
BOUNDED CONCURRENT TIME-STAMPING∗

DANNY DOLEV† AND NIR SHAVIT‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 418–455, April 1997 007

Abstract. We introduce concurrent time-stamping, a paradigm that allows processes to tem-
porally order concurrent events in an asynchronous shared-memory system. Concurrent time-stamp
systems are powerful tools for concurrency control, serving as the basis for solutions to coordination
problems such as mutual exclusion, `-exclusion, randomized consensus, and multiwriter multireader
atomic registers. Unfortunately, all previously known methods for implementing concurrent time-
stamp systems have been theoretically unsatisfying since they require unbounded-size time-stamps—
in other words, unbounded-size memory.

This work presents the first bounded implementation of a concurrent time-stamp system, provid-
ing a modular unbounded-to-bounded transformation of the simple unbounded solutions to problems
such as those mentioned above. It allows solutions to two formerly open problems, the bounded-
probabilistic-consensus problem of Abrahamson and the fifo-`-exclusion problem of Fischer, Lynch,
Burns and Borodin, and a more efficient construction of multireader multiwriter atomic registers.

Key words. atomic registers, serialization, concurrency, time-stamping, distributed computing,
parallel computing

AMS subject classifications. 68Q22, 05C90, 05C99

PII. S0097539790192647

1. Introduction. A time-stamp system is like a ticket machine at an ice cream
parlor. People’s requests to buy the ice cream are time-stamped based on a num-
bered ticket (label) taken from the machine. In order to know the order in which
requests will be served, a person need only scan through all the numbers and observe
the order among them. A concurrent time-stamp system (CTSS) is a time-stamp
system in which any process can either take a new ticket or scan the existing tickets
simultaneously with other processes. A CTSS is required to be wait-free, which means
that a process is guaranteed to finish any of the two above-mentioned label-taking or
scanning tasks in a finite number of steps, even if other processes experience stop-
ping failures. Wait-free algorithms are highly suited for fault-tolerant and real-time
applications (see Herlihy [Her91]).

Concurrent time-stamping is the basis for simple solutions to a wide variety of
problems in concurrency control. Examples of such algorithms include Lamport’s first-
come first-served mutual exclusion [Lam74], Vitanyi and Awerbuch’s construction of a
multireader multiwriter (MRMW) atomic register [VA86], Abrahamson’s randomized
consensus [Abr88], and Fischer, Lynch, Burns, and Borodin’s fifo-`-exclusion problem
[FLBB79, FLBB89] (also see [AD*94]).

∗ Received by the editors December 10, 1990; accepted for publication (in revised form) May
18, 1995. A preliminary version of this paper appeared in Proc. 21st Annual ACM Symposium on
Theory of Computing, ACM, New York, 1989, pp. 454–465.

http://www.siam.org/journals/sicomp/26-2/19264.html
† IBM Almaden Research Center, K53/802, 650 Harry Road, San Jose, CA 95120-6099

(dolev@almaden.ibm.com) and Institute of Mathematics and Computer Science, Hebrew University,
Givat-Ram, Jerusalem 91906, Israel (dolev@cs.huji.ac.il).
‡ Department of Computer Science, Hebrew University, Givat-Ram, Jerusalem 91906, Israel.

Current address: Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
(shanir@cs.tau.ac.il). The research of this author was supported by a Libnitz Foundation Schol-
arship, the Israeli Communications Ministry Award, NSF contract CCR-8611442, ONR contract
N0014-85-K-0168, DARPA contract N00014-83-K-0125, and a special grant from IBM. Parts of this
research were also conducted while this author was visiting the Theory of Distributed Systems group
at MIT, AT&T Bell Laboratories, and the IBM Almaden Research Center.

418

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 419

Unfortunately, the only formerly known implementation of the CTSS paradigm
using read/write registers was a version of Lamport’s “bakery algorithm,” which uses
labels of unbounded size [Lam74]. Researchers were thus led to devise complicated
problem-specific solutions to show that the above problems are solvable in a bounded
way.1

In [IL93], Israeli and Li were the first to isolate the notion of bounded time-
stamping (time-stamping using bounded-size memory) as an independent concept,
developing an elegant theory of bounded sequential time-stamp systems. Sequential
time-stamp systems prohibit concurrent operations. This work was continued in sev-
eral interesting papers on sequential systems with weaker ordering requirements by
Li and Vitanyi [LV87], Cori and Sopena [CS93], and Saks and Zaharoglou [SZ91].

This paper introduces the concurrent time-stamping paradigm and provides the
first bounded construction of a concurrent time-stamp system. It provides a modu-
lar unbounded-to-bounded transformation, enabling the design of simple unbounded
concurrent-time-stamp-based algorithms to problems such as those mentioned above,
with the knowledge that each unbounded solution immediately implies a bounded
one. Our work allows solutions of the above flavor to two formerly open problems,
the bounded-randomized-consensus problem of [Abr88] (which requires one to solve
the randomized-consensus problem of [CIL87] without using an atomic coin-flip opera-
tion) and the fifo-`-exclusion problem of [FLBB79, FLBB89] (see [AD*94] for details).
A bounded CTSS solution to the former problem is given in [Sha90], and in [AD*94],
Afek et al. use a CTSS to provide the first bounded solution to the latter problem.2

Though one might think that the price of introducing a modular unbounded-to-
bounded transformation would be a blowup in memory size or number of operations,
this is hardly the case. For an n-process system, the construction presented in this
paper requires only n registers of O(n) bits each, meeting the lower bound of [IL93] for
sequential-time-stamp-system construction. The time complexity is O(n) operations
for an update and O(n2 logn) for a scan. (Like the unbounded algorithm, the scan
consists only of read operations, i.e., no writes.)

One example of the efficiency of the CTSS solutions is given by the famous prob-
lem of multireader multiwriter atomic register construction. A simple solution based
on transforming the unbounded protocol of Vitanyi and Awerbuch [VA86] using our
construction (see [Sha90, G92]) has the same space complexity of the [PB87, Sch88]
algorithm, yet it has a better time complexity—O(n) memory accesses for a write,
O(n logn) for a read, as compared with O(n2) for either in the former solutions. Our
implementation is the only known bounded construction of an MRMW atomic register
from single-writer multireader (SWMR) atomic registers where the implementation
of the MRMW read operation does not require a process to perform an SWMR write.
The importance of the readers-do-not-write property was first raised by Lamport in
[Lam86a], where he showed the impossibility of a bounded construction where readers
do not write of a single-writer single-reader (SWSR) atomic register from SWSR regu-
lar ones. Moreover, as explained in [AD*94], this property is important when defining
liveness conditions such as first-come first-enabled for problems like `-exclusion.

The structure of our presentation is as follows. We begin by describing concurrent
time-stamping (sections 2 and 3), first formally using Lamport’s axiomatic approach

1 See [And89a, Blo88, BP87, CIL87, Dij65, DGS88, FLBB79, FLBB89, Kat78, Lam74, Lam77,
Lam86b, LH89, LV87, ?, Ray86, Pet81, Pet83, PB87, VA86].

2 The only prior known solutions to the fifo-`-exclusion problem [DGS88, Pet88] achieve weaker
forms of fairness than the original test-and-set-based solution of [FLBB79].

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

420 DANNY DOLEV AND NIR SHAVIT

[Lam86c, Lam86a] and then informally through a simple unbounded-memory imple-
mentation. In sections 4.3 and 4.4, the bounded wait-free CTSS implementation
is described. Section 5 provides the final details of the formal specification and the
main parts of the proof of the bounded CTSS implementation are presented. Section 6
describes the implications of a bounded CTSS construction on various interprocess-
communication problems and gives a summary of research following our work. For
berevity, some of the more tedious parts of the correctness proof have been omitted
and can be found in [Sha90].

2. A concurrent time-stamp system. The following is a formal definition of a
CTSS for a system of processes numbered 1, . . . , n. It uses the axiomatic specification
formalism of Lamport [Lam86c, Lam86a]. The reader may benefit by checking how
the formal properties described below are met by the unbounded implementation
described in the next section.

A CTSS is a problem specification with an operational interface. A CTSS that
permits n concurrent operations has 2n operation types, specifically, labelingi(`i) and
scani(¯̀,≺) for i ∈ {1, . . . , n}. A labelingi operation associates an input value, `i, taken
from any domain D with a label.3 We call `i the labeled-value of operation labelingi. In
an application such as an atomic-register construction, the labeled-value would be the
value written to the register, while in a mutual-exclusion-type application, where the
input values are unimportant, it would be null. A scani operation returns as output
a pair (¯̀,≺), where the view ¯̀= {`1, . . . , `n} is an indexed set of labeled-values (one
per process) and ≺ is a total order on these indexes.

Assume that each process’ program consists of these two operations, whose ex-
ecution generates a sequence of elementary operation executions, totally ordered by
the precedes relation (of [Lam86c, Lam86a], denoted “ -”) and where any number of
scan operation executions are allowed between any two labeling operation executions.
The following,

L
[1]
i
- S

[1]
i
- L

[2]
i
- L

[3]
i
- S

[2]
i
- S

[3]
i
- S

[4]
i
- · · · ,

is an example of such a sequence by process i, where L
[k]
i denotes process i’s kth

execution of a labeling operation and S
[k]
i is the kth execution of a scan operation.

(The superscript [k] is used for notation and is not visible to the processes.) The

labeled-value input in each labeling operation execution L
[k]
i is denoted by `

[k]
i .4 A

global-time model of operation executions is assumed, implying that for any two op-
eration executions, a - b or b - a. (For more details, see section 5.1.)

The elementary operation executions of a CTSS must have following set of prop-
erties.

P1: ordering. There exists an irreflexive total order =⇒ on the set of all labeling
operation executions such that we have the following:

a: precedence. For any pair of labeling operation executions L[a]
p and L

[b]
q

(where p and q are possibly the same process), if L[a]
p
- L

[b]
q , then L[a]

p =⇒L
[b]
q .

b: consistency. For any scan operation execution S
[k]
i that returns (¯̀,≺),

p ≺ q if and only if L
[a]
p =⇒L

[b]
q .

3 In order correctly handle initial conditions, the value domain D must specify some initial value.
4 In order for a unique labeled-value `

[k]
i to be associated with each label operation execution

L
[k]
i , the reader can think of `

[k]
i as a triplet 〈`[k]

i , i, k〉, where the second and third fields are dummy
indexes used only for purposes of the specification.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 421

S
[b]

j

L
[a+1]

iL
[a]

i L
[a+5]

iL
[a+2]

L
[a+3]

L
[a+4]

i i i

Fig. 1. Regularity.

Property P1 formalizes the idea that a CTSS can be envisioned as a black box,
inside of which hides a mechanism (a logical clock) associating causally ordered time
stamps—from an infinite totally ordered range—with each of the labeled-values en-
tered in labeling operations, and where scanning is like peeping into this black box,
each scan returning a view of a part of this hidden ordering.5 The black box metaphor
is used to stress that it suffices to know of the existence of such a total ordering =⇒,
while the ordering itself need not be known.

One should bear in mind that the asynchronous nature of the operations allows
situations where a scan operation execution overlaps many consecutive labeling oper-
ation executions of other processes. Also, several consecutive scans could possibly be
overlapped by a single labeling operation execution. It is therefore important that a

requirement be made that the view ¯̀ returned by S
[k]
i be a meaningful one, namely,

that it reflect the ordering among labeling operation executions immediately before
or concurrent with the scan, and not just any possible set of labeled-values. (In the

example of Figure 1, any of the labeled-values `
[a+1]
x through `

[a+4]
x can be returned

by S
[k]
i , but not those preceding or following them.) This will eliminate uninteresting

trivial solutions and introduce a measure of liveness into the system. This require-
ment is formalized in the following definition, where - is the can affect relation of
[Lam86c, Lam86a].

P2: regularity. For any labeled-value `
[a]
p in ¯̀ of S

[k]
i , L

[a]
p

- S
[k]
i , and there is

no L
[b]
p such that L

[a]
p

- L
[b]
p
- S

[k]
i .

Although such a regular concurrent time-stamp system as P1–P2 would suffice
for some applications (as in Lamport’s “bakery algorithm” [Lam74]), a more powerful
monotonic concurrent time-stamp system will be needed in applications such as the
multireader multiwriter atomic register construction (as in [LV87, VA86]). zTo this
end, the following third property is added.

P3: monotonicity. For any labeled-value `
[a]
p in ¯̀ of S

[k]
i , there does not exist an

S
[k′]
j with a labeled-value `

[b]
p in its view ¯̀′, such that S

[k]
i

- S
[k′]
j and L

[b]
p
- L

[a]
p

(possibly i = j).
Monotonicity is the property that in the unbounded natural-number CTSS can

be described by saying that the labels of any one process, as read by increasingly
later scans, are “monotonically nondecreasing.” In other words, later scans cannot
read labels smaller than those read by earlier ones. It is important to note, however,
that P3 does not imply that labeling and scan operation executions of all processes
are serializable, that is, appear to happen atomically. (Figure 2 shows two scan
operations that meet property P3 that cannot be serialized.) It does, however, imply
the serializability of the scan operation executions of all processes relative to the
labeling operation executions of any one process.

5 Notice that there is no requirement that labeled-values returned by different scans must be
comparable.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

422 DANNY DOLEV AND NIR SHAVIT

S
[d]
l

L
[b]

jL
[a]

i

S
[c]

m

L
[a+1]

i L
[b+1]

j

read read

read read

Fig. 2. Monotonicity does not imply atomicity.

Property P4 is an extension of part of the regularity property to the =⇒ order.6

Properties P3 and P4 together imply that all scan operations that consider only the
“largest” value, where “largest” is based on the ≺ ordering, can be serialized with
respect to all labeling operations.

P4: order regularity. For any labeled-value `
[a]
p in ¯̀ of S

[k]
i , S

[k]
i

- L
[b]
q implies

that L
[a]
p =⇒ L

[b]
q .

3. Unbounded concurrent time-stamping. The basic communication prim-
itive used in our implementations is a single writer multireader atomic register. Our
goal is to design an implementation that is wait-free [Her91, AG90]: each process’ scan
or label operation execution consists of a bounded number of SWMR register opera-
tions independently of the pace or type of operations carried out by other processes.
Wait-free constructions of SWMR atomic registers from weaker primitives have been
shown in [BP87, IL93, Lam86d, SAG94, New87].

We begin with the following simple implementation of a CTSS using SWMR
registers of unbounded size. The concurrent time stamp system will consist of n
SWMR atomic registers vi, i ∈ {1..n}. Each vi is written by process i and read by
all. Each labelingi operation writes `i to register vi. In our implementation, `i is a
data type consisting of two fields, a labeled-value, denoted value(`i), and its associated
label, denoted label(`i). Each label(`i) is a pair of the form (numberi, i), where numberi
is a natural number and i ∈ {1..n} is the id of the process writing `i.

