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BOUNDED H∞-CALCULUS FOR

CONE DIFFERENTIAL OPERATORS

E. SCHROHE AND J. SEILER

Abstract. We prove that parameter-elliptic extensions of cone differential op-

erators have a bounded H∞-calculus. Applications concern the Laplacian and

the porous medium equation on manifolds with warped conical singularities.

1. Introduction

We show that closed extensions of differential operators on manifolds with conical

singularities, which are parameter-elliptic with respect to a sector

Λ = Λ(θ) =
{
reiϕ : r ≥ 0, θ ≤ ϕ ≤ 2π − θ

}
, 0 < θ < π,

admit a bounded H∞-calculus in the natural weighted Lp-Sobolev spaces, 1 < p <

+∞; see Theorem 5.2 for the precise formulation. To this end we combine our

investigations on this subject in [3], [4], [14], [17] with the results of Gil, Krainer

and Mendoza [7], [8], [9]. Our main analytic tool is the calculus of parameter-

dependent cone pseudodifferential operators, cf. Schulze [18], [19]; for a concise

summary we refer the reader to the appendix of [17]. The ellipticity conditions

require the invertibility of both the interior symbol and the conormal symbol as

well as resolvent estimates for the model cone operator, see conditions (E1), (E2),

(E3) in Section 4.

Let B be a compact smooth manifold with boundary X = ∂B; the dimension of

X is denoted by n. We shall identify a collar neighborhood of the boundary with

[0, 1) ×X and denote by t the variable of [0, 1). A cone differential operator A of

order µ ∈ N is a µ-th order differential operator with smooth coefficients on the

interior of B and a specific structure in the collar neighborhood, namely,

(1.1) A = t−µ
µ∑

k=0

ak(t)(−t∂t)
k with ak ∈ C

∞([0, 1)Diffµ−k(X)),

where Diffj(X) denotes the Fréchet space of differential operators of order at most

j on X . In general, we will assume all operators to act on sections of vector bundles

over B, but for simplicity we do not indicate the vector bundles in the notation.

We will consider a closed extension A of A, considered as an unbounded operator

(1.2) A : C
∞
comp(intB) ⊂ Hs,γ

p (B) −→ Hs,γ
p (B)

in a weighted Lp-Sobolev space Hs,γ
p (B) of functions on B of smoothness s and

weight γ ∈ R, defined in Section 2.1.2.
1

http://arxiv.org/abs/1706.07232v1


2 E. SCHROHE AND J. SEILER

Suppose that Λ is a sector of minimal growth, i.e., for R sufficiently large,

sup
λ∈Λ, |λ|≥R

‖λ(λ−A)−1‖L (Hs,γ
p (B)) < +∞.

Writing Ac := A+ cI with c ≥ R one can then define the operator f(Ac) by

f(Ac) =
1

2πi

∫

∂Λ

f(λ)(λ −Ac)
−1 dλ

for every bounded holomorphic function f : C\Λ → C (actually, the above Dunford

integral makes sense only for functions f decaying with some positive power rate at

infinity; the case of general f involves an approximation argument). One says that

Ac admits a bounded H∞-calculus, if ‖f(Ac)‖L (Hs,γ
p (B)) ≤ C‖f‖∞ for a constant

C independent of f ; see [6] or [11] for more details. The H∞-calculus and the

related notion of maximal regularity play an essential role in the analysis of non-

linear parabolic evolution equations in the functional-analytic approach based on

semi-group theory.

A prototype of a cone differential operator, of importance in many applications,

is the Laplacian with respect to a conically degenerate metric, i.e. a Riemannian

metric in the interior of B which in the collar neighborhood is of the form

g = dt2 + t2h(t)

with a smooth family h(t), 0 ≤ t ≤ 1, of Riemannian metrics on X . One speaks

of a straight conical metric, if h is independent of t, otherwise of a warped conical

metric. We find sufficient conditions for an extension ∆ of the (warped) Laplacian

to satisfy the above assumptions (E1), (E2) and (E3), see Theorem 6.5. Finally, we

outline how these results can be used to show the existence of a short time solution

to the porous medium equation on manifolds with warped conical singularities, thus

improving on earlier work in [15] for straight cones.

The paper is structured as follows. After recalling some notation in Section 2 we

describe, in Section 3, the closed extensions of an elliptic cone differential operator

A as in (1.1) and a relation between the closed extensions of A and those of the

so-called model cone operator Â associated with A,

(1.3) Â = t−µ
µ∑

k=0

ak(0)(−t∂t)
k,

which is a differential operator on X∧ := (0,+∞) × X . This relation was first

introduced in [9]; we provide here an alternative, equivalent description. In Section

4 we explain the concept of parameter-ellipticity and show that the resolvent is an

element of the cone calculus with parameters, see Theorem 4.6. This improves the

results in [17], where the coefficients ak of A were required to be independent of t for

small t and the domain was assumed to be dilation invariant. In Section 5 we prove

resolvent estimates in all Sobolev spaces Hs,γ
p (B) of order s ≥ 0 and the existence of

the bounded H∞-calculus. We rely on techniques developed in [14]; note, however,

that in [14, Section 3] detailed knowledge about the structure of the resolvent

in the spirit of Theorem 4.6 was assumed while we find here simple conditions

which guarantee precisely this. In Section 6 we discuss the closed extensions of the
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warped Laplacian and the porous medium equation, establishing in Theorem 6.11

the existence of a unique short-time solution.

2. Some basic notation

Throughout the paper we write 〈y〉 = (1 + |y|2)1/2 for y ∈ Rn.

2.1. Function spaces. Let B as described in the introduction, γ, ρ ∈ R and p ∈

(1,+∞). Write X∧ = (0,+∞)×X with X = ∂B and local coordinates (t, x).

2.1.1. Function spaces on the infinite cone. For s ∈ N0 let Hs,γ
p (X∧) denote the

space of all u ∈ Hs
p,loc(X

∧) such that

t
n+1

2
−γ(t∂t)

k∂αx u(t, x) ∈ Lp
(
X∧,

dt

t
dx

)
, k + |α| ≤ s,

where n is the dimension of X . These are Banach spaces in a natural way. By

interpolation and duality one can also extend the definition to s ∈ R.

Let U1, . . . , UN be a covering of X together with coordinate maps κj : Uj →

Vj ⊂ Rn. On R × X consider the coordinate maps κ̂j : Ûj := R × Uj → Rn+1

given by κ̂j(t, x) =
(
t, 〈t〉κj(x)

)
. We can define Sobolev spaces Hs,ρ

p (R×X)cone on

R×X in the standard way: Taking a partition of unity φ1, . . . , φN on X subordi-

nate to the covering U1, . . . , UN we ask that (φju) ◦ κ̂
−1
j belongs to Hs,ρ

p (Rn+1) =

〈·〉−ρHs
p(R

n+1).

The Banach space Ks,γp (X∧)ρ consists of all u such that, with an arbitrary cut-off

function ω(t) ∈ C∞
comp([0,+∞))1,

ωu ∈ Hs,γ
p (X∧), (1 − ω)u ∈ Hs,ρ

p (R×X)cone.

For convenience we write Ks,γp (X∧) := Ks,γp (X∧)0. Also we introduce

S
γ
0 (X

∧) = ∩
s,ρ≥0
k∈N0

(log t)−kKs,γp (X∧)ρ,

S
γ
ε (X

∧) = ∩
s,ρ≥0
0≤δ<ε

Ks,γ+δp (X∧)ρ (ε > 0).

These are Fréchet spaces and the definition is independent of the choice of p. Note

that (1 − ω)u ∈ S (R,C∞(X)) is rapidly decreasing for t → +∞ whenever u ∈

S γ
ε (X

∧) with ε ≥ 0.

2.1.2. Function spaces on B. Using the above spaces on X∧ and a cut-off function

ω ∈ C ∞
comp([0, 1)), we introduce the Banach spaces Hs,γ

p (B) by requiring that

ωu ∈ Ks,γp (X∧), (1− ω)u ∈ Hs
p(B),

while C∞,γ
ε (B), ε ≥ 0, is defined by the requirement

ωu ∈ S
γ
ε (X

∧), (1− ω)u ∈ C
∞(B);

here, 1 − ω is considered as a smooth function on B supported away from the

boundary.

1i.e., ω ≡ 1 near t = 0 and ω has compact support
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2.2. Fréchet space valued symbols. Let E be a Fréchet space and Σ a sector

in R2. We write Sµ(Σ, E) for the space of all smooth functions a : intΣ → E such

that for every multi-index α ∈ N2
0 and every continuous semi-norm p on E

p
(
Dα
η a(η)

)
≤ Cα,p〈η〉

µ−|α|, η ∈ Σ.

2.3. Twisted operator-valued symbols. We define a group κs, s > 0, of oper-

ators on C∞
comp(X

∧) by

(κsu)(t, x) = s−(n+1)/2u(st, x).

They extend to unitary operators on L2(X∧, tndtdx) and to continuous operators

on D ′(X∧).

Given two Banach spaces E,F ⊂ D ′(X∧) which are invariant under every κs, s > 0,

we denote by Sµ(Σ;E,F ) the space of all smooth functions a : intΣ → L (E,F )

such that for every multi-index α ∈ N2
0

‖κ−1
〈η〉

(
Dα
η a(η)

)
κ〈η〉‖L (E,F ) ≤ Cα〈η〉

µ−|α|, η ∈ Σ.

