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Bounded elements and spectrum in Banach quasi ∗-algebras

by

Camillo Trapani (Palermo)

Abstract. A normal Banach quasi ∗-algebra (X,A0) has a distinguished Banach ∗-
algebra Xb consisting of bounded elements of X. The latter ∗-algebra is shown to coincide
with the set of elements of X having finite spectral radius. If the family P(X) of bounded
invariant positive sesquilinear forms on X contains sufficiently many elements then the
Banach ∗-algebra of bounded elements can be characterized via a C∗-seminorm defined
by the elements of P(X).

1. Introduction. A quasi ∗-algebra [15] is a couple (X, A0), where X is a
vector space with involution ∗, A0 is a ∗-algebra and a vector subspace of X,
and X is an A0-bimodule whose module operations and involution extend
those of A0.

Quasi ∗-algebras were introduced by Lassner [11, 12] with the purpose
of providing a reasonable mathematical environment for properly dealing
with the thermodynamical limit of local observables of certain quantum
statistical models that did not fit into the set-up developed by Haag and
Kastler [10]. For this purpose, of course, a topological structure with suffi-
ciently many reasonable properties is needed; in other terms, locally convex

quasi ∗-algebras have to be considered [1, 18]. The simplest way to construct
such an object consists in taking the completion of a locally convex ∗-algebra
(A0, τ) where the multiplication is separately but not jointly continuous. Of
particular interest is, of course, the case where τ is a norm topology. This
situation has however received so far a rather limited attention, in spite of
the fact that it covers very familiar examples such as Lp-spaces (both com-
mutative and non-commutative). Some results in this direction have been
obtained for the so called CQ∗-algebras in a series of papers [3]–[7], [19]–[21].

In this paper we consider the more general case where (X, A0) is a Ba-

nach quasi ∗-algebra. This means, roughly speaking, that X is a Banach
space whose norm ‖ · ‖ has certain coupling properties related to the par-

tial multiplication of (X, A0). In Section 2 we study the set Xb of bounded
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elements of X, i.e. elements whose associated multiplication operators are
bounded linear maps in X. Then we focus our attention on the class of nor-
mal Banach quasi ∗-algebras: they are characterized by the fact that Xb is a
Banach ∗-algebra. If (X, A0) is normal, the Banach ∗-algebra Xb turns out to
be useful for defining a notion of spectrum of an element x ∈ X, which enjoys
properties analogous to the spectrum of an element of a Banach ∗-algebra.

In Section 3 we discuss some properties of the family of bounded positive
sesquilinear forms on X with certain invariance properties and, starting
from them, we construct two seminorms p, q that emulate the Gel’fand–
Năımark seminorm on a Banach ∗-algebra (but q is only defined on a domain
D(q) ⊆ X; it is actually an unbounded C∗-seminorm in the sense of [2]).
These seminorms are then used to derive some properties of the spectrum
of an element x ∈ X, under the assumption that the class P(X) of bounded
invariant positive sesquilinear forms is rich enough. The outcome is that,
in this case, D(q) exactly equals the ∗-algebra of bounded elements of X

(or, equivalently, the set of elements of X that have finite spectral radius).
Furthermore, it is shown that (X, A0) admits a faithful ∗-representation π
and that D(q) also coincides with the set of elements whose image under π
is a bounded operator.

2. Banach quasi ∗-algebras

2.1. Basic definitions

Definition 2.1. Let (X, A0) be a quasi ∗-algebra. (X, A0) is called a
Banach quasi ∗-algebra if a norm ‖ · ‖ is defined on X with the properties:

(i) (X, ‖ · ‖) is a Banach space;
(ii) ‖x∗‖ = ‖x‖, ∀x ∈ X;
(iii) A0 is dense in X;
(iv) for each a ∈ A0, the map Ra : x ∈ X 7→ xa ∈ X is continuous in X.

The continuity of the involution implies that

(iv′) for each a ∈ A0, the map La : x ∈ X 7→ ax ∈ X is continuous in X.

The unit of (X, A0) is an element e ∈ A0 such that xe = ex = x for every
x ∈ X. If (X, A0) is a Banach quasi∗-algebra with unit e, we will assume
(without loss of generality) that ‖e‖ = 1. If (X, A0) has no unit, it can
always be embedded in a Banach quasi ∗-algebra with unit e in a standard
fashion.

In what follows, we will always assume that if xa = 0 for every a ∈ A0,
then x = 0 (of course, this is automatically true if (X, A0) has a unit).
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If (X, A0) is a Banach quasi∗-algebra a norm topology can be defined on
A0 in the following way. Define

‖a‖L = sup
‖x‖≤1

‖Rax‖ = sup
‖x‖≤1

‖xa‖

and
‖a‖R = sup

‖x‖≤1
‖Lax‖ = sup

‖x‖≤1
‖ax‖

and finally
‖a‖0 = max{‖a‖, ‖a‖L, ‖a‖R}.

Then

Proposition 2.2. (A0, ‖ · ‖0) is a normed ∗-algebra. Moreover

‖ab‖ ≤ ‖a‖ ‖b‖0, ‖ba‖ ≤ ‖a‖ ‖b‖0, ∀a, b ∈ A0.

The above statements follow immediately from the corresponding prop-
erties of algebras of bounded operators on a normed space. The two inequal-
ities come directly from the definitions.

Clearly, ‖b‖ ≤ ‖b‖0 for each b ∈ A0.

Definition 2.3. A Banach quasi ∗-algebra (X, A0) is called a BQ∗-

algebra if (A0, ‖ · ‖0) is a Banach ∗-algebra, and a proper CQ∗-algebra if
(A0, ‖ · ‖0) is a C∗-algebra.

2.1.1. Examples

Example 2.4 (Banach function spaces). Many Banach function spaces
provide examples of Banach quasi ∗-algebras since they often contain a dense
∗-algebra of functions. For instance, if I = [0, 1] then (Lp(I), C(I)), where
C(I) denotes the C∗-algebra of all continuous functions on I and p ≥ 1, is
a Banach quasi ∗-algebra (more precisely a proper CQ∗-algebra). Similarly
(Lp(R), C0

0(R)) is a Banach quasi ∗-algebra without unit (here C0
0 (R) is

the ∗-algebra of continuous functions in R with compact support). Other
examples are easily found among Sobolev spaces, Besov spaces etc.

Example 2.5 (Non-commutative Lp-spaces). Let M be a von Neumann
algebra and τ a normal semifinite faithful trace [17] on M. Then the com-
pletion of the ∗-ideal

Jp = {X ∈ M : τ(|X|p) < ∞}

with respect to the norm

‖X‖p = τ(|X|p)1/p, X ∈ M,

is usually called Lp(τ) [13, 16] and is a Banach space consisting of operators
affiliated with M. Then (Lp(τ),Jp) is a Banach quasi ∗-algebra (without
unit). If τ is a finite trace then (Lp(τ), M) is a BQ∗-algebra.



252 C. Trapani

Example 2.6 (Hilbert algebras). A Hilbert algebra [14, Section 11.7] is a
∗-algebra A0 which is also a pre-Hilbert space with inner product 〈· | ·〉 such
that

(i) the map b 7→ ab is continuous with respect to the norm defined by
the inner product;

(ii) 〈ab | c〉 = 〈b | a∗c〉 for all a, b, c ∈ A0;
(iii) 〈a | b〉 = 〈b∗ | a∗〉 for all a, b ∈ A0;
(iv) A2

0 is total in A0.

Let H denote the Hilbert space which is the completion of A0 with respect
to the norm defined by the inner product. The involution of A0 extends to
the whole of H, since (iii) implies that ∗ is isometric. Then (H, A0) is a
Banach quasi ∗-algebra.

2.2. Bounded elements

Definition 2.7. Let (X, A0) be a Banach quasi ∗-algebra and x ∈ X.
We say that x is left bounded if there exists γx > 0 such that

‖xa‖ ≤ γx‖a‖, ∀a ∈ A0.

