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1. Introduction. Let C be a rectifiable Jordan curve with interior D. We say

that a sequence of polynomials Pn converges boundedly to a function / in D, or

/is boundedly approximated by Pn in D, if Pn converges to / throughout D and

sup^T^z)! : z e D} is bounded as a function of«. A polynomial whose zeros lie

on C will be called a C-polynomial. It is obvious that the limit function of a

boundedly convergent sequence of C-polynomials in TJ is a bounded zero free

holomorphic function in D, unless it is identically zero. In this paper, we will

present a proof of the somewhat unexpected converse for the case when C is a

circle, as announced in [1].

Main Theorem. Every bounded zero free holomorphic function in the open unit

disc can be boundedly approximated there by polynomials whose zeros lie on the unit

circumference.

More generally, suppose that C is any rectifiable Jordan curve, so smooth that

its parametric representation in terms of arc length has a Holder continuous

derivative. The methods developed in this paper can be extended and modified to

prove the possibility of bounded approximation by C-polynomials of functions /

defined and zero free in clos D, such that the derivative /', relative to clos D,

exists and is Holder continuous throughout clos D. In particular, any function /

holomorphic and zero free on clos D can be boundedly approximated by C-

polynomials [1], [2]. However, for arbitrary Jordan curves C, the problem of

bounded approximation by C-polynomials is open, even when / is holomorphic

and zero free in clos D.

It should be mentioned that a weaker kind of approximation by C-polynomials

was studied by G. R. MacLane [7]. He proved that if C is a rectifiable Jordan

curve with interior D and/is holomorphic and zero free in D, then there exists a

sequence of C-polynomials which converges to / uniformly on every compact

subset of D. This result was later extended by J. Korevaar and his students [5],

[6], [8] to other domains D. Very recently, Professor Korevaar and the author

considered the case where C is the disjoint union of two or more Jordan curves

[3]. It is interesting to note how the approximation problem by C-polynomials

breaks down in some situations.
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Throughout the rest of this paper, C will denote the unit circle and D, the open

unit disc.

2. Approximation of Sk(z)=Ylm-i 0 —ze~w^)a">. We first construct a sequence

of C-polynomials Pn which converges to the function

(2.1) 5k(z) = n(i-^-i9».)a».
m = l

in D, where Oíí 0i< • • • <8k<2ir and 0Sctm<l, /w=l,..., k.

The proof of the uniform boundedness of Pn on D will be included in §4. We

use the same construction as indicated in [1]. Set 2m = i am = a- For all n so large

that 2Tr/(n + k — a)<min (8m+1 — 0m), where 0Ic+1=2tt + 61, we define numbers

tj = tj(n) and 6*(n),j= 1,..., n and m = 1,..., k, by the following procedure

a      (2 — a7)Tt 2tt 2tt

n+k-a n+k-a ''       "       n+fc-a

where ^ is determined by the inequality

fl 27T 2(2 —a2)
'h <e^ th+JT+JTTT«''- ■' *h+i = th+JT+tt

th+2 = til + 1+        _a,-- -, th = rÄ_1+——
a

wherey2 is determined by the inequality tJ2<83Stj2 + 27r/(n+k—a);

Ofc-i-M = 'y*-i+2(2-0Efc>r/(»+&-«)>

'iW-i+a = ^-l + i+v27r/(n + ^-a), ...,

'/* = o«-i+2«'/(»+*-«);

here y,. is determined by the inequality

tjk < 0! + 2tt ^ rA+2ir/(»+£-«)*

finally,

Öf = 01;    Öf = K/y,-! + ii,.1+i),       / = 2,...,Ä:.

Hence,

(2.2) K_^^<|   form =1,..., A,

We now define

(2.3) Pn+k(z, k) = fl(l -ze-«0 fl (1 -»-«S).
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We shall prove

Theorem 2.1. For every k and every z e D, Pn+k(z, k) -> Sk(z), as « —> oo.

To prove this, we need a lemma of the Riemann-Lebesgue type. For each n, let

sn be the following step function on [0, 27r]. The jumps of sn only occur at tx,..., tn

and #*,..., 0*. Each jump at t¡ is equal to 1 and each jump at 6* is equal to

(1 -am). These conditions do not determine sn completely; however, we find it more

convenient to state the additional conditions in terms of the related function,

(2.4) vn(t) = sn(t) -(n+k- a)t/2TT.

