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Abstract. If climate models produced clouds having
liquid water amounts close to those observed, they would
compute a mean albedo that is often much too large, due
to the treatment of clouds as plane-parallel. An approx-
imate lower-bound for this “plane-parallel albedo bias”
may be obtained from a fractal model having a range
of optical thicknesses similar to those observed in ma-
rine stratocumulus, since they are more nearly plane-
parallel than most other cloud types. We review and
extend results from a model which produces a distribu-
tion of liquid water path having a lognormal-like proba-
bility density and a power-law wavenumber spectrum,
with parameters determined by stratocumulus obser-
vations. As the spectral exponent approaches -1, the
simulated cloud approaches a well-known multifractal,
referred to as the “singular model”, but when the ex-
ponent is -5/3, similar to what is observed, the cloud
exhibits qualitatively different scaling properties, the so-
called “bounded model”. The mean albedo for bounded
cascade clouds is a function of a fractal parameter, 0 <
F < 1, as well as the usual plane-parallel parameters
such as single scattering albedo, asymmetry, solar zenith
angle, and mean vertical optical thickness. A simple ex-
pression is derived to determine f from the variance of
the logarithm of the vertically-integrated liquid water.
The albedo is shown to be approximated well by the
plane-parallel albedo of a cloud having an “effective”
vertical optical thickness, smaller than the mean thick-
ness by a factor x(f), which is given as an analytic func-
tion of f. California stratocumulus have a mean fractal
parameter f == 0.5, relative albedo bias of 15%, and an
effective thickness 30% smaller than the mean thickness
{x = 0.7). For typical observed values of mean liquid
water and f, the effective thickness approximation gives
a plane-parallel albedo within 3% of the mean albedo.

1 Introduction

The large-scale terrestrial climate is well-known to be
sensitive to small changes in the average albedo of the
earth-atmosphere system. Sensitivity estimates vary,
but typically a 10% decrease in global albedo, with all
other quantities held fixed, increases the global mean
equilibrium surface temperature by 5°C, similar to the
warming since the last ice age, or that expected from a
doubling of COgz. [See, for example, Cahalan and Wis-
combe, 1993.] Yet not only is the global albedo not
known to 10% accuracy, but current global climate mod-
els often do not predict the albedo in each gridbox from
realistic liquid water values; they simply reduce the lig-
uid until plane-parallel radiative computations produce
what are believed to be typical observed albedos. Harsh-
vardhan and Randall (1985) have estimated that glob-
ally this requires a factor of three reduction in cloud lig-
uid. The inability of the models to compute the albedo
is due to their inability to predict the microphysical and
macrophysical properties of cloud liquid water within
each gridbox, and their reliance on plane-parallel ra-
diative codes. As Stephens (1985) has emphasized, the
mean albedo of each gridbox depends not only on the
mean properties of the clouds within each box, but also
upon the variability of the clouds, which involves not
only the fractional area covered by clouds, but also the
cloud structure itself. As climate models are now begin-
ning to carry liquid water as a prognostic variable (e.g.
Sundgqvist et al., 1989), it is important to treat cloud ra-
diation and cloud hydrology consistently, which requires
that cloud parameterizations become dependent on the
fractal structure of clouds. Radiative properties of sin-
gular multifractal clouds have been previously studied
(e.g. Cahalan, 1989; Lovejoy et al., 1990; Gabriel et
al., 1990: Davis et al., 1990). Here we shall show how
the radiative properties of relatively thin boundary-layer
clouds, and specifically the area-average albedo, depend
on their fractal structure.



The dependence of average albedo on cloud structure
has been found to be especially important in the case of
marine stratocumulus, a major contributor to net cloud
radiative forcing. Computations based on observations
of California stratocumulus during the First Interna-
tional Satellite Cloud Climatology Regional Experiment
(FIRE) have shown that stratocumulus have significant
fractal structure, and that this “within-cloud” structure
can have a greater impact on average albedo than cloud
fraction (Cahalan and Snider, 1989; Cahalan et al, 1994a
and 1994b). These studies employed a “bounded cas-
cade” model to distribute the cloud liquid, with param-
eters ¢ and f adjusted to fit the scaling exponent of the
power spectrum of liquid water path (W), a{c) = 5/3,
and the standard deviation of log,, (W), o(f,c). In or-
der to isolate the effects of horizontal liquid water varia-
tions on cloud albedo, the usual microphysical parame-
ters were assumed homogeneous, as was the geometrical
cloud thickness. In order to simplify comparison with
plane-parallel clouds, the area-averaged vertical optical
depth was kept fixed at each step of the cascade. The
albedc bias was found as an analytic function of the
fractal parameters, f and ¢, as well as the mean ver-
tical optical thickness, 7,, and sun angle, 8,. For the
diurnal mean of the values observed in FIRE (f = 0.5,
¢ 0.8, 7, = 15, and 8, = 60°} the absolute bias is
approximately 0.09, or 15% of the plane-parallel albedo
of 0.69.

