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Abstract. We give fast and efficient methods for constructingε-nets andε-approximations
for range spaces with bounded VC-exponent. These combinatorial structures have wide ap-
plicability to geometric partitioning problems, which are often used in divide-and-conquer
constructions in computational geometry algorithms. In addition, we introduce a new deter-
ministic set approximation for range spaces with bounded VC-exponent, which we call the
δ-relativeε-approximation, and we show how such approximations can be efficiently con-
structed in parallel. To demonstrate the utility of these constructions we show how they can
be used to solve the linear programming problem inRd deterministically inO((log logn)d)
time using linear work in the PRAM model of computation, for any fixed constantd. Our
method is developed for the CRCW variant of the PRAM parallel computation model, and
can be easily implemented to run inO(logn(log logn)d−1) time using linear work on an
EREW PRAM.

∗ This research was announced in preliminary form inProc. 9th ACM Symposium on Computational
Geometry(SCG), 1993, pp. 73–82, and inProc. 7th ACM–SIAM Symposium on Discrete Algorithms(SODA),
1996, pp. 132–141. The research of M. T. Goodrich was supported by the National Science Foundation under
Grants IRI-9116843, CCR-9300079, and CCR-9625289, and by ARO under Grant DAAH04-96-1-0013. The
research of E. A. Ramos was supported by a DIMACS Postdoctoral Fellowship. DIMACS is a cooperative
project of Rutgers University, Princeton University, AT&T Research, Bell Labs, and Bellcore. DIMACS is an
NSF Science and Technology Center, funded under Contract STC-91-19999; and also receives support from
the New Jersey Commission on Science and Technology. The current address of E. A. Ramos is Max-Planck-
Institut für Informatik, Im Stadtwald, 66123 Saarbr¨ucken, Germany. ramos@mpi-sb.mpg.de.



398 M. T. Goodrich and E. A. Ramos

1. Introduction

The study of randomized algorithms and methods for reducing the amount of perfect
randomness needed for geometric algorithms has proven to be a very rich area of research
(e.g., see [1], [2], [4], [5], [13], [15], [22], [42], [57], and [58]). Indeed, randomized
geometric algorithms are typically simpler and more efficient than their deterministic
counterparts and studying the limitation of the randomness needed by such algorithms
often yields insights into the specific properties of randomization that are needed to
achieve this simplicity and efficiency.

Randomized algorithms in computational geometry most often exploit small-sized
random samples, and the derandomization of such algorithms is then done by (1) quan-
tifying the combinatorial properties needed by random samples, and (2) showing that
sets having these combinatorial properties can be constructed efficiently without using
randomization. Interestingly, most of the combinatorial properties needed by geometric
random samples can be characterized by two notions—theε-approximation[51], [68]
and theε-net[36], [51]. These concepts are defined for very general frameworks, where
one is given a set system(X,R) consisting of a finite ground set,X, and a set,R,
of subsets ofX. The subsets inR are often referred to asranges, for R typically is
defined in terms of some well-structured geometry or combinatorics. A subsetY is an
ε-approximation for(X,R) if, for each rangeR ∈ R,∣∣∣∣ |Y ∩ R|

|Y| −
|R|
|X|

∣∣∣∣ ≤ ε.
Relaxing this requirement a bit,Y is said to be anε-net[36], [51] of (X,R) if Y∩R 6= ∅
for eachR ∈ R such that|R| > ε|X|. This is clearly a weaker notion than that of an
ε-approximation, for anyε-approximation is automatically anε-net, but the converse
need not be true.

We generalize theε-approximation definition to say that, given nonnegative param-
etersδ < 1 andε < 1, a subsetY is a δ-relative ε-approximationif, for each range
R ∈ R, ∣∣∣∣ |Y ∩ R|

|Y| −
|R|
|X|

∣∣∣∣ ≤ δ |R||X| + ε.
This notion is a combined measure of the absolute and relative error between|Y∩R|/|Y|
and|R|/|X|, and it is somewhat similar to a notion Br¨onnimannet al. [13] refer to as a
“sensitive”ε-approximation.1 Note that this notion also subsumes that of anε-net, for
anyδ-relativeε-approximation is automatically an(ε/(1− δ))-net.

Our specific interest in this paper is in the design of fast and efficient deterministic
methods for constructing small-sizedδ-relativeε-approximations in parallel and apply-
ing these methods to fixed-dimensional linear programming. Our methods have other
applications as well, including fixed-dimensional convex hull and geometric partition
construction [6], [7], but these are beyond the scope of this paper.

1 Brönnimannet al. [13] call a subsetA ⊆ X a sensitiveε-approximationif | |A∩ R|/|A| − |R|/|X| | ≤
(ε/2)(ε +

√
|R|/|X|).
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1.1. Previous Work on Derandomizing Geometric Algorithms

Before we describe our results, however, we review some related previous work. The
study of random sampling in the design of efficient computational geometry methods
really began in earnest with some outstanding early work of Clarkson [20], Haussler
and Welzl [36], and Clarkson and Shor [22]. One general type of geometric structure
that has motivated much of the derandomization research, and one that motivated the
development of theε-approximation andε-net notions for computational geometry, is
thegeometric partition(e.g., see [2] and [51]). In this problem, one is given a collection
X of n hyperplanes inRd, and a parameterr , and one wishes to construct a partition
of Rd into O(r d) constant-sized cells so that each cell intersects as few hyperplanes
as possible. Random sampling can be applied to construct such a partitioning so that
each cell intersects at mostεn hyperplanes, forε = logr/r [22], [36]. Chazelle and
Friedman [15] show that in fact such a partitioning withε = 1/r can be constructed
deterministically in polynomial time, and Bergeret al. [12] and Motwaniet al. [56]
show that similar geometric partitions can be constructed forε = logr/r in NC. (Recall
that NC denotes the class of problems solvable in polylogarithmic time using a poly-
nomial number of processors [37], [43].) Unfortunately, the running time of Chazelle
and Friedman’s algorithm is quite high, as are the time and processor bounds of the
implied parallel algorithms (they run inO(log4 n) time using a number of processors
proportional to the time bound of Chazelle and Friedman’s algorithm).

A general framework for geometric partitioning emerges from the framework when
a range space(X,R) has constant Vapnik–Chervonenkis [68] (VC)-dimension. Letting
R|A denote the set{A ∩ R : R ∈ R}, theVC-dimensionof (X,R) is defined as the
maximum size of a subsetA of X such thatR|A = 2A (e.g., see [51]). A related and
simpler notion, however, is based upon theshatter function,

πR(m) = {|R|A|: A ⊆ X, |A| = m}.

In particular, we say that(X,R) hasVC-exponent[8], [14] bounded by eif πR(m)
is O(me). For example, if(X,R) is thehyperplane set system, whereX is a set ofn
hyperplanes inRd andR is the set of all combinatorially distinct ways of intersecting
hyperplanes with simplices, then(X,R) has VC-exponent bounded byd(d+ 1). Inter-
estingly, the VC-exponent definition subsumes that of the VC-dimension, for if(X,R)
has VC-dimensione, then it has VC-exponent bounded bye as well [63], [68]. There
are several recent results that show that one can construct a(1/r )-approximation of size
O(r 2 logr ) for any range space with VC-exponent bounded bye in time O(nrc) for
some constantc depending one (e.g., see [13], [16], [47–[49], and [53]). Chazelle and
Matoušek [16] give slower NC algorithms usingO(nrc) work2 that construct such sets
of sizeO(r 2+α) for any fixed constantα > 0.