We set vn(9f +)=4(l-a1) and define vn(6*) = vn(tj)=0 for m—l,...,k and

y'=l,...,«. Then we have the following

Lemma 2.1. If g is an integrable function on (0, 2w), then

¡•2n

(2.5) lim       g(t)vn(t)dt = 0.
n-.a>  Jo

The proof of this lemma is the same as the proof of the Riemann-Lebesgue

lemma. We first prove it for the case of a step function, and then approximate g by

step functions, cf. [9].

Now we can prove Theorem 2.1. For fixed z e D, let g be the integrable function

git)=| log o-«-«)- i {-£$•"*}

Here, as everywhere else in this paper, we choose the principal values of the

logarithms. Integration by parts gives

í*2ji í*2jí

g(t)vn(t)dt=\     -log(l-ze-u)dvn(t)
Jo Jo

= -2log(l-ze-u>)- 2 O-«») log (l-w-w*),
j=l m=l

and this tends to 0 by the lemma. Using (2.2), we see that

n k k

2 log(l-ze-"i)+2 logO-ze-'9-)^ 2 «m log(l-ze-i8»).
j=l m=l m=l

This is equivalent to Pn+k(z> k) -> Sh(z) for each k and each z e D.

3. Bounded approximation by Sk(z). The following lemma is a trivial con-

sequence of Herglotz's theorem [4].

Lemma 3.1. Let f be holomorphic and zero free in D, /(0) = 1 and sup |/(z)| =

M< +co. Then there exists a nondecreasing real-valued function v in [0, 27r], with

v(0)=0 and v(2ir) = 2 log M, such that

(3.1) f(z) = exr)^2JT^Cüdv(t)j   for each z in D.
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174 C. K.-T. CHUI [April

The above lemma indicates the importance of the following function,

/(z) = exp{-z/(l-z)}

which is zero free, holomorphic and bounded in D. The first thing we do is to study

the bounded approximation of exp {—z/(l — z)} by expressions of the form

k

(3.2) Sk(z) =rj(l -ze-'21"'"*)«*.".
m = l

throughout D, where o¡fc-m^0 for m = \,..., k and

(3.3) max afcm->0,   asrc->oo.
ISmSfc

We establish the following

Theorem 3.1. Ler/(z) = exp {—z/(l —z)} and s>0 be given. There exist functions

Sk, k= 1, 2,..., of the form indicated in (3.2) and (3.3), such that Sk converges to f

throughout D and

(3.4) max \Sk(z)\ ^ ell2+E   for all k.
MSI

Proof. Let k and p be positive integers with k>2p. We define

where m = \,..., k. Clearly, each c¿j£m ^0 and

(3.6) max <>m ^ £
l¿mÉk K

k     ,

m = l   \

For each z in Z>,

1 +cos ^) log (1 _»-«*»/*)

--2   Í-V'~(l+COS^)
v = l PH-1  v \ k   J

oo      v   r*   te te

_ _ v L J V e-i2Jtvm¡k_|_ y

v=l  v    lm=l m = !

(3.7)

^V/V „-«,  V cos2^.cos2-/m
A: k

2-nvm       2-njm
~JT'C0&k

te

'2s

Here,

(3.8) 2 e-f2*vm/fc = &   iffcK

= 0   if k\r.

k

2
m = l
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It follows that

-£          2irvm          2-rrjm       1   v    f        2ir(v+j)m            2-rr(v-j)m\
>    COS—;-COS—p— = -z    >    ^COS-    , •"     +COS -    , >

= (1/2)*   if k\(v+j) oi k\(v-j),

= 0 otherwise.

(k cannot divide both v+j and v—j since 2j^2p^k.) Similarly,

/-, ,n\    V   •   2irwn       2tt//«      1 v   f •   2n(v+j)m ,   .   2tt(i<-/)m"|      .
(3.10)   J^sin —cos-f = 5 2i|Mn-y¿- + Hn_L_^_| = 0.

