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BOUNDED COHOMOLOGY OF CERTAIN GROUPS

OF HOMEOMORPHISMS

shigenori matsumoto and SHIGEYUKI morita

Abstract. We consider the condition when bounded cohomology injects into

ordinary cohomology and prove the vanishing of bounded cohomology of the group

of all compactly supported homeomorphisms of R".

Introduction. In this note we consider relations among bounded cohomology,

ordinary real cohomology and Z1 homology of spaces or groups. In particular we

present a necessary and sufficient condition under which bounded cohomology

injects into ordinary cohomology and by using it prove the vanishing of bounded

cohomology and lx homology of Horneo^R", the group of all homeomorphisms of

R" with compact support. We also determine the second bounded cohomology of

SL2R.

1. Bounded cohomology. Let us quickly review the theory of bounded cohomology

developed by Gromov [2] (see also Brooks [1] and Mitsumatsu [5]). Let A be a

topological space and let #„(X) = [C (X), 3 } be the singular chain complex of X

with real coefficients. Define a norm on Cq(X) by ||E"=1a,a,|| = E"_i|a,|- The

differentials 3^ are then bounded linear operators.

Let V'i(X) = [C'j(X), aq} be the norm completion of <g*(X). Thus Cj(X) =

[YZ'*LxaiOi\¿ZfL1\ai\ < oo} is a Banach space. Passing to the dual Banach spaces, we

obtain a cochain complex ^ft*( A) = {C^(A"), 8q}. It is a subcomplex of the ordinary

singular cochain complex consisting of bounded cochains. The homology of ^'¿(X),

denoted by H!¿(X), is called lx homology of X and the cohomology of m*(X),

denoted by H*(X), is called bounded cohomology of A". The inclusions induce

homomorphisms77*(A) '-* H'i(X)andH£(X) -* H*(X).

Since the image of a bounded operator is not necessarily a closed subspace, it may

happen that the pseudonorms induced on H'¿(X) or 77fc*(A") are not norms.

Following Mitsumatsu [5], we define H'¿(X) (resp. H*(X)) to be the quotient of

H'¿(X) (resp. Hf(X)) by the subspace of pseudonorm zero. In other words,

Hq'(X) = Z'¿(X)/B¡}(X) and Hg(X) = Zqh(X)/Bl(X), where Z or B denotes the

spaces of (co)cycles or (co)boundaries of the corresponding complex and B denotes

the closure of B. Notice that H'qx(X) and H%(X) are Banach spaces, 'Hiere is a

-
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surjective homomorphism H¡¡(X) -* (Hql(X))', where ' denotes the dual Banach

space.

Now for a group G, starting from the real chain complex ^(G) = {Cq(G), 8q],

similar constructions as above are made, yielding lx homology H'¿(G) and bounded

cohomology H£(G) of G.

2. Uniform boundary condition. A chain complex is called normed if each chain

group is a normed linear space over R and each differential is a bounded linear

operator.

Definition 2.1. A normed chain complex <^+ is said to satisfy q uniform boundary

condition (q-\JBC, for short) if there exists a number K > 0 such that for any

boundary z G Bq, there is a chain c G Cq+X satisfying 3c = z and ||c|| < Tí ||z||.

Definition 2.2. (i) A topological space or a group is said to satisfy ¿¡r-UBC if its

ordinary chain complex satisfies g-UBC.

(ii) It is said to satisfy g-UBC'1 if its lx chain complex satisfies ¿¡r-UBC.

Theorem 2.3. For spaces or groups, the following conditions are equivalent:

(i^-UBC'..
(ii) B'j is closed in Cj.

(iii) 77¿' = H'ql.

(iv)77«+1 = 77«+1.

(v) The surjective homomorphism H¡¡+1 -» (Hq¡+X)' is infective.

Proof, (i) is clearly equivalent to that the bijection Cq\x/Zql+X -» B'j has a

bounded inverse, that is, they are homeomorphic. Since Cql+l/Zq\x is a Banach

space, it follows that B'j is also a Banach space and hence (ii) holds. Conversely if

(ii) is satisfied, then Bqx is a Banach space and the open mapping theorem (cf. [11])

applied to the above bijection implies (i).

(ii) <=> (iii) is clear.

