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Abstract. In a ciphertext policy attribute based encryption system,
a user’s private key is associated with a set of attributes (describing
the user) and an encrypted ciphertext will specify an access policy over
attributes. A user will be able to decrypt if and only if his attributes
satisfy the ciphertext’s policy.
In this work, we present the first construction of a ciphertext-policy
attribute based encryption scheme having a security proof based on a
number theoretic assumption and supporting advanced access structures.
Previous CP-ABE systems could either support only very limited access
structures or had a proof of security only in the generic group model. Our
construction can support access structures which can be represented by
a bounded size access tree with threshold gates as its nodes. The bound
on the size of the access trees is chosen at the time of the system setup.
Our security proof is based on the standard Decisional Bilinear Diffie-
Hellman assumption.

1 Introduction

In many access control systems, every piece of data may legally be accessed by
several different users. Such a system is typically implemented by employing a
trusted server which stores all the data in clear. A user would log into the server
and then the server would decide what data the user is permitted to access.
However such a solution comes with a cost: what if the server is compromised?
An attacker who is successful in breaking into the server can see all the sensitive
data in clear.

One natural solution to the above problem is to keep the data on the server
encrypted with the private keys of the users who are permitted to access it.
However handling a complex access control policy using traditional public key
encryption systems can be difficult. This is because the access policy might be
described in terms of the properties or attributes that a valid user should have
rather than in terms of the actual identities of the users. Thus, a priori, one may
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not even know the exact list of users authorized to access a particular piece of
data.

The concept of attribute based encryption (ABE) was introduced by Sa-
hai and Waters [1] as a step towards developing encryption systems with high
expressiveness. Goyal et al [2] further developed this idea and introduced two
variants of ABE namely ciphertext-policy attribute based encryption (CP-ABE)
and key-policy attribute based encryption (KP-ABE). In a CP-ABE system, a
user’s private key is associated with a set of attributes (describing the proper-
ties that the user has) and an encrypted ciphertext will specify an access policy
over attributes. A user will be able to decrypt if and only if his attributes sat-
isfy the ciphertext’s policy. While a construction of KP-ABE was offered by [2],
constructing CP-ABE was left as an important open problem.

Subsequently to Goyal et al [2], Bethencourt et al [3] gave the first con-
struction of a CP-ABE system. Their construction however only had a security
argument in the generic group model. Cheung and Newport [4] recently gave a
CP-ABE construction supporting limited type of access structures which could
be represented by AND of different attributes. Cheung and Newport also dis-
cussed the possibility of supporting more general access structures with threshold
gates. However as they discuss, a security proof of this generalization would in-
volve overcoming several subtleties. In sum, obtaining a CP-ABE scheme for
more advanced access structures based on any (even relatively non-standard)
number theoretic assumption has proven to be surprisingly elusive.

Our Results. We present the first construction of a ciphertext-policy attribute
based encryption scheme having a security proof based on a standard number
theoretic assumption and supporting advanced access structures. Our construc-
tion can support access structures which can be represented by a bounded size
access tree with threshold gates as its nodes. The bound on the size of the ac-
cess trees is chosen at the time of the system setup and is represented by a
tuple (d, num) where d represents the maximum depth of the access tree and
num represents the maximum number of children each non-leaf node of the tree
might have. We stress that any access tree satisfying these upper bounds on the
size can be dynamically chosen by the encrypter. Our construction has a security
proof based on the standard Decisional Bilinear Diffie-Hellman (BDH) assump-
tion. We note that previous CP-ABE systems could either support only very
limited access structures [4] or had a proof of security only in the generic group
model [3] (rather than based on a number theoretic assumption). Further, we
show how to extend our constructions to support non-monotonic access policies.
Finally, we observe that our constructions for non-monotonic access policies can
in fact support any access formula with bounded polynomial size.

