BOUNDED AND PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECT IN A BANACH SPACE

D.D. Bainov
P.O. Box 45, 1504 Sofia, Bulgaria
S.I. Kostadinov
Plovdiv University, Paissii Hilendarski, Plovdiv
A.D. MYSHKIS
Moscow Institute of Railway, Transport Engineers, Moscow, USSR

Abstract

Sufficient conditions are obtained for the existence of bounded and periodic solutions of linear and weakly non-linear differential equations with impulse effect in a Banach space on the axis or the semi-axis. The main results are new for equations in \mathbf{R}^{n} as well.

1. Introduction. Differential equations with impulse effect describe the evolution of systems subject to perturbations of negligible duration. Systems with a finite number of degrees of freedom were considered in $[1,2]$ and a number of subsequent works by many authors.

In the present paper sufficient conditions are given for the existence of bounded and periodic solutions of linear and weakly non-linear differential equations with impulse effect in a Banach space on the axis or semi-axis. Moreover, the main results obtained are new for equations in \mathbf{R}^{n} as well.
2. Preliminary notes. Let X be a complex Banach space, $L(X)$ be the set of all linear bounded operators $X \rightarrow X$. Consider the equation with impulse effect

$$
\begin{equation*}
\frac{d x}{d t}=A x+F(t, x)+\sum_{j=-\infty}^{\infty}\left[B x+H_{j}(x)\right] \delta\left(t-t_{j}\right) \tag{1}
\end{equation*}
$$

Here δ is Dirac's delta-function; the points t_{j} are fixed so that

$$
t_{j}<t_{j+1}(j \in \mathbf{Z}), \quad t_{j} \rightarrow \pm \infty(j \rightarrow \pm \infty)
$$

[^0]AMS(MOS) Subject Classifications: 34G20.
the function $F:\left(\mathbf{R} \backslash\left\{t_{j}\right\}\right) \times X \rightarrow X$ is continuously continuable in each layer $\left[t_{j}, t_{j+1}\right] \times$ X and satisfies there the local Lipschitz condition on x; the functions $H_{j}: X \rightarrow X$ are continuous; $A, B \in L(X)$ and there exists an operator $S \in L(X)$, such that

$$
e^{S}=I+B\left(I=I d_{x}\right), \quad A S=S A
$$

The solution $x(\cdot): J \rightarrow X$ of equation (1) (we denote $x \in(1)_{J}$) will be assumed defined in some interval J, continuously differentiable except for the points t_{j} in which it may have discontinuities of first type, left continuous and moreover we assume that it satisfies the relation

$$
\Delta x\left(t_{j}\right):=x\left(t_{j}\right)-x\left(t_{j}^{-}\right)=B x\left(t_{j}^{-}\right)+H_{j}\left(x\left(t_{j}^{-}\right)\right)
$$

Under the conditions formulated and an arbitrary initial condition $x\left(t^{0}\right)=x^{0}$, the solution exists and is unique in some right half-neighbourhood of the point t^{0}. For the solution which exists in the interval $\left[t^{0}, \infty\right)$ the definitions of stability and asymptotic stability by Lyapunov are extended in a natural way.

Denote by $C B(J, X)$ the Banach space of the bounded piecewise continuous functions $x: J \rightarrow X$ with possible discontinuities of first type in the points t_{j} and with the norm $\left\|\left|x\left\||=\||x||{ }_{J}\right.\right.\right.$. Along with equation (1) we consider the respective linear non-homogeneous equation

$$
\begin{equation*}
\frac{d x}{d t}=A x+f(t)+\sum_{j=-\infty}^{\infty}\left(B x+h_{j}\right) \delta\left(t-t_{j}\right) \tag{2}
\end{equation*}
$$

$\left(f \in C B(\mathbf{R}, X), h_{j} \in X\right)$ and homogeneous equation

$$
\begin{equation*}
\frac{d y}{d t}=A y+\sum_{j=-\infty}^{\infty} B y \cdot \delta\left(t-t_{j}\right) \tag{3}
\end{equation*}
$$

The solution of equation (2) with initial condition $x\left(t^{0}\right)=x^{0}$ exists and is unique for $t \in \mathbf{R}$ and the assertion about its stability (asymptotic stability) does not depend on the choice of t^{0}, x^{0}, f and $\left\{h_{j}\right\}$; that is why we shall speak of stability (asymptotic stability) of equation (2).

