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Abstract 

7Ve show that tile probiem of finding a maximal vertex-induced jresg., edge-induced) sub- 
graph of maximum degree il. is in NC2 for k 2 C (resp., k > 1). For these problems, we develope 
a method which exploits the KC algorithm for the maximal independent set problem. 

1 Introduction 

Karp [5j and Luby [6]  have shown that the problem of finding a maximal independent set of a 
graph, called XIIS. is solvable in NC, which is known to be the class of problems computable by 
PRAhIs with polynomial number of processors in O('log n)li) time for some k 2 0 [Ii2], j13j. [iLbj. 
In this paper, we show that finding a maximal subset of vertices whose induced subgraph is of 
degree at most 6 allows an YC algorithm for any k 2 0. For the proof, we develope an elegant 
metfiod which employs the NC algorithm for MIS devised by 151, [GI* We dso  show that the 
probiem of finding a maximal set of edges which forms a subgraph of degree at most 6 is in NC. 

In general; a problem of this kind Is stated as a maximal subgraph problem for a given property 
x, whicl-i is to find a maximal subset of vertices (resp., edges) which induces a subgraph satisfying 
si. For example, XIIS is the problem for property " n o  two vertices are adjacent9'. This paper deals 
with the problem for property "maxi~num degree k". 

It has been shown that most of the iexicographically first ~na.-;iirnal (abbreviated to ifm) sub- 
graphs probienis are P-complete [lo]. Therefore no KC algorithms exist for the lfrn subgraph 
problems if PfKC. On the other hand, the problem sf finding any  suhgraph which sat- 
isfies a given property seems to  allow KC algorithms for many properties. However, only a few 
are sllown to be in KC!, The follsrviilgs are some of them: As we mentioned above MIS is the 
one. In [ lo?,  the maxinld edge-induced forest problem and the maximal edge-induced bipartite 
problems are shown to be in KC. With some restrictions. the maximal edge-induced outerplanar 
subgraph problem [8] and the maximal vertex-induced acyclic subgrapfi problem restricted to di- 
rected graphs with degree at most 3 also allow NC algorithms 191. The results in this paper add 
a new family of such problems. 



2 Preliminaries and Definitions 

A graph G = (q E )  means an undirected graph without any multiple eges and self-loops, For 
a subset U C V, we define as E[Uj = ((a, v) E E j u, v E U ) .  The graph G[E]  = (EI,E[U]) is 
called the vertex-induced subgmph of ti. For a subset F C E, we define VfF] t o  be the set of 
endpoints of the edges in F. We denow by (F) = (V[F], F )  the graph formed from F and call it 
the edge-induced subgraph of F. For a vertex u, the degree of u is denoted by degG(u) .  We denote 
by deg(G) = max(2i: 1 degG(w)) .  

Let b > 0 be any integer. The nzaximum degree b vertex-induced subgmph problem (VIIlSlk)) 
is stated as fol!ows: 

VIkI;IS(k) 
Instance: ,4 graph G = (V, EEj. 
Problem: Find a maximal subset ki 87 such that G [ 6 ]  is of degree at most k. 

In a similar wal-? the m a x i m u m  degree k edge-induced sulagraph prohkenz jEIMS(jk)) is defined 
as follo\vs: 

EIMSlk) 
instance: A graph C = (17, E ) .  
Problem: Find a ~naxi~na i  subset F E such that ( F )  is of degree at most k. 

3 Finding Bounded Degree Maximal Subgraphs 

Theorem Z VdilfS(kj is in NP ifor k 2 0. 

Proof, We show an NC algorithm by employing the Su'G dgorithm for MIS. Let G = (V, 61,) be a 
graph for which we are finding a maximal subset U of vertices whose iriduced subgraph G[U] is 
of degree at most k .  