Our Techniques. Our construction can be seen as a way to reinterpret Key-
Policy ABE schemes (e.g. [2]) with a fixed “universal” tree access structure as
a CP-ABE scheme. Such a reinterpretation presents some problems because in
a KP-ABE scheme, the key material for each attribute is “embedded” into the



access structure in a unique way depending on where it occurs in the access
policy. To overcome this difficulty, we introduce many “copies” of each attribute
for every position in the access structure tree where it can occur. This causes a
significant increase in private key size, but does not significantly affect cipher-
text size. However, since the actual access structure to be used for a particular
ciphertext must be embedded into the fixed “universal” tree access structure
in the KP-ABE scheme, this causes a blowup in ciphertext size. This effect
can be moderated by having multiple parallel CP-ABE schemes with different
sized “universal” tree access structures underlying the scheme, which allows for
a trade-off between ciphertext size and the size of the public parameters and
private keys.

Note that in general a Boolean formula of size n can be represented by
a balanced formula of size O(n2/ log(3/2)) (roughly O(n3.42)). Thus, in general
our methodology would yield a ciphertext blowup of O(n3.42) group elements.
As such, our result can be seen as a “feasibility result” for CP-ABE for general
Boolean formulas of bounded size. We leave constructing more efficient CP-ABE
schemes based on number-theoretic assumptions as an important open question.

2 Background

We first give formal definitions for the security of Bounded Ciphertext Pol-
icy Attribute Based Encryption (BCP-ABE). Then we give background infor-
mation on bilinear maps and our cryptographic assumption. Like the work of
Goyal et al. [2], we describe our constructions for access trees. Roughly speaking,
given a set of attributes {P1, P2, . . . , Pn}, an access tree is an access structure
T ⊆ 2{P1,P2,...,Pn}, where each node in the tree represents a threshold gate (see
Section 3 for a detailed description). We note that contrary to the work of Goyal
et al., in our definitions, users will be identified with a set of attributes while
access trees will be used to specify policies for encrypting data.

A Bounded Ciphertext Policy Attribute Based Encryption scheme consists
of four algorithms.

Setup (d, num) This is a randomized algorithm that takes as input the implicit
security parameter and a pair of system parameters (d, num). These parameters
will be used to restrict the access trees under which messages can be encrypted
in our system. It outputs the public parameters PK and a master key MK.
Key Generation (γ, MK) This is a randomized algorithm that takes as input
– the master key MK and a set of attributes γ. It outputs a decryption key D
corresponding to the attributes in γ.
Encryption (M,PK, T ′) This is a randomized algorithm that takes as input –
the public parameters PK, a message M , and an access tree T ′ over the universe
of attributes, with depth d′ ≤ d, and where each non-leaf node x has at most
num child nodes. The algorithm will encrypt M and output the ciphertext E.
We will assume that the ciphertext implicitly contains T ′.
Decryption (E,D) This algorithm takes as input – the ciphertext E that was



encrypted under the access tree T ′, and the decryption key D for an attribute
set γ. If the set γ of attributes satisfies the access tree T ′ (i.e. γ ∈ T ′), then the
algorithm will decrypt the ciphertext and return a message M .

We now discuss the security of a bounded ciphertext-policy ABE scheme. We
define a selective-tree model for proving the security of the scheme under the
chosen plaintext attack. This model can be seen as analogous to the selective-ID
model [5–7] used in identity-based encryption (IBE) schemes [8–10].

Selective-Tree Model for BCP-ABE. Let U be the universe of attributes
fixed by the security parameter. The system parameters d, num are also defined.

Init The adversary declares the access tree T ′, that he wishes to be challenged
upon.
Setup The challenger runs the Setup algorithm of ABE and gives the public
parameters to the adversary.
Phase 1 The adversary is allowed to issue queries for private keys for many
attribute sets γj , where γj does not satisfy the access tree T ′ for all j.
Challenge The adversary submits two equal length messages M0 and M1.
The challenger flips a random coin b, and encrypts Mb with T ′. The ciphertext
is passed on to the adversary.
Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1
2 . We

note that the model can easily be extended to handle chosen-ciphertext attacks
by allowing for decryption queries in Phase 1 and Phase 2.

