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Abstract

Much work has been done on the problem of synthesizing a proces-
sor array from a system of recurrence equations. Some researchers limit
communication to nearest neighbors in the array; others use broadcast. In
many cases, neither of the above approaches result in an optimal execution
time.

In this paper a technique called bounded broadcast is explored whereby
an element of a processor array can broadcast to a bounded number of
other processors. This technique is applied to the problems of transitive
closure and all-pairs shortest distance, resulting in time complexities that
are smaller than those reported previously. In general, the technique can
be used to design bounded broadcast systolic arrays for algorithms whose
implementation can benefit from broadcasting.
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1 Introduction

A system of uniform recurrence equations, as defined by Karp, Miller, and
Winograd [23, 22], maps especially well onto a systolic/wavefront array. Many
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researchers have either linearly mapped systems of uniform recurrence equations
into spacetime, or translated them to systolic/wavefront arrays [36, 6, 37, 8, 40,
35, 15, 12, 43, 38, 42, 11, 26, 49]. Another approach in parallel processing is
to allow broadcasting. This approach has been considered by several authors
(e.g., see [53, 5, 1, 34]). In broadcasting, a single processor can broadcast data
to all processors simultaneously. A variation of this technique is to broadcast
only in columns and rows, such that every processor can broadcast data to all
other processors in the same row or column of a processor mesh [25, 50]. When
broadcasting, signal propagation time depends on the number of processors in
the multiprocessor system.

In this paper we suggest a compromise between global broadcast and nearest
neighbor communication. This technique, called bounded broadcast, allows a
processor to send data to all processors on the same row/column, which are
within some bounded distance from it. This technique enhances the timing
results of many algorithms which can use broadcast. We apply this technique
to the transitive closure and all-pairs shortest distance problems [55, 14]. These
problems have been considered by many researchers (e.g., see [18],[54, ch. 5],
[43, page 289],[27, 47, 46, 48, 31, 20, 29, 28]). At present the best systolic array
execution time reported for an N × N input matrix is 5N − 4 [28], where the
unit of time is the time it takes to make one computational step plus the time
to transmit the result from one processor to its neighbor. By using a bounded
broadcast, this time can be reduced to between N and 4N (ignoring low-order
terms), depending on the design. Bounded broadcast can be used in other
problems such as the general Algebraic Path Problem (APP) [30, 58, 16, 4, 10,
32, 41] and many matrix computations. (An execution time of about 4N is
achieved by Delosme [10]. He uses a non-classical algorithm, avoiding broadcast
altogether, and a larger number of processors.)

A handful of architectures that implement reconfigurable buses already have
been presented [3, 52, 34, 33]. These architectures are well suited to implement
the bounded broadcast described here, after the algorithm has been mapped to
space and time using the procedure described in this paper. An earlier version of
this work can be found in [56]. A similar approach recently has been developed
independently by Risset and Robert [45, 44].

2 Using Bounded Broadcast to Reduce Latency

2.1 Definitions

Example 1

The system of recurrence equations (SRE) below finds the transitive closure, or
all-pairs shortest distance, for a given input matrix AN×N . This algorithm is
the implementation of the Warshall-Floyd algorithm suggested by Kung et al.
[28]. We have changed the names used there as follows: x → a1, r → a2 and
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c → a3. Also, the input and output parts of the SRE are not given here.

1 ≤ k ≤ N,

1 ≤ j ≤ N,

1 ≤ i ≤ N, a1(i, j, k) = a1(i mod N + 1, j mod N + 1, k − 1) ⊕ a2(i, j, k) ⊗ a3(i, j, k)(1)

1 ≤ k ≤ N,

1 ≤ j ≤ N, a2(1, j, k) = a1(2, j mod N + 1, k − 1) (2)

1 ≤ k ≤ N,

1 ≤ j ≤ N,

2 ≤ i ≤ N, a2(i, j, k) = a2(i − 1, j, k) (3)

1 ≤ k ≤ N,

1 ≤ i ≤ N, a3(i, 1, k) = a1(i mod N + 1, 2, k − 1) (4)

1 ≤ k ≤ N,

2 ≤ j ≤ N,

1 ≤ i ≤ N, a3(i, j, k) = a3(i, j − 1, k) (5)

The operation ⊗ models binary AND in the transitive closure case, and + in
the all-pairs shortest distance case. The operation ⊕ models binary OR in the
transitive closure case, and the MINIMUM operation in the all-pairs shortest
distance case1.

