Bounded elements of C*-inductive locally convex spaces

Giorgia Bellomonte • Salvatore Di Bella • Camillo Trapani

Received: 23 July 2013 / Accepted: 7 November 2014 / Published online: 26 November 2014
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Abstract

The notion of bounded element of C*-inductive locally convex spaces (or C*inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C^{*}-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.

Keywords Bounded elements • Inductive limit of C*-algebras • Partial *-algebras
Mathematics Subject Classification 47L60 - 47L40

1 Introduction

Some locally convex spaces exhibit an interesting feature: They contain a large number of C^{*}-algebras that often contribute to their topological structure, in the sense that these spaces can be thought as generalized inductive limits of C^{*}-algebras. These objects were called C^{*}-inductive locally convex spaces in [8] and their structure was examined in detail, also taking in mind that they arise naturally when one considers the operators acting in the joint topological limit of an inductive family of Hilbert spaces as described in [9]. Indeed, a typical instance of this structure is obtained by considering the space $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$of operators acting in the rigged Hilbert space canonically associated with an O^{*}-algebra of unbounded operators acting on a dense domain \mathcal{D} of Hilbert space \mathcal{H}. In [8], a series of features of this structure was studied giving a particular attention to the order structure, positive linear functionals

[^0]and representation theory. The space $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$contains a subspace isomorphic to the *algebra $\mathfrak{B}(\mathcal{H})$ of bounded operators in \mathcal{H} whose elements can be in natural way considered as the bounded elements of $\mathfrak{L}_{B}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$. The notion of bounded element of a locally convex *-algebra \mathfrak{A} was first introduced by Allan [1] with the aim of developing a spectral theory for topological *-algebras: An element x of the topological *-algebra $\mathfrak{A}[\tau]$ is Allan bounded if there exists $\lambda \neq 0$ such that the set $\left\{\left(\lambda^{-1} x\right)^{n} ; n=1,2, \ldots\right\}$ is a bounded subset of $\mathfrak{A}[\tau]$. This definition was suggested by the successful spectral analysis for closed operators in Hilbert space \mathcal{H} : A complex number λ is in the resolvent set $\rho(T)$ of a closed operator T if $T-\lambda I$ has an inverse in the *-algebra $\mathfrak{B}(\mathcal{H})$ of bounded operators.

There are, however, several other possibilities for defining bounded elements. For instance, one may say that x is bounded if $\pi(x)$ is a bounded operator, for every (continuous, in a certain sense) *-representation π defined on a dense domain \mathcal{D}_{π} of some Hilbert space \mathcal{H}_{π}. This could be a reasonable definition in itself, provided that \mathfrak{A} possesses sufficiently many *-representations in Hilbert space.

Moreover some attempts to extend this notion to the larger setup of locally convex quasi *-algebras [10,17-20] or locally convex partial *-algebras [2,5,6] have been done. But in these cases, Allan's notion cannot be adopted, since powers of a given element x need not be defined.

In the case of *-algebras, bounded elements in purely algebraic terms have been considered by Vidav [22] and Schmüdgen [15] with respect to some (positive) wedge.

The aim of this paper is to extend the notion of bounded element to the case of C^{*}-inductive locally convex spaces \mathfrak{A} with defining family of C^{*}-algebras $\left\{\mathfrak{B}_{\alpha} ; \alpha \in \mathbb{F}\right\}(\mathbb{F}$ is an index set directed upward). There are also in this case several possibilities: The first one consists in taking elements that have representatives in every C^{*}-algebra \mathfrak{B}_{α} of the family whose norms are uniformly bounded; the second one consists into taking into account the order structure of \mathfrak{A}, in the same spirit of the quoted papers of Vidav and Schmüdgen.

The paper is organized as follows. After some preliminaries (Sect. 2), we study, in Sect. 3, how bounded elements of $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$can be derived from its C^{*}-inductive structure and from its order structure. We show that these two notions are equivalent and that an element X is bounded if and only if X maps \mathcal{D} into \mathcal{H} and $\bar{X} \in \mathfrak{B}(\mathcal{H})$. Finally, in Sect. 4, we consider the same problem for abstract C^{*}-inductive locally convex spaces and give conditions for some of the characterizations proved for $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$maintain their validity. Some of these results are then specialized to the case where \mathfrak{A} is a C^{*}-inductive locally convex partial *-algebra.

2 Notations and preliminaries

For general aspects of the theory of partial *-algebras and of their representations, we refer to the monograph [3]. For the convenience of the reader, however, we repeat here the essential definitions.

A partial *-algebra \mathfrak{A} is a complex vector space with conjugate linear involution * and a distributive partial multiplication ', defined on a subset $\Gamma \subset \mathfrak{A} \times \mathfrak{A}$, satisfying the property that $(x, y) \in \Gamma$ if, and only if, $\left(y^{*}, x^{*}\right) \in \Gamma$ and $(x \cdot y)^{*}=y^{*} \cdot x^{*}$. From now on, we will write simply $x y$ instead of $x \cdot y$ whenever $(x, y) \in \Gamma$. For every $y \in \mathfrak{A}$, the set of left (resp. right) multipliers of y is denoted by $L(y)$ (resp. $R(y)$), i.e., $L(y)=\{x \in \mathfrak{A}:(x, y) \in \Gamma\}$, (resp. $R(y)=\{x \in \mathfrak{A}:(y, x) \in \Gamma\}$). We denote by $L \mathfrak{A}($ resp. $R \mathfrak{A}$) the space of universal left (resp. right) multipliers of \mathfrak{A}. In general, a partial *-algebra is not associative.

The unit of partial *-algebra \mathfrak{A}, if any, is an element $e \in \mathfrak{A}$ such that $e=e^{*}, e \in R \mathfrak{A} \cap L \mathfrak{A}$ and $x e=e x=x$, for every $x \in \mathfrak{A}$.

Let \mathcal{H} be a complex Hilbert space and \mathcal{D} a dense subspace of \mathcal{H}. We denote by $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ the set of all (closable) linear operators X such that $D(X)=\mathcal{D}, D\left(X^{*}\right) \supseteq \mathcal{D}$. The map $X \rightarrow X^{\dagger}=X_{\upharpoonright \mathcal{D}}^{*}$ defines an involution on $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, which can be made into a partial *-algebra with respect to the weak multiplication [3]; however, this fact will not be used in this paper.

Let $\mathcal{L}^{\dagger}(\mathcal{D})$ be the subspace of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ consisting of all its elements which leave, together with their adjoints, the domain \mathcal{D} invariant. Then $\mathcal{L}^{\dagger}(\mathcal{D})$ is a *-algebra with respect to the usual operations. A *-subalgebra \mathfrak{M} of $\mathcal{L}^{\dagger}(\mathcal{D})$, containing the identity I of \mathcal{D}, is called an O*-algebra.

Let \mathfrak{M} be an O^{*}-algebra. The graph topology $t_{\mathfrak{M}}$ on \mathcal{D} is the locally convex topology defined by the family $\left\{\|\cdot\|_{A}\right\}_{A \in \mathfrak{M}}$, where

$$
\|\xi\|_{A}=\sqrt{\|\xi\|^{2}+\|A \xi\|^{2}}=\left\|\left(I+A^{*} \bar{A}\right)^{1 / 2} \xi\right\|, \quad \xi \in \mathcal{D} .
$$

For $A=0$, the null operator of $\mathcal{L}^{\dagger}(\mathcal{D}),\|\cdot\|_{0}$ is exactly the norm of \mathcal{H}, thus we will omit the 0 in the notation of the norm.

The topology $t_{\mathfrak{M}}$ is finer than the norm topology, unless \mathfrak{M} does consist of bounded operators only.

If \mathfrak{M} is an O^{*}-algebra, we write $A \preceq B$ if $\|A \xi\| \leq\|B \xi\|$, for every $\xi \in \mathcal{D}$. Then, \mathfrak{M} is directed upward with respect to this order relation.

If $A \in \mathfrak{M}$, we denote by \mathcal{H}_{A} the Hilbert space obtained by endowing $D(\bar{A})$ with the graph norm $\|\cdot\|_{A}$.

If $A, B \in \mathfrak{M}$ and $A \preceq B$, then $U_{B A}=\left(I+B^{*} \bar{B}\right)^{-1 / 2}\left(I+A^{*} \bar{A}\right)^{1 / 2}$ is a contractive map of \mathcal{H}_{A} into \mathcal{H}_{B}; i.e., $\left\|U_{B A} \xi\right\|_{B} \leq\|\xi\|_{A}$, for every $\xi \in \mathcal{H}_{A}$.