2 Recall that thework done by a parallel algorithm is the total number of operations performed by all
processors, and it is never more than the product of the running time and the number of processors needed to
achieve that running time.
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1.2. Our Results on Parallel Geometric Derandomization

We give fast and efficient parallel algorithms for constructingε-nets andδ-relativeε-
approximations. For example, our methods can be implemented in the CRCW PRAM
model3 to run in O(log logn) time usingO(nrc) work to produceδ-relative (1/r )-
approximations of sizeO(r 2+α) for any fixed constantsδ > 0 andα > 0, and some
constantc ≥ 1. We also show how to find such approximations of sizeO(r 2 logr )
using more time and work. In addition, our methods can be implemented in the EREW
PRAM model to run inO(logn) time usingO(nrc) work to produce (0-relative)(1/r )-
approximations of sizeO(r 2+α) for any fixed constantα > 0. Thus, our methods improve
the previous size bounds from those achieved previously by the author [32] while also
improving the time bounds from those achieved previously by Chazelle and Matouˇsek
[16]. We also derive similar bounds for constructing(1/r )-nets. To demonstrate the utility
of this result, we show how it can be used to design a new efficient parallel method for
fixed-dimensional linear programming.

1.3. Fixed-Dimensional Linear Programming

The linear programming problem is central in the study of discrete algorithms. It has
been applied to a host of combinatorial optimization problems since the first efficient
algorithms for solving it were developed in the 1940s (e.g., see [18], [23], [40], and [59]).
Geometrically, it can be viewed as the problem of locating a point that is maximal in a
givenEv direction in the polyhedral regionP defined by the intersection ofn half-spaces
inRd. Of particular interest is the case when the dimensionality,d (corresponding to the
number of variables), is fixed, as occurs, for example, in several applications of linear
programming in geometric computing (e.g., see [16], [21], [29], [54], [55], and [60]) and
machine learning (e.g., see [10] and [11]). Indeed, a major contribution of computational
geometry research has been to show that fixed-dimensional linear programming can be
solved in linear time, starting with the seminal work of Dyer [27] and Megiddo [54], [55],
and following with subsequent work in the sequential domain concentrated primarily on
reducing the constant “hiding behind” the big-oh in these results (e.g., see [16], [19],
[21], [28], [39], [52], and [65]) or on building data structures for linear programming
queries (e.g., see [30] and [50]).

In the parallel domain, Alon and Megiddo [4] give analogous results, showing that
through the use of randomization a fixed-dimensional linear program can be solved
in O(1) time with very high probability usingn processors in a randomized CRCW
PRAM model. The existing deterministic parallel algorithms are not as efficient, how-
ever. Ajtai and Megiddo [3] give a deterministicO((log logn)d)-time method, but it
has a suboptimal2(n(log logn)d) work bound and it is defined for the very power-

3 Recall that this is the synchronous shared-memory parallel model where processors are allowed to perform
concurrent reads and concurrent writes, with concurrent writes being resolved, say, by requiring all writing
processors to be writing the samecommonvalue (this common resolution rule is the one we use in this paper).
Alternatively, in the weaker EREW PRAM model processors may not concurrently access the same memory
location.
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ful parallel model that only counts “comparison” steps [67]. The only work-optimal
deterministic PRAM result we are familiar with is a method by Deng [24] for two-
dimensional linear programming that runs inO(logn) time usingO(n)work on a CRCW
PRAM. Recently, Dyer [26] has given anO(logn(log logn)d−1)-time method that uses
O(n logn(log logn)d−1)work in the EREW PRAM model. In addition, we have recently
learned that Sen [66] has independently discovered a CRCW PRAM method that runs
in O((log logn)d+1) time usingO(n) work.

1.4. Our Results for Parallel Linear Programming

In this paper we give a deterministic parallel method for fixed-dimensional linear pro-
gramming that runs inO((log logn)d) time usingO(n) work in the CRCW PRAM
model. Thus, our method improves the work bound and the computational model of the
Ajtai–Megiddo method while matching their running time, which is also an improve-
ment over the time bound of Deng’s method ford = 2. (It is also slightly faster than the
recent result by Sen, which uses an approach that is considerably different than that for
our method.) In addition, our method can be implemented in the EREW PRAM model
to run inO(logn(log logn)d−1) time usingO(n)work, which improves the work bound
of the parallel method by Dyer. At a high level our method is actually quite simple: we
efficiently derandomize a simple recursive procedure using our parallel procedure for
ε-net construction.

The remainder of this paper is structured as follows. In the next section we review
some of the probabilistic background we will be using in subsequent sections. Since
a work-efficient parallel algorithm immediately implies an efficient sequential method,
we describe all of our procedures as parallel algorithms. We begin this discussion in
Section 3, where we give fast, but work-inefficient, parallel methods. In Section 4 we de-
scribe how to apply a divide-and-conquer strategy to make these methods work-efficient.
We give applications of these methods to fixed-dimensional linear programming in
Section 5, and we conclude in Section 6.

2. Probabilistic Preliminaries

Our approach to constructing small-sized(1/r )-nets and(1/r )-approximations of range
spaces with bounded VC-exponent is to derandomize a straightforward probabilistic
algorithm that is based upon therandom samplingtechnique [20]. We perform this
derandomization using thebounded independencederandomization technique [5], [41],
[44], [45], [64], which assumes our algorithm uses random variables that are onlyk-wise
independent. Thus, before we give our methods, we review these concepts (see also [5]
and [57]).

2.1. Random Sampling

Since the probabilistic algorithm we wish to derandomize is based upon random sam-
pling, we begin by saying a few words about this technique. The generic situation is
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that one is given a setX of n objects and an integer parameters, and one wishes to
construct a random subsetY ⊂ X of sizes. Sequentially, this is quite easy to do. In
this paper we assume such a sample is chosen by defining, for each elementxi in X
in parallel, a random variableXi that is 1 with probabilitys/n; we use the rule that
xi ∈ Y if Xi = 1 [12]. Note that a set of|Y| = X1+ X2+ · · · + Xn unique elements is
guaranteed, but its size may not be equal tos, although it is easy to see, by the linearity
of expectation, thatE(|Y|) = s.

2.2. k-Wise Independence

In order to apply the bounded-independence derandomization technique, we must restrict
our setX of random variables to be onlyk-wise independent, i.e., the variables in any
subsetY ⊆ X are guaranteed to be mutually independent if|Y| ≤ k. Given a setX of
n objects and an integer parameters, we define ak-wise independent expected s-sample
of X to be a sample determined byn k-wise independent indicator random variables,
X(k)

1 , X(k)
2 , . . . , X(k)

n , whereX(k)
i = 1 with probabilityp = s/n. Note that in this notation

X(n) = X; hence, we may omit the superscript if the underlying random variables are
mutually independent.