Note that A:|(v +7) if and only if v-p.k-j where p.= 1,2,... and k\(v—j) if and

only if v=p.k+j where p = 0, 1, 2,_Hence, substituting (3.8), (3.9) and (3.10)

into (3.7) and combining with (3.5), we get

(3.11)

2 <)mlog(l-ze-~) = -2 T^-t)
m=l ;=1  K   \        PI

X
k zi    v z"*       v z"fc+i /V    v z'"'-5' Jfcï

2j + MÏak+èi WÛ'î+fy. p~k=j'2j'

To estimate this expression, we compare the terms with denominators p,k ±j with

similar terms with denominators pk. For each z in D, we get, remembering

P<\k,

Ä * l     P/XÁ Pk ±j ' 2   ^ m* ' 2/ I
P       / A     °°

S(ti;V   /»/ ¿\ H2k2     36 /c2

Hence, uniformly for z e D,

2 ofâ, log (1 -ze-i2™"0 = - 2 (l -j) i* + 2 I' (l --)

Í     -Ö z"*   z> £» zMfc     z~i ^ z"*)

= -|(.-¿)-S!'(.-¿)
x (l +^y^) log (1 -JE*) + 0(palk2).
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By the maximum principle for harmonic functions,

fc

max y a^mlog\l-ze-i2nmlk\
MSI m = i

=ofM%'H)cosje}

^silK1-^1-1-00^108'1-^}

+ 0(p3/k2)=Ii+I2 + 0(ps/k2),

say. Since log |1 — eikB\ ¿ log 2,

Also, it is well known that

-2 (l-i)cos;0 = i-i-p(0)
y=i\      PI

when -Fp(0) denotes the Fejér kernel of order p. Since the Fejér kernels are non-

negative, we see that hú\ for all p. Hence,

te

(3.13) max T [ \\-ze-l2nmlk\a^ú exp [i+0(p2/Jfc)].
msi i-i

Furthermore, from (3.12) we see that for each z e D,

2 «a log (1 -ze-~) = 2 - (l - j) zi+0(j \z\k~") + °(p)*

We now let â; tend to co through the positive integers, and let p tend to oo in such a

way that p2/k -> 0. The series — 2f=iZy converges to — z/(l — z) in Z); it follows

that the Cesàro means

of the partial sums also converge to —z/(l — z). Thus for z e D,

k

2 c$mlog(l-ze-a*a"e)
m=l

converges to —z/(l—z). We conclude, by (3.6), that from the numbers a(kp?m, we

can form a family of finite sequences {ate>m}, m—l,...,k, fc=l, 2,... which

satisfies the conditions of the theorem.
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We are now ready to prove a more general result, namely

Theorem 3.2. Let f be any zero free holomorphic function in D, /(0)=1 and

sup \f(z)\=M< +00. Then for any e>0, there exists a sequence of functions Sk of

the form indicated in (3.2) and (3.3), such that Sk converges to f throughout D, and

max|Sfc(z)| ^ M1+e   for all k.
MSI

Proof. By Lemma 3.1, we can find a nondecreasing real-valued function v(t) on

[0, 2tt] with v(0)=0, v(2tt)=2 log M such that

for z e D. Thus, setting

ßnJ = v(2vj/n)-v(27T(j-l)/n),

where7= 1,...,«, so that ßnJ^0 and 2"=i ßn,j = 2 log M, we have

f(z) = lim /n(z),
n-»oo

where

n (       —ze~i2*'ln~)

M2)  =  il eXP \ßn.i x _ze-i2ni,ny

It is clear that

(3.14) sup |/n(z)| Ú M
|2|<1

for all «. By Theorem 3.1, we can choose finite sequences ym¡p, p = l,.. .,m,

m=l, 2,..., such that ym>p^0 and maxpym,p->0,

Sm(w) = ft (l-we-i2»>"my*>.p -^expj-^}

for w e D and

max \SJw)\ Ú e<1+£)/2
MSI

for all m. In particular, for fixed integers «, / and z e D, the sequence

Sm(ze-i2nilny»J

converges to

exp {-ßnj ze-i2*ilnl(l-ze-t2niln)}.

We now take our integers m of the form kn, k = l, 2,..., and define

Sk(z,n) = fl SUze~i2*"nYn-' = fl(l-zc-i2lIi3/'l)i,!^,P
j=i p=i

where

afcn,p — ¿ Ykn.qßnJ
j + q = p(moikn)
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for p = 1,..., kn. Clearly, akn¡p ̂ 0 and

n

maxata,p ^ 2 &>.;• maxyfcn.« = 2 log M-maxykn¡¡¡,

which tends to 0 as A: tends to co. Furthermore, for fixed n and z e D,

Sk(z, n) ->/„(z),   as & -> oo ;

and for all k, and all w,

(3.15) max |Sfc(z, n)\ Ú f] {ea+e>l2Y«.i = M1 + e.
MSI i=1

Now let AK = {z : \z\ S 1 - 1/Ä}. By (3.14) and the Stieltjes-Osgood theorem, /„

converges uniformly to/on v4K; and by (3.15), and fixed n, Sk(z,n) converges

uniformly to fn. Hence, for a fixed integer K, we determine n—nK so large that

max|/n(z) -f(z)\ < -p,
zeAK A.

and determine k = kK so large that for n=nK

max|5k(z,«)-/n(z)| < -•

Setting SK(z) = SkK(z, nK), we complete the proof of the theorem.