This purpose of this paper is to show how these re-
sults for the mean albedo of bounded cascade clouds,
derived in the references cited above, may be applied
to parameterizing the albedo of such clouds in terms of
the plane-parallel albedo of a cloud having an “effec-
tive optical thickness” which is reduced from the mean
thickness by a factor x{f) which depends only on the
fractal parameters f and ¢, or equivalently o and o, and
not on the mean cloud properties. This “effective thick-
ness approximation” (ETA) is a special case of the so-
called “independent pixel approximation” (IPA) which
neglects net horizontal photon transport. Here we de-
termine the accuracy of this approximation for cloud pa-
rameters typical of marine stratocumulus. In addition,
some previous analytic results for bounded cascades are
generalized and simplified in two appendices.

In the following, we first define some terms in Sec-
tion 2. Then Section 3 shows that the IPA provides
estimates of the plane-parallel albedo bias accurate to
about 1% for the bounded cascade, and Section 4 ap-
plies the IPA to show that the total absolute bias reaches
a maximum of about 0.10 during the morning hours,
when the cloud fraction is nearly 100%. These two sec-
tions are primarily summaries of results from Cahalan
et al. (1994a) and Cahalan et al. (1994b), although
there a 1D cascade was employed, while a here a 2D
case is shown. Section 5 gives our main result, that un-
der certain commonly-observed conditions the albedo
is approximately the plane-parallel albedo at a reduced
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“effective optical thickness”, 7.;¢ = x * 7, where the
reduction factor y increases with f, and is independent
of the mean vertical optical depth. The accuracy of this
approximation is given as a function of both f and the
mean thickness. The results are summarized and their
limitations briefly discussed in Section 6. Appendix A
shows that all moments of a bounded cascade may be
obtained from the second moment as a function of f.
This generalizes expressions for the second and third
moments given in Cahalan et al. (1994a}, and allows
the lognormal behavior in the singular limit to be ex-
plicitly exhibited. Appendix B gives expressions for y
and o as power series in f with coefficients depending
on ¢, and provides rational functions of f accurate for
the case of a 5/3 spectrum.

2 Definitions

Currently many general circulation models {GCMs) do
not predict cloud liquid water in each gridbox, but at-
tempt to diagnose it from other quantities. The cloud
albedo is also often not predicted, but prescribed inde-
pendently of the hydrological cycle. However, efforts are
now underway to improve this situation {e.g. Sundqvist
et al., 1989), so that simulated clouds can respond more
realistically to climate change. The hope is that av-
erage cloud liquid in each gridbox will be accurately
predicted, and that the resulting cloud albedo will be
correctly computed from this, and other average cloud
parameters. It is important to recognize, however, that
mean cloud parameters are insufficient to compute the
mean albedo. The mean albedo also depends, at a min-
imum, on the deviations of the liquid water from the
mean, or more appropriately, on scaling exponents such
as o, and on o and higher moments of the logarithm of
the liquid water, as we demonstrate in this paper using
the bounded cascade model. To clarify the discussion,
we first introduce some definitions.

The schematic in Fig.1 shows three approaches to dis-
tributing a prescribed amount of liquid water in a GCM
gridbox. In (a) it is uniform over the whole area, and
thus the albedo may be computed from plane-parallel
theory, and depends only on the average optical thick-
ness, effective particle radius, and so on. In (b) the
cloud is assumed to cover only a fraction of the area,
is somewhat thicker in order to contain the same total
liquid, but is still assumed to be uniform on that so-
called “cloud fraction”. In this case the mean albedo of
the gridbox is assumed to equal the weighted average of
a “cloud albedo” and a “clear-sky” albedo. Finally, in
(c) the cloud covers the same cloud fraction as in (b},
with the same mean parameters, but is assumed to have
a non-uniform structure which depends on one or more
“fractal parameters”. The cloud fraction and the fractal
parameters are assumed to depend on geographic region,
geason, and time of day.



158

()

Plane-Parallel

Plane-Parallel
on fraction Ac

Fig. 1. Schematic showing three approaches to distributing the
cloud liquid water in & GCM gridbox. In the top figure, the cloud
has plane-paralle] geometry, with cloud parameters such as verti-
cal optical thickness, 7, uniform over the whole gridbox. In the
middle figure, the parameters are uniform over a fraction A. of the
gridbox, with the same values as above, except that cloud verti-
cal optical thickness increases to 7, /A, thus preserving the total
liquid, while the cloud thickness is zero on the remaining fraction
1—A;. In the bottoin figure one has a fractal distribution of cloud
parameters over the fraction A., with the same mean values as in
the middle, and an identical clear fraction 1 — A..