Definition 1 A bounded ciphertext-policy attribute-based encryption scheme (BCP-
ABE) is secure in the Selective-Tree model of security if all polynomial time
adversaries have at most a negligible advantage in the Selective-Tree game.

2.1 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear
maps. Let G1 and G2 be two multiplicative cyclic groups of prime order p. Let
g be a generator of G1 and e be a bilinear map, e : G1 ×G1 → G2. The bilinear
map e has the following properties:

1. Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.

We say that G1 is a bilinear group if the group operation in G1 and the bilinear
map e : G1 × G1 → G2 are both efficiently computable. Notice that the map e
is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).



2.2 The Decisional Bilinear Diffie-Hellman (BDH) Assumption

Let a, b, c, z ∈ Zp be chosen at random and g be a generator of G1. The deci-
sional BDH assumption [7, 1] is that no probabilistic polynomial-time algorithm
B can distinguish the tuple (A = ga, B = gb, C = gc, e(g, g)abc) from the tuple
(A = ga, B = gb, C = gc, e(g, g)z) with more than a negligible advantage. The
advantage of B is∣∣Pr[B(A,B,C, e(g, g)abc) = 0]− Pr[B(A,B,C, e(g, g)z)] = 0

∣∣
where the probability is taken over the random choice of the generator g, the
random choice of a, b, c, z in Zp, and the random bits consumed by B.

3 Access Trees

In our constructions, user decryption keys will be identified with a set γ of at-
tributes. A party who wishes to encrypt a message will specify through an access
tree structure a policy that private keys must satisfy in order to decrypt. We
now proceed to explain the access trees used in our constructions.

Access Tree. Let T be a tree representing an access structure. Each non-leaf
node of the tree represents a threshold gate, described by its children and a
threshold value. If numx is the number of children of a node x and kx is its
threshold value, then 0 < kx ≤ numx. For ease of presentation, we use the term
cardinality to refer to the number of children of a node. Each leaf node x of the
tree is described by an attribute and a threshold value kx = 1.

We fix the root of an access tree to be at level 0. Let ΦT denote the set of all
the non-leaf nodes in the tree T . Further, let ΨT be the set of all the non-leaf
nodes at depth d− 1, where d is the depth of T . To facilitate working with the
access trees, we define a few functions. We denote the parent of the node x in
the tree by parent(x). The access tree T also defines an ordering between the
children of every node, that is, the children of a node x are numbered from 1 to
numx. The function index(x) returns such a number associated with a node x,
where the index values are uniquely assigned to nodes in an arbitrary manner
for a given access structure. For simplicity, we provision that index(x) = att(x),
when x is a leaf node and att(x) is the attribute associated with it.

Satisfying an Access Tree. Let T be an access tree with root r. Denote by
Tx the subtree of T rooted at the node x. Hence T is the same as Tr. If a set of
attributes γ satisfies the access tree Tx, we denote it as Tx(γ) = 1. We compute
Tx(γ) recursively as follows. If x is a non-leaf node, evaluate Tz(γ) for all children
z of node x. Tx(γ) returns 1 if and only if at least kx children return 1. If x is a
leaf node, then Tx(γ) returns 1 iff att(x) ∈ γ.

Universal Access Tree. Given a pair of integer values (d, num), define a com-
plete num-ary tree T of depth d, where each non-leaf node has a threshold value



of num. The leaf nodes in T are empty, i.e., no attributes are assigned to the
leaf nodes. Next, num− 1 new leaf nodes are attached to each non-leaf node x,
thus increasing the cardinality of x to 2 ·num−1 while the threshold value num
is left intact. Choose an arbitrary assignment of dummy attributes (explained
later in Section 4) to these newly added leaf nodes1 for each x. The resultant
tree T is called a (d, num)-universal access tree (or simply the universal access
tree when d, num are fixed by the system).

Bounded Access Tree. We say that T ′ is a (d, num)-bounded access tree if
it has depth d′ ≤ d, and each non-leaf node in T ′ exhibits a cardinality at most
num.