For subsets 14' and U of vertices with TV n t7 = @, let EF = ( ( v , w j  1 there is w E U with 
w # .2: such that u, w E i V  and (v, u) E E ,  ( a ~ .  u) E E ) ,  Then let ~ [ r  = (Tk: E[IPL'] U @r$, The 
required set ?I of vertices is computed together with a set J$' of vertices T4'suefi that 147 i-i U = 0. 
Initially let IV = V and C = @. At each iteration of the algorithm, a maximal independent set 1 
of I ~ r  is computed and added to U while vertices which make the degree of some vertex greater 
than k are deleted from TT '  together with I ,  This is iterated b2 times. Formally the algorithm is 
described as follows: 

1 begin /* ': = (17, EE) is an input "/ 
2 T;t7 t V; U +- 8; 
3 foritLtsk2do 
4 begin 
5 Find a rnaxlnlal independent set I of 8;'; 
6 U c U U I ;  
7 T/V t 14' - I ;  
8 k.V c T.V/ - (w E $5' I d e g ( G [ l i  U (w)]) > k )  
9 end 

10 end 



We show that this algorithm computes a maximal subset U whose induced subgraph is of 
degree at  most k. 

Let Wo = V and Go = flO. Then the graph HT is the same as G = (V,E).  Therefore in 
the first iteration, a maximal independent set of G is computed at  line 5. For i = 1, ..., k2, let 
U,, Ii and tt7, be the contents of variables U ,  I and tT' at the end of ith iteration, respectively. 
Obviously. tV8 Ti U, = @ for i = 0 ,  ...: b2. \Tie assume that the induced subgraph GIUi-l] is of degree 
at most L. 

Let {w,u) be an edge in E with w f JVt and u. f U,. Line 8 deletes every vertex which 
is adjacent to  more than k vertices in U, or adjacent to  a vertex v in bT$ with degGrU3;(V) = E .  
Therefore u is adjacent to  at most k vertices in Uz and degG[t7,ujui>l(u) < k. Hence, for each w in 
$%, we see that 

ihitw) = G deg~[~~ i iu (~ ) l (u )  I 2 . 
uEU; with (?~.?u)EE 

To show that $17 becomes empty after k2 iterations, it su5ces to prove that each w in 5rt;; 
satisfies 

A, (w)  > Ai-l(w) 
ivs - 1 for i = 1, ..., k2.  Since u9 is not in the maximal independent set I; of JIL,*-, computed by fine 5, - * 

tv*-1 w is adjacent to a vertex v in I, C lVt-l via an edge (w, v) in EffV,i,_lj or Eu3-1 . 
Case 1, If (w, v) E EjlV,-lj, then (w, V) is an edge in G[G, u {u*)]. Hence degGlv2u~wllj2:$ 2 2 ,  

Since 5r E L?,, v # U,-I and ( w ,  v) E E ,  we see that A,(u.) > A,-~(auj idegGIut,jw)l(v) > il;-l(tv>. 

Case 2. If { u ; . ~ )  E E!Yz-l, then there is a vertex u E U,-I with {w, u.) f E and {v,u) E E. 
0 5 - 1  

Since 2: E $V;-l n t-,-l = 8 and w f r ,  we see a1 $ U,-1 U (uj). Hence (v, u )  is not an edge 
in GILTz-l u (w)]. On the other hand, v is in -U, and u is in k-a-l C lit. Hence (v, u) is an edge in 
G[U, iJ (to)]. Therefore degGLutu jw)l(u"l) >egGIut-i ujwt3(u.). Since u. € U, and (w, u) E E ,  we see 
that A,(w) > A,-l(w), 

We now show that deg(G[U,]) 5 k. For a vertex u in if u is adjacent to a vertex w in 
6, via an edge in E ,  then no other vertex in I, is adjacent to  u since I, is d so  an independent 
set with respect t o  E?-;:l;'. Therefore the degree of u in GjU,-l U I,] remains at most b since 
deg(GiU,-l U {w>]) 5 k by the algorithm. For a vertex u in I,, degG1u,-,u~,(~) is at most b since 
u is adjacent to at most k vertices in and since I, is an iridependent set with respect to  

E[JK-lI. fIenee d e g ~ [ u ~ - ~ u ~ ~ ] (  'l) 5 k. 
Since only vertices which violate the condition of maximum degree k are deleted from tV,  the 

resulting set U is a maximal subset inducing a subgraph of rnaxiznum degree k when W becomes 
empty. 