As a measure of the impact of cloud fraction and frac-
tal parameters on the average albedo, we define the “ab-
solute plane-parallel albedo bias”, ARp,, as the mean
albedo computed in case (a) minus that in case (c). This
may be expressed symbolically as:

ARpp = Rpp — (Ach + (1 - AC)RS), (1)

where R, is the plane-parallel reflectivity, Ry is the
mean reflectivity of the fractal cloud, R, is the mean
clear-sky reflectivity, and the same total liquid water is
used in both cases. The relative plane-parallel albedo
bias is the plane-parallel bias divided by R,,. To avoid
confusion, the absolute bias is always given as a fraction,
while the relative bias is given in percent. Since the
simple uniform cloud fraction model shown in Fig.1b
is currently widely employed, it is convenient to split
the total plane-parallel bias into the difference between
(a) and (b), plus the difference between (b) and (c).
Symbolically:

ARPP = [RPP - (ACRPP + (1 - AC)RS)] +
[(AC‘RPP + (1 - Ac)RS) -

(A.Ry + (1 — AR, (2)

The first difference represents the bias due only to the
reduction in cloud fraction from unity to A., and the
corresponding increase in thickness, with no change in
the plane-parallel assumption; the second difference is
the additional bias due only to the within-cloud fractal
structure, and again the same total liquid is employed
in all cases. This section and the following considers the
case of overcast clouds, having A, = 1, so that the total
bias depends only on the fractal parameter. Then Sec-
tion 4 considers the case in which both the cloud fraction
and the fractal parameter follow the diurnal variations
observed in California stratocumulus. As we shall see,
the A, = 1 case produces the largest total bias, because
of the sensitivity of the bias to the fractal structure, and
the observed fact that in California stratocumulus the
overcast cases have the greatest within-cloud variability.

In order to generate a bounded cascade cloud, we be-
gin with a uniform cloud having a liquid water path
of e.g. W = 100 g/m?, and corresponding vertical op-
tical thickness of e.g. 7, = 15 (i.e. 10 um effective
drop size). We assume large but finite horizontal optical
thicknesses in both horizontal directions, say w, == 1500.
This uniform distribution is now made non-uniform by
a bounded multiplicative cascade process, in which the
cloud is successively subdivided into smaller parts, and
successively smaller fractions of liquid water are trans-
ferred among these parts, without changing the total.
[If the fractions were kept the same at each step, the
resulting distribution would be singular, and the power
spectrum would have more small-scale variability than
is observed in marine stratocumulus clouds.)



Table 1. Parameters for bounded cascade clouds

Parameter Symbol Typical Value
single-scattering albedo wo 1
asymmetry g 0.85
liquid water path w 100 g/m?
vertical optical thickness Tu 15
effective optical thickness 7.5 10
solar zenith angle [/ 60°
scaling parameter ¢ 0.8
variance parameter f 0.5
power spectral exponent o 5/3
std. dev. of log,, (W} T 0.4
reduction factor X 0.7

We first describe a one-dimensional {1D) hounded cas-
cade, and we shall consider the simplest subdivision pro-
cess: Divide the cloud in half along a north-south line.
Flip a coin to select one half, and transfer a fraction, say
fo = f = 0.5 from that half to the other one. The pro-
cess is then iterated as follows: Each of the two halves
is divided in half the same way, two coins are flipped
to select one quarter from each of the two pairs, and a
smaller fraction fi = f * ¢, with say ¢ = 0.8, so that
fi = 0.4, is transferred from each chosen quarter to
the other one. The resulting four quarters are in turn
divided in half, four coins are flipped, and a fraction
fa = fi *c = 0.32 is transferred within the four pairs
of eighths, and so on. The resulting distribution of lig-
uid water path has a power spectrum behaving as k™2,
where o ~ 5/3 when ¢ = 27Y/% x (0.8, as observed
(Cahalan and Snider, 1989), and an approximately log-
normal probability distribution, with the standard de-
viation of log;q (W) = o{f) = 0.39 when f = 0.5, as is
also observed (Cahalan et al., 1994.)

A two-dimensional (2D) bounded cascade begins with
the same initial cloud, which is then divided into quar-
ters along both north-south and east-west lines, and
liquid water fractions are then transferred among the
quarters. Qur transfer method is as follows: The four
quarters are divided into two pairs, aligned either north-
south, east-west or diagonally, with equal probability
for each of the three possible ways. One of the pairs is
selected by a coin toss, and a fraction fy = f = 0.5
is transferred within that pair, with either direction
equally likely, while a fraction fj is transferred within
the other pair. For simplicity, we also take f§ = f.
The process is then repeated by quartering each quar-
ter, transferring f; = 0.8 x f, and so on. The set of
optical depth values thus generated at steps 1, 2, 3, ...,
N in the 2D cascade are identical to those generated at
the same steps in the 1D cascade, except that each value
appears twice in the first step, and 2V times in the Nth
step. The one-point probability distribution function of
W and 7, is identical in both 1D and 2D.

Table 1 summarizes the symbaols and typical values of
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parameters in the bounded cascade cloud model. In ad-
dition to the bounded cascade, two additional assump-
tions are being made here. One is that the effective
droplet radius is uniformly equal to 10 pm, so that the
vertical optical thickness of each part of the cloud is
linear in the liquid water:

r=015W. (3)

Second, we employ the “independent pixel approxi-
mation”, which means that the reflectivity of each cloud
pixel is assumed to depend only on its optical depth,
R = R(r), and not the optical depth of neighboring
pixels. This is a strong assumption, and will be justified
for the bounded model in the following section.

