
Bounded Combinatory Logic

Boris Düdder1, Moritz Martens1, Jakob Rehof1, and

Paweł Urzyczyn∗2

1 Department of Computer Science

Technical University of Dortmund

Dortmund, Germany

{boris.duedder,moritz.martens,jakob.rehof}@cs.tu-dortmund.de

2 Institute of Informatics,

University of Warsaw

Warszawa, Poland

urzy@mimuw.edu.pl

Abstract

In combinatory logic one usually assumes a fixed set of basic combinators (axiom schemes),

usually K and S. In this setting the set of provable formulas (inhabited types) is Pspace-

complete in simple types and undecidable in intersection types. When arbitrary sets of axiom

schemes are considered, the inhabitation problem is undecidable even in simple types (this is

known as Linial-Post theorem).

Bounded combinatory logic (bclk) arises from combinatory logic by imposing the bound k

on the depth of types (formulae) which may be substituted for type variables in axiom schemes.

We consider the inhabitation (provability) problem for bclk: Given an arbitrary set of typed

combinators and a type τ , is there a combinatory term of type τ in k-bounded combinatory logic?

Our main result is that the problem is (k + 2)-Exptime complete for bclk with intersection

types, for every fixed k (and hence non-elementary when k is a parameter). We also show that

the problem is Exptime-complete for simple types, for all k.

Theoretically, our results give new insight into the expressive power of intersection types.

From an application perspective, our results are useful as a foundation for composition synthesis

based on combinatory logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.2 Automatic Programming

Keywords and phrases Intersection types, Inhabitation, Composition synthesis

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In standard combinatory logic (see, e.g., [5]), one usually considers a fixed set of typed

combinators (a combinatory basis), for example S : (α → (β → γ)) → (α → β) → (α → γ)

and K : α → β → α. Under the propositions-as-types correspondence, combinator types

correspond to axiom schemes of propositional logic in a Hilbert-style proof system, with

modus ponens and a rule of axiom scheme instantiation as the principles of deduction. The

schematic interpretation of axioms corresponds to implicit polymorphism of combinator

types, where type variables (α, β, γ, . . .) may be instantiated with arbitrary types. Thus, the

combinator K has types τ → σ → τ for all τ and σ.

∗ Partly supported by MNiSW grant N N206 355836.

licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.

Editors: Billy Editor, Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Bounded Combinatory Logic

In this paper we consider bounded combinatory logic (bclk), which arises from combinatory

logic by imposing the bound k on the depth of types (formulae) which may be substituted for

type variables in axiom schemes. For example, in bclk the type scheme of the combinator K

can only be instantiated to τ → σ → τ for τ and σ with depth ≤ k. By imposing the bound,

inhabitation becomes decidable in cases where the unbounded problem is undecidable.

Our interest in bounded combinatory logic is motivated both by theoretical concerns and

from the standpoint of applications. Theoretically, we are interested in the complexity and

expressive power of the system, depending on the bound. From an application perspective,

we consider bounded combinatory logic as a foundation for type-based synthesis, following [8].

In the present paper we generalize from the monomorphic case of [8] to arbitrary bounded

levels of polymorphism.

Bounded combinatory logic. In contrast to standard combinatory logic (see, e.g., [5]), we

bound the depth of types used to instantiate types of combinators, but rather than considering

a fixed base of combinators (for example, the base S, K) as is usual in combinatory logic,

we consider the inhabitation problem relativized to an arbitrary set Γ of typed combinators,

given as part of the input:

Given Γ and τ , is there an applicative term e such that Γ ⊢k e : τ?

The relativized problem is generally much harder than the fixed-base problem. For example,

inhabitation in standard (unbounded) simple-typed SK-calculus is Pspace-complete [11],

whereas the unbounded relativized problem is undecidable, even in simple types. We recall

that the latter type of problem has been considered since 1948 when Linial and Post [6]

initiated a line of work studying decision problems for arbitrary propositional axiom systems

(often referred to as partial propositional calculi, abbreviated PPC) answering a question

posed by Tarski in 1946. They proved (among other things) that there exists a PPC with

an unsolvable decision problem (Linial-Post theorem). Since then, many results have been

obtained for various PPC, e.g., Gladstone [3] and Singletary [9] showed that every r.e. degree

can be represented by a PPC. In 1974, Singletary [10] showed that the implicational fragment

of PPC can represent every r.e. many-one degree. The problem considered there is identical

to the unbounded relativized inhabitation problem for simple types.

Our main result is that the relativized inhabitation problems for bclk with intersection

types form an infinite hierarchy, being (k + 2)-Exptime-complete for each fixed k. A non-

elementary lower bound follows for the problem where k is taken as an input parameter. Our

lower bound techniques, which may be of independent interest, expose new aspects of the

expressive power of intersection types. We generically simulate alternating Turing machines

operating in expk+1(n)-bounded space, where expm denotes the iterated exponential function.

For each k, we devise a numeral representation with intersection types in bclk for numbers

between 0 and expk+1(n) − 1, and we use this system to achieve a succinct representation

(exploiting k-bounded polymorphism) of the Turing tape. In contrast, we show that the

k-bounded inhabitation problem is Exptime-complete for simple types, for all k.

A foundation for composition synthesis With this paper we continue the work begun in [8] on

investigating limited systems of combinatory logic as a foundation for type-based synthesis

(automatic synthesis of function compositions from a repository of typed functions). In [8], we

proved the monomorphic inhabitation problem Exptime-complete and devised inhabitation

algorithms that we have since implemented and applied to synthesis. In our applications,

the set Γ models a repository, the goal type τ is considered as a specification of a desired

composition, and the inhabitation algorithm automatically constructs solutions (if any) to the

synthesis problem. The relativized inhabitation problem is the natural basis for applications

in synthesis, where Γ models a changing repository of functions. As argued in [8], intersection

Bounded Combinatory Logic 3

types play a key role in these applications, since they can be used to specify deep semantic

properties.

A limited degree of polymorphism has been found to be very useful in applications, since

it allows for succinct specifications. In particular, the lowest level (bcl0) of the hierarchy

studied here turns out to be already of major importance. At this level, we are able to

instantiate type variables with atoms or intersections of such. Since type structure can be

atomized by introducing type names (atoms) for structured types through definitions, many

interesting problems can be specified and solved in bcl0.

