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Abstract

We describe a new approximation algorithm for solving partially observ-
able MDPs. Our bounded policy iteration approach searches through the
space of bounded-size, stochastic finite state controllers, combining sev-
eral advantages of gradient ascent (efficiency, search through restricted
controller space) and policy iteration (less vulnerability to local optima).

1 Introduction

Finite state controllers (FSCs) provide a simple, convenient way of representing policies
for partially observable Markov decision processes (POMDPs). Two general approaches
are often used to construct good controllers: policy iteration (PI) [7] and gradient ascent
(GA) [10, 11, 1]. The former is guaranteed to converge to an optimal policy, however, the
size of the controller often grows intractably. In contrast, the latter restricts its search to
controllers of a bounded size, but may get trapped in a local optimum.

While locally optimal solutions are often acceptable, for many planning problems with a
combinatorial flavor, GA can easily get trapped by simple policies that are far from opti-
mal. Consider a system engaged in preference elicitation, charged with discovering optimal
query policy to determine relevant aspects of a user’s utility function. Often no single ques-
tion yields information of much value, while a sequence of queries does. If each question
has a cost, a system that locally optimizes the policy by GA may determine that the best
course of action is to ask no questions (i.e., minimize cost given no information gain).
When an optimal policy consists of a sequence of actions any small perturbation to which
results in a bad policy, there is little hope of finding this sequence using methods that
greedily perform local perturbations such as those employed by GA.

In general, we would like the best of both worlds: bounded controller size and conver-
gence to a global optimum. While achieving both is NP-hard for the class of deterministic
controllers [10], one can hope for a tractable algorithm that at least avoids obvious local op-
tima. We propose a new anytime algorithm, bounded policy iteration (BPI) that improves a
policy much like Hansen’s PI [7] while keeping the size of the controller fixed. Whenever
the algorithm gets stuck in a local optimum, the controller is allowed to slightly grow by
introducing one (or a few) node(s) to escape the local optimum.

Following a brief review of FSCs (Sec. 2), we extend PI to stochastic controllers (Sec. 3),
thus admitting smaller, high quality controllers. We then derive the BPI algorithm by en-
suring that the number of nodes remains unchanged (Sec. 4). We analyze the structure of



local optima for BPI (Sec. 5), relate this analysis to GA, and use it to justify a new method
to escape local optima. Finally, we report some preliminary experiments (Sec. 6).

2 Finite State Controllers for POMDPs

A POMDP is defined by a set of states
�

; a set of actions � ; a set of observations � ;
a transition function � , where �����	��
��
����� denotes the transition probabilities ����������� �	��
�� ;
an observation function � , where �������
��� denotes the probability ��������� �	��
�� of making
observation � in state � after taking action 
 ; and a reward function � , where � ���	�

��
denotes the immediate reward associated with state � when executing ation 
 . We assume
discrete state, action and observation sets and we focus on discounted, infinite horizon
POMDPs with discount factor !#"%$'&)( . Since states are not directly observable in
POMDPs, we define a belief state *����+�-,.�������+� to be a distribution over states. Belief
state * can be updated in response to a action-observation pair /0
�����1 using Bayes rule.

Policies represented by FSCs are defined by a (possibly cyclic) directed graph 23,4/657�98:1 ,
where each node ;=<>5 is labeled by an action 
 and each edge ?-<@8 by an observation� . Each node has one outward edge per observation. The FSC can be viewed as a policy24,A/0BC�9D:1 , where action strategy B associates each node ; with an action BC�0;E�F<7� ,
and observation strategy D associates each node ; and observation � with a successor nodeDG�0;H�����I<J5 (corresponding to the edge from ; labeled with � ). A policy is executed
by taking the action associated with the “current node,” and updating the current node by
following the edge labeled by the observation made.