If the locally convex space $\mathcal{D}\left[t_{\mathfrak{M}}\right]$ is complete, then \mathfrak{M} is said to be closed.
If $\mathfrak{M}=\mathcal{L}^{\dagger}(\mathcal{D})$ then the corresponding graph topology denoted by t_{\dagger} instead of $t_{\mathcal{L}^{\dagger}(\mathcal{D})}$.
As is known, a locally convex topology t on \mathcal{D} is finer than the topology induced by the Hilbert norm defines, in standard fashion, a rigged Hilbert space (RHS)

$$
\mathcal{D}[t] \hookrightarrow \mathcal{H} \hookrightarrow \mathcal{D}^{\times}\left[t^{\times}\right]
$$

where \mathcal{D}^{\times}is the vector space of all continuous conjugate linear functionals on $\mathcal{D}[t]$, i.e., the conjugate dual of $\mathcal{D}[t]$, endowed with the strong dual topology $t^{\times}=\beta\left(\mathcal{D}^{\times}, \mathcal{D}\right)$, and \hookrightarrow denotes a continuous embedding with dense range. The Hilbert space \mathcal{H} is identified (by considering the form which puts \mathcal{D} and \mathcal{D}^{\times}into conjugate duality as an extension of the inner product of \mathcal{D}) with a dense subspace of $\mathcal{D}^{\times}\left[t^{\times}\right]$.

Let $\mathfrak{L}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$denote the vector space of all continuous linear maps from $\mathcal{D}[t]$ into $\mathcal{D}^{\times}\left[t^{\times}\right]$. In $\mathfrak{L}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$, an involution $X \mapsto X^{\dagger}$ can be introduced by the equality

$$
\langle X \xi \mid \eta\rangle=\overline{\left\langle X^{\dagger} \eta \mid \xi\right\rangle}, \quad \forall \xi, \eta \in \mathcal{D}
$$

Hence, $\mathfrak{L}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$is a *-invariant vector space.
To every $X \in \mathfrak{L}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$, there corresponds a separately continuous sesquilinear form θ_{X} on $\mathcal{D} \times \mathcal{D}$ defined by

$$
\theta_{X}(\xi, \eta)=\langle X \xi \mid \eta\rangle, \quad \xi, \eta \in \mathcal{D} .
$$

The vector space of all jointly continuous sesquilinear forms on $\mathcal{D} \times \mathcal{D}$ will be denoted with $\mathrm{B}(\mathcal{D}, \mathcal{D})$. We denote by $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$the subspace of all $X \in \mathfrak{L}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$such that $\theta_{X} \in$ $\mathrm{B}(\mathcal{D}, \mathcal{D})$ and by $\mathfrak{L}^{\dagger}(\mathcal{D})$ the ${ }^{*}$-algebra consisting of all operators of $\mathcal{L}^{\dagger}(\mathcal{D})$, which together with their adjoints are continuous from $\mathcal{D}[t]$ into $\mathcal{D}[t]$. If $t=t_{\dagger}$, then $\mathfrak{L}^{\dagger}(\mathcal{D})=\mathcal{L}^{\dagger}(\mathcal{D})$. We will refer to the rigged Hilbert space defined by endowing \mathcal{D} with the topology t_{\dagger} as to the
canonical rigged Hilbert space defined by $\mathcal{L}^{\dagger}(\mathcal{D})$ on \mathcal{D}. In this case $\left(\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right), \mathcal{L}^{\dagger}(\mathcal{D})\right)$ is a quasi $*$-algebra [3].

The spaces $\mathfrak{L}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$and $\mathfrak{L}_{B}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$have been studied at length by several authors (see, e.g., $[11-13,21]$) and several pathologies concerning their multiplicative structure have been considered (see also [3,4] and references therein). Recently some spectral properties of operators of these classes have also been studied [7].

3 Bounded elements of $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\mathrm{x}}\right)$

The inductive structure of $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$, with \mathcal{D} endowed with the graph topology t_{\dagger}, has been discussed in [8, Section 5]. To keep the paper reasonably self-contained, we sum the main features up.

By the definition itself, $X \in \mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$if, and only if, there exists $\gamma_{X}>0$ and $A \in \mathcal{L}^{\dagger}(\mathcal{D})$ such that

$$
\begin{equation*}
\left|\theta_{X}(\xi, \eta)\right|=|\langle X \xi \mid \eta\rangle| \leq \gamma_{X}\|\xi\|_{A}\|\eta\|_{A}, \quad \forall \xi, \eta \in \mathcal{D} . \tag{1}
\end{equation*}
$$

Conversely, if $\theta \in \mathrm{B}(\mathcal{D}, \mathcal{D})$, there exists a unique $X \in \mathfrak{L}_{\mathbf{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$such that $\theta=\theta_{X}$.
Thus, the map

$$
\mathbb{I}: X \in \mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right) \mapsto \theta_{X} \in \mathrm{~B}(\mathcal{D}, \mathcal{D})
$$

is an isomorphism of vector spaces and $\mathbb{I}\left(\theta^{*}\right)=X^{\dagger}$, where $\theta^{*}(\xi, \eta)=\overline{\theta(\eta, \xi)}$, for every $\xi, \eta \in \mathcal{D}$.

We denote by $\mathrm{B}^{A}(\mathcal{D}, \mathcal{D})$ the subspace of $\mathrm{B}(\mathcal{D}, \mathcal{D})$ consisting of all $\theta \in \mathrm{B}(\mathcal{D}, \mathcal{D})$ such that (1) holds for fixed $A \in \mathcal{L}^{\dagger}(\mathcal{D})$.

If $\theta \in \mathrm{B}^{A}(\mathcal{D}, \mathcal{D})$, it extends to a bounded sesquilinear form on $\mathcal{H}_{A} \times \mathcal{H}_{A}$ (we use the same symbol for this extension). Hence, there exists a unique operator $X_{A}^{\theta} \in \mathfrak{B}\left(\mathcal{H}_{A}\right)$ such that

$$
\theta(\xi, \eta)=\left\langle X_{A}^{\theta} \xi \mid \eta\right\rangle_{A}, \quad \forall \xi, \eta \in \mathcal{H}_{A} .
$$

On the other hand, if $X_{A} \in \mathfrak{B}\left(\mathcal{H}_{A}\right)$, then the sesquilinear form $\theta_{X_{A}}$ defined by

$$
\theta_{X_{A}}(\xi, \eta)=\left\langle X_{A} \xi \mid \eta\right\rangle_{A}, \quad \xi, \eta \in \mathcal{D},
$$

is an element of $\mathrm{B}^{A}(\mathcal{D}, \mathcal{D})$ and the map

$$
\Phi_{A}: X_{A} \in \mathfrak{B}\left(\mathcal{H}_{A}\right) \rightarrow \theta_{X_{A}} \in \mathrm{~B}^{A}(\mathcal{D}, \mathcal{D})
$$

is a $*$-isomorphism of vector spaces with involution.
If $B \succeq A$, then, for $\xi, \eta \in \mathcal{D}$,

$$
\left|\theta_{X_{A}}(\xi, \eta)\right|=\left|\left\langle X_{A} \xi \mid \eta\right\rangle_{A}\right| \leq\left\|X_{A}\right\|_{A, A}\|\xi\|_{A}\|\eta\|_{A} \leq\left\|X_{A}\right\|_{A, A}\|\xi\|_{B}\|\eta\|_{B},
$$

where $\|\cdot\|_{A, A}$ denotes the operator norm in $\mathfrak{B}\left(\mathcal{H}_{A}\right)$. Hence, there exists a unique $X_{B} \in$ $\mathfrak{B}\left(\mathcal{H}_{B}\right)$ such that

$$
\left\langle X_{A} \xi \mid \eta\right\rangle_{A}=\left\langle X_{B} \xi \mid \eta\right\rangle_{B}, \quad \forall \xi, \eta \in \mathcal{D} .
$$

So it is natural to define

$$
J_{B A}\left(X_{A}\right)=X_{B}, \quad \forall X_{A} \in \mathfrak{B}\left(\mathcal{H}_{A}\right) .
$$

It is easily seen that $J_{B A}=\Phi_{B}^{-1} \Phi_{A}$.

The space $\mathfrak{L}_{\mathrm{B}}^{A}\left(\mathcal{D}, \mathcal{D}^{\times}\right):=\mathbb{I}^{-1} \mathrm{~B}^{A}(\mathcal{D}, \mathcal{D})$ is a Banach space, with norm

$$
\|X\|^{A}:=\sup _{\|\xi\|_{A},\|\eta\|_{A} \leq 1}\left|\theta_{X}(\xi, \eta)\right|
$$

and $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$can be endowed with the inductive topology $\tau_{\text {ind }}$ defined by the family of subspaces $\left\{\mathfrak{L}_{\mathrm{B}}^{A}\left(\mathcal{D}, \mathcal{D}^{\times}\right) ; A \in \mathcal{L}^{\dagger}(\mathcal{D})\right\}$ as in [16, Section 1.2.III].

In conclusion,

$$
X_{A} \in \mathfrak{B}\left(\mathcal{H}_{A}\right) \leftrightarrow \theta_{X_{A}} \in \mathrm{~B}^{A}(\mathcal{D}, \mathcal{D}) \leftrightarrow X \in \mathfrak{L}_{\mathrm{B}}^{A}\left(\mathcal{D}, \mathcal{D}^{\times}\right)
$$

are isometric *-isomorphisms of Banach spaces.
Hence, to every $X \in \mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$one can associate the net $\left\{X_{B} ; B \in \mathcal{L}^{\dagger}(\mathcal{D}) ; B \succeq A\right\}$ of its representatives in each of the spaces \mathcal{H}_{B}.