If F = ∩j∈N Fj is a projective limit of Banach spaces Fj ⊂ D ′(X∧) which are all

invariant under κs, s > 0, we set Sµ(Σ;E,F ) = ∩j∈N Sµ(Σ;E,Fj). It carries a

natural Fréchet topology.

2.4. Parameter-dependent cone pseudodifferential operators. Throughout

the paper we shall make use of Schulze’s calculi for (parameter-dependent) pseu-

dodifferential operators on B. We will use various subclasses of these calculi like

Cµ(B; (γ, γ − µ, (−N, 0])) and CµO(Σ). For a concise presentation of the parameter-

dependent classes we refer the reader to the appendix of [17].

3. Closed extensions of cone differential operators

Being a differential operator on the interior of B, we can associate with A its

homogeneous principal symbol σµψ(A) ∈ C ∞(T ∗intB \ 0). The limit

σ̃µψ(A)(x, ξ, τ) := lim
t→0

tµσµψ(A)(t, x, t
−1τ, ξ)

defines the so-called rescaled principal symbol σ̃µψ(A) ∈ C∞((T ∗X × R) \ 0).

Definition 3.1. A is called cone-elliptic if both its homogeneous principal symbol

and its rescaled principal symbol are invertible.

From now on we shall assume that A is cone-elliptic. A second symbol of importance

is the so-called conormal symbol of A,

σµM (A)(z) =

µ∑

k=0

ak(0)z
k,

which is a polynomial whose coefficients are differential operators on X . The cone-

ellipticity of A implies that σµM (A) is meromorphically invertible, i.e., σµM (A)−1

is meromorphic with values in the pseudodifferential operators of order −µ on X .

Moreover, any vertical strip in the complex plane of finite width contains only
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finitely many poles of σµM (A)−1 and the Laurent coefficients are smoothing pseu-

dodifferential operators on X of finite rank.

3.1. Closed extensions. The analysis of the closed extensions of cone differential

operators has a long history, see for example the works [12], [7], [8] and [17]. Here

we summarize some results.

A considered as the unbounded operator (1.2) is closable and has two canonical

closed extensions:

i) The closure Amin, which is given by the action of A on the domain

Dmin(A) =
{
u ∈ ∩

ε>0
Hs+µ,γ+µ−ε
p (B) | Au ∈ Hs,γ

p (B)
}
.

In case the conormal symbol of A is invertible (as a pseudodifferential op-

erator on X) for every z with Re z = n+1
2 − γ − µ, the minimal domain

coincides with Hs+µ,γ+µ
p (B).

ii) The maximal extension Amax, given by the action of A on the domain

Dmax(A) =
{
u ∈ Hs,γ

p (B) | Au ∈ Hs,γ
p (B)

}
.

It should be clear from the context to which particular choice of s, p and γ we refer.

Similarly, we consider the model cone operator Â associated with A as an un-

bounded operator

(3.1) Â : C
∞
comp(X

∧) ⊂ Ks,γp (X∧)ρ −→ Ks,γp (X∧)ρ

where ρ ranges over R (again, the choice of parameters will not be specified in the

notation). In case Â satisfies a suitable ellipticity condition on X∧ near t = +∞

(which is satisfied, for example, if A satisfies condition (E1) in Section 4), minimal

and maximal extension, denoted by Âmin and Âmax, respectively, are as above,

substituting the Sobolev spaces H·,·
p (B) by K·,·

p (X∧)ρ.

It turns out that the gap between minimal and maximal domain is finite-dimensional.

In the following let ω ∈ C ∞
comp([0, 1)) denote a cut-off function.

Proposition 3.2. There exist subspaces E , Ê ⊂ C∞(X∧) (which do not depend on

the choice of s, p and ρ), both finite-dimensional and of same dimension, such that

Dmax(A) = Dmin(A)⊕ ωE , Dmax(Â) = Dmin(Â)⊕ ωÊ .

The elements of both E and Ê are finite linear combinations of functions of the form

c(x)t−p lnk t with c(x) ∈ C∞(X), p ∈ C, and k ∈ N0. For an explicit description

see the following subsection.

Therefore, any closed extension A of A is given by the action of A on a domain of

the form

(3.2) D(A) = Dmin(A) ⊕ ωE , E subspace of E ,

while any closed extension Â of Â is given by the action of Â on a domain of the

form

(3.3) D(Â) = Dmin(Â)⊕ ωÊ , Ê subspace of Ê .
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For later purpose we present the following result:

Proposition 3.3. Assume that the conormal symbol of A is invertible for every z

with Re z = n+1
2 − γ − µ. Consider

A : Hs+µ,γ+µ
p (B)⊕ ωE −→ Hs,γ

p (B).

Then both Fredholm property and invertibility are independent on the choice of s

and p. Also the index does not depend on s and p.

The analogous result holds true for the extensions of the model cone operator Â,

with indepndence on the involved parameters s, p, and ρ.

Proof. Since E is finite-dimensional, A is a Fredholm operator if and only if A :

Hs+µ,γ+µ
p (B) → Hs,γ

p (B) is a Fredholm operator. The index of both operators is the

same, due to the stability of the index under compact perturbations. By assumption,

A is an elliptic element in the algebra of cone pseudodifferential operatorsCµ(B; (γ+

µ, γ, (−N, 0])) for arbitrary N . According to Corollary 3.5 of [16], both Fredholm

property and index of A do not depend on the choice of s and p.

Now assume that A is invertible for some fixed choice of the parameters. We just

have seen that A is a Fredholm operator of index 0 for every choice of s and p. Thus

it suffices to show that A is always injective. So let u+e with u ∈ Hs+µ,γ+µ
p (B) and

e ∈ ωE belong to the kernel. Then Au = −Ae ∈ C
∞,γ
0 (B). By elliptic regularity in

the cone algebra we conclude that u ∈ C
∞,µ+γ
0 (B). This shows that the kernel of

A does not depend on s and p, and neither does the injectivity. �

3.2. One-to-one correspondence between closed extensions. There exists a

certain one-to-one correspondence between the closed extensions of A and those of

its model cone operator which plays a fundamental role in the theory of parameter-

ellipticity of closed extensions.

With A we associate the sequence of conormal symbols

(3.4) fℓ(z) =

µ∑

j=0

a
(ℓ)
j zj, a

(ℓ)
j :=

1

ℓ!

dℓaj
dtℓ

(0);

in particular, f0 = σµM (A). Below, we will use the following notation:

(3.5) Sγ =
{
σ ∈ C | σ is a pole of f−1

0 and
n+ 1

2
− γ − µ < Reσ <

n+ 1

2
− γ

}
.

We shall identify C∞(X∧) with C ∞((0,+∞),C∞(X)) and use the Mellin transform

û(z) =

∫ ∞

0

tzu(t)
dt

t
, u ∈ C

∞
comp(X

∧).

The following theorem describes the space Ê associated with the maximal extension

of the model cone operator.

Theorem 3.4. For σ ∈ Sγ define G
(0)
σ : C∞

comp(X
∧) → C ∞(X∧) by

(G(0)
σ u)(t) =

∫

|z−σ|=ε

t−zf−1
0 (z)û(z) d̄z,
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where ε > 0 is sufficently small. Then

Ê = ⊕
σ∈Sγ

Êσ, Êσ = rangeG(0)
σ .

The characterization of E is more involved. We follow here the approach of [17];

other descriptions can be found in [7], [9].

Define recursively

(3.6) g0 = 1, gℓ = −(T−ℓf−1
0 )

ℓ−1∑

j=0

(T−jfℓ−j)gj , ℓ ∈ N,

where the shift-operators T ρ, ρ ∈ R, act on meromorphic functions by (T ρf)(z) =

f(z + ρ). The gℓ are meromorphic and the recursion is equivalent to

(3.7)

ℓ∑

j=0

(T−jfℓ−j)gj =

{
f0 : ℓ = 0

0 : ℓ ≥ 1
.

If h is a meromorphic function, denote by Πσh the principal part of the Laurent

series in σ; of course, if h is holomorphic in σ, then Πσh = 0.

Theorem 3.5. For σ ∈ Sγ and ℓ ∈ N define G
(ℓ)
σ : C∞

comp(X
∧) → C∞(X∧) by

(3.8) (G(ℓ)
σ u)(t) = tℓ

∫

|z−σ|=ε

t−zgℓ(z)Πσ(f
−1
0 û)(z) d̄z,

as well as

(3.9) Gσ :=

µσ∑

ℓ=0

G(ℓ)
σ , µσ :=

[
Reσ + µ+ γ −

n+ 1

2

]
,

where [x] denotes the integer part of x ∈ R. Then

E = ⊕
σ∈Sγ

Eσ, Eσ = rangeGσ.

Moreover, the following map is well-defined and an isomorphism:

(3.10) θσ : Eσ −→ Êσ, Gσ(u) 7→ G(0)
σ (u).

This is a consequence of Propositions 3.6 and 3.7, below. The maps θσ induce a one-

to-one correspondence between the subspaces of E = ⊕σ∈Sγ
Eσ and Ê = ⊕σ∈Sγ

Êσ,

respectively, i.e., an isomorphism

(3.11) Θ : Gr(E ) −→ Gr(Ê )

between the corresponding Grassmannians. Hence we obtain a one-to-one corre-

spondence between the closed extensions of A and Â, respectively.
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3.2.1. An example. The operators G
(ℓ)
σ introduced above are explicitly computable

by the residue theorem.