The value function KML of an FSC 2 is the expected discounted sum of rewards for executing
its policy 2 , and can be computed by solving a set of linear equations:K L �0;H�
�N�G,O� �����
BC�0;E�9�EPQ$�R�S4������� � � ���
BC�0;E�9�9��������� � � ��BT�U;E�9��K L �0DG�U;H�
���V�
� � � (1)

Given an initial belief state * , an FSC’s value at node ; is simply the expectationKW�0;H�
*V�X,ZY#[\*����+��KW�0;H�
�N� ; the best starting node for a given * is determined by K]��*V�X,^-_�`ba K-�U;H�c*V� . As a result, the value KW�U;H�c*V� of each node ; is linear with respect to the
belief state; hence the value function of the controller is piecewise-linear and convex. In
Fig. 1(a), each linear segment corresponds to the value function of a node and the upper
surface of these segments forms the controller value function. The optimal value functionK�d satisfies Bellman’s equation:K d ��*V�e, ^-_�`f � ��*N��
��EPg$�R�S4�����0�\� *N�

��9KW��* fS � (2)

Policy iteration (PI) [7] incrementally improves a controller by alternating between two
steps, policy improvement and policy evaluation, until convergence to an optimal policy.
Policy evaluation solves Eq. 1 for a given policy. Policy improvement adds nodes to the
controller by dynamic programming (DP) and removes other nodes. A DP backup applies
the r.h.s. of Eq. 2 to the value function ( K in Fig. 2(a)) of the current controller to obtain a
new, improved value function ( K�� in Fig. 2(a)). Each linear segment of K�� corresponds to a
new node added to the controller. Several algorithms can be used to perform DP backups,
with incremental pruning [4] perhaps being the fastest. After the new nodes created by
DP have been added, old nodes that are now pointwise dominated are removed. A node
is pointwise dominated when its value is less than that of some other node at all belief
states (e.g., ;ih is pointwise dominated by ;Ej in Fig. 2(a)). The inward edges of a pointwise
dominated node are re-directed to the dominating node since it offers better value (e.g.,
inward arcs of ; h are redirected to ; j in Fig. 2(c)). The controller resulting from this
policy improvement step is guaranteed to offer higher value at all belief states. On the
other hand, up to � �k��� 54��l mCl new nodes may be added with each DP backup, so the size of
the controller quickly becomes intractable in many POMDPs.
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Figure 1: a) Value function example; b) BPI local optimum: each linear segment of the
value function is tangent to the backed up value function
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Figure 2: a) Value function K and the backed-up K � obtained by DP; b) original controller
( ;ih and ; � ) with nodes added ( ;�� and ; j ) by DP; c) new controller once pointwise domi-
nated node ; h is removed and its inward arcs a, b, c are redirected to ; j
3 Policy Iteration for Stochastic Controllers

Policy iteration only prunes nodes that are pointwise dominated, rather than all dominated
nodes. This is because the algorithm is designed to produce controllers with deterministic
observation strategies. A pointwise-dominated node can safely be pruned since its inward
arcs are redirected to the dominating node (which has value at least as high as the dominated
node at each state). In contrast, a node jointly dominated by several nodes (e.g., ; � in
Fig. 2(b) is jointly dominated by ;�� and ; j ) cannot be pruned without its inward arcs being
redirected to different nodes depending on the current belief state.

This problem can be circumvented by allowing stochastic observation strategies. We revise
the notion of observation strategy DC�U;H��� �9;i����, �����U; � � ;H�
��� , defining a distribution over
successor nodes ;E� for each ;H��� -pair. If the stochastic strategy is chosen carefully, the
corresponding convex combination of dominating nodes may pointwise dominate the node
we would like to prune. In Fig. 1(a), ; h is dominated by ; � and ; � together (but neither of
them alone). Convex combinations of ; � and ;�� correspond to all lines that pass through
the intersection of ; � and ;�� . The dotted line illustrates one convex combination of ; � and; � that pointwise dominates ; h : consequently, ; h can be safely removed and its inward
arcs re-directed to reflect this convex combination by setting the observation probabilities
accordingly. In general, when a node is jointly dominated by a group of nodes, there exists
a pointwise-dominating convex combination of this group.

Theorem 1 The value function K]�U;H��� � of a node ; is jointly dominated by the value func-
tions K]�U;ih ��� � ��	�	�	 �
K-�0;�
���� � of nodes ;:hN��	�	�	 �9;�
 if and only if there is a convex combinationY���
 � KW�U; � ��� � that dominates KW�0;H��� � .