Definition 3.1 We say that $X \in \mathfrak{L}_{B}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$is a bounded element of $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$if X has a representative X_{A} in every $\mathfrak{B}\left(\mathcal{H}_{A}\right)$ and

$$
\|X\|_{b}:=\sup _{A \in \mathcal{L}^{\dagger}(\mathcal{D})}\left\|X_{A}\right\|_{A, A}<+\infty .
$$

The space $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)_{b}$ of all bounded elements of $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$is a Banach space with norm $\|\cdot\|_{b}$.

Proposition 3.2 $\mathfrak{L}_{B}\left(\mathcal{D}, \mathcal{D}^{\times}\right)_{b}$ is ${ }^{*}$-isomorphic (as Banach space) to a C^{*}-algebra of operators.

Proof Let \mathcal{H}_{\oplus} denote the Hilbert space direct sum of the $\mathcal{H}_{A}, A \in \mathcal{L}^{\dagger}(\mathcal{D})$; i.e.,

$$
\begin{aligned}
\mathcal{H}_{\oplus} & :=\bigoplus_{A \in \mathcal{L}^{\dagger}(\mathcal{D})} \mathcal{H}_{A} \\
& =\left\{\xi_{\oplus}=\left(\xi_{A}\right) ; \xi_{A} \in \mathcal{H}_{A}, \forall A \in \mathcal{L}^{\dagger}(\mathcal{D}) \text { and } \sum_{A}\left\|\xi_{A}\right\|_{A}^{2}<+\infty\right\}
\end{aligned}
$$

If $\left\{X_{A}\right\}_{A \in \mathcal{L}^{\dagger}(\mathcal{D})}$ is a net of operators $X_{A} \in \mathfrak{B}\left(\mathcal{H}_{A}\right), A \in \mathcal{L}^{\dagger}(\mathcal{D})$, we define $X_{\oplus} \xi_{\oplus}=\left\{X_{A} \xi_{A}\right\}$ provided that $\sum_{A}\left\|X_{A} \xi_{A}\right\|^{2}<+\infty, \xi_{A} \in \mathcal{H}_{A}$.

The operator $X_{\oplus}=\left\{X_{A}\right\}$ is bounded if and only if $\sup _{A}\left\|X_{A}\right\|_{A, A}<+\infty$. The space constructed in this way is $\prod_{A} \mathfrak{B}\left(\mathcal{H}_{A}\right)=\mathfrak{B}\left(\mathcal{H}_{\oplus}\right)$. To every $X \in \mathfrak{L}_{B}\left(\mathcal{D}, \mathcal{D}^{\times}\right)_{b}$, we can associate the net $\left\{X_{A}\right\}$ which we have defined above. Clearly, $\left\{X_{A}\right\} \in \mathfrak{B}\left(\mathcal{H}_{\oplus}\right)$. It is easily seen that the map

$$
\tau: X \in \mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)_{b} \mapsto\left\{X_{A}\right\} \in \mathfrak{B}\left(\mathcal{H}_{\oplus}\right)
$$

is isometric. Thus, the statement is proved.
Remark 3.3 An element $X \in \mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$having a representative X_{A} for every $A \in \mathcal{L}^{\dagger}(\mathcal{D})$ need not be bounded in the sense of Definition 3.1. The spaces $\left\{\mathcal{H}_{A} ; A \in \mathcal{L}^{\dagger}(\mathcal{D})\right\}$, together with their conjugate duals, make D^{\times}into an indexed PIP-space [4, Chap. 2]. In that language, operators having representatives in every \mathcal{H}_{A} are called totally regular operators. For more details on their behavior see [4, Section 3.3.3] where also a C*-agebra corresponding to our bounded elements has been studied.

Our next goal is to characterize bounded elements of $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$in several different ways. For doing this, we need to consider the natural order structure of $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$.

We say that $X \in \mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$is positive, and write $X \geq 0$, if $\langle X \xi \mid \xi\rangle \geq 0$, for every $\xi \in \mathcal{D}$.

It is easy to see that if X is positive, then it is symmetric; i.e., $X=X^{\dagger}$.
Proposition 3.4 The following conditions are equivalent.
(i) $X \geq 0$.
(ii) There exists $A \in \mathcal{L}^{\dagger}(\mathcal{D})$ such that $X_{B} \geq 0, \quad \forall B \succeq A$.

Proof (i) \Rightarrow (ii): Since $X \in \mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$, there exists $A \in \mathcal{L}^{\dagger}(\mathcal{D})$ and $\gamma>0$ such that

$$
|\langle X \xi \mid \eta\rangle| \leq \gamma\|\xi\|_{B}\|\eta\|_{B}, \quad B \succeq A .
$$

If $X \geq 0$, then, for every $\xi \in \mathcal{D}$,

$$
\left\langle X_{B} \xi \mid \xi\right\rangle_{B}=\langle X \xi \mid \xi\rangle \geq 0, \quad \forall B \succeq A .
$$

Since \mathcal{D} is dense in \mathcal{H}_{B}, we have $\left\langle X_{B} \xi \mid \xi\right\rangle_{B} \geq 0, \forall \xi \in \mathcal{H}_{B}$.
(ii) \Rightarrow (i): Let $X_{B} \geq 0$ for every $B \succeq A$. Then, for every $\xi \in \mathcal{D},\langle X \xi \mid \xi\rangle=\left\langle X_{B} \xi \mid \xi\right\rangle_{B} \geq 0$.

Theorem 3.5 Let $X \in \mathfrak{L}_{B}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$. The following statements are equivalent.
(i) $X: \mathcal{D} \rightarrow \mathcal{H}$ and $\bar{X} \in \mathcal{B}(\mathcal{H})$.
(ii) $X \in \mathfrak{L}_{B}\left(\mathcal{D}, \mathcal{D}^{\times}\right)_{b}$.
(iii) There exists $\lambda>0$ such that

$$
-\lambda I \leq \Re(X) \leq \lambda I, \quad-\lambda I \leq \Im(X) \leq \lambda I
$$

where $\Re(X)=\frac{X+X^{\dagger}}{2}$ and $\Im(X)=\frac{X-X^{\dagger}}{2 i}$.
Proof (i) \Rightarrow (ii): If $X: \mathcal{D} \rightarrow \mathcal{H}$ and X is bounded, then, for every $A \in \mathcal{L}^{\dagger}(\mathcal{D})$,

$$
\begin{equation*}
|\langle X \xi \mid \eta\rangle| \leq\|\bar{X}\|\|\xi\|\|\eta\| \leq\|\bar{X}\|\|\xi\|_{A}\|\eta\|_{A} \tag{2}
\end{equation*}
$$

This means that X has a bounded representative X_{A} in every $\mathcal{B}\left(\mathcal{H}_{A}\right)$. By (2), $\left\|X_{A}\right\|_{A, A} \leq\|\bar{X}\|$, for every $A \in \mathcal{L}^{\dagger}(\mathcal{D})$, so $\sup _{A \in \mathcal{L}^{\dagger}(\mathcal{D})}\left\|X_{A}\right\|_{A, A}<+\infty$.
(ii) \Rightarrow (i) Let $X \in \mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)_{b}$. Then, for every $A \in \mathcal{L}^{\dagger}(\mathcal{D})$

$$
|\langle X \xi \mid \eta\rangle| \leq\left\|X_{A}\right\|_{A, A}\|\xi\|_{A}\|\eta\|_{A}, \quad \forall \xi, \eta \in \mathcal{D} .
$$

In particular, for $A=0$,

$$
\begin{equation*}
|\langle X \xi \mid \eta\rangle| \leq\left\|X_{0}\right\|\|\xi\|\|\eta\|, \quad \forall \xi, \eta \in \mathcal{D} . \tag{3}
\end{equation*}
$$

By (3), for every $\xi \in \mathcal{D}, F(\eta)=\langle X \xi \mid \eta\rangle$ is a bounded conjugate linear functional on \mathcal{D}, so by Riesz's lemma $X \xi \in \mathcal{H}$. It is finally easily seen that $\bar{X} \in \mathcal{B}(\mathcal{H})$.
(iii) \Rightarrow (i) Suppose first that $X=X^{\dagger}$. Note that the operator X satisfies the following: $0 \leq \frac{X+\lambda I}{2 \lambda} \leq I$; so $\frac{X+\lambda I}{2 \lambda}$ is a positive operator and $\left\langle\left.\frac{X+\lambda I}{2 \lambda} \xi \right\rvert\, \xi\right\rangle \leq\langle\xi \mid \xi\rangle, \forall \xi \in \mathcal{D}$; this implies that

$$
\begin{equation*}
\left|\left\langle\left.\frac{X+\lambda I}{2 \lambda} \xi \right\rvert\, \eta\right\rangle\right| \leq\|\xi\|\|\eta\|, \quad \forall \xi, \eta \in \mathcal{D} \tag{4}
\end{equation*}
$$

and by Riesz's lemma there exists $\zeta \in \mathcal{H}$ such that

$$
\begin{equation*}
\left\langle\left.\frac{X+\lambda I}{2 \lambda} \xi \right\rvert\, \eta\right\rangle=\langle\zeta \mid \eta\rangle, \quad \forall \xi, \eta \in \mathcal{D} \tag{5}
\end{equation*}
$$

and then $\frac{X+\lambda I}{2 \lambda} \xi \in \mathcal{H}$. This implies that $X \xi \in \mathcal{H}$ too. Moreover, X has a representative for every $A \in \mathcal{L}^{\dagger}(\mathcal{D})$. Indeed,

$$
|\langle X \xi \mid \eta\rangle| \leq \gamma\|\xi\|\|\eta\| \leq \gamma\|\xi\|_{A}\|\eta\|_{A} \quad \forall A \in \mathcal{L}^{\dagger}(\mathcal{D})
$$

where $\gamma>0$. From (4), it follows that X is bounded and $\bar{X} \in \mathcal{B}(\mathcal{H})$. In the very same way, one can prove the boundedness of X if $X^{\dagger}=-X$. The result for a general X follows easily.
(i) \Rightarrow (iii): This is a standard result of the C^{*}-algebras theory.