Let us consider a second order operator A whose inverted conormal symbol f−1
0

has only simple poles. This happens, for instance, when A is the conical Laplacian

and B has dimension larger or equal than 3; in the two-dimensional case there is,

in addition, one double pole in z = 0 (cf. Section 6 for more details).

Let σ be such a pole and denote by ασ the residue of f−1
0 in σ. Recall that ασ

is a smoothing pseudodifferential operator on X and that Eσ := rangeασ is a

finite-dimensional subspace of C∞(X). Using the above notation,

G(0)
σ (u) = t−σασ(û(σ)), u ∈ C

∞
comp(X

∧).

Since the range of u 7→ û(σ) is C∞(X), this implies that

Êσ =
{
t−σe | e ∈ Eσ

}
.

In case n+1
2 − γ − 2 < Reσ < n+1

2 − γ − 1 we have Eσ = Êσ, since then Gσ = G
(0)
σ .

In case n+1
2 − γ − 1 ≤ Reσ < n+1

2 − γ, the structure of Eσ depends on g1 =

−(T−1f−1
0 )f1: Write, near σ,

g1(z) ≡ βσ(z − σ)−1 + β0
σ

modulo a holomorphic function vanishing in σ. In case g1 is holomorphic in σ,

obviously βσ = 0 and β0
σ = g1(σ). Now one computes

G(1)
σ (u) = t−σ+1

(
β0
σασ(û(σ)) + βσασ(û(σ)) log t

)
.

It follows that

Eσ =
{
t−σe+ t−σ+1

(
β0
σe+ βσe log t

)
| e ∈ Eσ

}
.

3.3. The proof of Theorem 3.5. Let ω, ω1 ∈ C ∞
comp([0, 1)) be cut-off functions.

Proposition 3.6. ωEσ is a subspace of Dmax(A).

Proof. By construction, ωEσ is contained in C
∞,γ
0 (B) because it consists of functions

of the form ω(t)c(x)t−σ lnℓ t with c(x) ∈ C∞(X) and Reσ < (n+ 1)/2− γ.

Now let v = ωGσ(u) with u ∈ C∞
comp(X

∧). We show that Av belongs to C
∞,γ
0 (B).

Choose ω1 such that ω ≡ 1 in a neighborhood of the support of ω1. Since (1−ω1)Av

is smooth and compactly supported in the interior of B, it suffices to analyze ω1Av.

Now we can write

ω1A = ω1t
−µ

µ−1∑

j=0

tjfj(−t∂t) +R,
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with a remainder R that maps C
∞,γ
0 (B) into itself. Observing that ωG

(ℓ)
σ maps

C∞
comp(X

∧) into C
∞,γ+µ−(µσ+1)+ℓ
0 (B), we see that ω1Av belongs to C

∞,γ
0 (B) pro-

vided

ω1 t
−µ

µσ∑

j=0

µσ−j∑

ℓ=0

tjfj(−t∂t)G
(ℓ)
σ (u)

= ω1 t
−µ

µσ∑

j=0

µσ−j∑

ℓ=0

tj+ℓ(T−ℓfj)(−t∂t)(t
−ℓG(ℓ)

σ (u)) ∈ C
∞,γ
0 (B);

(3.12)

note that we have used the Mellin operator identity f(−t∂t)t
ρ = tρ(T−ρf)(−t∂t).

Rearranging the summation (3.12) equals

(3.13) ω1 t
−µ

µσ∑

k=0

tk
k∑

ℓ=0

(T−ℓfk−ℓ)(−t∂t)(t
−ℓG(ℓ)

σ (u)) ∈ C
∞,γ
0 (B).

Inserting the expression (3.8) for G
(ℓ)
σ , the summation over ℓ in (3.13) then yields,

for each k,
∫

|z−σ|=ε

t−z
k∑

ℓ=0

(T−ℓfk−ℓ)(z)gℓ(z)Πσ(f
−1
0 û)(z) d̄z.

Using (3.7), we conclude that (3.13) is equal to zero. �

Proposition 3.7. Let u, v ∈ C∞
comp(X

∧). Then Gσ(u) = Gσ(v) if and only if

G
(0)
σ (u) = G

(0)
σ (v). In particular, Eσ has the same dimension as Êσ.

Proof. Set w = u− v and write

Πσ(f
−1
0 ŵ)(z) =

m∑

ℓ=0

cℓ(z − σ)−ℓ−1

with coefficient functions cℓ ∈ C∞(X). Since t−z = t−σ exp(−(z − σ) log t),

resz=σ t
−zΠσ(f

−1
0 ŵ)(z) = t−σ

m∑

ℓ=0

(−1)ℓ

ℓ!
cℓ log

ℓ t.

Thus G
(0)
σ (w) = 0 if and only if all cℓ ≡ 0, i.e., if and only if Πσ(f

−1
0 ŵ) ≡ 0.

This obviously implies Gσ(w) = 0. Conversely, Gσ(w) = 0 implies that G
(0)
σ (w) =

−
µσ∑
ℓ=1

G
(ℓ)
σ (w). However, by construction,

rangeG(0)
σ ∩ range

µσ∑

ℓ=1

G(ℓ)
σ = {0}.

This shows G
(0)
σ (w) = 0. The same argument shows that functions G

(0)
σ (u1),. . .,

G
(0)
σ (ur) are linearly independent in rangeG

(0)
σ , if and only if Gσ(u1), . . . , Gσ(ur)

are linearly independent in rangeGσ. �
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4. Parameter-ellipticity and resolvent of closed extensions

Let Λ be the sector from (1.1) and A a closed extension of A in Hs,γ
p (B) with

domain D(A) = Hs+µ,γ+µ
p (B)⊕ωE for a subspace E of E . We will next state three

conditions which will allow us to construct the resolvent to A for large λ in Λ and to

determine its structure. Actually, these conditions are independent of s and p. They

involve the model cone operator Â, considered as unbounded operator in K0,γ
2 (X∧)

with domain D(Â) = Kµ,γ+µ2 (X∧)⊕ Ê , where Ê := Θ−1E , see (3.11).

We call A parameter-elliptic with respect to Λ, if

(E1) Both λ− σµψ(A) and λ− σ̃µψ(A) are invertible in the sector Λ.

(E2) The principal conormal symbol σµM (A)(z) is invertible for all z ∈ C with

Re z = n+1
2 − γ − µ or Re z = n+1

2 − γ.

(E3) Λ is a sector of minimal growth for Â, i.e., there exist C,R ≥ 0 such that,

for λ ∈ Λ, |λ| ≥ R, the operator λ− Â is invertible and

‖λ(λ − Â)−1‖
L (K0,γ

2
(X∧)) ≤ C.

Condition (E2) assures that Dmin(A) = Hs+µ,γ+µ
p (B) and Dmin(Â) = Kµ,γ+µ2 (X∧),

cf. i) in the beginning of Section 3.1. The invertibility for z with real part n+1
2 − γ

is a symmetry condition used for treating the adjoint.

Below, it will be convenient to replace the variable λ by ηµ in order to raise the

order of the parameter from 1 to µ, which is the order of A. So let

Σ = Σ(Λ) =
{
seiϕ | s ≥ 0, θ ≤ µϕ ≤ 2π − θ

}
;

then η 7→ ηµ : Σ −→ Λ is a bijective map.

4.1. Ellipticity condition (E3). We shall demostrate that, in (E3), we could as

well consider Â as an unbounded operator in K0,γ
2 (X∧)ρ with an arbitrary choice

of ρ ∈ R.

In fact, as mentioned after Proposition 3.3, the invertibility of

λ− Â : Kµ,γ+µ2 (X∧)ρ ⊕ ωÊ −→ K0,γ
2 (X∧)ρ

is independent of the choice of ρ. We shall show that this is also true for the

finiteness of the supremum

(4.1) sup
λ∈Λ, |λ|≥R

‖λ(λ− Â)−1‖
L (K0,γ

2
(X∧)ρ).

Assume that (4.1) is finite for some ρ = ρ0. Recall that for an unbounded op-

erator T : D ⊂ X → X in a Banach space X , the uniform boundedness of

λ(λ−T )−1 in L (X) for λ in a (truncated) sector is equivalent to that of (λ−T )−1

in L (X,D), where D carries the graph norm. As the domain of Â is continu-

ously embedded in Kµ,γ2 (X∧)ρ, it follows that (λ − Â)−1 is uniformly bounded in

L (K0,γ
p (X∧)ρ0 ,Kµ,γ2 (X∧)ρ0). The complex interpolation identity

(
K0,γ
p (X∧)ρ,Kµ,γp (X∧)ρ

)
[θ]

= Kµθ,γp (X∧)ρ
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implies for θ = (µ− 1)/µ the uniform estimate

(4.2) ‖(λ− Â)−1‖
L (K0,γ

2
(X∧)ρ0 ,Kµ−1,γ

2
(X∧)ρ0) ≤ C |λ|−1/µ, |λ| ≥ R.