3 Independent Pixel Approximation

The grayscale map in Fig. 2a shows the reflectivity of
(64)? cloud cells as computed by Monte Carlo meth-
eds for a cloud generated by 6 cascade steps of a 2D
bounded cascade with mean vertical optical thickness
™ = 16, 8, = 607, and fractal parameter f = 0.5. If
there were no horizontal photon transport, the reflectiv-
ity of each of the 2'2 = 4096 cloud pixels would simply
be determined by independent plane-parallel computa-
tions. The local differences between this “independent
pixel approximation” (IPA) and the Monte Carlo reflec-
tivities are shown by the grayscale map in Fig. 2b. The
brighter areas of negative bias occur where the IPA un-
derestimates the reflectivity of an optically thick region
which lies on the sunward side of immediately adjacent
thin regions and has an enhanced brightness due to pho-
tons escaping from those thin regions. Conversely, the
darker positive regions occur where the IPA overesti-
mates the brightness of a thin region which lies down-
stream of an adjacent thick region. [Recall that the
cloud has constant geometric thickness everywhere, so
that the horizontal photon leakage is not simple geo-
metrical shadowing. It occurs within the cloud.] These
local errors in the IPA can be quite large, with mag-
nitudes exceeding the plane-parallel bias of about 0.1
and in one area even exceeding 0.3. However, the hori-
zontal average of the JPA bias is an order of magnitude
smaller than the plane-parallel bias, because the posi-
tive and negative regions tend to approximately cancel
in the area average.

The IPA has a long history of use in remote sensing,
and was employed in a theoretical study by Ronnholm
et al. (1980). But without any explicit model of the
spatial structure, previous studies could not examine the
errors in the IPA. Here we find significant local errors in
the IPA fluxes for the 2D bounded cascade, even though
this model does not include geometrical cloud effects.
We emphasize that the IPA is justified for this model
only for the mesoscale-average reflected flux, and even
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this breaks down for a singular cascade (Cahalan (1989),
Cahalan et al. (1994b)).

When the sun is closer to the zenith than 8, = 60°, the
IPA errors tend to be of the same sign, but much smaller
in magnitude, since most of the photons are scattered
in the forward direction. On the other hand, when the
sun approaches the horizon, the reflectivity everywhere
approaches 1, so all the biases are again smaller than at
#, = 60°. As a result, the total IPA bias is maximum
when the sun is near 60° (Cahalan et al., 1994.)

Since the horizontal average of the IPA errors is quite
small for the bounded cascade, we may employ the IPA
to estimate the average albedo, and compare it with the
albedo of a uniform cloud having the same horizontal
average optical depth. Thus we substitute this differ-
ence for the “plane-parallel albedo bias” defined in Eq.
(1). It can be shown that the resulting plane-parallel
bias is strictly positive as long as the reflection funec-
tion is convex, unlike the IPA errors. (See for example
Jensen, 1906.) The plane-parallel albedo for the pa-
rameters used here is 0.69, while the average of Monte
Carlo albedo (i.e. averaging over a number of realiza-
tions such as that in Fig. 2a) is about 0.6. Thus the bias
associated with using the area-average optical thickness
is about 0.09, or 13% of the plane-parallel albedo. [Note
that the bias is always underestimated by taking only a
finite number of cascades.]

As a result of the IPA, the mean albedo may be com-
puted by simply transforming the liquid water (or op-
tical depth) of each pixel to reflectivity, and then av-
eraging over all pixels. The results in the case of con-
servative scattering are shown in Fig. 3. The upper
curve is the plane-parallel (f = 0) albedo as a func-
tion of mean liquid water path, and the lower curve is
the fractal (f = 0.5) albedo. For a typical mean liquid
water path of W =~ 100 g/m? (7, ~ 15), Fig. 3 shows
that the plane-parallel albedo of about 0.69 is reduced to
about 0.60 by the fractal structure, implying a relative
bias of approximately 15%. In order to obtain the cor-
rect albedo from a plane-parallel cloud, it is necessary
to reduce the liquid water path, or optical thickness, by
30%. An explicit expression for this reduction is derived
in Section 5.

Since the reflectivity of a given pixel is a function of
the local liquid water path, it may be expanded in a
Taylor series as follows:

RW) = R(W)+ (W -W)RDW)+

gwﬁWPMWWHnu? (@)

where W is the average liquid water path, and R(™ (W)
is the nth derivative of R wrt W, evaluated at W. [We
have supressed the dependence of R on the solar zenith
angle.] Averaging both sides of Eq. (4) then gives

ROV) = ROV) + 50 RO(W) + O(us BY),  (5)