The set of all left bounded elements of X is denoted by X◮. Analogously, we
say that x is right bounded if there exists γ′

x > 0 such that

‖ax‖ ≤ γ′
x‖a‖, ∀a ∈ A0.

The set of all right bounded elements of X is denoted by X◭.

The terminology is motivated by the fact that, if x is left bounded, the
map

a ∈ A0 7→ Lxa = xa

is bounded on A0 and so it has a bounded extension Lx to X. We put

‖x‖◮ = max{‖x‖, ‖Lx‖}.

Analogously, we define a norm on X◭ by

‖x‖◭ = max{‖x‖, ‖Rx‖}.

We put Xb = X◮ ∩ X◭. Clearly, A0 ⊆ Xb. On Xb we define the norm

‖x‖b = max{‖x‖, ‖Lx‖, ‖Rx‖}.

Remark 2.8. If (X, A0) has a unit e, then since ‖e‖ = 1, we have ‖Lx‖ ≥
‖x‖ for every x ∈ X◮, and therefore ‖x‖◮ = ‖Lx‖. Analogous statements
hold for ‖ · ‖◭ and ‖ · ‖b.

As usual, we denote by B(X) the Banach algebra of bounded operators
in the Banach space X. From the definition it follows that X◮, as well as X◭,
can be identified with a subspace of B(X).
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Let x ∈ X◮ and y ∈ X. Then we put

x ◮ y = Lxy.(2.1)

Similarly, if y ∈ X◭ and x ∈ X, we put

x ◭ y = Ryx.(2.2)

Remark 2.9. We notice that an element x ∈ X◮ is not necessarily right
bounded.

If x, y ∈ Xb then both x ◮ y and x ◭ y are well defined, but, in general,
x ◮ y 6= x ◭ y. Conditions for the equality to hold will be given later.

It is easy to show that if x, y ∈ X◮ and µ ∈ C then both x + y and µx
belong to X◮.

Proposition 2.10. If (X, A0) is a Banach quasi ∗-algebra, then the set

X◮ of all left bounded elements is a Banach algebra with respect to the mul-

tiplication ◮ and the norm ‖ · ‖◮.

Proof. (i) We prove that if x, y ∈ X◮ then x ◮ y ∈ X◮ and

‖x ◮ y‖◮ ≤ ‖x‖◮ ‖y‖◮.

Indeed, for each a ∈ A0 one has, using the associativity properties of the
multiplication in X,

(Lxy)a = lim
m→∞

(xbm)a = lim
m→∞

x(bma) = Lx(ya) = Lx(Lya),

where {bm} is a sequence in A0, ‖ · ‖-converging to y. Therefore,

‖(Lxy)a‖ ≤ ‖Lx‖ ‖Ly‖ ‖a‖, ∀a ∈ A0.

Hence x ◮ y ∈ X◮, Lx◮y = LxLy and

‖Lx◮y‖ ≤ ‖Lx‖ ‖Ly‖ ≤ ‖x‖◮‖y‖◮.

Since ‖x ◮ y‖ ≤ ‖x‖◮‖y‖◮, we finally get

‖x ◮ y‖◮ ≤ ‖x‖◮ ‖y‖◮.

Thus, X◮ endowed with ‖ · ‖◮ is a normed algebra. We will now show that
(X◮, ‖ · ‖◮) is complete. Let {xn} be a Cauchy sequence in (X◮, ‖ · ‖◮). Then
{Lxn} is a Cauchy sequence in B(X). Thus there exists L ∈ B(X) such that
Lxn → L with respect to the natural norm of B(X). Since ‖xn − xm‖ → 0,
there exists x ∈ X such that ‖xn − x‖ → 0. Since the right multiplication
by a is continuous in X, it follows that xna → xa = Lxa in the norm of X.
This implies that Lx = L. From these facts it follows easily that x is left
bounded and xn → x with respect to ‖ · ‖◮.

A similar result can be proved for X◭ taking into account the following
facts concerning the involution ∗ of X:

(1∗) x ∈ X◮ ⇔ x∗ ∈ X◭;
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(2∗) ‖x∗‖◭ = ‖x‖◮ for every x ∈ X◮;
(3∗) (x ◮ y)∗ = y∗ ◭ x∗ for every x, y ∈ X◮.

Definition 2.7 easily yields

Lemma 2.11.

(i) If x ∈ X◮ and y ∈ X, then ‖x ◮ y‖ ≤ ‖x‖◮‖y‖.
(ii) If y ∈ X◭ and x ∈ X, then ‖x ◭ y‖ ≤ ‖x‖ ‖y‖◭.

If x, y ∈ Xb then, as noticed before, both x◮y and x◭y are well defined,
but, in general, x◮y 6= x◭y. We want to analyze this situation more carefully.
First of all, if x, y ∈ Xb, then Lx, Ly ∈ B(X). As shown in the proof of
Proposition 2.10, LxLy = Lx◮y. Similarly, if x, y ∈ Xb, then RyRx = Rx◭y.

In what follows, we denote by X♯ the Banach dual space of (X, ‖ ·‖). The
norm in X♯ is defined, as usual, by ‖f‖♯ = sup‖x‖≤1 |f(x)| for f ∈ X♯.

Proposition 2.12. The following statements are equivalent.

(i) x ◮ y = x ◭ y for every x, y ∈ Xb.

(ii) x ◮ y is right bounded and ‖x ◮ y‖ ≤ ‖x‖‖y‖◭ for every x, y ∈ Xb.

(iii) x ◭ y is left bounded and ‖x ◭ y‖ ≤ ‖x‖◮‖y‖ for every x, y ∈ Xb.

(iv) For any pair {an}, {bn} of sequences of elements of A0, ‖·‖-converg-

ing to elements of Xb, one has

lim
n→∞

lim
m→∞

anbm = lim
m→∞

lim
n→∞

anbm.

(v) There exists a weak ∗-dense subspace M of X♯ such that for any

pair {an}, {bn} of sequences of elements of A0, ‖ · ‖-converging to

elements of Xb, one has

lim
n→∞

lim
m→∞

f(anbm) = lim
m→∞

lim
n→∞

f(anbm), ∀f ∈ M.

Proof. (i)⇒(ii): Clearly, the equality x ◮ y = x ◭ y implies that x ◮ y is
right bounded and for x ◮ y the inequality in Lemma 2.11(ii) holds.

(ii)⇔(iii) follows easily by taking ∗.
(iii)⇒(i): Assume that, for every x, y ∈ Xb, x ◭ y is left bounded and

‖x ◭ y‖ ≤ ‖x‖◮‖y‖. Let {bn} ⊂ A0 be such that ‖y − bn‖ → 0 as n → ∞.
Then, since A0 ⊆ Xb and Xb is a vector space, we get

‖x ◭ y − xbn‖ = ‖x ◭ y − x ◭ bn‖ = ‖x ◭ (y − bn)‖ ≤ ‖x‖◮‖y − bn‖ → 0.

Hence

x ◭ y = lim
n→∞

xbn = Lxy = x ◮ y.

(i)⇒(iv): Let {an}, {bn} ⊂ A0 with ‖x − an‖ → 0, ‖y − bn‖ → 0 and
x, y ∈ Xb. Then

x ◮ y = Lxy = lim
m→∞

xbm = lim
m→∞

lim
n→∞

anbm.
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On the other hand,

x ◭ y = Ryx = lim
n→∞

any = lim
n→∞

lim
m→∞

anbm.

The equality x◮y = x◭y then implies that the two iterated limits coincide.

(iv)⇒(v): This is clear.

(v)⇒(i): Assume that (i) fails. Then there exists f ∈X♯ such that f(x◮y)
6= f(x ◭ y). Since M is weak∗-dense in X♯, we may suppose that f ∈ M.
Then, if {an}, {bn} ⊂ A0 ‖ · ‖-converge, respectively, to x and y, we have

lim
m→∞

lim
n→∞

f(anbm) = f(x ◮ y) 6= f(x ◭ y) = lim
n→∞

lim
m→∞

f(anbm).