A process i collects the labels and values of other processes by performing a collect
operation, a reading of all the registers vj , j ∈ {1..n}, once each, in some arbitrary
order. The collect operation returns an indexed set ` = {`1, . . . , `n}, that is, one value
and associated label per process. The collected elements in ` are ordered by ord (`),
an ordering on their indexes in {1..n}, such that i is smaller than j if and only if the
label (numberi, i) is lexicographically smaller than the label (numberj , j). Figure 3
provides the pseudocode of the labeling and scan operations for a process i.

To understand how property P1 is met, consider that if the labeling operation
execution of `i by a process i completely preceded the labeling operation execution of
`j by j, then it must be that j chose a label with numberj > numberi since j collected
`i. If they are concurrent, at worst they might both collect the same maximal label
and choose numberi = numberj , in which case they are ordered by their ids. Thus

6 The need for property P4 in applications such as the multireader multiwriter atomic register
construction of [LV87, VA86] was discovered by Gawlick [G92].

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 423

procedure labeling (val);
begin
` := collect;
vi := (val, (maxj∈{1..n}numberj + 1, i));

end;
function scan;

begin
` := collect;
return ({value(`1) . . . value(`n)}, ord (`));

end;

Fig. 3. The unbounded natural-number-based implementation.

the lexicographic order on the labels defines a linearization order [HW88] on the
concurrent labeling operation executions, that is, an order =⇒ by which they can
be thought of as happening sequentially in time. The reader can convince herself
that properties P2–P4 follow directly from the use of SWMR atomic registers in the
implementation.

It is important to note that the actual label (`1) . . . label (`n) used in computing
ord (`) are hidden from the user (scan operations do not return them), and there is
thus no way to compare the order among a pair of values returned by different scans.

4. A bounded concurrent time-stamp system.

4.1. Labels and precedence. The bounded implementation presented will be
of the exact same form as the unbounded natural-number-based one. The concurrent
time-stamp system will consist of n SWMR atomic registers vi, i ∈ {1..n}, each vi
written by process i and read by all. Each value `i written to register vi consists,
just as in the unbounded case, of two fields, a labeled-value, to which the input of a
labeling operation is written, and an associated label.

Note. In what follows, almost all of the discussion involves only the label field of
vi and not its labeled-value field. In order to simplify the exposition, we choose, with
few exceptions, to ignore the existence of the labeled-value field and deal only with

the associated label field. Thus, for example, the notation `
[k]
i will represent only the

label field written in a labeling operation execution L
[k]
i . We trust that the interested

reader will be able to add the relevant operations regarding the labeled-value, as in
the unbounded implementation in section 3.

Let V denote the range of possible labels and V≺ denote an irreflexive and anti-
symmetric relation among them. In the unbounded natural-number implementation
of a CTSS, V is just the unbounded size set of pairs of natural numbers and integers
in {1..n} and V≺ is the lexicographic total ordering among them. In the following
sections, the set of possible label values V of the implementation, together with a
relation V≺ among them, are defined in terms of a precedence graph7 (V, V≺). Each
possible label is a node in this graph. The order among the labels in any two registers
is the order V≺ established by the edges of the precedence graph. A tournament is a
complete directed graph. The precedence graph representing labels of the natural-
number-based implementation is an acyclic tournament of unbounded size, i.e., a total

7 The elegant idea of defining the labels and ordering as a tournament graph was introduced by
Israeli and Li in [IL93].

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

424 DANNY DOLEV AND NIR SHAVIT

order. The definition of the precedence graph will provide the basis for describing the
implementation of the labeling and scan operations.

4.2. A bounded precedence graph. The following is the description of the
precedence graph Tn (see Figure 4). Unlike the unbounded precedence graph defined
by the natural numbers, Tn contains cycles.

Define “A dominates B in G,” where A and B are two subgraphs of a graph G
(possibly single nodes), to mean that every node of A has edges directed to every
node of B. Define the following generalization of the composition operator of [IL93].
The α-composition, G ◦αH, of two graphs G and H, where α is a subset of the nodes
of G, is the following noncommutative operation:

Replace every node v ∈ α of G by a copy of H (denoted Hv), and let
Hv (or v) dominate Hu in G ◦α H if v dominates u in G.

Define the graph T 2 to be the following graph of five nodes: a cycle of three nodes
{3, 4, 5}, where 3 dominates 5, which dominates 4, which in turn dominates 3, all
dominating the nodes {2, 1}, and where node 2, in turn, dominates node 1.

Define the graph T k (a tournament) inductively as follows:
1. T 1 is a single node.
2. T k = T 2 ◦α T k−1, where α = {5, 4, 3, 1} and k > 1.

The graph Tn = (V, V≺) is the precedence graph to be used in the implementation
of the labeling and scan algorithms of a concurrent time-stamp system for n processes.
For any process i , each node in Tn corresponds to a uniquely defined label value `i.
The label can be viewed as a string `i[n..1] of n digits, where each `i[k] ∈ {1, . . . , 5}
is the digit of the corresponding node in T 2, replaced by a T k subgraph during the
kth step of the inductive construction above. The digit `i[n] is always 1, representing
the complete Tn graph, and if in `i, `i[k] = 2, then `i[j] = 1 for all j ∈ {k−1..1}
(since node 2 is never expanded in the induction step). Therefore, given any label `i,
the T k subgraph of Tn in which its corresponding node is located is identified by the
corresponding prefix `i[n..k].

To assure that based on the graph Tn a total ordering among the label values
returned by a scan can be established, we need to break symmetry among processes
having the same label. Thus the label `i is assumed to be concatenated with the id
of process i , where label and id are lexicographically ordered. (In terms of the graph
Tn, this amounts to no more than assuming that each T 1 graph consists of a total
order tournament of n nodes, each process i always choosing the ith node in the order.
For simplicity, this point is not further elaborated upon in what follows.)

4.3. The labeling operation. Recall that the collect operation by any process
i is a reading of all the registers vj , j ∈ {1..n}, once each, in an arbitrary order,
returning a set ` of labels. The labeling operation of a process i is of the form described
in Figure 5, where L : V n × {1..n} 7→ V is a labeling function, returning a label value
`i “greater than” all other label values.8 This is the same form as the natural number
CTSS, where the labeling function L returns (maxj∈{1..n}numberj + 1, i). However,
the interpretation of being “greater than” is not as straightforward as in the natural-
number case.

The definition of the labeling function L(`, i) presented below is based on a re-
cursively defined function Lk(G, `, `max), which, given a T k subgraph G of Tn, a set
of labels `, and a “maximal” label `max ∈ ` in T k, returns the label of a node in G

8 Initially, all labels are on node 111..11, the node dominated by all others in Tn.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 425

1 3

5

4

2

2 3

5

1
43

2

4

5
1

4

1 32

5

3

2

1

4

3 2
1

5

4
5

2

3Graph T

Graph TGraph T1

Fig. 4. The precedence graph.

procedure labeling(val);
begin
` := collect;
vi := (val,L(`, i));

end;

Fig. 5. The labeling operation.

that is “greater than” the other labels. The reader may benefit by going through
Examples 4.1, 4.2, and 4.3 before or during the reading of the code in Figure 6. For
simplicity, and since the collected set of labels ` remains unchanged in L(`, i) once
it is collected (similarly for the variable `max once it is computed), it is treated as a
global variable and is not passed as a parameter in all of the utility functions used by
L(`, i). The following functions are used in defining L:

num labels(G)—a function that, for the given label set `, returns how many of
the labels are in subgraph G;

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

426 DANNY DOLEV AND NIR SHAVIT

function L (`, i);
function Lk(G);
begin
1: if k= 1 then return G;
2: if `max[n..k] 6= G

then return Lk−1(G.1);
3: if `max[n..k−1] = G.2

then return Lk−1(G.3);
4: if k > 2 then

if `max[k−2] ∈ {2, 3, 4, 5} and
(`i[n..k−1] 6= `max[n..k−1])

then return Lk−1(G.dom(`max[k−1]));
5: if (num labels(`max[n..k−1]) < k−1) or

((num labels(`max[n..k−1]) = k−1) and
(`i[n..k−1] = `max[n..k−1]))
then return Lk−1(G.`max[k−1])
else return Lk−1(G.dom(`max[k−1]));

end Lk;
begin

`max := max(dominating set(`, `i));
return Ln(Tn);

end L;

Fig. 6. The labeling function.

dom(x)—a function that, for a given digit x ∈ {1..5} representing a node in
the graph T 2, returns the next dominating node, namely, dom(1) = 2, dom(2) = 3,
dom(3) = 4, dom(4) = 5, and dom(5) = 3;

dominating set(ˆ̀, `i)—a function that, for a set of labels ˆ̀⊆ ` and a label `i ∈ ˆ̀,

returns a subset of labels {`j ∈ ˆ̀| `i V≺ `j} ∪ {`i}; and

max(ˆ̀)—a function that, for a set of labels ˆ̀⊆ `, returns a label

(`x ∈ ˆ̀ : |dominating set(ˆ̀, `x)| ≤ |dominating set(ˆ̀, `j)|, ∀`j ∈ ˆ̀),

the maximal label, i.e., the one least dominated within this set.
Define G.x to be the concatenation of string G and digit x. Figure 6 is thus

the definition of the labeling function L(`, i), where the parameter subgraphs G are
identified with the relative label prefixes and Tn is identified with the label 1. To
give the reader some intuition about the properties of the labeling operation, let it be
assumed that one can talk about the values of the labels of all processes at “points
in time.” To show how the labeling operation executions allow us to define the order
=⇒, we will first argue informally that they meet a much simpler requirement, namely,
that at any point in time, the following hold:

R1. The labels reflect the precedence among nonconcurrent labeling operation
executions.

R2. The subgraph of the precedence graph Tn induced by the labeled nodes
(those whose corresponding label is written in some vi) contains no cycle.

Since Tn is a tournament, R2 implies that at any point in time, all labels are
totally ordered. One should notice that these two requirements are easily met by
the unbounded implementation since for any n − 1 nodes, one can always choose a

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 427

4

3

5

x
y

z

a
b

c

Fig. 7. Starting state for the examples.

dominating node in an unbounded total order graph in order to maintain R1, and
this will never impair R2 because the graph does not contain cycles.

Let us begin by showing that the labeling operation executions maintain the
following two “invariants” at any point in time:

(1) There are labels on at most two of the three nodes in any cycle of any subgraph
T k. (The cycle consists of “supernodes” {3, 4, 5}, called supernodes since they are
actually T k−1 subgraphs.)

(2) There are no more than k labels in the cycle of any subgraph T k.
Maintaining the second invariant is the key to maintaining the first, and the first
implies R2.

The manner by which the invariance of (1) and (2) is preserved is explained via
several examples. In these examples, T 3 is a precedence graph for a system of three
processes x, y, and z. As shown in Figure 7, all of the examples start at a point in

time where `
[b]
y = 134, `

[a]
x = 135, and `

[c]
z = 141, that is, all labels are totally ordered

by V≺. In the figure, a label such as `
[a]
x = 135 is denoted by shading node 135 and

denoting it with the mark xa.
Example 4.1. Assume that the following sequence of labeling operation executions

occur sequentially. Process y performs L
[b+1]
y , reading `

[a]
x , `

[b]
y , and `

[c]
z and moving

based on L (`, y) to `
[b+1]
y = 142. Process z performs L

[c+1]
z , reading the new label

`
[b+1]
y . It thus moves to the T 2 subgraph 14, following the rule that the node chosen

should be the “lowest node dominating all other nodes with labels.” This is actually
the most basic rule implied by the definition of L. The move to a dominating node is
intended to meet R1.

Processes y and z can continue forever to choose `
[b+2]
y = 144, `

[c+2]
z = 145,

`
[b+3]
y = 143, . . . (that is, move in the cycle of 14), maintaining the above invariants,

because the T 2 graph is a precedence graph for two processes. If at some point x

moves, in L
[a+1]
x it will read the labels of both z and y as being in the T 2 subgraph 14.

A T 2 subgraph is a precedence graph able to accommodate two labels and no more.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

428 DANNY DOLEV AND NIR SHAVIT

Since num labels (′14′) = 2 in L
[a+1]
x , that is, there are already two labels in the T 2

subgraph, by line 5 of L (`, i), x will move to `
[a+1]
x = 151, and so on.

The reader can convince herself that following any labeling operation execution

L
[c]
z by some process z, the above invariants hold. Furthermore, for the set of labels

of processes y (y 6= z) that were read in L
[c]
z ’s collect operation (denoted read(L

[c]
z)),

it is the case that

(3) (∀` [b]
y ∈ read(L [c]

z)) (` [b]
y

V≺ ` [c]
z).

This invariant—that the new label chosen is greater than all those read—is the
basis for meeting requirement R1.

As seen in the following example, in the concurrent case, more than k labels may
move into the same T k subgraph at the same time. It is thus not immediately clear
why the second invariant holds.

Example 4.2. Assume that the following sequence of labeling operation executions

occur concurrently. Processes x and y begin performing L
[a+1]
x and L

[b+1]
y concur-

rently, reading `
[a]
x , `

[b]
y , and `

[c]
z and computing L such that `

[a+1]
x = `

[b+1]
y = 142. If

they then continue to complete their operations by writing their labels, though they
choose the same node, they were concurrent and can be ordered by relative id. If any of
them were to continue to perform a new labeling operation, since num labels(′14′) > 2,
it would choose label 151, not entering the cycle. However, let us suppose that they

do not both complete writing their labels, that is, x stops just before writing `
[a+1]
x

to vx, while y writes `
[b+1]
y = 142. Process z then performs L

[c+1]
z , reading the new

label `
[b+1]
y and the old label `

[a]
x , thus moving to `

[c+1]
z = 143. Processes y and z

continue to move into and in the cycle of the T 2 subgraph 14 since they continue to

read x’s old label. Then at some point, x completes L
[a+1]
x , and there are three labels

in 14 (two of them in the cycle). However, if x now performs a new labeling L
[a+2]
x ,

it will read the labels of both x and y as being in 14. Since num labels(′14′) > 2, by

line 5 of L (`, i), x will move to `
[a+2]
x = 151, not entering the cycle.

If nodes 1 and 2 did not exist in a T 2 subgraph (that is, each T 2 subgraph was a
cycle of three nodes), a process’ first move into T k would be onto a node of the cycle.
The reader can verify that the sequence of operations in Example 4.2, given that T 2

is just a cycle, would cause the labels of x, y, and z to end up each on a different node
of the cycle, contradicting the first invariant. Based on the existence of nodes 1 and
2, this does not occur.

The following is intended to explain to the reader why for a given level k (k = 2 in
the example), even if more than k processes move into a T k subgraph without reading
one another’s labels, at most k of them will enter the cycle in T k. The reason is the
following well-known flag principle 9:

If there are k + 1 people, each of which first raises a flag and then
counts the number of raised flags, at least one person must see k+ 1
flags raised.

By the definition of the labeling function L, each process moving into the cycle of a
T k subgraph must first move to either supernode 1 or 2 in T k, and only then can it
perform a labeling into the cycle. The move to 1 or 2 is the raising of the flag, and
the move into the cycle is the counting of all flags.