(iii) <=> (iv) is a direct consequence of the closed range theorem.

(i) => (v). Take /e Zfx so that f(z) = 0 for all z g Zlq\x. By (i), the map

Bql <- Cq\ i/Z'q\ x -* R is bounded and thus by the Hahn-Banach theorem has an

extension to Cql. This shows (v).

(\)j* (iv). It suffices to show Ker(Hg+x -^ H£+x) c Ker(77^+1 - (Hlj+X)'). Let

/G Bt+\ Thenf=iim^xf, (/ g B¡+x). Thus for any z g Z'q\x, we have/(z) =

lim,._ xfi(z) = 0. This completes the proof.    Q.E.D.

Corollary 2.4. (i) 7/77^ = 77¿' andÏÏ'q\x = 0, then 77«+1 = 0.

(ii) IfHqh + x = 77«+1 and HI = 0, then H'j = 0.

(iii) The reduced bounded cohomology H* vanishes if and only if the reduced lx

homology Hl¿ also vanishes.

In Brooks [1] and Gromov [2], it is shown that the reduced bounded cohomology

vanishes for spaces with amenable wx. This, combined with the above corollary, gives

Corollary 2.5. Iftrx(X) is amenable, then H'¿(X) = 0.
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Remark 2.6. It seems plausible that the lx homology of a space depends only on

its fundamental group. But we do not have a proof.

Corollary 2.7. For any space or a group, we have
(i) 77'> = Hx = 0.
v /      1 b

(ii) Hh' 2 = H%. Equivalently, 77fc2 is a Banach space.

Proof. First we deal with a group G. In [5], Mitsumatsu constructed for g g g,

S(g)= £¿(jr*, g*) eC¿(G).
k = l

Clearly, \\S(g)\\ = 1 and 3S(g) = g, showing that H£(G) = 0 and that G satisfies

1-UBC'1. From this follows the corollary. Notice that 0-UBC'1 is always satisfied.

For spaces, according to Gromov [2], Hj;(X) is isometric to H¿(irx(X)). This

shows (ii). Also it is known that H^(X) = 0 [2]. Thus (i) follows from Corollary 2.4.

Q.E.D.
We have shown that 1-UBC'1 is always true. It would be interesting to determine

whether q-UBC1' always holds or not.

Next, we investigate <¡r-UBC for spaces or groups.

Theorem 2.8. The following conditions are equivalent:

(i) fl-UBC.

(ii) tf-UBC'' and Zq+X is dense in Z'q\x.

(iii) The homomorphism Hß+X -* Hq+1 is infective.

Proof, (i) => (ii). We first prove g-UBC'1. Clearly Bq is dense in B'j. Further a

standard argument shows that for any z g Bql, there exist z, g Bq such that

LfLxZj = z and E^iRX/fl < (1 + e)||z||. Now by q-UBC, one can choose c, g Cq+1

such that 3c, = z,. and ||c,|| < 7i||z,||. Let c = E°t,c, g C'q\x. Then de = z and

||c|| < (1 + e)K\\z\\.

Next we prove that Z +1 is dense in Zq\x. Take z g Z'l+X and let z = lim,^^ c,

(c¡ g Cq+X). Choose an element d, g C +1 such that 3d, = -3c, and ||d,|| < 7i||3c,||.

Then we have

||3c,|| = ||3(c,-z)||<||3||||c,-z||=(? + 2)||C,-z||.

Hence ||d,|| < (q + 2)K\\c¡ - z||. Now c, + d, G Zq+X and c, + d, -* z.

(ii) => (i). This is left to the reader.

(ii) =» (iii). Take / g Zqh + X such that [/] = 0 in Hq+X, that is, f(z) = 0 for any

z g Z +1. Then f(z) = 0 for any z g Z'q\x. Thus / induces a bounded map /:

cq+i/z'q\i -* R- Now 9-UBC'1 implies that the bijection Cq\x/Z'q\x -» P^1 has a

bounded inverse. Compose it with / and extend to the whole of Clqx by the

Hahn-Banach theorem. This shows (iii).