^���� � s.t. Y [ *����N��KW�U;H�c�N� P ��� Y [ *����N�9K]�U; � �
�N� ���
	Y#[ *����N�e,4(��'*����N� � !b�
� �
Table 1: Primal LP: KW�U;H��� � is jointly dominated by KW�0;:h���� � ��	�	�	 �
KW�0;�
���� � when ��� ! .

^-_�` � s.t. KW�0;H�
�N�EP � " Y ��
 � K]�U; � �c�N� ��� ��< �Y ��
 � , (�� 
 � � !b���
	

Table 2: Dual LP: convex combination Y � 
 � KW�0; � ��� � dominates KW�U;H��� � when ��� ! .
Proof: KW�U;H��� � is dominated by KW�U; hN��� � ��	�	�	 �
K]�U;�
���� � when the objective of the LP in
Table 1 is positive. This LP finds the belief state * that minimizes the difference betweenKW�0;H�
*V� and the max of KW�0; h �
*V�V��	�	�	V�cKW�U; 
 �
*V� . It turns out that the dual LP (Table 2) finds
the most dominating convex combination parallel to KW�U;H��� � . Since the dual has positive
objective value when the primal does, the theorem follows. �

As argued in the proof of Thm. 1, the LP in Table 1 gives us an algorithm to find the most
dominating convex combination parallel to a dominated node. In summary, by considering
stochastic controllers, we can extend PI to prune all dominated nodes (pointwise or jointly)
in the policy improvement step. This provides two advantages: controllers can be made
smaller while improving their decision quality.

4 Bounded Policy Iteration

Although pruning all dominated nodes helps to keep the controller small, it may still grow
substantially with each DP backup. Several heuristics are possible to bound the number of
nodes. Feng and Hansen [6] proposed that one prunes all nodes that dominate the value
function by less than some � after each DP backup. Alternatively, instead of growing the
controller with each backup and then pruning, we can do a partial DP backup that generates
only a subset of the nodes using Cheng’s algorithm [5], the witness algorithm [9], or other
heuristics [14]. In order to keep the controller bounded, for each node created in a partial
DP backup, one node must be pruned and its inward arcs redirected to some dominating
convex combination. In the event where no node is dominated, we can still prune a node
and redirect its arcs to a good convex combination, but the resulting controller may have
lesser value at some belief states. We now propose a new algorithm called bounded pol-
icy iteration (BPI) that guarantees monotonic value improvement at all belief states while
keeping the number of nodes fixed.

BPI considers one node at a time and tries to improve it while keeping all other nodes
fixed. Improvement is achieved by replacing each node by a good convex combination of
the nodes normally created by a DP backup, but without actually performing a backup.
Since the backed up value function must dominate the controller’s current value function,
then by Thm. 1 there must exist a convex combination of the backed up nodes that point-
wise dominates each node of the controller. Combining this idea with Eq. 2, we can directly
compute such convex combinations with the LP in Table 3. This LP has � �]� � 54� l mCl vari-
ables corresponding to the probabilities of the convex combination as well as the � variable
measuring the value improvement. We can significantly reduce the number of variables
by pushing the convex combination variables as far as possible into the DP backup, result-
ing in the LP shown in Table 4. The key here is to realize that we can aggregate many
variables since we only care about the marginals 
 f ,'Y a���� a���������� � a�� ��� 
 f � a � � a � ������� � a�� ��� and


 f � a�� , Y a � ������� � a���� � � a��! � ������� � a�� ��� 
 f � a � � a � ������� � a � ��� .



^-_�` �
s.t. K]�U;H�
�N�EP � "OY f � a � � a � ������� � a � ��� 
 f � a ��� a�� ������� � a � ��� � � ���	�

��
P$ Y [�� � S �������+� � �	�

��9�����0�\� �+����
��9KW�U; S �
�+� ����� � ��< �Y f � a � � a � ������� � a � ��� 
 f � a���� a���������� � a�� ��� , (�� 
 f � a���� a�� ������� � a�� ��� � !b� � 
��9; h ��; � ��	�	�	 �9; l mCl

Table 3: Naive LP to find a convex combination of backed up nodes that dominate ; .