Unfortunately, restricting our attention tok-wise independent indicator random vari-
ables prevents us from directly using the well-known and powerful Chernoff bounds [5],
[17], [35], [57] for bounding the tail of the distribution of their sum. Nevertheless, as
shown by Rompel [62] (see also [64]), we may derive something analogous:

Lemma 2.1[62]. Let X(k) be the sum of n k-wise independent random variables taking
on values in the range[0, 1], withµ = E(X(k)), where k is a positive even integer. Then
there is a fixed constant c> 0 such that

Pr(|X(k) − µ| ≥ λ) ≤ c

(
kµ+ k2

λ2

)k/2

,

for anyλ > 0.

2.3. Derandomization via Bounded Independence

We are now ready to review thebounded independencetechnique for derandomizing a
probabilistic algorithm [5], [41], [44], [45]. We use the parallel formulation of Luby [44],
which is based upon a combinatorial construction of Joffe [38] (see also [41]). In this
formulation, we assume we have a parallel probabilistic algorithm,Random, which is
designed so that all the randomization is contained in a singlechoice step. In addition,
we assume the following:

1. Random succeeds with constant probability even if the underlying random vari-
ables are onlyk-wise independent.
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2. Each random variableXi takes on values{x1, x2, . . . , xm}, wherem is bounded
by a polynomial4 in n.

3. There is a prime numberq bounded by a polynomial inn, and integersni,1,ni,2, . . . ,

ni,m, such thatXi takes on valuexj with probabilityni, j /q (with
∑m

j=1 ni, j = q).
Of course, such a prime number can be easily found inO(1) time in the CRCW
PRAM model using a polynomial number of processors.

Luby [44] shows that ifRandom satisfies all of these conditions, then a space ofqk

points may be constructed so that each point corresponds to an assignment of values to
X1, X2, . . . , Xn. Moreover, eachXi = xj with probability ni, j /q and theXi ’s arek-
wise independent.5 Since this space is polynomial in size, we may therefore derandomize
Randomby calling it on each of theqk sample points in parallel. SinceRandomsucceeds
with constant probability, at least one of these calls succeeds (in fact, a constant fraction
succeed). The output is given by one of these successful calls (where one breaks ties
arbitrarily). The benefit of using this approach is that it is very simple, and, although
the processor costs may be high, the speed of the algorithm is the same as that used in
Random (plus an additional term for performing an “or” on all the results in parallel,
which can be done inO(1) time in the CRCW PRAM model andO(logn) time in the
EREW PRAM model [37], [43], [61]).

Having reviewed the necessary probabilistic preliminaries, we now turn to the problem
of constructing(1/r )-approximations and(1/r )-nets.

3. O((nr)O(1))-Work Approximation Finding

Before we describe our work-efficient method, however, we first describe some algo-
rithms for constructing(1/r )-nets and(1/r )-approximations that are fast but not work-
efficient. This approach to constructing small-sized approximations and nets of range
spaces with bounded VC-exponent is to derandomize a straightforward probabilistic
algorithm,Approx , which is based upon therandom samplingtechnique [20].

3.1. Geometric Random Samples

Let (X,R) be a given range space with VC-exponent bounded bye, for some constant
e > 0. Given a parameter 2≤ r ≤ |X|, a parameters that is greater than some fixed
constants0 > 1, and a positive even integerk, let Y be ak-wise independent expected
s-sample ofX. We explore the probability thatY is an O(s)-sized (0-relative)(1/r )-
approximation or(1/r )-net under various assumptions abouts andk. The first lemma
establishes the probability that|Y| is2(s).

4 In our usage eachXi will take a value from{0, 1}.
5 Recently, Dietzfelbinger [25] has given an alternative construction that does not make use of the avail-

ability of a primeq.
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Lemma 3.1. Let Y be defined as above, with k ≥ 2 even. Then

| |Y| − s| < max{βc, 1}(sk+ k2)1/2,

with probability at least1− 1/β, for some constant c> 0. In particular, if s ≥ C(β)k,
for some constant C(β) > 0, then| |Y| − s| = 2(k1/2s1/2) and also| |Y| − s| ≤ s/2
with probability at least1− 1/β.

Proof. Y is an expecteds-sample ofX determined byn indicator random variables.
Since|Y| has meanµ|Y| = s, we may apply Lemma 2.1 to bound the probability thatY
does not satisfy the above size condition as

Pr(| |Y| − s| ≥ (βc)1/k(sk+ k2)1/2) ≤ 1/β,

wherec is as in the lemma. The bounds claimed follow from this one.

We therefore bound the probability thatY is a (1/r )-net or a(1/r )-approximation.
In particular, letS be a subset ofR, and letAY(r,S) denote the number of ranges
R ∈ S thatY does not(1/r )-approximate(i.e., the number of rangesR ∈ S such that
| |Y ∩ R|/|Y| − |R|/|X| | > 1/r ), and letNY(r,S) denote the number of rangesR ∈ S
such that|R| ≥ |X|/r butY∩ R= ∅. Of course, we desire these “error functions” to be
as small as possible. The next lemma explores how well a randomY achieves this goal
whenY is defined usingk-wise independent random variables.

Lemma 3.2. Let (X,R) be a range space. Given a parameter C≤ r ≤ |X|, for some
C > 0, a positive even integer k≤ n, and a parameter s≥ rk, let Y be a k-wise
independent expected s-sample of X, and letS be a subset ofR. Then the following is
true with probability at least1/2:

1. s−2(k1/2s1/2) ≤ |Y| ≤ s+2(k1/2s1/2) and in particular s/2≤ |Y| ≤ 3s/2.
2. AY(r,S) ≤ c4k(ks+ k2)k/2r k|S|/sk for some constant c> 0.
3. NY(r,S) ≤ c(2k)k/2r k/2|S|/sk/2 for some constant c> 0.

Proof. Our proof is to show that properties 2 and 3 hold with probability at least 5/6
each, given property 1, which also holds with probability at least 5/6. We can choose
β = 6 from Lemma 3.1 so that property 1 holds with probability 5/6. So, we assume
that|Y| is s± s/2, and consider the quantityAY(r,S). We can write

AY(r,S) =
∑
R∈S

YR,

whereYR is an indicator random variable for “Y does not(1/r )-approximateR.” We
boundAY(r,S) by considering its expectation, which, by the linearity of expectation, is

E(AY(r,S)) =
∑
R∈S

E(YR) =
∑
R∈S

Pr(YR = 1).

We therefore derive a bound for

Pr(YR = 1) = Pr(| |Y ∩ R| − |Y|(|R|/n)| > |Y|/r ).
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Define random variablesU = |Y∩ R| − |Y∩ R|(|R|/n) andV = |Y∩ (X\R)|(|R|/n).
Then

Pr(YR = 1) = Pr(|U − V | > |Y|/r ).
Let µU = E(U ) andµV = E(V) and note thatµU = µV = (s|R|/n)(1− |R|/n).
Thus,

Pr(YR = 1) = Pr(|U − µU + µV − V | > |Y|/r ).
It is easy to verify that this latter probability is bounded by

Pr(|U − µU | > |Y|/2r )+ Pr(|V − µV | > |Y|/2r ).