Now consider another choice ρ = ρ1 and let r be a smooth positive function on R+

with r(t) = 1 for t ≤ 1 and r(t) = tρ0−ρ1 for large t. Set B̂ := r−1Âr. Note that

Â− B̂ = r−1[r, Â] vanishes on (0, 1)×X and is of order µ− 1, i.e.,

(4.3) Â− B̂ : Ks,γ2 (X∧)ρ −→ Ks−µ+1,γ
2 (X∧)ρ ∀ s, ρ ∈ R

(actually, on the right-hand side one can replace ρ by the better weight ρ + 1;

however, we shall not need this fact).

Since multiplication by r induces isomorphisms from Ks,γp (X∧)ρ0 to Ks,γ2 (X∧)ρ1 ,

studying the resolvent of Â in K0,γ
2 (X∧)ρ1 is equivalent to studying the resolvent of

B̂ in K0,γ
2 (X∧)ρ0 , where B̂ has the same domain in K0,γ

2 (X∧)ρ0 as Â. The resolvent

identity

(λ− Â)−1 − (λ − B̂)−1 = (λ− B̂)−1(Â− B̂)(λ− Â)−1

yields

(λ − B̂)−1 = (λ− Â)−1
[
1 + (Â− B̂)(λ − Â)−1

]−1

.

By (4.2) and (4.3) (with s = µ−1) the norm of (Â−B̂)(λ−Â)−1 in L (K0,γ
2 (X∧)ρ0 )

is O(|λ|−1/µ). A von Neumann series argument implies that the inverse [. . .]−1 exists

and is uniformly bounded in λ. We deduce that (λ−B̂)−1 decays like |λ|−1, showing

that (4.1) also holds for the choice ρ = ρ1.

Remark 4.1. In (E3) one can also substitute p = 2 by any other choice of

p ∈ (1,+∞). However, there seems to be no analog of the simple proof used

above. Instead, one needs to show that the resolvent is an element of a calculus

of parameter-dependent pseudodifferential operators on the infinite cone X∧. Then

general mapping properties of such operators give the norm-estimate of the resol-

vent simultaneously for all p. It exceeds the scope of this paper to go into the details.

Anyway, condition (E3) is most easily verified in the Hilbert space case p = 2.

4.2. Parameter-dependent Green operators. We will describe the structure

of the resolvent of A, using Schulze’s calculus for parameter-dependent operators on

conical manifolds with the slight modification that the parameter-dependent Green

operators are not assumed to be classical. We will next discuss this in more detail.

For γ, γ′ ∈ R and ε > 0 let

S
γ′,γ
ε (X∧ ×X∧) = S

γ′

ε (X∧) ⊗̂π S
γ
ε (X

∧),

C
∞,γ′,γ
ε (B × B) = C

∞,γ′

ε (B) ⊗̂π C
∞,γ
ε (B).

Recall that a function u = u(t, x) belongs to S γ
ε (X

∧), ε > 0, if and only if

t
n+1

2
−γ−δ〈t〉k(t∂t)

pDxu(t, x) ∈ L2
(
R+ ×X,

dt

t
dx

)

for every choice of integers k and p, all differential operatorsD onX , and 0 ≤ δ < ε.
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Definition 4.2. Let η 7→ [η] be a smooth positive function with [η] = |η| for |η| ≥ 1.

By Rν
G(Σ; γ, γ

′) denote the space of all operator-families a(η), η ∈ Σ, of the form

(a(η)u)(t, x) = [η]n+1

∫ ∞

0

∫

X

ka(η, t[η], x, s[η], y)u(s, y) s
ndsdy

with an integral kernel satisfying, for some ε = ε(a) > 0,

ka(η, t, x, s, y) ∈ Sν(Σ,S γ′,−γ
ε (X∧

(t,x) ×X∧
(s,y))).

Here we do not require kg to be a classical symbol.

Definition 4.3. The space CνG(Σ; γ, γ
′) consists of all operator-families g(η), η ∈ Σ,

of the form

g(η) = ω1 a(η)ω0 + r(η),

where ω0, ω1 ∈ C∞([0, 1)) are cut-off functions, a ∈ Rν
G(Σ; γ, ρ), and

r ∈ S (Σ,C∞,γ′,−γ
ε (B× B))

for some ε = ε(g) > 0.

In the representation of g above, the cut-off functions can be changed at the cost

of substituting r by another element of the same structure.

4.2.1. A characterization of Green operators. We shall show that parameter-depen-

dent Green operators can be characterized by certain mapping properties, without

reference to the structure of the integral kernels. This characterization will be im-

portant in the proof of our main theorem.

Lemma 4.4. Let RG(γ, γ
′)ε denote the Fréchet space of all bounded operators

A : K0,γ
2 (X∧) −→ K0,γ′

2 (X∧)

such that the range of A is contained in S γ′

ε (X∧) and the range of A∗ is contained

in S −γ
ε (X∧). Here the adjoint ∗ refers to the pairings induced by the inner product

of K0,0
2 (X∧). Then every such operator A is an integral operator with kernel kA ∈

S
γ′,γ
ε/2 (X∧ × X∧) (with respect to the measure tndtdx) and the following map is

continuous:

A 7→ kA : RG(γ, γ
′)ε −→ S

γ′,−γ
ε/2 (X∧ ×X∧).

Proof. Without loss of generality we may assume γ = γ′ = 0. It suffices to show the

existence of the kernel kA for any given A; the continuity of A 7→ kA then follows

from the closed graph theorem.

Let φ1, . . . , φN be a partion of unity on X . Considering these functions as constant

in the variable t we get a partition of unity of X∧. Writing A =
∑
j,k φjAφk

it suffices to prove the following local version of the lemma: Let H = L2(R+ ×

Rn, tndtdx) and let Rε denote the space of all operators A ∈ L (H) such that the

range of both A and A∗ is contained in S 0
ε (R+ ×Rn) := S 0

ε (R+)⊗̂πS (Rn). Then

A has a kernel

(4.4) kA ∈ S
0
ε/2(R+ × Rn) ⊗̂π S

0
ε/2(R+ × Rn).
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Indeed, the mapping properties and general results on tensor product representa-

tions, see [10, Proposition 4.2.9] imply that A has a kernel

(4.5) kA ∈ S
0
ε (R+ × Rn) ⊗̂πH ∩ H ⊗̂π S

0
ε (R+ × Rn).

We will show that this space embeds into that in (4.4). To this end let us intro-

duce the following notation: For arbitrarily chosen integers k, k′, ℓ, ℓ′, p, p′, q, q′ and

arbitrary 0 ≤ δ < ε/2 set

m1(t) = t−δ〈t〉k, m2(s) = s−δ〈s〉k
′

, m3(x) = 〈x〉ℓ, m4(y) = 〈y〉ℓ
′

and

D1 = (t∂t)
p, D2 = (s∂s)

p′ , D3 = 〈Dx〉
q, D4 = 〈Dy〉

q′ .

We then have to show that kA = kA(t, x, s, y) satisfies

(4.6) m1m2m3m4D1D2D3D4kA ∈ L2
(
R+ × Rn × R+ × Rn, snds tndt dx dy

)
.

Let ‖·‖ denote the norm of this L2-space and let λ1+λ2+λ3+λ4 = 1 with positive

numbers λi. Then, by the inequality of arithmetic and geometric means and the

triangle inequality,

‖m1m2m3m4D1D2D3D4kA‖ ≤

4∑

i=1

‖m
1/λi

i D1D2D3D4kA‖.

We check that each of the summands is finite. Let us consider the summand for

i = 1; the others are treated analogously. Recall that the Fourier transform induces

an isometric isomorphism in L2(Rn), while the Mellin transform gives an isometric

isomorphism from L2(R+, t
ndt) to L2(Γ(n+1)/2), where Γγ = γ + iR ∼= R is a

vertical line in the complex plane. Moreover, recall that 〈Dx〉 under the Fourier

transform becomes multiplication by 〈ξ〉, while t∂t under the Mellin transform

becomes multiplication by −z. Therefore, with r1+r2+r3+r4 = 1, we can estimate

‖m
1/λ1

1 D1D2D3D4kA‖ ≤ ‖m
1/r1λ1

1 D1kA‖+

4∑

i=2

‖D1D
1/ri
i kA‖

≤ ‖m
1/r1λ1

1 D1kA‖+

4∑

i=2

(
‖D2

1kA‖L2 + ‖D
2/ri
i kA‖

)
.

Since δ < ε/2, we can choose λ1 ∈ (0, 1/2) and r1 ∈ (0, 1) δ/r1λ1 < ε. Then all

terms on the right-hand side of the latter inequality are finite due to (4.5). �

In the following proposition we shall employ operator-valued symbols as introduced

in Section 2.3.

Proposition 4.5. We have a ∈ Rν
G(Σ; γ, γ

′) if, and only if, there exists an ε > 0

such that

a ∈ Sν(Σ;K0,γ
2 (X∧),S γ′

ε (X∧)), a∗ ∈ Sν(Σ;K0,−γ′

2 (X∧),S −γ
ε (X∧)),

where the pointwise adjoint refers to the pairings induced by the inner product of

K0,0
2 (X∧).
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Proof. It is easy to show that every a ∈ Rν
G(Σ; γ, γ

′) has the stated properties.