9 The proof follows since the last person to start counting flags must have seen k+ 1 flags raised.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 429

4

3

5

x
y

z

a
b

c

x a+1

y b+1

y b+2

Fig. 8. A collect returning a cycle.

Example 4.3 below, which is depicted in Figure 8, shows that even though by the
above there are at most k labels at a time in any T k subgraph, the sets of labels read
in a labeling operation execution may contain cycles.

Example 4.3. Process z begins performing L
[c+1]
z , reading `

[a]
x = 135. Process y

then performs L
[b+1]
y , reading `

[a]
x , `

[b]
y , and `

[c]
z and moving to `

[b+1]
y = 142. Process

x performs L
[a+1]
x , reading the new label `

[b+1]
y and `

[c]
z and thus, by line 5 of L,

moving to `
[a+1]
x = 151. Process y then performs L

[b+2]
y , reading `

[a+1]
x and moving

to `
[b+2]
y = 152. Finally, process z reads `

[b+2]
y . It thus read `

[a]
x = 135, `

[b+2]
y = 152,

and `
[c]
z = 141, three labels on a cycle.

In order to select a label that dominates all others, z must establish where the
“maximal label” among them is. To overcome the problem that the labels read form
cycles (as in the example above), the labeling function L (`, z) does not take into

account “old values” such as `
[a]
x ; it considers only the labels that dominate the

current label `
[c]
z .

In order to maintain the first invariant, z should move to `
[c+1]
z = 131 to dominate

the current labels of both x and y without moving directly into the cycle. However,

there is seemingly a problem since z did not read the label `
[a+1]
x = 151; so how can

it know that there are already two labels in the T 2 subgraph 15? The solution is

based on the fact that z can indirectly deduce the existence of `
[a+1]
x = 151. By the

first invariant, in all of the cycle of T 3, there are at most three labels. In order to

move to `
[b+1]
y = 152, y must have read some label in node 151 of the T 2 subgraph

15. By simple elimination, this must be a label of x. This rule is maintained by the
application of line 4 in Lk.

If the above scenario had occurred in the cycle of a T k graph, where k > 3, then
in order to allow the same reasoning as above, it would have to be that z’s reading

`
[b+2]
y = 152 (or `

[b+2]
y ∈ {153, 154, 155}) would imply that there are k−2 labels apart

from that of y in the T k−1 subgraph 15. It would thus have to be that if `
[b+2]
y is

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

430 DANNY DOLEV AND NIR SHAVIT

L
[b+2]

y

L
[c+1]
z

L
[b+1]

yL
[b]

y

L
[a+1]

xL
[a]

x

read

read

read

Fig. 9. The observed relation.

on supernode 2 in 15, it already established the existence of k − 2 (and not just one)
other labels in supernode 1.

It is for this purpose that supernode 1 of any T k graph, where k > 2, is not a
single node but a T k−1 subgraph. This creates a situation whereby as long as there
are k − 1 or fewer labels in T k, all labels enter and move around in supernode 1.

Supernode 2 can be chosen in L
[b+2]
y only if k − 1 labels were established by it as

being in supernode 1 (i.e., supernode 1 is full). Since supernode 2 is a “bridge” that
some process must “cross” (choose) before any process can move into the cycle, the

above reasoning for z holds in case it read `
[b+2]
y ∈ {152, 153, 154, 155}.

Although the above invariants hold, it follows from Example 4.3 that the property
that the chosen new label is greater than all those read, true for sequential labeling
operation executions, does not hold in the concurrent case. Fortunately, there is a
similar property that does hold, a property that will prove important in the imple-

mentation of the scan. Recall that read (L
[b]
y) denotes the set of label values read

in the collect of L
[b]
y . Let us define the following observed relation among labeling

operation executions to be the transitive closure of the read relation.

Definition 4.1. A labeling operation execution L
[a]
x is observed by L

[b]
y (denoted

L
[a]
x

-obs L
[b]
y) if `

[a]
x ∈ read(L

[b]
y) or there exists an L

[c]
z such that `

[c]
z ∈ read (L

[b]
y)

and L
[a]
x

-obs L
[c]
z .

Definition 4.2. Let the maximal observed set max obs(L
[a]
x) be defined as

{L [b]
y | y ∈ {1..n}, y 6= x, L [b]

y
-obs L [a]

x and

(∀L [b′]
y) (if L [b]

y
- L [b′]

y , then L [b′]
y 6-obs L [a]

x)}.

It thus consists of the “latest” of labeling operation executions observed for each
process. In a concurrent execution, instead of invariant (3) stating that the new label
chosen is greater than all the labels read, it is the case that

(3′) (∀` [b]
y ∈ max obs (L [a]

x)) (` [b]
y

V≺ ` [a]
x).

The new label chosen is greater than the latest of those observed for each process. As

shown in Figure 9, for the labeling L
[c+1]
z of Example 4.3, although z read `

[a]
x = 143

and `
[c+1]
z

V≺ ` [a]
x , it is the case that its maximal observed label is `

[a+1]
x , and `

[a+1]
x

V≺
`

[c+1]
z .

Finally, the following is the irreflexive total order =⇒ on the labeling operation
executions as required by property P1.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 431

1label j = 2label i
=

read(i) read(j)

label j 1=

read(i) read(j)

S1:

S2 :

L L :ji ,

Fig. 10. Ambiguity given bounded labels.

Definition 4.3. Given any two distinct labeling operation executions L
[a]
x and

L
[b]
y , L

[a]
x =⇒ L

[b]
y if either

1. L
[a]
x

-obs L
[b]
y or

2. L
[a]
x 6-obs L

[b]
y , L

[b]
y 6-obs L

[a]
x , and `

[a]
x

V≺ ` [b]
y .

Since with every L
[a]
x there is an associated label `

[a]
x , =⇒ can be seen as a

“lexicographical” order on pairs (L
[a]
x , `

[a]
x). The first element in the pair is ordered

by -obs , a partial order that is consistent with the ordering - . (If L
[a]
x

- L
[b]
y ,

then in L
[b]
y , y read `

[a]
x or a later label.) The second element is ordered by V≺, an

irreflexive and antisymmetric relation. Parts of the rather involved reasoning as to
why the “static” relation V≺ on the labels completes the “dynamic” partial order -obs

to a total order on all labeling operation executions are provided in section 5.9. The
main difficulty is in establishing transitivity. The intuition as to why =⇒ is transitive
is based on the fact that “at any point in time,” the current labels of all processes are
totally ordered, that is, no three labels are on three different supernodes of a cycle in
any T k subgraph. The reader is encouraged to try to bring about a scenario where
there are three labeling operation executions such that

L [a]
x =⇒ L [b]

y =⇒ L [c]
z =⇒ L [a]

x

while keeping in mind that -obs is transitive. It will become clear that this requires
that at some point in time, there will be three labels of x, y, and z on three different
supernodes of a cycle in some T k subgraph, a contradiction.

4.4. The scan operation. The scan operation returns a pair (¯̀,≺). In the
scan operation of the unbounded label implementation, the linearization order among
the labeling operation executions can be determined just by reading the labels since
the order among any two operations is just the order among their associated labels.
However, as Example 4.4 shows, if labels are taken from a bounded range (and there-
fore the same labels are repeatedly used), a process scanning the labels concurrently
with ongoing labeling operations cannot deduce the order =⇒ from the order of the
labels alone.

Example 4.4. In Figure 10, segments represent operation-execution intervals,
where time runs from left to right. Two processes i and j perform labeling operations
sequentially, j followed by i, followed by many labelings, until eventually the labels are
used, and j, for example, uses the same label as before. A third process z performs
a scan concurrently with the labelings, reading labeli and then labelj . S1 and S2

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

432 DANNY DOLEV AND NIR SHAVIT

represent possible executions of this same scan, the only difference being that many
labeling operations of other processes occurred between the reads in S2. In both the
case where the scan is of the form S1 and the case where it is of the form S2, the
values collected are labeli = 2 and labelj = 1, where the order among the labels is, say,
1 < 2. However, in the case of S1, j’s labeling preceded i’s, while in S2, i’s labeling
preceded j’s. Thus the order of the labels is not the order among the labeling opera-
tions.

However, we do wish to provide the exact form of solution as in the unbounded
case, where just by reading the labels, the scanning process can return a set of labels
and the order among them. From Example 4.4, it should be clear that the order ≺
returned by the scan cannot be the order =⇒ among the associated labels of labeled-
values in ¯̀. Nevertheless, the requirement of property P1b is that ≺ be consistent
with =⇒ for the set of labeling operation executions of labeled-values in ¯̀. The key to
the solution is to perform many collections of labels and then, based on the properties
proven in what follows, return n of them for which ≺ can be determined.

The scan algorithm thus consists of two main steps, a sequence of 8n logn collect
operations10 and an analysis phase of the collected labels to select a set ¯̀and an order
≺.

The 8n logn collect operations are logically divided into n phases, where each
phase consists of log n levels, each of eight collects. We use the notation ` c,m,k, c ∈
{1..8}, m ∈ {1..dlogne}, and k ∈ {1..n}, to denote variables, each holding a set of

labels {` c,m,k1 , . . . , ` c,m,kn } collected in the cth collect operation execution of the mth
level of the kth phase. Let half (r) and other half (r) be complementary functions that,
for a given set r, return two disjoint subsets r1 and r2 such that r1 ∪ r2 = r and
−1 ≤ ||r1|| − ||r2|| ≤ 1.

The scan algorithm, presented in Figure 11, returns the indexed set of labeled-
values ¯̀, one of each process, and an ordering ≺ on their indexes. This order is
represented by the vector O[1..n], holding a permutation of the indexes in {1..n}, the

number in the ith position representing the ith largest element in the order. The scan
algorithm begins with a sequence of 8ndlogne collect operation executions, for which
the returned labels are all saved in the variables `c,m,k, c ∈ {1..8}, m ∈ {1..dlogne},
and k ∈ {1..n}. The remainder of the algorithm defines how to choose n of these
labels, one per process, for which ≺ (i.e., =⇒) can be established. The following is an
outline of how this selection process is performed. A formal proof of its correctness
can be found in section 5.

By the order of label collection, the labels read in phase k = 1 are the earliest
to have been collected and those for k = n the last. Notice that from the 8dlogne
collected label sets of each phase, the algorithm selects one label. The selected label
in the kth phase will be the k largest in the order ≺. As it turns out, in order to be
able to show that it is the kth largest, it suffices that the following condition holds
(slightly abusing notation in the definition).

Condition 1. For the label `
8,dlog ne,k
s , collected in the dlogneth level of the kth

phase, and any label ` 8,1,k
y of a process y ∈ R, collected in the first level of the kth

phase, it is the case that L 8,1,k
y =⇒ L

8,dlog ne,k
s .

To prove that this condition suffices, let it be shown that if it is maintained, the
labeling operation execution of a label returned in a phase k′ < k precedes (in the

10 Note that, as mentioned in section 1, the scan algorithm requires a scanning process only to
read other’s labels and does not require it to write.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 433

function scan;
function select(m,k,r);
begin

if ||r|| = 1 then return (x : x ∈ r);
else

x := select(m−1, k, half (r));
y := select(m−1, k, other half (r));
if (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,kx

V≺ ` c2,m,ky)
then return y
else return x

fi fi;
end select;

begin
R := {1..n};
¯̀ := ∅;
for k := 1 to n do

for m := 1 to dlogne do
for c := 1 to 8 do

` c,m,k := collect
od od od;
for k := n downto 1 do

s := select(dlogne, k, R);
¯̀ := ¯̀∪ {value(`

8,dlog ne,k
s)};

O[s] := k;
R := R − {s};

od;
return (¯̀, O);

end scan;

Fig. 11. The scan algorithm.

ordering =⇒) that of the label returned in phase k. The following shows that this is

the case for the labels `
8,dlog ne,k
x , `

8,dlog ne,k−1
y , and `

8,dlog ne,k−2
z returned in phases k,

k−1, and k−2, respectively. The same line of proof can be extended inductively to
all k′ < k.

By Condition 1, L 8,1,k
y =⇒ L

8,dlog ne,k
x . Since the read of ` 8,1,k

y was performed

after that of `
8,dlog ne,k−1
y , either the label of the same labeling operation execu-

tion was read in both cases or L
8,dlog ne,k−1
y =⇒ L

8,dlog ne,k
x . By similar reasoning,

L
8,dlog ne,k−2
z =⇒ L

8,dlog ne,k−1
y , which by the transitivity of =⇒ establishes L

8,dlog ne,k−2
z

=⇒ L
8,dlog ne,k
x .

It remains to be shown that the label returned in any phase, determined by
the select function, meets Condition 1. The select function is a recursively defined
“winner-take-all”-type algorithm among the processes in R. In any given phase, R
is the set of processes for which a label has not been selected in earlier phases. The
select function returns the id of the “winner,” a process s that meets Condition 1. At
any level m of the application of select(m, k, r), the winners of the selections at level
m−1 are paired up, and from each pair one “winner” process is selected to be passed

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

434 DANNY DOLEV AND NIR SHAVIT

on to the (m+1)th level of selection. After at most dlog ||R||e levels, s, the winner of
all selections, is returned.

Based on the definition of the select function, maintaining the following condi-
tion two suffices to assure that the label of the process s returned by select(m, k, r)
meets Condition 1.

Condition 2. Of the two processes x and y in the application of select at level m
of phase k, the one returned, say x, is such that L 1,m,k

y =⇒ L 8,m,k
x , where ` 1,m,k

y and

` 8,m,k
x , respectively, are the labels associated with these labeling operation executions.

Maintaining Condition 2 suffices for the following reason. If at level m process
x was selected between x and y and at level m− 1 process y was selected between y
and z, by the same line of proof as above, from L 1,m,k

y =⇒ L 8,m,k
x and L 1,m−1,k

z =⇒
L 8,m−1,k
y , it follows that L 8,m−2,k

z =⇒ L 8,m,k
x . By induction, this implies Condition 1.

