BOUNDED APPROXIMATION BY POLYNOMIALS
WHOSE ZEROS LIE ON A CIRCLE()

BY
CHARLES KAM-TAI CHUI

1. Introduction. Let C be a rectifiable Jordan curve with interior D. We say
that a sequence of polynomials P, converges boundedly to a function fin D, or
fis boundedly approximated by P, in D, if P, converges to f throughout D and
sup {|P,(2)| : z € D} is bounded as a function of #n. A polynomial whose zeros lie
on C will be called a C-polynomial. It is obvious that the limit function of a
boundedly convergent sequence of C-polynomials in D is a bounded zero free
holomorphic function in D, unless it is identically zero. In this paper, we will
present a proof of the somewhat unexpected converse for the case when C is a
circle, as announced in [1].

MAIN THEOREM. Every bounded zero free holomorphic function in the open unit
disc can be boundedly approximated there by polynomials whose zeros lie on the unit
circumference.

More generally, suppose that C is any rectifiable Jordan curve, so smooth that
its parametric representation in terms of arc length has a Holder continuous
derivative. The methods developed in this paper can be extended and modified to
prove the possibility of bounded approximation by C-polynomials of functions f,
defined and zero free in clos D, such that the derivative f”, relative to clos D,
exists and is Holder continuous throughout clos D. In particular, any function f
holomorphic and zero free on clos D can be boundedly approximated by C-
polynomials [1], [2]. However, for arbitrary Jordan curves C, the problem of
bounded approximation by C-polynomials is open, even when f is holomorphic
and zero free in clos D.

It should be mentioned that a weaker kind of approximation by C-polynomials
was studied by G. R. MacLane [7]. He proved that if C is a rectifiable Jordan
curve with interior D and f is holomorphic and zero free in D, then there exists a
sequence of C-polynomials which converges to f uniformly on every compact
subset of D. This result was later extended by J. Korevaar and his students [5],
[6], [8] to other domains D. Very recently, Professor Korevaar and the author
considered the case where C is the disjoint union of two or more Jordan curves
[3]. It is interesting to note how the approximation problem by C-polynomials
breaks down in some situations.
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Throughout the rest of this paper, C will denote the unit circle and D, the open
unit disc.

2. Approximation of S,(z)=T15_, (1 —ze~*n)*n, We first construct a sequence
of C-polynomials P, which converges to the function

@1 $u@) = [T (1—ze~a)en

in D, where 056, <---<6,<2rand 0= e, <1, m=1,..., k.

The proof of the uniform boundedness of P, on D will be included in §4. We
use the same construction as indicated in [1]. Set >%_, «,=c. For all n so large
that 27/(n+k—o)<min (0,,,—0,), where 6,,,=2m+6,, we define numbers

;=t,n) and 0%(n), j=1,...,nand m=1, ..., k, by the following procedure

Q—ay)m 27 2

t, = 01+n+k—a’ ty = t1+m,“ ol = tj1-1+n+k——a,

where j; is determined by the inequality

2 22 —a)

fh <0 = tjl+n+k——a" e = t"+n+k—a

s

2m 2w
sz = bpeat o o by = lpa + o

where j; is determined by the inequality 7, <03 <1, +2n/(n+k—0);

tfk—1+1 = tfk—1+2(2—ak)"/(n+k—a)9
tflc—1+2 = tjk_1+1+gﬂ/(n+k—a), ey
tj = tjk_1+217'/(n+k—a);

here ji, is determined by the inequality

tjk < 01 + 27T é tjk+277/(n+k—(x);

finally,
0F =06,, 6F=3t,_,+t,_.,+1) [=2,...,k
Hence,
2—ap)m 2w
—9*| < Q—op)m _ 27 -

2.2) |0n— 03| < A < form=1,...,k.
We now define

n k
(2.3) Pz, k) =[] (1—ze~t) T (1—ze~*%).

j=1 m=1
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We shall prove
THEOREM 2.1. For every k and every z € D, P, (z, k) — Si(z), as n — oo.

To prove this, we need a lemma of the Riemann-Lebesgue type. For each n, let
s, be the following step function on [0, 27]. The jumps of s, only occur at ¢y, .. ., ¢,
and 6F,..., 6. Each jump at ¢, is equal to 1 and each jump at 6% is equal to
(1—a,,). These conditions do not determine s, completely ; however, we find it more
convenient to state the additional conditions in terms of the related function,

2.4) 0a(t) = 8u() — (n+k — a)t/2m.