The recurrence equations above are used to illustrate some of the following
definitions, which are related to an SRE.

Index set: The set of points where an array is computed or used.

Domain of computation: The set of points Ci where an array ai is computed
(e.g., C1 = {(i, j, k)|1 ≤ i ≤ N, 1 ≤ j ≤ N, 1 ≤ k ≤ N} in Eq. (1)).

Dependence map: A function δij from the domain of computation of array aj (or
part of it) to the index set of ai, on which the computation of aj depends
(e.g., δ12( i j k )T = ( i j k )T + ( 1 1 −1 )T in Eq. (2) for
j 6= N).

Uniform dependence: A dependence map of the form: δij(p) = p + dij where
dij ∈ Zn, and n is the dimension of the array variables. The vector dij is
referred to as the translation part of the dependence map.

A system of uniform recurrence equations (SURE): An SRE where the depen-
dence maps are uniform, and every array is computed in one recurrence
equation for its entire domain of computation. (The example given above
thus is not an SURE.)

A system of quasi-uniform recurrence equations: An SRE that is uniform ex-
cept for boundary points (for a more precise definition, see [57]). E.g., the
SRE given in Ex. 1 is quasi-uniform.

1In general, these are the operators of a closed semiring [2].
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Latency with respect to function f: The time Tf separating the arrival of the
first input from the departure of the last output, for one computation of
f .

Given a system of recurrence equations (SRE), one of the design outputs
is a vector π ∈ Zn and a set of constants {ci ∈ Z}, one for each array, such
that for all problem sizes, if a variable aj(x2) depends on a variable ai(x1) (not
necessarily directly), then πT x1 + ci < πT x2 + cj . This condition ensures that
there exists a valid execution ordering. Array variable ai(x) is computed at
time2 πT x + ci.

To simplify our presentation, we use a less general formulation: We assume
that:

• ci = 0;

• there is only one π.

The vector π in this case is referred to as a linear schedule vector, and the above
mapping is referred to as a linear schedule.

2.2 Using bounded broadcast to reduce latency

The latency (sometimes referred to as delay time) comprises three components:
1) input, 2) execution, and 3) output. Sometimes it is possible to overlap the
execution with the input/output. The execution time should be the time at
which the last computation is done minus the time that the first computation
is done. In the case of a linear schedule, it is max

p∈C
(πT p)−min

p∈C
(πT p), where π is

the linear schedule vector, and C =
⋃

i

Ci (i.e., it is the union of the domains of

computation of the arrays in the SRE).
Much research has been done on the problem of minimizing the latency for

an integral π (e.g., [21, 43, 12, 17, 39, 9, 11]). Shang and Fortes [51] mention
the possibility of a rational π, but do not explain the physical meaning of such
a schedule. Here we give physical meaning to such a schedule. The idea is to
distinguish between two kinds of dependences:

1. dependence of one computation step on the result of a previous computa-
tion step;

2. dependence of a computation step on a ‘propagating variable’ (a variable
that is transmitted unchanged from one processor to the next).

An array of only propagating variables is called a propagating array. Some
researchers assume that the time taken to propagate a variable from a processor

2By ‘time’ we really mean an ordering of the steps.
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to its neighbor, is the same as the execution time for one computation step.
Other researchers assume that values can be broadcast such that all processors
get the propagated value at the same time.

Both of these assumptions lead to a sub-optimal latency. In the first case,
propagation of the variable is delayed until the computation step is finished; in
the second case, the computation step is delayed until the propagated variable is
received by all processors.

