BOUNDED HOLOMORPHIC FUNCTIONS OF SEVERAL COMPLEX VARIABLES. I

BY

DONG SIE KIM(1)

Abstract. A domain of bounded holomorphy in a complex analytic manifold is a maximal domain for which every bounded holomorphic function has a bounded analytic continuation. In this paper, we show that this is a local property: if, for each boundary point of a domain, there exists a bounded holomorphic function which cannot be continued to any neighborhood of the point, then there exists a single bounded holomorphic function which cannot be continued to any neighborhood of the boundary points.

Introduction. Let X be a topological space. A subset D of X is said to be a *region* if it is open and it is said to be a *domain* if it is open and connected. We denote by N(p) a fundamental system of open neighborhoods of p, where $p \in X$.

1. DEFINITION. Let X be a topological space and U be an open subset of X. Let C(U) be the family of all continuous complex-valued functions on U, then C(U) is an algebra with 1, and it is equipped with the topology of uniform convergence on compact subsets of U. For a pair of open subsets U and V in X such that $V \subset U$ we define π_{UV} : $C(U) \rightarrow C(V)$ by $\pi_{UV}f = f|V$. Let A(U) be a subalgebra of C(U) with 1 and we assume that $\pi_{UV}A(U) \subset A(V)$; then we call $A = \{A(U), \pi_{UV}\}$ a presheaf of algebras of functions. A presheaf A has the local belonging property if, for all open sets U of X and f in C(U), for every $p \in U$ there is $V \in N(p), V \subset U$, such that $f|V \in A(v)$; then $f \in A(U)$.

A sheaf A of algebras of functions is a presheaf of algebras of functions with the local belonging property. A is said to be a *ringed structure* on X and the pair (X, A) is said to be a *ringed space*. The functions in A(U) are A-holomorphic functions. We note that A(U) has the relative topology induced by the topology on C(U).

A ringed structure A on X is an n-dimensional complex analytic structure on X if for all $x \in X$ there are $U \in N(x)$ and $f_1, \ldots, f_n \in A(U)$ such that

$$F = (f_1, \ldots, f_n) \colon U \to \mathbb{C}^n$$

Copyright © 1971, American Mathematical Society

Received by the editors February 5, 1970 and, in revised form, September 16, 1970.

AMS 1970 subject classifications. Primary 32D15; Secondary 32D05.

Key words and phrases. Ringed space, complex analytic manifold, quasi-analytic, hausdorff sheaf, analytic extension, analytic continuation, montel property, weak region of bounded holomorphy, region of bounded holomorphy, spectrum.

⁽¹⁾ This paper is a portion of the author's dissertation written under the supervision of Professor Frank D. Quigley at Tulane University.

is a homeomorphism of U onto F(U) with the properties: F(U) is open in \mathbb{C}^n and for all W open $\subset U$, $\{f \circ (F|W)^{-1} : f \in A(W)\} = \mathcal{O}(F(W))$, where \mathcal{O} is a complex analytic structure on \mathbb{C}^n . If X is a hausdorff space we call this pair (X, A) a complex analytic manifold.

For a subset U of X, A(U) is *quasi-analytic* if for all nonempty open subsets V of U and for f, g in A(U) such that f=g on V then f=g on U.

We give a characterization of quasi-analyticity in terms of the hausdorffness of the topology on A in the following proposition. The proof may be found in (3).

2. PROPOSITION. Let (X, A) be a ringed space with X a locally connected hausdorff space. Then A is hausdorff if and only if A(U) is quasi-analytic for all connected subsets U of X.

Regions of bounded holomorphy.

3. DEFINITION. Let (X, A) be a ringed space and D be a region. We define $B(D) = \{f \in A(D) : f \text{ is bounded on } D\}$. For a point $p \in \overline{D} - D$ (boundary of D) and $U \in N(p)$, a function $f \in B(D)$ is said to be *extendable* to U if there is a function $g \in B(U)$ such that f = g on $D \cap U$. D is said to be a *weak region* of *bounded holomorphy* if there exists a function $f \in B(D)$ which cannot be extendable beyond the boundary of D.