Normal Form. Consider a (d, num)-bounded access tree T ′. We say that T ′

exhibits the (d, num)-normal form if (a) it has depth d′ = d, and (b) all the
leaves in T ′ are at depth d. Any (d, num)-bounded access tree T ′ can be con-
verted to the (d, num)-normal form (or simply the normal form when d, num
are fixed by the system) in the following way in a top down manner, starting
from the root node r′. Consider a node x at level lx in T ′. If the depth dx of the
subtree T ′

x is less than (d− lx), then insert a vertical chain of (d− lx−dx) nodes
(where each node has cardinality 1 and threshold 1) between x and parent(x).
Repeat the procedure recursively for each child of x. Note that conversion to the
normal form does not affect the satisfying logic of an access tree.

Map between Access Trees. Consider a (d, num)-universal access tree T
and another tree T ′ that exhibits the (d, num)-normal form. A map between
the nodes of T ′ and T is defined in the following way in a top-down manner.
First, the root of T ′ is mapped to the root of T . Now suppose that x′ in T ′ is
mapped to x in T . Let z′1, . . . , z

′
numx′

be the child nodes of x′, ordered according
to their index values. Then, for each child z′i (i ∈ [1, numx′ ]) of x′ in T ′, set the
corresponding child zi (i.e. with index value index(z′i)) of x in T as the map of
z′. This procedure is performed recursively, until each node in T ′ is mapped to
a corresponding node in T . To capture the above node mapping procedure, we
define a public function map(·) that takes a node (or a set of nodes) in T ′ as
input and returns the corresponding node (or a set of nodes) in T .

4 Small Universe Construction

Before we explain the details of our construction, we first present an overview
highlighting the main intuitions behind our approach.

4.1 Overview of Our Construction

Fixed Tree Structure. We first give the outline of a basic target system. For
simplicity, let us consider a very simple and basic access tree T . The tree T has
1 From now onwards, by dummy nodes, we shall refer to the leaf nodes with dummy

attributes associated with them.



depth, say, d; and all leaf nodes in the tree are at depth d. Each non-leaf node x
is a “kx-out-of-numx” threshold gate where kx and numx are fixed beforehand.
Thus the “structure” of the access tree is fixed. However, the leaf nodes of T are
“empty”, i.e., no attributes are associated with them. At the time of encryption,
an encrypter will assign attributes to each leaf-node, in order to define the access
structure completely. That is, once the encrypter assigns an attribute to each leaf
node in T , it fixes the set of “authorized sets of attributes”. A user having keys
corresponding to an authorized set will be able to decrypt a message encrypted
under the above access structure.

We now explain how such a system can be constructed. Recall that ΨT de-
notes the set of non-leaf nodes at depth d − 1. Each leaf child z of an x ∈ ΨT
will be assigned an attribute j.2 However, the same j may be assigned to z1

as well as z2 where z1 is a child node of x1 ∈ ΨT , and z2 is a child node of
x2 ∈ ΨT . Thus, any given attribute j may have at most |ΨT | distinct parent
nodes. Intuitively, these are all the distinct positions under which j can appear
as an attribute of a leaf in the tree T . Now, during system setup, we will publish
a unique public parameter corresponding to each such appearance of j, for each
attribute j. Next, consider a user A with an attribute set γ. Imagine an access
tree T ′ that has the same “structure” as T , except that each node x ∈ ΨT ′ has
cardinality |γ| instead of numx (while the threshold is still kx). Additionally,
each attribute j ∈ γ is attached to a distinct leaf child of each node x ∈ ΨT ′ . A
will be assigned a private key that is computed for such an access tree T ′ as in
the KP-ABE construction of Goyal et al [2]. Now, suppose that an encrypter E
has chosen an assignment of attributes to the leaf nodes in T to define it com-
pletely. Let f(j, x) be a function that outputs 1 if an attribute j is associated
with a leaf child of x and 0 otherwise. Then, E will compute (using the public
parameters published during system setup) and release a ciphertext component
Ej,x corresponding to an attribute j attached to a leaf child of x ∈ ΨT (i.e.,
iff f(j, x) = 1). A receiver who possesses an authorized set of attributes for
the above tree can choose from his private key - the components Dj,x, such that
f(j, x) = 1; and use them with corresponding Ej,x during the decryption process.