3. Main results.

3.1. Existence of a bounded solution of equation (2) on the axis. Denote by $\nu(t, \tau)$ for $t \leq \tau$ the number of points t_{j} in the interval $(t, \tau]$; for $t>\tau$ we set $\nu(t, \tau)=-\nu(\tau, t)$.
Theorem 1. Let the following conditions be fulfilled:
(1) Uniformly on $t \in \mathbf{R}$ there exists

$$
p:=\lim _{T \rightarrow \infty} \frac{\nu(t, t+T)}{T}<\infty
$$

(2) The spectrum $\sigma(\Lambda)$ of the operator $\Lambda:=A+p S$ has no points on the imaginary axis.
(3) $\sup _{j \in \mathbf{Z}}\left\|h_{j}\right\|<\infty$.

Then equation (2) has in $C B(\mathbf{R}, X)$ a unique solution $x(\cdot)$ such that

$$
\begin{equation*}
\left\||x \|| \leq C \max \left\{\left|\|f \mid\|, \sup _{j}\left\|h_{j}\right\|\right\}\right.\right. \tag{4}
\end{equation*}
$$

and C does not depend on f and $\left\{h_{j}\right\}$.
Proof: From condition (2) it follows that $\sigma(\Lambda)=\sigma_{+}(\Lambda) \cup \sigma_{-}(\Lambda)$ where $\sigma_{+}(\Lambda)\left(\sigma_{-}(\Lambda)\right)$ is the part of $\sigma(\Lambda)$ which lies in the right (left) half-plane. Accordingly, X splits up into a direct sum of the subspaces X_{+}and X_{-}which generates projectors of the form

$$
\begin{equation*}
P_{ \pm}=-\frac{1}{2 \pi i} \oint_{\Gamma_{ \pm}} R_{\lambda} d \lambda \tag{5}
\end{equation*}
$$

where $\Gamma_{ \pm}$are contours surrounding $\sigma_{ \pm}(\Lambda)$ in the respective half-planes and R_{λ} is the resolvent of the operator Λ. Moreover, all operators $P_{ \pm}, A, S, \Lambda$ commute two by two.

Introduce the operator-valued function $G: \mathbf{R}^{2} \rightarrow L(X)$ by the formula

$$
G(t, \tau)= \begin{cases}-e^{(t-\tau) A-\nu(t, \tau) S} P_{+}, & -\infty<t \leq \tau<\infty \\ e^{(t-\tau) A-\nu(t, \tau) S} P_{-}, & -\infty<\tau \leq t<\infty\end{cases}
$$

It is continuous in the whole plane t, τ except for discontinuities of first type on the straight lines $t=t_{j}$. It is not difficult to prove the following properties of this function:

$$
\begin{array}{ll}
\frac{d G(t, \tau)}{d t}=A G(t, \tau), & \left(\forall t \bar{\in}\left\{t_{j}\right\}, \tau \neq t\right) ; \\
G\left(t_{j}^{+}, \tau\right)-G\left(t_{j}^{-}, \tau\right)=B G\left(t_{j}^{-}, \tau\right), & \left(\forall j \in \mathbf{Z}, \tau \neq t_{j}\right) ; \\
G\left(t^{+}, t\right)-G\left(t^{-}, t\right)=I, & \left(\forall t \bar{\in}\left\{t_{j}\right\}\right),
\end{array}
$$

(here it is necessary to use the equality $P_{+}+P_{-}=I$);

$$
\begin{gather*}
G\left(t_{j}^{+}, t_{j}\right)-G\left(t_{j}^{-}, t_{j}\right)=B G\left(t_{j}^{-}, t_{j}\right)+I, \\
\exists K>0, \mu>0:\|G(t, \tau)\| \leq K e^{-\mu|t-\tau|} \quad(\forall j \in \mathbf{Z}) ; \tag{6}\\
\exists K, \tau \in \mathbf{R}) ;
\end{gather*}
$$

here the exponentially decreasing estimate of $\left\|e^{t \Lambda} P_{ \pm}\right\|$for $t \rightarrow \mp \infty$ is used which follows from (5) and the representation

$$
(t-\tau) A+\nu(\tau, t) S=(t-\tau) \Lambda+\mathrm{o}(t-\tau) S \quad(|t-\tau| \rightarrow \infty)
$$