4 Bounded elements of C^{*}-inductive locally convex spaces

The results obtained in Sect. 3 have an abstract generalization to locally convex spaces that are inductive limits of C^{*}-algebras in a generalized sense. These spaces were called C^{*}-inductive locally convex spaces in [8]. We begin with recalling the basic definitions.

Let \mathfrak{A} be a vector space over \mathbb{C}. Let \mathbb{F} be a set of indices directed upward and consider, for every $\alpha \in \mathbb{F}$, a space $\mathfrak{A}_{\alpha} \subset \mathfrak{A}$ such that:
(I.1) $\mathfrak{A}_{\alpha} \subseteq \mathfrak{A}_{\beta}$, if $\alpha \leq \beta$;
(I.2) $\mathfrak{A}=\bigcup_{\alpha \in \mathbb{F}} \mathfrak{A}_{\alpha}$;
(I.3) $\forall \alpha \in \mathbb{F}$, there exists a C^{*}-algebra \mathfrak{B}_{α} (with unit e_{α} and norm $\|\cdot\|_{\alpha}$) and an isomorphism of vector spaces $\phi_{\alpha}: \mathfrak{B}_{\alpha} \rightarrow \mathfrak{A}_{\alpha}$ which makes of \mathfrak{A}_{α} a Banach space under the norm $\|x\|^{\alpha}:=\left\|x_{\alpha}\right\|_{\alpha}$, if $x \in \mathfrak{A}_{\alpha}, x=\phi_{\alpha}\left(x_{\alpha}\right)$;
(I.4) $x_{\alpha} \in \mathfrak{B}_{\alpha}^{+} \Rightarrow x_{\beta}=\left(\phi_{\beta}^{-1} \phi_{\alpha}\right)\left(x_{\alpha}\right) \in \mathfrak{B}_{\beta}^{+}$, for every $\alpha, \beta \in \mathbb{F}$ with $\beta \geq \alpha$.

We put $j_{\beta \alpha}=\phi_{\beta}^{-1} \phi_{\alpha}$, if $\alpha, \beta \in \mathbb{F}, \beta \geq \alpha$.
If $x \in \mathfrak{A}$, there exists $\alpha \in \mathbb{F}$ such that $x \in \mathfrak{A}_{\alpha}$ and, for every $\beta \geq \alpha$, a unique $x_{\beta} \in \mathfrak{B}_{\beta}$ such that $x=\phi_{\beta}\left(x_{\beta}\right)$.

Then, we put

$$
j_{\beta \alpha}\left(x_{\alpha}\right):=x_{\beta} \text { if } \alpha \leq \beta
$$

By (I.4), it follows easily that $j_{\beta \alpha}$ preserves the involution; i.e., $j_{\beta \alpha}\left(x_{\alpha}^{*}\right)=\left(j_{\beta \alpha}\left(x_{\alpha}\right)\right)^{*}$.
Remark 4.1 From the previous discussion, it follows that to every $x \in \mathfrak{A}$ there corresponds a family of representatives $\left\{x_{\beta} ; x_{\beta} \in \mathfrak{B}_{\beta}, \beta \geq \alpha\right\}$. We write, for short, $x=\left(x_{\beta}\right)$. If $x=\left(x_{\beta}\right), y=\left(y_{\beta}\right)$ and $x_{\beta}=y_{\beta}$, for every β larger than a certain $\gamma \in \mathbb{F}$, then $x=y$. With this identification, the mentioned correspondence is one-to-one.

The family $\left\{\mathfrak{B}_{\alpha}, j_{\beta \alpha}, \beta \geq \alpha\right\}$ is a directed system of C^{*}-algebras, in the sense that:
(J.1) for every $\alpha, \beta \in \mathbb{F}$, with $\beta \geq \alpha, j_{\beta \alpha}: \mathfrak{B}_{\alpha} \rightarrow \mathfrak{B}_{\beta}$ is a linear and injective map; $j_{\alpha \alpha}$ is the identity of \mathfrak{B}_{α},
(J.2) for every $\alpha, \beta \in \mathbb{F}$, with $\alpha \leq \beta, \phi_{\alpha}=\phi_{\beta} j_{\beta \alpha}$,
(J.3) $j_{\gamma \beta} j_{\beta \alpha}=j_{\gamma \alpha}, \alpha \leq \beta \leq \gamma$.

We assume that, in addition, the $j_{\beta \alpha} \mathrm{s}$ are Schwarz maps (see, e.g., [14]); i.e.,
(sch) $j_{\beta \alpha}\left(x_{\alpha}\right)^{*} j_{\beta \alpha}\left(x_{\alpha}\right) \leq j_{\beta \alpha}\left(x_{\alpha}^{*} x_{\alpha}\right), \quad \forall x_{\alpha} \in \mathfrak{B}_{\alpha}, \alpha \leq \beta$.

For every $\alpha, \beta \in \mathbb{F}$, with $\alpha \leq \beta, j_{\beta \alpha}$ is continuous [14] and, moreover,

$$
\left\|j_{\beta \alpha}\left(x_{\alpha}\right)\right\|_{\beta} \leq\left\|x_{\alpha}\right\|_{\alpha}, \quad \forall x_{\alpha} \in \mathfrak{B}_{\alpha}
$$

An involution in \mathfrak{A} is defined as follows. Let $x \in \mathfrak{A}$. Then $x \in \mathfrak{A}_{\alpha}$, for some $\alpha \in \mathbb{F}$, i.e., $x=\phi_{\alpha}\left(x_{\alpha}\right)$, for a unique $x_{\alpha} \in \mathfrak{B}_{\alpha}$. Put $x^{*}:=\phi_{\alpha}\left(x_{\alpha}^{*}\right)$. Then if $\beta \geq \alpha$, we have

$$
\phi_{\beta}^{-1}\left(x^{*}\right)=\phi_{\beta}^{-1}\left(\phi_{\alpha}\left(x_{\alpha}^{*}\right)\right)=j_{\beta \alpha}\left(x_{\alpha}^{*}\right)=\left(j_{\beta \alpha}\left(x_{\alpha}\right)\right)^{*}=x_{\beta}^{*} .
$$

It is easily seen that the map $x \mapsto x^{*}$ is an involution in \mathfrak{A}. Moreover, by the definition itself, it follows that every map ϕ_{α} preserves the involution; i.e., $\phi_{\alpha}\left(x_{\alpha}^{*}\right)=\left(\phi_{\alpha}\left(x_{\alpha}\right)\right)^{*}$, for all $x_{\alpha} \in \mathfrak{B}_{\alpha}, \alpha \in \mathbb{F}$.

Definition 4.2 Let \mathfrak{A} be a vector space with involution * and \mathbb{F} a directed (upward) set.

- A defining system for \mathfrak{A} consists of a family $\left\{\left\{\mathfrak{B}_{\alpha}, \phi_{\alpha}\right\}, \alpha \in \mathbb{F}\right\}$, where, for every $\alpha \in \mathbb{F}, \mathfrak{B}_{\alpha}$ is a C^{*}-algebra and ϕ_{α} is a linear injective map of \mathfrak{B}_{α} into \mathfrak{A}, satisfying the above conditions (I.1)-(I.4) and (sch), with $\mathfrak{A}_{\alpha}=\phi_{\alpha}\left(\mathfrak{B}_{\alpha}\right), \alpha \in \mathbb{F}$.
- If \mathfrak{A} is endowed with the locally convex inductive topology $\tau_{\text {ind }}$ generated by the family $\left\{\left\{\mathfrak{B}_{\alpha}, \phi_{\alpha}\right\}, \alpha \in \mathbb{F}\right\}$, then we say that \mathfrak{A} is a C^{*}-inductive locally convex space.