As a simple example of succinctness, consider that we can represent any finite function

f : A → B as an intersection type τf =
⋂

a∈A a → f(a), where elements of A and B are

type constants. Suppose we have combinators Fi : τfi
in Γ, and we want to synthesize

compositions of such functions represented as types (in some of our applications they could,

for example, be refinement types [2]). We might want to introduce composition combinators

of arbitary arity, say g : (A → A)n → (A → A). In the monomorphic system, a function

table for g would be exponentially large in n. In bcl0, we can represent g with the single

declaration G : (α0 → α1) → (α1 → α2) → · · · → (αn−1 → αn) → (α0 → αn) in Γ. Through

level-0 polymorphism, the action of g is thereby fully specified.

Interestingly, by the present results, the complexity of bcl0 is 2-Exptime complete and

hence comparable in complexity to other known synthesis frameworks (such as, e.g., variants

of temporal logic and of propositional dynamic logic). It is also interesting to observe that

the lower bound techniques of the present paper appear to reveal a methodology by which

inhabitation of intersection types can be used to express a form of logic programming at the

type level, which appears to be useful in synthesis. Space limitations preclude us from going

into further details here, and we report on our experience in synthesis in a separate paper.

2 Preliminaries

Types: Type expressions, ranged over by τ, σ etc., are defined by

τ ::= a | τ → τ | τ ∩ τ

where a, b, c, . . . range over atoms comprising of type constants, drawn from a finite set A

including the constant ω, and type variables, drawn from a disjoint denumerable set V ranged

over by α, β etc. We let T denote the set of all types.

As usual, types are taken modulo commutativity (τ ∩σ = σ∩τ), associativity ((τ ∩σ)∩ρ =

τ ∩ (σ ∩ ρ)), and idempotency (τ ∩ τ = τ). As a matter of notational convention, function

types associate to the right, and ∩ binds stronger than →. A type environment Γ is a finite

set of type assumptions of the form x : τ . We let Dm(Γ) and Rn(Γ) denote the domain

and range of Γ. Let Var(τ), Cnst(τ) and At(τ) denote, respectively, the set of variables,

the set of constants and the set of atoms occurring in τ , and we extend the definitions to

environments, written Var(Γ), Cnst(Γ) and At(Γ) in the standard way.

A type τ ∩ σ is said to have τ and σ as components. For an intersection of several

components we sometimes write
⋂n

i=1 τi or
⋂

i∈I τi or
⋂

{τi | i ∈ I}, where the empty

intersection is identified with ω.

Subtyping: Subtyping ≤ is the least preorder (reflexive and transitive relation) on T, with

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ, σ ≤ σ ∩ σ;

(σ → τ) ∩ (σ → ρ) ≤ σ → τ ∩ ρ;

If σ ≤ σ′ and τ ≤ τ ′ then σ ∩ τ ≤ σ′ ∩ τ ′ and σ′ → τ ≤ σ → τ ′.

4 Bounded Combinatory Logic

We identify σ and τ when σ ≤ τ and τ ≤ σ. The following distributivity properties follow

from the axioms of subtyping:

(σ → τ) ∩ (σ → ρ) = σ → (τ ∩ ρ) (σ → τ) ∩ (σ′ → τ ′) ≤ (σ ∩ σ′) → (τ ∩ τ ′)

Paths: If τ = τ1 → · · · → τm → σ, then we write σ = tgtm(τ) and τi = argi(τ), for i ≤ m.

If argi(τ) = ρ for all i we also write τ = ρm → σ. A type of the form τ1 → · · · → τm → a,

where a 6= ω is an atom,1 is called a path of length m. A type τ is organized if it is a (possibly

empty) intersection of paths (those are called paths in τ). Note that premises in an organized

type do not have to be organized, i.e., organized is not necessarily normalized [4].

◮ Lemma 1. Every type τ is equal to an organized type τ , computable in polynomial time.

Proof. Define a = a if a is an atom and let τ ∩ σ = τ ∩ σ. If σ =
⋂

i∈I σi then take

τ → σ =
⋂

i∈I(τ → σi). ◭

Sets of paths: For an organized type σ, we let Pm(σ) denote the set of all paths in σ of

length m or more. We extend the definition to arbitrary τ by implicitly organizing τ , i.e., we

write Pm(τ) as a shorthand for Pm(τ).

Type size: The size of a type τ , denoted |τ |, is defined to be the number of nodes in the

syntax tree of τ (this is identical to the textual size of τ). The path length of a type τ is

denoted ‖τ‖ and is defined to be the maximal length of a path in τ .

Substitutions: A substitution is a function S : V → T such that S is the identity everywhere

but on a finite subset of V. For a substitution S, we define the support of S, written

Supp(S), as Supp(S) = {α ∈ V | α 6= S(α)}. We may write S : V → T when V is a finite

subset of V with Supp(S) ⊆ V . We write At(S) to denote the set {At(S(α)) | α ∈ Supp(S)}.

A substitution S is tacitly lifted to a function on types, S : T → T, by homomorphic extension.

Finally, a constant-function is a map c : A → A such that c(ω) = ω. Constant-functions are

tacitly lifted to functions c : T → T.

The following property, probably first stated in [1], is often called beta-soundness. Note

that the converse is trivially true.

◮ Lemma 2. Let aj, for j ∈ J , be atoms.

1. If
⋂

i∈I(σi → τi) ∩
⋂

j∈J aj ≤ α then α = aj, for some j ∈ J .

2. If
⋂

i∈I(σi → τi) ∩
⋂

j∈J aj ≤ σ → τ , where σ → τ 6= ω, then the set

{i ∈ I | σ ≤ σi} is nonempty and
⋂

{τi | σ ≤ σi} ≤ τ .

◮ Lemma 3. Let
⋂

i∈I τi ≤ β1 → · · · → βm → p, where τi are paths. Then there is an i ∈ I

such that τi = α1 → · · · → αm → p and βj ≤ αj, for all j ≤ m.

Proof. Induction with respect to m, using the beta soundness (Lemma 2). ◭

◮ Lemma 4. Let S be a substitution and let c be a constant-function. Then σ ≤ τ implies

S(σ) ≤ S(τ) and c(σ) ≤ c(τ).