The assertion of theorem 1 follows from the formula

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} G(t, \tau) f(\tau) d \tau+\sum_{j=-\infty}^{\infty} G\left(t, t_{j}\right) h_{j} \quad(t \in \mathbf{R}) \tag{7}
\end{equation*}
$$

Last integral and series are convergent because of esimate (6) and in view of the following lemma:

Lemma 1. Let the conditions of Theorem 1 hold. Then

$$
(7) \Longleftrightarrow\left(x \in C B(\mathbf{R}, X) \quad \text { and } \quad x \in(2)_{\mathbf{R}}\right) .
$$

Proof: For (7) the inclusion $x \in C B(\mathbf{R}, X)$ (and estimate (4)) follow from (6) and assertion $x \in(2)_{\mathbf{R}}$ follows from the representation

$$
x(t)=\int_{-\infty}^{t} G(t, \tau) f(\tau) d \tau+\int_{t}^{\infty} G(t, \tau) f(\tau) d \tau+\sum_{j=-\infty}^{\infty} G\left(t, t_{j}\right) h_{j}
$$

and the properties of the operator-valued function G. Inversely, let $\tilde{x} \in C B(\mathbf{R}, X), \tilde{x} \in(2)_{\mathbf{R}}$. We define x by formula (7) and denote $y=\tilde{x}-x$. Then $y \in C B(\mathbf{R}, X), y \in(3)_{\mathbf{R}}$. It is not difficult to verify that

$$
\begin{equation*}
y(t)=e^{\left(t-t_{0}\right) A+\nu\left(t_{0}, t\right) S} y\left(t_{0}\right) \quad(\forall t \in \mathbf{R}) \tag{8}
\end{equation*}
$$

whence it follows that

$$
\begin{equation*}
\left\|e^{t \Lambda} y\left(t_{0}\right)\right\|=\left\|\left\{\exp \left[p-\frac{\nu\left(t_{0}, t\right)}{t-t_{0}} t S+\frac{t_{0} \nu\left(t_{0}, t\right)}{t-t_{0}} S+t_{0} A\right]\right\} y(t)\right\|=e^{\mathrm{o}(t)}(t \rightarrow \pm \infty) \tag{9}
\end{equation*}
$$

that is why $P_{ \pm} y\left(t_{0}\right)=0$; i.e, $y\left(t_{0}\right)=0$, hence $y=0$.
Lemma 1, and together with it, Theorem 1, is proved.
Corollary 1. If the conditions of Theorem 1 hold and $\sigma_{+}(\Lambda)=\emptyset$, then equation (2) is asymptotically stable.

In fact, it suffices to consider equation (3). We write down formula (8) in the form

$$
y(t)=e^{\left(t-t_{0}\right) \Lambda} e^{\left[\nu\left(t_{0}, t\right)-p\left(t-t_{0}\right)\right] S} y\left(t_{0}\right) .
$$

The assertion of Corollary 1 follows from the last formula and the fact that $\nu\left(t_{0}, t\right)-P(t-$ $\left.t_{0}\right)=\mathrm{o}(t)$ for $t \rightarrow \infty$.
3.2. Existence of a periodic solution of periodic equation (2). We shall call equation (2) T-periodic ($T>0$), if $f(t+T) \equiv f(t)$ and there exists a number $r \in \mathbf{N}$ such that

$$
\begin{equation*}
t_{j+r}=t_{j}+T, \quad h_{j+r}=h_{j}(\forall j \in \mathbf{Z}) \tag{10}
\end{equation*}
$$

Theorem 2. If for the T-periodic equation (2)

$$
\frac{2 k \pi i}{T} \bar{\epsilon} \sigma(\Lambda) \quad\left(\forall k \in \mathbf{Z} ; \quad \Lambda=-A+p S, p=\frac{r}{T}\right)
$$

then it has a unique T-periodic solution.
Proof: We choose $x\left(t_{0}\right)$ and by induction obtain

$$
\begin{gathered}
x(t)=e^{t A+k S}\left[e^{-t_{0} A} x\left(t_{0}\right)+\sum_{j=0}^{k-1} e^{-j S} \int_{t_{j}}^{t_{j+1}} e^{-\tau A} f(\tau) d \tau\right. \\
\left.+e^{-k S} \int_{t_{k}}^{t} e^{-\tau A} f(\tau) d \tau+\sum_{j=1}^{k} e^{-t_{j} A-j S} h_{j}\right] \\
\left(t_{k} \leq t<t_{k+1} ; \quad k=0,1 \ldots\right) .
\end{gathered}
$$