We notice that the involution is automatically continuous in $\mathfrak{A}\left[\tau_{\text {ind }}\right]$.
A C^{*}-inductive locally convex space has a natural positive cone.
An element $x \in \mathfrak{A}$ is called positive if there exists $\gamma \in \mathbb{F}$ such that $\phi_{\alpha}^{-1}(x) \in \mathfrak{B}_{\alpha}^{+}, \forall \alpha \geq \gamma$. We denote by \mathfrak{A}^{+}the set of all positive elements of \mathfrak{A}.
Then,
(i) Every positive element $x \in \mathfrak{A}$ is hermitian; i.e., $x \in \mathfrak{A}_{h}:=\left\{y \in \mathfrak{A}: y^{*}=y\right\}$.
(ii) \mathfrak{A}^{+}is a non empty convex pointed cone; i.e., $\mathfrak{A}^{+} \cap\left(-\mathfrak{A}^{+}\right)=\{0\}$.
(iii) If $\alpha \in \mathbb{F}$ and $x_{\alpha} \in \mathfrak{B}_{\alpha}^{+}, \phi_{\alpha}\left(x_{\alpha}\right)$ is positive.

Moreover, every hermitian element $x=x^{*}$ is the difference of two positive elements, i.e., there exist $x^{+}, x^{-} \in \mathfrak{A}^{+}$such that $x=x^{+}-x^{-}$.

A linear functional ω is said to be positive if $\omega(x) \geq 0$ for every $x=\left(x_{\alpha}\right) \in \mathfrak{A}^{+}$. As shown in [8, Prop. 3.9, 3.10], ω is positive if, and only if, $\omega_{\alpha}\left(x_{\alpha}\right):=\omega\left(\phi_{\alpha}\left(x_{\alpha}\right)\right) \geq 0$ for every $\alpha \in \mathbb{F}$. We write, in this case, $\omega=\xrightarrow{\lim \omega_{\alpha}}$.

4.1 Bounded elements

Definition 4.3 Let \mathfrak{A} be a C^{*}-inductive locally convex space. An element $x=\left(x_{\alpha}\right) \in \mathfrak{A}$, with $x_{\alpha} \in \mathfrak{B}_{\alpha}$, is called bounded if $x \in \mathfrak{A}_{\alpha}$, for every $\alpha \in \mathbb{F}$ and $\sup _{\alpha \in \mathbb{F}}\left\|x_{\alpha}\right\|_{\alpha}<\infty$. The set of bounded elements of \mathfrak{A} is denoted by \mathfrak{A}_{b}.
Proposition 4.4 The set \mathfrak{A}_{b} is a Banach space under the norm $\|x\|_{b}:=\sup _{\alpha \in \mathbb{F}}\left\|x_{\alpha}\right\|_{\alpha}$.
Proof We only prove the completeness. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in \mathfrak{A}_{b}. Then, for every $\alpha \in \mathbb{F}$ the sequence $\left\{x_{n}^{\alpha}\right\}$, with $x_{n}^{\alpha}:=\left(x_{n}\right)_{\alpha}$, is Cauchy in \mathfrak{B}_{α}, so it converges to some $x_{\alpha} \in \mathfrak{B}_{\alpha}$. Since the $j_{\beta \alpha}$'s are continuous, one easily proves that the family $\left\{x_{\alpha}\right\}$ defines an element $x=\left(x_{\alpha}\right)$ of \mathfrak{A}. From the Cauchy condition, for every $\epsilon>0$, there exists $n_{\epsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sup _{\alpha \in \mathbb{F}}\left\|x_{n}^{\alpha}-x_{m}^{\alpha}\right\|_{\alpha}<\epsilon \tag{6}
\end{equation*}
$$

If $m>n_{\epsilon}$,

$$
\left\|x_{\alpha}\right\|_{\alpha} \leq\left\|x_{\alpha}-x_{m}^{\alpha}\right\|_{\alpha}+\left\|x_{m}^{\alpha}\right\|_{\alpha} \leq \epsilon+\left\|x_{m}^{\alpha}\right\|_{\alpha} .
$$

Hence,

$$
\sup _{\alpha \in \mathbb{F}}\left\|x_{\alpha}\right\|_{\alpha} \leq \epsilon+\sup _{\alpha \in \mathbb{F}}\left\|x_{m}^{\alpha}\right\|_{\alpha}<\infty
$$

Thus $x \in \mathfrak{A}_{b}$.
Fix now $n>n_{\epsilon}$ and let $m \rightarrow \infty$ in (6). Then,

$$
\sup _{\alpha \in \mathbb{F}}\left\|x_{n}^{\alpha}-x_{\alpha}\right\|_{\alpha} \leq \epsilon
$$

This proves that $x_{n} \rightarrow x$.
In what follows, we will consider *-representations of a C*-inductive locally convex space. We recall the basic definitions.

Let \mathbb{F} be a set directed upward by \leq. A family $\left\{\mathcal{H}_{\alpha}, U_{\beta \alpha}, \alpha, \beta \in \mathbb{F}, \beta \geq \alpha\right\}$, where each \mathcal{H}_{α} is a Hilbert space (with inner product $\langle\cdot \mid \cdot\rangle_{(\alpha)}$ and norm $\|\cdot\|_{(\alpha)}$) and, for every $\alpha, \beta \in \mathbb{F}$, with $\beta \geq \alpha, U_{\beta \alpha}$ is a linear map from \mathcal{H}_{α} into \mathcal{H}_{β}, is called a directed contractive system of Hilbert spaces if the following conditions are satisfied
(i) $U_{\beta \alpha}$ is injective;
(ii) $\left\|U_{\beta \alpha} \xi_{\alpha}\right\|_{(\beta)} \leq\left\|\xi_{\alpha}\right\|_{(\alpha)}, \quad \forall \xi_{\alpha} \in \mathcal{H}_{\alpha}$;
(iii) $U_{\alpha \alpha}=I_{\alpha}$, the identity of \mathcal{H}_{α};
(iv) $U_{\gamma \alpha}=U_{\gamma \beta} U_{\beta \alpha}, \alpha \leq \beta \leq \gamma$.

A directed contractive system of Hilbert spaces defines a conjugate dual pair ($\mathcal{D}^{\times}, \mathcal{D}$) which is called the joint topological limit [9] of the directed contractive system $\left\{\mathcal{H}_{\alpha}, U_{\beta \alpha}, \alpha\right.$, $\beta \in \mathbb{F}, \beta \geq \alpha\}$ of Hilbert spaces.

Definition 4.5 Let \mathfrak{A} be the C^{*}-inductive locally convex space defined by the system $\left\{\left\{\mathfrak{B}_{\alpha}, \Phi_{\alpha}\right\}, \alpha \in \mathbb{F}\right\}$ as in Definition 4.2.

For each $\alpha \in \mathbb{F}$, let π_{α} be a ${ }^{*}$-representation of \mathfrak{B}_{α} in Hilbert space \mathcal{H}_{α}. The collection $\pi:=\left\{\pi_{\alpha}\right\}$ is said to be a $*$-representation of \mathfrak{A} if
(i) for every $\alpha, \beta \in \mathbb{F}$, there exists a linear map $U_{\beta \alpha}: \mathcal{H}_{\alpha} \rightarrow \mathcal{H}_{\beta}$ such that the family $\left\{\mathcal{H}_{\alpha}, U_{\beta \alpha}, \alpha, \beta \in \mathbb{F}, \beta \geq \alpha\right\}$ is a directed contractive system of Hilbert spaces;
(ii) the following equality holds

$$
\begin{equation*}
\pi_{\beta}\left(j_{\beta \alpha}\left(x_{\alpha}\right)\right)=U_{\beta \alpha} \pi_{\alpha}\left(x_{\alpha}\right) U_{\beta \alpha}^{*}, \quad \forall x_{\alpha} \in \mathfrak{B}_{\alpha}, \beta \geq \alpha \tag{7}
\end{equation*}
$$

In this case, we write $\pi(x)=\xrightarrow{\lim } \pi_{\alpha}\left(x_{\alpha}\right)$ for every $x=\left(x_{\alpha}\right) \in \mathfrak{A}$ or, for short, $\pi=\underset{\longrightarrow}{\lim \pi_{\alpha}}$.
The *-representation π is said to be faithful if $x \in \mathfrak{A}^{+}$and $\pi(x)=0$ imply $x=0$ (of course, $\pi(x)=0$ means that there exists $\gamma \in \mathbb{F}$ such that $\pi_{\alpha}\left(x_{\alpha}\right)=0$, for $\alpha \geq \gamma$).

Remark 4.6 With this definition (which is formally different from that given in [8] but fully equivalent), $\pi(x), x \in \mathfrak{A}$, is not an operator but rather a collection of operators. But as shown in [8], $\pi(x)$ can be regarded as an operator acting on the joint topological limit ($\mathcal{D}^{\times}, \mathcal{D}$) of $\left\{\mathcal{H}_{\alpha}, U_{\beta \alpha}, \alpha, \beta \in \mathbb{F}, \beta \geq \alpha\right\}$. The corresponding space of operators was denoted by $\mathrm{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$; it behaves in the very same way as the space $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$studied in Sect. 3 and reduces to it when the family of Hilbert spaces is exactly $\left\{\mathcal{H}_{A} ; A \in \mathcal{L}^{\dagger}(\mathcal{D})\right\}$. The main difference consists in the fact that the \mathcal{H}_{α} 's need not be all subspaces of a certain Hilbert space \mathcal{H}.