Proof. Induction with respect to the definition of σ ≤ τ . ◭

1 Observe that τ1 → · · · → τm → ω = ω.

Bounded Combinatory Logic 5

Alternating Turing Machines

An alternating Turing machine is a tuple M = (Σ, Q, q0, qa, qr, ∆). The set of states

Q = Q∃ ⊎ Q∀ is partitioned into a set Q∃ of existential states and a set Q∀ of universal

states. There is an initial state q0 ∈ Q, an accepting state qa ∈ Q∀, and a rejecting

state qr ∈ Q∃. We take Σ = {0, 1, ␣}, where ␣ is the blank symbol (used to initialize the tape

but not written by the machine). The transition relation ∆ satisfies

∆ ⊆ Σ × Q × Σ × Q × {l, r},

where h ∈ {l, r} are the moves of the machine head (left and right). For b ∈ Σ and q ∈ Q,

we write ∆(b, q) = {(c, p, h) | (b, q, c, p, h) ∈ ∆}. We assume ∆(b, qa) = ∆(b, qr) = ∅, for all

b ∈ Σ, and ∆(b, q) 6= ∅ for q ∈ Q \ {qa, qr}. A configuration of M is a word wqw′ with q ∈ Q

and w, w′ ∈ Σ∗. The successor relation C ⇒ C′ on configurations is defined as usual [7],

according to ∆. We classify a configuration wqw′ as existential, universal, accepting etc.,

according to q. The notion of eventually accepting configuration is defined by induction:2

An accepting configuration is eventually accepting.

If C is existential and some successor of C is eventually accepting then so is C.

If C is universal and all successors of C are eventually accepting then so is C.

3 Bounded combinatory logic

◮ Definition 5. (Levels) Given a type τ we define the level of τ , written ℓ(τ), as follows.

ℓ(a) = 0, for a ∈ A ∪ V;

ℓ(τ → σ) = 1 + max{ℓ(τ), ℓ(σ)};

ℓ(
⋂n

i=1 τi) = max{ℓ(τi) | i = 1, . . . , n}.

The level of a substitution S, written ℓ(S), is defined as

ℓ(S) = max{ℓ(S(α)) | α ∈ V}.

A level-k type is a type τ with ℓ(τ) ≤ k, and a level-k substitution is a substitution S with

ℓ(S) ≤ k. For k ≥ 0, we let Tk denote the set of all level-k types. For a subset A of atomic

types, we let Tk(A) denote the set of level-k types with atoms (leaves) in the set A. ◭

Notice that the level of a type is independent from the width (number of arguments) of

intersections. Notice also that ℓ(S) is completely determined by the restriction of S to Supp(S):

if Supp(S) = ∅, then ℓ(S) = 0, and if Supp(S) 6= ∅, then ℓ(S) = max{ℓ(S(α)) | α ∈ Supp(S)}.

Finally, we have ℓ(S ◦ S′) ≤ ℓ(S) + ℓ(S′).

Type assignment: For each k ≥ 0 the system bclk(→, ∩) (k-bounded combinatory logic with

intersection types) is defined by the type assigment rules shown in Figure 1. In rule (var),

the condition ℓ(S) ≤ k is understood as a side condition to the axiom Γ, x : τ ⊢k x : S(τ).

The restriction to simple types (types without ∩) is called bclk(→) and is defined by the

rules (var), (→E) and (≤), where τ and τ ′ range over simple types, by dropping all axioms

from the subtyping relation that involve ∩, and by considering only substitutions S mapping

2 Formally we define the set of all eventually accepting configurations as the smallest set satisfying the
appropriate closure conditions.

6 Bounded Combinatory Logic

type variables to simple types. Recall from [8] finite combinatory logic with intersection types,

denoted fcl. This system can be presented as the restriction of bclk in which the (var) rule

is simplified to the axiom Γ, x : τ ⊢ x : τ .

In this paper we are addressing the following relativized inhabitation problem:

Given Γ and τ , is there an applicative term e such that Γ ⊢k e : τ?

[ℓ(S) ≤ k]

Γ, x : τ ⊢k x : S(τ)
(var)

Γ ⊢k e : τ → τ ′ Γ ⊢k e′ : τ

Γ ⊢k (e e′) : τ ′
(→E)

Γ ⊢k e : τ1 Γ ⊢k e : τ2

Γ ⊢k e : τ1 ∩ τ2
(∩I)

Γ ⊢k e : τ τ ≤ τ ′

Γ ⊢k e : τ ′
(≤)

Figure 1 Bounded combinatory logic bclk

Algorithm

In this section we formulate an algorithm to decide the relativized inhabitation problem

for bclk, and derive the (k + 2)-Exptime upper bound.

◮ Lemma 6. Let Γ ⊢k e : τ and let S be a level-m substitution. Then there exists a derivation

of Γ ⊢k+m e : S(τ) of the same depth.

Proof. Induction with respect to the derivation of Γ ⊢k e : τ . ◭

◮ Lemma 7. Let Γ ⊢k e : τ and let c be a constant-function such that c is the identity

on Cnst(Γ). Then there exists a derivation of Γ ⊢k e : c(τ) of the same depth.

Proof. Induction with respect to the derivation of Γ ⊢k e : τ . In case the derivation ends

with rule (≤), we use Lemma 4 and apply the induction hypothesis. ◭

Let Atω(Γ, τ) = At(Γ) ∪ At(τ) ∪ {ω}. The following proposition shows that, in order to

solve an inhabitation question Γ ⊢k ? : τ , one needs only consider rule (var) restricted to

substitutions of the form S : Var(Γ) → Tk(Atω(Γ, τ)).

We say that a substitution S occurs in a derivation D, whenever S is used in an application

of rule (var) in D.

◮ Proposition 8. If Γ ⊢k e : τ , then there exists a derivation D of Γ ⊢k e : τ such that

every substitution S occurring in D satisfies the conditions

1. Supp(S) ⊆ Var(Γ);

2. At(S) ⊆ Atω(Γ, τ).

Proof. By induction with respect to derivations, using Lemmas 6 and 7. ◭

The following lemma shows that inhabitation in bclk(→, ∩) is equivalent to inhabitation in

fcl modulo expansion of the type environment. Given a number k, an environment Γ and

a type τ , define for each x ∈ Dm(Γ) the set of substitutions

S(Γ,τ,k)
x = Var(Γ(x)) → Tk(Atω(Γ, τ))

and define the environment Γ(τ,k) with domain Dm(Γ) so that, for x ∈ Dm(Γ),

Γ(τ,k)(x) =
⋂

{S(Γ(x)) | S ∈ S
(Γ,τ,k)
x }

Bounded Combinatory Logic 7

◮ Lemma 9 (Expansion). One has Γ ⊢k e : τ in bclk(→, ∩) iff Γ(τ,k) ⊢ e : τ in fcl.

Proof. If Γ ⊢k e : τ by a derivation D, consider each application of rule (var) of the form

Γ′, x : σ ⊢k x : S(σ), occurring in D. By Proposition 8, we can assume that S is a member

of the set S
(Γ,τ,k)
x . Hence, one has Γ(τ,k) ⊢ x : S(σ) in fcl, by an application of rule (var),

followed by an application of rule (≤). It follows that Γ(τ,k) ⊢ e : τ holds in fcl.