It remains to be shown that Condition 2 can be met. Recall Example 4.4, which
implies that it is impossible to establish the order =⇒ among two labeling opera-
tion executions from the order among their associated labels alone. To overcome
this problem, instead of attempting to decide the order between two given labeling
operation executions, the algorithm will choose a pair out of several given labeling
operation executions for which the order =⇒ can be determined. Thus to allow the
select operation at level m of phase k to choose a “winner” process, say x, for which
L1,m,k
y =⇒ L8,m,k

x , labels of x and y from eight consecutive collects will be analyzed.
Let it first be shown that if the following condition holds for y, namely, if it is the

case that

[Condition 3.] (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,kx
V≺ ` c2,m,ky),

then L c1,m,kx =⇒ L c2,m,ky . (Because of the order of label collecting, this will imply

L 1,m,k
x =⇒ L 8,m,k

y .) Assume by way of contradiction that L c1,m,kx =⇒ L c2,m,ky . Since

` c1,m,kx
V≺ ` c2,m,ky , it must be by the definition of =⇒ that L c2,m,ky

-obs L c1,m,kx . It

cannot be that ` c2,m,ky ∈ max obs(L c1,m,kx) since by the properties of the labeling

scheme, for the label `
[b]
y ∈ max obs(L c1,m,kx), `

[b]
y

V≺ ` c1,m,kx . Thus there must be a

different labeling operation execution `
[b]
y ∈ max obs(L c1,m,kx), L c2,m,ky

- L
[b]
y . This

label `
[b]
y was already observed (i.e., must have been written) before the end of the

read of ` c1,m,kx . Thus `
[b]
y or a label later than it must have been read instead of

` c2,m,ky in the collect c2 of level m in phase k, a contradiction.
It remains to be shown that if Condition 3 does not hold for y, it is the case that

L 1,m,k
y =⇒ L 8,m,k

x , and x can be correctly returned. Assume by way of contradiction
that Condition 3 does not hold for y. By the same arguments as above, it cannot
be that Condition 3 holds for x, that is, (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,ky

V≺
` c2,m,kx). Therefore, it must be that there are four nonconsecutive collects of ` c1,m,k,
c1 ∈ {1, 3, 5, 7}, and four nonconsecutive collects of ` c2,m,k, c2 ∈ {2, 4, 6, 8}, such that
the labels ` c1,m,ky , c1 ∈ {1, 3, 5, 7}, are all different from one another and the labels

` c2,m,kx , c2 ∈ {2, 4, 6, 8}, are all different from one another. The reason is that if any
two of them, say ` 3,m,k

y and ` 5,m,k
y , are the same, then in order for Condition 3 not to

hold for x c1 = 4 and c2 = 3, it must be that ` 4,m,k
x

V≺ ` 3,m,k
y . However, since ` 3,m,k

y

and ` 5,m,k
y are the same, it would follow that ` 4,m,k

x
V≺ ` 5,m,k

y , and Condition 3 would
hold for y, a contradiction.

To complete the proof, it remains to be shown that if the labels ` c1,m,ky , c1 ∈
{1, 3, 5, 7}, are all different from one another and the labels ` c2,m,kx , c2 ∈ {2, 4, 6, 8},

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 435

are all different from one another, then L 1,m,k
y =⇒ L 8,m,k

x . The situation above is
such that during the eight collect operations, each of the processes x and y executed
a new labeling operation at least three times. It can be formally shown11 that after x
and y moved at least three times, the third new labeling operation execution L 8,m,k

x

occurred completely after the initial labeling of y, that is, after L 1,m,k
y

- L 8,m,k
x

(see Figure 13 in section 5.8). The scan thus takes O(n2 logn) read operations.
As a final comment, note that for algorithms where only the maximum label is

required and not a complete order among all returned labels (as in the construction
of an MRMW atomic register or solutions to the mutual exclusion problem), only one
phase of label collection is required, that is, only 8 log n collects.12

5. Correctness proof.

5.1. A short review of Lamport’s formal theory. This is a minimal outline
(due to Ben-David [Ben88]) of Lamport’s formalism, on which the correctness proof in
this chapter is based. The reader is encouraged to consult [Lam86c, Lam86d, Lam86a,
Lam86b] for an elaborate presentation and discussion.

Lamport bases his formal theory on two abstract relations over operation execu-
tions. For operation executions A and B, “A - B” stands for “A precedes B” and
“A - B” stands for “A can causally affect B.”

A system execution is a triple 〈ϕ, -, -〉, where ϕ is a set of operation executions
and - and - are binary relations over ϕ. Lamport offers the following axioms:

A1. - is an irreflexive transitive relation.
A2. If A - B, then A - B and B 6- A.
A3. If (A - B and B - C) or (A - B and B - C), then A - C.
A4. If A - B - C - D, then A - D.
A5. For any A, the set of B such that A 6- B is finite.
An intuition for these axioms can be gained by considering the following model

for it. Let E be a partially ordered set of events and let ϕ be a collection of nonempty
subsets of E . For A andB in ϕ, define A - B if and only if (∀a ∈ A) (∀b ∈ B) (a < b)
(in the sense of E) and A - B if and only if (∃a ∈ A) (∃b ∈ B) (a < b). A
straightforward checking shows that such models satisfy axioms A1–A4 and also the
following axiom:

A4∗. If A - B - C - D, then A - D.
This last axiom was suggested by Abraham13 in [AB87], where a completeness

theorem was proven for the above-mentioned class of models with respect to axioms
{A1, A2, A3, A4, A4∗}. An important class of models is obtained when E is a linear
(total) ordering. In such a case, the system satisfies an additional axiom:

Global time. For all A and B, it is the case that either A - B or B - A but
not both.

The above axioms can be extended to nonterminating operation executions as
described in [Lam86c]. Added on top of these axioms are the communication axioms,
in our case axioms B0–B5 of [Lam86d], for communication via shared registers. These
axioms formalize the behavior of a single-writer multireader atomic register. In a few
words, axioms B0–B4 define what constitutes regular register behavior, namely, that
reads can return only values that

11 This claim is not true if fewer than three new labelings took place.
12 The number of collects in each phase can be lowered to 5 log n if one gives up the property that

the order of reads in a collect be arbitrary.
13 Ben-David was later informed that this result was obtained independently by Anger.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

436 DANNY DOLEV AND NIR SHAVIT

• were actually written,
• were written before the end of the read, and
• were not overwritten before the beginning of read.

Axiom B5 is added to these, which restricts the allowed behavior of the register by
requiring that reads and writes be linearizable. Such a register that abides by axioms
B0–B5 is called atomic since, in effect, its behavior is equivalent to one in which all
reads and writes are “atomic,” that is, occur in nonoverlapping intervals of time.

5.2. Proof outline. The proof will follow Definition 8 of [Lam86a], namely, that
a system S implements a system H if there is a mapping m : S 7→ H such that for
every system execution 〈ϕ, -, -〉 in S, 〈ϕ, -, -〉 implements m(〈ϕ, -, -〉).
The definition of a system execution used in what follows is that of [Lam86a] under
the assumption of global time. Theorem 5.1 below establishes the correctness of the
implementation.

Theorem 5.1. The system defined by the labeling and scan procedures implements
a concurrent time-stamp system.

In order to prove the theorem correct, the systems involved need to be formally
defined and a mapping between them must be established.

5.3. System definitions. The labeling and scan procedures of the previous sec-
tions define a system S, the set of all system executions that consist of reads and
writes of the single-writer multireader atomic registers v1, . . . , vn, such that the only
operations on these registers are the ones indicated by the scan and labeling algo-
rithms. Formally, S contains all system executions 〈ϕ, -, -〉 such that we have
the following:

1. ϕ consists of reads and writes of single-writer multireader atomic registers
v1, . . . , vn (with register axioms B0–B5 restricting such read and write operations
[Lam86b]).

2. Each vx is written by process x and read by all processes in {1..n}, where r
[k]
x (y)

(w
[k]
x (x)) denote the kth read (respectively, write) of vx by process y (respectively, x).

3. The read and write operation executions of a process x are totally ordered by
-.

4. For any process z and any x and y:

(a) If the read operation r
[k]
x (z) occurs, then r

[k]
y (z) occurs, r

[k−1]
x (z) -

r
[k]
y (z), and if for some w

[k′]
z (z), r

[k]
x (z) - w

[k′]
z (z), then r

[k]
y (z) - w

[k′]
z (z).

(b) For any two writes w
[k]
z (z) and w

[k+1]
z (z), there exists a set of read

operation executions

Rk+1 = {r [α]
x (z) |w [k]

z (z) - r [α]
x (z) - w [k+1]

z (z), α ∈ {0, 1, . . .}},

of reads of vx such that ||Rk+1||mod (8ndlogne) = 1.

(c) For every r
[k]
x (z), r

[k]
x (z) ∈ Rr, for some r.

This fourth condition formalizes some of the semantics of labeling and scan pro-
cedures. It states that every read is part of a collect operation consisting of a sequence
of reads, one of each register, each collection ending before the next begins, and that
reads and writes are bunched in groups of either 8n logn collects or a collect followed
immediately by a write.

The following is a formal definition of H, a concurrent time-stamp system.
Definition 5.1. A concurrent time-stamp system is a set of system executions

〈ψ, -, -〉 that have properties P0–P4.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 437

Properties P1–P4 are as defined earlier, and the following is the definition of P0.

P0. The set of operation executions on the CTSS is the set ψ =
⋃
iψi, where each

ψi, the set of operation executions by process i, is as follows:

• A finite or infinite set of labeling operation executions {L [1]
i , L

[2]
i , . . .}: A

unique labeled-value `
[k]
i is associated with each L

[k]
i . The set of possible labeled-

values can be from any range. For example, if an atomic register is to be implemented,

the labeled-value can be the value written to the register. Given that the value `
[k]
i

may repeatedly appear, in order that a unique labeled-value be associated with each

L
[k]
i , let `

[k]
i be the triplet 〈` [k]

i , i, k〉, where i and k are dummy fields and only `
[k]
i is

visible to the user. There is thus a one-to-one mapping from labeled-values to labeling
operations.

• A finite or infinite set of scan operation executions {S [1]
i , S

[2]
i , . . .}: A view

¯̀= {` [k1]
1 , . . . , `

[kn]
n } is returned by each scan, with different labeled-values associated

with labeling operation executions of different processes.

• An initial labeling operation execution L
[0]
i with labeled-value `

[0]
i .

The initial labeling L
[0]
i

- S
[k]
j for any i, j, and k. (This is the same as assuming

that there is some initial labeled-value for any process i that a scan will obtain if
it preceded any labeling operation of i.) All operation executions in ψi are totally
ordered by -, that is, they occur sequentially.

5.4. The mapping. By Definition 8 of [Lam86a], to show that the labeling and
scan procedures implement a CTSS, a mapping m from S to H must be defined. In the
definition of the labeling and scan procedures, for each system execution 〈ϕ, -, -〉
of S, the set of operation executions m(ϕ) of m(〈ϕ, -, -〉) is the following higher-
level view of 〈ϕ, -, -〉:

1. Each labeling operation execution L
[k]
i consists of a set r

[k′]
1 (i), . . . , r

[k′]
n (i) of

reads followed by a write w
[k]
i (i), where k′ = max {α | r [α]

j (i) - w
[k]
i (i)}.

2. Each scan operation execution by process i is a set of reads

{r [α]
j (i) | j = 1..n, α = k..k + 8ndlogne and

(¬∃w [k′]
i (i), r

[α]
j (i) - w

[k′]
i (i) - r

[α+1]
j (i))},

all in ϕ and no element of which is part of another scan or labeling.

The set m(ϕ) meets conditions H1 and H2 of Definition 4 of [Lam86a], that
is, each of its elements is a finite and nonempty set of elements of ϕ and each el-
ement of ϕ belongs to a finite, nonzero number of elements of m(ϕ). It is thus a
higher-level view of ϕ. (In fact, this implies that the labeling and scan operations
as implemented are wait-free since waiting means that a higher-level operation takes
an infinite number of lower-level ones.) To complete the description of the mapping
m, the precedence relations -H and -H must be defined so that m(〈ϕ, -, -〉) is
defined as 〈m(ϕ), -H , -H 〉.

By choosing -H and -H to be the induced relations -* and -* as defined by
equation 2 of [Lam86a] (by equation 2, choosing the induced precedence relations -*

and -* for -H and -H simply means that the ordering among the higher-level scan
and labeling operation executions is that of the reads and writes implementing them),
axioms A1–A5 are met, implying that 〈m(ϕ), -H , -H 〉 is indeed a system execution.
Since condition H3 of Definition 5 of [Lam86a] is satisfied by the induced precedence

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

438 DANNY DOLEV AND NIR SHAVIT

relations,14 〈ϕ, -, -〉 implements 〈m(ϕ), -H , -H 〉.
Having defined the system 〈m(ϕ), -H , -H 〉, it remains to be shown that it is

indeed a CTSS, that is, is in H. This amounts to showing that 〈m(ϕ), -* , -* 〉
satisfies properties P0–P4.

5.5. Properties P0 and P2–P4. The proof that 〈m(ϕ), -* , -* 〉 meets prop-
erty P0 follows by applying equation 2 of [Lam86a] to 〈ϕ, -, -〉 (again, this
amounts to defining the high-level order among scan and labeling operation execu-
tions to be that among the reads and writes implementing them) and observing the
following:

1. The labeled-value `
[k]
i associated with each labeling operation L

[k]
i is just the

labeled-value part written to vi by the write w
[k]
i (i) of process i. (Recall that there

is also a label part of vi.)

2. Any labeled-value returned by a scan is the result of some write w
[k]
i (i).

3. The initial labeling L
[0]
i is the write of some initial labeled-value and label

11..1 to register vi.
The proof that ¯̀ and � are a view and an irreflexive total order on its elements

follows from the definition of the scan procedure. Since vi, i ∈ {1..n} are SWMR
atomic registers, applying equation 2 of [Lam86a] together with register axioms B0–
B5 to 〈ϕ, -, -〉 yields the proof that 〈m(ϕ), -* , -* 〉 satisfies properties P2, P3,
and P4. The details are left to the reader.

To simplify the presentation, for the remainder of this section, we use the notation

`
[k]
i to denote the label part of the value written to register vi in the labeling operation

execution L
[k]
i . We will use the notation value (`

[k]
i) to refer to the labeled-value part.

5.6. Properties of the observed relation. As part of the notation used in

what follows, rj(L
[k]
i) and w(L

[k]
i) will denote, respectively, the reading of vj and

writing of vi during a labeling operation execution L
[k]
i . Also, let m(ϕ)

L ⊆ m(ϕ)
denote the set of all labeling operation executions in m(ϕ). To prove that 〈m(ϕ), -*

, -* 〉 meets property P1, the relation =⇒ on the labeling operation executions in
m(ϕ) should be shown to be an irreflexive total order. The definition of this relation
(Definition 4.3) is based on that of the relation -obs (Definition 4.1).

The following lemma establishes the properties of -obs , later used to establish the
properties of =⇒.

Lemma 5.1. The relation -obs is an irreflexive partial order on the labeling oper-

ation executions in m(ϕ), such that for any two labeling operations L
[a]
i and L

[b]
j , if

L
[a]
i

-* L
[b]
j , then L

[a]
i

-obs L
[b]
j .

Proof. Since rj(L
[a]
i) - wi(L

[a]
i) for any j, it follows that -obs is irreflexive. The

rest of the proof is based on the three claims below.

Claim 5.1.1 (transitive). For any three labeling operation executions L
[a]
i , L

[b]
j ,

and L
[c]
k , if L

[a]
i

-obs L
[b]
j
-obs L

[c]
k , then L

[a]
i

-obs L
[c]
k .

