ L eCtr-tJ)A+(k-J)S h] = x(to). 

j=l 
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(11) 

Since eT A+rS = eTA and the operator I - eTA in view of the conditions of the theorem 
is invertible, then equation (11) is satisfied by a unique value of x(t0 ) which proves the 
theorem. 

3.3. Existence of a family of bounded solutions of equation (2) on the semi
axis. Assume that t0 = 0 and consider equation (2) on R+ := [0, oo). 

Theorem 3. Let the following conditions be fulfilled: 

(1) The spectrum u(A) has no points on the imaginary axis. Analogously to §3.1, we 
obtain a( A)= a+ (A) Ua_ (A) and introduce the corresponding direct decomposition 
X= X1 +x2 , the projectors P± and the operators A± := P±A which satisfy for some 
N ±, Ji± > 0 the estimates 

(2) SX± ~X±, 
(3) e := lim inf(tJ- tj-d > 0' 

J --+00 

(4) IlB-II < ,.J_ e11 - 0 - 1, II(!+ B+)- 1 11 < e11+0 , liB+ II < ,.J+ (1- e11+0 ) where 
B± := P±B· 

(5) sup llh1 II < oo. 
]EN 

Then \:fxo EX, 3!x E CB(R+, X) : (x E (2)R+, P_x(O) = xo). 

Proof: The components X±(-) of any x E (2)R+ satisfy the equations 

(2)± 

considered respectively in the spaces X±. Moreover, 

Equation (2)_ for any initial condition x_(O) = x0 EX_ has a solution x_(·) satisfying the 
relation 

x_(t)=etA-xo+ 1te(t-E)A-J_(~)d~+ L e(t-tJ)A-[B_x_(t1-)+h1-] (tER+)· 
0 0<t1 ::=;t 

(12) 
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We shall prove that x_ E CB(R+,X-). In fact, Vj EN we have 

whence, VE > 0, for all j large enough we obtain 

llx-(tJ+dll:::; (1 + IIB-II)N_e-!1-(0-c)llx-(tJ)II + (1 + IIB-II)N_IIIf-111 +sup llh1 -ll· 
/L J 

Hence, by condition 4 of theorem 3 we obtain boundedness of the sequence { x_ ( t1)}, there
fore of the solution x_ ( ·) too. 

Equation (2)+ may have in CB(R+, X+) no more than one solution. In fact, the difference 
Y+ ( ·) of two such solutions can be represented in the form 

whence if Y+ E CB(R+,X), by condition 4 of theorem 3 we obtain that VE > 0 fort----> oo 

if E is small enough, i.e., Y±(t):::::: 0. 

In order to prove the solvability of equation (2)+ inC B(R+, X+) we consider the equation 

x+(t) = -100 e(t-.;)A+ f+(r) dr- L e(t-tJ)A+ [B+x+(tJ-) + h1 +] (t E R+), (13) 
t t<t1 <oo 

which, provided that x+ E CB(R+,X+), is equivalent to (2)+· Consider equation (13) 
on [tkl oo), denote its right-hand side by (Qx+)(t) and obtain that VE > 0, k E N, x~, 
x~ E CB([tk,oo),X+) 

IIIQx~- Qx~lll:::; sup L N+e-ll+(tJ-t)IIB+II·IIIx~- x~lll 
tk:s;t<oo t<ti<oo 

< N+IIB+II lllxl - x2111· 
- 1- e-11+(0-<) + + 

From condition 4 of theorem 3 it follows that to equation (13) considered on [tk, oo ), we can 
apply the theorem of Banach of the contractive mappings. That is why it and, along with 
it equation ( 13), have in C B(R+, X) a unique solution. 

Adding the functions constructed x_(-) and x+(·), we obtain the assertion of theorem 3. 

Remark 1. Introduce the operator-valued function D : R--+ L(x) by the formula 

{ 
P_etA_, t 2:0 

D(t) = -P+etA+' t < 0. 