(iii) => (ii). Notice that the map 77^+1 -* Hq+X is a composite of maps 77^+1 ->

ffq+i _* Hq+X. Injectivity of the first map implies g-UBC'1 by Theorem 2.3. Next,

clearly (iii) implies that the image of the map Hq+X -> H'i+X is dense. From this the

denseness of Zq+X follows easily.    Q.E.D.
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Definition 2.9. A group G is said to be uniformly perfect if for some N > 0, any

g G G can be represented as a product of at most TV commutators.

Lemma 2.10. If a group G is uniformly perfect, then it satisfies 1-UBC.

Proof. Notice that for/, g, h g G,

3((/d fi) + UJi, h) + ■ ■ ■ +(/i/2 • ■ ■ /*-!, /*))

= (/i)+(/2)+ •••+(/J-(/i/2 ■••/*)

and

9(([g,«], h) +(ghg'x, g) -(g, «)) = ([g, «])

where ( ) denotes a chain and [ ] a commutator. This shows for all / g G there exists

c g C2(G) such that 3c = (/) and ||c|| < 4N - 1. That is, G satisfies 1-UBC.

Corollary 2.11. If G is uniformly perfect, then the map H^(G) -> H2(G) is

injective.

As applications, we shall compute 77fc2 for some groups.

Example 2.12. The group of all orientation preserving homeomorphisms of Sx,

denoted by Horneo +(5x), is uniformly perfect. In fact any element is a product of

two homeomorphisms with compact support, which are commutators by Mather [4].

Thus 77A2 injects into 772. Now it is a consequence of Thurston's general result [8]

that 77*(Homeo+(S,1);Z) = Z[x], where x G H2 is the Euler class. Now 77fc* is

mapped onto real cohomology, because x can be represented by a bounded cocycle

(see Morita [6]). Hence we have 77fc2(Horneo +(Sx)) = R.

Example 2.13. Sah and Wagoner [7] have calculated second homology of certain

Lie groups (considered to be discrete groups). Combined with our result, this gives

information about 77A2. For example, SL2R is uniformly perfect (see Wood [10]) and

772(SL2R;Z) is isomorphic to Z ffi A, where A is a certain Q-vector space. Z is

detected by the " volume class" G 772(SL2 R), which is a bounded cohomology class.

Any element of A is supported on a torus (see [7] and Tsuboi [9]). From these, we

can conclude 77A2(SL2R) = 77fc2(PSL2R) = R.

3. Bounded cohomology of Horneo^ (R"). In this section we prove the vanishing of

bounded cohomology and lx homology of Horneo^ (R"), the group of all homeomor-

phisms of R" with compact support.

Theorem 3.1. For q > 0,

Hq(HomeoK(R")) = 77^'(Homeo^(R")) = 0.

Our argument is a refinement of Mather's proof of the acyclicity of Homeo^R").

In the sequel we follow Mather [4]. We write G = Homeo^R") and G' = [g e G:

supp g c Int iD"} (i' = 1,2,3), where D" is the unit ball. Inclusions are denoted by

t1: Gx -> G2, t2: G2 -> G3, Ï = t\x and t: G1 -> G. Let Cq and Cq be the chain

complex of G and G'. Zq and Z'q (resp. Bq and B'q) denote the cycle group (resp.
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boundary group) of the corresponding complexes. In fact, Z = Bq and Z'q = B'q by

the acyclicity of the group.

We shall prove inductively the existence of bounded linear operators Sq: Bx —> C +x

such that o +XS = t*. Let us show first that this suffices for our purpose. We have

only to show q-UBC for G, because the acyclicity of G, together with Theorem 2.8

and Corollary 2.4 yields Theorem 3.1. Take z g Bq. Choose <p g G such that 9 is the

identity on suppz and maps suppS^z) into Int D". Define 1^: G -» G by Iv(g) =

<pg<p-x. Then we have I^S^z)) g Cxq+X, \\Iv*(Sq(z))\\ = \\Sq(z)\\ < ||S,|| ||z|| and

d(Iv»(Sq(z))) = Iv,(dS (z)) = Iv*(z) = z. This proves q-UBC for G1, hence for G.