For the implication in the other direction, consider that one has in bclk(→, ∩)

Γ ⊢k x :
⋂

{S(Γ(x)) | S ∈ S
(Γ,τ,k)
x }

for all x ∈ Dm(Γ), by multiple applications of rule (var), followed by rule (∩I). ◭

◮ Lemma 10 (Path Lemma for fcl [8]). The following are equivalent conditions:

1. Γ ⊢ x e1 . . . em : τ ;

2. There exists a set P of paths in Pm(Γ(x)) such that

a.
⋂

π∈P tgtm(π) ≤ τ ;

b. Γ ⊢ ei :
⋂

π∈P argi(π), for all i ≤ m.

◮ Lemma 11 (Path Lemma for bclk(→, ∩)). The following are equivalent conditions:

1. Γ ⊢k x e1 . . . em : τ ;

2. There exists a set P of paths in Pm(
⋂

{S(Γ(x)) | S ∈ S
(Γ,τ,k)
x }) such that

a.
⋂

π∈P tgtm(π) ≤ τ ;

b. Γ ⊢k ei :
⋂

π∈P argi(π), for all i ≤ m.

Proof. Immediate, by Lemma 9 and Lemma 10. ◭

The following corollary will be used later.

◮ Corollary 12. Let Γ(x) =
⋂

j∈J(τ j
1 → · · · → τ j

m → σj). If Γ ⊢ x e1 . . . em : τ then there

are substitutions Sℓ, for ℓ ∈ L, and numbers jℓ such that

1.
⋂

ℓ∈L Sℓ(σ
jℓ) ≤ τ ;

2. Γ ⊢k ei :
⋂

ℓ∈L Sℓ(τ
jℓ

i).

Let expk be the iterated exponential function, given by exp0(n) = n, expk+1(n) = 2expk(n).

The lemma below can be shown by an elementary counting argument.

◮ Lemma 13. For every k, there is a polynomial p(n) such that the number of level-k types

over n atoms is at most expk+1(p(n)), and the size of such types is at most expk(p(n)). The

number and size of simple level-k types (for a fixed k) is respectively bounded by a polynomial

and a constant.

◮ Theorem 14. Inhabitation in bclk(→, ∩) is in (k + 2)-Exptime.

Proof. The alternating Turing machine shown in Figure 2 is a decision procedure for

inhabitation in bclk(→, ∩) for each k ≥ 0, being a direct alternating implementation of

Lemma 11. In Figure 2 we use shorthand notation for instruction sequences starting from

existential states (choose . . .) and instruction sequences starting from universal states

(forall(i = 1 . . . k) Si). A command of the form choose x ∈ S branches from an existential

state to successor states in which x gets assigned distinct elements of S. A command of the

form forall(i = 1 . . . k) Si branches from a universal state to successor states from which

each instruction sequence Si is executed.

The machine operates in bounded space, because, for all Γ, τ, k, x, the set S
(Γ,τ,k)
x is

finite. More precisely, it follows from Lemma 13 that the size of S
(Γ,τ,k)
x can be bounded

8 Bounded Combinatory Logic

by expk+1(p(n)), and the size of each level-k type can be bounded by expk(p(n)), for some

polynomial p(n). It follows that the types σ′ (Figure 2, line 2) can be written down in

space bounded by expk+1(p(n)), and hence the algorithm is bounded in alternating space

expk+1(p(n)). By the identity Aspace(f(n)) = Dtime(2O(f(n))) inhabitation is therefore

in (k + 2)-Exptime. ◭

Input : Γ, τ, k

loop :

1 choose (x : σ) ∈ Γ;

2 σ′ :=
⋂

{S(σ) | S ∈ S
(Γ,τ,k)
x };

3 choose m ∈ {0, . . . , ‖σ′‖};

4 choose P ⊆ Pm(σ′);

5 if (
⋂

π∈P tgtm(π) ≤ τ) then

6 if (m = 0) then accept;

7 else

8 forall(i = 1 . . . m)

9 τ :=
⋂

π∈P argi(π);

10 goto loop;

Figure 2 Alternating Turing machine deciding inhabitation in bclk

4 Simple types, bclk(→)

The upper bound for simple types is obtained as a special case of the analysis in Section 3.

◮ Theorem 15. Inhabitation in bclk(→) is in Exptime, for all k.

Proof. The proof uses the same argument as the proof of Theorem 14. The difference is that

now we only substitute simple types. Under this restriction, the machine of Figure 2 operates

in alternating polynomial space, because all types of the form S(σ) are of linear size. ◭

◮ Theorem 16. For every k ≥ 0, the inhabitation problem for bclk(→) is Exptime-complete.

Proof. Take an alternating TM, working in polynomial space p(n). We use fresh type atoms

to represent every state and tape symbol. A configuration C = wqw′, where w = b1 . . . bm−1

and w′ = bm . . . bp(n) is encoded as a type ϕC = b1 → · · · → bm−1 → q → bm → · · · → bp(n).

We define an environment Γ so that, for all C,

C is eventually accepting if and only if Γ ⊢ ϕC . (*)

We put into Γ polymorphic patterns α1 → · · · → αm−1 → qa → αm → · · · → αp(n) for

accepting configurations, and types representing machine moves, as we now define.

For any q, b, the patterns ζbqm(~α) = α1 → · · · → αm−1 → q → b → αm+1 → · · · → αp(n)

represents all configurations where ∆(b, q) is applicable. Let ∆(b, q) = {(cj , pj , hj) | j ≤ r},

and for j ≤ r, let ηbqmj(~α) represent the j-th successor configuration. For example, if hj = R

then ηbqmj(~α) = α1 → · · · → αm−1 → cj → pj → αm+1 → · · · → αp(n) .

Bounded Combinatory Logic 9

If C = b1 . . . bm−1qbbm+1 . . . bp(n) then there exists exactly one substitution S (mapping

each αi to bi) such that S(ζbqm) = ϕC . In addition, if D1, . . . , Dr are all the successor

configurations of C then we have S(ηbqmj) = ϕDj
. Now if q is an existential state then we

include in Γ all types of the form ηbqmj → ζbqm . For a universal q, we let Γ contain just one

type, namely ηbqm1 → · · · → ηbqmr → ζbqm .