Note thatU = ∑
i∈R Xi (1− |R|/n) andV = ∑

i 6∈R Xi (|R|/n). Thus, we may apply
Lemma 2.1 to bound this probability by

c

(
2k[k(s|R|/n)+ k2]k/2r k

|Y|k
)
≤ c(4k(ks+ k2)k/2r k)/sk

for some constantc, sinces ≥ kr > 1 and|R| ≤ n. Therefore,

E(AY(r,S)) ≤ c(4k(ks+ k2)k/2r k)|S|/sk.

We may then apply Markov’s inequality (which has no independence assumptions) to
show

Pr(AY(r,S) > 6c(4k(ks+ k2)k/2r k)|S|/sk) ≤ 1/6.

The bound forNY(r,S) is proved similarly, but we give the details here for complete-
ness. We can write

NY(r,S) =
∑

R∈S& |R|>|X|/r
ZR,

whereZR is an indicator random variable for “Y ∩ R = ∅ but |R| ≥ |X|/r .” By the
linearity of expectation,

E(NY(r,S)) =
∑

R∈S& |R|>n/r

E(ZR)

≤
∑

R∈S& |R|>n/r

Pr(| |Y ∩ R| − (s/n)|R| | ≥ (s/n)|R|),

wheren = |X|. Note that|Y∩R| =∑i∈R Xi . Thus, we may apply Lemma 2.1 to derive

Pr(| |Y ∩ R| − (s/n)|R| | ≥ (s/n)|R|) ≤ c

(
k(s/n)|R| + k2

(s/n)2|R|2
)k/2

≤ c(2k)k/2r k/2/sk/2,

for some constantc > 0, since|R| > n/r ands ≥ rk. Therefore,

E(NY(r,S)) ≤ c(2k)k/2r k/2|S|/sk/2,

and we may then apply Markov’s inequality to show that

NY(r,S) ≤ 6c(2k)k/2r k/2|S|/sk/2

with probability 5/6. This completes the proof.
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3.2. EREW PRAM Algorithms

Given this lemma, we can apply the bounded-independence derandomization technique
to derive deterministic(1/r )-net and(1/r )-approximation construction methods for
range spaces with bounded VC-exponent. We assumeR|Y is computable inO(1) time
using work polynomial in|Y| on a CRCW PRAM or inO(logn) time on a EREW
PRAM. From the above lemma we can derive the following:

Theorem 3.3. Let (X,R) be a range space with VC-exponent bounded by e, for some
constant e> 0, and let n= |X|. Also, let 2 ≤ r < n be a given parameter, and let
k > 0 be an even integer parameter. Then, in the EREW PRAM model, for some constant
c > 0, the following can be constructed in the bounds claimed:

1. A (1/r )-approximation A of(X,R) of size2(r 2kne/k) in O((e+ k) logn) time
using O(2kne+k+1) work.

2. A (1/r )-net B of (X,R) of size2(rkne/k) in O((e + k) logn) time using
O(2kne+k+1) work.

Proof. The methods for constructing these sets are straightforward applications of the
bounded-independence derandomization technique usingS = R in Lemma 3.2. The
main idea is to set thes parameter in Lemma 3.2 so thatNY(r, S) < 1 andAY(r, S) < 1
(i.e., since they are integer values,NY(r, S) = 0 andAY(r, S) = 0), while |Y| is2(s),
with probability 1/2, and then derandomize the implied construction by the bounded-
independence derandomization technique. For example, each probability of the form
s/n can be approximated bydsq/ne/q, and there is a simple, effective method for
testing if a set satisfies the needed conditions to be a(1/r )-net or(1/r )-approximation
in O(logn) time using a linear number of processors. Thus, since|R| is O(ne), and the
probability space in the proof of Lemma 3.2 has sizeqk = O((2n)k), then performing
the(1/r )-net or(1/r )-approximation test for the setY determined by each point in the
probability space in parallel requiresO(2kne+k+1) processors. A constant fraction of
these points are guaranteed to yield satisfactory results, so by taking one such successful
test (arbitrarily) we can construct the desired set. Since all the test computations can
be performed inO(logn) time and selecting a single successful outcome can be done
in time O(log(2kne+k+1)) = O((e+ k) logn), the performance bounds of the theorem
follow.

This, in turn, implies the following:

Corollary 3.4. Let(X,R) be a range space with VC-exponent bounded by e, for some
constant e> 0,and let n= |X|. Also, let 2≤ r < n be a given parameter and letα > 0
be any fixed(small) constant. Then, in the EREW PRAM model, for some constant c> 0,
the following can be constructed in the bounds claimed:

1. A (1/r )-approximation A of(X,R) of size2(r 2nα) in O(logn) time using O(nc)

work with c= e(1+ 1/α)+ 1.
2. A (1/r )-approximation C of(X,R) of size2(r 2 logn) in O(log2 n) time using

O(ne(2+logn)+1) work.
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3. A (1/r )-net B of(X,R) of size2(rnα) in O(logn) time using O(nc) work with
c = e(1+ 1/α)+ 1.

4. A (1/r )-net D of(X,R) of size2(r logn) in O(log2 n) time using O(ne(2+logn)+1)

work.

Proof. Simply apply Theorem 3.3. ForA and B takek = e/α. For C and D take
k = e logn.

Actually, we can apply a simple “recursive refinement” technique to improve this to
the following:

Theorem 3.5. Let (X,R) be a range space with VC-exponent bounded by e, for some
constant e> 0,and let n= |X|. Also, let 2≤ r < n be a given parameter and letα > 0
be any fixed(small) constant. Then, in the EREW PRAM model, for some constant c> 0,
the following can be constructed in the bounds claimed:

1. A (1/r )-approximation A of(X,R) of size O(r 2+α) in O(logn) time using O(nc)

work with c= e(1+ (4+ 2 max{2, α})/α)+ 1.
2. A (1/r )-approximation C of(X,R) of size O(r 2 logr ) in O(logn+ log2 r ) time

using O(n9e+1+ r 9e log(cr)) work.
3. A (1/r )-net B of(X,R) of size O(r 1+α) in O(logn) time using O(nc) work with

c = e(1+ (4+ 2 max{2, α})/α)+ 1.
4. A (1/r )-net D of (X,R) of size O(r logr ) in O(logn + log2 r ) time using

O(n9e+1+ r 9e log(cr)) work.