(a) :
0.2 04 06 08 1.0

(b) C—I——=
-0.1 -0.05 0.0 0.05 0.1

Fig. 2. (a) Reflectance as a function of position in a bounded
cascade cloud with Ac = 1 and f = 0.5. Starting with a uni-
form cloud having mean vertical optical thickness 7 = +, = 16,
6 cascades were generated in each horizontal direction, giving
21% = 4096 uniform elements or “pixels”. Reflectivities were com-
puted by Monte Carlo with 107 photons. Microphysical properties
are uniform, with single-scattering albedo w, = 1 and asymmetry
g = 0.85. The Henyey-Greenstein phase function was used, but
essentially identical results were obtained with the “fair weather
cumulus” function. The sun is 60° to the left of vertical. The black
contour at 0.6 shows approximately where the reflectance equals
the mean reflectance, with more reflective regions lighter, and less
reflective regions darker. (b) The “independent pixel bias”, de-
fined as the independent pixel reflectances (computed from the
vertical optical thickness of each pixel) minus the Monte Carlo
reflectances shown in (a). While the local biases range from 0,257
to -0.302, the arca-average is 0.0096, nearly an order of magnitude
smaller than the “plane-parallel bias”, namely the reflectance of
the mean optical thickness minus the mean of the independent
pixel reflectances, which is about 0.08.
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Fig. 3. Dependence of albedo on mean liquid water path and ver-
tical optical thickness for the two approaches shown in Figs. la
and lc, where the fractal case (c) is computed from the bounded
model for A, = 1 and f = 0.5, using the independent pixel approx-
imation. Subtracting the mean reflectance (the lower curve) from
the reflectance of the mean {the upper curve) gives the "plane-
parallel bias”. When 7, = 15 the bias is 15% of the plane-parallel
albedo, and the mean reflectance equals that of a plane-parallel
cloud with 30% less liquid water, or an optical thickness Tefr = 10.

where jip is the second moment, or variance, of the one-
point distribution of W generated by the bounded cas-
cade. Subtracting Eq. 5 from R(W) gives the plane-
parallel albedo bias. The lowest-order term is positive,
since R'?) is negative. This term overestimates the bias,
while inclusion of the p3 term underestimates, and so on
{see Cahalan et al. (1994a}). Appendix A shows that
all the moments of the bounded model may be obtained
from po as a function of f, thus formally determining
all the coefficients in the above expansion. In Section
5 we consider an alternative expansion about log({W),
which leads to a simple expression for the effective liquid
water path and effective thickness. First, however, we
briefly review the dependence of the bias on cloud frac-
tion, A., to show that the case of A, = 1, assumed in
the above discussion, produces the largest plane-parallel
albedo bias during the diurnal cycle of California marine
stratocumulus.

4 Diurnal cycle

The total plane-parallel albedo bias has two contribu-
tions, as described in Eq. (2): that due only to cloud
fraction, which is given by Fig. 1a minus Fig. 1b, and
that due to the fractal structure, given by Fig. 1b mi-
nus Fig. 1c. The fractal structure contribution is largest
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when the liquid water variance is largest, which in the
case of California marine stratocumulus occurs during
the morning hours, when the cloud fraction is nearly
100%, as shown in Cahalan et al. (1994a}. Although
the cloud fraction contribution to the bias is larger in
the afternoon, when the cloud fraction drops to 60%,
this is more than offset by the decrease in the liquid wa-
ter variance, which reduces both the fractal contribution
and the total bias. The fact that the cloud variance is
largest when the cloud cover is largest leads to the sur-
prising result, that plane-parallel estimates are most in
error when the usual “cloud-fraction™ corrections van-
ish!

In Cahalan et al. (1994a) the diurnal cycle of the
albedo bias was estimated indirectly, by first comput-
ing the diurnal cycle of f, determined from hourly val-
ues of the variance of log(W). Here we compute the
bias directly from the time series of W, by perform-
ing a plane-parallel computation of reflectance for each
ohservation, and then compositing the results hourly.
The direct results agree qualititatively with the earlier
indirect approach, and are shown in Fig. 4, which is
qualitatively similar to Fig. 9 in Cahalan et al. (1994a}.
Here the lower curve is the usual correction due only to
cloud fraction, and vanishes when the fraction reaches
100%; the middle curve is the additional correction due
to the fractal distribution of the cloud liquid water; and
the upper curve is the total albedo bias. Note that the
cloud fraction correction is much smaller than the total,
is 180° out of phase with the total during most of the
day, except when the sun is setting, when the total is
dominated by the cloud fraction correction due to the
neglect of the clear-sky albedo. The 0.09 albedo reduc-
tion needed when the clouds are overcast represents a
major change in the average cloud albedo of 0.6.

5 Effective optical thickness

Since the largest albedo bias occurs for overcast cloudi-
ness conditions, when A, = 1, let us further consider
that case, represented by the 15% increase in Fig. 3
of the albedo of a plane-parallel cloud over that of a
fractal with the same total cloud water. As shown in
Cahalan et al. (1994a), this bias may be estimated from
a simple “effective thickness approximation”, which is a
lowest-order approximation to the bias determined from
the IPA. To derive it, consider an expansion similar to
Eq. (4), except now the local reflectance is considered
as a function of the logarithm of the local liquid water
path, log(W), and expanded in a Taylor series about the
mean, log(W). Taking the mean of the result gives the
mean cloud reflectivity as:

R(log(W)) = R(log(W))+

2M; RY(1og (W) + O(MaR™),  (6)
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Diurnal Variation of Absolute Albedo Bias
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Fig. 4. Absolute plane-parallel albedo bias as a function of time-
of-day for California marine stratocumulus, determined directly
from microwave measurements of liquid water path during 18 days
in June 1987, by computing an independent reflectivity from each
measurement. The same computation using the bounded cascade
model with diurnally varying f and A. is given in Cahalan et al.
(1994a), and is qualitatively similar. The upper solid curve is the
total bias defined as in Eq. (1), while the dotted and dashed curves
are the contributions due to cloud fraction and fractal structure,
respectively, as defined in Eq. {2). Cloud fraction is defined as
the fraction of values exceeding 10 g/m?2, and clear-sky albedo is
taken to be zero.

where Mj; is the variance of log(WW), given in Appendix
B, and R" is the second derivative of B wrt log(W) eval-
uated at the mean of log{(W}. It can be shown that the
odd moments vanish in the bounded cascade, so that
only the even moments appear in Eq. (6). As a func-
tion of log(WW), the conservative reflection function has
an inflection point, where the slope ceases increasing
with log{W) and begins to decrease, and the curvature
vanishes. This typically occurs near log(W). Thus the
second term in the preceeding equation is small, so that
the mean reflectivity is approximately given by the re-
flectivity evaluated at log(W). In the bounded cascade
model, the mean of log(W) is given by

log(W) = log(W.yy), (7)
where the “effective liquid water path” is

Weff ZW*X(fac)a (8)

and x{f,¢) < 1 is the “reduction factor” given in Eq.
{(B2), and is approximately 0.7 when f = 0.5 and ¢ =
0.8.

Combining Eqs. (8) and (3) allows us to define the
“effective optical thickness” as

Teff=TU*X(f:C), (9)

where 7, is the mean vertical optical thickness. Tak-
ing only the first term in the expansion in Eq. (6}, and
using Eq. (3), it is clear that for a range of intermedi-
ate mean cloud thicknesses near the inflection point of
the reflectivity, the mean albedo may be approximated
by the plane-parallel albedo evaluated at the effective
thickness, as follows:

R(7) = R(ress), (10}

An estimate of the plane-parallel albedo bias may be
obtained by simply subtracting Eq. (10) from the plane-
parallel albedo, R{7,). The relative error in the estimate
of the bias derived from Eq. (10) is shown in Fig. 5 as
a function of f and 7, for ¢ = 0.8 and a solar zenith
angle of 8, = 60°, which is typical for subtropical stra-
tocumulus. For the contours labelled 430, for example,
the bias obtained from the simple effective thickness ap-
proximation should be multiplied by 1 ¥ 0.3. Since the
bias itself is on the order of 0.1, this corresponds to cor-
rections of = F0.03. The correction is dominated by
the M3 term in Eq. (6), and thus changes sign near the
inflection point of R(log(W)).

According to (9), the effective thickness depends on
the fractal structure through y, which is a known an-
alytic function of the fractal parameters f and c. The
fractal parameter f is in turn adjusted to give the ob-
served value of o, a known analytic function of f and
e, while ¢ is fixed by the exponent of the wavenum-
ber spectrum. Thus 7.y is parametrically determined
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Fig. 5. Relative error in percent in the plane-parallel bias when
the actual albedo is approximated by the plane-parallel albedo
at a reduced “effective thickness”, as a function of mean optical
thickness 1, and fractal parameter f. If the effective thickness
gives an absoclute bias of 0.10 near the -20 contour, for example,
then the actual bias should be increased 20%, to 0.12, and simi-
larly an estimate of 0.10 near the 420 contour should be decreased
to 0.09. These same corrections also apply to the relative bias.
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Fig. 6. Plot of x, the reduction factor, versus o, the standard
deviation of log,; {I¥). Both the horizontal and vertical scales
are scale-invariant, and apply to either W or v because of the
simple linear relation expressed in Eq. {3). The solid curve is
for the bounded model with ¢ = 0.8, while the dashed curve is
the singular limit given by the simple expression in Eq. (B11).
Labelled points apply only to the upper curve. The value of
derived from observations of California marine stratocumulus is
0.39, corresponding to x ~ 0.7, which occurs at f = 0.5. (This is
the diurnal mean in the summer, when f varies from about 0.6 in
the morning to 0.3 in the afternoon.) The global reduction factor
x A2 % discussed by Harshvardhan and Randall (1985) occurs at
f = 0.8, and requires a global value of ¢ & 0.7.

as a function of ¢ by varying f. Details are given in
Appendix B, and results are shown in Fig. 6 for both
¢=2"1/% = 0.8 needed to give a 5/3 wavenumber spec-
trum, and for the singular limit ¢ — 1, for which x is
a simple exponential given in Eq. (B11). The point la-
belled f = 0.5 corresponds to the diurnal average value
of ¢ = 0.39 determined from the stratocumulus observa-
tions discussed in Section 4. In this case x = 0.7, so for
example when 7, = 15 we have 7.5 =~ 10, and R = 0.6.