Then from (12) and (13) we obtain that the constructed solution x satisfies the relation 

x(t) = D(t)xo + roo D(t- r)f(r) dr + L D(t- tJ)[Bx(tj) + hJ] (t E R+) 
lo JEN 
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which, provided that x E CB(R+, X), is equivalent to equation (2) with condition P_x(O) = 
xo. 

3.4. Existence of a bounded and periodic solution of equation (1} on the axis. 
We shall write (1} E (M,q,p), if fortE R, llxl/, llxi!I :::; p, j E Z the following inequalities 
hold: 

IIF(t,x)ll + 1/Hj(x)ll:::; M, 

IIF(t,x)- F(t,xi)II + 1/Hj(x)- Hj(xdll:::; qllx- x1ll· 

Theorem 4. Let conditions 1 and 2 of Theorem 1 hold. Then Vp > 0, 3M> 0, q > 0 (M, 
q depend on A, B, {tj}, p) such that 

(1) E (M, q, p) => 3!x(: R--> X) : x E (1), lllxiiiR:::; P· 

Proof: From lemma 1 it follows that for (1) E (M,q,p), lllxiiiR:::; p equation (1) is equiv
alent to the equation 

/

00 00 

x(t) = G(t, r)F(r, x(r)) dr + I: G(t, tj)Hj(x(tj)) (t E R). 
-oo j=-oo 

(15) 

From estimate (6) and condition 1 of Theorem 1 it follows that if the number f > 0 is chosen 
so that (1/f)v(t, t +f) < p + 1 (Vt E R), then for llxll :::; p 

II / 00 
G(t, r)F(r, x(r)) dr + f: G(t, t1 )Hj(x(tj))ll 

-oo j=-oo 

Thus, for 
M< [K(~ 2(p+1)£)]-1 

- p f..l + 1 - e-JJ.i ' 

the operator defined by the right-hand side of equation (15) maps the ball lllxlll :::; pinto 
itself. In an analogous way it is verified that for q small enough this operator is contractive. 
This completes the proof of theorem 4. 

Corollary 2. If in the conditions of Theorem 4 it is given that F(t,O) = 0 and H1(0) = 0, 
then the only solution of equation (1) for lllxlll ~pis the solution x(t) = 0. 

Corollary 3. If in the conditions of Theorem 4 equation (1) is T-periodic (the respective 
definition is analogous to the one given in §3.2), then the solution of the equation considered 
in the theorem is T -periodic too. 

In fact, if t 1--+ x( t) is this solution, then the function t ~--+ x( t + T) is a solution of equation 
(1} too and x(t + T) = x(t). 

3.5. Existence of a family of bounded solutions of equation (1} on the semi
axis. As in §3.3 we assume that to = 0. 
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Theorem 5. Let an operator A and points { ti} be given so that conditions 1 and 3 of 

Theorem 3 hold. Then Vp > 0, p1 E (O,pmax{N-,N+})- 1:3M,q,,B > 0: if B, F, {H1} are 
given so that conditions 2 and 4 of Theorem 3 are fulfilled, liB II :::;; ,8 and (1) E (M, q, p), 
then '<lxo Ex_ : llxoll :::;; Pl, ::J!x(: R+--+ X): X E (1), lllxiiiR+ :::;; p, P_x(O) = Xo. 

Proof: From Remark 1 it follows that for (1) E (M,q,p), lllxiiiR+ :::;; p equation (1) with 
condition P_x(O) = xo EX_ (llxoll :::;; p) is equivalent to the equation 

x(t) = D(t)x0 + 100 
D(t- r)F(r, x(r)) dr + L D(t- tJ)[Bx(tj) + HJ(x(tj))] (t E R+)· 

0 )EN 

For llxiiR+ :::;; p, llxoll :::;; Pl (:::;; p), (1) E (M, q, p) the norm of the right-hand side of the 
above equation does not exceed 

where B1 := infJEN(tJ- ti-d· We choose ,8 so that 

After that the proof of the theorem is completed in the same way as the proof of Theorem 
4. 
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