4. Bounded approximation by C-polynomials.    We observe the following

Lemma 4.Í. For 0<o¡^tt-/4 and \z\ < 1, we have

(4.1) i0g|i_2|_J. f"  log|l-ze-¡Vf < 3.
LO. J —ce

Proof. By the maximum principle it is sufficient to consider z=ew, and by

symmetry, we assume that 0 < 0 ̂  -n. We first note that

.   0-i
sin—^— dt

1   f« 8lCa
log 11 — elö| —s-        log |l-ei(e_i)| dt = log sin ^-r-        log

2aJ_a ¿    ¿a J_a

1   f" 10    1

0 ra">          i
= r- logn-: du+2.

The function

A(x) = ¿LlogrnVM
is continuous on (0, oo), h(0 + ) = 0, and h(x) —> -co as x —> +oo. Hence, h(x) must

be bounded above on (0, oo). Actually, it is bounded above by 1. This completes

the proof of the lemma.
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Lemma 4.2. For each m = 2, 3,..., let rk = Tk(m), k=l,..., m, be points on

[0, 2tt] such that 0 < t1 < ■ ■ ■ < rm ̂  2-n, and, setting rm+1 = t1 + 2n,

(4.2) max (rk+1-Tk)l min (rk+1-rk) ^ A.
láfcám /láfcSm

Also let cük = cük(m) and ak = ak(m) be defined as

Finally, let

(4.3)

Wfc   =   KTk+l + Tfc)> ak   =  m(Tk+1-Tk)/2TT.

m

Rm{z)= IlO-a"^.       zei)-

J«e« /or zî// /zzrge m,

(4.4) max|7?m(z)| ^ exp (19^3).
MSI

Proof. For convenience, set $(Tk+1 — Tk) = Ak = \k(m), and let «j denote the

positive integer [\/2A2] + 2. Without loss of generality, we can assume that the

maximum of |7?m(z)| is attained at eie, where Tm — 2Tr^6^T1. Since

r2n

log\l-eu\dt = 0,
Jo

we may write

log \Rm(e«)\ = 2 S l08
I   _e«9-<Bfc)

1 _g*<fl-<»/£-'> dr.

We split the sum into two parts 2' + 2"■> where 2' denotes the sum over 1 ̂  A: ̂ «i — 1

and m—«! + l úk^m, 2" denotes the sum over n^k^m—n^.

By Lemma 4.1, we can conclude that for all large «z (those for which Ate(m) ̂  w/4),

By (4.2), we see that

\-ë i(fl-ciO

\_eHe-<ak-t)
dtj ï 32' «*.

ISfcSm

Hence, since ¿afcl,

(4.5)

\  -^   1   277 \^.2w
mm  0-fc+i-Tfc) ä -• — ;    max (rfc+1-rfc) ^ ,4 —

^ m «2

2' á 3 • max afc • number of terms in 2'

g 3-^-(2«1-l) < 18^3.
77     m

We now turn to 2"- We can write

2  =2^ ^    „   Iog (7=

«2

2t7

m-ni   /»a.

ei(9 - o)fc )V 1 _ e«e - a)fc +1)\
dr

m-nj   »a

fc = M Jo

(1 -COS (9-wk-t))ll2(l -COS (6~œk + t))112

l-cos(0—wk)
dt.
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Using the trigonometric identity

(1 -COS (a-/8))(l —COS (a + ß)) = (COS a-COS ß)2,

we obtain

(4.6)

Setting

v„      m mvni f*     ,     /, 1-cos?     \  .
2   = 2^  2J0    -loni-l-cos(0-J*

fct^Jo \     sin2((0-o.fc)/2)/2" te

Bx = {k : n± Ú k <, m-nu 0 ^ cofc-0 á tt},

B2 = {k : ni ^ k ^ n — nu tt ^ wk — d ^ 2v},

we see that for A: e Bu

sin(K-0)/2)ï:K-0)/7r,

and for A: e B2,

sin (K - 0)/2) £ 2 - (cüfc - 0)/tt = [(277 + 0) - Wfc]/W.