Lemma 4.7 Let $\pi=\underset{\longrightarrow}{\lim \pi_{\alpha}}$ be a faithful $*^{-r e p r e s e n t a t i o n ~ o f ~} \mathfrak{A}$. Then, for every $\alpha \in \mathbb{F}, \pi_{\alpha}$ is a faithful *-representation of \mathfrak{B}_{α}.

Proof Let $x_{\alpha} \in \mathfrak{B}_{\alpha}^{+}$with $\pi_{\alpha}\left(x_{\alpha}\right)=0$. Let $x \in \mathfrak{A}$ be the unique element of \mathfrak{A} such that $x=\phi_{\alpha}\left(x_{\alpha}\right)$. Then $\pi_{\beta}\left(x_{\beta}\right)=\pi_{\beta}\left(j_{\beta \alpha}\left(x_{\alpha}\right)\right)=U_{\beta \alpha} \pi_{\alpha}\left(x_{\alpha}\right) U_{\beta \alpha}^{*}=0$. Hence $\pi(x)=0$, and therefore, $x=0$. Thus there exists $\bar{\gamma} \in \mathbb{F}$ such that $x_{\gamma}=0$, for $\gamma \geq \bar{\gamma}$. Let $\beta \geq \alpha, \bar{\gamma}$. Then $0=x_{\beta}=j_{\beta \alpha}\left(x_{\alpha}\right)$. Hence, by the injectivity of $j_{\beta \alpha}, x_{\alpha}=0$.

As shown in [8, Proposition 3.16], if a C^{*}-inductive locally convex space \mathfrak{A} fulfills the following conditions
(r_{1}) if $x_{\alpha} \in \mathfrak{B}_{\alpha}$ and $j_{\beta \alpha}\left(x_{\alpha}\right) \geq 0$ for some $\beta \geq \alpha$, then $x_{\alpha} \geq 0$;
$\left(\mathrm{r}_{2}\right) e_{\beta} \in j_{\beta \alpha}\left(\mathfrak{B}_{\alpha}\right), \quad \forall \alpha, \beta \in \mathbb{F}, \beta \geq \alpha$;
$\left(r_{3}\right)$ every positive linear functional $\omega=\underset{\longrightarrow}{\lim } \omega_{\alpha}$ on \mathfrak{A} satisfies the following property

- if $\alpha \in \mathbb{F}$ and $\omega_{\beta}\left(j_{\beta \alpha}\left(x_{\alpha}^{*}\right) j_{\beta \alpha}\left(x_{\alpha}\right)\right)=0$, for some $\beta>\alpha$ and $x_{\alpha} \in \mathfrak{B}_{\alpha}$, then $\omega_{\alpha}\left(x_{\alpha}^{*} x_{\alpha}\right)=$ 0;
then, \mathfrak{A} admits a faithful representation. The conditions $\left(r_{1}\right),\left(r_{2}\right)$, in fact, guarantee that \mathfrak{A} possesses sufficiently many positive linear functionals, in the sense that for every $x \in$ $\mathfrak{A}^{+}, x \neq 0$ there exists a positive linear functional ω on \mathfrak{A} such that $\omega(x)>0[8$, Theorem 3.14].

Theorem 4.8 Let \mathfrak{A} be a C^{*}-inductive locally convex space and $x=\left(x_{\alpha}\right) \in \mathfrak{A}$. The following statements hold.
(i) If $x \in \mathfrak{A}_{b}$, then, for every $*_{\text {-representation }} \pi=\underset{\longrightarrow}{\lim \pi_{\alpha}}$ of \mathfrak{A}, one has

$$
\sup _{\alpha \in \mathbb{F}}\left\|\pi_{\alpha}\left(x_{\alpha}\right)\right\|_{\alpha \alpha}<\infty,
$$

where $\|\cdot\|_{\alpha \alpha}$ denotes the norm of $\mathfrak{B}\left(\mathcal{H}_{\alpha}\right)$.
(ii) Conversely, if \mathfrak{A} admits a faithful $*$-representation $\pi^{f}=\underline{\longrightarrow} \lim _{\alpha}^{f}$ and

$$
\sup _{\alpha \in \mathbb{F}}\left\|\pi_{\alpha}^{f}\left(x_{\alpha}\right)\right\|_{\alpha \alpha}<\infty
$$

then $x \in \mathfrak{A}_{b}$.
Proof (i): For every $\alpha \in \mathbb{F}, \pi_{\alpha}$ is a *-representation of the C^{*}-algebra \mathfrak{B}_{α}. Hence

$$
\left\|\pi_{\alpha}\left(x_{\alpha}\right)\right\|_{\alpha \alpha} \leq\left\|x_{\alpha}\right\|_{\alpha} .
$$

Thus if $x \in \mathfrak{A}_{b}$ the statement follows immediately from the definition.
(ii): Let $\pi^{f}(x)=\underset{\longrightarrow}{\lim } \pi_{\alpha}^{f}\left(x_{\alpha}\right)$. Then, by Lemma 4.7, for every $\alpha \in \mathbb{F}, \pi_{\alpha}^{f}$ is a faithful representation of \mathfrak{B}_{α}. The *-representation π_{α}^{f} is an isometric isomorphism of C^{*}-algebras, for all $\alpha \in \mathbb{F}$; hence

$$
\sup _{\alpha \in \mathbb{F}}\left\|x_{\alpha}\right\|_{\alpha}=\sup _{\alpha \in \mathbb{F}}\left\|\pi_{\alpha}^{f}\left(x_{\alpha}\right)\right\|_{\alpha \alpha}<\infty .
$$

This proves that x is a bounded element of \mathfrak{A}.

4.2 Order bounded elements

Let \mathfrak{A} be a C^{*}-inductive locally convex space. If $x \in \mathfrak{A}$, we put

$$
\Re(x)=\frac{x+x^{*}}{2} \quad \text { and } \quad \Im(x)=\frac{x-x^{*}}{2 i} .
$$

Both $\mathfrak{R}(x)$ and $\mathfrak{\Im}(x)$ are symmetric elements of \mathfrak{A}.
Assume that \mathfrak{A} has an element $u=u^{*}$ such that $\left\|u_{\alpha}\right\|_{\alpha} \leq 1$, for every $\alpha \in \mathbb{F}$, and there exists $\gamma \in \mathbb{F}$ such that $u_{\beta}=j_{\beta \gamma}\left(e_{\gamma}\right) \forall \beta \geq \gamma,\left(e_{\gamma}\right.$ is the unit of $\left.\mathfrak{B}_{\gamma}\right)$. For shortness, we call the element u a pre-unit of \mathfrak{A}.
Remark 4.9 The pre-unit $u \in \mathfrak{A}$, if any, is unique. Indeed, let suppose there is another $v \in \mathfrak{A}$ satisfying the same properties as u. Then,

$$
\exists \gamma, \gamma^{\prime} \in \mathbb{F} ; u_{\beta}=j_{\beta \gamma}\left(e_{\gamma}\right), v_{\beta^{\prime}}=j_{\beta^{\prime} \gamma^{\prime}}\left(e_{\gamma^{\prime}}\right), \quad \forall \beta \geq \gamma, \beta^{\prime} \geq \gamma^{\prime}
$$

so, if $\delta \geq \gamma, \gamma^{\prime}$, one has $u_{\lambda}=v_{\lambda}, \forall \lambda \geq \delta$. The statement then follows from Remark 4.1.
Definition 4.10 Let \mathfrak{A} be a C^{*}-inductive locally convex space with pre-unit u. We say that $x \in \mathfrak{A}$ is order bounded (with respect to u) if there exists $\lambda>0$ such that

$$
-\lambda u \leq \Re(x) \leq \lambda u \quad-\lambda u \leq \Im(x) \leq \lambda u .
$$

Theorem 4.11 Let \mathfrak{A} be a C^{*}-inductive locally convex space satisfying condition $\left(r_{1}\right)$. Assume that \mathfrak{A} has a pre-unit u.