This completes the proof.

If any of the equivalent conditions of Proposition 2.12 holds, we put

x • y := x ◮ y = x ◭ y, x, y ∈ Xb.

Definition 2.13. A Banach quasi ∗-algebra (X, A0) such that x ◮ y =
x ◭ y for every x, y ∈ Xb is called normal.

Corollary 2.14.

(i) (X, A0) is normal if , and only if , Xb is a ∗-algebra with respect to ◮

(or , equivalently , with respect to ◭).
(ii) If (X, A0) is a normal Banach quasi ∗-algebra, then (Xb, ‖ · ‖b) is a

Banach ∗-algebra with respect to the multiplication •.

Proof. (i) The fact that if (X, A0) is normal, then Xb is a ∗-algebra with
respect to ◮ follows from the previous discussion. On the other hand, assume
that Xb is a ∗-algebra with respect to ◮; then, for every x, y ∈ Xb, x◮y ∈ Xb

and

x ◭ y = (y∗ ◮ x∗)∗ = x ◮ y.

(ii) follows easily from Proposition 2.10 and from the properties of the
involution.

Example 2.15. Assume that for each x ∈ Xb there exists a sequence
{an} ⊂ A0 such that

sup
n

‖an‖0 < ∞ and lim
n→∞

‖x − an‖ = 0.

Then (X, A0) is normal. Indeed, in this case, it is easily seen that (ii) or (iii)
of Proposition 2.12 holds.

Remark 2.16. If (X, A0) is a commutative Banach quasi ∗-algebra, i.e.
xa = ax for all x ∈ X and a ∈ A0, then it is easily seen that each left
bounded element x is also right bounded and x ◮ y = y ◭ x for every y ∈ X.
Thus if x, y ∈ Xb then both x ◮ y and x ◭ y are in Xb but they need not be
equal. In this case, in general, Xb is an algebra with respect to ◮ (and also
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with respect to ◭). Normality, in the commutative case, is equivalent to Xb

being also commutative.

Example 2.17. For the Banach quasi ∗-algebra (Lp(I), C(I)) consid-
ered in Example 2.4, one finds that (Lp(I))b = L∞(I) and the norm ‖ · ‖b

is exactly the L∞-norm. Since the multiplications ◮ and ◭ both coincide
with the ordinary multiplication of functions, (Lp(I), C(I)) is normal. This
example also shows that, in general, A0 is not dense in Xb with respect to
‖ · ‖b since, as is well known, C(I) is not dense in L∞(I).

Similarly, (Lp(R), C0
0(R)) is a Banach quasi ∗-algebra without unit. In

this case (Lp(R))b = L∞(R) ∩ Lp(R) and (Lp(R), C0
0(R)) is normal. The

norm ‖ · ‖b is equivalent to ‖ · ‖p + ‖ · ‖∞.
For the non-commutative Lp-spaces of Example 2.5 one finds that

(Lp(τ))b = Jp if τ is semifinite, while (Lp(τ))b = M if τ is finite. Nor-
mality follows from the fact that the multiplications ◮ and ◭ both coincide
with the ordinary multiplication of bounded operators.

Example 2.18. In the case of the Banach quasi ∗-algebra (H, A0) con-
structed from a Hilbert algebra A0 as in Example 2.6, the set Hb of bounded
elements of H is the so-called fulfillment of A0 (A0 is called a full Hilbert
algebra if Hb = A0). (H, A0) is normal. Indeed, let x, y ∈ Hb, and let {an},
{bn} be sequences in A0, ‖ · ‖-converging, respectively, to x and y. Then

〈x ◮ y | a〉 = lim
n→∞

〈xbn | a〉 = lim
n→∞

〈bn |x
∗a〉 = 〈y |x∗a〉, ∀a ∈ A0.

On the other hand,

〈x ◭ y | a〉 = lim
m→∞

〈any | a〉 = lim
m→∞

〈y | a∗na〉 = 〈y |x∗a〉, ∀a ∈ A0.

This implies that x ◮ y = x ◭ y.

Lemma 2.19. If (X, A0) is a normal Banach quasi ∗-algebra, then

LxRy = RyLx, ∀x, y ∈ Xb.(2.3)

Proof. Indeed, let x, y ∈ Xb, and let {an}, {bn} ⊂ A0 ‖ · ‖-converge,
respectively, to x and y. Then, for every a ∈ A0,

(LxRy)a = Lx(Rya) = lim
m→∞

x(abm) = lim
m→∞

lim
n→∞

an(abm).

On the other hand,

(RyLx)a = Ry(Lxa) = lim
n→∞

(ana)y = lim
n→∞

lim
m→∞

(ana)bm.

The statement then follows from Proposition 2.12(iv).

Remark 2.20. If (X, A0) has a unit, then (2.3) implies the normality of
(X, A0).

If (X, A0) is a normal Banach quasi ∗-algebra the products of an element
x ∈ X and an element y ∈ Xb are defined via (2.1) and (2.2).
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Proposition 2.21. If (X, A0) is a normal Banach quasi ∗-algebra, then

(X, Xb) is a BQ∗-algebra.

Proof. We need only check the module associativity rules. Let x ∈ X

and y1, y2 ∈ Xb. Then

x◭(y1•y2) = x◭(y1◭y2) = Ry1◭y2
x = (Ry2

Ry1
)x = Ry2

(Ry1
x) = (x◭y1)◭y2.

Using (2.3), we also have

(y1 ◮ x) ◭ y2 = Ry2
(y1 ◮ x) = Ry2

(Ly1
x) = (Ry2

Ly1
)x = (Ly1

Ry2
)x

= Ly1
(Ry2

x) = Ly1
(x ◭ y2) = y1 ◮ (x ◭ y2).

2.3. The spectrum. Let (X, A0) be a normal Banach quasi ∗-algebra with
unit e and x ∈ X. We say that x has a bounded inverse if there exists y ∈ Xb

such that Ry(x) = Ly(x) = e. From Proposition 2.21 it follows easily that
this element y, if any, is unique. If x has a bounded inverse we denote it
by x−1

b .

Definition 2.22. The resolvent ̺(x) of x ∈ X is the set

̺(x) = {λ ∈ C : x − λe has a bounded inverse}.

The set σ(x) = C \ ̺(x) is called the spectrum of x.

Proposition 2.23. Let x ∈ X. Then:

(i) The resolvent ̺(x) is an open subset of the complex plane.

(ii) The resolvent function Rλ(x) : λ ∈ ̺(x) 7→ (x − λe)−1
b is ‖ · ‖b-

analytic on each connected component of ̺(x).
(iii) For any λ, µ ∈ ̺(x), Rλ(x) and Rµ(x) commute and

Rλ(x) − Rµ(x) = (µ − λ)Rµ(x) • Rλ(x).

Proof. (i) Let λ0 ∈ ̺(x) and λ ∈ C be such that |λ−λ0| ≤ (‖Rλ0
(x)‖b)

−1.
Then the series

∞∑

n=1

(λ0 − λ)nRλ0
(x)n

converges in Xb with respect to ‖ · ‖b to an element Sλ,x.

Let now Tλ,x := Rλ0
(x)(e + Sλ,x). It is easily checked, using the ‖ ‖-

convergence for the product Tλ,x(x − λe), that Tλ,x is a bounded inverse of
x − λe.

(ii) follows immediately from the proof of (i). The proof of (iii) is straight-
forward.

The classical argument based on Liouville’s theorem can be applied to
prove the following

Proposition 2.24. Let x ∈ X. Then σ(x) is non-empty.
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Definition 2.25. Let x ∈ X. The non-negative number

r(x) = sup
λ∈σ(x)

|λ|

is called the spectral radius of x.