Hence, for 0 ̂  t ̂  Afc and A: e Bu

sin2 (r/2) (AJ2)2 jr2      A,2

sin2 ((0-^/2) - [K-0)H2 = 4 (r,-^)2

= 42'(«1-1)2 < 2'

by the definition of nx. The same inequality holds for 0^iiAt and k e 52. Thus

by the inequality

-log (1 -x) ¿ x/(l -x) <: 2x,   for 0 ^ x Ú i,

and by (4.6), we get

m—ni ft»      sin2(tj2)" < ™ y

~ *   A, Jo sin2((0-0fc)/2)
í/í

m v rA"       t2
á-2 riT-nña''*

T   fciBi Jo     4(üJfc-0)

m y   Çak fr2_  2 ,

t*4Jo   4iï>+0)-ii,fc]2r at

12      fctSi (i-fc-Tj.)"     12      ^(-Tm-^+i)

Combining this with (4.5), we obtain (4.4).
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Now we have enough machinery to prove the main theorem, namely

Theorem 4.1. Let f be any zero free holomorphic function in D, /(0)=1 and

sup l/l =M< +00. 77ze« there exists a sequence of C-polynomials

Pn(z) = Yl(l-ze-u*.>)
i=i

which converges to fin D, and is such that for an arbitrary e>0,

(4.7) max \Pn(z)\ Ú e20-M1 + e   for all n.
MSI

Proof. By Theorem 3.2, we can find a sequence of functions Sk of the form

indicated in (3.2) and (3.3) which converges to/in D and is such that for all k,

(4.8) max|5fc(z)| g M1 + e.
MSI

By (3.3) it may be assumed that for all k

max ak,m Ú e-,
ISmSfc

where e1 is an arbitrarily fixed number between 0 and 1. By §2, we can find C-

polynomials

Pn+k(z,k) = n(l-ze-«0 n (l-w-**X
J=l m=1

taking 6m=2Trm/k in §2, such that Pn+k converges to Sk for any fixed k.

To get a suitable bound of Pn+k, we will apply the above lemma, using the

present t, and 6* as points u>¡. The intervals (t}, rj+1) in the lemma will have the

points t¡ and 6* as midpoints. Thus, the interval (xy, t/+1) with midpoint t,- will

have length 2irl(n+k — a); the interval (t¡, rj+1) with midpoint 0* will have length

(1 —ak,m)2^/(n + k — a). Sincep=n + k, the exponent of (1 —z exp ( — it,)) in 7?p(z) =

7?n+fc(z) will be

n + k      2n n + k

2w   n + k —a     n + k —a

and the exponent of (1 — ze~ie"m) will be

n+k 2t7      _ (l-«fc,m)(«+fc)
277   U    a'c^n + A:-a_       « + /c-a     '

It follows that we can take A= 1/(1-6!) in the lemma. Hence, for large «,

max |7?n+,(z)| ^ exp [19(1-8l)"3].
MSI

That is,

k

max \Pn+k(z, k)\ Ú exp [19(1-£l)"3]-max TT |l-ze-i9"|^.-".
MSI IzlSl m=l
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But d* -*■ 0m = 2trm\k and the maximum norm is continuous. Hence, for an arbitrary

e2 > 0, we have, for large k,

k

max T [ ¡l-ze-^l"«.» ¿ (l + £2)max \Sk(z)\.
Mil ¿.1 MSi

Taking ex and £2 sufficiently small, we can conclude that for any k and sufficiently

large n,

max|Pn+fc(z,A:)| í e20M1+°.
MSI

Since Sk also satisfies a uniform boundedness condition (4.8), the same argument

as in the proof of Theorem 3.2 implies that there is a sequence of C-polynomials

Pn(z) = Pn+k(z, k),       n = n(k),

which satisfies (4.7) and which converges to/throughout D.

The bound in (4.7) can be improved just a little if we no longer require that the

approximating polynomials have the value 1 at z=0. Indeed, let en be a sequence

of positive real numbers tending to 0; then there is a sequence of C-polynomials Pm

satisfying (4.7) with e replaced by ea. Multiplying Pn by M"% we get a sequence of

C-polynomials Qn, which converges to /and satisfies

(4.9) maxlÖnOOl ̂  e2°-sup |/(z)|.
MSI M<1

That is, we obtain the following

Corollary 4.1. A zero free bounded holomorphic function f in D can be boundedly

approximated by C-polynomials Qn in D, which satisfy the inequality (4.9) for all n.
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