Since hlIS can be solved in PIC2 [6], it is not hard to  see that the total algorithm can be 
imple~ne~ated in ?4C2.0 

Theorem 2 EIAlS(k/' is in NC? for k 2 1- 

Proof, For this problem: we use maximal matchings instead of maximal independent sets. The 
algorithm is similar to that in Theorem 1 and repeats the following procedure 2k times, where 
initially Z = E and F = 8. 



1 begin 
2 Find a maxima? matching M of (2'); 
3 1" -- F U M ;  
4 z c z - A ! ! ;  
5 Z t - Z - ( e f Z i d e g ( ( F U ( e ) ) j ) > k )  
6 end 

Let Zo = E and FO = 8,  In the same way as Theorem 1, let F, ,  Mi and Zi be the contents of 
F ,  iV1 and Z just after the ith iteration. 

For an edge e  = ( a ,  v) E Z,, 

j?31 < 2k B i ( e )  = deg(~Eu{ejjja) + degj~,u{,]) , - 
holds since all edges making the degree greater than k are deleted from Z by line 5 ,  To see that 
Z becomes empty after 2k iterations, it suffices to show that 

B;(e) > B;-1 ( e )  

holds. 
Since e  is not in i%fZ and &I2 is a maximal matching in (Z,-1), e shares a vertex with some 

edge e' in .l'1lZ. %Vithout loss of generality, we may assume that 21 is slnared by e and e< Then 
deg~Fz ,~ , l i (~ )  is greater than degjE-,,i,jlju) since edge el is not contained in (F'-l ti ( e ) ) .  

It is easy to  see that deg((FtF,f) 5 k since &I1 is a matching of jZ,-l) and since each edge e in 
satisfies deg((Ft'z_l U (e))) 5 k. 
By the argument above we see that the resulting F is a maximal set of edges such that 

deg((F)) 5 k .  Since the problem of finding a maximal matching in a graph is also solvabIe in 
NC2, we can see that E I M S ( k )  is in xC2.0 

4 Concluding Remarks 

A straightforward method to solve VIhlS(k) (rcsp.. E%hfS(k)) is to  use the po?ynomial-time greedy 
sequential algorithm tinat computes the lfna subset G of vertices (resp., F of edges) such that 
d e g ( 6 [ 6 ] )  (resp., deg((F))) is at most k 131, [ l O ] .  

Most problems computed by greedy algorithms of this kind are known to be P-complete and 
therefore hardly effciently parallelizable [I], [I@], [ll]. In fact, the lfm maimurn degree k vertex- 
induced subgraph problem is P-complete [IO]. Bowever: the sir;uation is different for edge-induced 
subgraphs. 

The class CC! is defined to  be the class sf  sets log-space reducible to  C-CVP, the comparator 
circuit value problem [7j. A cornparatar circuit is a usual circuit such that it contains onif 
comparators C which are gates with two inputs u ,  v and two outputs av, u -f v and no duplication 
of the value of an output is allowed. 

CC lies as NEOGCCCGP 141 and is closed under complement [7], Currently, CC-complete 
problems are beliei~ed to be neither P-complete nor in NC. 

Some CC-complete problems are reported in [?I. The Ifm matching problem is one of them 
(stated as a work dire to S.A. Cook in [?I). Since a matching is a subgraph of degree at most 1, 
it is natural to  guess that the lfm maximurn degree k edge-induced suhgraph problem, denoted 
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