The “only if” part of (*) can now be proved by induction with respect to the definition of

acceptance. In the “if” part we use induction with respect to proofs. ◭

5 Lower bound for intersection types

In this section we fix a number K and an expK+1(n)-space bounded alternating Turing

machine M. In what follows it is assumed that k ≤ K, whenever level k is considered. The

basic idea is to represent a configuration of M by, essentially, a type of the form

⋂expK+1(n)−1

i=0 Cell(ai, q, 〈m〉K , 〈i〉K),

where ai ∈ Σ, q ∈ Q, 0 ≤ m ≤ expK+1(n) − 1. Each component Cell(ai, q, 〈m〉K , 〈i〉K)

represents one of the tape cells, where ai represents the symbol in the i-th cell, q represents

the current state, type 〈m〉K represents the address (number) of the cell which is under the

current ATM head position, and 〈i〉K represents the address of the cell itself. Notice that

the types q and 〈m〉K are identical across all the components of the type (i.e., across all

indexes i). The adresses 〈i〉K impose a numerical order on the cell representations, so that we

can represent a tape consisting of a sequence of cells. Moreover, we can use these addresses

to compute the head position of the ATM (moving left or right of the current cell address).

Since we need a representation which is polynomial bounded in the size of the ATM

input, we cannot represent such types explicitly in our reduction. In order to achieve

a succinct (polynomial sized) representation, we exploit polymorphism. The basic insight in

the reduction is to represent the large configuration types implicitly, as polymorphic types

Cell(α, q, β, γ), and to arrange the environment Γ coding the behavior of M in such a way

that large expansions (under polymorphic instantiation) of such types become forced into

the explicit form shown. As in the proof of Theorem 16, the basic strategy for coding the

ATM behavior is to represent a computation sequence C1C2 · · · Cm by a sequence of forced

inhabitation goals in reverse order of implication, by (essentially) having the implications

[Ci+1] → [Ci] in Γ such that asking for inhabitation of [Ci] forces the inhabitation of [Ci+1]

(letting [C] denote the type representing the configuration C).

Predicates

The predicates we use are certain type patterns serving as “containers” for their arguments.

The idea is that a predicate like F (τ, σ) encodes a pair of types τ and σ and a “flag” F in

a unique way. This is achieved by making sure that type F (τ, σ) is large enough to never be

substituted for a variable. In addition, τ and σ are placed inside F (τ, σ) several times to

avoid unwanted subtyping.

Some auxiliary notation for the beginning. Write F [1] for F and F [n+1] for F [n] → F .

For instance, F [4] = ((F → F) → F) → F . Also let Ωτ = (τ → τ) → τ → τ .

Let N > K be a fixed number. Type F (τ1, τ2, τ3, τ4) (a predicate of four arguments) is

defined using a dedicated type constant F (the predicate identifier), as follows:

F (τ1, τ2, τ3, τ4) = (((F [N] → Ωτ1
) → Ωτ2

) → Ωτ3
) → Ωτ4

.

Predicates of fewer arguments are defined by repeating the last one, e.g. G(τ, σ) will stand

for G(τ, σ, σ, σ). In what follows, the word “predicate” may refer to any F (τ1, . . . , τ4).

10 Bounded Combinatory Logic

The level of F (τ1, . . . , τ4) is larger than K, and therefore types of the form F (τ1, . . . , τ4)

never occur in the range of a substitution. Further properties are as follows:

◮ Lemma 17. For all types τ , σ and all predicates Φi and Φ:

1. If
⋂

i∈I Ωτi
≤ Ωσ then τi = σ, for some i.

2. If
⋂

i∈I Φi ≤ Φ then Φ = Φi, for some i.

Proof. Use Lemma 2. Details omitted. ◭

In our construction we use the following forms of predicates (for k ≤ K and j ≤ n):

Unary: Zerok(α), zk(α), mk(α), Maxk(α), Numk(α), nk(α), Numj(α), Bit(α), Tapej(α).

Binary: Succk(α, β), Diffk(α, β), dk(α, β), nk(α, β).

Ternary: Rk(α, β, γ), Lk(α, β, γ).

Quaternary: Cell(α, β, γ, δ).

In addition to that we also have the following constants (for j ≤ n):

0, 1, 0j , 1j , •.

and special constants for all internal states and tape symbols of the machine.

Intersection type numerals

Fix a natural number n. Let B[n] denote the union of n copies of B = {0, 1}, written

B[n] = {01, . . . , 0n} ∪ {11, . . . , 1n}. We let b range over B and we let b range over B[n]. The

sets of level-k numerals (k ≥ 0), denoted Nk, are constructed from B[n] by induction:

N0 = {
⋂n

i=1 bi | bi ∈ {0i, 1i} for i = 1 . . . n}

Nk+1 = {
⋂

τ∈Nk
(τ → bτ) | bτ ∈ {0, 1}, for τ ∈ Nk}

Clearly, the size of Nk is expk+1(n). The value of a numeral σ ∈ Nk is denoted JσK and is

defined by induction with respect to k:

k = 0: J
⋂n

i=1 biK =
∑n

i=1JbiK × 2i−1, with J0iK = 0 and J1iK = 1

k > 0: J
⋂

σ∈Nk
(τ → bτ)K =

∑
τ∈Nk

bτ × 2JτK

For instance, if n = 4 then the value of 01 ∩ 12 ∩ 03 ∩ 14 is 2 + 8 = 10. And if n = 2 then the

value of ((01 ∩ 02) → 0) ∩ ((01 ∩ 12) → 1) ∩ ((11 ∩ 02) → 0) ∩ ((11 ∩ 12) → 1) is 10 as well.

It is easy to prove by induction that for σ ∈ Nk we have 0 ≤ JσK ≤ expk+1(n) − 1, and

for k > 0 we can write σ canonically as σ =
⋂expk(n)−1

i=0 (τi → bi), where JτiK = i and bi ∈ B,

and with JσK =
∑expk(n)−1

i=0 bi × 2i.

It is also straightforward to see that, for any x between 0 and expk+1(n) − 1, there is

exactly one σ ∈ Nk with JσK = x. We use the notation σ = 〈x〉k.

The encoding

Our goal is to define a bclK type environment Γ, representing the behavior of the machine M.

The environment Γ consists of several groups of declarations, to handle predicates over

numerals, the tape, and the transition function. Note that each type σ in Γ is an intersection

which has a component of the form (•m → •), for some m, and that all other components

are arrows of m arguments, ending with predicates of the same identifier F . We then say

that σ, and the corresponding combinator, is m-ary, and that F is the target identifier of σ.

◮ Lemma 18. If x is m-ary and Γ ⊢K xe1 . . . er : • then r = m.