Proof. The proof is by induction on the length of the minimal production se-

quence of the production of L
[b]
j

-obs L
[c]
k . If ||L [b]

j
-obs L

[c]
k || = 1, then by defini-

tion rj(L
[c]
k) = `

[b]
j and L

[a]
i

-obs L
[b]
j , which by the definition of -obs implies that

14 Definition 5 of [Lam86a] states that a lower-level system execution 〈ϕ, -, -〉 implements
a higher-level one 〈ψ, -H , -H 〉 if ψ is a higher-level view of ϕ and condition H3 holds, that is, for
any G, H ∈ ψ, if G -* H, then G -H H.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 439

L
[a]
i

-obs L
[c]
k . Assume that the induction hypothesis holds for every r′ < r. Let

||L [b]
j
-obs L

[c]
k || = r. By definition, there exists an L

[b′]
j such that L

[a]
i

-obs L
[b]
j
-obs

L
[b′]
j , where ||L [b]

j
-obs L

[b′]
j || = r−1 and rj(L

[c]
k) = `

[b′]
j . By the induction hypothesis,

L
[a]
i

-obs L
[b′]
j , which by definition implies that L

[a]
i

-obs L
[c]
k .

Corollary 5.1. If L
[a]
i

-obs L
[b]
j , then there exists a read ri(L

[β]
α) = `

[a]
i such

that w(L
[a]
i) - ri(L

[β]
α) - w(L

[b]
j) for some α and β (possibly α = j and β = b).

Proof. The proof is by induction on the length of the minimal production of the

observation sequence, as in the previous claim. If ||L [a]
i

-obs L
[b]
j || = 1, then by

definition α = j and β = b. Assume that the induction hypothesis holds for every

r′ < r. By the minimality of the production sequence, there must exist an L
[β]
α ,

ri(L
[β]
α) = `

[a]
i , such that ||L [β]

α
-obs L

[b]
j || = r− 1. By the induction hypothesis, there

exist α′ and β′ such that

w(L [β]
α) - rα(L

[β′]
α′) - w(L

[b]
j),

where possibly α′ = j and β′ = b. By the definition of the labeling operation,

ri(L
[β]
α) - w(L

[β]
α), and so

ri(L
[β]
α) - w(L [β]

α) - rα(L
[β′]
α′) - w(L

[b]
j),

which by axiom A4 implies ri(L
[β]
α) - w(L

[b]
j). Since ri(L

[β]
α) = `

[a]
i , it follows by

atomic register axiom B5 that w(L
[a]
i) - ri(L

[β]
α) - w(L

[b]
j).

Claim 5.1.2 (antisymmetric). For any two distinct labeling operation executions

L
[a]
i and L

[b]
j , if L

[a]
i

-obs L
[b]
j , then L

[b]
j 6-obs L

[a]
i .

Proof. Assume by way of contradiction that L
[a]
i

-obs L
[b]
j and L

[b]
j

-obs L
[a]
i .

Thus by Corollary 5.1, for some α, β, γ, and δ (possibly α = j, β = b, γ = i, or
δ = a),

w(L
[a]
i) - ri(L

[β]
α) - w(L

[b]
j) and

w(L
[b]
j) - rj(L

[δ]
γ) - w(L

[a]
i).

Since this implies

w(L
[a]
i) - ri(L

[β]
α) - w(L

[b]
j) - rj(L

[δ]
γ),

by axiom A4∗, w(L
[a]
i) - rj(L

[δ]
γ). By w(L

[a]
i) - rj(L

[δ]
γ) and rj(L

[δ]
γ) -

w(L
[a]
i), a contradiction to the axiom of global time is derived.

Claim 5.1.3 (consistent). If L
[a]
x

-* L
[b]
y , then L

[a]
x

-obs L
[b]
y .

Proof. If x = y, then rx(L
[a+1]
y) = `

[a]
x , and by induction, for b > a, L

[a]
x

-obs

L
[b]
y . If x 6= y, then by register axioms B0–B4, since w(L

[a]
x) - rx(L

[b]
y), either

rx(L
[b]
y) = `

[a]
x (implying L

[a]
x

-obs L
[b]
y) or there exists an L

[a′]
x , L

[a]
x

-* L
[a′]
x , where

rx(L
[b]
y) = `

[a′]
x , which by the transitivity of -obs (Claim 5.1.1) implies L

[a]
x

-obs L
[b]
y .

This completes the proof of Lemma 5.1.

The following lemma formalizes the property that whenever a new label `
[a]
x is

selected, it is greater (by the ordering V≺) then the latest label observed in L
[a]
x for

any process y 6= x.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

440 DANNY DOLEV AND NIR SHAVIT

Lemma 5.2. For any labeling operation execution L
[a]
x , it is the case that

(∀` [b]
y ∈ max obs(L [a]

x)) (` [b]
y

V≺ ` [a]
x).

To simplify the exposition, the the proof is differed to section 5.9, where it is
joined with the proof of Claim 5.3.2.

5.7. Property P1a. The following lemma asserts that =⇒meets part a of prop-
erty P1.

Lemma 5.3. The relation =⇒ is an irreflexive total order on the labeling operation

executions in m(ϕ) such that for any two labeling operations L
[a]
i and L

[b]
j , if L

[a]
i

-*

L
[b]
j , then L

[a]
i =⇒ L

[b]
j .

Proof. By Definition 4.3, the relation =⇒ is irreflexive and total, and is consistent
with the ordering -* among the labeling operation executions in m(ϕ). The following
two claims complete the proof by showing that it is also antisymmetric and transitive.

Claim 5.3.1 (antisymmetric). For any two distinct labeling operation executions

L
[a]
i and L

[b]
j , if L

[a]
i =⇒ L

[b]
j , then L

[a]
i 6⇐= L

[b]
j .

Proof. Assume by way of contradiction that for two distinct labeling operation

executions, L
[a]
i =⇒ L

[b]
j and L

[a]
i ⇐= L

[b]
j . Since -obs is antisymmetric, it is not

the case that both L
[a]
i

-obs L
[b]
j and L

[b]
j

-obs L
[a]
i hold. Thus if L

[a]
i

-obs L
[b]
j ,

L
[b]
j 6=⇒ L

[a]
i even if `

[b]
j

V≺ `
[a]
i , a contradiction. Thus it must be the case that

`
[b]
j

V≺ `
[a]
i and `

[a]
i

V≺ `
[b]
j , which contradicts the definition of the ordering V≺ of the

labels.
Claim 5.3.2 (transitive). For any three labeling operation executions L

[a]
i , L

[b]
j ,

and L
[c]
k , L

[a]
i =⇒ L

[b]
j =⇒ L

[c]
k implies L

[a]
i =⇒ L

[c]
k .

Due to its extreme length and to simplify the presentation, the proof is deferred
to section 5.9.

This completes the proof of Lemma 5.3.

5.8. Property P1b. It remains to be proven that 〈m(ϕ), -* , -* 〉 meets part

b of property P1, that is, for any scan operation execution S
[k]
i that returns (¯̀,≺),

where

value(` [a]
x), value(` [b]

y) ∈ ¯̀,

it is the case that x ≺ y if and only if L
[a]
x =⇒ L

[b]
y . Since both ≺ and =⇒ are

irreflexive total orders, it suffices to show the “only if” direction. By the definition of
the scan implementation, the returned order ≺ among the indexes of labeled-values in
¯̀ is just the ordering among the collection phases in which they were selected. Thus

it suffices to prove that in any scan operation execution S
[k]
i that returns (¯̀,≺), if

value(`
[a]
x) was returned in phase k′ and value (`

[b]
y) was returned in phase k, where

k′ < k, then L
[a]
x =⇒ L

[b]
y . This is captured by the following lemma (slightly abusing

notation).
Lemma 5.4. In any scan operation execution, for any i such that O[i] < O[j],

where value(`
8,dlog ne,O[i]
i), value(`

8,dlog ne,O[j]
j) ∈ ¯̀, it is the case that L

8,dlog ne,O[i]
i =⇒

L
8,dlog ne,O[j]
j .

Proof. The general outline of the proof is as follows. Recall that a phase of the
scan execution consists of 8 log n collect operation executions, where each consecutive

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 441

eight of them are called a level in the phase. The “first” level is the earliest collected
and the “lognth” is the latest. The proof begins with Claim 5.4.1, which states that
the relation between two labels in any two collects can be extended to the collects
preceding and following them. Then in Claims 5.4.3, 5.4.4, and 5.4.5, it is shown that
among the labels of any eight collects in a level of the scan, two labels can be chosen
for which the order =⇒ is known. Based on Claim 5.4.1 and the transitivity of =⇒,
the results of comparing labels of x and y in one level and y and z in a lower level
are extended to relate those of x and z, allowing us to show (Claim 5.4.6) that for

any k and R, if s is returned by select(dlogne, k, R), then L 1,1,k
i =⇒ L

8,dlog ne,k
s for

all i ∈ R − {s}. Finally, transitivity is used again to prove Lemma 5.4, that is, that
the results of different phases (select executions) are comparable and that the order
=⇒ among the labels returned is the order of the phases.

To simplify the presentation, in what follows, indexes will be dropped when it is
clear from the context what they should be. This will include the index of the process

i performing the scan or collect operation. The notation Cw will denote C
[w]
i , the

wth collect operation execution performed during a given scan. A label associated

with L
[a]
x , read in any Cw, will be denoted by `

[a]
x,w or `wx , and the labeling operation

execution L
[a]
x itself will be similarly denoted by L

[a]
x,w or Lwx .

The following claim will be used to assert that the relation between two labels in
any two collects can be extended to the collects preceding and following them. More
specifically, this claim asserts that if the label of x is ordered before that of y, where
x’s label was collected in a collect Cw+1, earlier than Cw+2 in which y’s was collected,
then any label of x collected in collect Cw that precedes collect Cw+1 must be ordered
before that of y and, similarly, any label of y from collect Cw+3 must be ordered after
that of x.

Claim 5.4.1. If Cw -* Cw+1
-* Cw+2 (or Cw+1

-* Cw+2
-* Cw+3) and if

for some `
[a]
x,w+1 and `

[b]
y,w+2, L

[a]
x =⇒ L

[b]
y , then for any `

[c]
x,w (similarly, `

[d]
y,w+3), it is

the case that L
[c]
x =⇒ L

[b]
y (similarly, L

[a]
x =⇒ L

[d]
y).

Proof. For any x, if a 6= c, that is, if they are of different labeling operations, then

it must be the case that L
[c]
x
-* L

[a]
x . The reason is that if this were not the case,

then since `
[c]
x,w was read in Cw and L

[a]
x

-* L
[c]
x , by atomic register axiom B5, it

could not be the case that `
[a]
x,w+1 was read in the later collect Cw+1, a contradiction.

By Definition 4.3, it is thus the case that L
[c]
x =⇒ L

[a]
x =⇒ L

[b]
y , which by transitivity

(Claim 5.3.2) implies L
[c]
x =⇒ L

[b]
y . By a similar proof, L

[a]
x =⇒ L

[d]
y .

Claim 5.4.2. For any eight collect operation executions of level m of phase k in
a given scan operation execution, if the condition

(∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,kx
V≺ ` c2,m,ky),

holds, then L 1,m,k
x =⇒ L 8,m,k

y , and otherwise L 1,m,k
y =⇒ L 8,m,k

x .
Proof. The following claim (Claim 5.4.3) establishes that there are three comple-

mentary conditions (one of the three must always hold) on the labels in the eight
collects:

1. There are a label of y and a label of x where the label of y was collected in
a later collect than that in which x was collected and where the label of y is greater
(by ≺) than the label of x.

2. This is the first condition with the roles of x and y reversed.
3. The labels of x and y have each changed at least three times during these

eight collect operation executions.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

442 DANNY DOLEV AND NIR SHAVIT

The claims that follow show that if the first condition holds, L 1,m,k
x =⇒ L 8,m,k

y ,

and if one of the other two holds, then L 1,m,k
y =⇒ L 8,m,k

x . More formally, we have
the following.

Claim 5.4.3. For the 16 labels ` c1,m,kx and ` c2,m,ky , c1, c2 ∈ {1..8}, collected in
level m of phase k of a scan operation execution, one of the following three conditions
must hold:

1. (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,kx
V≺ ` c2,m,ky).

2. (∃c1, c2 ∈ {1..8}) (c1 < c2) ∧ (` c1,m,ky
V≺ ` c2,m,kx).

3. The four labels ` 2,m,k
x , ` 4,m,k

x , ` 6,m,k
x , and ` 8,m,k

x differ from one another
according to ≺, and the four labels ` 1,m,k

y , ` 3,m,k
y , ` 5,m,k

y , and ` 7,m,k
y also differ from

one another according to ≺.
Proof. Let it be shown that if condition 3 does not hold, then either condition 1

or 2 holds. If condition 3 does not hold, then either

(∃c1, c2 ∈ {1..8}) (c1 + 1 < c2) ∧ (` c1,m,kx = ` c2,m,kx)

or

(∃c1, c2 ∈ {1..8}) (c1 + 1 < c2) ∧ (` c1,m,ky = ` c2,m,ky)

Note that labels of the same process can be the same, as denoted by the equivalence
sign, though by definition those of different processes always differ by V≺. Without
loss of generality, assume that the first condition holds. Then by definition, there
must exist a label ` c,m,ky , c1 < c < c2. If ` c1,m,kx

V≺ ` c,m,ky , then condition 1 holds and

the claim is proven. Thus it must be the case that ` c,m,ky
V≺ ` c1,m,kx . However, since

` c1,m,kx = ` c2,m,kx , it is the case that ` c,m,ky
V≺ ` c2,m,kx , and condition 2 holds.

By direct application of Claim 5.4.1, the following claim (Claim 5.4.4) implies that
if condition 1 of Claim 5.4.3 holds, then L 1,m,k

x
V≺ L 8,m,k

y , and similarly, if condition

2 holds, then L 1,m,k
y

V≺ L 8,m,k
x . (This follows by exchanging the roles of x and y in

Claim 5.4.4 below.)
Claim 5.4.4. If ` c1,m,kx

V≺ ` c2,m,ky , then L c1,m,kx =⇒ L c2,m,ky .

[b']
L yL

[b]
y

L
[a]
x

xr (C)w w+1r (C)y

read

obs

read

Fig. 12. Greater and later implies precedence.

Proof. For simplicity, let (c1,m, k) = w (the label ` c1,m,kx read is `
[a]
x,w, that is, of

labeling operation execution L
[a]
x) and (c2,m, k) = w+1 (similarly, ` c2,m,ky is `

[b]
y,w+1).

The outline of the proof appears in Figure 12. Assume by way of contradiction that

`
[a]
x,w

V≺ `
[b]
y,w+1 and L

[b]
y =⇒ L

[a]
x . By Definition 4.3, it must be that L

[b]
y
-obs L

[a]
x . By

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 443

y
r (C)3,m,k x

r (C)4,m,k

L
1,m,k
y L

3,m,k
y

L
8,m,k
xw ()L

6,m,k
xr , r , ... r ()L

6,m,k
x1 2 n

y
r (C)1,m,k x

r (C)2,m,k

L
2,m,k
x L

4,m,k
x

Fig. 13. Three labeling “moves” are necessary.