In this paper, we assume that a variable can be propagated through a
bounded number of neighbor connections. The idea is to broadcast a propa-
gating variable through as many neighbors as possible such that the time to do
so balances with the time to execute one computation step, and communicate
the results to the nearest neighbor.

In this paper, K denotes the number of neighbor processors that a variable
can propagate through, in the same time that it takes to 1) execute one compu-
tation step, and 2) communicate the results to a neighbor processor. K grows
as the time complexity of the computation step grows. (The time complexity
of a computation step is measured by the depth of the circuit that implements
it.) K also depends on the method by which the variable is propagated. The
two principal methods are to:

1. use a bus that goes through K processors (with possible repeaters);

2. insert a latch stage in every processor.

. . .

‘fast’
clock

P-1 P-2 P-K

✻ ✻ ✻

✲ ✲ ✲ ✲. . .
✻ ✻ ✻propagating

variable

Figure 1: Propagating variable through a latch stage in each processor.

Again, if a variable is propagated to either fewer than K processors or more
than K processors, then the overall latency is not minimized; in the former
case, a propagating variable waits unnecessarily for a computation to complete;
in the latter, a computation waits unnecessarily for a propagating variable to
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. . .‘slow’ clock

P-1 P-2 P-K

✻ ✻ ✻

✲ ✲ ✲. . .

✲ ✲ ✲✲ ✲ ✲

propagating variable

Figure 2: Propagating variable through a bus-like structure.

complete propagation. By realizing this K-broadcast, the inserted latches there-
fore decrease overall latency. The two variable propagation methods are shown
schematically in Fig. 2 and Fig. 1, respectively. The value of K clearly decreases
if latches are inserted. K also depends on the technology. Another factor which
may affect the value of K is the time for clock distribution (if this exceeds the
time for one computation step) [13, 7]. We ignore this factor, since clock distri-
bution usually can be reduced by appropriate design [24, 19]. For present MOS
technologies, and the simplest computation (1 – 3 gates), K ≫ 1. Similarly it
also may be that input and output steps take less time than the computation
step. In this case, the input and/or output steps may be synchronized by a
faster clock.

The discussion above indicates that we can choose π with fractional entries.
In what follows, we assume that all entries of π are multiples of 1/K. All the
results generalize to any rational π. A minimization of the latency comprises a
solution to an integer linear program. If π is multiple of 1/K, then we can get
an integer linear program by multiplying π by K to get an intermediate vector
that is integer. One is still faced with 2 problems: 1) finding the constraints on
π in the case of bounded broadcast; 2) finding a solution to the integer linear pro-
gram, which is an NP-complete problem. Our distinction between propagating
variables and other variables enables us to find these constraints. Following [43,
page 129], we define the iteration vector to be a vector u ∈ Zn that satisfies:

1. u is perpendicular to space.

2. The greatest common divisor of the components of u is 1.

3. The first non-zero component of u is greater than zero.

From the above definition, the length of u is the minimum distance between two
index points in that direction.
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Consider first the case where variables are propagated using latches (see
Fig. 1). The choice of the vector π, in this case, is subject to the following
constraints:

1. |πT u| ≥ 1.

This constraint guarantees that two consecutive computations done in the
same processor are done no less than one time step apart. (In case the
computation step is pipelined in each processor, this restriction is changed:
Instead of 1, the right hand side of the inequality becomes 1/L, where L
is the number of pipeline stages.)

2. For every dependence map of a propagating array (i.e., a dependence map
for an array that depends on a propagating array), the corresponding
translation part d satisfies πT d ≤ −1/K.

This constraint guarantees that sufficient time exists for a propagating
variable to be communicated to the location where it is used.

3. For every dependence map of a non-propagating array (i.e., a dependence
map for an array that depends on a non-propagating array), the corre-
sponding translation part d satisfies πT d ≤ −1.

This constraint guarantees that the computation is complete before its
result is required.

