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1. Introduction

The study of randomized algorithms and methods for reducing the amount of perfect
randomness needed for geometric algorithms has proven to be a very rich area of research
(e.g., see [1], [2], [4], [5], [13], [15], [22], [42], [57], and [58]). Indeed, randomized
geometric algorithms are typically simpler and more efficient than their deterministic
counterparts and studying the limitation of the randomness needed by such algorithms
often yields insights into the specific properties of randomization that are needed to
achieve this simplicity and efficiency.

Randomized algorithms in computational geometry most often exploit small-sized
random samples, and the derandomization of such algorithms is then done by (1) quan-
tifying the combinatorial properties needed by random samples, and (2) showing that
sets having these combinatorial properties can be constructed efficiently without using
randomization. Interestingly, most of the combinatorial properties needed by geometric
random samples can be characterized by two notions-e-tpgproximation[51], [68]
and thes-net[36], [51]. These concepts are defined for very general frameworks, where
one is given a set systeiX, R) consisting of a finite ground sek, and a setR,
of subsets ofX. The subsets ifR are often referred to amnges for R typically is
defined in terms of some well-structured geometry or combinatorics. A sWhisetn
g-approximation for X, R) if, for each rangeR € R,
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Relaxing this requirement a bit,is said to be an-net[36], [51] of (X, R) if YN R # ¢
for eachR € R such thaiR| > ¢|X|. This is clearly a weaker notion than that of an
g-approximation, for any-approximation is automatically astnet, but the converse
need not be true.

We generalize the-approximation definition to say that, given nonnegative param-
eters§ < 1 ande < 1, a subseY is aé-relative e-approximationif, for each range
ReR,
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This notion is a combined measure of the absolute and relative error betivedti/|Y|
and|R|/| X]|, and it is somewhat similar to a notion@mimannet al. [13] refer to as a
“sensitive” e-approximation: Note that this notion also subsumes that ofamet, for
anys-relativee-approximation is automatically a@/(1 — §))-net.

Our specific interest in this paper is in the design of fast and efficient deterministic
methods for constructing small-sizédelatives-approximations in parallel and apply-
ing these methods to fixed-dimensional linear programming. Our methods have other
applications as well, including fixed-dimensional convex hull and geometric partition
construction [6], [7], but these are beyond the scope of this paper.

1 Brénnimanret al. [13] call a subseA C X asensitives-approximationif | |AN R|/|A] — |R|/|X]|| <
(e/2)(e + /IRI/IX]).
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1.1. Previous Work on Derandomizing Geometric Algorithms

Before we describe our results, however, we review some related previous work. The
study of random sampling in the design of efficient computational geometry methods
really began in earnest with some outstanding early work of Clarkson [20], Haussler
and Welzl [36], and Clarkson and Shor [22]. One general type of geometric structure
that has motivated much of the derandomization research, and one that motivated the
development of the-approximation and-net notions for computational geometry, is
thegeometric partitior(e.g., see [2] and [51]). In this problem, one is given a collection
X of n hyperplanes irRY, and a parameter, and one wishes to construct a partition
of RY into O(r9) constant-sized cells so that each cell intersects as few hyperplanes
as possible. Random sampling can be applied to construct such a partitioning so that
each cell intersects at mash hyperplanes, foe = logr/r [22], [36]. Chazelle and
Friedman [15] show that in fact such a partitioning with= 1/r can be constructed
deterministically in polynomial time, and Berget al. [12] and Motwaniet al. [56]
show that similar geometric partitions can be constructed ferlogr /r in NC. (Recall
that NC denotes the class of problems solvable in polylogarithmic time using a poly-
nomial number of processors [37], [43].) Unfortunately, the running time of Chazelle
and Friedman’s algorithm is quite high, as are the time and processor bounds of the
implied parallel algorithms (they run i®(log* n) time using a number of processors
proportional to the time bound of Chazelle and Friedman’s algorithm).

A general framework for geometric partitioning emerges from the framework when
a range spaceX, R) has constant Vapnik—Chervonenkis [68] (VC)-dimension. Letting
R|a denote the sefAN R: R € R}, theVC-dimensiorof (X, R) is defined as the
maximum size of a subsét of X such thatR|5 = 2* (e.g., see [51]). A related and
simpler notion, however, is based upon #gmatter function

ar(M) = {|R[al: A< X, |Al =mj}.