We set v,(0F+)=34(1—c;) and define v,(6%)=v,(t))=0 for m=1,...,k and
j=1,..., n. Then we have the following

LemMA 2.1. If g is an integrable function on (0, 2m), then

@.5) lim f  e(tywa(t) dt = 0.
n—wo Jo

The proof of this lemma is the same as the proof of the Riemann-Lebesgue
lemma. We first prove it for the case of a step function, and then approximate g by
step functions, cf. [9].

Now we can prove Theorem 2.1. For fixed z € D, let g be the integrable function

g@) = %log (1-ze ) = c%‘ {_ zl z;p e“"‘}-
p=

Here, as everywhere else in this paper, we choose the principal values of the
logarithms. Integration by parts gives

f:" g(ou(t) di = fo ' _log (1—ze~*) doy(t)

n k
= — > log(1—ze~)— > (1—ay) log (1 —ze~"5),
i=1 m=1

and this tends to O by the lemma. Using (2.2), we see that

n k k
Z log (1 —ze ")+ Z log (1 —ze~%) — Z oy log (1 —ze~0h),
i=1 m=1

m=1

This is equivalent to P, (z, k) — Si(z) for each k and each z € D.

3. Bounded approximation by S,(z). The following lemma is a trivial con-
sequence of Herglotz’s theorem [4].

LEMMA 3.1. Let f be holomorphic and zero free in D, f(0)=1 and sup |f(z)| =
M < +o0. Then there exists a nondecreasing real-valued function v in [0, 2, with
v(0)=0 and v(2n)=2 log M, such that

(3.1) 1) = exp { f:" I‘TZZ‘;Z_% dv(t)} for each z in D.
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The above lemma indicates the importance of the following function,
S(z) = exp{-z/(1-2)}

which is zero free, holomorphic and bounded in D. The first thing we do is to study

the bounded approximation of exp {—z/(1 —z)} by expressions of the form

k

3.2 Si(2) = [] (1 —zet2mm/k)%icm
m=1

throughout D, where «;,, =0 for m=1,..., k and

3.3) max o, —>0, ask— .

1=m=k

We establish the following

THEOREM 3.1. Let f(z)=exp {—z/(1 —z)} and ¢ >0 be given. There exist functions

Se, k=1,2,..., of the form indicated in (3.2) and (3.3), such that S, converges to f
throughout D and
3.9 max |Sy(z)| < e¥?*¢  for all k.

lzl=1

Proof. Let k and p be positive integers with k> 2p. We define

P .
2j 2mjm
(3.5) o, = Z . (1—;)(l+cos ) )
where m=1, ..., k. Clearly, each «f}, =0 and
( p?
n < £,
(36) 1I§nma§k em =g

For each z in D,

K .
Z (1 +cos 2—"]’”) log (1 —ze~12mik)
= k

. k v
- _ z Z z o —12mvmik (1 +cos 2"]’”)
v=1lm=1 v k
(3.7) © k k 2 2 .
— z’ ~i2zymlk mVm mjm
= — - e + COS —— :C0S ——
‘Zl v {mz=1 mZ k k
L 2mvm 21rjm}
—1 sin ——+C0S —— p-
mzﬂ k k
Here,
(3.9) Z e~i2mmik — ki kv,
= 0 if ktv.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] BOUNDED APPROXIMATION BY POLYNOMIALS 175

It follows that

k 2avm 2mjm 1 & 2a(v+j)m 2a(v—j)m
z cos % -COS —k— =3 ”Z;l {cos % +cos A }

= (12 if k|@+)) or k|—)),
=0 otherwise.

m=1

(3.9

(k cannot divide both v+ and v—j since 2j<2p <k.) Similarly,

(3.10) Z sin 217vm cos 27Im 277]m 1 Z {sm 27(v+j)m +sin 2a(v ])m}

Note that k|(v+)) if and only if v=pk —j where p=1, 2, ... and k|(v—)) if and
only if v=pk+j where p=0, 1, 2,.... Hence, substituting (3.8), (3.9) and (3.10)
into (3.7) and combining with (3.5), we get

k p . .
Z @ log (1 —ze~ 12wy = z 761 (1_1)
ma1 =1
[l ST S S )
2 u»k 2 wk+j 2t k=) 2