Remark 2.26. Of course, if x ∈ Xb then σ(x) coincides with the spec-
trum of x regarded as an element of the Banach ∗-algebra Xb. For an ar-
bitrary element x, the set σ(x) ⊂ C, which is closed, could be unbounded.
The next proposition shows that σ(x) is indeed unbounded if x ∈ X \ Xb.

Proposition 2.27. Let x ∈ X. Then r(x) < ∞ if , and only if , x ∈ Xb.

Proof. The “if” part has been discussed in the previous remark. Assume
now that r(x) < ∞. Then the function λ 7→ (x − λe)−1 is ‖ · ‖b-analytic
in the region |λ| > r(x). Therefore it has there a ‖ ‖b-convergent Laurent
expansion

(x − λe)−1 =
∞∑

k=1

ak

λk
, |λ| > r(x),

with ak ∈ Xb for each k ∈ N. As usual,

ak =
1

2πi

\
γ

(x − λe)−1

λ−k+1
dλ, k ∈ N,

where γ is a circle centered in 0 and with radius R > r(x). The integral on
the r.h.s. converges with respect to ‖·‖b. The ‖·‖-continuity of multiplication
implies that, as in the ordinary case,

xak =
1

2πi

\
γ

x(x − λe)−1

λ−k+1
dλ =

1

2πi

\
γ

(x − λe)−1

λ−k
dλ = ak+1.

In particular, using Cauchy’s integral formula, we find xa1 = −x. This
implies that x ∈ Xb.

Remark 2.28. If λ ∈ ̺(x) then all powers (x − λ)−n exist in Xb, for
every n ∈ N. This does not imply the existence of (x− λ)n for n > 1. As an
example, consider the Banach quasi ∗-algebra (L2(I), C(I)) where I = [0, 1]
(cf. Example 2.4). The function v(x) = x−1/4 is in L2(I); obviously, 0 ∈ ̺(v)
since v−1(x) = x1/4 ∈ C(I). We have v−n(x) = xn/4 ∈ L2(I) for all n ∈ N,
but v2(x) = x−1/2 6∈ L2(I).

3. Representations and seminorms. Families of sesquilinear forms
have been shown to play a relevant role in the study of the structure of CQ∗-
algebras [6] or more generally Banach C∗-modules [23]. The main reason is
that they give rise to representations with operators acting in Hilbert space.
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3.1. Representations. Before going on we recall some definitions. Let
H be a complex Hilbert space and D a dense subspace of H. We denote
by L†(D,H) the set of all linear operators X such that D(X) = D and
D(X∗) ⊇ D. The set L†(D,H) is a partial ∗-algebra [1] with respect to
the following operations: the usual sum X1 + X2, the scalar multiplication
λX, the involution X 7→ X† = X∗↾D and the (weak) partial multiplication

X1 �X2 = X†
1
∗X2, defined whenever X2 is a weak right multiplier of X1

(equivalently, X1 is a weak left multiplier of X2), that is, iff X2D ⊂ D(X†
1
∗)

and X∗
1D ⊂ D(X∗

2 ) (we write X2 ∈ Rw(X1) or X1 ∈ Lw(X2)). Let

L†(D) = {X ∈ L†(D,H) : XD ⊆ D, X†D ⊆ D}.

Then L†(D) is a ∗-algebra with respect to � and X1 �X2ξ = X1(X2ξ) for
each ξ ∈ D (see [15]).

A ∗-representation of the Banach quasi ∗-algebra (X, A0) is a ∗-homo-
morphism of X into L†(D,H), for some pair (D,H) where D is a dense
subspace of a Hilbert space H, that is, a linear map π : X → L†(D,H) such
that (i) π(x∗) = π(x)† for every x ∈ X, and (ii) if x ∈ X and a ∈ A0 then
π(x) ∈ Lw(π(a)) and π(x) �π(a) = π(xa).

A ∗-representation π of (X, A0) is called cyclic if there exists η ∈ D such
that π(A0)η is dense in H, and faithful if π(x) = 0 implies x = 0.

If π is a ∗-representation of (X, A0) in L†(D,H), then the closure π̃ of π is

defined, for each x ∈ X, as the restriction of π(x) to the domain D̃, which is
the completion of D under the graph topology defined by the seminorms ξ ∈
D 7→ ‖π(x)ξ‖, x ∈ X (see [1]). If π = π̃ the representation is said to be closed.

The Gel’fand–Năımark–Segal (GNS) construction for positive linear
functionals is one of the most relevant tools when studying the structure
of a Banach ∗-algebra. As customary when a partial multiplication is in-
volved (see [1]), we consider as starting point for the construction a positive
sesquilinear form enjoying certain invariance properties.

As usual, a sesquilinear form ϕ on X × X is said to be bounded if there
exists a positive constant γ such that

|ϕ(x, y)| ≤ γ‖x‖ ‖y‖, ∀x, y ∈ X.

In this case, we put

‖ϕ‖ := sup
‖x‖=‖y‖=1

|ϕ(x, y)| = sup
‖x‖=1

ϕ(x, x).

Definition 3.1. Let P(X) denote the set of all sesquilinear forms on
X × X such that

(i) ϕ(x, x) ≥ 0, ∀x ∈ X;
(ii) ϕ(xa, b) = ϕ(a, x∗b), ∀x ∈ X, a, b ∈ A0;
(iii) ϕ is bounded.
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Remark 3.2. We notice that if ϕ ∈ P(X) then an easy limit argument
shows that, besides (ii) of Definition 3.1, the following equality holds:

ϕ(ax, y) = ϕ(x, a∗y), ∀x, y ∈ X, a ∈ A0.

Let ϕ ∈ P(X). Then the positivity of ϕ implies that:

ϕ(x, y) = ϕ(y, x), ∀x, y ∈ X;

|ϕ(x, y)|2 ≤ ϕ(x, x)ϕ(y, y), ∀x, y ∈ X.

Hence

Nϕ := {x ∈ X : ϕ(x, x) = 0} = {x ∈ X : ϕ(x, y) = 0, ∀y ∈ X},

and so Nϕ is a subspace of A. For each x ∈ X, we denote by λϕ(x) the coset
of X/Nϕ which contains x, and define an inner product 〈· | ·〉 on

λϕ(X) = X/Nϕ

by
〈λϕ(x) |λϕ(y)〉 = ϕ(x, y), x, y ∈ X.

We denote by Hϕ the Hilbert space obtained by the completion of the pre-
Hilbert space λϕ(X). The subspace λϕ(A0) is dense in Hϕ. Indeed, if x ∈ X,
there exists a sequence {an} ⊂ A0 such that an → x in X. Then

‖λϕ(x) − λϕ(an)‖2 = ϕ(x − an, x − an) ≤ ‖ϕ‖2‖x − an‖
2 → 0.

Proposition 3.3. Let ϕ ∈ P(X). Put

π◦
ϕ(x)λϕ(a) = λϕ(xa), x ∈ X, a ∈ A0.(3.1)

Then π◦
ϕ is a ∗-representation of X in L†(λϕ(A0),Hϕ).

If (X, A0) has a unit e, the following properties also hold :

(i) D = λϕ(A0) = π(A0)λϕ(e) (i.e. λϕ(e) is ultra-cyclic);
(ii) ϕ(x, y) = 〈π◦

ϕ(x)λϕ(e) |π◦
ϕ(y)λϕ(e)〉, ∀x, y ∈ X.

Proof. First we prove that, for each x ∈ X, the map π◦
ϕ(x) of (3.1)

is well defined. Assume that λϕ(a) = 0 for some a ∈ A0. If x ∈ X, we
then get ϕ(a, x∗b) = 0 for every b ∈ A0. For each y ∈ X there exists a
sequence {bn} ⊂ A0 such that ‖λϕ(y) − λϕ(bn)‖ → 0. This clearly implies
that ϕ(xa, y) = 0 for each y ∈ X. Hence xa ∈ Nϕ. Thus, for each x ∈ X,
the map π◦

ϕ(x) is a well defined linear operator from λϕ(A0) into Hϕ. We
notice that the restriction of π◦

ϕ to A0 maps λϕ(A0) into itself. This fact
and the properties of ϕ listed in Definition 3.1 easily imply that π◦

ϕ is a
∗-representation. If (X, A0) has a unit e, then (i) and (ii) follow from the
definitions.