A is said to be *montel* if for an open set U in X and $F \subseteq A(U)$ there is $M_K > 0$ such that $||f||_K < M_K$ for all $f \in F$ and for all compact subsets K of U; then F is relatively compact in A(U).

A is c.o. complete if for all open subsets U in X, A(U) is complete in the topology of uniform convergence on compact subsets of U.

We note that an analytic structure A in a complex analytic manifold (X, A) has the montel property, and it is hausdorff and c.o. complete.

We show that the weak bounded holomorphy is a local property in the following theorem.

4. LEMMA. Let (X, A) be a ringed space. We assume that X is a locally compact and locally connected hausdorff space, and A is hausdorff, c.o. complete and montel. Let D be a region in X and $p \in \overline{D} - D$ such that X is first countable at p. Let B be a closed (relative to the topology of uniform convergence on D) subalgebra of B(D). Then these are equivalent:

(1°) For every $U_{\alpha} \in N(p)$ there is a function $f_{\alpha} \in B$ which cannot be extended to U. (2°) There is a function $f \in B$ which cannot be extended to any neighborhood of P.

Proof. It is sufficient to show that (1°) implies (2°) . Let $\{U_m : m \in Z_+\}$ be a countable nested basis of open neighborhood of p. Let $B_1(U_m, n) = \{f \in B : f = g | D where <math>g \in B(D \cup U_m)$ and $||g||_{U_m} \leq n\}$, $n \in Z_+$. We claim that $B_1(U_m, n)$ is a closed nowhere dense subset of B. For closedness, let $\{f_k\}$ be any net in $B_1(U_m, n)$ converging uniformly on D to f. We note that $\{f_k\}$ is c.o. convergent to f. Let $\{g_k\} \subset B(D \cup U_m)$ such that $g_k || D = f_k$, $||g_k||_{U_m} \leq n$, $k \in Z_+$. $\{g_k\}$ is uniformly bounded on

438

compact subsets of $D \cup U_m$. Since A is montel $\{g_k\}$ is relatively compact in $A(D \cup U_m)$. Thus there is a subnet $\{g_j\} \subset \{g_k\}$ which converges to $g \in A(D \cup U_m)$. Now $\lim_{c.o.} g_j | D = \lim_{c.o.} f_j = f$, so g | D = f and since $||g_j||_{U_m} \leq n$ for $j \in \mathbb{Z}_+$, $||g||_{U_m} \leq n$, which concludes that $f \in B_1(U_m, n)$. For nowhere denseness, let $B_1(U_m, n) = \bigcup_n B_1(U_m, n)$. Take $f \in B - B_1(U_m)$ and define $g_j = j^{-1}f + h$ for $h \in B_1(U_m, n)$, $j \in \mathbb{Z}_+$. Then $g_j \notin B_1(U_m) \supset B_1(U_m, n)$ and $\lim_j g_j = h$. Since h is an arbitrary element of $B_1(U_m, n)$, int $B_1(U_m, n) = \emptyset$.

Let $B_1 = \bigcup \{B_1(U_m) : m \in \mathbb{Z}_+\}$ and $B_2 = \{f \in B : f \text{ can be extended to some neighborhood of } p\}$. Then $B_1 = B_2$. Now since B has the baire property, $B_1 \subseteq B$. Hence there is $f \in B - B_1$, so $f \notin B_2$, f cannot be extended to any neighborhood of p.

5. THEOREM. Let (X, A) be a ringed space. We assume that X is a locally compact locally connected hausdorff space, and A is hausdorff, c.o. complete and montel. Let D be a region in X such that $\overline{D} - D$ is separable and X is first countable on $\overline{D} - D$. Let B be a closed subalgebra of B(D) as in the lemma. Then these are equivalent:

(1°) For every $p \in \overline{D} - D$ there is a function $f_p \in B$ which cannot be extended to any $U \in N_{(p)}$.

(2°) There is a function $f \in B$ which cannot be extended beyond the boundary of D.