Lemma 5.2, it cannot be that L
[b]
y ∈ max obs(L

[a]
x). Thus there must exist an L

[b′]
y ,

b < b′, such that L
[b′]
y ∈ max obs(L

[a]
x). By Corollary 5.1, since L

[b′]
y

-obs L
[a]
x , there

must exist some ry(L
[β]
α) = `

[b′]
y such that

w(L [b′]
y) - ry(L [β]

α) - w(L [a]
x),

where possibly α = x and β = a. Since ry(Cw+1) = `
[b]
y and ry(L

[β]
α) = `

[b′]
y , b < b′,

by atomic register axiom B5, it must be that ry(Cw+1) - ry(L
[β]
α). Similarly, since

`
[a]
x was read in Cw, it must be by axiom B5 that w(L

[a]
x) - rx(Cw). Thus

ry(Cw+1) - ry(L [β]
α) - w(L [a]

x) - rx(Cw),

which by axiom A4∗ of [AB87] implies that ry(Cw+1) - rx(Cw), a contradiction to
Cw -* Cw+1.

To complete the proof, it remains to be shown that if the first two conditions
of Claim 5.4.3 do not hold (in which case the third one does), it is the case that
L1,m,k
y =⇒ L8,m,k

x . One can intuitively think of this claim as stating that if each of
the processes x and y “moved” (chose a new label) three times, the original labeling
operation of y—before the three new ones—must have been completely before the
latest labeling operation of x and so precedes it by =⇒. The reason that one needs
three “moves” to assure this property becomes clear from the proof. The example in
Figure 13 shows why if fewer “moves” are made by each, the property does not hold.

Claim 5.4.5. If the four labels ` 2,m,k
x , ` 4,m,k

x , ` 6,m,k
x , and ` 8,m,k

x differ from one
another according to ≺ and the four labels ` 1,m,k

y , ` 3,m,k
y , ` 5,m,k

y , and ` 7,m,k
y also differ

from one another according to ≺, then L1,m,k
y =⇒ L8,m,k

x .
Proof. By serialization axiom B5 of reads and writes from the atomic registers vx

and vy, it must be the case that

L 1,m,k
y

-* w(L 3,m,k
y) - ry(C3,m,k) - rx(C4,m,k) - w(L 6,m,k

x) -* L 8,m,k
x .

By applying axiom A4 twice, it follows that L 1,m,k
y

-* L 8.m,k
x , which by Definition 4.3

implies that L 1,m,k
y =⇒ L 8.m,k

x .
This completes the proof of Claim 5.4.2.
The following claim proves the correctness of the recursive procedure select.
Claim 5.4.6. For any k and R, if s is returned by select (dlogne, k, R), then

L 1,1,k
i =⇒ L

8,dlog ne,k
s for all i ∈ R− {s}.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

444 DANNY DOLEV AND NIR SHAVIT

Proof. First, observe that for ||r||, the size of the input set of select (m, k, r), it
follows by simple induction (given that initially ||r|| ≤ n) that m ≥ dlog ||r||e. The
proof of the claim will thus be by induction on ||r|| ∈ {1..dRe}.

For ||r|| = 1, the claim follows vacuously. For ||r|| = 2, since m ≥ dlog ||r||e = 1,
the claim follows from Claim 5.4.2. Assume that the claim holds for ||r|| < t, and
let the claim be proven for ||r|| = t. Since ||half (r)||, ||other half (r)|| ≤ t/2, by
the induction hypothesis applied to select (dlog te−1, k, half (r)) and select (dlog te−
1, k, other half (r)), it follows that

(∀i ∈ half (r)) (L 1,1,k
i =⇒ L 8,dlog te−1,k

x) and

(∀i ∈ other half (r)) (L 1,1,k
i =⇒ L 8,dlog te−1,k

y).

By Claim 5.4.2, without loss of generality, it can be assumed that L
1,dlog te,k
y =⇒

L
8,dlog te,k
x in select (dlog te, k, r). Thus since C8,dlog te−1,k -* C1,dlog te,k, by Claim 5.4.1

and the above,

L 1,1,k
i =⇒ L 8,dlog te−1,k

y =⇒ L 1,dlog te,k
y =⇒ L 8,dlog te,k

x

for every i ∈ other half (r). By transitivity (Claim 5.3.2), it is the case that L 1,1,k
i =⇒

L
8,dlog te,k
x for every i ∈ other half (r). Similarly, by Claim 5.4.1 and the above, given

that C8,dlog te−1,k -* C1,dlog te,k, it follows that

L 1,1,k
i =⇒ L 8,dlog te−1,k

x =⇒ L 8,dlog te,k
x

for every i ∈ half (r). Again by transitivity, it is the case that L 1,1,k
i =⇒ L

8,dlog te,k
x

for every i ∈ half (r), and the claim follows.
Based on the above claims, the proof can be completed by showing that in any

scan operation execution, for any i such that O[i] < O[j], where value(`
8,dlog ne,O[i]
i),

value(`
8,dlog ne,O[j]
j) ∈ ¯̀, it is the case that L

8,dlog ne,O[i]
i =⇒ L

8,dlog ne,O[j]
j . The proof

is by induction on k, where O[i] := k in phase k of a scan operation execution. For
k = n, since there exists no k′, k < k′, there is no O[i] < O[j], and the claim holds
vacuously. Assume that for some k < n, the claim holds for all k′, k < k′ ≤ n. Let it
be proven for k.

Since k < n, there is an O[α] = k + 1 for some α ∈ {1..n} − {i} (possibly α = j),

where value(`
8,dlog ne,k+1
α) ∈ ¯̀ of the scan operation execution, that is, the returned

labeled-value for process α. By Claim 5.4.6,

L 1,1,k+1
i =⇒ L 8,dlog ne,k+1

α

for i ∈ R. By Claim 5.4.1, since C8,dlog ne,k -* C1,1,k+1, it is the case that

L
8,dlog ne,k
i =⇒ L 8,dlog ne,k+1

α .

If α = j the lemma follows. If not, by the induction hypothesis, it follows that for
any O[j], k+1 < O[j],

L
8,dlog ne,k
i =⇒ L 8,dlog ne,k+1

α =⇒ L 8,dlog ne,O[j]
α .

By the transitivity of =⇒ (Claim 5.3.2), it then follows that L
8,dlog ne,O[i]
i =⇒

L
8,dlog ne,O[j]
j .

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 445

5.9. Proof of precedence and transitivity. To complete the proof of Theo-
rem 5.1, it remains to be proven that Lemma 5.2 and Claim 5.3.2 hold.

5.9.1. Preliminaries. Given that the definitions of both the graph Tn and the
labeling function L are inductive on k, the first two parts of the following definition
simply define the notation to be used in relating labels. The third part is the notion
of inside(X). X identifies a specific labeling operation execution. In this labeling
operation execution, the label chosen was in a certain T k subgraph on level k. X
also identifies this T k subgraph. The set of labeling operation executions in inside
are those performed inside T k from the latest time the process moved into T k and up
to its labeling operation execution X. The min is simply the earliest in a sequence
of labeling operation executions. For example, min(inside(X)) is the first among the
moves since the process performing X entered T k.

Definition 5.2. For k ∈ {1..n} and -* , the ordering on labeling operation
execution, we have the following notation:

• Let `
[b]
y

k= `
[a]
x denote that `

[b]
y [n..k−1] = `

[a]
x [n..k−1] for k ≥ 2.

• Let `
[b]
y

k

6= `
[a]
x (similarly, `

[b]
y

k≺ `
[a]
x) denote that `

[b]
y [n..k]

k+1
= `

[a]
x [n..k] and

`
[b]
y [k−1] 6= `

[a]
x [k−1] (similarly, `

[b]
y [k−1] is dominated by `

[a]
x [k−1]).

• Let inside(`
[a]
x [n..k]) be a set of operation executions

{L [α]
x |α = a or L

[α]
x

-* L
[a]
x and `

[α]
x

k+1
= `

[a]
x and

(∀L [a′]
x) (if L

[α]
x

-* L
[a′]
x

-* L
[a]
x , then `

[a′]
x

k+1
= `

[a]
x)}.

• Let the min of a set of labeling operation executions totally ordered by -*

be the least element in the ordering.

If `
[a−1]
x

k= `
[a]
x , k = 2 (the same label by the same process), then let the convention

be that `
[a−1]
x

k

6= `
[a]
x , where k = 1 (and similarly for any two equal labels of different

labelings by the same process).

5.9.2. The order of induction. The proof of Claim 5.3.2 and Lemma 5.2
will proceed by induction on the system execution 〈m(ϕ)

L
, -* , -* 〉 consisting of

all labeling operation executions in m(ϕ)L. (Recall that m(ϕ)L is the set of label-
ing operation executions in m(ϕ).) The induction base will be the subexecution

m(ϕ)L
′

= {L [0]
1 , . . . , L

[0]
n } of m(ϕ)L. The induction will proceed to larger subex-

ecutions m(ϕ)L
′
, where m(ϕ)L

′ ⊆ m(ϕ)L. The subexecution in each step of the

induction will include one L
[a]
i ∈ m(ϕ)L more than its preceding one. The induc-

tion order on 〈m(ϕ)
L
, -* , -* 〉 is thus that m(ϕ)

L′ ∪ {L [a]
i } follows m(ϕ)

L′
, where

L
[a]
i ∈ m(ϕ)L −m(ϕ)L

′
, if for any L

[b]
j ∈ m(ϕ)

L −m(ϕ)
L′

, it is the case that either

• L [a]
i

-obs L
[b]
j or

• L [b]
j 6�-obs L

[a]
i and for `

[a−1]
i

k≺ ` [a]
i and `

[b−1]
j

k′≺ ` [b]
j , it is the case that k′ > k

or that k′ = k and j > i.
The order is thus to add the labeling operation executions that observed a greater part
of the execution later, and if no such labeling operation execution can be identified,
settle on choosing the one that was a move (a change in the label) on the lowest-level
k.

To see that the above defines a total order of induction, note that -obs is a partial
order, and if two labels are not related by -obs , they are ordered by the order < on
the level in the graph in which they made their last move and by the id if they have

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

446 DANNY DOLEV AND NIR SHAVIT

the same level. Since < together with the id forms a total order that is independent
of the partial order -obs , the above order of induction is total.

5.9.3. The induction hypothesis. The induction hypothesis consists of I1 ∧
I2 ∧ I3 ∧ I4, where I1–I4 are as follows:

I1. For any L
[b]
y ∈ max obs(L

[a]
x), it is the case that `

[b]
y

V≺ ` [a]
x .

I2. The relation =⇒ is transitive.
I3. For any L

[a]
x and L

[b]
y , where

• ` [b]
y [k − 1], `

[a]
x [k − 1] ∈ {3, 4, 5} and

• ` [b]
y

k

6= `
[a]
x , k ≥ 2,

if there exist labeling operation executions `
[a−1]
x and `

[b−1]
y , where

• ` [a−1]
x

k

6= `
[a]
x and

• ` [b−1]
y

k

6= `
[b]
y ,

then either L
[a]
x

-obs L
[b]
y or L

[b]
y
-obs L

[a]
x .

I4. 1. If `
[a]
x [k − 1] ∈ {2, 3, 4, 5}, k > 2, then there are at least k − 1 labels

L
[b]
y ∈ max obs(L

[a]
x) such that `

[b]
y

k+1
= `

[a]
x ;

2. if there exists an L
[a1]
x ∈ inside(`

[a]
x [n..k]), `

[a1]
x [k−1] ∈ {4, 5} (possibly

a = a1), then there are exactly k−1 labels L
[b]
y ∈ max obs(L

[a]
x) such that `

[b]
y

k+1
= `

[a]
x

and `
[b]
y [k−1] ∈ {3, 4, 5}; and

3. if `
[a]
x

k≺ `
[a−1]
x (`

[a]
x [k−1], `

[a−1]
x [k−1] ∈ {3, 4, 5}), then for any L

[b]
y ∈

max obs(L
[a]
x), where `

[b]
y

k+1

6= `
[a−1]
x and `

[b]
y [k−1] ∈ {3, 4, 5}, it is the case that

`
[a−1]
x

k≺ ` [b]
y

k≺ ` [a]
x .

The induction hypothesis includes four main parts. I1 and I2 are simply Lemma 5.2
and Claim 5.3.2, which are to be proven. However, the proof of these properties is
based on several “structural” properties of the labeling operation executions, and
these are added in order to strengthen the induction hypothesis.

Property I3 is a weak formulation for the case of any T k subgraph, k ≥ 2, of a
powerful property that holds in the case of a T 2 subgraph. For k = 2, that is, two
labels in the cycle of a T 2 subgraph, it is the case that

among any two labeling operation executions in the cycle, there must
be one that observed the other.

Unfortunately, this is not true for any pair of labeling operation executions in a
cycle on level k > 2. For example, the reader can verify that it is possible that
while one process x moves among supernodes 3 and 4 on level k, another process
y can concurrently move many times inside supernode 3 (that is, on a level lower
than k) with neither x nor y observing a labeling operation execution of the other.
However, the property that does hold is that the process x must have observed at
least one labeling operation execution by y among those that y executed since it last
started choosing labels in supernode 3. (Thus the first move into 3 was definitely
observed.) The generalization of this example is formalized by property I3 of the
inductive hypothesis.

Property I4 is a collection of three properties that were informally mentioned in
section 4.3:

• I4.1 is based on the fact that supernode 1 in any T k subgraph is a sink in
which at least k−1 labels must accumulate before a label may be placed on the bridge
supernode 2. Because of this accumulation property, any process that performs a

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 447

labeling operation execution on supernodes {2, 3, 4, 5} must have maximally observed
at least k − 1 other labels in the subgraph with him. The maximally observed set of

operations of a labeling operation execution L
[a]
x (max obs(L

[a]
x)) is actually the set

of labeling operation executions whose labels, in a sequential execution, could have

existed together with L
[a]
x at some point in time. Thus I4.1 can be thought of as

establishing that if a process completes a labeling operation execution on one of the
supernodes {2, 3, 4, 5}, there are at that point in time at least k − 1 other labels in
the subgraph with him.

• I4.2 is a continuation of the behavior described in I4.1. Again, given that the

maximally observed set of operations of a labeling operation execution L
[a]
x represents

the set of labeling operation executions whose labels, in a sequential execution, could

have existed together with L
[a]
x at some point in time, I4.2 formalizes the “invariant”

that
at any given time, there cannot be more than k labels in a cycle of a T k

structure.

In addition, not only is it true that there are not more than k, but if any one of these
k labels moves inside the cycle, it must maximally observe exactly k − 1 other labels
in the cycle with it.

• Finally, I4.3 strengthens I1 for the particular case in which the new label
chosen is dominated by the older label (such as a move from supernode 3 to 5 in the
cycle). Based on I1, it could still be that some of the labels maximally observed by
the process, though dominated by the new label, are on node 5 together with it. I4.3
establishes that this cannot be the case, that is, all other labels maximally observed
in the cycle must be on supernode 4. Property I1 together with I4.3 capture the the
“invariant” that

at any given time, there are never labels on three different nodes of a cycle
of a T k subgraph.

In the next two sections, the induction base and the inductive step are presented.