Denote by πϕ the closure of π◦
ϕ. The triple (πϕ, λϕ,Hϕ) is called the

GNS construction for ϕ and we refer to πϕ as the GNS representation of X

constructed from ϕ. If (X, A0) has a unit e, then ξϕ := λϕ(e) is cyclic for πϕ.
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With a proof similar to the usual one in the case of ∗-algebras one can prove
the following

Proposition 3.4. Let (X, A0) be a Banach quasi ∗-algebra with unit e
and ϕ ∈ P(X). Then the GNS construction (πϕ, λϕ,Hϕ) is unique up to

unitary equivalence.

It is easy to prove

Proposition 3.5. The ∗-representation πϕ is bounded if , and only if ,
ϕ is admissible, i.e, for every a ∈ A0 there exists γx > 0 such that

ϕ(xa, xa) ≤ γxϕ(a, a), ∀a ∈ A0.

Assume that (X, A0) has a unit e. Then it is clear that, if ϕ ∈ P(X), the
linear functional ωϕ defined by

ωϕ(x) = ϕ(x, e), x ∈ X,

is bounded on X, i.e. ωϕ ∈ X♯. Moreover, it is positive on X, in the sense
that ωϕ(x) ≥ 0 for every x ∈ X+, where X+ is the closure in X of the set

A+
0 =

{ n∑

k=1

a∗kak : ak ∈ A0, k = 1, . . . , n, n ∈ N

}
.

The set of positive elements of X♯ is denoted by X
♯
+.

Furthermore, the map ϕ ∈ P(X) 7→ ωϕ ∈ X
♯
+ is injective. For, if ωϕ(x)

= 0 for each x ∈ X, then making use of the properties (ii) and (iii) of P(X)
and of the density of A0, it follows that ϕ(x, y) = 0 for all x, y ∈ X.

Finally, we define

S(X) = {ϕ ∈ P(X) : ‖ϕ‖ ≤ 1}.

It is easily seen that S(X) is a convex subset of P(X). If (X, A0) has a unit e,
then ϕ(e, e) ≤ ‖e‖2 = 1 for any ϕ ∈ S(X).

Let X
♯
1 = {ω ∈ X♯ : ‖ω‖♯ ≤ 1} be the unit ball of X♯ and

X
♯
S = {ωϕ : ϕ ∈ S(X)}.

Remark 3.6. Obviously, it is possible that S(X) = {0} (or, equivalently,

X
♯
S = {0}). It is, however much more interesting to consider Banach quasi

∗-algebras for which the set S(X) is sufficiently rich (Section 3.3).

Proposition 3.7. Assume that (X, A0) has a unit and that S(X) 6= {0}.
Then the following statements hold :

(i) X
♯
S is a convex , weak∗-compact subset of X

♯
1.

(ii) X
♯
S has extreme points. If ωϕ is extreme, then ‖ϕ‖ = 1.

(iii) ωϕ is extreme in X
♯
S if , and only if , ϕ is extreme in S(X).

The proof is very simple and we omit it.
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3.2. Seminorms. We will now define some seminorms, closely related to
families of sesquilinear forms [22] and to representations. Similar construc-
tions have been considered in the case of ∗-algebras in [9, 24].

To begin with, we put

p(x) = sup
ϕ∈S(X)

ϕ(x, x)1/2.

Then p is a seminorm on X with p(x) ≤ ‖x‖ for every x ∈ X.
We also put

N(p) = {x ∈ X : p(x) = 0}.

Remark 3.8. Under the assumption of Proposition 3.7, the set S(X),
which is convex, has extreme elements (of unit norm) whose closed convex
hull is exactly S(X). Thus, in this case,

p(x) = sup
‖ϕ‖=1

ϕ(x, x)1/2.

We also define

q(x) = sup{ϕ(xa, xa)1/2 : ϕ ∈ P(X), a ∈ A0, ϕ(a, a) = 1}, x ∈ X,(3.2)

and
D(q) = {x ∈ X : q(x) < ∞}.

If (X, A0) has a unit e, then q has a simpler form. In fact, if we put

q′(x) = sup{ϕ(x, x)1/2 : ϕ ∈ P(X), ϕ(e, e) = 1}, x ∈ X,

and
D(q′) = {x ∈ X : q′(x) < ∞},

then D(q) = D(q′) and q(x) = q′(x) for every x ∈ D(q). Indeed, it is clear
that

q′(x) ≤ q(x), ∀x ∈ X.(3.3)

On the other hand, if ϕ ∈ P(X) and a ∈ A0, then also ϕa ∈ P(X), where
ϕa(x, y) = ϕ(xa, ya) for every x, y ∈ X. Clearly, if a ∈ A0 and ϕ(a, a) = 1,
then ϕa(e, e) = 1. This implies that

q(x) ≤ q′(x), ∀x ∈ X.(3.4)

The inequalities (3.3) and (3.4) also hold when one of their terms is ∞. Thus
the statement is proved.

The seminorms p and q compare as follows.

Proposition 3.9. Let (X, A0) be a Banach quasi ∗-algebra. Then:

(i) p(xa) ≤ q(x)p(a), ∀x ∈ D(q), a ∈ A0.
(ii) If (X, A0) has a unit , then

p(x) ≤ q(x), ∀x ∈ D(q).
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Proof. (i) Let x ∈ D(q). Then from the definition of q(x) we get, for
each ϕ ∈ P(X),

ϕ(xa, xa) ≤ q(x)2ϕ(a, a), ∀a ∈ A0.(3.5)

The statement then follows by taking the supremum over ϕ ∈ S(X).
(ii) This follows from (i) by choosing a = e and taking into account that

p(e) ≤ 1.

Proposition 3.10. Let (X, A0) be a Banach quasi ∗-algebra. Then:

(i) A0 ⊆ D(q) and q(a) ≤ ‖a‖0, ∀a ∈ A0.
(ii) D(q) = {x ∈ X : πϕ(x) bounded , ∀ϕ ∈ P(X), and

sup
ϕ∈P(X)}

‖πϕ(x)‖ < ∞},

q(x) = sup
ϕ∈P(X)

‖πϕ(x)‖, ∀x ∈ D(q).

(iii) q is an extended C∗-seminorm on (X, A0) (i.e. q(x∗) = q(x),
∀x ∈ X; q(a∗a) = q(a)2, ∀a ∈ A0, see [22]).

(iv) p(ax) ≤ ‖a‖0p(x), ∀x ∈ X, a ∈ A0.

Proof. (i) Let ϕ ∈ P(X). Then the restriction of ϕ to A0 × A0 is ‖ · ‖0-
bounded. This fact together with a repeated use of the Cauchy–Schwarz
inequality gives, for any a, b ∈ A0,

ϕ(ab, ab) ≤ ϕ(b, b)1/2+1/22+···+1/2k

ϕ((a∗a)2
k−1

b, (a∗a)2
k−1

b)1/2k

≤ ϕ(b, b)1/2+1/22+···+1/2k

‖ϕ‖1/2k

(‖(a∗a)2
k−1

‖0 ‖b‖0)
1/2k−1

.

For k → ∞, we get

ϕ(ab, ab) ≤ ‖a‖2
0ϕ(b, b), ∀a, b ∈ A0.

This implies that q(a) ≤ ‖a‖0 for every a ∈ A0.
(ii) Let x ∈ D(q) and ϕ ∈ P(X). If πϕ denotes the GNS representation

constructed from ϕ, making use of (3.5) we obtain

‖πϕ(x)λϕ(a)‖2 = ϕ(xa, xa) ≤ q(x)2ϕ(a, a) = q(x)2‖λϕ(a)‖2, ∀a ∈ A0.