One jointly determines the spatial embedding and the linear schedule. The
choice of rational entries in π implies that there is a faster basic clock in the
array (e.g., if the minimum entry is 1/K as assumed here, this clock would
be K times faster than the clock would be with a minimum entry of 1). A
computation at index point p is executed at time step πT p; the period of each
time step is 1/K. Latches thus must be present in each processor, as shown in
Fig. 1.

If the computation is very simple, it may be impractical to pass a propagat-
ing variable through a latch of a processor before transmitting it to the next
processor. In this case, the basic clock remains the same, and the propagating
variable is transmitted via a bus to K processors before being latched, as shown
in Fig. 2. The time step for a computation at index point p in this case is ⌈πT p⌉.
In order to ensure valid timing in this case, we add one more constraint:

4. For every dependence map of a propagating array on a non-propagating
array, the corresponding translation part d satisfies πT d ≤ −2.

This constraint guarantees that there is enough time for a propagating
variable to first be computed, and then broadcast to K processors.

For example, suppose we choose π such that πT p = J + (1/K) for some
integer J , and index point p in which a propagated variable is computed.
The computation at p is done at time step J +1. Suppose this propagating
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variable is used at computation index points q1, q2, . . . , qK , each of which
satisfy πT qi = J + 1 + (i/K). All the computations at these index points
are done at time step J + 2. The constraint above ensures that there is
enough time to compute the variable, and also propagate its value to all
the above index points.

3 Applying bounded broadcast to the Warshall-

Floyd algorithm

The following example illustrates the advantage of using bounded broadcast.

Example 1A

The SRE below, given input matrix AN×N , computes its transitive closure
(or all-pairs shortest distance), A+, which is the SRE’s output. This SRE is
an implementation of the Warshall-Floyd algorithm, derived from Ex. 1 by 1)
eliminating global connections as explained in [28], 2) adding input statements
(for A) and output statements (for A+), and 3) eliminating zero translation
vectors (in the dependence maps) by substitution. In this SRE, g represents
the value 0 for the all-pairs shortest distance problem, and 1 for the transitive
closure problem3.

2 ≤ j ≤ N,

2 ≤ i ≤ N, a1(i, j, 0) = Ai−1,j−1 (1)

2 ≤ j ≤ N,

1 ≤ i ≤ N, a2(i, j, 0) = Ai,j−1 (2)

1 ≤ j ≤ N,

2 ≤ i ≤ N, a3(i, j, 0) = Ai−1,j (3)

2 ≤ k ≤ N, a1(N, N, k) = Ak−1,k−1 = g (4)

a1(N, N, 1) = AN,N = g (5)

1 ≤ k ≤ N,

2 ≤ i ≤ N − 1, a1(i, N, k) = a3(i + 1, N, k − 1) ⊕ a2(i − 1, N, k) ⊗ a3(i, N − 1, k)(6)

a1(1, N, k) = a3(2, N, k − 1) (7)

2 ≤ j ≤ N − 1, a1(N, j, k) = a2(N, j + 1, k − 1) ⊕ a2(N − 1, j, k) ⊗ a3(N, j − 1, k)(8)

a1(N, 1, k) = a2(N, 2, k − 1) (9)

2 ≤ j ≤ N − 1,

2 ≤ i ≤ N − 1, a1(i, j, k) = a1(i + 1, j + 1, k − 1) ⊕ a2(i − 1, j, k) ⊗ a3(i, j − 1, k)(10)

2 ≤ i ≤ N − 1, a1(i, 1, k) = a1(i + 1, 2, k − 1) (11)

2 ≤ j ≤ N − 1, a1(1, j, k) = a1(2, j + 1, k − 1) (12)

a1(1, 1, k) = a1(2, 2, k − 1) (13)

1 ≤ i ≤ N − 1, a3(i, 1, k) = a1(i + 1, 2, k − 1) (14)

1 ≤ j ≤ N − 1, a2(1, j, k) = a1(2, j + 1, k − 1) (15)