Varying the Thresholds. The above system, although dynamic, may be very
limited in its expressibility for some applications. In order to make it more
expressible, we can further extend the above system as follows. At the time of
encryption, an encrypter is now given the flexibility of choosing the threshold
value between 1 and some maximum fixed value, (say) num for each node x in
the access tree.

As a first step, we will construct T as a complete num-ary tree of depth d,
where each non-leaf node is a “num-out-of-num” threshold gate. As earlier, the
leaf nodes in the tree are empty. Next, we introduce a (num − 1)-sized set of
special attributes called dummy attributes [1] that are different from the usual

2 For simplicity of exposition, we provision that an encrypter cannot assign the same
attribute j to two child nodes z1, z2 of a given x. We note that this restriction can be
removed by some simple modifications. Details will be given in the full version [11].



attributes (which we will henceforth refer to as real attributes3). Now, attach
(num − 1) leaf nodes to each x ∈ ΦT , and assign a dummy attribute to each
such newly-added leaf node (henceforth referred to as dummy nodes).

Note that a dummy attribute j may have atmost |ΦT | parent nodes. Intu-
itively, these are all the distinct positions where j can appear as an attribute of a
dummy leaf in T . Therefore, during the system setup, for each dummy attribute
j, we will publish a unique public parameter corresponding to each appearance
of j (in addition to the public parameters corresponding to the real attributes
as in the previous description). Next, consider a user A with an attribute set γ.
Imagine an access tree T ′ that is similar to T , except that each node x ∈ ΨT ′ has
|γ| leaf child (dummy nodes not inclusive) instead of num (while the threshold
is still num). Additionally, each attribute j ∈ γ is attached to a distinct leaf
child of each node x ∈ ΨT ′ . A will be assigned a private key that is computed
for such an access tree T ′ as in the KP-ABE construction of Goyal et al [2]
(the difference from the previous description for fixed trees is that here A will
additionally receive key-components corresponding to dummy attributes). Now,
at the time of encryption, an encrypter E will first choose a threshold value
kx ≤ num for each x ∈ ΦT . Next, E will choose an assignment of real attributes
to the leaf nodes in T , and an arbitrary (num− kx)-sized subset ωx of dummy
child nodes of each x ∈ ΦT . Finally, E will release the ciphertext components as
in the previous description. E will additionally release a ciphertext component
corresponding to each dummy node in ωx, for each x ∈ ΦT . Now, consider a
receiver with an attribute set γ. For any x ∈ ΦT , if kx children of x can be
satisfied with γ, then the receiver can use the key-components (from his private
key) corresponding to the dummy attributes in order to satisfy each dummy leaf
z ∈ ωx; thus satisfying the num-out-of-num threshold gate x.

Varying Tree Depth and Node Cardinality. Finally, we note that the
above system can be further extended to allow an encrypter to choose the depth
of the access tree and also the cardinality of each node; thus further increasing
the expressibility of the system. To do this, we will assume an upper bound
on the maximum tree depth d and the maximum node cardinality num, fixed
beforehand. We will then make use of the techniques presented in the latter part
of Section 3 to achieve the desired features. Details are given in the construction.

4.2 The Construction

Let G1 be a bilinear group of prime order p, and let g be a generator of G1. In
addition, let e : G1 × G1 → G2 denote the bilinear map. A security parameter,
κ, will determine the size of the groups. We also define the Lagrange coefficient
∆i,S for i ∈ Zp and a set, S, of elements in Zp: ∆i,S(x) =

∏
j∈S,j 6=i

x−j
i−j . We will

associate each attribute with a unique element in Z∗
p. Our construction follows.