To estimate this expression, we compare the terms with denominators pk +j with
similar terms with denominators pk. For each z in D, we get, remembering

(3.11)

p<3k,
SE-INE 5255
=,§’ 1) i e
s 27(-)) 2<%

Hence, uniformly for z € D,

ke P # 2.2 ;
o), log (1 —ze-12mmiky — _ (1_1) 2+ J(l-l)
,,Zl ®, log ( )=-> 5 2. %

(3.12)
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By the maximum principle for harmonic functions,

k
max Z o) log |1 —ze ~t2wmik|
l2ls1 24

» .
Jj .

< —(1—= (]

- og;?;n {,Zl (1 p) cosJ }

+ max i gj(l-—j)(l+ cos jb) log |1 —e'®|
=k p

0=6s2n
+0(p/k?) =1, + I+ O(p®[k?),

say. Since log |1 — €| < log 2,

p.; : 2

J J p

I, < 4log2 —(l——)<—-
2 g jZ].k D k

Also, it is well known that
< J
-> (1—-) cos j0 = 3—F,(6)
i=1 p

when F,(6) denotes the Fejér kernel of order p. Since the Fejér kernels are non-
negative, we see that I; <4 for all p. Hence,

k

(3.13) max [ ] |1—ze~"#"*|«n< exp [3+ O(p?/k)].

=1 o

Furthermore, from (3.12) we see that for each ze€ D,

k b4 » 2 3
> oy log (1 —ze~12mmiy = > — (1 —l) z’+0(—‘l-;-€- lzl""’) +0(§(i2)-
m=1 i=1 p
We now let k tend to co through the positive integers, and let p tend to co in such a

way that p%/k — 0. The series —>2, z/ converges to —z/(1—z) in D; it follows
that the Cesaro means

P .
- z (1 _l) 2
=1 p
of the partial sums also converge to —z/(1 —z). Thus for z € D,
k
Z P log (1 —ze~122mik)
m=1
converges to —z/(1—z). We conclude, by (3.6), that from the numbers «?),, we

can form a family of finite sequences {a; .}, m=1,...,k, k=1,2,... which
satisfies the conditions of the theorem.
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We are now ready to prove a more general result, namely

THEOREM 3.2. Let f be any zero free holomorphic function in D, f(0)=1 and
sup |f(z)| =M < +oo. Then for any >0, there exists a sequence of functions S, of
the form indicated in (3.2) and (3.3), such that S, converges to f throughout D, and

max |Sk(2)] £ M**¢  for all k.
z|=1

Proof. By Lemma 3.1, we can find a nondecreasing real-valued function »(t) on
[0, 27} with »(0)=0, »(27)=2 log M such that

10 = e { [ 5 a0}

T—ze

for z € D. Thus, setting
Bn.; = v2mj[n) —v(2n(j—1)/n),
where j=1,...,n, so that 8, ;20 and >}_, B, ,=2 log M, we have
f@) = lim £,(2),
where
—_ ze—t27tjln
740 =TT exp {Bu =
It is clear that
(3.14) sup |/,2)| < M

for all n. By Theorem 3.1, we can choose finite sequences yy , p=1,..., m,
m=1,2,...,such that y,, ,=0 and max, y,,, =0,

m
Sa(w) = H (1 —we=12mwImyrn » 5 exp {—_w}
p=i 1—w
for we D and

Irl'ax |Sm(w)l < e(1+6)12
=1

for all m. In particular, for fixed integers n, j and z € D, the sequence
Sm(ze-mn//n)ﬁm,
converges to
exp {"ﬁn,] Ze—i2ﬂf/n/(l _ze—ian/n)}.