Bounded Combinatory Logic 11

Proof. If Γ ⊢K xe1 . . . er : • then by Lemma 11 we have
⋂

π∈P tgtr(π) ≤ •, for some set P

of paths in types of the form S(Γ(x)). The only such path is •m → •, whence m = r. ◭

◮ Lemma 19. Let Γ ⊢K e : F (τ1, . . . , τ4) ∩ •, where F (τ1, . . . , τ4) is a predicate. Then

e = xe1 . . . em, for some m-ary combinator x with target identifier F . More precisely, Γ(x)

has the form ξ ∩ (ζ1 → · · · → ζm → F (ρ1, . . . , ρ4)), and there is a substitution S such that

S(ρi) = τi, for i = 1, . . . , 4, and Γ ⊢K ei : S(ζi), for i = 1, . . . , m.

Proof. The term e must be of the form e = xe1 . . . er, where x is a combinator of some

arity m in Γ. It follows from Lemma 18 that m = r, and from Corollary 12 we obtain that⋂
ℓ∈L Φℓ ∩ • ≤ F (τ1, . . . , τ4) ∩ •, where Φℓ are predicates with the same target G. Since •

is a constant, we actually have
⋂

ℓ∈L Φℓ ≤ F (τ1, . . . , τ4). By Lemma 17, one of Φℓ must be

equal to F (τ1, . . . , τ4), in particular F = G. Note that Φℓ is obtained as S(tgtm(φ)), for

some component φ of Γ(x), and this S is the substitution required by the lemma. ◭

Numeral predicates

The declarations shown in Figure 3 and Figure 4 are included in Γ, for every k < K. Together

they specify the way numerals are handled at each level k. The predicates are defined

inductively with respect to k. Thus, in Figure 3 we define the base predicates for numerals

in N0, whereas Figure 4 contains definitions for predicates at all higher levels k + 1. These

latter definitions may inductively refer to definitions at lower levels (for example, in Figure 4,

the declaration for the combinator Nk+1 refers to the lower level predicate Zerok).

Z0 : Zero0(01 ∩ 02 ∩ · · · ∩ 0n) ∩ •

M0 : Max0(11 ∩ 12 ∩ · · · ∩ 1n) ∩ •

N0 : [n2(α) → Num0(11 ∩ α)] ∩ [n2(α) → Num0(01 ∩ α)] ∩ [• → •]

n2
0 : [n3(α) → n2(12 ∩ α)] ∩ [n3(α) → n2(02 ∩ α)] ∩ [• → •]

. . . : . . .

nn
0 : nn(1n) ∩ nn(0n) ∩ •

D0 : [d0(α, β) → Num0(α) → Num0(β) → Diff0(α, β)] ∩ [• → • → • → •]

d0 :
⋂n

i=1(d0(0i ∩ α, 1i ∩ β) ∩ d0(1i ∩ α, 0i ∩ β)) ∩ •

S0 : [Num0(01 ∩ α) → Num0(11 ∩ α) → Succ0(01 ∩ α, 11 ∩ α)] ∩

[Num0(11 ∩ 02 ∩ α) → Num0(01 ∩ 12 ∩ α) → Succ0(11 ∩ 02 ∩ α, 01 ∩ 12 ∩ α)] ∩

. . . ∩

[Num0(11 ∩ 12 ∩ · · · ∩ 1n−1 ∩ 0n) →

Num0(01 ∩ 02 ∩ · · · ∩ 0n−1 ∩ 1n) →

Succ0(11 ∩ 12 ∩ · · · ∩ 1n−1 ∩ 0n, 01 ∩ 02 ∩ · · · ∩ 0n−1 ∩ 1n)] ∩

[• → • → •]

Figure 3 Numeral predicates, level 0

12 Bounded Combinatory Logic

B : Bit(0) ∩ Bit(1) ∩ •

Zk+1 : [Numk+1(α) → zk+1(α) → Zerok+1(α)] ∩ [• → • → •]

zk+1 : [zk+1(α) → zk+1((β → 0) ∩ α)] ∩ [• → •]

z′
k+1 : zk+1(β → 0) ∩ •

Mk+1 : [Numk+1(α) → mk+1(α) → Maxk+1(α)] ∩ [• → • → •]

mk+1 : [mk+1(α) → mk+1((β → 1) ∩ α)] ∩ [• → •]

m′
k+1 : mk+1(β → 1) ∩ •

Nk+1 : [Bit(γ) → nk+1(β → γ, α) → Zerok(β) → Numk+1((β → γ) ∩ α)] ∩

[• → • → • → •]

nk+1 : [Bit(ε) → Succk(β, δ) → nk+1(δ → ε, α) → nk+1(β → γ, (δ → ε) ∩ α)] ∩

[• → • → • → •]

n′
k+1 : [Bit(ε) → Succk(β, δ) → Maxk(δ) → nk+1(β → γ, δ → ε)] ∩

[• → • → • → •]

Dk+1 : [dk+1(α, β) → Numk+1(α) → Numk+1(β) → Diffk+1(α, β)] ∩

[• → • → • → •]

dk+1 : dk+1((γ → 1) ∩ α, (γ → 0) ∩ β) ∩ dk+1((δ → 0) ∩ α, (δ → 1) ∩ β) ∩ •

Sk+1 : [Rk+1(β, α, γ) → Zerok(β) → Succk+1((β → 0) ∩ α, (β → 1) ∩ γ)] ∩

[Lk+1(β, α, γ) → Zerok(β) → Succk+1((β → 1) ∩ α, (β → 0) ∩ γ)] ∩

[• → • → •]

sk+1 : [Succk(β, δ) → Lk+1(δ, α, γ) → Lk+1(β, (δ → 1) ∩ α, (δ → 0) ∩ γ)] ∩

[Succk(β, δ) → Rk+1(δ, α, γ) → Lk+1(β, (δ → 0) ∩ α, (δ → 1) ∩ γ)] ∩

[Succk(β, δ) → Rk+1(δ, α, γ) → Rk+1(β, (δ → 0) ∩ α, (δ → 0) ∩ γ)] ∩

[Succk(β, δ) → Rk+1(δ, α, γ) → Rk+1(β, (δ → 1) ∩ α, (δ → 1) ∩ γ)] ∩

[• → • → •]

s′
k+1 : [Maxk(δ) → Succk(β, δ) → Rk+1(β, δ → 0, δ → 0)] ∩

[Maxk(δ) → Succk(β, δ) → Rk+1(β, δ → 1, δ → 1)] ∩

[Maxk(δ) → Succk(β, δ) → Lk+1(β, δ → 0, δ → 1)] ∩

[• → • → •]

Figure 4 Numeral predicates, level k + 1

Turing machine

Now we turn to the actual machine simulation. Declarations in Figure 5 are used to “create”

the initial configuration with input word a1 . . . an and with further tape cells filled with

blanks up to length expK+1(n). Tape cells are identified by numbers from 0 to expK+1(n)−1.