3 As the name suggests, we will identify users with a set of “real” attributes, while
the dummy attributes will be used for technical purposes, i.e., varying the threshold
of the nodes when needed.



Setup (d, num) This algorithm takes as input two system parameters, namely,
(a) the maximum tree depth d, and (b) the maximum node cardinality num.
The algorithm proceeds as follows. Define the universe of real attributes U =
{1, . . . , n}, and a (num − 1)-sized universe of dummy attributes4 U∗ = {n +
1, . . . , n+num−1}. Next, define a (d, num)-universal access tree T as explained
in the section 3. In the sequel, d, num,U ,U∗, T will all be assumed as implicit
inputs to all the procedures.

Now, for each real attribute j ∈ U , choose a set of |ΨT | numbers {tj,x}x∈ΨT
uniformly at random from Zp. Further, for each dummy attribute j ∈ U∗, choose
a set of |ΦT | numbers {t∗j,x}x∈ΦT uniformly at random from Zp. Finally, choose
y uniformly at random in Zp. The public parameters PK are:

Y = e(g, g)y, {Tj,x = gtj,x}j∈U,x∈ΨT , {T ∗
j,x = gt∗j,x}j∈U∗,x∈ΦT

The master key MK is:

y, {tj,x}j∈U,x∈ΨT , {t∗j,x}j∈U∗,x∈ΦT

Key Generation (γ, MK) Consider a user A with an attribute set γ. The
key generation algorithm outputs a private key D that enables A to decrypt a
message encrypted under a (d, num)-bounded access tree T ′ iff T ′(γ) = 1.

The algorithm proceeds as follows. For each user, choose a random polyno-
mial qx for each non-leaf node x in the universal access tree T . These polynomials
are chosen in the following way in a top-down manner, starting from the root
node r. For each x, set the degree cx of the polynomial qx to be one less than the
threshold value, i.e., cx = num− 1. Now, for the root node r, set qr(0) = y and
choose cr other points of the polynomial qr randomly to define it completely.
For any other non-leaf node x, set qx(0) = qparent(x)(index(x)) and choose cx

other points randomly to completely define qx. Once the polynomials have been
decided, give the following secret values to the user:

{Dj,x = g
qx(j)
tj,x }j∈γ,x∈ΨT , {D∗

j,x = g
qx(j)
t∗
j,x }j∈U∗,x∈ΦT

The set of above secret values is the decryption key D.

Encryption (M,PK, T ′) To encrypt a message M ∈ G2, the encrypter E first
chooses a (d, num)-bounded access tree T ′. E then chooses an assignment of real
attributes to the leaf nodes in T ′.

Now, to be able to encrypt the message M with the access tree T ′, the
encrypter first converts it to the normal form (if required). Next, E defines a map
between the nodes in T ′ and the universal access tree T as explained in section 3.
Finally, for each non-leaf node x in T ′, E chooses an arbitrary (num− kx)-sized
set ωx of dummy child nodes of map(x) in T .

Let f(j, x) be a boolean function such that f(j, x) = 1 if a real attribute
j ∈ U is associated with a leaf child of node x ∈ ΨT ′ and 0 otherwise. Now,
choose a random value s ∈ Zp and publish the ciphertext E as:

〈T ′, E′ = M ·Y s, {Ej,x = T s
j,map(x)}j∈U,x∈ΨT ′ :f(j,x)=1, {E∗

j,x = T ∗s
j,map(x)}j=att(z):z∈ωx,x∈ΦT ′ 〉

4 Recall the distinction between real attributes and dummy attributes that was intro-
duced in the Overview section.



Decryption (E,D) We specify our decryption procedure as a recursive al-
gorithm. For ease of exposition, we present the simplest form of the decryption
algorithm here. The performance of the decryption procedure can potentially be
improved by using the techniques explained in [2].