5.9.4. The induction base.
Lemma 5.5. The hypothesis I1 ∧ I2 ∧ I3 ∧ I4 holds for m(ϕ)

L′
= {L [0]

1 , . . . , L
[0]
n }.

Proof. By definition, initially max obs(L
[a]
x) = ∅, and I1 and I4 hold vacuously.

Since for any L
[a]
x , a = 0, there does not by definition exist an L

[a−1]
x , I3 holds

vacuously. Also, by definition, for any two labels `
[0]
x and `

[0]
y , `

[0]
x

k1

6= `
[0]
y , where

k1 = 1, and L
[0]
x 6�-obs L

[0]
y . Since k1≺ is a total order for level k1 = 1, it follows that

=⇒ is transitive in m(ϕ)L
′
.

5.9.5. The induction step.
Lemma 5.6. Given that the induction hypothesis I1 ∧ I2 ∧ I3 ∧ I4 holds for the

system execution 〈m(ϕ)
L′
, -* , -* 〉, m(ϕ)

L′ ⊆ m(ϕ)
L

, it holds also for 〈m(ϕ)
L′ ∪

{L [a]
x }, -* , -* 〉, where L

[a]
i ∈ m(ϕ)L −m(ϕ)L

′
is such that for any L

[b]
j ∈ m(ϕ)

L −
m(ϕ)

L′
, either

• L [a]
i

-obs L
[b]
j or

• L [b]
j 6�-obs L

[a]
i and for `

[a−1]
i

k≺ ` [a]
i and `

[b−1]
j

k′≺ ` [b]
j , it is the case that k′ > k

or that k′ = k and j > i.
The proof of Lemma 5.6 will be separated into several sections. In the following

section, several lemmas that will become useful in later sections of the proof are

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

448 DANNY DOLEV AND NIR SHAVIT

presented and proven. The proof will then proceed by showing that the maximally
observed set of labeling operation executions by a process x is a good representation
of the possible label values that other processes can have given the location of x.
In other words, later unobserved labeling operation executions cannot be “far away”
from the maximally observed labels, and could definitely not have “cycled around”
the current location of x. Based on these established properties, I1, I4, I3, and finally
I2 will be proven for the inductive case. The order of presentation of the different
lemmas will follow the order of dependency among them.

We make a final important comment: Throughout the proof, unless specifically

stated otherwise, L
[a]
x will denote the labeling operation execution added in the in-

duction step to form 〈m(ϕ)
L′ ∪ {L [a]

x }, -* , -* 〉,
5.9.6. At most k labels in the cycle of a T k subgraph. In this section,

several lemmas are presented, proving a lemma that captures the informal invariant
that at any point in time, there can be at most k different labels in the cycle of a
T k subgraph (supernodes {3, 4, 5}. The following lemma formalizes the notion that
“before it can choose a label in the cycle of any T k subgraph, a process must first
raise a flag, that is, choose a label on supernodes 1 or 2 on level k in T k.”

Lemma 5.7. For any labeling operation execution L
[a]
x , if `

[a]
x [k−1] ∈ {3, 4, 5},

k ≥ 2, then there exists an L
[a1]
x ∈ inside(` [a]

x [n..k]) such that L
[a1]
x [k−1] ∈ {1, 2}.

Proof. Assume by way of contradiction that the claim does not hold. It must thus

be that for L
[a2]
x = min(inside(`

[a]
x [n..k])), `

[a2]
x [k − 1] ∈ {3, 4, 5}. This implies that

there is a labeling operation execution `
[a2−1]
x

k+1

6= `
[a2]
x . By the definition of L, in

order for `
[a2]
x [k − 1] to be in {3, 4, 5}, it must be that for `max, the maximal label in

the dominating set read by L
[a2]
x , we have the following:

• `max
k+1
= `

[a2]
x (as a reminder, this means `max[n..k] = `

[a2]
x [n..k]),

• `max[k − 1] ∈ {2, 3, 4, 5}, and
• Lk(G) (the kth level of the recursion in L) was executed for G = `max[n..k]

and returned the value `
[a2]
x [k− 1] = 3 (as in line 3) or `

[a2]
x [k− 1] = dom(`max[k− 1])

(as in line 4 or 5).
But this implies that when executing Lk+1, it must have been line 4 that was executed
because from the above the conditions of lines 1–3 are not met and because

• `max[k − 1] ∈ {2, 3, 4, 5}, k ≥ 2, and

• `max[n..k] = `
[a2]
x [n..k] 6= `

[a2−1]
x [n..k] (`

[a2−1]
x is `i in line 4).

But this implies that `
[a2]
x [k] = dom(`max[k]), that is, x would not execute Lk(G) for

G = `max[n..k] in the first place, a contradiction.
The following lemma establishes that if in an earlier labeling operation execution

a label `
[b]
y was observed, the current labeling operation execution must read that

label for y or a label later than it.

Lemma 5.8. If L
[b]
y
-obs L

[a−1]
x , it cannot be that ry(L

[a]
x) = `

[b1]
y , where b1 < b.

Proof. By Corollary 5.1, it follows that if L
[b]
y
-obs L

[a−1]
x , then there exists a read

ry(L
[β]
α) = `

[b]
y such that

w(L [b]
y) - ry(L [β]

α) - w(L [a−1]
x),

where possibly α = x and β = a − 1. Since w(L
[a−1]
x) - ry(L

[a]
x), it follows that

ry(L
[β]
α) - ry(L

[a]
x). Since, in addition, w(L

[b1]
y) - w(L

[b]
y), by register axiom B5,

it cannot be that ry(L
[a]
x) = `

[b]
y .

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 449

The following lemma states that there cannot be a label read by L
[a]
x that domi-

nates `
[a−1]
x on level k1 > k, where k is the level such that `

[a−1]
x

k

6= `
[a]
x .

Lemma 5.9. For `
[a]
x

k

6= `
[a−1]
x , it cannot be that there is an L

[b]
y such that

• ry(L
[a]
x) = `

[b]
y and

• ` [a−1]
x

k1≺ ` [b]
y , where k1 > k.

Proof. By the definition of V≺, it must be that `
[a]
x

k1≺ `
[b]
y , where k1 ≥ k. By

the definition of L, either `max
V≺ `

[a]
x or `max is equal to `

[a]
x (in which case by

definition `max is just `
[a−1]
x). The reason is that when executing Lk3 for some level

k3, `max[k3] = `
[a]
x [k3] or `max[k3] = dom(`

[a]
x [k3]). It thus must be that max 6= y. It

can either be the case that `
[b]
y

V≺ `max or not.

If indeed `
[b]
y

V≺ `max, by the definition of V≺, in order for `
[a]
x

V≺ `
[b]
y , `

[b]
y

V≺ `max,

and either `max
V≺ ` [a]

x or `max = `
[a]
x , it must be that

` [a]
x

V≺ ` [b]
y

V≺ `max
V≺ ` [a]

x ,

that is, the three labels are also on a cycle. Since by the definition of

max(dominating set(`, ` [a−1]
x)),

either `
[a−1]
x

V≺ `max or `max = `
[a−1]
x , it follows that k ≥ k1, a contradiction.

However, if `max
V≺ `

[b]
y , by the definition of max(dominating set(`, `

[a−1]
x)), it

could be only if the labels of y and max were on a cycle on a level k2, where 2 ≤
k2 ≤ k1 (k1 is the level such that `

[a−1]
x

k1≺ `
[b]
y).15 In order for `max

V≺ `
[a]
x or

`max = `
[a]
x , together with `

[a]
x

V≺ `
[b]
y , it must be that `

[a]
x is in the cycle with these

two labels. However, this implies k ≥ k1, a contradiction.
The following lemma captures the informal invariant that at any point in time,

there can be at most k different labels in the cycle of any T k subgraph. More precisely,
it states that for any set of more than k labeling operation executions whose labels are
in the cycle of the same T k subgraph, all could not have been there at the same point
in time since at least one of them must have already been observed by the others in
a later location outside the cycle.

Lemma 5.10. Let Sk = {L [a1]
i1

, L
[a2]
i2

, . . . , L
[am]
im
}, i1, . . . , im ∈ {1..n}, and iα 6= iβ

for any α, β ∈ {1..m} be the set of labeling operation executions such that for any

L
[a]
i , L

[b]
j ∈ Sk,

• ` [a]
i

k+1
= `

[b]
j and `

[a]
i [k − 1], `

[b]
j [k − 1] ∈ {3, 4, 5}, and

• for L
[b1]
j ∈ max obs(L

[a]
i) and L

[a1]
i ∈ max obs(L

[b]
j), it is the case that b1 ≤ b

and a1 ≤ a.
It must be that ||Sk|| ≤ k.
Proof. Assume by way of contradiction that ||Sk|| > k. By Lemma 5.7, for

each L
[a]
i ∈ Sk, ||inside(L

[a]
i [n..k])|| ≥ 2, that is, it is included at least two labeling

operation executions inside the T k subgraph that L
[a]
i is in. Let us define the relation

not read by between labeling operation executions L
[a]
i , L

[b]
j ∈ Sk to be as follows.

Definition 5.3. L
[a]
i not read by L

[b]
j if ri(L

[b]
j) 6= `

[a1]
i , a1 ∈ {a− 1, a}.

15 The reason for this is that if the two labels are on different supernodes of a cycle, there could
be a third label on the other supernode of the cycle, and any one of them could be selected as `max.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

450 DANNY DOLEV AND NIR SHAVIT

That is, L
[b]
j did not read a label of a labeling operation execution L

[a]
i or its

preceding operation execution in the T k that it is in. The contradiction will be derived

by showing that there must be at least one labeling operation execution L
[a]
i ∈ Sk

that read at least k + 1 labels (including its own) in the T k subgraph that L
[a]
i and

L
[a−1]
i are in. This is the flag principal mentioned in section 4.3. Since for each

L
[a]
i ∈ Sk, `

[a]
i

k= `
[a−1]
i , that is, a move at level k, it must be that when executing

Lk+1 in L
[a]
i , line 5 was executed and that num labels < (k + 1) − 1 (at most k − 1

labels not including its own, or k including it, were read in the T k subgraph `
[a]
i [n..k]),

a contradiction.
Since it was assumed by way of contradiction that there are more than k labeling

operation executions in Sk, it must be that each labeling operation execution did not
read (not read by) at least one of the others. Let it first be shown that the relation
not read by is antisymmetric.

Claim 5.10.1. For any L
[a]
i and L

[b]
j in Sk, if L

[a]
i not read by L

[b]
j , then it

cannot be that L
[b]
j not read by L

[a]
i .

Proof. For any two labeling operation executions L
[a]
i and L

[b]
j in Sk, by definition

(for L
[b1]
j ∈ max obs(L

[a]
i) and L

[a1]
i ∈ max obs(L

[b]
j), it is the case that b1 ≤ b and

a1 ≤ a,) neither ri(L
[b]
j) = `

[a1]
i , a1 > a, nor rj(L

[a]
i) = `

[b1]
j , b1 > b. Given

L
[a]
i not read by L

[b]
j , it thus follows by atomic register axiom B5 that ri(L

[b]
j) -

w(L
[a−1]
i). However, this implies

w(L
[b−1]
j) - ri(L

[b]
j) - w(L

[a−1]
i) - rj(L

[a]
i).

By axiom A4, it follows that w(L
[b−1]
j) - rj(L

[a]
i), implying that it cannot be that

L
[b]
j not read by L

[a]
i .

Think of the relation not read by as the set of edges of a directed graph whose

nodes are labeling operation executions, where an edge is directed from L
[a]
i to L

[b]
j if

L
[a]
i not read by L

[b]
j . Each labeling operation execution in S ∪ {L [a]

x } did not read
at least one of the others; each node has at least one incoming edge. By known
graph-theoretic arguments, this implies that

• there are two nodes that have edges directed one at the other or

• there is at least one node L
[c]
s that has a directed path leading from it to

every other node in the graph.
By Claim 5.10.1 (antisymmetry of not read by), the former is impossible.16 The fol-
lowing claim establishes that the labeling operation execution associated with the

node L
[c]
s from which all other nodes are reachable (note that by assumption, this

node has at least one incoming edge and is not a “root”) must have read all of them.

Claim 5.10.2. For any subset {L [a1]
i1

, L
[a2]
i2

, . . . , L
[am]
im
} of m labeling operation

executions in Sk, where

L
[a1]
i1

not read by L
[a2]
i2

not read by · · · not read by L
[am]
im

,

it is the case that rim(L
[a1]
i1

) = L
[am]
im

.

16 Note that if the former does not hold, there is a cycle in the graph. If the relation not read by
were transitive, a cycle would be impossible, and the proof would be complete. However, the reader
can verify that this is not the case.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 451

Proof. For any two labeling operation executions L
[a]
i , L

[b]
j ∈ Sk, it follows by

definition that neither ri(L
[b]
j) = `

[a1]
i , a1 > a, nor rj(L

[a]
i) = `

[b1]
j , b1 > b.

Let it be proven by induction that rim−1
(L

[am]
im

) - w(L
[a1−1]
i1

). This will imply

w(L
[am−1]
im

) - rim−1(L
[am]
im

) - w(L
[a1−1]
i1

) - rim(L
[a1]
i1

),

from which by axiom A4 follows w(L
[am−1]
im

) - rim(L
[a1]
i1

), implying, rim(L
[a1]
i1

) =

L
[am]
im

, as desired.

The proof that rim−1
(L

[am]
im

) - w(L
[a1−1]
i1

) is by induction on m, the size of the
subset of labeling operation executions. For m = 2, it follows by definition. Assume
it holds for sequences of length m− 1, that is,

rim−2
(L

[am−1]
im−1

) - w(L
[a1−1]
i1

).

Since rim−1(L
[am]
im

) 6= `
[am−1]
im−1

, it follows that

rim−1(L
[am]
im

) - w(L
[am−1−1]
im−1

) - rim−2(L
[am−1]
im−1

) - w(L
[a1−1]
i1

).

By axiom A4∗, it follows that rim−1
(L

[am]
im

) - w(L
[a1−1]
i1

), implying the claim.

Thus the node L
[c]
s read at least k labels apart from its own in the T k subgraph

L
[c]
s [n..k], providing the desired contradiction.

Based on the above, the following lemma, which is part of the proof of I4.2 for
the inductive case, can be shown. As mentioned before, the maximally observed set

max obs(L
[a]
x) is actually the set of labeling operation executions whose labels, in a

sequential execution, could have existed together with L
[a]
x at some point in time.

The lemma thus captures the informal notion that if one could look at the cycle of a

T k subgraph at a given point in time in which x had a label `
[a]
x in it, there would be

at most k − 1 other labels in the cycle together with it.

Lemma 5.11. For `
[a]
x [k] ∈ {3, 4, 5}, there are at most k−1 labels L

[b]
y , where

L
[b]
y ∈ max obs(L

[a]
x), such that `

[b]
y

k+1
= `

[a]
x and `

[b]
y [k−1] ∈ {3, 4, 5}.