Then, $x \in \mathfrak{A}_{b}$ if, and only if, x has a representative for every $\alpha \in \mathbb{F}$ (i.e., for every $\alpha \in \mathbb{F}$, there exists $x_{\alpha} \in \mathfrak{B}_{\alpha}$ such that $x=\phi_{\alpha}\left(x_{\alpha}\right)$) and x is order bounded with respect u.
Proof Let us assume that $x=x^{*} \in \mathfrak{A}_{b}$. Then, x has a representative x_{α}, with $x_{\alpha}^{*}=x_{\alpha}$, in every \mathfrak{B}_{α} and $\lambda:=\sup _{\alpha \in \mathbb{F}}\left\|x_{\alpha}\right\|_{\alpha}<\infty$. Hence, we have

$$
-\lambda e_{\alpha} \leq x_{\alpha} \leq \lambda e_{\alpha}, \quad \forall \alpha \in \mathbb{F},
$$

where e_{α} denotes the unit of \mathfrak{B}_{α}. By the definition of u, there exists $\gamma \in \mathbb{F}$ such that $u_{\beta}=j_{\beta \gamma}\left(e_{\gamma}\right)$ for $\beta \geq \gamma$. Hence, taking into account that the maps $j_{\beta \alpha}$ preserve the order, we have

$$
-\lambda u_{\beta} \leq x_{\beta} \leq \lambda u_{\beta}, \quad \forall \beta \geq \gamma .
$$

This implies that $-\lambda u \leq x \leq \lambda u$.
Now, let us suppose that for some $\lambda>0,-\lambda u \leq x \leq \lambda u$. Then, there exists $\gamma \in \mathbb{F}$ such that

$$
\begin{equation*}
-\lambda u_{\beta} \leq x_{\beta} \leq \lambda u_{\beta}, \quad \forall \beta \geq \gamma \tag{8}
\end{equation*}
$$

Let now $\alpha \in \mathbb{F}$. Then, there is $\delta \geq \alpha, \gamma$ such that (8) holds. Hence, using (r_{1}), we conclude that

$$
-\lambda u_{\alpha} \leq x_{\alpha} \leq \lambda u_{\alpha}, \quad \forall \alpha \in \mathbb{F} .
$$

This implies that $\left\|x_{\alpha}\right\|_{\alpha} \leq \lambda$, for every $\alpha \in \mathbb{F}$. Thus, $x \in \mathfrak{A}_{b}$.
From the proof of the previous theorem, it follows easily that
Proposition 4.12 Assume that the assumptions of Theorem 4.11 hold and let $x=x^{*} \in \mathfrak{A}_{b}$. Put

$$
p(x)=\inf \{\lambda>0 ;-\lambda u \leq x \leq \lambda u\} .
$$

Then, $p(x)=\|x\|_{b}$.

5 C*-inductive partial *-algebras

As shown in [8], a partial multiplication in \mathfrak{A} can be defined by a family $w=\left\{w_{\alpha}\right\}, w_{\alpha} \in \mathfrak{B}_{\alpha}$. Let $w=\left\{w_{\alpha}\right\}$ be a family of elements, such that each $w_{\alpha} \in \mathfrak{B}_{\alpha}^{+}$and $j_{\beta \alpha}\left(w_{\alpha}\right)=w_{\beta}$, for all $\alpha, \beta \in \mathbb{F}$ with $\beta \geq \alpha$.

Let $x, y \in \mathfrak{A}$. The partial multiplication $x \cdot y$ is defined by the conditions:

$$
\begin{aligned}
& \exists \gamma \in \mathbb{F}: \phi_{\beta}\left(\phi_{\beta}^{-1}(x) w_{\beta} \phi_{\beta}^{-1}(y)\right)=\phi_{\beta^{\prime}}\left(\phi_{\beta^{\prime}}^{-1}(x) w_{\beta^{\prime}} \phi_{\beta^{\prime}}^{-1}(y)\right), \quad \forall \beta, \beta^{\prime} \geq \gamma \\
& x \cdot y=\phi_{\beta}\left(\phi_{\beta}^{-1}(x) w_{\beta} \phi_{\beta}^{-1}(y)\right), \quad \beta \geq \gamma .
\end{aligned}
$$

Then, \mathfrak{A} is an associative partial $*$-algebra with respect to the usual operations and the above-defined multiplication (see [3, Section 2.1.1] for the definitions) and we will call it a C^{*}-inductive partial ${ }^{*}$-algebra.

The partial ${ }^{*}$-algebra \mathfrak{A} has a unit e (that is, an element e which is a left- and right universal multiplier such that $x \cdot e=e \cdot x=x$, for every $x \in \mathfrak{A}$) if, and only if, every element w_{α} of the family $\left\{w_{\alpha}\right\}$ defining the multiplication is invertible and

$$
\begin{equation*}
j_{\beta \alpha}\left(w_{\alpha}^{-1}\right)=w_{\beta}^{-1}, \forall \alpha, \beta \in \mathbb{F}, \beta \geq \alpha \tag{9}
\end{equation*}
$$

In this case, $e=\phi_{\alpha}\left(w_{\alpha}^{-1}\right)$, independently of $\alpha \in \mathbb{F}$.
The element e is called a bounded unit if it is a bounded element of \mathfrak{A} and $\|e\|_{b}=1$.
Proposition 5.1 Let \mathfrak{A} be a C^{*}-inductive partial *-algebra with the multiplication defined by a family $\left\{w_{\alpha}\right\}$. Assume thate $=\left(w_{\alpha}^{-1}\right)$ is a bounded unit of \mathfrak{A}. Then \mathfrak{A}_{b} is a Banach partial *-algebra; that is, $\mathfrak{A}_{b}\left[\|\cdot\|_{b}\right]$ is a Banach space with isometric involution * and there exists $C \geq 1$ such that the following inequality holds

$$
\begin{equation*}
\|x \cdot y\|_{b} \leq C\|x\|_{b}\|y\|_{b}, \quad \forall x, y \in \mathfrak{A}_{b} \quad \text { with } x \cdot y \text { well-defined. } \tag{10}
\end{equation*}
$$

Remark 5.2 The constant C in (10) can be taken equal to 1 if $w_{\alpha}^{-1}=e_{\alpha}$, for each $\alpha \in \mathbb{F}$, where e_{α} is the unit of the C^{*}-algebra \mathfrak{B}_{α}. Under the same assumption, the norm of \mathfrak{A}_{b} satisfies the C^{*}-property, which in our case reads

$$
\left\|x^{*} \cdot x\right\|_{b}=\|x\|_{b}^{2}, \quad \forall x \in \mathfrak{A}_{b} \quad \text { with } x^{*} \cdot x \text { well-defined. }
$$

This is no longer true in the general case.
Remark 5.3 In Example 5.3 of [8], two of us tried to construct a family $\left\{W_{A} \in \mathfrak{B}\left(\mathcal{H}_{A}\right) ; A \in\right.$ $\left.\mathcal{L}^{\dagger}(\mathcal{D})\right\}$ so that the partial multiplication defined in $\mathfrak{L}_{\mathrm{B}}\left(\mathcal{D}, \mathcal{D}^{\times}\right)$by the method mentioned above would reproduce the quasi ${ }^{*}$-algebra structure of $\left(\mathfrak{L}_{B}\left(\mathcal{D}, \mathcal{D}^{\times}\right), \mathcal{L}^{\dagger}(\mathcal{D})\right)$ (see Sect. 2). Unfortunately, the conclusion of that discussion is uncorrect (see [8, Erratum/Addendum] for more details).

Let \mathfrak{A} be a C*-inductive partial *-algebra with the multiplication defined by a family $\left\{w_{\alpha}\right\}$ as above. The spaces $R \mathfrak{A}$ and $L \mathfrak{A}$ of the right-, respectively, left universal multipliers (with respect to w) of \mathfrak{A} are algebras. Hence, $\mathfrak{A}_{0}:=L \mathfrak{A} \cap R \mathfrak{A}$ is a *-algebra and, thus,
(i) $\left(\mathfrak{A}, \mathfrak{A}_{0}\right)$ is a quasi *-algebra.
(ii) If \mathfrak{A} is endowed with $\tau_{\text {ind }}$, then the maps $x \mapsto x^{*}, x \mapsto a \cdot x, x \mapsto x \cdot b, a, b \in \mathfrak{A}_{0}$ are continuous.

It is easily seen from the very definition that if $a \in R \mathfrak{A}$ and $x \in \mathfrak{A}^{+}$, then $a^{*} x a \in \mathfrak{A}^{+}$. Hence, if $\mathcal{P}(\mathfrak{A})$ denotes the family of all positive linear functionals on \mathfrak{A}, we have in particular $\omega\left(a^{*} x a\right) \geq 0$, for every $\omega \in \mathcal{P}(\mathfrak{A})$.