We define a recursive algorithm DecryptNode(E,D, x) that takes as input the
ciphertext E, the private key D, and a node x in T ′. It outputs a group element
of G2 or ⊥. First, we consider the case when x is a leaf node. Let j = att(x) and
w be the parent of x. Then, we have:

DecryptNode(E, D, x) =

e(Dj,map(w), Ej,w) = e(g

qmap(w)(j)

tj,map(w) , gs·tj,map(w)) if j ∈ γ

⊥ otherwise

which reduces to e(g, g)s·qmap(w)(j) when j ∈ γ. We now consider the recursive
case when x is a non-leaf node in T ′. The algorithm proceeds as follows: For
all nodes z that are children of x, it calls DecryptNode(E,D, z) and stores the
output as Fz. Additionally, for each dummy node z ∈ ωx (where ωx is a select set
of dummy nodes of map(x) in T chosen by the encrypter), it invokes a function
DecryptDummy(E,D, z) that is defined below, and stores the output as Fz. Let
j be the dummy attribute associated with z. Then, we have:

DecryptDummy(E, D, z) = e(D∗
j,map(x), E

∗
j,x) = e(g

qmap(x)(j)

t∗
j,map(x) , g

s·t∗j,map(x)),

which reduces to e(g, g)s·qmap(x)(j). Let Ωx be an arbitrary kx-sized set of child
nodes z such that Fz 6= ⊥. Further, let Sx be the union of the sets Ωx and ωx.
Thus we have that |Sx| = num. Let ĝ = e(g, g). If no kx-sized set Ωx exists,
then the node x was not satisfied and the function returns ⊥. Otherwise, we
compute:

Fx =
∏

z∈Sx

F
∆i,S′x

(0)

z , where
i=att(z) if z is a leaf node
i=index(map(z)) otherwise

S′
x={i:z∈Sx}

=
∏

z∈Ωx

F
∆i,S′x

(0)

z

∏
z∈ωx

F
∆i,S′x

(0)

z

=

{ ∏
z∈Ωx

(ĝs·qmap(x)(i))
∆i,S′x

(0) ∏
z∈ωx

(ĝs·qmap(x)(i))
∆i,S′x

(0)
if x ∈ ΨT ′∏

z∈Ωx
(ĝs·qmap(z)(0))

∆i,S′x
(0) ∏

z∈ωx
(ĝts·qmap(x)(i))

∆i,S′x
(0)

else

=

{ ∏
z∈Sx

ĝ
s·qmap(x)(i)·∆i,S′x

(0)
if x ∈ ΨT ′∏

z∈Ωx
(ĝs·qmap(parent(z))(index(map(z))))

∆i,S′x
(0) ∏

z∈ωx
(ĝs·qmap(x)(i))

∆i,S′x
(0)

else

=
∏

z∈Sx

ĝ
s·qmap(x)(i)·∆i,S′x

(0)

= ĝs·qmap(x)(0) = e(g, g)s·qmap(x)(0) (using polynomial interpolation)

and return the result.
Now that we have defined DecryptNode, the decryption algorithm simply

invokes it on the root r′ of T ′. We observe that DecryptNode(E,D, r′) = e(g, g)sy

iff T ′(γ) = 1 (note that Fr′ = e(g, g)s·qmap(r′)(0) = e(g, g)s·qr(0) = e(g, g)sy, where
r is the root of the universal tree T ). Since E′ = M · e(g, g)sy, the decryption
algorithm simply divides out e(g, g)sy and recovers M .



Theorem 1 If an adversary can break our scheme in the Selective-Tree model,
then a simulator can be constructed to play the Decisional BDH game with a
non-negligible advantage.

Proof: See full version [11].

5 Non-Monotonic Access Trees

One limitation of our original construction is that it does not support negative
constraints in a ciphertext’s access formula. With some minor modifications to
our small universe construction, we can allow an encrypter to use non-monotonic
ciphertext policies. Below we highlight the necessary modifications in the small
universe case.