Thus let us assume that a and a∗ are as described with some ε > 0. Due to Lemma

4.4, a(η) has an integral kernel k(η) = k(η; t, x, s, y) belonging to C ∞
(
Rq,S γ,γ′

ε/2 (X∧×

X∧)
)
. The same is then true for the kernel

k̃(η; t, x, s, y) = [η]−(n+1)k(η; t[η]−1, x, s[η]−1, y),

of κ−1(η)a(η)κ(η). We will verify that k̃ belongs to Sν
(
Rq;S γ,γ′

ε/2 (X∧ ×X∧)
)
.

Consider ãβ(η) := κ−1(η)Dβa(η)κ(η) for arbitrary β. Since 〈η〉|β|−ν ãβ(η) is uni-

formly bounded in RG(γ, γ
′)ε, it follows from Lemma 4.4 that the associated kernel

〈η〉|β|−ν k̃β(η) is uniformly bounded in S
γ,γ′

ε/2 (X∧ ×X∧). Since the kernel kβ(η) of

Dβa(η) is

kβ(η; t, x, s, y) = [η]n+1k̃β(η; t[η], x, s[η], y),

a straightforward calculation shows that

k̃β+ej (η) = Dηj k̃β(η) +
Dηj [η]

[η]

(
(n+ 1) + (t∂t) + (s∂s)

)
k̃β(η).

Thus, by induction, Dαk̃(η) is a finite linear combination of terms of the form

pm(η)
(
(n+ 1) + (t∂t) + (s∂s)

)ℓ
k̃β(η), β ≤ α, m+ |β| = |α|, ℓ ∈ N,

with symbols pm(η) ∈ S−m(Rq). Since (n + 1) + (t∂t) + (s∂s) is a continuous

operator in S
γ,γ′

ε/2 (X∧ ×X∧), it follows that 〈η〉|α|−νDαk̃(η) is unifomly bounded

in S
γ,γ′

ε/2 (X∧ ×X∧). �

4.3. The resolvent construction. We shall prove the following theorem:

Theorem 4.6. Let A be parameter-elliptic with respect to Λ, i.e., satisfy conditions

(E1), (E2) and (E3). Then there exists a constant c ≥ 0 such that

(4.7) A+ c : Hs+µ,γ+µ
p (B) ⊕ ωE −→ Hs,γ

p (B)

has no spectrum in Λ. Moreover, we then have

(4.8) (ηµ − (A+ c))−1 ∈ C−µ
O (Σ) + C−µ

G (Σ; γ, γ), η ∈ Σ.

It is sufficient to consider the case s = 0 and p = 2: According to Proposition 3.3

the invertibility of (4.7) does not depend on s and p. Assume that (ηµ−(A+c))−1 =

B(η) +G(η) as in (4.8) for s = 0 and p = 2. For fixed η it is shown in Theorem 3.4

of [17] that the inverse can be written as B′ +G′, where B′ extends continuosly to

mappings Hs,γ
p (B) → Hs+µ,γ+µ

p (B) for every p, and G′ extends to maps Hs,γ
p (B) →

ωE . It follows that B(η)+G(η) = B′+G′ induces maps Hs,γ
p (B) → Hs+µ,γ+µ

p (B)⊕

ωE for every s and p. Since C∞
0 (B) is dense in Hs,γ

p (B) and Hs+µ,γ+µ
p (B) we see

that B(η) +G(η) induces the inverse for arbitrary s and p.

Next let us justify that it is also enough to verify the above theorem in case γ = 0.

In fact, assume that A satisfies the ellipticity conditions for some γ. Let t denote

simultaneously a boundary defining function for B and the variable t ∈ R. Define

Aγ = t−γAtγ with domain D(Aγ) = t−γD(A). We argue that Aγ satisfies the
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ellipticity conditions for the weight γ = 0. Conditions (E1) and (E2) are easily

verified. For (E3) observe that

(λ− Âγ)
−1 = t−γ(λ− Â)−1tγ .

So the estimate of (λ − Âγ)
−1 in K0,0

2 (X∧)ρ is equivalent to that of (λ − Â)−1 in

K0,0
2 (X∧)ρ+γ . Since we have shown that condition (E3) for A is satisfied not only

for ρ = 0 but for every choice of ρ ∈ R, this is also true for Aγ . Hence Aγ satisfies

the assumptions of Theorem 4.6 for the weight 0. Provided the theorem is true in

this case, we find that

(λ −A)−1 = tγ(λ−Aγ)
−1t−γ

has the structure stated in the theorem for the weight γ.

Proof of Theorem 4.6 in case p = 2 and s = γ = 0. For convenience of notation we

set A(η) = ηµ −A, A(η) = ηµ −A and similarly for the model cone operator.

By Theorem 6.9 of [8] we know that A(η)−1 exists for η ∈ Σ of sufficiently large

modulus |η| ≥ c and that

‖A(η)−1‖
L (H0,0

2
(B)) ≤ C〈η〉−µ, |η| ≥ c.

Hence the resolvent of Ac = A+c exists for all η ∈ Σ and satisfies the norm estimate

in the whole sector Σ. Now we may assume without loss of generality that c = 0,

otherwise we rename Ac by A again.

Consider A(η) as an element of Cµ(Σ;µ, 0, k), the space of parameter-dependent

cone pseudodifferential operators of order µ, with an arbitrary fixed integer 0 < k ≤

µ. The ellipticity assumptions (E1) and (E2) allow us to construct a parametrix

B1(η) modulo Green operators of order 0, i.e.,

Π1(η) := 1−A(η)B1(η) ∈ C0
G(Σ; 0, 0, k).

B1(η) belongs to C−µ(Σ; 0, µ, k). In particular, B1(η) also belongs to C−µ
O (Σ) +

C−µ
G (Σ; 0, 0). Moreover, B1(η) maps H0,0

2 (B) into Hµ,µ
2 (B) = D(Amin) ⊂ D(A).

Hence A(η)B1(η) = A(η)B1(η) on H0,0
2 (B) and we can write

(4.9) A(η)−1 = B1(η) +A(η)−1Π1(η), η ∈ Σ.

Denote by At the formal adjoint of A. The adjoint A∗ of A coincides with some

closed extension of At which we denote by At. Obviously

(ηµ −At)−1 = [(ηµ −A)−1]∗ = [A(η)−1]∗, η ∈ Σ.

The ellipticity condition (E1) remains true for At. The conormal symbol of At is

given by f0(n + 1 − µ − z)t, where the formal adjoint refers to the inner-product

of L2(X). Hence At satisfies (E2) with γ = 0. As above, we thus find a parametrix

B2(η) ∈ C−µ(Σ; 0, µ, k) such that

Π2(η) := 1− (ηµ − At)B2(η) ∈ C0
G(Σ; 0, 0, k)

and write

(ηµ −At)−1 = B2(η) + (ηµ −At)−1Π2(η).
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By passing to the adjoint we thus obtain

A(η)−1 = B2(η)
∗ +Π2(η)

∗A(η)−1, η ∈ Σ.

Inserting this expression on the right-hand side of (4.9) results in the formula

(4.10) A(η)−1 = B1(η) +B2(η)
∗Π1(η) + Π2(η)

∗A(η)−1Π1(η), η ∈ Σ.

Since B2(η)
∗ ∈ C−µ(Σ;−µ, 0, k) ⊂ C−µ(Σ; 0, 0, k) and Green operators form an

ideal in the parameter-dependent cone algebra, B2(η)
∗Π1(η) ∈ C−µ

G (Σ; 0, 0, k) ⊂

C−µ
G (Σ; 0, 0). It remains to verify that

(4.11) g(η) := Π2(η)
∗A(η)−1Π1(η) ∈ C−µ

G (Σ; 0, 0).

To this end, first observe that
∥∥Dα

ηA(η)−1
∥∥

L (H0,0
2

(B))
≤ Cα〈η〉

−µ−|α|, α ∈ N2
0;

in fact, this follows from the above resolvent estimate and the fact that Dα
ηA(η)

−1,

|α| ≥ 1, is a finite-linear combination of terms of the form pk,ℓ(η)A(η)−1−ℓ with

polynomials pk,ℓ of degree at most (µ − 1)ℓ − k and k + ℓ = |α|. It follows easily

that ωA(η)−1 ω belongs to S−µ(Σ;K0,0
2 (X∧),K0,0

2 (X∧)) for every cut-off function

ω ∈ C ∞([0, 1)) (note that the group action κλ is unitary on K0,0
2 (X∧)).

Both Π1(η) and Π2(η)
∗ belong to C0

G(Σ; 0, 0). Hence, composing these operator-

families with the operator of multiplication by 1 − ω2 (understood as a function

on B, supported away from the boundary), both from the left or the right, yields

functions belonging to S (Σ,C∞,0,0
ε (B × B)) for some ε > 0. It follows that g(η)

differs by such an error term from ω a(η)ω, where

a(η) := ωΠ2(η)
∗ ω2 A(η)−1 ω2 Π1(η)ω.

Both ωΠ1(η)ω and ωΠ2(η)
∗ ω, considered as a family of operators on X∧, belong

to R0
G(Σ; 0, 0). It follows that a(η) ∈ S−µ(Σ;K0,0

2 (X∧),S 0
ε (X

∧)) for some ε > 0.