Proof. Let $\{U_m : m \in Z_+\}$ be a countable basis of nested open neighborhoods of $p \in \overline{D} - D$. Let $B_1(p, U_m, n) = \{f \in B : f = g | D, g \in B(D \cup U_m), ||g||_{U_m} \leq n\}, n, m \in Z_+$. Then $B_1(p, U_m, n)$ is a closed nowhere dense subset of B as in the proof of the lemma. Let $\{p_i : i \in Z_+\}$ be a countable dense subset of $\overline{D} - D$ and $\{U_m^{(i)}\}$ be a countable basis of nested open neighborhoods of p_i . Let

$$B_2 = \bigcup \{B_1(p_i, U^{(i)}, n) : i, m, n \in \mathbb{Z}_+\}$$

and

 $B_3 = \{f \in B : f \text{ can be extended beyond } \overline{D} - D\}.$

Then $B_2 = B_3$. Since B is baire, $B_2 \subseteq B$. Hence there is $f \in B - B_2 = B - B_3$, which asserts (2°).

6. COROLLARY. Let (X, A) be a complex analytic manifold and D be a region in X such that $\overline{D} - D$ is separable and X is first countable on $\overline{D} - D$. Let B = B(D). Then these are equivalent:

(1°) For every $p \in \overline{D} - D$ there is an $f \in B$ which cannot be extended to any $U \in N(p)$.

 (2°) D is a weak region of bounded holomorphy.

7. DEFINITION. Let (X, A) be a ringed space and D be a region in X. Let V be an open subset of X such that $D \cap V \neq \emptyset$ and $V \notin D$. $f \in B(D)$ is said to be *continued* to V if there is a connected component Ω of $D \cap V$ and $g \in B(V)$ such that f = g on Ω . We say that g is a *continuation* of f to V. A boundary point p of D is said to be a *boundary singularity* for $f \in B(D)$ if f cannot be continued to any open

neighborhood of p. A region is called a *region* of *bounded holomorphy* if there is an $f \in B(D)$ for which every boundary point of D is a boundary singularity.

We give a characterization of a region of bounded holomorphy by a local property in the next theorem.

8. LEMMA. Let (X, A) be a ringed space. We assume that X is a locally compact and locally connected hausdorff space and A is hausdorff, c.o. complete, and montel. Let D be a region in X and $p \in \overline{D} - D$ such that X is first countable at p. Let B be a closed (relative to the topology of uniform convergence on D) subalgebra of B(D). Then these are equivalent:

(1°) For every $U_{\alpha} \in N(p)$ and every connected component $\Omega_{\alpha\beta}$ of $U_{\alpha} \cap D$ there is $f_{\alpha\beta} \in B$ such that $f_{\alpha\beta}$ has no continuation to U_{α} .

(2°) There is $f \in B$ such that for all $U \in N(p)$ and for all connected components Ω of $U \cap D$, f has no continuation to U_{α} , i.e. p is a boundary singularity for f.

Proof. It suffices to show that (1°) implies (2°) . Let $\{U_{\alpha} : \alpha \in Z_{+}\}$ be a countable nested basis of open neighborhoods of p and let $\{\Omega_{\alpha\beta} : \beta \in Z_{+}\}$ be a countable family of connected components of $U_{\alpha} \cap D$. Let $B_{1}(\Omega_{\alpha\beta}, n) = \{f \in B :$ there is $g \in B(U_{\alpha})$ such that f=g on $\Omega_{\alpha\beta}$ and $||g||_{U_{\alpha}} \leq n\}$, $n \in Z_{+}$. Then as in the proof of Lemma 4, $B_{1}(\Omega_{\alpha\beta}, n)$ is a closed nowhere dense subset of B. Let $B_{1} = \bigcup_{\alpha,\beta,n} B_{1}(\Omega_{\alpha\beta}, n)$ and let $B_{2} = \{f \in B : f$ can be continued to some neighborhood of $p\}$. Then $B_{1} = B_{2}$, and since $B_{1} \subseteq B$ there is an $f \in B - B_{2}$.

9. THEOREM. Let (X, A) be a ringed space. We assume that X is a locally compact, locally connected hausdorff space and A is hausdorff, c.o. complete and montel. Let D be a region in X such that $\overline{D} - D$ is separable and X is first countable on $\overline{D} - D$. Let B be a closed subalgebra of B(D). Then these are equivalent:

(1°) For every $p \in \overline{D} - D$ there is a function $f_p \in B$ for which p is a boundary singularity.

(2°) There is a function $f \in B$ for which every boundary point is a boundary singularity.