The condition $x(t+T) \equiv x(t)$ is equivalent to the relation $x\left(t_{r}\right)=x\left(t_{0}\right)$, i.e.,

$$
\begin{align*}
e^{T A+r S} x\left(t_{0}\right)+e^{t_{r} A} & \sum_{j=0}^{r-1} e^{(r-j) S} \int_{t_{j}}^{t_{j+1}} e^{-\tau A} f(\tau) d \tau \\
& +\sum_{j=1}^{r} e^{\left(t_{r}-t_{j}\right) A+(k-j) S} h_{j}=x\left(t_{0}\right) . \tag{11}
\end{align*}
$$

Since $e^{T A+r S}=e^{T \Lambda}$ and the operator $I-e^{T \Lambda}$ in view of the conditions of the theorem is invertible, then equation (11) is satisfied by a unique value of $x\left(t_{0}\right)$ which proves the theorem.
3.3. Existence of a family of bounded solutions of equation (2) on the semiaxis. Assume that $t_{0}=0$ and consider equation (2) on $R_{+}:=[0, \infty)$.
Theorem 3. Let the following conditions be fulfilled:
(1) The spectrum $\sigma(A)$ has no points on the imaginary axis. Analogously to §3.1, we obtain $\sigma(A)=\sigma_{+}(A) \cup \sigma_{-}(A)$ and introduce the corresponding direct decomposition $X=X_{1} \dot{+} X_{2}$, the projectors $P_{ \pm}$and the operators $A_{ \pm}:=P_{ \pm} A$ which satisfy for some $N_{ \pm}, \mu_{ \pm}>0$ the estimates

$$
\left\|e^{A-t}\right\| \leq N_{-} e^{-\mu_{-} t}, \quad\left\|e^{-A+t}\right\| \leq N_{+} e^{-\mu_{+} t}\left(\forall t \in \mathbf{R}_{+}\right)
$$

(2) $S X_{ \pm} \subseteq X_{ \pm}$,
(3) $\theta:=\lim _{j \rightarrow \infty} \inf \left(t_{j}-t_{j-1}\right)>0$,
(4) $\left\|B_{-}\right\|<\frac{1}{N_{-}} e^{\mu_{-} \theta}-1, \quad\left\|\left(I+B_{+}\right)^{-1}\right\|<e^{\mu_{+} \theta}, \quad\left\|B_{+}\right\|<\frac{1}{N_{+}}\left(1-e^{\mu_{+} \theta}\right)$ where $B_{ \pm}:=P_{ \pm} B$.
(5) $\sup _{j \in \mathbf{N}}\left\|h_{j}\right\|<\infty$.

Then $\forall x_{0} \in X, \exists!x \in C B\left(\mathbf{R}_{+}, X\right):\left(x \in(2)_{\mathbf{R}_{+}}, P_{-} x(0)=x_{0}\right)$.
Proof: The components $x_{ \pm}(\cdot)$ of any $x \in(2)_{\mathbf{R}_{+}}$satisfy the equations

$$
\begin{equation*}
\frac{d x_{ \pm}}{d t}=A_{ \pm} x_{ \pm}+f_{ \pm}(t)+\sum_{j=1}^{\infty}\left(B_{ \pm} x_{ \pm}+h_{j \pm}\right) \delta\left(t-t_{j}\right) \quad\left(t \in \mathbf{R}_{+}\right) \tag{2}
\end{equation*}
$$

considered respectively in the spaces $X_{ \pm}$. Moreover,

$$
\sigma\left(A_{ \pm}\right)=\sigma_{ \pm}(A), \quad f_{ \pm}:=P_{ \pm} f, \quad h_{ \pm}:=P_{ \pm} h_{j} .
$$