Proof. The structure of the proof is to apply the previous corollary to refine recursively
our approximations to be of a size depending only onr , not n. The main idea of this
approach is to take advantage of an observation of Matouˇsek [47] on an additive property
of ε-approximations, which states that anε-approximation of aδ-approximation of a set
X is itself an(ε + δ)-approximation ofX. Thus, to construct the setA we proceed
as follows: If r ≥ n1/8, then we constructA immediately using Corollary 3.4(1) to
get a 1/r -approximation of sizeO(r 2nβ) whereβ = 8α. This yields a set of size
O(r 2+α) in time O(logn), which for the sake of an inductive argument we characterize
as being at mostb0 logn− b1 logr , for constantsb0 > b1 ≥ 1. Otherwise, ifr < n1/8,
then we recursively construct a(1/r 2)-approximationA′ of (X,R) of size at most
c1(r 2)2+α, for some constantc1 (to be defined below). By induction, this recursive call
takes time at mostb0 logn − b1 log(r 2). We then apply Corollary 3.4(1) to construct
a [(1/r ) − (1/r 2)]-approximationA of A′ with sizec0[r 2/(r − 1)]2c1(r 2)(2+α)β , for a
constantβ = α/(4+2α) < 1/2. By the additive property ofε-approximations, the setA
will be a(1/r )-approximation of(X,R). Moreover, if we choosec1 ≥ (4c0)

1/(1−β), then
|A| ≤ c1r 2+α. This final call to the method of Corollary 3.4 takes timeO(log |A|), which
is at mostb2 logr , for some constantb2 > 0. Thus, the total time required isb0 logn−
b1 log(r 2)+b2 logr , which is at mostb0 logn−b1 logr , if b1 ≥ b2. For the work, note that
the computation is a sequence of applications of Corollary 3.4(1) on sets of size rapidly
decreasing. At the bottom of the recursion (when the approximation size is largest),
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Corollary 3.4(1) is used withβ = 8α, while at the other steps Corollary 3.4(1) is used
with β = α/(4+2α). Hence the work isO(nc)with c = e(1+(4+2 max{2, α})/α)+1.

The setC is constructed similarly, in that we first construct the setA as above to be a
(1/2r )-approximation, with sayα = 1, and we then apply Corollary 3.4(2) to construct a
(1/2r )-approximation of even smaller size (we leave the details to the reader). Likewise,
for the setsB andD we first construct a(1/2r )-approximation and then find a(1/2r )-net
of that, taking advantage of the additional property that anε-net of aδ-approximation
of a setX is an(ε + δ)-net of X.

Note that our methods for constructingA andB are in the complexity class NC for
all values ofr , but our methods for constructingC and D are in NC only for constant
values ofr .

3.3. CRCW PRAM Algorithms

Unfortunately, we cannot immediately derivePoly(log logn)-time methods for the CRCW
PRAM from the above analysis, for checking if a givenY satisfies the condition for being
a (1/r )-approximation requiresÄ(logn/log logn) time using a polynomial number of
processor, by a simple reduction from the parity problem [9]. We can avoid this lower
bound, however, by checking this condition approximately rather than exactly.

To do this we use a fast method forλ-approximate counting[31], [33], where one
wishes to compute the sum of an array ofn bits with a relative error ofλ. That is, ifx is the
number of 1’s in the array, then we desire a valuex′ such thatx/(1+λ) ≤ x′ ≤ (1+λ)x.

Lemma 3.6[31]. Performingλ-approximate counting of an n-element Boolean array,
with λ = (log N)−b, can be done in O(1) time using O((n+ N) f (b)) work on a CRCW
PRAM, for any fixed constant b> 0.

We use this lemma to estimate the sizes|Y ∩ R|, |Y|, and|R|, all of which involve
computing the sum ofO(n) bits. We therefore denote each of the estimates we need as
|Y ∩ R|′, |Y|′, and|R|′, respectively. (We may assume that|X| is known explicitly.) Say
that a setY is λ-estimatedto be aδ-relativeε-approximation if∣∣∣∣ |Y ∩ R|′

|Y|′ −
|R|′
|X|

∣∣∣∣ ≤ δ |R|′|X| + ε.
Lemma 3.7. If Y is λ-estimated to be aδ-relative ε-approximation, then Y is a
(6λ+ 3δ)-relative2ε-approximation, providedλ ≤ 1/4.

Proof. SupposeY is λ-estimated to be aδ-relative ε-approximation. Observe that
|Y ∩ R|/|Y| ≤ (1 + λ)2|Y ∩ R|′/|Y|′ and that|R|′/|X| ≤ (1 + λ)|R|/|X|. Thus,
by the definition ofY, we can derive the following bound on| |Y ∩ R|/|Y| − |R|/|X| |:∣∣∣∣ |Y ∩ R|′

|Y|′ −
|R|′
|X|

∣∣∣∣+ ∣∣∣∣ |Y ∩ R|
|Y| −

|Y ∩ R|′
|Y|′

∣∣∣∣+ ∣∣∣∣ |R|′|X| − |R||X|
∣∣∣∣
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≤ δ(1+ λ) |R||X| + ((1+ λ)
2− 1)

|Y ∩ R|′
|Y|′ + λ

|R|
|X| + ε

= (λ+ (1+ λ)δ) |R||X| + λ(2+ λ)
|Y ∩ R|′
|Y|′ + ε.

We also know that

|Y ∩ R|′
|Y|′ ≤ (1+ δ) |R|

′

|X| + ε

≤ (1+ λ)(1+ δ) |R||X| + ε.

Thus, we can combine the above bounds to derive the following bound on| |Y∩R|/|Y|−
|R|/|X| |:

(λ+ (1+ λ)δ) |R||X| + λ(2+ λ)
(
(1+ λ)(1+ δ) |R||X| + ε

)
+ ε

= (λ+ (1+ λ)δ + λ(2+ λ)(1+ λ)(1+ δ)) |R||X| + (1+ λ(2+ λ)ε)

≤ (6λ+ 3δ)
|R|
|X| + 2ε,

providedλ ≤ 1/4.

Likewise, we have the following:

Lemma 3.8. If Y is anε-approximation, then Y will beλ-estimated to be a4λ-relative
2ε-approximation, if λ ≤ 1/4.

Proof. SupposeY is an ε-approximation. Then, observing that|Y ∩ R|′/|Y|′ ≤
(1+ λ)2|Y ∩ R|/|Y|, we can bound| |Y ∩ R|′/|Y|′ − |R|′/|X| | by∣∣∣∣ |Y ∩ R|

|Y| −
|R|
|X|

∣∣∣∣+ ∣∣∣∣ |Y ∩ R|′
|Y|′ −

|Y ∩ R|
|Y|

∣∣∣∣+ ∣∣∣∣ |R||X| − |R|′|X|
∣∣∣∣

≤ ε + λ(2+ λ) |Y ∩ R|
|Y| +

λ|R|′
|X|

≤ ε + λ(2+ λ)
( |R|
|X| + ε

)
+ λ|R|

′

|X|
≤ ε + λ(2+ λ)

(
(1+ λ)|R|′
|X| + ε

)
+ λ|R|

′

|X|
≤ ε(1+ λ(2+ λ))+ (λ(2+ λ)(1+ λ)+ λ) |R|

′

|X|
≤ 2ε + 4λ

|R|′
|X| ,

providedλ ≤ 1/4.



410 M. T. Goodrich and E. A. Ramos

Say thatY is λ-estimated to be anε-net if Y ∩ R 6= ∅ for eachR with |R|′ > ε|X|.
We make use of the following observation.

Lemma 3.9. If Y is λ-estimated to be anε-net, then Y is a(1+ λ)ε-net. If Y is an
ε-net, then Y will beλ-estimated to be a(1+ λ)ε-net.

These lemmas, together with previous results, imply the following:

Theorem 3.10. Let(X,R) be a range space with VC-exponent bounded by e, for some
constant e> 0, and let n= |X|. Also, let 2 ≤ r < n be a given parameter and let
α > 0be any fixed(small) constant. Then, in the CRCW PRAM model, for some constant
c > 0, any of the following can be constructed in the bounds claimed:

1. A (log N)−b-relative (1/r )-approximation A of(X,R) of size2(r 2nα) in O(1)
time using O(nc · (n+ N) f (b)) work with c= e(1+ 1/α).