Proof follows by the lemma and in a similar way as the proof of Theorem 5.

10. COROLLARY. Let (X, A) be a complex analytic manifold and D be a region in X such that $\overline{D} - D$ is separable. Let B = B(D). Then these are equivalent:

(1°) For every $p \in \overline{D} - D$ there is $f_p \in B$ for which p is a boundary singularity.

 (2°) D is a region of bounded holomorphy.

In the following, we show that a weak region of bounded holomorphy is a region of bounded holomorphy when the region is locally connected on the boundary.

11. DEFINITION. Let X be a topological space and D be a region in X. We say that D is *locally connected* at $p \in \overline{D} - D$ if p has a base of open neighborhoods whose intersections with D are connected. D is *locally connected* on the *boundary* of D if D is locally connected at every point of the boundary.

The following lemma will give the proof of Theorem 13.

12. LEMMA. Let X be a locally connected hausdorff space and let D be a region in X which is locally connected on the boundary. Let $V \in N(p)$, $p \in \overline{D} - D$ and U be an open subset of $V \cap D$. Then there is an open set $V_1 \subseteq U$ such that $V_1 \cap (\overline{D} - D)$ $\neq \emptyset$, $V_1 \cap D$ is connected and $V_1 \cap U \neq \emptyset$.

Proof. We assume that V is a connected neighborhood of p.

(i) We show that for every connected component Ω of $V \cap D$, $V \cap (\overline{\Omega} - \Omega) \subset \overline{D} - D$. Note that $V \cap (\overline{\Omega} - \Omega) \neq \emptyset$, for otherwise we have $V = (V - \overline{\Omega}) \cup \Omega$ which contradicts its connectedness. Now $\overline{\Omega} \subset \overline{D}$ so that $V \cap (\overline{\Omega} - \Omega) \subset V \cap \overline{D}$. If $V \cap (\overline{\Omega} - \Omega) \cap D \neq \emptyset$, take $p \in V \cap (\overline{\Omega} - \Omega) \cap D$ then there is a connected open set $U' \in N(p)$ such that $U' \subset V \cap D$ and $U' \cap \Omega \neq \emptyset$. Thus $U' \cup \Omega \subset V \cap D$ is connected. But then $U' \cup \Omega = \Omega$ and $p \in \Omega$, which is a contradiction. It follows that $V \cap (\overline{\Omega} - \Omega) \cap D = \emptyset$ so that $V \cap (\overline{\Omega} - \Omega) \subset \overline{D} - D$.

(ii) Choose a connected component Ω of $V \cap D$ such that $\Omega \cap U \neq \emptyset$. Take $q \in V \cap (\overline{\Omega} - \Omega) \subset \overline{D} - D$ and choose a neighborhood V' of q such that $V' \subset V$ and $V' \cap D$ is connected. Let $V_1 = \Omega \cup V'$. Since $\Omega \cap V' \neq \emptyset$, V_1 has the required property.

13. THEOREM. Let (X, A) be a ringed space. We assume that X is a locally compact, locally connected hausdorff space, and A is hausdorff, c.o. complete and montel. Let D be a region in X which is locally connected on the boundary. Let B be a closed subalgebra of B(D). Then these are equivalent:

(1°) There is a function $f \in B$ which cannot be extended beyond D.

(2°) There is a function $f \in B$ which cannot be continued beyond D.

Proof. It is immediate from the lemma.

14. COROLLARY. Let (X, A) be a complex analytic manifold. Let D be a region which is locally connected on the boundary. Then these are equivalent:

 (1°) D is a weak region of bounded holomorphy.

 (2°) D is a region of bounded holomorphy.

We investigate regions of bounded holomorphy in $(\mathbb{C}^n, \mathcal{O})$. First, we have a useful lemma for searching domains of bounded holomorphy.

15. LEMMA. Let (X, A) be a complex analytic manifold and D be a region in X. Let U be a domain such that $D \cap U \neq \emptyset$ and $U \notin D$. If every function $f \in B(D)$ can be continued to U and \tilde{f} denotes the continuation of f to U, then $\tilde{f}(U) \subseteq cl(f(D))$ for all $f \in B(D)$.