Equation (2)_ for any initial condition $x_{-}(0)=x_{0} \in X_{-}$has a solution $x_{-}(\cdot)$ satisfying the relation

$$
\begin{equation*}
x_{-}(t)=e^{t A_{-}} x_{0}+\int_{0}^{t} e^{(t-\xi) A_{-}} f_{-}(\xi) d \xi+\sum_{0<t_{j} \leq t} e^{\left(t-t_{j}\right) A_{-}}\left[B_{-} x_{-}\left(t_{j^{-}}\right)+h_{j^{-}}\right] \quad\left(t \in \mathbf{R}_{+}\right) \tag{12}
\end{equation*}
$$

We shall prove that $x_{-} \in C B\left(\mathbf{R}_{+}, X_{-}\right)$. In fact, $\forall j \in \mathbf{N}$ we have

$$
x_{-}\left(t_{j+1}\right)=\left(I+B_{-}\right)\left[e^{\left(t_{j+1}-t_{j}\right) A_{-}} x_{-}\left(t_{j}\right)+\int_{t_{j}}^{t_{j+1}} e^{\left(t_{j+1}-t_{j}\right) A_{-}} f_{-}(\tau) d \tau+h_{(j+1)^{-}}\right]
$$

whence, $\forall \epsilon>0$, for all j large enough we obtain

$$
\left\|x_{-}\left(t_{j+1}\right)\right\| \leq\left(1+\left\|B_{-}\right\|\right) N_{-} e^{-\mu_{-}(\theta-\epsilon)}\left\|x_{-}\left(t_{j}\right)\right\|+\left(1+\left\|B_{-}\right\|\right) \frac{N_{-}}{\mu_{-}}\left\|f_{-} \mid\right\|+\sup _{j}\left\|h_{j-}\right\|
$$

Hence, by condition 4 of theorem 3 we obtain boundedness of the sequence $\left\{x_{-}\left(t_{j}\right)\right\}$, therefore of the solution $x_{-}(\cdot)$ too.

Equation (2) $)_{+}$may have in $C B\left(\mathbf{R}_{+}, X_{+}\right)$no more than one solution. In fact, the difference $y_{+}(\cdot)$ of two such solutions can be represented in the form

$$
y_{+}(t)=e^{t A_{+}}\left(I+B_{+}\right)^{\nu(0, t)} y_{+}(0),
$$

whence if $y_{+} \in C B\left(\mathbf{R}_{+}, X\right)$, by condition 4 of theorem 3 we obtain that $\forall \epsilon>0$ for $t \rightarrow \infty$

$$
\left\|y_{+}(0)\right\|=\left\|e^{-t A_{+}}\left(I+B_{+}\right)^{-\nu(0, t)} y_{+}(t)\right\|=\mathrm{o}\left(e^{-\mu_{+} t}\left\|\left(I+B_{+}\right)^{-1}\right\|^{t /(\theta-\epsilon)}\right) \rightarrow 0
$$

if ϵ is small enough, i.e., $y_{ \pm}(t) \equiv 0$.
In order to prove the solvability of equation $(2)_{+}$in $C B\left(\mathbf{R}_{+}, X_{+}\right)$we consider the equation

$$
\begin{equation*}
x_{+}(t)=-\int_{t}^{\infty} e^{(t-\xi) A_{+}} f_{+}(\tau) d \tau-\sum_{t<t_{j}<\infty} e^{\left(t-t_{j}\right) A_{+}}\left[B_{+} x_{+}\left(t_{j-}\right)+h_{j+}\right] \quad\left(t \in \mathbf{R}_{+}\right), \tag{13}
\end{equation*}
$$

which, provided that $x_{+} \in C B\left(\mathbf{R}_{+}, X_{+}\right)$, is equivalent to (2) $)_{+}$. Consider equation (13) on $\left[t_{k}, \infty\right)$, denote its right-hand side by $\left(Q x_{+}\right)(t)$ and obtain that $\forall \epsilon>0, k \in \mathbf{N}, x_{+}^{1}$, $x_{+}^{2} \in C B\left(\left[t_{k}, \infty\right), X_{+}\right)$

$$
\begin{aligned}
\left\|\left|Q x_{+}^{1}-Q x_{+}^{2}\right|\right\| & \leq \sup _{t_{k} \leq t<\infty^{\prime}} \sum_{t<t_{j}<\infty} N_{+} e^{-\mu_{+}\left(t_{j}-t\right)}\left\|B_{+}\right\| \cdot\left\|\left|x_{+}^{1}-x_{+}^{2}\right|\right\| \\
& \leq \frac{N_{+}\left\|B_{+}\right\|}{1-e^{-\mu_{+}(\theta-\epsilon)}}\left\|\mid x_{+}^{1}-x_{+}^{2}\right\| \|
\end{aligned}
$$

From condition 4 of theorem 3 it follows that to equation (13) considered on $\left[t_{k}, \infty\right)$, we can apply the theorem of Banach of the contractive mappings. That is why it and, along with it equation (13), have in $C B\left(\mathbf{R}_{+}, X\right)$ a unique solution.