2. A (log N)−b-relative(1/r )-approximation B of(X,R) of size2(r 2 logn) in O(1)
time using O(ne(2+logn) · (n+ N) f (b)) work.

3. A (1/r )-net C of(X,R) of size2(rnα) in O(1) time using O(nc) work with
c = e(1+ 1/α)+ f (1).

4. A (1/r )-net D of(X,R) of size2(r logn) in O(1) time using O(ne(2+logn)+ f (1))

work.

Proof. We begin with the setA. We can set the parameters= 2(r 2nα) in Lemma 3.2
so that any expecteds-sampleY is a (1/4r )-approximation with probability at least
1/2. By Lemma 3.8, this implies that in applying the bounded independence derandom-
ization technique there will be someY that isλ-estimated to be a 4λ-relative(1/2r )-
approximation. However, by Lemma 3.7, this in turn implies thatY is a (18λ)-relative
(1/r )-approximation. By takingλ = (log N)−(b+1), we therefore force such aY to be
a (log N)−b-relative(1/r )-approximation (forN larger than some constant). The rest
of the construction, then, is a straightforward (CRCW PRAM) implementation of the
bounded-independence derandomization technique following the argument of the proof
of Theorem 3.3. For the setC, using Lemma 3.9, it suffices to use estimates within a
constant factor (soN is a constant). The methods for constructing the other sets are
similar applications of the bounded-independence technique.

As in our EREW algorithms, we can apply a composition technique to improve the
size bounds in the above constructions. Unlike our EREW methods, however, our CRCW
PRAM size-efficient methods will not run quite as fast as the size-inefficient methods
of Theorem 3.10. Our methods are based in part on the following additive property for
δ-relativeε-approximations.

Lemma 3.11. If Y is aδ1-relativeε1-approximation for(X,R) and Z is aδ2-relative
ε2-approximation for(Y,R|Y), then Z is a(δ1 + δ2 + δ1δ2)-relative(ε1(1+ δ2)+ ε2)-
approximation for(X,R).
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Proof. Let R be a range inR. We can write∣∣∣∣ |Z ∩ R|
|Z| −

|R|
|X|

∣∣∣∣ ≤ ∣∣∣∣ |Z ∩ R|
|Z| −

|Y ∩ R|
|Y|

∣∣∣∣+ ∣∣∣∣ |Y ∩ R|
|Y| −

|R|
|X|

∣∣∣∣
≤ δ2

|Y ∩ R|
|Y| + ε2 + δ1

|R|
|X| + ε1

≤ δ2

(
(1+ δ1)

|R|
|X| + ε1

)
+ ε2 + δ1

|R|
|X| + ε1

= (δ1+ δ2+ δ1δ2)
|R|
|X| + ε1(1+ δ2)+ ε2,

which establishes the lemma.

We also use the following observation:

Lemma 3.12. If Y is a δ-relative ε1-approximation for(X,R) and Z is anε2-net
(Y,R|Y), then Z is an(ε1+ ε2)/(1− δ)-net for(X,R).

Our main CRCW PRAM result, then, is the following:

Theorem 3.13. Let(X,R) be a range space with VC-exponent bounded by e, for some
constant e> 0, and let n= |X|. Also, let 2 ≤ r < n be a given parameter and let
α > 0be any fixed(small) constant. Then, in the CRCW PRAM model, for some constant
c > 0, any of the following can be constructed in the bounds claimed:

1. A (log N)−b-relative (1/r )-approximation A of(X,R) of size O(r 2+α) in
O(log logn) time using O(nc·(n+N) f (b))work with c=e(1+(4+2 max{2,α})/α).

2. A (log N)−b-relative (1/r )-approximation C of(X,R) of size O(r 2 logr ) in
O(log logn) time using O(nce · (n+ N) f (b) + r c logr · (r + N) f (b)) work.

3. A (1/r )-net B of(X,R) of size O(r 1+α) in O(log logn) time using O(nce/α)work.
4. A (1/r )-net D of (X,R) of size O(r logr ) in O(log logn) time using

O(nce+ r c logn) work.

Proof. We address the construction of setA. We describe it as a recursive procedure. If
r ≥n1/8, then we apply Theorem 3.10 to construct a(2 log logn−log logr)(log N)−(b+1)-
relative(1/r )-approximation of size2(r 2+α) in O(1) time usingO((n+ N) f (b)) work.
For the purposes of the recursion, we refer to the running time of this method as being
b1 log logn − b2 log logr , for constantsb1 > b2 ≥ 1. If r < n1/8, then we recursively
construct a(2 log logn− log log(r 2))(log N)−(b+1)-relative(1/r 2)-approximationA′ of
size at mostc1(r 2)2+α, for some constantc1 ≥ 1 (which we set below). We inductively
assume this takes time at mostb1 log logn−b2 log log(r 2). We then apply Theorem 3.10
to construct a(log N)−(b+2)-relative [(1/r ) − (1/r 2)(3/2)]-approximationA of A′ in
O(1) additional time usingO((n+N) f (b+2))work. By Lemma 3.11A is a(2 log logn−
log logr )(log N)−b-relative (1/r )-approximation of(X,R). The size ofA is at most
c0[r 2/(r − 3/2)]2(c1r 4+2α)β ], which is at mostc1r 2+α, if we choose the constantsβ ≤
α/(4+ 2α) andc1 ≥ (16c0)

1/(1−β). Likewise, the total running time of constructing
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A is b1 log logn − b2 log log(r 2) + b3, for some constantb3 ≥ 1. This, of course, is
b1 log logn− b2 log logr , if b2 ≥ b3.

Our method for constructingC is first to constructA as a(log N)−(b+1)-relative
(1/2r )-approximation and then construct a(log N)−(b+1)-relative(1/3r )-approximation
of that. The setsB and D are constructed in a similar manner, in that we first find a
(1/5)-relative(2/5r )-approximation and then form a(2/5r )-net of that, which will be a
(1/r )-net for(X,R) by Lemma 3.12 (we leave the details to the reader).

4. O(nrO(1))-Work Approximation Finding

As already mentioned, the methods of the previous section run very fast in parallel. Their
work complexities are quite high, however. In this section we show how to reduce this
significantly.

Let (X,R) be a range space with VC-exponent bounded bye. We need another simple
lemma, which is an adaptation of an observation made by Matouˇsek [47].

Lemma 4.1. Suppose Y1,Y2, . . . ,Ym areδ-relativeε-approximations for disjoint range
spaces(X1,R|X1), (X2,R|X2), . . . , (Xm,R|Xm), respectively,where the Xi ’s have equal
cardinality, and X= X1 ∪ X2 ∪ · · · ∪ Xm. Then Y= Y1 ∪ Y2 ∪ · · · ∪ Ym is a δ-relative
ε-approximation for(X,R).