We now take our integers m of the form kn, k=1, 2, ..., and define

n

n
Si(z, n) = l—[ Sin(ze =127,y = 1_[ (1 —ze™12™/m)en
j=1

p=1
where

Cgn,p = Z Ykn,aPn,s
j+aq=p@mod kn)
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for p=1,..., kn. Clearly, &, ,20 and
n
mgx Cknp = z Bn.s -mqax Ykn,q = 2 log M- mqax Yin,a>
j=1

which tends to 0 as k tends to co. Furthermore, for fixed n and z € D,
Si(z, n) — f,(2), as k— o0;

and for all k, and all n,
(3.15) max |Sy(z, n)| £ [ {e*+92ns = M*+2.
2ls1 7=1
Now let Ag={z : |z| £1—1/K}. By (3.14) and the Stieltjes-Osgood theorem, f,

converges uniformly to f on Ag; and by (3.15), and fixed n, Si(z, n) converges
uniformly to f,. Hence, for a fixed integer K, we determine n=ny so large that

1
max |f(2) — f@) < g
and determine k =k so large that for n=ny
1
max 1Sz m—fa2)| < &

Setting Sx(z) = Si.(z, nx), we complete the proof of the theorem.
4. Bounded approximation by C-polynomials. We observe the following

LEMMA 4.1. For 0<« <[4 and |z| <1, we have
@1 log [1—z] - J log |1 —ze~*| dt < 3.
20 )_,

Proof. By the maximum principle it is sufficient to consider z=e%, and by
symmetry, we assume that 0 < 6 <«. We first note that

log |1 —¢" —z—laf log |1 —€'®~?| dt = log sing—zlaf log

< L[
s3]

0 10

sin-o—-z:fl dt

0

1
log m du+2.

- 27‘ -l
The function
1 (= 1
h(X) = E . log W du
is continuous on (0, ), #/(0+)=0, and A(x) — —oo as x — +oco. Hence, h(x) must
be bounded above on (0, ). Actually, it is bounded above by 1. This completes
the proof of the lemma.
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LemMMA 4.2. For each m=2,3,..., let 7,=7m), k=1,...,m, be points on

[0, 27) such that 0< 7, < - - - <7, < 2m, and, setting 7., =7, +2m,

— i —) <
4.2) lgllf«éxm (i1 Tk)/lggm (Tks1—m0) S 4.

Also let wi=w,(m) and ;.= o, (m) be defined as

w = T 1+ 70, o = M(Tiq 1 — i)/ 2.
Finally, let

m

4.3) Ruz) = [] (1—ze~**)*,  zeD.
k=1

Then for all large m,

4.4 max |Rn(2)| = exp (1943).

Proof. For convenience, set %(rk+1——rk)=A,c=Ak(m), and let n; denote the
positive integer [4/2 A%]+2. Without loss of generality, we can assume that the
maximum of |R,(2)| is attained at €%, where 7, —27 <6< 7,. Since

21
f log |1—€"| dt =0
0

we may write
o m m A 1 —el0-op
log | Ra(e”)| = kZ1 2,” f_Ak IOgI —&@-0, D dt

We split the sum into two parts >’ + >, where >’ denotes the sumover 1 £k <n, —1
and m—n, +12k=<m, 3" denotes the sum over n, Sk=<m—n,.
By Lemma 4.1, we can conclude that for all large m (those for which Ay(m) <= /4),

By 1 —ele-ap) ,
2 =2 {2Ak J. log | T—@=o,» dt} 3 o
By (4.2), we see that
i L 2m 2
—Te) 2 5 —7) < 4-==
121::2";(7"“ %) 2 Am’ 112'?)( (tks1—m) S 4- p

Hence, since A2=1,

Z' < 3.max «,-number of terms in Z'
4.5)

<32 2—”(2nl—1) < 184°.

We now turn to >". We can-write

m-=n
REPNN

=n; YO

(1—e@-o)2
(1=€@-a0)(1 — '@ 2% +D)

m "t fA" (1 €08 (6—wi —1))!*(1 —cos (§—we+ O
2 2 ) 1—cos (6 —wy)

dt
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Using the trigonometric identity

(1—cos (e—PB))(1 —cos (x+pB)) = (cos «—cos )2,

we obtain
” m "< "1 Ak 1—cost
= n L _[ l°g( T—cos (6— wk)) dt
(4.6) . i (12)
m * sin2 (¢
=2 2,,1 " 108 (1~ s o)
Setting

B,=k:n=<k=m-n,0= w—-0=mn}
= {k . ny § k é n—n;, m § wk—e § 277},
we see that for k € B,
sin ((w,—6)/2) 2 (wx—O)/m,
and for k € B,,
sin (we—0)/2) 2 2= (wy—O)fm = [2m+6)—w,]/m.
Hence, for 0<¢t<A, and k€ B,
sin? (#/2)  _ _ (Ay/2)? w A}
sin® (0—wi)/2) = [(we—0)/7]* = 4 (7—71)?