^-_ ` �
s.t. KW�U;H�c�N� P � " Y f � 
 f � ���	��
�� Pg$ Y [ � � S �������+��� �	��
�� ��������� �+�0�

�� 
 f � a � KW�0; S �
�+� �����!� �Y f 
 f ,7(�� Y a�� 
 f � a � , 
 f � � 
�� 
 f � !b� �\
�� 
 f � a � � !b� � 
����

Table 4: Efficient LP to find a convex combination of backed up nodes that dominate ; .

The efficient LP in Table 4 has only � �]� � �>��� 54� Pg� �]� P ( variables.1 Furthermore, the vari-
ables 
 f and 
 f � a�� have an intuitive interpretation w.r.t. the action and observation strategies
for the improved node. Each 
 f variable indicates the probability of executing action 
 (i.e.,BT�U;H��
�� , 
 f ). Similarly, each 
 f � a � variable indicates the (unnormalized) probability of
reaching node ; S after executing 
 and observing � (i.e., DG�U;H�

 �
� ��; S �T, 
 f � a ��� 
 f ). Note
that we now use probabilistic action strategies and have extended probabilistic observation
strategies to depend on the action executed.

To summarize, BPI alternates between policy evaluation and improvement as in regular PI,
but the policy improvement step simply tries to improve each node by solving the LP in
Table 4. The 
 f and 
 f � a�� variables are used to set the probabilistic action and observation
strategies of the new improved node.

5 Local Optima

BPI is a simple, efficient alternative to standard PI that monotonically improves an FSC
while keeping its size constant. Unfortunately, it is only guaranteed to converge to a local
optimum. We now characterize BPI’s local optima and propose a method to escape them.

5.1 Characterization

Thm. 2 gives a necessary and sufficient condition characterizing BPI’s local optima. Intu-
itively, a controller is a local optimum when each linear segment touches from below, or is
tangent to, the controller’s backed up value function (see Fig. 1(b)).

Theorem 2 BPI has converged to a local optimum if and only if each node’s value function
is tangent to the backed up value function.

Proof: Since the objective function of the LP in Table 4 seeks to maximize the improve-
ment � , the resulting convex combination must be tangent to the upper surface of the
backed up value function. Conversely, the only time when the LP won’t be able to improve
a node is when its vector is already tangent to the backed up value function. �

1Actually, we don’t need the �
	 variables since they can be derived from the �
	�� 
 � variables by
summing out ��� , so the number of variables can be reduced to � ����� ����� ������� .



Interestingly, tangency is a necessary (but not sufficient) condition for GA’s local optima.

Corollary 1 If GA has converged to a local optimum, then the value function of each node
reachable from the initial belief state is tangent to the backed up value function.

Proof: GA seeks to monotonically improve a controller in the direction of steepest ascent.
The LP of Table 4 also seeks a monotonically improving direction. Thus if BPI can
improve a controller by finding a direction of improvement using the LP of Table 4, then
GA will also find it or will find a steeper one. Conversely, when a controller is a local
optimum for GA, then there is no monotonic improvement possible in any direction. Since
BPI can only improve a controller by following a direction of monotonic improvement,
GA’s local optima are a subset of BPI’s local optima. Thus, tangency is a necessary, but
not sufficient, condition of GA’s local optima. �

In the proof of Corollary 1, we argued that GA’s local optima are a subset of BPI’s local
optima. This suggests that BPI is inferior to GA since it can be trapped by more local
optima than GA. However we will describe in the next section a simple technique that
allows BPI to easily escape from local optima.

5.2 Escape Technique

The tangency condition characterizing local optima can be used to design an effective es-
cape method for BPI. It essentially tells us that such tangent belief states are “bottlenecks”
for further policy improvement. If we could improve the value at the tangent belief state(s)
of some node, then we could break out of the local optimum. A simple method for doing
so consists of a one-step lookahead search from the tangent belief states. Figure 1(b) illus-
trates how belief state *V� can be reached in one step from tangent belief state * , and how
the backed up value function improves * � ’s current value. Thus, if we add a node to the
controller that maximizes the value of * � , its improved value can subsequently be backed
up to the tangent belief state * , breaking out of the local optimum.