Proof. Let $\alpha \notin \operatorname{cl}(f(D))$, then $g = (f - \alpha)^{-1} \in B(D)$, and so has a continuation $\tilde{g} \in B(U)$. Now $g \cdot (f - \alpha) \equiv 1$ on D, and $g \cdot (f - \alpha) = \tilde{g} \cdot (\tilde{f} - \alpha) = 1$ on a connected component Ω of $D \cap U$. So by analytic continuation, $\tilde{g} \cdot (\tilde{f} - \alpha) \equiv 1$ on U. Hence $\alpha \notin \tilde{f}(U)$. So $\tilde{f}(U) \subset \operatorname{cl}(f(D))$.

16. Simple examples of domains of bounded holomorphy in $(\mathbb{C}^n, \mathcal{O})$.

(1°) An open polydisc

 $P(w:r) = P(w_1, \ldots, w_n : r_1, \ldots, r_n) = \{s \in C^n : |s_i - w_i| < r_i, 1 \le i \le n\} \subset C^n$

[August

is a domain of bounded holomorphy. For, take a boundary point $s \in \overline{P}(w;r)$; then $|s_j| = r_j$ for some *j*. Now for any polydisc $P_1(s;\epsilon)$, $||z_j||_{P_1} > r_j$. Hence $z_j(P) \Leftrightarrow cl(Z_j(P))$. By Lemma 15, **P** is a domain of bounded holomorphy. Moreover, an analytic polyhedron and a bounded complete Reinhardt domain are domains of bounded holomorphy.

(2°) A simply connected domain D in C which is locally connected on the boundary of D is a domain of bounded holomorphy.

17. PROPOSITION. Let $\{D_j : j \in Z_+\}$ be an indexed set of regions of bounded holomorphy in \mathbb{C}^n . Let $D = \bigcap_{j=1}^{\infty} D_j$ and assume that D is open. Then D is a region of bounded holomorphy in \mathbb{C}^n .

Proof. For a point $p \in \overline{D} - D$ there exists $m \in Z_+$ such that $p \notin D_m$. Then there exists $f \in B(D_m)$ which is a singular function at p. Thus $f | D \in B(D)$ is singular at p.

18. PROPOSITION. A finite cartesian product of regions of bounded holomorphy is a region of bounded holomorphy.

Proof. We shall prove this for the case of a product of two regions. Let D_1 and D_2 be regions of bounded holomorphy in \mathbb{C}^n and let $f_i \in B(D_i)$, i=1, 2, be singular functions. Define $F_1 \in B(D \times \mathbb{C}^n)$ by $F_1(s, t) = f_1(s)$ and $F_2 \in B(\mathbb{C}^n \times D_2)$ by $F_2(s, t) = f_2(t)$. Then F_1 is a singular function at every point of (bdry $D_1) \times \mathbb{C}^n$ and so is F_2 for $\mathbb{C}^n \times (\text{bdry } D_2)$. For, if F_1 is not, then there is $V \in N(p)$, $p \in (\text{bdry } D_1) \times \mathbb{C}^n$ such that F_1 can be continued to V. Let W be the image of V into $\mathbb{C}^n \supset D_1$ then $F_1 | W = f_1$ can be continued to W. But W is a neighborhood of a boundary point of D_1 . This is absurd (similarly for F_2). Now bdry $(D_1 \times D_2) = (\text{bdry } D_1) \times \overline{D}_2 \cup \overline{D}_1 \times (\text{bdry } D_2)$. Thus if $p \in \text{bdry } (D_1 \times D_2)$, then F_1 or F_2 is a singular function at p. Hence $D_1 \times D_2$ is a domain of bounded holomorphy.

19. PROPOSITION. Every convex (in the geometric sense) domain D in C^n is a domain of bounded holomorphy.

Proof. Since such a domain D is the intersection of the open halfspaces in C^n (as a real vector space R^{2n}) which contain it, by Proposition 17 it suffices to show that every open halfspace in C^n is a domain of bounded holomorphy. Let $S = \{(z_1, \ldots, z_n) \in C^n : \text{Re } z_i > 0, i = 1, \ldots, n\}$. Then any open halfspace in C^n can be identified as S by a translation and a complex linear transformation. Hence again it suffices to show that S is a domain of bounded holomorphy. But this is so; for, let $H = \{z \in C : \text{Re } z > 0\}$, then since H can be mapped onto the open unit disc by a Riemann map, H is a domain of bounded holomorphy. Now $S = \prod^n H$, a finite cartesian product. Hence S is a domain of bounded holomorphy by Proposition 18.