Arguing in the same way for a(η)∗, we conclude from Proposition 4.5 that a(η) ∈

R−µ
G (Σ; 0, 0) and thus obtain (4.11). �

5. Resolvent estimates and bounded H∞-calculus

We continue considering the extension A in Hs,γ
p (B) with domain

D(A) = Hs+µ,γ+µ
p (B)⊕ ωE

for a fixed space E .

Theorem 5.1. Let A be parameter-elliptic. Then, for every s ≥ 0 and 1 < p < +∞,

‖(ηµ −A)−1‖L (Hs,γ
p (B)) ≤ Cs,p〈η〉

−µ, η ∈ Σ, |η| ≥ c,

with suitable constants c and Cs,p; c is independent of s and p.

Proof. For s = 0 this is an immediate consequence of the fact that the inverse has

the structure (4.8). The general case is obtained by arguing as in Step 2 of the

proof of Theorem 3.3 of [14]. The fact that the spectrum does not depend on s and

p implies that neither does c. �
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Theorem 5.2. Let A and c be as in Theorem 5.1. Then A + c has a bounded

H∞-calculus on Hs,γ
p (B) for every s ≥ 0 and 1 < p < +∞.

Proof. According to (4.8), we have (ηµ− (A+ c))−1 ∈ C−µ
O (Σ)+ C−µ

G (Σ, γ, γ). This

form of the resolvent differs from the structure used in Theorem 1 of [5] only by the

fact that, writing λ = ηµ, the operator family G(λ) used there is no longer required

to be classical in λ. It was already pointed out in the proof of [5, Proposition 2]

that this property is not necessary for the subsequent argument. So it follows from

Theorem 2 of [5] that A has bounded imaginary powers on H0,γ
p (B). As shown in

Step 3 of the proof the Theorem 3.3 in [14], the proof can be modified to give

also the boundedness of the imaginary powers on Hs,γ
p (B), s > 0. Moreover, it

was shown in [3] that a structure of the resolvent as in [5, Theorem 1] implies the

existence of a bounded H∞-calculus on H0,γ
p (B), see [3, Theorem 4.1] based on the

representation [3, (3.11)]. Arguments analogous to those used in Step 3 of the proof

of [14, Theorem 3.3] then imply the existence of a bounded H∞-calculus on Hs,γ
p (B)

for s > 0. �

6. Laplacian and porous medium equation

6.1. Abstract quasilinear parabolic equations. Consider an abstract quasilin-

ear parabolic problem of the form

u′(t) +A(u(t))u(t) = f(t, u(t)) + g(t), t ∈ (0, T0); u(0) = u0(6.1)

in Lq(0, T0;X0), 1 < q < ∞, where A(u(t) is, for each t, a closed, densely defined

operator in the Banach space X0 with domain D(A(u(t))) = X1, independent of t.

The following theorem by Clément and Li, [1, Theorem 2.1] provides a simple

criterion for the existence of short time solutions:

Theorem 6.1. Assume that there exists an open neighborhood U of u0 in the real

interpolation space X1−1/q,q = (X0, X1)1−1/q,q such that A(u0) : X1 → X0 has

maximal Lq-regularity and that

(H1) A ∈ C1−(U,L (X1, X0)),

(H2) f ∈ C1−,1−([0, T0]× U,X0),

(H3) g ∈ Lq(0, T0;X0).

Then there exists a T > 0 and a unique u ∈ Lq(0, T ;X1)∩W 1
q (0, T ;X0) solving the

equation (6.1) on (0, T ). In particular, u ∈ C([0, T ];X1−1/q,q) by interpolation.

A central property is the maximal regularity of the operator A(u0). Without going

into details, we recall the following facts, which hold in UMD Banach spaces:

Proposition 6.2. (a) The existence of a bounded H∞-calculus implies the R-

sectoriality for the same sector according to Clément and Prüss, [2, Theorem 4].

(b) Every operator, which is R-sectorial on Λ(θ) for θ < π/2, has maximal Lq-

regularity, 1 < q < ∞, see Weis [22, Theorem 4.2].

All the Mellin-Sobolev spaces used here are UMD Banach spaces, hence the exis-

tence of a bounded H∞-calculus on Λ(θ) for θ < π/2 implies maximal Lq-regularity.
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6.2. The Laplacian on warped cones. Let g be a Riemannian metric on the

interior of B that is degenerate of the form

g = dt2 + t2h(t)

on the collar neighborhood [0, 1)×X . Here [0, 1) ∋ t 7→ h(t) is a smooth family of

(non-degenerate) Riemannian metrics on X . We denote by ∆ the Laplace-Beltrami

operator associated with g. This operator has been analyzed in detail in [17] for

the case of a straight conical singularity, i.e., when h is constant in t. We will now

extend the analysis to the more general situation.

Let us recall a few basic facts, referring to [17, Section 5] for more details: The

Laplacian is a second order conically degenerate differential operator on B. In the

collar neighborhood it is of the form

∆ = t−2
(
(t∂t)

2 − (n− 1 +H(t))(−t∂t) + ∆t

)
,(6.2)

where ∆t is the Laplace-Beltrami operator on the cross-section X associated with

the Riemannian metric h(t), n = dimX , and 2H(t) = t∂t(log deth(t)). The conor-

mal symbol of ∆ is

(6.3) f0(z) = σM (∆)(z) = z2 − (n− 1)z +∆0

and, in the notation of (3.4),

(6.4) f1(z) = ∆̇0 − Ḣ(0)z.

The model cone operator ∆̂ is

∆̂ = t−2
(
(t∂t)

2 − (n− 1 +H(0))(−t∂t) + ∆0

)
.(6.5)

Denote by 0 = λ0 > λ1 > . . . the different eigenvalues of ∆0 and by E0, E1, . . .

the associated eigenspaces. The non-bijectivity points of σM (∆)(z) are the points

z = q+j and q−j , where

q±j =
n− 1

2
±

√(n− 1)

2

)2

− λj , j = 0, 1, 2, . . . .

In fact, we have

(6.6) f0(z)
−1 = (z2 − (n− 1)z +∆0)

−1 =

∞∑

j=0

πj

(z − q+j )(z − q−j )

where πj is the orthogonal projection, in L2(X), onto the eigenspace Ej . The poles

are always simple, except for the double pole in z = q±0 = 0 in case n = 1.

6.3. Extensions with (E1), (E2), and (E3). Considering ∆ as an unbounded

operator in Hs,γ
p (B) for s, γ ∈ R, 1 < p < ∞, we are interested in the question which

of its closed extensions satisfy the assumptions (E1), (E2) and (E3) and therefore

have a bounded H∞-calculus. As the sector Λ we choose Λ(θ) for arbitrary θ > 0.

Clearly, (E1) is always fulfilled. (E2) will hold for every γ satisfying

n+ 1

2
− γ,

n+ 1

2
− γ − 2 /∈ {q±j | j = 0, 1, . . .}.(6.7)

We will assume this in the sequel. It remains to check (E3).
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With q±j , j = 1, 2, . . ., we associate the function space

Êq±
j
= t−q

±
j ⊗ Ej := {(t, x) 7→ t−q

±
j e(x) | e ∈ Ej}.

Moreover we set

Êq±
0

=

{
tq

±
0 ⊗ E0 : n > 1

1⊗ E0 + log t⊗ E0 : n = 1
.

For q different from every q±j we set Êq = {0}. Let us also introduce the interval

I0 =
(n+ 1

2
− 2,

n+ 1

2

)
=

(n− 1

2
− 1,

n− 1

2
+ 1

)

and the translated intervals

Iγ = I0 − γ, γ ∈ R.(6.8)

By Theorem 3.4, the maximal domain of ∆̂ is as follows.

Proposition 6.3. The maximal extension of ∆̂ as an unbounded operator on

Ks,γp (X∧) has the domain

Dmax(∆̂) = Ks+2,γ+2
p (X∧)⊕ ⊕

q∈Iγ
ωÊq.

In view of (6.7), the minimal domain is Ks+2,γ+2
p (X∧).

We next consider an extension ∆̂ of ∆̂ with domain

D(∆̂) = K2,γ+2
p (X∧)⊕ ⊕

q∈Iγ
ωÊ q,(6.9)

where Ê q is a subspace of Êq. For n = 1 and q = 0 we confine ourselves to the

choices Ê 0 = {0}, Ê 0 = 1⊗E0 or Ê 0 = Ê0. We define the spaces Ê
⊥

q as follows: For

j 6= 0 or n > 1 we write Ê q±
j
= t−q

±
j ⊗ Ej with a subspace Ej of Ej and let

Ê
⊥

q±
j
= t−q

∓
j ⊗ E⊥

j

with the orthogonal complement E⊥
j of Ej in Ej with respect to the scalar product

on L2(X). For j = 0 and n = 1 (i.e. q±0 = 0), we let Ê
⊥

0 = Ê0, if Ê 0 = {0}, Ê
⊥

0 = {0},

if Ê 0 = Ê0 and Ê
⊥

0 = Ê 0, if Ê 0 = 1⊗ E0. For every other q set Ê
⊥

q = {0}.

Just as in [17, Theorem 5.3] we find that

Proposition 6.4. In case p = 2, the domain of the adjoint ∆̂
∗
of the extension ∆̂

with domain (6.9) is

D(∆̂
∗
) = K−s+2,−γ+2

2 (X∧)⊕ ⊕
q∈Iγ

ωÊ
⊥

q .