Proof. For any two labeling operation executions L
[b]
y , L

[c]
z ∈ max obs(L

[a]
x), by

the definition of max obs(L
[a]
x), neither ry(L

[c]
z) = `

[b1]
y , b1 > b, nor rz(L

[b]
y) = `

[c1]
z ,

c1 > c. Also, by definition, for L
[b]
y ∈ max obs(L

[a]
x), neither ry(L

[a]
x) = `

[b1]
y , b1 > b,

nor rx(L
[b]
y) = `

[a1]
x , a1 ≥ a. The claim follows from Lemma 5.10 by defining Sk to

be the set of labeling operation executions maximally observed by L
[a]
x together with

L
[a]
x itself.

The completion of the inductive argument involves a proof of properties I1–I4
through rather tedious case analysis. It is ommitted from this manuscript and can be
found in [Sha90].

6. Discussion. There are three main types of problems defined in the shared-
memory model:

• waiting problems, whose solution allows a process to take an infinite num-
ber of steps to complete an operation—that is, it could “busy-wait” for some other
processes indefinitely;

• wait-free problems, whose solution is such that each process is guaranteed to
complete an operation within a finite number of steps, independently of the pace of
other processes; and

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

452 DANNY DOLEV AND NIR SHAVIT

• expected-wait-free problems, whose solution is such that each process is ex-
pected (rather than guaranteed) to complete an operation within a finite number of
steps, independently of the pace of other processes.

These classes of problems are fundamentally different from one another. However,
they have the unifying theme that

if the requirement that memory size be bounded is dropped, the
problems have elegant and simple unbounded solutions based on the
use of a CTSS.

The main implication of bounded concurrent time-stamping is that this unifying
theme, true under the assumption that memory size can be unbounded, holds true
for the bounded-memory case as well.

Based on the use of a bounded CTSS implementation, simple unbounded solutions
can be given for what are considered to be core problems in each category and then
directly transformed into bounded ones. Examples of problems and algorithms in
the first category are the famous first-come first-served mutual-exclusion problem of
Lamport [Lam74] (see [Lam86b, Ray86] for complete details) and the fifo-`-exclusion
problem of [AD*94, FLBB79, FLBB89]. As mentioned earlier, a CTSS-based solution
due to Afek et al. can be found in [AD*94].

In the second category, we have Li and Vitanyi’s simple version [LV87] of the
elegant unbounded Vitanyi–Awerbuch algorithm [VA86] for solving the problem of
providing a wait-free construction of an MRMW atomic register from SWMR atomic
registers (see also [PB87, IL93, Sch88, ?]). This algorithm can be immediately trans-
formed into a bounded solution (see [G92]).

In the third category, a version (see [Sha90]) of the algorithm of Abrahamson
[Abr88] based on the use of a CTSS can be modularly transformed into a bounded
solution to the randomized consensus problem of [CIL87].

6.1. Further related research. The introduction of the concurrent time-stam-
ping paradigm in the conference version of this paper [DS89] has led researchers to
devising a series of alternative bounded CTSS algorithms. Israeli and Pinchasov
[IP91] have provided a linear-complexity version of our algorithm by dropping the re-
quirement that scan operations do not perform writes. In [DW92], Dwork and Waarts
present the most efficient read/write-register-based CTSS construction to date, taking
only O(n) time for either a scan or update. They model their bounded construction
after a new type of unbounded CTSS construction, where processes choose from “lo-
cal pools” of label values instead of the simple “global-pool”-based CTSS as in the
bakery algorithm [Lam74]. In order to bound the number of possible label values
in the local pool of the bounded implementation, they introduce a form of garbage
collection on “old” labels. They then prove that the linear-time bounded implemen-
tation meets the CTSS axioms of section 2. In [DPHW92], Dwork, Herlihy, Plotkin,
and Waarts introduce an alternative linear-complexity bounded CTSS construction
that combines a time-lapse snapshot with our bounded CTSS algorithm. The proof
of their algorithm leverages the axiomatic proof in this paper by arguing that the exe-
cutions of their algorithm are a subset of the executions of our algorithm. In [GLS92],
Gawlick, Lynch, and Shavit introduce a streamlined version of our CTSS algorithm
based on the use of an atomic snapshot primitive [AAD*89, And89a]. A snapshot
primitive allows a process Pi to update the ith memory location, or snap the memory,
that is, collect an “instantaneous” view of all n shared-memory locations. By using
a snapshot primitive, they limit the number of interleavings that can occur and are
able to introduce a considerably simplified version of our labeling algorithm (though

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 453

a logarithmic factor less efficient) that is tailored to allow a forward-simulation proof
[LT87]. An advantage of their algorithm over other solutions is that it is no longer lim-
ited to read/write memory, providing a CTSS construction in any computation model
whose basic operations suffice to provide a wait-free snapshot implementation, be it
single-writer multireader registers [A93], multireader multiwriter registers [ICMT94],
consensus objects [CD93], or memory with hardware supported compare-and-swap
and fetch-and-add primitives.

Acknowledgments. We would like to thank Yehuda Afek, Hagit Attiya, Eli
Gafni, Rainer Gawlick, Maurice Herlihy, Nancy Lynch, and Mike Merritt for many
important conversations and comments. It was a subtle observation of Mike’s regard-
ing pairwise consistency among scans that led us to the current CTSS definitions. A
subsequent observation by Rainer led us to add property P4 to the CTSS specification.

Finally, the second author would like to thank Nancy Lynch, Baruch Awerbuch,
and the members of MIT’s Theory of Distributed Systems group for their warm
hospitality throughout the writing of this paper.

REFERENCES

[AAD*89] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic
snapshots of shared memory, J. Assoc. Comput. Mach., 40 (1993), pp. 873–890.

[AB87] U. Abraham and S. Ben-David, Informal and formal correctness proofs for programs
(for the critical section problem), unpublished manuscript, Technion, Haifa, Israel,
1987.

[Abr88] K. Abrahamson, On achieving consensus using a shared memory, in Proc. 7th
ACM Symposium on Principles of Distributed Computing, ACM, New York, 1988,
pp. 291–302.

[AD*94] Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, A bounded first-in, first-
enabled solution to the `-exclusion problem, ACM Trans. Programming Lang. Sys-
tems, 16 (1994), pp. 939–953.

[A93] H. Attiya and O. Rachman, Atomic snapshots in O(n logn) operations, in Proc. 12th
ACM Symposium on Principles of Distributed Computing, ACM, New York, 1993,
pp. 29–40.

[AG90] J. Anderson and M. Gouda, The virtue of patience: Concurrent programming with
and without waiting, Technical Report TR-90-23, Department of Computer Sci-
ence, University of Texas at Austin, Austin, TX, 1990.

[And89a] J. H. Anderson, Multi-writer composite registers, Distrib. Comput., 7 (1994), pp. 175–
195.

[Ben88] S. Ben-David, The global time assumption and semantics for concurrent systems, in
Proc. 7th ACM Symposium on Principles of Distributed Computing, ACM, New
York, 1988, pp. 223–231.

[Blo88] B. Bloom, Constructing two-writer atomic registers, in Proc. 6th ACM Symposium
on Principles of Distributed Computing, ACM, New York, 1987; revised version,
IEEE Trans. Commun., 37 (1988), pp. 1506–1514.

[BP87] J. Burns and G. Peterson, Constructing multi-reader atomic values from non-atomic
values, in Proc. 6th ACM Symposium on Principles of Distributed Computing,
ACM, New York, 1987, pp. 221–231.

[CD93] T. D. Chandra and C. Dwork, Using consensus to solve atomic snapshots,
manuscript, 1993.

[CIL87] B. Chor, A. Israeli, and M. Li, Wait-free consensus using asynchronous hardware,
SIAM J. Comput., 23 (1994), pp. 701–712.

[CS93] R. Cori and E. Sopena, Some combinatorial aspects of timestamp systems, European
J. Combin., 14 (1993), pp. 95–102.

[DS89] D. Dolev and N. Shavit, Bounded concurrent time-stamp systems are constructible,
in Proc. 21st ACM Symposium on Theory of Computing, ACM, New York, 1989,
pp. 454–465.

[DW92] C. Dwork and O. Waarts, Simple and efficient bounded concurrent timestamping,
or, bounded concurrent timestamp systems are comprehensible!, in Proc. 24th

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

454 DANNY DOLEV AND NIR SHAVIT

ACM Symposium on Theory of Computing, ACM, New York, 1992, pp. 655–666.
[DPHW92] C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts, Time lapse snapshots, in Proc.

Israel Symposium on the Theory of Computing and Systems, D. Dolev, Z. Galil,
and M. Rodeh, eds., Lecture Notes in Comput. Sci. 601, Springer-Verlag, Berlin,
1992, pp. 154–170.

[DGS88] D. Dolev, E. Gafni, and N. Shavit, Towards a non-atomic era: `-exclusion as a test
case, in Proc. 20th ACM Symposium on Theory of Computing, ACM SIGACT,
ACM, New York, 1988, pp. 78–92.

[Dij65] E. W. Dijkstra, Solution of a problem in concurrent programming control, Comm.
Assoc. Comput. Mach., 8 (1965), p. 569.

[FLBB79] M. Fischer, N. Lynch, J. Burns, and A. Borodin, Resource allocation with immunity
to limited process failure, in Proc. 20th Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1979, pp. 234–254.

[FLBB89] M. Fischer, N. Lynch, J. Burns, and A. Borodin, Distributed fifo allocation of
identical resources using small shared space, ACM Trans. Programming Lang.
Systems, 11 (1989), pp. 90–114.

[G92] R. Gawlick, Concurrent timestamping made simple, Masters thesis, Technical Report
MIT/LCS/TR-556, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, 1992.

[GLS92] R. Gawlick, N. Lynch, and N. Shavit, Concurrent time-stamping made simple, in
Proc. Annual Israel Symposium on Theory of Computing and Systems, D. Dolev,
Z. Galil, and M. Rodeh, eds., Lecture Notes in Comput. Sci. 601, Springer-Verlag,
Berlin, 1992, pp. 171–185.

[Her91] M. P. Herlihy, Wait-free synchronization, ACM Trans. Programming Lang. Systems,
13 (1991), pp. 124–149.

[ICMT94] M. Inoue, W. Chen, T. Masuzawa and N. Tokura, Linear-time snapshot us-
ing multi-writer multi-reader registers, in Workshop on Distributed Algorithms,
Springer-Verlag, Berlin, 1994, pp. 130–140.

[HW88] M. P. Herlihy and J. Wing, Linearizability: A correctness condition for concurrent
objects, ACM Trans. Programming Lang. Systems, 12 (1990), pp. 463–492.

[IL93] A. Israeli and M. Li, Bounded time stamps, Distrib. Comput., 6 (1993), pp. 205–209.
[IP91] A. Israeli and M. Pinchasov, A linear time bounded concurrent timestamp scheme,

Technical Report, Technion, Haifa, Israel, 1991.
[Kat78] H. Katseff, A new solution to the critical section problem, in Proc. 10th ACM

Symposium on Theory of Computing, ACM, New York, 1978, pp. 86–88.
[Lam74] L. Lamport, A new solution of Dijkstra’s concurrent programming problem, Comm.

Assoc. Comput. Mach., 17 (1974), pp. 453–455.
[Lam77] L. Lamport, Concurrent reading and writing, Comm. Assoc. Comput. Mach., 20

(1977), pp. 806–811.
[Lam86a] L. Lamport, The mutual exclusion problem part i: A theory of interprocess commu-

nication, J. Assoc. Comput. Mach., 33 (1986), pp. 313–326.
[Lam86b] L. Lamport, The mutual exclusion problem part ii: Statement and solutions, J. Assoc.

Comput Mach., 33 (1986), pp. 327–348.
[Lam86c] L. Lamport, On interprocess communication part i: Basic formalism, Distrib. Com-

put., 1 (1986), pp. 77–85.
[Lam86d] L. Lamport, On interprocess communication part ii: Algorithms, Distrib. Computing,

1 (1986), pp. 86–101.
[LH89] E. A. Lycklama and V. Hadzilacos, A first-come-first-served mutual exclusion al-

gorithm with small communication variables, ACM Trans. Programming Lang.
Systems, 13 (1991), pp. 558–576.

[LT87] N. Lynch and M. Tuttle, Hierarchical correctness proofs for distributed algorithms,
Tecnical Report MIT/LCS/TR-387, Laboratory for Computer Science, Massachu-
setts Institute of Technology, Cambridge, MA, 1987.

[LTV96] M. Li, J. Tromp, and P. Vitanyi, How to share concurrent waitfree variables, J. As-
soc. Comput. Mach., 43 (1996), pp. 723–746 (journal version of [LV87]).

[LV87] M. Li and P. Vitanyi, A very simple construction for atomic multiwriter registers, Re-
port, Aiken Computation Laboratory, Harvard University, Cambridge, MA, 1987.

[New87] R. Newman-Wolfe, A protocol for waitfree atomic multi-reader shared variables, in
Proc. 6th ACM Symposium on Principles of Distributed Computing, ACM, New
York, 1987, pp. 232–248.

[PB87] G. L. Peterson and J. Burns, Concurrent reading while writing ii: The multi-
writer case, in Proc. 28th Symposium on Foundations of Computer Science, IEEE

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BOUNDED CONCURRENT TIME-STAMPING 455

Computer Society Press, Los Alamitos, CA, 1987, pp. 383–392.
[Pet81] G. L. Peterson, Myths about the mutual exclusion problem, Inform. Process. Lett.,

12 (1981), pp. 115–116.
[Pet83] G. Peterson, Concurrent reading while writing, ACM Trans. Programming Lang.

Systems, 1 (1983), pp. 46–55.
[Pet88] G. Peterson, personal communication, 1988.
[Ray86] M. Raynal, Algorithms for Mutual Exclusion, North Oxford Academic Publishing,

Oxford, UK and MIT Press, Cambridge, MA, 1986; originally published as Algo-
rithmique du Parallélisme, Dunod Informatique, Paris, 1984 (in French; translated
by D. Beeson).

[SAG94] A. Singh, J. Anderson, and M. Gouda, The elusive atomic register, J. Assoc. Com-
put. Mach., 41 (1994), pp. 311–339; original version in Proc. 6th ACM Symposium
on Principles of Distributed Computing, ACM, New York, 1987, pp. 206–221.

[Sch88] R. Schaffer, On the correctness of atomic multi-writer registers, Bachelor’s the-
sis, Technical Memo MIT/LCS/TM-364, Massachusetts Institute of Technology,
Cambridge, MA, 1988.

[Sha90] N. Shavit, Concurrent time-stamping, Ph.D. thesis, School of Mathematics and Com-
puter Science, Hebrew University, Jerusalem, 1990.

[SZ91] M. Saks and F. Zaharoglou, Optimal space distributed move-to-front lists, in Proc.
10th ACM Symposium on Principles of Distributed Computing, ACM, New York,
1991, pp. 65–73.

[VA86] P. Vitanyi and B. Awerbuch, Shared register access by asynchronous hardware,
in Proc. 27th Symposium on Foundations of Computer Science, IEEE Computer
Society Press, 1986, pp. 233–243.

D
ow

nl
oa

de
d

08
/0

2/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