Theorem 5.4 Let \mathfrak{A} be a C^{*}-inductive partial *-algebra with the multiplication defined by a family $\left\{w_{\alpha}\right\}$ and with pre-unit u. Assume, moreover, that the following condition (P) holds:
(P) $y \in \mathfrak{A}, \omega\left(a^{*} y a\right) \geq 0, \forall \omega \in \mathcal{P}(\mathfrak{A})$ and $a \in R \mathfrak{A} \Rightarrow y \in \mathfrak{A}^{+}$;
then, for $x \in \mathfrak{A}$, the following conditions are equivalent.
(i) x is order bounded with respect to u.
(ii) There exists $\gamma_{x}>0$ such that

$$
\left|\omega\left(a^{*} x a\right)\right| \leq \gamma_{x} \omega\left(a^{*} u a\right), \quad \forall \omega \in \mathcal{P}(\mathfrak{A}), \quad \forall a \in R \mathfrak{A} .
$$

(iii) There exists $\gamma_{x}>0$ such that

$$
\left|\omega\left(b^{*} x a\right)\right|^{2} \leq \gamma_{x} \omega\left(a^{*} u a\right) \omega\left(b^{*} u b\right), \quad \forall \omega \in \mathcal{P}(\mathfrak{A}), \quad \forall a, b \in R \mathfrak{A} .
$$

Proof It is sufficient to consider the case $x=x^{*}$;
(i) \Rightarrow (ii): Let $\omega \in \mathcal{P}(\mathfrak{A})$. By the hypothesis, $-\gamma u \leq x \leq \gamma u$, for some $\gamma>0$; then $\omega(\gamma u-x) \geq 0$ and $\omega\left(a^{*}(\gamma u-x) a\right) \geq 0, \forall a \in R \mathfrak{A}$. On the other hand, similarly, one can show that $\omega\left(a^{*}(x-\gamma u) a\right) \geq 0$.
(ii) \Rightarrow (i): Assume now that u is a pre-unit and there exists $\gamma_{x}>0$ such that

$$
\left|\omega\left(a^{*} x a\right)\right| \leq \gamma_{x} \omega\left(a^{*} u a\right), \quad \forall \omega \in \mathcal{P}(\mathfrak{A}), \quad a \in R \mathfrak{A} .
$$

Then

$$
\gamma_{x} \omega\left(a^{*} u a\right) \pm \omega\left(a^{*} x a\right) \geq 0 \Rightarrow \omega\left(a^{*}\left(\gamma_{x} u \pm x\right) a\right) \geq 0, \quad \forall \omega \in \mathcal{P}(\mathfrak{A}), a \in R \mathfrak{A} .
$$

So, by (P), $\gamma_{x} u \pm x \geq 0$.
(i) \Rightarrow (iii): By the assumption, there exists $\gamma>0$ such that $-\gamma u \leq x \leq \gamma u$. Let $\omega \in \mathcal{P}(\mathfrak{A})$. Then, the linear functional ω_{a} on \mathfrak{A}, defined by $\omega_{a}(x):=\omega\left(a^{*} x a\right)$, is positive. Hence, if $x=x^{*}$

$$
-\gamma \omega_{a}(u) \leq \omega_{a}(x) \leq \gamma \omega_{a}(u) ;
$$

i.e.,

$$
\left|\omega\left(a^{*} x a\right)\right| \leq \gamma \omega\left(a^{*} u a\right) .
$$

Now, let $x \in \mathfrak{A}^{+}, a, b \in R \mathfrak{A}$. Let us define $\Omega_{\omega}^{x}(a, b):=\omega\left(b^{*} x a\right)$. Then, it is easily checked that Ω_{ω}^{x} is a positive sesquilinear form on $R \mathfrak{A} \times R \mathfrak{A}$. Using the Cauchy-Schwartz inequality, we obtain

$$
\begin{aligned}
\left|\omega\left(b^{*} x a\right)\right| & \leq \omega\left(a^{*} x a\right)^{1 / 2} \omega\left(b^{*} x b\right)^{1 / 2} \\
& \leq \gamma \omega\left(a^{*} u a\right)^{1 / 2} \omega\left(b^{*} u b\right)^{1 / 2} .
\end{aligned}
$$

The extension to arbitrary $x \in \mathfrak{A}$ goes through as in the proof of Proposition 4.3 of [8].
(iii) \Rightarrow (ii) It is trivial.

The previous proof shows that if $x=x^{*} \in \mathfrak{A}$ is order bounded with respect to u then

$$
p(x) \leq \sup \left\{\left|\omega\left(b^{*} x a\right)\right| ; \omega \in \mathcal{P}(\mathfrak{A}) ; a, b \in R \mathfrak{A} ; \omega\left(a^{*} u a\right)=\omega\left(b^{*} u b\right)=1\right\} .
$$

where $p(x)$ is the quantity defined in Proposition 4.12.
The following statement is an easy consequence of Proposition 4.12 and Theorem 5.4.
Theorem 5.5 Let \mathfrak{A} be a C^{*}-inductive partial *-algebra with the multiplication defined by a family $\left\{w_{\alpha}\right\}$ and pre-unit u. Assume that conditions $\left(\mathrm{r}_{1}\right)$ and (P) are satisfied. For an element $x \in \mathfrak{A}$, having a representative in every $\mathfrak{B}_{\alpha}, \alpha \in \mathbb{F}$, the following statements are equivalent.
(i) $x \in \mathfrak{A}_{b}$.
(ii) x is order bounded with respect to u.
(iii) For every $\omega \in \mathcal{P}(\mathfrak{A})$

$$
\left|\omega\left(b^{*} x a\right)\right|^{2} \leq \gamma_{x} \omega\left(a^{*} u a\right) \omega\left(b^{*} u b\right), \quad \forall a, b \in R \mathfrak{A}
$$

Acknowledgments This work has been supported by GNAMPA-INdAM.

References

1. Allan, G.R.: A spectral theory for locally convex algebras. Proc. Lond. Math. Soc. 15, 399-421 (1965)
2. Antoine, J.-P., Bellomonte, G., Trapani, C.: Fully representable and *-semisimple topological partial *-algebras. Stud. Math. 208, 167-194 (2012)
3. Antoine, J.-P., Inoue, A., Trapani, C.: Partial *-Algebras and Their Operator Realizations. Kluwer, Dordrecht (2002)
4. Antoine, J.-P., Trapani, C.: Partial Inner Product Spaces-Theory and Applications, Springer Lecture Notes in Mathematics, vol. 1986, Berlin, Heidelberg (2009)
5. Antoine, J.-P., Trapani, C., Tschinke, F.: Bounded elements in certain topological partial *-algebras. Stud. Math. 203, 223-251 (2011)
6. Antoine, J.-P., Trapani, C., Tschinke, F.: Spectral properties of partial *-algebras. Mediterr. J. Math. 7, 123-142 (2010)
7. Bellomonte, G., Di Bella, S., Trapani, C.: Operators in Rigged Hilbert spaces: some spectral properties. J. Math. Anal. App. 411, 931-946 (2014)
8. Bellomonte, G., Trapani, C., Quasi *-algebras and generalized inductive limits of C*-algebras. Stud. Math. 202, 165-190 (2011). Erratum/Addendum, ibid. 217, 95-96 (2013)
9. Bellomonte, G., Trapani, C.: Rigged Hilbert spaces and contractive families of Hilbert spaces. Monatshefte f. Math. 164, 271-285 (2011)
10. Fragoulopoulou, M., Trapani, C., Triolo, S.: Locally convex quasi *-algebras with sufficiently many *-representations. J. Math. Anal. Appl. 388, 1180-1193 (2012)
11. Kürsten, K.-D.: The completion of the maximal $O_{p}{ }^{*}$-algebra on a Fréchet domain. Publ. RIMS Kyoto Univ. 22, 151-175 (1986)
12. Kürsten, K.-D.: On algebraic properties of partial algebras. Rend. Circ. Mat. Palermo Ser. II Suppl. 56, 111-122 (1998)
13. Kürsten, K.-D., Läuter, M.: An extreme example concerning factorization products on the Schwartz space $\mathfrak{S}\left(R^{n}\right)$. Note Mat. 25, 31-38 (2005/06)
14. Palmer, T.W.: Banach Algebras and the General Theory of *-Algebras, vol. 2. Cambridge University Press, Cambridge (2001)
15. Schmüdgen, K.: A strict Positivstellensatz for the Weyl algebra. Math. Ann. 331, 779-794 (2005)
16. Schmüdgen, K.: Unbounded Operator Algebras and Representation Theory. Birkhäuser Verlag, Basel (1990)
17. Trapani, C.: Bounded elements and spectrum in Banach *-algebras. Stud. Math. 172, 249-273 (2006)
18. Trapani, C.: Bounded and strongly bounded elements of Banach *-algebras. Contemp. Math. 427, 417424 (2007)
19. Trapani, C.: *-Representations, seminorms and structure properties of normed quasi *-algebras. Stud. Math. 186, 47-75 (2008)
20. Trapani, C.: Unbounded C*-seminorms, biweights and *-representations of partial *-algebras: a review. Int. J. Math. Math. Sci., Vol. 2006, Article ID 79268 (2006)
21. Trapani, C., Tschinke, F.: Partial multiplication of operators in rigged Hilbert spaces. Integral Equ. Oper. Theory 51, 583-600 (2005)
22. Vidav, I.: On some *regular rings. Acad. Serbe Sci. Publ. Inst. Math. 13, 73-80 (1959)

[^0]: G. Bellomonte • S. Di Bella • C. Trapani (\triangle)

 Dipartimento di Matematica e Informatica, Università di Palermo, 90123 Palermo, Italy
 e-mail: camillo.trapani@unipa.it
 G. Bellomonte
 e-mail: bellomonte@math.unipa.it
 S. Di Bella
 e-mail: svt.dibella@gmail.com