3In general it is the multiplicative identity of the closed semiring.
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a3(N, 1, k) = a2(N, 2, k − 1) (16)

a2(1, N, k) = a3(2, N, k − 1) (17)

2 ≤ j ≤ N,

1 ≤ i ≤ N, a3(i, j, k) = a3(i, j − 1, k) (18)

1 ≤ j ≤ N,

2 ≤ i ≤ N, a2(i, j, k) = a2(i − 1, j, k) (19)

1 ≤ j ≤ N − 1,

1 ≤ i ≤ N − 1, A+

ij = a1(i + 1, j + 1, N) (20)

1 ≤ j ≤ N − 1, A+

Nj = a2(N, j + 1, N) (21)

1 ≤ i ≤ N − 1, A+

iN = a3(i + 1, N, N) (22)

A+

NN = ANN (23)

The array a1 holds the transitive closure (or shortest distance) as it is being
computed; a2 and a3 are propagating arrays in the i and j directions, respec-
tively.

The distinct translation parts of the dependence maps in this SRE are:




−1
0
0



 ;





0
−1

0



 ;





1
0

−1



 ;





0
1

−1



 ;





1
1

−1



 .

The first four translation parts above correspond to propagating arrays (i.e.,
their dependence maps are for arrays that depend on a propagating array); the
last translation part corresponds to a non-propagating array (i.e., a translation
part of a dependence map for an array that depends on a1, a non-propagating
array). The above observation is used in picking a valid schedule vector π, that
satisfies the constraints mentioned in § 2.2.

We consider 5 design cases for the above SRE. The first, presented in [28],
is referred to as Design K. The other 4 designs, denoted A – D, use bounded
broadcast. In what follows, we define the unit of time as the time to execute
one computation step and communicate the results to a neighbor processor. We
denote by K the number of processors to which a variable can be propagated in
one time unit. Designs A and B use latches in the propagation path, as shown
in Fig. 1; designs C and D use a bus-like structure, as shown in Fig. 2.

Table 1 contains the design parameters, and the times. In designs A and C,
input [output] is done before [after] the computation, taking N/M time steps.
M = (unit of time)/(the time for a processor to communicate a variable to
its neighbor). In order to further reduce the period (down to the execution
time), one can incorporate special hardware so that input and output overlap
execution.

In designs K, A, and B, the computation at index point p is executed in time
step πT p. In designs C and D, the computation at index point p is executed in
time step ⌈πT p⌉. All these designs use N2 processors. All of them are valid,
because they satisfy the constraints for π. The latency of design K is claimed
in [28] to be optimal. It is indeed optimal when π is restricted to be integer.
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Table 1: Comparison of five designs for the Warshall-Floyd algorithm.

Design K Design A Design B Design C Design D

πT (1, 1, 3) ( 1

K
, 1

K
, 1 + 2

K
) (1, 1

K
, 2 + 1

K
) ( 1

K
, 1

K
, 2 + 2

K
) (1, 1

K
, 3 + 1

K
)

Iteration vector (1, 0, 0) (0, 0, 1) (1, 0, 0) (0, 0, 1) (1, 0, 0)

uT

Execution time 5N − 4 (N − 1)( 4

K
+ 1) (N − 1)( 2

K
+ 3) ⌈N( 4

K
+ 2)⌉ − 2 ⌈N( 2

K
+ 4)⌉ − 4

+ 1

K
+ 1

K

T

Latency T T + 2N/M T T + 2N/M T

Period N T + N/Mb N T + N/Mb N

Asymptotic
execution timea 5N N 3N 2N 4N

Asymptotic
latencya 5N N + 2N/M 3N 2N + 2N/M 4N

Asymptotic
perioda N N + N/Mb N 2N + N/Mb N

Execution time
for N = 100,
K = 10, M = 1 4.96N 1.387N 3.169N 2.38N 4.16N

Latency
for N = 100,
K = 10, M = 1 4.96N 3.387N 3.169N 4.38N 4.16N

Period
for N = 100,
K = 10, M = 1 N 2.387N N 3.38N N

aFor K → N , and ignoring additive constants.
bThe last term can be eliminated by adding special hardware for input/output.
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However, as can be seen from Table 1, it is not optimal when this restriction is
removed.