Before we define the core part of our coding, we introduce one more notational convention.

A multiple implication τ1 → τ2 → · · · → τm → τ is sometimes written as (τ1, . . . , τm) → τ .

We extend this style by using informal abbreviations for sequences of premises. For instance,

type τ1 → τ2 → τ3 → σ1 → σ2 → σ3 → τ may be written as A → B → τ , where

A = (τ1, τ2, τ3) and B = (σ1, σ2, σ3).

Given q and b, let ∆(b, q) = {(ci, pi, hi) | i = 1, . . . , r}. By Vqbi(δ) and Uqbi(α, δ, γ) we

abbreviate triples of types used to represent the transition defined by (ci, pi, hi). The role

Bounded Combinatory Logic 13

Init : [ZeroK(α) → Cell(a1, q0, α, α) ∩ Tape1(α) → Tape] ∩ [• → • → •]

initi : [ZeroK(γ) → SuccK(α, β) → Tapei+1(β) ∩ Cell(ai, q0, γ, β) → Tapei(α)] ∩

[ZeroK(γ) → SuccK(α, β) → Cell(η, q0, δ, ε) → Cell(η, q0, δ, ε)] ∩

[• → • → • → •] (for all i < n)

initn : [ZeroK(γ) → SuccK(α, β) → Tapen(β) ∩ Cell(␣, q0, γ, β) → Tapen(α)] ∩

[ZeroK(γ) → SuccK(α, β) → Cell(η, q0, δ, ε) → Cell(η, q0, δ, ε)] ∩

[• → • → • → •]

finit : [MaxK(α) → • → Tapen(α)] ∩

[MaxK(α) → Cell(η, q0, δ, ε) → Cell(η, q0, δ, ε)] ∩ [• → • → •]

Figure 5 Initial configuration under construction

of Vqbi(δ) is to encode the action at the presently scanned tape cell, while Uqbi(α, δ, γ) applies

to all other tape cells. Assume first that hi = l. Then we define:

Vqbi(δ) = (SuccK(β, δ), DiffK(ξ, ζ), Cell(ci, pi, β, δ)),

Uqbi(α, δ, γ) = (SuccK(β, δ), DiffK(γ, δ), Cell(α, pi, β, γ)).

If hi = r then the definition is altered as follows:

Vqbi(δ) = (SuccK(δ, β), DiffK(ξ, ζ), Cell(ci, pi, β, δ)),

Uqbi(α, δ, γ) = (SuccK(δ, β), DiffK(γ, δ), Cell(α, pi, β, γ)).

Now, if q is an existential state then for every i ≤ r there is a combinator

Stepqbi : [Vqbi(δ) → Cell(b, q, δ, δ)] ∩

[Uqbi(α, δ, γ) → Cell(α, q, δ, γ)] ∩

[•3 → •]

For universal q, we declare one combinator Stepqb:

Stepqb : [Vqb1(δ) → · · · → Vqbr(δ) → Cell(b, q, δ, δ)] ∩

[Uqb1(α, δ, γ) → · · · → Uqbr(α, δ, γ) → Cell(α, q, δ, γ)] ∩

[•3 → · · · → •3 → •]

Properties of the coding

We now collect the main properties of our coding. The first two lemmas state that our

numeral system works properly.

◮ Lemma 20. For every k ≤ K there are terms Zerok, Maxk, Numk, Diff k, Succk, such

that for all types σ and τ :

1. If σ = 〈 0 〉k then Γ ⊢K Zerok : Zerok(σ) ∩ • .

2. If σ = 〈 expk+1(n) − 1 〉k then Γ ⊢K Maxk : Maxk(σ) ∩ • .

3. If σ ∈ Nk then Γ ⊢K Numk : Numk(σ) ∩ • .

4. If σ, τ ∈ Nk, and JσK 6= JτK then Γ ⊢K Diff k : Diffk(σ, τ) ∩ • .

5. If σ, τ ∈ Nk, and JσK + 1 = JτK then Γ ⊢K Succk : Succk(σ, τ) ∩ • .

Proof. Beginning with k = 0, we have Num0 = N0(n2
0(n3

0(. . . (nn−1
0 (nn

0)) . . .))), Zero0 = Z0,

Max0 = M0, Diff 0 = D0d0Num0Num0, and Succ0 = S0Num0Num0. Take max = expk+1(n)

14 Bounded Combinatory Logic

and for k ≥ 0 define Numk+1 = Nk+1B((nk+1BSucck)max−2(n′
k+1BSucckMaxk))Zerok,

Zerok+1 = Zk+1Numk+1(zmax−1
k+1 (z′

k+1)), and Maxk+1 = Mk+1Numk+1(mmax−1
k+1 (m′

k+1)).

Now we can define successor Succk+1 = Sk+1((sk+1Succk)max−2(s′
k+1MaxkSucck))Zerok,

and the last term we need is Diff k+1 = Dk+1dk+1Numk+1Numk+1. ◭

◮ Lemma 21. For every k ≤ K and every e:

1. If Γ ⊢K e : Zerok(σ) ∩ • then σ = 〈 0 〉k.

2. If Γ ⊢K e : Maxk(σ) ∩ • then σ = 〈 expk+1(n) − 1 〉k.

3. If Γ ⊢K e : Numk(σ) ∩ • then σ ∈ Nk.

4. If Γ ⊢K e : Diffk(σ, τ) ∩ • then σ, τ ∈ Nk, and JσK 6= JτK.

5. If Γ ⊢K e : Succk(σ, τ) ∩ • then σ, τ ∈ Nk, and JσK + 1 = JτK.

Proof. The proof is by induction with respect to k, and we show the five claims in the

order of their numbers. Of the ten possible cases we consider Γ ⊢K e : Numk+1(σ) ∩ • as

an example. It follows from Lemma 19 that e = Nk+1e1e2e3, and σ = S((β → γ) ∩ α)

and we can derive Γ ⊢K e1 : Bit(S(γ)) ∩ •, Γ ⊢K e2 : nk+1(S(β → γ), S(α)) ∩ •, and

Γ ⊢K e3 : Zerok+1(S(β)) ∩ •, for some S. Then S(β) = 〈 0 〉k and S(γ) is 0 or 1. We prove

by induction that Γ ⊢K e′ : nk+1(ϕ, τ) implies ϕ = 〈 i 〉k → ϕ′ and τ =
⋂

j>i〈 j 〉k → bj , for

some i, and conclude that σ =
⋂

j≥0〈 j 〉k → bj , i.e., that σ is indeed a numeral. ◭

Let C = wqw′ be a configuration of our machine M. Assume that w = b0 . . . bh−1 and

w′ = bh . . . bexpK+1(n)−1. That is, the address of the currently scanned tape cell is h. We take

the following type to be the encoding of C:

[C] =

expK+1(n)−1⋂

i=0

Cell(bi, q, 〈h〉K , 〈i〉K).