20. PROPOSITION. Let D be a region in \mathbb{C}^n , n > 1, and let K be a compact subset of D such that D - K is connected. Then for every $f \in B(D-K)$ there exists $\tilde{f} \in B(D)$ such that $f = \tilde{f}$ on D - K.

442

1971]

Proof. Since $B(D-K) \subset \mathcal{O}(D-K)$, for every function $f \in B(D-K)$ there is $\tilde{f} \in \mathcal{O}(D)$ such that $f = \tilde{f}$ on D-K by a theorem of Hartog's. So it suffices to show that those extensions are still bounded on D. But this is clear from Lemma 15.

21. Let D be a region in \mathbb{C}^n and let B = B(D). Then B is a Banach algebra with the supremum norm on D. The spectrum of B, denoted by S(B), is the set of nonzero complex homomorphisms of B. For $z \in D$ if we define $h_2(f) = f(z)$, $f \in B$, then $h_z \in S(B)$. Hence we obtain a mapping $\rho: D \to S(B)$, $\rho(z) = h_z$. To each $f \in B$ we associate a function \hat{f} defined on S(B) by defining $\hat{f}(h) = h(f)$. Since $\hat{f} \circ \rho = f$, the mapping $f \mapsto \hat{f}$ is one-to-one. We endow S(B) with the weakest topology which makes \hat{f} continuous. Then S(B) is compact and the mapping $f \mapsto \hat{f}$ is an isometry of B onto $\hat{B} = \{\hat{f}: f \in B\}$. Hence we may assume that B is defined on S(B). Let $f_1, \ldots, f_n \in B$. The joint spectrum of f_1, \ldots, f_n is the set; $\sigma(f_1, \ldots, f_n) = \{(f_1(h), \ldots, f_n(h)): h \in S(B)\}$. For given $f_1, \ldots, f_n \in B$ we define $\pi: S(B) \to \mathbb{C}^n$ by $\pi(h) = (f_1(h), \ldots, f_n(h))$, then π is a continuous map. If D is relatively compact in \mathbb{C}^n then the coordinate functions z_1, \ldots, z_n belong to B and $\pi S(B) \supseteq D$ since the point evaluation maps are in S(B). Furthermore, since S(B) is compact $\pi S(B) \supseteq \overline{D}$. Now we have the following theorem:

22. THEOREM. Let D be a relatively compact region in C^n with int $\overline{D} = D$. If $\pi S(B) = \overline{D}$ then D is a region of bounded holomorphy.

Proof. If we assume that D is not a region of bounded holomorphy, then every function $f \in B$ has an extension \tilde{f} to a neighborhood V of a boundary point p of D. By Lemma 15, $\tilde{f}(V) \subset \operatorname{cl}(f(D))$. Hence the extensions $\tilde{f}, f \in B$ are continuous with respect to the supnorm on D. Now take a point $z \in V - \overline{D}$, consider the point evaluation map h_z , $h_z(\tilde{f}) = \tilde{f}(z)$ for all $f \in B$, then $h_z \in S(B)$ and $\pi(h_z) = z \in V - \overline{D}$, which is absurd.

We note that if int $\overline{D} \neq D$ then the theorem is false; consider

$$D = \{z \in C : 0 < |z| < 1\}$$

then $B(D) = B(D \cup \{0\})$ and $S(B) = \overline{D}$. But D is not a domain of bounded holomorphy.

References

1. R. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 31 #4927.

2. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966. MR 34 #2933.

3. F. Quigley, *Lectures on several complex variables*, Tulane University, New Orleans, La., 1964/65, 1965/66.

4. W. Rudin, Some theorems on bounded analytic functions, Trans. Amer. Math. Soc. 78 (1955), 333-342. MR 16, 685.

5. M. Shauck, Algebras of holomorphic functions in ringed spaces, Dissertation, Tulane University, New Orleans, La., 1966.

UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601