If K ≥ 4 when latching the propagating variable in every processor, then
designs A and B are better than designs C and D. K = 3 is a boundary case. If
K < 3, then designs C and D are better than A and B. Designs A and B thus
are suited to a complex computation (such as in the all-pairs shortest distance
problem); designs C and D are better suited to a simpler computation (such as
the transitive closure problem).

Designs A and C are preferable in case either:

• matrix A does not need to be input, and matrix A+ does not need to be
output;

• input/output can be done fast in comparison with execution (i.e., M > 1)
and the latency is more important than the period;

• hardware is used to overlap input/output with execution.

Otherwise designs B and D are preferable.
We have assumed thus far that the processors are not pipelined. If the

computation is complex, then we may employ internal pipelining. This is ad-
vantageous when the first restriction, |πT u| ≥ 1, is the bottleneck. For exam-
ple, consider design B. Suppose we have L pipelining stages in each proces-
sor, and L ≤ K. Then the following linear schedule vector can be chosen:
πT = ( 1

L
, 1

K
, 1 + 1

L
+ 1

K
). This vector satisfies all restrictions. The time step

now is larger, since latches are added for pipelining. Let τ denote one time unit.
Let h(L) = (τ using L stages)/(τ using 1 stage). The times for the pipelined
version of design B are shown in Table 2. In this case the period is less than N .
The ‘penalty’ here is that hardware is added to pipeline each processor.

4 Conclusions

We presented bounded broadcasting, an architectural feature that can improve
the performance of systolic arrays. We suggested a distinction between propa-
gating variables and other variables. Using this distinction, we identified several
conditions on the linear schedule vector for a system of recurrence equations,
which are sufficient to implement the SRE with bounded broadcast.

We then illustrated bounded broadcast on the problem of transitive closure/all-
pairs shortest distance. The asymptotic latency, period, and execution times of
the design of Kung et al. [28] (which are optimal for designs that do not use
bounded broadcast) are 5N , N , and 5N , respectively. These same measures are
3N, 2N, N for design A; 3N,N, 3N for design B; 4N, 3N, 2N for design C; and
4N,N, 4N for design D. (These times can be reduced further by pipelining the
computation step, and by providing hardware that overlaps input/output with
execution.)
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Table 2: A pipelined version of design B for the Warshall-Floyd algorithm.

Pipelined version of design B

πT ( 1

L
, 1

K
, 1 + 1

K
+ 1

L
)

Iteration vector uT (1, 0, 0)

Execution time T h(L)((N − 1)( 2

L
+ 2

K
+ 1) + 1

K
)

Latency T

Period h(L)N/L

Asymptotic
execution timea h(L)N(1 + 2

L
)

Asymptotic
latencya h(L)N(1 + 2

L
)

Asymptotic
perioda h(L)N/L

Execution time for
N = 100, L = 2, h(2) = 1.1
K = 10, M = 1 2.4N

Latency for
N = 100, L = 2, h(2) = 1.1
K = 10, M = 1 2.4N

Period for
N = 100, L = 2, h(2) = 1.1
K = 10, M = 1 0.55N

aFor K → N , and ignoring additive constants.
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The MP/C [3], the CHiP computer [52], and the meshes with reconfigurable
buses described by Miller et al. [34] all are well suited to implement bounded
broadcast. Unlike an SIMD broadcast step, the time to perform a bounded
broadcast does not grow as the array grows. Systolic computing systems should
make use of bounded broadcast for the following reasons:

• Essentially all systolic algorithms have propagated variables, hence can
benefit from bounded broadcast.

• All other things being equal, a systolic computing system that implements
an algorithm using bounded broadcast will perform significantly better
than one that does not.
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