We introduce explicit attributes that indicate the negative of attributes in
the system. A user will be assigned a negative attribute for each attribute not
present in his attribute set. In this manner, each user will have |U| number of
attributes. It is known that by applying DeMorgan’s law, we can transform a
non-monotonic access tree T ′′ into T ′ so that T ′ represents the same access
scheme as T ′′, but has NOTs only at the leaves, where the attributes are. Fur-
ther, we can replace an attribute j with its corresponding negative attribute j̄ if
the above transformation results in a NOT gate at the leaf to which j is associ-
ated. Now consider a (d, num)-bounded non-monotonic access tree T ′′ chosen by
an encrypter. Using the above mechanism, the encrypter first transforms it to T ′

such that the interior gates of T ′ consist only of positive threshold gates, while
both positive and negative attributes may be associated with the leaf nodes.
Then, the encryption and decryption procedures follow as in the original con-
struction.

Supporting any Access Formula of Bounded Polynomial Size. It is
known that any access formula can be represented by a non-monotonic NC1

circuit [12]. It is intuitive to see that any circuit of logarithmic depth can be
converted to a tree with logarithmic depth. To this end, we note that our modified
construction for non-monotonic access trees can support any access formula of
bounded polynomial size.

6 Discussion and Extensions

We discuss various extensions to our scheme.

Large Universe Case. In our previous construction, the size of public pa-
rameters corresponding to the real attributes grows linearly with the size of the
universe of real attributes. Combining the tricks presented in section 4 with
those in [2], we construct another scheme that allows us to use arbitrary strings
as attributes in the system, yet the public parameters corresponding to the real
attributes grow only linearly in a parameter n which we fix as the maximum



number of leaf child nodes of a node in an access tree we can encrypt under.
Details will be given in the full version [11].

Non-Monotonic Access Policies in the Large Universe Case. We note
that the solution for supporting non-monotonic access policies in the small uni-
verse construction is inapplicable in the large universe case. This is because the
attributes in the system may not be fixed at the time of key generation. However,
we can leverage the techniques from [13] in order to support non-monotonic ac-
cess policies in the large universe case. Details will be give in the full version [11].

Delegation of Private Keys. Similar to the system of Goyal et al. [2], our con-
structions come with the added capability of delegation of private keys. Details
will be given in the full version [11].

References

1. Sahai, A., Waters, B.: Fuzzy Identity Based Encryption. In: Advances in Cryptol-
ogy – Eurocrypt. Volume 3494 of LNCS., Springer (2005) 457–473

2. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute Based Encryption for Fine-
Grained Access Conrol of Encrypted Data. In: ACM conference on Computer and
Communications Security (ACM CCS). (2006)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, IEEE Computer Society (2007)
321–334

4. Cheung, L., Newport, C.: Provably Secure Ciphertext Policy ABE. In: ACM
conference on Computer and Communications Security (ACM CCS). (2007)

5. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Advances in Cryptology – Eurocrypt. Volume 2656 of LNCS., Springer (2003)

6. Canetti, R., Halevi, S., Katz, J.: Chosen Ciphertext Security from Identity Based
Encryption. In: Advances in Cryptology – Eurocrypt. Volume 3027 of LNCS.,
Springer (2004) 207–222

7. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. In: Advances in Cryptology – Eurocrypt. Volume 3027
of LNCS., Springer (2004) 223–238

8. Shamir, A.: Identity Based Cryptosystems and Signature Schemes. In: Advances
in Cryptology – CRYPTO. Volume 196 of LNCS., Springer (1984) 37–53

9. Boneh, D., Franklin, M.: Identity Based Encryption from the Weil Pairing. In:
Advances in Cryptology – CRYPTO. Volume 2139 of LNCS., Springer (2001) 213–
229

10. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA Int. Conf. (2001) 360–363

11. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute
Based Encryption Avaialble at: http://eprint.iacr.org/2008/.

12. Brent, R.P.: The parallel evaluation of general arithmetic expressions. Journal of
ACM 21 (1974) 201–206

13. Ostrovsky, R., Sahai, A., Waters, B.: Attribute Based Encryption with Non-
Monotonic Access Structures. In: ACM conference on Computer and Commu-
nications Security (ACM CCS). (2007)