Thus πϕ(x) is bounded and ‖πϕ(x)‖ ≤ q(x). This implies that

M(x) := sup{‖πϕ(x)‖ : ϕ ∈ P(X)} ≤ q(x).

Conversely, assume that x ∈ X and M(x) is finite. Then

ϕ(xa, xa) = ‖πϕ(x)λϕ(a)‖2 ≤ M(x)2‖λϕ(a)‖2 = M(x)2ϕ(a, a), ∀a ∈ A0.

Hence, x ∈ D(q) and q(x) ≤ M(x).
(iii) This follows directly from (ii).
(iv) For x ∈ X and ϕ ∈ S(X), define

ωx
ϕ(a) = ϕ(ax, x), a ∈ A0.
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Then ωx
ϕ is positive and ‖ · ‖0-bounded on A0. Proceeding as in (i) one gets

ϕ(ax, ax) ≤ ‖a‖2
0ϕ(x, x), ∀a ∈ A0.

Taking the supremum over ϕ ∈ S(X), we obtain the result.

So far, we have not proved (or even assumed) anything about the size

of the families of sesquilinear forms we have considered. There are however
examples of Banach quasi ∗-algebras (X, A0) with P(X) = {0} (see Example
3.20 below). The previous statements remain of course true, but become
mostly trivial. Much more interesting is the case where P(X) contains suf-
ficiently many elements, by which we mean that N(p) = {0}.

3.3. Sufficient families of sesquilinear forms

Definition 3.11. Let (X, A0) be a Banach quasi ∗-algebra. We say that
S(X) is sufficient if the conditions x ∈ X and ϕ(x, x) = 0 for each ϕ ∈ S(X)
imply x = 0.

Remark 3.12. We adopted a similar definition for CQ∗-algebras in [6].
Some of the statements that follow generalize results obtained for that sit-
uation in [6, 20].

The following lemma allows us to formulate in different ways the notion
of sufficiency of S(X).

Lemma 3.13. Let (X, A0) be a Banach quasi ∗-algebra with unit e. For

an element x ∈ X, the following statements are equivalent.

(i) p(x) = 0, i.e. x ∈ N(p).
(ii) ϕ(x, x) = 0 for every ϕ ∈ S(X).
(iii) ϕ(x, y) = 0 for every ϕ ∈ S(X) and y ∈ X.

(iv) ωϕ(x) = 0 for every ϕ ∈ S(X).
(v) ϕ(xa, a) = 0 for every ϕ ∈ S(X) and a ∈ A0.

(vi) ϕ(xa, b) = 0 for every ϕ ∈ S(X) and a, b ∈ A0.

Proposition 3.14. Let (X, A0) be a Banach quasi ∗-algebra with unit e.
If the set

X
♯
P := {ωϕ : ϕ ∈ P(X)}

is weak∗-dense in X
♯
+, then S(X) is sufficient. Conversely , if (X, ‖ · ‖) is

a reflexive Banach space and S(X) is sufficient , then X
♯
P is weak∗-dense

in X
♯
+.

Proof. Assume that S(X) is not sufficient. Then there exists x ∈ X,
x 6= 0, such that ϕ(x, x) = 0 for every ϕ ∈ S(X). This implies that ωϕ(x) = 0
for each ϕ ∈ S(X). Thus the non-zero continuous linear functional fx on X♯

defined by fx(ω) = ω(x) is identically zero on {ωϕ : ϕ ∈ P(X)}. Thus this

set is not weak∗-dense in X
♯
+.
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Conversely, assume that X
♯
P is not weak∗-dense in X

♯
+. Then, by reflex-

ivity, there would exist an x ∈ X, x 6= 0, such that ωϕ(x) = ϕ(x, e) = 0 for
each ϕ ∈ P(X). Then, by Lemma 3.13, we get ϕ(x, x) = 0 for each ϕ ∈ P(X).
This implies that x = 0, a contradiction.

Proposition 3.15. Let (X, A0) be a Banach quasi ∗-algebra with unit e
and let S(X) be sufficient. Let x ∈ X. Then

(i) x = x∗ if , and only if , ωϕ(x) ∈ R for each ϕ ∈ S(X).

Moreover , if X
♯
P is weak∗-dense in X

♯
+, then:

(ii) If ωϕ(x) ≥ 0 for each ϕ ∈ S(X), then x is positive.

(iii) x ∈ X+ ∩ {−X+} if , and only if , x = 0.

Proof. (i) Assume that ωϕ(x) ∈ R for each ϕ ∈ S(X). Then

ωϕ(x − x∗) = ωϕ(x) − ωϕ(x∗) = ωϕ(x) − ωϕ(x) = 0

for every ϕ ∈ S(X). By Lemma 3.13 one has ϕ(x− x∗, x− x∗) = 0 for every
ϕ ∈ S(X). Hence x = x∗. The converse implication is obvious.

(ii) This follows immediately from the weak∗-denseness of X
♯
P .

(iii) Assume that x ∈ X+∩{−X+}; then by (ii) it follows that ωϕ(x) = 0
for every ϕ ∈ S(X). From this we conclude that x = 0.

Proposition 3.16. Let (X, A0) be a BQ∗-algebra with unit. If S(X) is

sufficient , then A0 is a ∗-semisimple Banach ∗-algebra.

Proof. It suffices to show that if a ∈ A0 and ω(a∗a) = 0 for each positive
linear functional ω on A0, then a = 0. If this assumption is satisfied, then,
in particular, ωϕ(a∗a) = 0 for each ϕ ∈ S(X). This implies that ϕ(a, a) = 0
for every ϕ ∈ S(X), and so a = 0.

If (X, A0) has a sufficient S(X), then also the multiplications defined in
Section 2 behave in a reasonable fashion:

Proposition 3.17. Let (X, A0) be a Banach quasi ∗-algebra with suffi-

cient S(X). Then (X, A0) is normal.

Proof. Let x, y ∈ Xb. For every ϕ ∈ S(X) and c ∈ A0, we have

ϕ((x ◮ y)c, c) = ϕ((Lxy)c, c) = lim
m→∞

ϕ((xbm)c, c)

= lim
m→∞

ϕ(x(bmc), c) = lim
m→∞

ϕ(bmc, x∗c)

= ϕ(yc, x∗c),

where {bm} ⊂ A0 converges to y in X. Analogously, if {an} ⊂ A0 converges
to x in X, we have

ϕ((x ◭ y)c, c) = ϕ((Ryx)c, c) = lim
n→∞

ϕ((any)c, c)

= lim
n→∞

ϕ(an(yc), c) = lim
n→∞

ϕ(yc, a∗nc) = ϕ(yc, x∗c).
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Therefore

ϕ((x ◮ y − x ◭ y)c, c) = 0, ∀ϕ ∈ S(X), c ∈ A0.

By Lemma 3.13 it follows that x ◮ y = x ◭ y. This concludes the proof.

If (X, A0) has a sufficient S(X), then p is a norm on X, weaker in general
than the original norm of X. Thus, it makes sense to consider the case where
they coincide. Hence we give the following

Definition 3.18. A Banach quasi ∗-algebra (X, A0) is called regular if

(i) S(X) is sufficient;

(ii) p(x) = ‖x‖ for every x ∈ X.

A similar definition was given for CQ∗-algebras in [6]. We notice that
the equality p(x) = ‖x‖ for every x ∈ X implies that p(x∗) = p(x) for every
x ∈ X. This equality fails in general; but it is exactly what is needed to
embed (X, A0) in a larger regular Banach quasi ∗-algebra.