< ﬁ.i. < .1
#1772

0

IA
IIA

by the definition of n;. The same inequality holds for 0=¢=< A, and k € By. Thus
by the inequality

—log(1—-x) = x/(1—x) £ 2x, for0 £ x <13,
and by (4.6), we get

2

II/\

m" A sin(2/2)
=y f (0= 607

Ay 2

keB; JO 4(‘% - 0)2
m Ay 2

- — 124t
& ) AT —wr
T A3 A3
— += — < A3
12 keBy (Tk—"' )2 12 keBg (Tm—7k+ 1)2

Combining this with (4.5), we obtain (4.4).

IIA

m t2dt
m

IIA
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Now we have enough machinery to prove the main theorem, namely

THEOREM 4.1. Let f be any zero free holomorphic function in D, f(0)=1 and
sup | f| =M < +00. Then there exists a sequence of C-polynomials

P2 = [ ] (1—ze~t)
=1

which converges to fin D, and is such that for an arbitrary ¢>0,

4.7 fnéli( |Pu(2)| £ e2°-M**¢  for all n.
2=

Proof. By Theorem 3.2, we can find a sequence of functions S, of the form

indicated in (3.2) and (3.3) which converges to fin D and is such that for all k,

(4.8) max |SK(2)| = M**e.

By (3.3) it may be assumed that for all &

max ay, < &

1=m=sk
where ¢, is an arbitrarily fixed number between 0 and 1. By §2, we can find C-
polynomials

n K
P,z k)= H (1—ze~) H a __ze-ie;',,),
=1 m=1

taking 6,,=2=m/k in §2, such that P, , converges to S, for any fixed k.

To get a suitable bound of P,,,, we will apply the above lemma, using the
present ¢; and 6% as points w;. The intervals (7, 7,,,) in the lemma will have the
points #; and 6% as midpoints. Thus, the interval (r;, 7,,,) with midpoint #; will
have length 2#/(n+k —«); the interval (7, 7;, ;) with midpoint 6% will have length
(1 — oy, m)27/(n+k — ). Since p=n+k, the exponent of (1 —z exp (—it,)) in R,(z)=
R, . (2) will be

n+k 2w n+k
27 ntk—a ntk—o

and the exponent of (1—ze~'*m) will be

n+k(1_a ) 2r (l—oy,m)(n+k)
27 o ntk—o n+k—c

It follows that we can take 4=1/(1—¢,) in the lemma. Hence, for large n,
max |Rn+(2)] = exp [19(1—e;) ).

That is,

k
= —&)7 %] —ze~ 1 |m.
max [Py, 4(z, K)| < exp [19(1 —ey) ~°] max ml‘[=1 [1—ze~0h %

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



182 C. K.-T. CHU1L [April

But 6} — 0,,=2mm/k and the maximum norm is continuous. Hence, for an arbitrary

&,>0, we have, for large k,

k

max [ [ [1—ze "h|%.m < (1+¢,) max [Si(2)|.
l21=1 =1 l2I=1

Taking &, and e, sufficiently small, we can conclude that for any k and sufficiently
large n,

max |P,, (2, k)| £ e*°M**5.

l21S1

Since S, also satisfies a uniform boundedness condition (4.8), the same argument
as in the proof of Theorem 3.2 implies that there is a sequence of C-polynomials
P,,(Z) = Pﬂ+k(z9 k)’ h = n(k)9

which satisfies (4.7) and which converges to f throughout D.

The bound in (4.7) can be improved just a little if we no longer require that the
approximating polynomials have the value 1 at z=0. Indeed, let ¢, be a sequence
of positive real numbers tending to 0; then there is a sequence of C-polynomials P,,
satisfying (4.7) with ¢ replaced by ¢,. Multiplying P, by M ~*», we get a sequence of
C-polynomials Q,, which converges to f and satisfies

4. < 20. .
4.9 max [Q,(z)] < €% sup |f(2)|
That is, we obtain the following

COROLLARY 4.1. A zero free bounded holomorphic function f in D can be boundedly
approximated by C-polynomials Q, in D, which satisfy the inequality (4.9) for all n.
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