Harshvardhan and Randall suggested that the global
average cloud liquid must be reduced by a factor of ap-
proximately 0.3 in order to obtain the correct global
albedo. To obtain this value of the reduction factor,
x = 0.3, in the current model requires an increase in
the fractal parameter to f = 0.8, and an increase in
the standard deviation to ¢ = 0.7, as seen in Fig. 6.
This in turn increases the plane-parallel albedo bias by
a factor of 5. The fact that a much larger bias is found
on a global basis is presumably due to the much wider
variation in cloudiness over the globe, as compared to
the relatively benign variation in marine stratocumu-
lus. Davis et al. (1990) considered a related quantity,
the “packing factor”, the inverse of the reduction factor,
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and studied the thick cloud limit in a singular model, for
which ¥ — 0, and the packing factor diverges. A sim-
ilar singular model was studied in Cahalan, 1989. The
bounded model considered here is a relatively conserva-
tive extension of the plane-parallel idealization. More
radical, and perhaps singular, models may be needed to
better represent radiative processes in deep convective
cloud systems.

6 Conclusions

This paper has extended previous results on the aver-
age albedo of bounded cascade clouds, with parameters
appropriate for marine stratocumulus clouds, known to
be a major contributor to cloud radiative forcing. The
model reproduces the observed power spectrum and low-
order moments of the liquid water distribution in ma-
rine stratocumulus, and was studied here by both Monte
Carlo and analytic methods. Previous results for the
dependence of local fluxes on horizontal photon trans-
ports were extended from 1D cascades to 2D cascades in
Sect. 3, showing that errors in estimates of local fluxes
from the “independent pixel approximation” (IPA) can
be large in some regions, while still producing an area-
average reflectivity which is accurate to about 1% for a
2D bounded cascade. Previous results for the diurnal
variation in the albedo bias were reproduced directly
from the observations without using the cascade model,
as discussed in Sect. 4, verifying again that the bias is
largest for 100% cloud fraction. These results suggested
a way of parameterizing the impact of cloud variabil-
ity on the large-scale albedo in terms of an “effective
liquid water path”, Wess (or equivalently an “effective
optical thickness”, 7.5y), smaller than the mean by a
factor which depends only on the fractal structure. Seec-
tion 5 determined the accuracy of this “effective thick-
negs approximation” (ETA) as a function of the fractal
parameter f and the mean liquid water path, W (or
equivalently the mean optical thickness, 7,,). The ratio
of x = Wess/W (or 7o55/7,) was determined as an an-
alytic function of the fractal parameters, and as a para-
metric function of o, the standard deviation of log;q (W)
(or log;g (7)), which may be estimated directly from ob-
servations.

For marine stratocumulus, ¢ = 0.4 and y = 0.7, so
that the mean albedo equals that of a plane-parallel
cloud having 30% less liquid water, which is approxi-
mately 15% less than that of a plane-parallel cloud hav-
ing an equal amount of liquid water. The plane-parallel
albedo requires the largest adjustment when the cloud
fraction is nearly 100%, since that is when the largest
variability is observed. Thus the largest correction oc-
curs when the usual cloud fraction correction is small.

The bounded cascade model studied here represents
an extension to plane-parallel clouds which is relatively
conservative, since the cloud height and base are fixed,

the microphysics is uniform, and the variability of cloud
optical properties is relatively mild. Yet even this con-
servative model shows that the variability of liquid water
in marine stratocumulus can have a larger impact on the
mesoscale average albedo than the usual cloud fraction
corrections. For cloud types not confined to a single
vertical layer, such as those found in deep convective re-
gions, geometrical fractal properties neglected here may
also impact large-scale radiative properties, and may
well require more radical departures from conventional
plane-parallel ideas. Further study of the structure and
radiation of real clouds in their full complexity will be
needed in order to understand how Earth’s climate is
being regulated, and in order to consistently quantify
the role played by Earth’s cloud systems on the energy
and hydrological cycles.

Appendix A Rescaling f generates W moments

Here we derive expressions for the moments about the
origin of the liquid water path generated by a bounded
cascade, as a function of the cascade parameters f and c.
We show that all moments may all be obtained from the
second moment considered as a function of f, by rescal-
ing the values of f. This generalizes low-order results
derived in Appendix B of Cahalan et al. (1994a), and
shows in particular that all moments approach those of
a lognormal in the singular limit ¢ — 1.

It is convenient to first define two sets of nth-order
polynomials:

(L +vE" + (1= va™" _

Pn(x) = 2 =
= 2n m
> (om) o™ (A1)
and
2n+1 2n+1
Qn(ﬂ:) = (1+\/E) ;’(1_\/3_7) —
= (") 2

m=0

For example, the first three are given by:

l1+=z 1+ 3z

1+ 6z +z 1+ 10z + 522

1415z + 152° + 2% 14 21z + 3522 + 722
forn=1,2,3.