Theorems 5.6 and 5.7 in [17] then imply the following result:

Theorem 6.5. Let |γ| < (n + 1)/2 satisfy (6.7) and let ∆̂ be an extension with

domain as in (6.9), where the spaces Ê q are chosen such that:

(1) Ê
⊥

q = Ê n−1−q for q ∈ Iγ ∩ I−γ ,
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(2) Ê q = Êq for γ ≥ 0 and q ∈ Iγ \ I−γ ,

(3) Ê q = {0} for γ ≤ 0 and q ∈ Iγ \ I−γ .

Then ∆̂ satisfies (E3) for every sector Λ ⊂ C \R+: There exists a C ≥ 0 such that

‖λ(λ− ∆̂)−1‖
L (K0,γ

2
(X∧)) ≤ C, 0 6= λ ∈ Λ.

In principle, the associated domains of ∆ can be determined as described in Section

3.2.1. But since the eigenvalues λj are not known explicitly, it seems not feasible to

write down a formula for the domains. See, however, the following Section 6.4 for

a more specific situation.

6.4. The porous medium equation on manifolds with warped cones. The

porous medium equation is the quasilinear diffusion equation

u′(t)−∆(um(t)) = f(u, t), t ∈ (0, T0],(6.10)

with initial condition u(0) = u0. It describes the flow of a gas in a porous medium;

here u is the density of the gas, m > 0 and f is a forcing term which we assume for

simplicity holomorphic in u and Lipschitz in t.

In [15] the porous medium equation has been studied on a manifold with straight

conical singularities. We will next show how this analysis can be extended to the

case of warped cones.

The setting is the same as in [15]: We let ε = −q−1 > 0 and fix γ with

n− 3

2
< γ <

n− 3

2
+ min{ε, 2

}
.(6.11)

Then none of the poles q±j lies on the line Re z = (n + 1)/2 − γ − 2. Condition

(E2) requires that also no pole lies on Re z = (n + 1)/2 − γ. In case n ≥ 3 this

is automatically true, since then q+1 > 2. In case n = 1 or n = 2 we additionally

require it.

In view of (6.11) we write γ = (n− 3)/2 + δ for some 0 < δ < min{ε, 2}. Then

Iγ = (−δ, 2− δ), I−γ = (n− 3 + δ, n− 1 + δ).

So Iγ always contains q−0 = 0, but none of the q−j for j > 0, whereas I−γ contains

q+0 , but none of the q+j for j > 0. Moreover, Iγ ∩ I−γ contains at most the elements

q−0 = 0 and q+0 = n− 1. In fact, for n = 1 we have Iγ ∩ I−γ = {0}. For n = 2, the

intersection contains both q−0 = 0 and q+0 = 1, provided δ < 1, else it is empty. For

n ≥ 3, the intersection is always empty.

6.4.1. The space E0. We shall use the notation from Section 3.2 and from the begin-

ning of Section 6.2, in particular (6.3) and (6.4). Let us analyze the space E0 = θ−1
0 Ê0

associated with ∆.

The principal part of f0(z)
−1 in z = q±j is

(Πq±
j
f−1
0 )(z) = ±

πj

q+j − q−j
(z − q±j )

−1, j ≥ 1;



BOUNDED H∞-CALCULUS FOR CONE DIFFERENTIAL OPERATORS 21

for j = 0 the same formula holds in case n ≥ 2, while for n = 1 the principal part

in z = 0 is π0z
−2.

The case n ≥ 2: If δ < 1 then G0 = G
(0)
0 by definition. For δ ≥ 1, the fact that ∆̇0

is a differential operator without constant term implies that ∆̇0π0 = 0 (recall that

π0 is the projection onto the space E0 of locally constant functions on ∂B), and so

g1(z)Π0((f
−1
0 )(z)û(z)) = −f0(z − 1)−1(∆̇0 − Ḣ(0)z)

π0û(0)

n− 1

1

z

= −f0(z − 1)−1Ḣ(0)
π0û(0)

n− 1
.

As f0(z − 1)−1 is holomorphic in z = 0, G
(1)
0 = 0 and G0 = G

(0)
0 , again. Thus

Ê0 = E0 = 1⊗ E0.

The case n = 1: We calculate

G
(0)
0 u =

∫

|z|<ε

t−zΠ0(f0(z)
−1û(z)) dz

=

∫

|z|<ε

t−zπ0

(
û(0)

z2
+

û′(0)

z

)
dz = log t π0û(0) + π0û

′(0),

showing that

Ê0 =
{
e0 + e1 log t | e0, e1 ∈ E0

}
= 1⊗ E0 + log t⊗ E0.

By definition, G0 = G
(0)
0 for δ < 1, while for δ ≥ 1, similarly as before,

g1(z)(Π0f
−1
0 û)(z) = − f0(z − 1)−1(∆̇0 − Ḣ(0)z)π0

(
û(0)

z2
+

û′(0)

z

)

=f0(z − 1)−1Ḣ(0)π0

(
û(0)

z
+ û′(0)

)
,

By definition of ε, f−1
0 is holomorphic in z = −1. Hence

G
(1)
0 u = ta(x)π0û(0), a(x) := f−1

0 (−1)Ḣ(0) ∈ C
∞(∂B).

We conclude that

E0 =





{
e0 + e1(log t+ ta(x)) | e0, e1 ∈ E0

}
, δ ≥ 1

Ê0, δ < 1.

The isomorphism θ0 : E0 → Ê0 is the identity map in case δ < 1, otherwise

θ0(e0 + e1(log t+ ta(x))) = e0 + e1 log t, e0, e1 ∈ E0.

6.4.2. A closed extension of ∆. In the following, we consider the closed extension

∆ of the Laplacian in Hs,γ
p (B) defined by

(6.12) D(∆) = Hs+2,γ+2
p (B) ⊕ ωE 0, E 0 := 1⊗ E0.

By the relations obtained in the previous subsection we find that the associated

extension ∆̂ of the model cone operator ∆̂ is given by

(6.13) D(∆̂) = Ks+2,γ+2
p (X∧)⊕ ωÊ 0, Ê 0 = E 0 = 1⊗ E0.
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Proposition 6.6. −∆ satisfies the ellipticity conditions (E1)− (E3) of Section 4.

Moreover, its spectrum is a subset of R+.

Proof. By the choice of γ, −∆ satisfies (E1) and (E2). (E3) holds, since ∆̂ with the

domain (6.13) satisfies the assumptions of Theorem 6.5. The same argument as for

the proof of [14, Theorem 4.1] shows that the spectrum is a subset of R+. �

Theorem 6.7. Let c > 0, 1 < p < +∞ and s ∈ R. Then c − ∆ has a bounded

H∞-calculus on Hs,γ
p (B).

Note that here, in contrast to Theorem 5.2, also negative s are allowed.

Proof of Theorem 6.7. Proposition 6.6 and Theorem 5.2 show the existence of a

bounded H∞-calculus for s ≥ 0.

To cover negative values of s, we shall show that the adjoint operator (−∆)∗ also

satisfies the assumptions of Theorem 5.2, hence admits a bounded H∞-calculus

on H−s,−γ
p′ (B). Thus its adjoint (−∆)∗∗ = −∆ admits a bounded H∞-calculus on

Hs,γ
p (B). Clearly, (−∆)∗ satisfies (E1) and (E2), so it suffices to check (E3). We

consider separately the cases n ≥ 3, n = 2, and n = 1.

The case n ≥ 3: The operator ∆ coincides with the maximal extension of ∆.

Hence its adjoint is the minimal extension with domain H2,−γ+2
2 (B). Accordingly,

the model cone operator associated with (∆)∗ is the minimal extension of ∆̂ and

coincides with the adjoint of the maximal extension of ∆̂, i.e., with the adjoint of

∆̂. Hence it is clear that (−∆)∗ satisfies (E3).

The case n = 2: Recall that then E 0 = E0. In case δ > 1, the only pole of the

inverted conormal symbol in Iγ = (−δ, 2 − δ) is q−0 = 0. In this case, ∆ coincides

with the maximal extension of ∆ and we can argue as before. So let us assume

δ < 1 (the case δ = 1 is excluded by the assumptions). Then the poles in Iγ are

q−0 = 0, q+0 = 1 and possibly a finite number of q+j , j = 1, . . . , N , which are larger

than 1 and smaller than 2−δ. Then I−γ = (−1+δ, 1+δ) contains the poles q−0 = 0,

q+0 = 1, and q−j , j = 1, . . . , N . Now write

Dγ,max(∆) := H2,γ+2
2 (B)⊕ ωEγ,max, Eγ,max := ⊕

σ∈Iγ
Eσ,

where Eσ = θ−1
σ Êσ. Analogously define D−γ,max(∆). Then it is known that

[u, v]∆ := (∆u, v)0,0 − (u,∆v)0,0

yields a non-degenerate pairing on Dγ,max(∆)×D−γ,max(∆) which vanishes when-

ever one of the entries belongs to the corresponding minimal domain, see e.g. [7,

Section 3]. Hence we obtain a non-degenerate pairing

[u, v]′∆ := [ω0u, ω1v], (u, v) ∈ Eγ,max × E−γ,max,

which does not depend on the choice of the cut-off functions ω0 and ω1. Moreover,

denoting by E ⊥
0 the space orthogonal to E0 with respect to [·, ·]′, the domain of

(∆)∗ is given by H2,−γ+2
2 (B)⊕ ωE ⊥

0 .
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We shall now verify that E ⊥
0 = Eq−

0

⊕ Eq−
1

⊕ . . . ⊕ Eq−
N
. Since E0 has dimension

d := dimE0, E ⊥
0 has co-dimension d in E−γ,max. Hence it suffices to show that

Eq−
j

⊂ E ⊥
0 for every j = 0, . . . , N (recall that dimEq+

0

= dimE1 = dim Ê1 = d).