Proof. For anyR ∈ R, we can write∣∣∣∣ |Y ∩ R|
|Y| −

|R|
|X|

∣∣∣∣ = 1

m

∣∣∣∣∣ m∑
i=1

|Yi ∩ R|
|Yi | −

|R∩ Xi |
|Xi |

∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣∣∣ |Yi ∩ R|
|Yi | −

|R∩ Xi |
|Xi |

∣∣∣∣ .
Moreover,R∩ Xi is a range inR|Xi . Therefore, fori = 1, 2, . . . ,m,∣∣∣∣ |Yi ∩ R|

|Yi | −
|R∩ Xi |
|Xi |

∣∣∣∣ ≤ δ |R∩ Xi |
|Xi | + ε.

Thus, ∣∣∣∣ |Y ∩ R|
|Y| −

|R|
|X|

∣∣∣∣ ≤ 1

m

m∑
i=1

(
δ
|R∩ Xi |
|Xi | + ε

)
= δ
|R|
|X| + ε,

which establishes the lemma.

Given a range space(X,R)with bounded VC-exponent, and a parameter 2≤ r ≤ n,
we wish to develop an efficient divide-and-conquer method for constructing aδ0-relative
(1/r )-approximationY of (X,R) of sizeO(r 2+α) using onlyO(nr O(1)) work, for any
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small constantsδ0 > 0 andα > 0, wheren = |X|. We achieve this by designing an
algorithm,Approx , which almost achieves this goal, in that it has a good work bound,
but does not quite achieve the size bound (theApprox procedure is a modification of
earlier simple divide-and-conquer method of Matouˇsek [48]). We can then follow this
by a call to Theorem 3.13 to improve the size bound, while keeping the work bound at
O(nr O(1)).

We defineApprox in terms of potential functions,δ(n) andε(n), that dictate the
relative error and absolute error of the approximation that we return. Specifically, given
any fixed constantδ0 ≤ 1/4, Approx produces aδ(n)-relativeε(n)-approximation,Y,
of (X,R), where

δ(n) ≤ δ0− 1

µ logn
(1)

and

ε(n) ≤
(

logn− 1

logn

)(
µ logn− 1

µ logn

)
1

r
, (2)

whereµ is a constant strictly less than 1/2 f (1), where the functionf is as in Lemma 3.6.
This is, of course, a slightly stronger approximation than aδ0-relative(1/r )-approximation
would be, but this formulation will prove easier to work with in our recursive algorithm.

Algorithm Approx (r, (X,R)).

1. If n ≤ r 2, then returnX.
2. Otherwise, divideX into m equal-sized subsetsX1, X2, . . . , Xm and call

Approx (r ′, (Xi ,R|Xi )) recursively for eachi in parallel, wherer ′ = r and
m = nγ with 0 < γ < 1 being a constant to be set in the analysis. (Note: if
µ logn1−γ ≤ 1/δ0, then we do not recurse, but simply returnX, so as to preserve
the invariant of (1).)

3. LetYi be the set returned by recursive calli , and letY′ = Y1∪Y2∪· · ·∪Ym. Apply
Theorem 3.10 (not Theorem 3.13) to find aδ′(n)-relativeε′(n)-approximationY
of (Y′,R|Y′), where

δ′(n) = γ

2µ(1− γ ) logn

and

ε′(n) =
(

γ

2(1− γ ) logn

)
1

r
.

4. ReturnY.

Lemma 4.2. Approx produces aδ(n)-relative ε(n)-approximation Y of X of size
O(r 3nγ ). The work bound can be made O(nrc), for some constant c≥ 1, and the
running time is O(log logn) in the CRCW PRAM model.

Proof. Our proof is an inductive argument based upon Lemmas 4.1 and 3.11. In par-
ticular, we inductively assume, by Lemma 4.1, thatY′ is a δ(n1−γ )-relativeε(n1−γ )-
approximation, whereδ(n) andε(n) are defined as in (1) and (2). Moreover, we induc-
tively assume|Y′| is O(nγ r 3n(1−γ )γ ). By Lemma 3.11,Y will then be a(δ(n1−γ ) +
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δ′(n) + δ(n1−γ )δ′(n))-relative(ε(n1−γ )(1+ δ(n1−γ )) + ε′(n))-approximation. By our
definition ofδ′(n) we have

δ(n1−γ )+ δ′(n)+ δ(n1−γ )δ′(n) ≤ δ(n1−γ )+ 2δ′(n)

≤ δ0− 1

µ logn(1−γ )µ
+ γ

µ(1− γ ) logn

= δ0− 1

µ logn
= δ(n).

In addition, by our definition ofε′(n), we have thatε(n1−γ )(1+ δ(n1−γ )) + ε′(n) is
bounded by(
logn1−γ−1

logn1−γ

)(
µ logn1−γ−1

µ logn1−γ

)
1

r

(
1+ γ

2(1−γ )µ logn1−γ

)
+
(

γ

2(1−γ ) logn

)
1

r

≤
(

logn1−γ − 1

logn1−γ

)(
µ logn1−γ − 1

µ logn1−γ + γ

µ logn1−γ

)
1

r
+
(

γ

2 logn1−γ

)
1

r

=
(

logn1−γ − 1

logn1−γ

)(
µ logn− 1

µ logn

)
1

r
+
(

γ

2 logn1−γ

)
1

r

≤
(

logn1−γ − 1

logn1−γ + γ

logn1−γ

)(
µ logn− 1

µ logn

)
1

r

=
(

logn− 1

logn

)(
µ logn− 1

µ logn

)
1

r
= ε(n).

The running time of this algorithm is characterized by the recurrence

T (n) = T (n1−γ )+ b,

for some constantb ≥ 1, which implies thatT is O(log logn). To analyze the size bound,
we inductively assume that the size of the approximation returned by each recursive call
is at mostc1r 3n(1−γ )γ , for some constantc1 ≥ 1. Thus, by Theorem 3.10, the size of the
approximation produced can be made to be at mostc0(r logn)2(c1nγ r 3n(1−γ )γ )1/4. This
is at mostc1r 3nγ if c1 ≥ c4/3

0 . The work complexity,W(r, n), is therefore bounded by
the recurrence equation

W(r, n) ≤ nγW(r, n1−γ )+ O([nγ r 3n(1−γ )γ ]c · nµ f (1)),

wherec is the constant in the work bound of Theorem 3.10 (note that in this casec
depends only one, the bound on the VC-exponent). If we chooseγ to be a constant
strictly smaller than 1/4c, thenW(r, n) will be O(nr3c).

This lemma can in turn be used to derive work-efficient methods for constructing
approximating subsets, as the following theorem shows:
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Theorem 4.3. Let (X,R) be a range space with VC-exponent bounded by e, for some
constant e> 0. Also, let constantsα > 0 and0 < δ ≤ 1/4 be given. Then, for some
constant c> 0, the following sets can be produced in the bounds claimed in the CRCW
PRAM:

1. A δ-relative (1/r )-approximation A of(X,R) of size O(r 2+α) in O(log logn)
time using O(nrc) work.

2. A δ-relative(1/r )-approximation C of(X,R) of size O(r 2 logr ) in O(log logn)
time using O(nrc logr ) work.

3. A (1/r )-net B of(X,R) of size O(r 1+α) in O(log logn) time, using O(nrc)work.
4. A (1/r )-net D of(X,R) of size O(r logr ) in O(log logn) time using O(nrc logr )

work.