Adding the functions constructed $x_{-}(\cdot)$ and $x_{+}(\cdot)$, we obtain the assertion of theorem 3 .
Remark 1. Introduce the operator-valued function $D: \mathbf{R} \rightarrow L(x)$ by the formula

$$
D(t)= \begin{cases}P_{-} e^{t A_{-}}, & t \geq 0 \\ -P_{+} e^{t A_{+}}, & t<0\end{cases}
$$

Then from (12) and (13) we obtain that the constructed solution x satisfies the relation

$$
x(t)=D(t) x_{0}+\int_{0}^{\infty} D(t-\tau) f(\tau) d \tau+\sum_{j \in \mathbf{N}} D\left(t-t_{j}\right)\left[B x\left(t_{j}^{-}\right)+h_{j}\right] \quad\left(t \in \mathbf{R}_{+}\right)
$$

which, provided that $x \in C B\left(\mathbf{R}_{+}, X\right)$, is equivalent to equation (2) with condition $P_{-} x(0)=$ x_{0}.
3.4. Existence of a bounded and periodic solution of equation (1) on the axis. We shall write (1) $\in(M, q, \rho)$, if for $t \in \mathbf{R},\|x\|,\left\|x_{1}\right\| \leq \rho, j \in \mathbf{Z}$ the following inequalities hold:

$$
\begin{gathered}
\|F(t, x)\|+\left\|H_{j}(x)\right\| \leq M \\
\left\|F(t, x)-F\left(t, x_{1}\right)\right\|+\left\|H_{j}(x)-H_{j}\left(x_{1}\right)\right\| \leq q\left\|x-x_{1}\right\| .
\end{gathered}
$$

Theorem 4. Let conditions 1 and 2 of Theorem 1 hold. Then $\forall \rho>0, \exists M>0, q>0$ (M, q depend on $\left.A, B,\left\{t_{j}\right\}, \rho\right)$ such that

$$
(1) \in(M, q, \rho) \Rightarrow \exists!x(: \mathbf{R} \rightarrow X): x \in(1), \quad\|\mid x\|_{\mathbf{R}} \leq \rho
$$

Proof: From lemma 1 it follows that for $(1) \in(M, q, \rho),\|\mid x\|_{\mathbf{R}} \leq \rho$ equation (1) is equivalent to the equation

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} G(t, \tau) F(\tau, x(\tau)) d \tau+\sum_{j=-\infty}^{\infty} G\left(t, t_{j}\right) H_{j}\left(x\left(t_{j}^{-}\right)\right) \quad(t \in \mathbf{R}) \tag{15}
\end{equation*}
$$

From estimate (6) and condition 1 of Theorem 1 it follows that if the number $\ell>0$ is chosen so that $(1 / \ell) \nu(t, t+\ell)<p+1(\forall t \in \mathbf{R})$, then for $\|x\| \leq \rho$

$$
\begin{aligned}
& \left\|\int_{-\infty}^{\infty} G(t, \tau) F(\tau, x(\tau)) d \tau+\sum_{j=-\infty}^{\infty} G\left(t, t_{j}\right) H_{j}\left(x\left(t_{j}^{-}\right)\right)\right\| \\
& \quad \leq M\left(\int_{-\infty}^{\infty} K e^{-\mu|t-\xi|} d \tau+\sum_{j=-\infty}^{\infty} K e^{-\mu\left|t-t_{j}\right|}\right) \\
& \quad \leq M K\left(\frac{2}{\mu}+\frac{2(p+1) \ell}{1-e^{-\mu \ell}}\right)
\end{aligned}
$$

Thus, for

$$
M \leq p\left[K\left(\frac{2}{\mu}+\frac{2(p+1) \ell}{1-e^{-\mu \ell}}\right)\right]^{-1}
$$

the operator defined by the right-hand side of equation (15) maps the ball $\||x|\| \leq \rho$ into itself. In an analogous way it is verified that for q small enough this operator is contractive. This completes the proof of theorem 4.