According to Theorem 3.5, the elements of Eq−
j
are of the form t−q

−
j ej , ej ∈ Ej .

Let u = c ∈ E0 and v = ejt
−q−

j ∈ Eq−
j
. Fixing ω1 and choosing ω0 so that ω1 ≡ 1

on the support of ω0, we find that

(6.14) [u, v]′∆ = (c∆ω0, ejt
−q−

j )0,0 − (cω0,∆(ejt
−q−

j ))0,0.

The inner product is that of L2((0, 1) × X, tndµt dt), n = 2, where the measure

µt refers to the Riemannian metric h(t) on X (note that both ω0 and ∆ω0 are

supported in [0, 1)). We can take ω0(t) = ω(t/ε) for a fixed cut-off function ω and

arbitrary ε > 0 sufficiently small. Since then

|ω(t/ε) ·∆(ejt
−q−

j )| ≤ ω1(t)|∆(ejt
−q−

j )| ∈ L1,

the second term on the right-hand side of (6.14) converges to 0 as ε → 0 by

Lebesgue’s theorem on dominated convergence. Moreover,

∆(ω(t/ε)) = t−2[((t∂t)
2ω)(t/ε) + (1 +H(t))(t∂tω)(t/ε)]

= ε−2[ϕ1(t/ε) +H(t)ϕ2(t/ε)]

for suitable ϕ1, ϕ2 ∈ C∞
comp((0, 1)). Thus, after the change of variables s = t/ε, the

first term on the right-hand side of (6.14) is

(c∆(ω(t/ε)), ejt
−q−

j )0,0 = ε1−q
−
j

∫ 1

0

∫

X

c(x)[ϕ1(s)+H(εs)ϕ2(s)]ej(x)s
−q−

j s2dµεs ds.

Since all q−j are non-positive, this expression vanishes as ε tends to 0.

Hence E ⊥
0 is as claimed and (−∆)∗ satisfies (E3) by Theorem 6.5.

The case n = 1: The argument is very similar to that for n = 2. The interval Iγ
contains the (double) pole q+0 = q−0 = 0 and possibly a finite number of poles q+j ,

j = 1, . . . , N . Then I−γ contains the poles 0 and q−j , j = 1, . . . , N . One shows now

that E
⊥
0 = E 0 ⊕ Eq−

1

⊕ . . .⊕ Eq−
N
. To this end, let first v ∈ Eq−

j
for j ≥ 1. Since the

poles in all the q−j , j ≥ 1, are simple, Theorem 3.5 implies that v has the form

v(t, x) = a(x)t−q
−
j + t1−q

−
j

1∑

k=0

ak(x) log
k t

for certain functions a, a0, a1. Following the above calculations, using the measure

t dµt dt, it is easy to see that v is perpendicular to E 0. If u = c0, v = c1 ∈ E 0 are

two locally constant functions, the above argument shows that

[u, v]′∆ = lim
ε→0

∫ 1

0

∫

X

c0(x)c1(x)s
−2[(s∂s)

2ω(s) +H(εs)(s∂s)ω(s)]s dµεs ds

=

∫

X

c0(x)c1(x) dµ0

∫ 1

0

(s∂s)
2ω(s)

ds

s
= 0.
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Hence E 0 ⊂ E
⊥
0 . Since both E

⊥
0 and E 0 ⊕ Eq−

1

⊕ . . . ⊕ Eq−
N

have co-dimension

d = dimE0 in E−γ,max, the desired equality of both spaces follows. An application

of Theorem 6.5 shows (E3). �

In the previous proof we have verified that the model cone operator associated with

∆∗ coincides with the adjoint of the model cone operator associated with ∆, i.e.,

(̂∆∗) = (∆̂)∗. Though this identity appears to be quite natural it does not hold

true, in general, for closed extensions of arbitrary cone differential operators. In

fact, here is a counter-example:

Example 6.8. Let 0 6= α ∈ R. On the half-axis R+ = (0,+∞) let us consider

Aα = ∂2
t − α∂t.

We will analyze the closed extensions in L2(R+) = K0,0(R+). We can represent this

operator in the form

Aα = t−2
(
f0(−t∂t) + tf1(−t∂t)

)
, f0(z) = z(z + 1), f1(z) = αz.

In particular, the associated model cone operator is

Âα = Â = (−t∂t)(1− t∂t) = ∂2
t ;

obviously it does not depend on α. Its maximal domain is Dmax(Â) = K2,2(R+)⊕

ωÊ , where

Ê = Ê0 ⊕ Ê−1, Ê0 = 〈1〉, Ê−1 = 〈t〉;

throughout this example we shall write 〈u〉 = span{u} and 〈u, v〉 = span{u, v}. Let

us now determine the maximal domain of Aα. To this end we apply Theorem 3.5.

Clearly G
(1)
−1 = 0; hence E−1 = Ê−1 and θ−1 is the identity operator. A straightfor-

ward calculation shows that

(G
(1)
0 u)(t) = αtû(0), u ∈ C

∞
comp(R+).

It follows that E0 = 〈1 + αt〉 and that θ0 : E0 → Ê0 is given by θ(1 + αt) = 1. This

shows that

Dmax(Aα) = K2,2(R+)⊕ ωE , E = 〈1, 1 + αt〉 = 〈1, t〉.

Though E does not depend on α, the isomorphism Θ = Θα of (3.11) does; in fact,

Θ(〈a+ bt〉) = 〈a+ (b − aα)t〉, a, b ∈ C.

Since the formal adjoint of Aα is A−α, the pairing E × E → C that determines the

domain of the adjoint of a closed extension of Aα is given by

[u, v]′α = (Aα(ωu), ωv)− (ωu,A−α(ωv))

= ((ωu)′′, ωv)− (ωu, (ωv)′′)− α
(
((ωu)′, ωv) + (ωu, (ωv)′)

)

with the inner product (·, ·). in L2(R+). We thus find the formula

[a+ bt, c+ dt]′α = ad− bc+ αac, a, b, c, d ∈ C.

Analogously, the pairing for the model cone operator is given by this formula with

α = 0.
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Now let A be the closed extension of Aα with domain determined by E = 〈1+αt〉.

Then for the orthogonal space we find E
⊥ = 〈1〉. The extension of A−α with domain

determined by E
⊥ is the adjoint of A. The model cone operator Â is determined

by Θα(E ) = Θα(〈1 + αt〉) = 〈1〉 = Ê . Note that Ê is perpendicular to itself, i.e.,

Â is self-adjoint. However, the model cone operator of A∗ is the extension of Â

determined by Θ−α(E
⊥) = Θ−α(〈1〉) = 〈1 − αt〉 6= 〈1〉. Thus (̂A∗) 6= (Â)∗.

6.4.3. Short time existence for the porous medium equation. We shall apply the

Theorem of Clément and Li with X0 = Hs,γ
p (B) and X1 = Hs+2,γ+2

p (B)⊕ ωE 0.

Choose 1 < p, q < ∞ so large that

n+ 1

p
+

2

q
< 1, and

n− 3

2
+

2

q
< γ.(6.15)

Moreover, fix

s > −1 +
n+ 1

p
+

2

q
.(6.16)

With the same proof as for [15, Theorem 6.1] we obtain the proposition, below. In

[15], ∆ was supposed to be the Laplacian with respect to the straight cone metric.

The proof, however, does not use this geometric assumption but only the fact that,

for c > 0, c −∆ is R-sectorial of angle θ for every θ ∈ (0, π). In the present case,

R-sectoriality is implied by the existence of the bounded H∞-calculus.

Proposition 6.9. Let s, γ, p and q be as above and let v ∈ (X0, X1)1− 1
q
,q satisfy

v ≥ α > 0 for some constant α. Then, for every θ ∈ (0, π), there exists a constant

c > 0 such that c− u∆ : X1 → X0 is R-sectorial of angle θ.

Remark 6.10. There are alternative ways to obtain this result. The key point

is the R-sectoriality of ∆, which we infer here from the bounded H∞-calculus.

Alternatively, one might proceed as in [13, Theorem 4.1] or use the technically very

difficult argument in [14, Section 5].

Theorem 6.11. Choose s, γ, p and q as in (6.11), (6.15) and (6.16). Then for any

strictly positive initial value u0 ∈ (X0, X1)1−1/q,q there exists a T > 0 such that the

porous medium equation (6.10) has a unique solution

u ∈ Lq
(
0, T ;Hs+2,γ+2

p (B) ⊕ ωE 0

)
∩W 1,q

(
0, T ;Hs,γ

p (B)
)
.

Proof. We apply Clément and Li’s theorem. The maximal regularity of the operator

u0∆ follows from Proposition 6.2. Properties (H1) and (H2) have been shown in

[14, Theorem 6.5]; (H3) is trivially fulfilled, since g = 0. �
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