Proof. The result forA follows by using Lemma 4.2 to produce aδ/3-relative(1/2r )-
approximation of sizeO(r 3nβ), whereβ is the inverse of the constant in Theorem 3.13.
We follow this by a call to Theorem 3.13 to find aδ/3-relative(1/3r )-approximation of
that. This set will be aδ-relative(1/r )-approximation of(X,R), which is produced in
O(log logn) time usingO(nrc) work. The setsB, C, andD are constructed similarly,
using techniques that are now familiar.

For analogous results for the EREW PRAM model, we may use the following theorem:

Theorem 4.4. Let (X,R) be a range space with VC-exponent bounded by e, for some
constant e> 0. Also, let α be any positive constant. Then, for some constant c> 0, the
following sets can be produced in the bounds claimed in the EREW PRAM:

1. A(1/r )-approximation A of(X,R)of size O(r 2+α) in O(logn) time using O(nrc)

work.
2. A (1/r )-approximation C of(X,R) of size O(r 2 logr ) in O(logn+ log2 r ) time

using O(nrc logr ) work.
3. A (1/r )-net B of(X,R) of size O(r 1+α) in O(logn) time, using O(nrc) work.
4. A (1/r )-net D of (X,R) of size O(r logr ) in O(logn + log2 r ) time using

O(nrc logr ) work.

Proof. The method is similar to that used to derive the CRCW PRAM bounds, except
that in this case we use Theorem 3.5 (in Step 3) and defineApprox to produce a (0-
relative)ε(n)-approximation where

ε(n) =
(

logn− 1

logn

)
1

r
,

by defining

ε′(n) =
(

γ

logn1−γ

)
1

r
.

The time bound for such EREW PRAM implementation can be characterized by the
recurrenceT(r, n) ≤ T(r, n1−γ )+ O(logn), which isO(logn).
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In the next section we explore applications of these two theorems to fixed-dimensional
linear programming.

5. Linear Programming in Fixed Dimensions

Recall the geometric view of fixed-dimensional linear programming. For simplicity of
expression, we assume that the optimal pointp exists and is defined by the intersection of
exactlyd half-space boundaries. We also assume that the origin,o, is contained inP, the
polytope defined by the linear constraints. These assumptions can be removed with minor
modifications to our method (similar to those used, for example, by Seidel [65]). Without
loss of generality, we may additionally assume thatEv = (0, 0, . . . ,0,−1), i.e., we are
interested in the “lowest” vertex inP. Our method for findingp is inspired by the methods
of Ajtai and Megiddo [3] and Dyer [26], but is nevertheless quite different. We find the
optimal solutionp by calling the following recursive procedure asParLPd(X, 2n).

Procedure ParLPd(X, w).
Output: An optimal solutionp for X (using work that isO(w)).

1. Let n = |X|. If n ≤ n0, find the optimal solution by any “brute-force” method,
wheren0 is a constant set in the analysis, and return. Likewise, ifd = 1, then
compute the minimum of the numbers inX and return.

2. Compute a(1/r )-net Y for X of size O(r 1+α) (in the hyperplane set system),
where r = (w/n)1/c such thatc is a constant to be set in the analysis and
α is a sufficiently small constant. By Theorem 4.3, the time needed for this
step isO(log logn) in a CRCW PRAM implementation orO(logn) time in an
EREW PRAM implementation, by Theorem 4.4; the work needed for this step can
be madeO(w) if c is a constant larger than the constants of Theorems 4.3
and 4.4.

3. Compute the intersection of the half-spaces inY and a canonical triangulation
T [15] of this polyhedral region (with the origin as base apex), using a “brute-
force” method that usesO(r c) work. (In a CRCW implementation this can be
done inO(log logr ) time; an EREW implementation takesO(logr ) time. Both
implementations are simple applications of parallel minimum-finding [37], [43],
[61] and are left to the reader.)

4. UsingParLPd−1 as a subroutine, determine the simplexσ in T that containsp.
This is implemented as follows:

(a) For each simplexσ in T compute the intersection of the half-spaces inX
with each ofσ ’s (d− 1)-dimensional boundary faces. This takesO(1) time
with O(nr1+α) work, which isO(w) if c ≥ 1+ α.

(b) For each simplex boundary facef we useParLPd−1 to solve the lin-
ear program defined byf and the half-spaces that intersectf . Assum-
ing that ParLPd−1 uses linear work, this step can be implemented using
O((n/r )r (1+α)bd/2c) work, which isO(w) if c ≥ (1+ α)bd/2c − 1.

(c) Each point that forms a solution to the linear program for a boundary face
f of simplexσ belongs to a lineL f that intersectsσ . The simplex that
contains the true optimal pointp can therefore be determined inO(1) time
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by examining, for each simplexσ , how theL f lines for its faces intersectσ .
Sinced is a fixed constant, this step can be implemented usingO(n) work.

Thus, if c is a large enough constant (which may depend upond), then this step
can be implemented usingO(w) work.

5. Compress the array of half-spaces whose boundary intersects this simplexσ and
recursively callParLPd on this set of at mostn/r half-spaces. The work bound we
pass to this recursive call isw, unless this level in the recursion is equal toci+1, for
some integeri ≥ 1, in which case we pass the work boundw/21/c. (To implement
this step in the CRCW PRAM model we useλ-approximate compaction[31],
[34], [46], where one is given an arrayA with m of its locations “occupied” and
one wishes to map thesem distinguished elements to an arrayB of size(1+ λ)m.
The time bound isO(log logn) [31] using linear work. Of course, in the EREW
PRAM model this step can be easily implemented inO(logn) time via a parallel
prefix computation [37], [43], [61].)

Since this method always recurses in a regionσ guaranteed to contain the optimal
point and we include in the subproblem all half-spaces whose boundary intersectsσ , we
will eventually find the optimal pointp. To analyze the time complexity observe that for
every 2c level in the recursion the problem size will go fromn/r to at mostn/r 2. Thus,
the total depth in the recursion tree isO(log logn). For d = 2, therefore, the running
time in a CRCW PRAM implementation isO((log logn)2); hence, the running time
for d > 2 is O((log logn)d) in this model. An EREW PRAM implementation would
take O(logn log logn) time for d = 2; hence, the running time ford > 2 would be
O(logn(log logn)d−1) in this model. As we have already observed, we can setc so that
the work needed in each level of the recursion isO(w). Moreover, since we decreasew
by a constant factor everyc level in the recursion, the total work needed isO(n). This
gives us the following:

Theorem 5.1. Linear programming inRd can be solved using O(n) work and
O((log logn)d) time on a CRCW PRAM, or, alternatively, using O(n) work and
O(logn(log logn)d−1) time on an EREW PRAM, for fixed d.

6. Conclusion

We have given a general scheme for derandomizing random sampling efficiently in paral-
lel, and have shown how it can be used to solve the fixed-dimensional linear programming
problem efficiently in parallel. Interestingly, Amatoet al. [6], [7] have shown how to
use such methods to derive efficient parallel algorithms ford-dimensional convex hull
construction, planar segment intersection computation,(1/r )-cutting construction, and
d-dimensional point location. We suspect that there may be other applications as well.
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