Sx is constructed in an elementary fashion as follows. Choose A: G G such that

k(3D") n 3D" = 0 and that k*(3D") tends to one point as / -> 00. Define \¡,x:

G3 -» G by ^j(g) = LfLik^k-' and let ^0(g) = k~\yx(g)k. Then for any g g G3,

supp g n suppt//,(g) = 0 and ^0(g) = g^iíg)- The restrictions of \p¡ to G1 are

denoted by the same letter. Now we define a bounded linear map Sx: B\ -» C2 by

Si(g) - (*, g) -(^i(g), *} + (**, <h(g)).
Direct computation shows d2Sx = t*.

Next we assume there exist Sh Bj -> C,2+1 and Sj:: Bj -» C.3+1 for 0 <7 < g — 1

and construct S^: Bj -» C-+1. Let a: Cm(G XG)-*C*®C* (resp. /J: C* ® C* ->

C*(G X G)) be the Alexander-Whitney map (resp. Eilenberg-Mac Lane map) (see

Mac Lane [3]). Those maps for G' are also denoted by the same letters. They are

functorial and if we give a norm to C* ® C* in a canonical manner, they are

bounded linear.

For each z g Bx, define D(z) = aA + z - (z ® 1 + 1 «8 z), where A: G1 -*

Gx X G1 is the diagonal map. Then D(z) g Zq(Cx ® C1) = Zq(Cx 9 Cx) n

Y.qZJCx ® Cj_. 7) is bounded linear. Now let Z1 and P1 be the chain complexes (with

trivial differential) defined by (Zx)q = Zx and (Bx)q = Bx_x. Then we have the

following commutative diagram, whose horizontal sequences are all exact.

0 -» (Cx®Zx)q+x -* (Cx®Cx)q+l ^ (Cx®Bx)q+x -* 0

13                                 13 13

0 -» (Cx®Zx)q ^ (C^C1), ^ (C1®!?),, ~» 0

13                                 id id

0      -»      (C^Z1),-! ->      (C1®^1),,-! ^      (C1®^1),,-!      -*      0

Analogous diagrams are considered for G2 and G3. They are combined by t1* and

ii. Now because 3(7)(z)) = 0, (1 ® d)D(z) is contained in Z^C1 ® P1). Notice

that Z^(C ® P1) = (Z1 ® P1)^. Hence by the induction assumption we can consider

(Sx ® Sx)(l ® 3)7)(z) = (Sx ® 513)7)(z) g (C2 ® C2)i+1.

Let « = (4 ® i1*)^) - d(Sx ® S13)D(z) g (C2 ® C2)q. Direct computation

shows that (1 ® 3)« = 0. Thus we have u g (C2 ® Z2)'?. Also we have 3« = 0. That

is,

MgZ'(C2® z2) = (z2® z2)'q.
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Therefore by the induction assumption, we can consider

(52®((2 -S23))MG(C3® C3)q+X.

Again direct computation shows that

3(52®(t2 - S2d))u = (il ® i%)u.

Hence we have (i* ® l*)D(z) = d(ED(z)), where

E = (¿iS1 ® tlSxd) +(S2 ®(ti - S2d))(ix* - d(sx ® sxd)).

E: Zq(Cx ® C1) -» (C3 ® C3)q+X is a bounded linear map. We can now write

(i* ® t*)aA*z = (t* ® i*)z ® 1 + d(ED(z)) +(t* ® („)(l ® z).

Let tj: G3 ® G3 -» G be the homomorphism given by r\(g, «) = g\px(h). Applying

tj*/?, we get

Tj*(i Xt)»/3aA*z = ¿»z + tj*)83(£'7)(z)) + Xi*z.

As is well known, ßa is chain homotopic to the identity. Namely there is a linear

map O: C*(GX X G1) -» C^ + ̂ G1 X G1) such that /?a - id = 3$ + 03. It is easy

to show that we can choose <É> as a bounded linear map. Now ßaA + z = A„z +

3<&(A*z). Because tjA = \p0, we have

t//0,z + tj»(i Xi)*3$A*z = í + z + r\ießdED(z) = ^i»z.

Two homomorphisms \p0 and «/»j are conjugate and thus i^0« is chain homotopic to

\px,. Namely there is a linear map 0: C* -» C* + 1 such that \px, — $0, = 30 + 03.

Here we can also choose 0 to be bounded linear. Finally we obtain t* = dq+xSq,

where

Sq = Tj„(t Xí)*í>A» - 0 - rußED.

This completes the proof.
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