Corollary 2. If in the conditions of Theorem 4 it is given that $F(t, 0) \equiv 0$ and $H_{j}(0)=0$, then the only solution of equation (1) for $\||x|\| \leq \rho$ is the solution $x(t) \equiv 0$.
Corollary 3. If in the conditions of Theorem 4 equation (1) is T-periodic (the respective definition is analogous to the one given in §3.2), then the solution of the equation considered in the theorem is T-periodic too.

In fact, if $t \mapsto x(t)$ is this solution, then the function $t \mapsto x(t+T)$ is a solution of equation (1) too and $x(t+T) \equiv x(t)$.
3.5. Existence of a family of bounded solutions of equation (1) on the semiaxis. As in $\S 3.3$ we assume that $t_{0}=0$.

Theorem 5. Let an operator A and points $\left\{t_{j}\right\}$ be given so that conditions 1 and 3 of Theorem 3 hold. Then $\forall \rho>0, \rho_{1} \in\left(0, \rho \max \left\{N_{-}, N_{+}\right\}\right)^{-1} \exists M, q, \beta>0:$ if $B, F,\left\{H_{j}\right\}$ are given so that conditions 2 and 4 of Theorem 3 are fulfilled, $\|B\| \leq \beta$ and $(1) \in(M, q, \rho)$, then $\forall x_{0} \in X_{-}:\left\|x_{0}\right\| \leq \rho_{1}, \exists!x\left(: \mathbf{R}_{+} \rightarrow X\right): x \in(1),\||x|\|_{\mathbf{R}_{+}} \leq \rho, P_{-} x(0)=x_{0}$.
Proof: From Remark 1 it follows that for $(1) \in(M, q, \rho),\||x|\|_{\mathbf{R}_{+}} \leq \rho$ equation (1) with condition $P_{-} x(0)=x_{0} \in X_{-}\left(\left\|x_{0}\right\| \leq \rho\right)$ is equivalent to the equation
$x(t)=D(t) x_{0}+\int_{0}^{\infty} D(t-\tau) F(\tau, x(\tau)) d \tau+\sum_{j \in \mathbf{N}} D\left(t-t_{j}\right)\left[B x\left(t_{j}^{-}\right)+H_{j}\left(x\left(t_{j}^{-}\right)\right)\right] \quad\left(t \in \mathbf{R}_{+}\right)$.
For $\|x\|_{\mathbf{R}_{+}} \leq \rho,\left\|x_{0}\right\| \leq \rho_{1}(\leq \rho),(1) \in(M, q, \rho)$ the norm of the right-hand side of the above equation does not exceed

$$
\max \left\{N_{-}, N_{+}\right\} \rho_{1}+M\left(\frac{N_{-}}{\mu_{-}}+\frac{N_{+}}{\mu_{+}}\right)+\left(\|B\|_{\rho}+M\right)\left(\frac{N_{-}}{1-e^{-\mu_{-} \theta_{1}}}+\frac{N_{+}}{1-e^{-\mu_{+} \theta_{1}}}\right)
$$

where $\theta_{1}:=\inf _{j \in \mathbf{N}}\left(t_{j}-t_{j-1}\right)$. We choose β so that

$$
\max \left\{N_{-}, N_{+}\right\} \rho_{1}+\beta \rho\left(\frac{N_{-}}{1-e^{-\mu_{-} \theta_{1}}}+\frac{N_{+}}{1-e^{-\mu_{+} \theta_{1}}}\right)<\rho .
$$

After that the proof of the theorem is completed in the same way as the proof of Theorem 4.

REFERENCES

[1] V.D. Mil'man \& A.D. Myshkis, On the stability of motion in the presence of impulses, Sibirskii Math. J., 1 (1960), 233-237 (in Russian).
[2] A.D. Myshkis \& A.M. Samoilenko, Systems with impulses in prescribed moments of the time, Mathematicheskii Sbornik, 74, 2 (1967), 202-208 (in Russian).
[3] Y. L. Daleckii \& M.G. Krein, Stability of solutions of differential equations in Banach space, AMS, Books and Journals in Advanced Mathematics, 1974, 386 pp.

[^0]: Received October 19, 1987.