Values of liquid water in the bounded cascade have
the form

w=Tl (s, (43)

k=0



where f,c € (0,1]. After averaging over #+, the moments
depend only on @ = f? and s = ¢2, and can be written
in terms of the above polynomials in the form:

oo

tan(a,s) = H P, (as*), (A4)
k=0

and

tont1(a,s) H Qn as ) (A5)

For example, when n = 1,

o0
H 1+as =
k=0

oo Sm(m+1)/2
_2 " Ym A
1+ (n;:;l i) 49
and
ua(a,s) = ﬁ (1+ Sas"’) = tiz(3a,s}. (A7)
k=0

The last expression for ps in Eq. (A6) was originally
derived by Euler, as discussed for example in Hardy and
Wright (1979, p. 280) Taking the limit s = 1, we can

£ = k to show that

H2

l Bt B G A8
sl—yni exp(1 s)) 1, ( )
which implies an essential singularity in us. The third
moment is also singular, since

13
lim ( z) =L (A9)
s—] (p} )

We now generalize Eqs. (A7) and (A9) to the remain-
ing moments. By application of Sturm’s theorem, it can
be shown that the roots of P,,Q, all lie on the negative
real axis, so that we may write:

Po(z) = f[ (1+ Rl-("):c) : (A10)
i=1
and
Qn{z) = f[ (1 + Rﬁ“)x) (A11)

i=1

where the R("™ R are sets of positive real numbers

with n elements. The first three sets are:
R(n) R( n)

3—¢§,3+\/§ 5—\/56,5+\/20"
7—148,1,7+ 48 0.232,1.572,19.196
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Moments 2n and 2n + 1 thus factor into » infinite prod-
ucts:

Han(a,s) = Hﬂz(

and

) (A12)

n

tiznyi(a,s) = H#z (f%f;"')a,s) ,

=1

(A13)

so that all moments are determined by products of the
second moment evaluated at various rescaled values of
the fractal parameter ¢ = f2. Combining Eqs. (A8) and
(A12), we find that in the singular limit,

lim ( Han

—n—_—_n_) =1,
s—1 (HE)E":IR{( )

(A14)

with a similar expression for the odd moments with
R, = R;. The sum of the roots can be shown to equal
the coefficient of the linear term in Eq. (A1), so that:

> R™ =2n(2m - 1)/2,

i=1

(Al15)

and similarly for R;. The limits for the even and odd
moments can then be combined to yield:

lim ( fin )=

Sy =1 (A16)

consistent with the behavior of moments of a lognormal.

Appendix B Wy, x, and ¢

Here we derive polynomial expansions for the reduction
factor, x = W.;7/W, and ¢ = standard deviation of
log,o (W) = standard deviation of log,,, (1), as a func-
tion of the fractal parameter f, with coefficients depend-
ing on c. In the case ¢ = 271/ npeeded for a 5/3 spectral
exponent, we provide accurate rational functions of f for
logyp {(x) and o. Finally, an approximate expression for
x{o) is determined.

The “effective optical thickness” defined in Section 5
is based on the following result for the liquid water path,
W
log (W) = log (x W), (B1)
where the overbar signifies an area average and an en-
semble average, and where the “reduction factor” is
given by

x(f,c) = (H(l b 2“) : (B2)

n=0



166

Here f varies diurnally, as discussesl in Sect. 4, but ¢ is
assumed constant, given by ¢ =273, or

2 = 0.630, (B3)

as required for a k—#% wavenumber spectrum. Equation
B2 was derived in Cahalan et al. {1994a) from the sta-
tistical distribution generated by the bounded cascade
model. The reduction factor may also be expressed as

x(f,¢) = 1074, (B4)
where
A(f,¢) = logyo (W) — log,y (W), (B5)

A polynomial expression for A is obtained by taking
log,, of Eq. (B2) and expanding in a power series in f,
leading to

log,, (€) S? f?
2 1—c2 1+1+c12

A(f,c) = +0(fY | (B6)

For the value of ¢? given in Eq. (B3), a better fit than
Eq. (B6) is given by the rational function:

— 0.485f2 )

A(f) =0.594 2 (i_ 0.73 7 (B7)

which is accurate to 1% as long as f < 0.9.
The second moment of log,, (W) was derived in Ca-
halan et al. {1994a), and is given by

Ma(£,9 = 3 (F1oe (1—t;—°‘:)) (B3)

k=0

If we take the square root of Eq. (B8), and expand the
result in powers of f, we obtain the standard deviation
of logyy (W) in the form:

2
o(f,c) = flogio (¢) lol__giliz) (1 + L

31+c2
The first term here agrees with the standard deviation
obtained by taking the square root of the exponent of
p2 in the singular limit in Eq. (A8). For the value of ¢?
in Eq. (B3) a better fit is given by the rational function:

1 —0.556 f2
1-0729f2)"

+o(f4)). (B9)

o(f) =0.718 f ( (B10)

which is accurate to 1% as long as f < 0.9,

Solving for f in Eq. {B9), and substituting the result
in Eq. (B6) allows us to write Eq. {B4) to lowest order
as:

x(o) ~ 10777 /(2 810 () oy 19- 11507 (B11)

The leading term in the exponent in Eq. (B11) is in-
dependent of ¢, and the correction terms are of order

o, and do not become important until ¢ > 0.5 or so.
This can be seen in Fig.6, where the exact x{c) in the
case that ¢ is given by Eq. (B3) is plotted along with
Eq. (B11). In the singular limit ¢ — 1, the upper solid
curve moves down toward the dashed one. Since o di-
verges for any fixed value of f (from Eq. (B9) the la-
belled points all slide down toward the right as ¢ in-
creases, so that x approaches zero for any fixed f.
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