Proposition 3.19. Let (X, A0) be a Banach quasi ∗-algebra with suffi-

cient S(X) and p(x∗) = p(x) for every x ∈ X. Then there exists a regular

Banach quasi ∗-algebra, (XS , A0), such that XS contains X as a dense sub-

space.

Proof. We let XS be the completion of A0 with respect to p; then (XS , A0)
is a Banach quasi ∗-algebra, by Proposition 3.10(vi) and the assumption that
p(x∗) = p(x) for every x ∈ X. We now prove that X can be identified with
a subspace of XS . Indeed, if x ∈ X then there exists a sequence {an} ⊂ A0

such that

x = ‖ · ‖ - lim
n→∞

an.

It is readily seen that {an} is also a Cauchy sequence with respect to p.
Thus there exists an element x ∈ XS such that

x = p - lim
n→∞

an.

The element x does not depend on the particular sequence {an} used to
approximate x in X. Indeed, if {a′n} is another such sequence, then

p(an − a′n) ≤ ‖an − a′n‖ → 0 as n → ∞.

We have defined in this way a map i : x ∈ X 7→ x ∈ XS ; we will now prove
that i is injective.

Assume that x = 0 for some x ∈ X and let {an} be a sequence in A0

approximating x in the norm of X and such that p(an) → 0; this implies
that ϕ(an, an) → 0 for each ϕ ∈ S(X). Therefore

ϕ(x, x) = lim
n→∞

ϕ(an, an) = 0.
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From the sufficiency of S(X) we get x = 0. To conclude the proof, we need
to show that S(XS) is sufficient and that (XS , A0) is regular.

First, we prove that the two families of sesquilinear forms, S(X) and
S(XS), can be identified. Indeed, let Φ ∈ S(XS); then its restriction ΦX to
X belongs, as is easily seen, to S(X). Conversely, if Φ0 ∈ S(X), then making
use of the Cauchy–Schwarz inequality, we get

|Φ0(x, y)| ≤ p(x)p(y), ∀x, y ∈ X.

Therefore Φ0 has a unique extension Φ to XS and Φ ∈ S(XS). Taking this fact
into account, the sufficiency of S(XS) follows by the definition of completion.
The regularity is a simple consequence of the definition of the norm in the
completion.

Example 3.20. The BQ∗-algebra (Lp(I), C(I)) is regular [5] if, and only
if, p ≥ 2. For 1 ≤ p < 2, S(Lp(I)) = {0}. In the case of the non-commutative
Lp of Example 2.5, it has been proved in [8] that, for finite τ , (Lp(τ), M) is
regular if p ≥ 2.

Example 3.21. For the Banach quasi ∗-algebra (H, A0) of Example 2.6,
S(X) is sufficient, since it contains the inner product 〈· | ·〉. For the same
reason, (H, A0) is regular.

We consider again the seminorm q defined in (3.2). If (X, A0) has a
sufficient S(X), then q is also a norm on D(q) and has the C∗-property
on A0. If, in addition, (X, A0) has a unit, then (Proposition 3.9)

p(x) ≤ q(x), ∀x ∈ D(q).(3.6)

The space D(q) endowed with the topology defined by q is denoted by Xq.
Then we have the following

Proposition 3.22. Let (X, A0) be a Banach quasi ∗-algebra with unit.

Assume that S(X) is sufficient. Then Xq is a normed space containing A0

as a subspace. Moreover if X is regular , then Xq is a Banach space.

Proof. The first part of the statement follows from Proposition 3.10(i).
In order to prove that, if X is regular, Xq is a Banach space, we only have
to show its completeness. Let {xn} be a q-Cauchy sequence in Xq.

Inequality (3.6) in the regular case becomes ‖x‖ ≤ q(x) for all x ∈ Xq.
Therefore {xn} is also ‖ · ‖-Cauchy. Using the ‖ · ‖-completeness of X we
conclude that there exists an element x ∈ X which is the ‖ ‖-limit of xn.

Let ϕ ∈ P(X). Then ϕ(x, x) = limn→∞ ϕ(xn, xn). The sequence q(xn) is
bounded, because {xn} is q-Cauchy. Let M be its supremum. Then

ϕ(xna, xna)1/2 ≤ q(xn) ≤ M, ∀a ∈ A0 with ϕ(a, a) = 1.

Hence
ϕ(xa, xa)1/2 = lim

n→∞
ϕ(xna, xna)1/2 ≤ M.
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Thus, clearly, q(x) ≤ M , i.e. x ∈ Xq. Finally, using the uniqueness of the
limit in the completion of Xq, we conclude that x = q-limn→∞ xn. Thus Xq

is complete.

We observe that in general the inclusion A0 ⊆ Xq is proper. For instance,
in (Lp(I), C(I)) any step function s defined on [0, 1] is in Lp(I) but not in
C(I). It is immediate to verify that s ∈ (Lp(I))q.

Our next goal is to prove that, for regular Banach quasi ∗-algebras, Xq

is exactly the set of elements having finite spectral radius.

We begin with the following

Proposition 3.23. Let (X, A0) be a Banach quasi ∗-algebra with suffi-

cient S(X). Then for every x ∈ X the maps

Lx : a ∈ A0 7→ xa ∈ X, Rx : a ∈ A0 7→ ax ∈ X

are closable in X.

Proof. Let x ∈ X and {an} ⊂ A0 be a sequence ‖ · ‖-converging to
zero and such that xan → y with respect to ‖ · ‖. Then, if ϕ ∈ S(X) and
b1, b2 ∈ A0, we get

|ϕ(yb1, b2)| ≤ |ϕ((y − xan)b1, b2)| + |ϕ(anb1, x
∗b2)|

≤ ‖y − xan‖ ‖b1‖0‖b2‖0 + ‖an‖ ‖b1‖0‖x
∗b2‖ → 0.

Therefore ϕ(yb1, b2) = 0 for every ϕ ∈ S(X) and b1, b2 ∈ A0. By Lemma
3.13, y = 0. The proof for Rx is similar.

The previous proposition suggests a handy criterion for the existence of
a bounded inverse of an element:

Proposition 3.24. Let (X, A0) be a Banach quasi ∗-algebra with unit e
and sufficient S(X). Let x ∈ X satisfy the following conditions:

(i) there exists γ > 0 such that

min{‖ax‖, ‖xa‖} ≥ γ‖a‖, ∀a ∈ A0;

(ii) the sets {ax : a ∈ A0} and {xa : a ∈ A0} are both dense in X.

Then x has a bounded inverse.

Proof. Let x ∈ X satisfy (i) and (ii). Then, making use of standard
techniques for closable maps in Banach spaces, one can prove that the range
of the closure Lx of Lx is the whole space X. Moreover, it is easy to prove
that

‖Lxy‖ ≥ γ‖y‖, ∀y ∈ D(Lx),

where D(Lx) denotes the domain of Lx. Therefore, there exists a unique
b1 ∈ D(Lx) such that Lxb1 = e.
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Let {zn} ⊂ A0 with ‖b1 − zn‖ → 0 and {xzn} converging in X. Then,
for every a ∈ A0, ‖b1a − zna‖ → 0 and {x(zna)} converges in X. Hence
b1a ∈ D(Lx) and

Lx(b1a) = lim
n→∞

x(zna) = lim
n→∞

(xzn)a = (Lxb1)a = ea = a.

Therefore Lx(b1a) = (Lxb1)a for every a ∈ A0. Hence

‖Lx(b1a)‖ ≥ γ‖b1a‖, ∀a ∈ A0.

This implies that

‖b1a‖ ≤
1

γ
‖a‖, ∀a ∈ A0.