Now let C0 be the initial configuration for input a1 . . . an. (Thus bi = ai+1, for i < n.)

◮ Lemma 22. The intersection Tape ∩ • is inhabited in Γ iff so is [C0] ∩ •.

Proof. Suppose that Γ ⊢ e : [C0] ∩ • . If Ti = initiZeroKSuccK , for i = 1, . . . , n, then

Γ ⊢ InitZeroK(T1(T2(· · · (Tn−1(T m−n
n (finitMaxK e))) · · ·))) : Tape ∩ • .

On the other hand, if Γ ⊢ e : Tape ∩ • then e = xe1 . . . em, where x is m-ary (Lemma 18).

Since Γ ⊢ e : Tape, the only possibility is that e = Init e1e2 , where Γ ⊢ e1 : ZeroK(〈 0 〉K)

and Γ ⊢ e2 : Tape1(〈 0 〉K) ∩ Cell(a1, q0, 〈 0 〉K , 〈 0 〉K 〉. We prove by induction wrt r that

e2 = T1(T2(· · · (e′) · · ·)), where e′ has type • ∩ Tapeℓ(〈 r 〉) ∩
⋂

i≤r Cell(bi, q0, 〈 0 〉, 〈 i 〉), and

ℓ = min{r + 1, n}. For r = expK+1(n) − 1, term e′ is of type • ∩ Tapen(〈 r 〉K) ∩ [C0]. ◭

◮ Lemma 23. A configuration C is eventually accepting iff Γ ⊢ [C] ∩ •.

Proof. The “only if” part goes by induction with respect to the definition of acceptance.

If C is an accepting configuration (universal without successors) then we have a declaration

Stepqab : Cell(b, qa, δ, δ) ∩ Cell(α, qa, δ, γ) ∩ •,

for appropriate b, whence Γ ⊢ Stepqab : [C] ∩ •. Let C = wqbw′ be existential, with q at

address t. If C → C′, with C′ eventually accepting then, by the induction hypothesis, [C′]∩• is

inhabited. Assume for example that C′ is obtained from C using a triple (ci, pi, hi) ∈ ∆(b, q),

with hi = l. Then [C′] differs from [C] in that we have Cell(ci, pi, 〈 t − 1 〉, 〈 t 〉) instead of

Cell(b, q, 〈 t 〉, 〈 t 〉) and Cell(bj , pi, 〈 t − 1 〉, 〈 j 〉) instead of Cell(bj , q, 〈 t 〉, 〈 j 〉), for all j 6= t.

Bounded Combinatory Logic 15

It follows that Γ ⊢ StepqbiSucckDiff k e : [C] ∩ •, where Succk and Diff k are defined as in

Lemma 20 for appropriate k, and e is an inhabitant of [C′] ∩ •.

In the universal case, we build an inhabitant of [C] ∩ • as

StepqbSucckDiff k e1 . . . SucckDiff k er

where Succk and Diff k are as above, and e1, . . . , er prove the codes of all successor configur-

ations.

The proof from right to left is by induction with respect to length of inhabitants. Let

Γ ⊢ e : [C] ∩ •. If e is a single combinator then e = Stepqab, by Lemma 19. Otherwise

e = xe1 . . . em, for an m-ary x. It is possible that e = initie0e1e2 or finite1e2, but then e2

also proves [C] ∩ •. Therefore the shortest inhabitant must begin with Stepqbi or Stepqb,

and we proceed as in the proof of Lemmas 21 and 22, using Lemma 19 as a basic tool. ◭

◮ Theorem 24. For every k ≥ 0, the relativized inhabitation problem for bclk(→, ∩) is

complete in (k+2)-Exptime.

Proof. By a routine padding argument3 it suffices to prove that the halting problem for

expk+1(n)-space bounded ATM’s is reducible to inhabitation in bclk(→, ∩). The latter

claim follows from Lemmas 22 and 23: to determine if M accepts the input it is enough to

ask if Γ ⊢ • ∩ Tape. ◭

References

1 H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the

completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

2 T. Freeman and F. Pfenning. Refinement types for ML. In ACM Conference on Program-

ming Language Design and Implementation (PLDI), pages 268–277. ACM, 1991.

3 M. D. Gladstone. Some ways of constructing a propositional calculus of any required degree

of unsolvability. Transactions of the American Mathematical Society, 118:195–210, 1965.

4 J. R. Hindley. The simple semantics for Coppo-Dezani-Sallé types. In M. Dezani-Ciancaglini

and U. Montanari, editors, International Symposium on Programming, volume 137 of LNCS,

pages 212–226. Springer, 1982.

5 J. R. Hindley and J. P. Seldin. Lambda-calculus and Combinators, an Introduction. Cam-

bridge University Press, 2008.

6 L. Linial and E. L. Post. Recursive unsolvability of the deducibility, Tarski’s completeness

and independence of axioms problems of propositional calculus. Bulletin of the American

Mathematical Society, 55:50, 1949.

7 Ch. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

8 J. Rehof and P. Urzyczyn. Finite combinatory logic with intersection types. In C.-H. Luke

Ong, editor, TLCA, volume 6690 of Lecture Notes in Computer Science, pages 169–183.

Springer, 2011.

9 W. E. Singletary. Recursive unsolvability of a complex of problems proposed by Post.

Journal of the Faculty of Science, University of Tokyo, 14:25–58, 1967.

10 W. E. Singletary. Many-one degrees associated with partial propositional calculi. Notre

Dame Journal of Formal Logic, XV(2):335–343, 1974.

11 R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theoretical

Computer Science, 9:67–72, 1979.

3 If L ∈ Dtime(expk+1(p(n))) then L ≤log {w#p(n)−|w| | w ∈ L} ∈ Dtime(expk+1(n)).

	Introduction
	Preliminaries
	Bounded combinatory logic
	Simple types, bclk()
	Lower bound for intersection types