Our algorithm is summarized as follows: perform a one-step lookahead search from each
tangent belief state; when a reachable belief state can be improved, add a new node to the
controller that maximizes that belief state’s value. Interestingly, when no reachable belief
state can be improved, the policy must be optimal at the tangent belief states.

Theorem 3 If the backed up value function does not improve the value of any belief state
reachable in one step from any tangent belief state, then the policy is optimal at the tangent
belief states.

Proof: By definition, belief states for which the backed up value function provides no
improvement are tangent belief states. Hence, when all belief states reachable in one step
are themselves tangent belief states, then the set of tangent belief states is closed under
every policy. Since there is no possibility of improvement, the current policy must be
optimal at the tangent belief states. �

Although Thm 3 guarantees an optimal solution only at the tangent belief states, in practice,
they rarely form a proper subset of the belief space (when none of the reachable belief states
can be improved). Note also that the escape algorithm assumes knowledge of the tangent
belief states. Fortunately, the solution to the dual of the LP in Table 4 is a tangent belief
state. Since most commercial LP solvers return both the solution of the primal and dual, a
tangent belief state is readily available for each node.2

2A node may have more than one tangent belief state when an interval of its linear segment is
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Figure 3: Experimental results for the maze and tag-avoid problems.

6 Experiments

We report some preliminary experiments with BPI and the escape method to assess their
robustness against local optima, as well as their scalability to relatively large POMDPs.
In a first experiment, we ran BPI with escape on a preference elicitation problem and a
modified version of the Heaven-and-Hell problem described in [3]. It consistently found
the optimal policy, whereas GA settles for a local optimum for both problems.

In a second experiment, we report the running time and decision quality of the con-
trollers found for two large grid-world problems. The first is a �	!�! -state extention of
Hauskrecht’s [8] � ! -state maze problem, and the second Pineau et al.’s [12] ����! -state tag-
avoid problem. In Figure 3, we report the expected return achieved w.r.t. time and number
of nodes. For the maze problem, the expected return is averaged over all 400 states since
BPI tries to optimize the policy for all belief states simultaneously. For comparison pur-
poses, the expected return for the tag-avoid problem is measured at the same initial belief
state used in [12] even though BPI doesn’t tailor its policy exclusively to that belief state.
In contrast, many point-based algorithms including PBVI [12] (which is perhaps the best
such algorithm) optimize the policy for a single initial belief state, capitalizing on a hope-
fully small reachable belief region. BPI found a ���	! -node controller in ���������	� with the
same expected return of 	
� 	�(�� achieved by PBVI in (���!�����!�� with a policy of (�
�
�� linear
segments. This suggests that most of the belief space is reachable in tag-avoid. We also

tangent to the backed up value function, indicating that it is identical to some backed up node.



ran BPI on the tiger-grid, hallway and hallway2 benchmark problems [12] and obtained(���!�! -node controllers in (���
���� !�� , � ����� 
	!	� and ��� � ����!	� achieving expected returns of( 	 �b( , ! 	 ��( , ! 	 ��� at the same initial belief states used in [12], but without using them to
tailor the policy. In contrast, PBVI achieved expected returns of � 	 ��� , ! 	 ��
 and ! 	 
�� in

�������� , �����	� and 
��	!	� with policies of ��� ! , ��� and � � linear segments tailored to those
initial belief states. This suggests that only a small portion of the belief space is reachable.

7 Conclusion

We have introduced the BPI algorithm, which guarantees monotonic improvement of the
value function while keeping controller size fixed. While quite efficient, the algorithm may
get trapped in local optima. An analysis of such local optima reveals that the value function
of each node is tangent to the backed up value function. This property can be successfully
exploited in an algorithm that escapes local optima quite robustly.

This research can be extented in a number of directions. State aggregation [2] and belief
compression [13] techniques could be easily integrated with BPI to scale to problems with
large state spaces. Also, since stochastic GA [11, 1] can tackle model free problems (which
BPI cannot) it would be interesting to see if tangent belief states could be computed for
stochastic GA and used to design a heuristic to escape local optima similar to the one
proposed for BPI.
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