Hence b1 is left bounded.
In a similar way one shows the existence of a unique right bounded

element b2 ∈ D(Rx) such that Rxb2 = e.
We now prove that b1 = b2. Let zi,n (i = 1, 2) be a sequence in A0 such

that ‖zi,n − bi‖ → 0 and {xzi,n} converges in X. For every ϕ ∈ S(X) and
c ∈ A0, we have

ϕ(b2c, c) = ϕ(b2(Lxb1)c, c) = ϕ((Lxb1)c, b
∗
2c)

= lim
n→∞

ϕ((Lxz1,n)c, z∗2,nc) = lim
n→∞

ϕ(x(z1,nc), z∗2,nc)

= lim
n→∞

ϕ(z1,nc, (z2,nx)∗c) = ϕ(b1c, c),

since z2,nx → Rxb2 = e. The sufficiency of S(X) implies that b1 = b2. We
put b := b1 = b2. Then b ∈ Xb.

We finally prove that Lxb = Rbx. Let ϕ ∈ S(X) and let {zn} ⊂ A0 with
‖b − zn‖ → 0 and {xzn} converging in X. Then, for every c ∈ A0,

ϕ((Lxb)c, c) = lim
n→∞

ϕ((xzn)c, c) = lim
n→∞

ϕ(znc, x∗c) = ϕ(bc, x∗c).

On the other hand, if {an} ⊂ A0 with ‖x − an‖ → 0, then for every c ∈ A0,

ϕ((Rbx)c, c) = lim
n→∞

ϕ((Rban)c, c) = lim
n→∞

ϕ((anb)c, c)

= lim
n→∞

ϕ(bc, a∗nc) = ϕ(bc, x∗c).

The sufficiency of S(X) implies the desired equality.
Analogously, one can prove that Rxb = Lbx. In conclusion, b ∈ Xb and

Lbx = Rbx = e, i.e. x has a bounded inverse.

Proposition 3.25. Let (X, A0) be a regular Banach quasi ∗-algebra with

unit e. Let x ∈ Xq and λ ∈ C with |λ| > q(x). Then x − λe has a bounded

inverse (x − λe)−1
b ∈ Xb. Thus

{λ ∈ C : |λ| > q(x)} ⊆ ̺(x).

Proof. Let ϕ ∈ S(X). By definition, if x ∈ D(q), then

|λ| > q(x) ≥ ϕ(xb, xb), ∀b ∈ A0 with ϕ(b, b) = 1.
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Therefore, for every a ∈ A0,

ϕ((x − λe)a, (x − λe)a)1/2 ≥ |λ|ϕ(a, a)1/2 − ϕ(xa, xa)1/2

≥ (|λ| − q(x))ϕ(a, a)1/2.

Taking the supremum over ϕ ∈ S(X) we get

p((x − λe)a) ≥ p(a)(|λ| − q(x)).

From the regularity of (X, A0), we finally get

‖(x − λe)a‖ ≥ ‖a‖(|λ| − q(x)), ∀a ∈ A0.

Furthermore, if q(x) < ∞ and |λ| > q(x), then the sets

RanLx−λe := {(x − λe)b : b ∈ A0}, RanRx−λe := {b(x − λe) : b ∈ A0}

are ‖ · ‖-dense in X.

Indeed, assume, for instance, that RanLx−λe is not dense in X. Then
there exists a non-zero ‖ ‖-continuous functional f on X such that f((x−λ)b)
= 0 for every b ∈ A0. Therefore f(xb) = λf(b) for every b ∈ A0. From the
‖ ‖-continuity of f we get |f(xb)| ≤ ‖f‖♯‖xb‖ for every b ∈ A0.

From the regularity of (X, A0) and from Proposition 3.9(i), we get

|f(xb)| ≤ ‖f‖♯‖xb‖ = ‖f‖♯p(xb) ≤ ‖f‖♯q(x)p(b) = ‖f‖♯q(x)‖b‖, ∀b ∈ A0.

The functional fx defined by fx(b) := f(xb), b ∈ A0, is ‖ ‖-continuous, since

|fx(b)| = |λf(b)| ≤ |λ| ‖f‖♯‖b‖, ∀b ∈ A0.

An easy computation shows that ‖fx‖
♯ = |λ| ‖f‖♯. Thus we find the fol-

lowing contradictory inequality: |λ| ≤ q(x). A similar argument shows the
corresponding statement for Rx−λe.

Applying Proposition 3.24 we get the result.

We can now prove the following

Theorem 3.26. Let (X, A0) be a regular Banach quasi ∗-algebra with

unit e. Then D(q) coincides with the set Xb of all bounded elements of X.

Moreover

q(x) = ‖x‖b, ∀x ∈ Xb.

Therefore (Xb, ‖ · ‖b) is a C∗-algebra.

Proof. Propositions 2.27 and 3.25 show that D(q) ⊆ Xb. On the other
hand, consider, for each ϕ ∈ P(X), the linear functional ωϕ defined by

ωϕ(x) = ϕ(x, e), x ∈ Xb.

A simple limit argument shows that ωϕ is positive (i.e. ω(x∗ • x) ≥ 0 for
each x ∈ Xb), so if πϕ denotes the corresponding GNS representation, then

πϕ(x) is bounded and ‖πϕ(x)‖ ≤ ‖x‖b for every x ∈ Xb. Thus, if x ∈ Xb,
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then by Proposition 3.10(ii),

q(x) = sup
ϕ∈P(X)

‖πϕ(x)‖ ≤ ‖x‖b.

From Proposition 3.9(i) it follows that

‖xa‖ = p(xa) ≤ q(x)p(a) = q(x)‖a‖, ∀x ∈ D(q), a ∈ A0,

and, by taking the involution, also

‖ax‖ ≤ q(x)‖a‖, ∀x ∈ D(q), a ∈ A0.

This implies that ‖x‖b ≤ q(x). Thus, in conclusion, ‖ · ‖b is a C∗-norm.

A further characterization of the set of bounded elements of (X, A0), in
the case where S(X) is sufficient, can be obtained in terms of representations.

Theorem 3.27. Let (X, A0) be a Banach quasi ∗-algebra with unit e. As-

sume that S(X) is sufficient. Then (X, A0) admits a faithful ∗-representation

π in a Hilbert space H. Moreover

Xb = {x ∈ X : π(x) ∈ B(H)}

and

‖π(x)‖ = q(x), ∀x ∈ Xb.

Proof. For each ϕ ∈ P(X), let πϕ be the corresponding GNS construction
with dense domain Dϕ ⊆ Hϕ. Put

H =
⊕

ϕ∈P(X)

Hϕ =
{
(ξϕ)ϕ∈P(X) : ξϕ ∈ Hϕ,

∑

ϕ∈P(X)

‖ξϕ‖
2 < ∞

}
,

with the usual inner product

〈(ξϕ) | (ηϕ)〉 =
∑

ϕ∈S(X)

〈ξϕ | ηϕ〉, (ξϕ), (ηϕ) ∈ H.

Let

D =
{
(ξϕ) ∈ H : ξϕ ∈ Dϕ, ϕ ∈ P(X),

∑

ϕ∈S(X)

‖πϕ(x)ξϕ‖
2 < ∞, ∀x ∈ X

}
.

Then D is a dense domain in H and so we can define, for x ∈ X,

π(x)(ξϕ) = (πϕ(x)ξϕ), (ξϕ) ∈ D.

Then π(x) ∈ L†(D,H) for each x ∈ X and π : x ∈ X 7→ π(x) ∈ L†(D,H) is
a ∗-representation of (X, A0). Moreover, π is faithful, since

π(x) = 0 ⇔ πϕ(x) = 0, ∀ϕ ∈ P(X) ⇔ ϕ(x, x) = 0, ∀ϕ ∈ P(X).

The sufficiency of S(X) then implies that x = 0.
Finally, π(x) is bounded if, and only if, each πϕ for ϕ ∈ P(X) is bounded

and
sup

ϕ∈P(X)
‖πϕ(x)‖ < ∞,
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and, in this case,

‖π(x)‖ = sup
ϕ∈P(X)

‖πϕ(x)‖, x ∈ X.

But, by Proposition 3.10(ii),

sup
ϕ∈P(X)

‖πϕ(x)‖ = q(x).

This concludes the proof.
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