In particular, we say thatX, R) hasVC-exponen{8], [14] bounded by &f 7 (m)

is O(m®). For example, if(X, R) is thehyperplane set systemhereX is a set ofn
hyperplanes iRY andR is the set of all combinatorially distinct ways of intersecting
hyperplanes with simplices, th&iX, R) has VC-exponent bounded dyd + 1). Inter-
estingly, the VC-exponent definition subsumes that of the VC-dimension, &, iR)
has VC-dimensior, then it has VC-exponent bounded &ws well [63], [68]. There
are several recent results that show that one can constfliat mapproximation of size
O(r?logr) for any range space with VC-exponent boundedebg time O(nr¢) for
some constart depending ore (e.g., see [13], [16], [47—[49], and [53]). Chazelle and
Matouwsek [16] give slower NC algorithms usir@(nr¢) work? that construct such sets
of size O(r2t«) for any fixed constant > 0.

2 Recall that thework done by a parallel algorithm is the total number of operations performed by all
processors, and it is never more than the product of the running time and the number of processors needed to
achieve that running time.
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1.2. Our Results on Parallel Geometric Derandomization

We give fast and efficient parallel algorithms for constructingets ands-relative ¢-
approximations. For example, our methods can be implemented in the CRCW PRAM
mode?f to run in O(loglogn) time usingO(nr¢) work to produces-relative (1/r)-
approximations of siz&(r2t«) for any fixed constant > 0 anda > 0, and some
constantc > 1. We also show how to find such approximations of sx@?logr)

using more time and work. In addition, our methods can be implemented in the EREW
PRAM model to run inO(logn) time usingO(nr¢) work to produce (O-relative(l/r)-
approximations of siz®(r 2+) for any fixed constant > 0. Thus, our methods improve

the previous size bounds from those achieved previously by the author [32] while also
improving the time bounds from those achieved previously by Chazelle and $&tou”
[16]. We also derive similar bounds for constructidgr )-nets. To demonstrate the utility

of this result, we show how it can be used to design a new efficient parallel method for
fixed-dimensional linear programming.

1.3. Fixed-Dimensional Linear Programming

The linear programming problem is central in the study of discrete algorithms. It has
been applied to a host of combinatorial optimization problems since the first efficient
algorithms for solving it were developed in the 1940s (e.qg., see [18], [23], [40], and [59]).
Geometrically, it can be viewed as the problem of locating a point that is maximal in a
givent direction in the polyhedral regioR defined by the intersection afhalf-spaces

in RY. Of particular interest is the case when the dimensionalifgprresponding to the
number of variables), is fixed, as occurs, for example, in several applications of linear
programming in geometric computing (e.g., see [16], [21], [29], [54], [55], and [60]) and
machine learning (e.g., see [10] and [11]). Indeed, a major contribution of computational
geometry research has been to show that fixed-dimensional linear programming can be
solved in linear time, starting with the seminal work of Dyer [27] and Megiddo [54], [55],
and following with subsequent work in the sequential domain concentrated primarily on
reducing the constant “hiding behind” the big-oh in these results (e.g., see [16], [19],
[21], [28], [39], [52], and [65]) or on building data structures for linear programming
queries (e.g., see [30] and [50]).

In the parallel domain, Alon and Megiddo [4] give analogous results, showing that
through the use of randomization a fixed-dimensional linear program can be solved
in O(1) time with very high probability usingn processors in a randomized CRCW
PRAM model. The existing deterministic parallel algorithms are not as efficient, how-
ever. Ajtai and Megiddo [3] give a determinist@((log logn)%)-time method, but it
has a suboptimab (n(loglogn)?) work bound and it is defined for the very power-

3 Recall that this is the synchronous shared-memory parallel model where processors are allowed to perform
concurrent reads and concurrent writes, with concurrent writes being resolved, say, by requiring all writing
processors to be writing the sam@mmorvalue (this common resolution rule is the one we use in this paper).
Alternatively, in the weaker EREW PRAM model processors may not concurrently access the same memory
location.
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ful parallel model that only counts “comparison” steps [67]. The only work-optimal
deterministic PRAM result we are familiar with is a method by Deng [24] for two-
dimensional linear programming that run€glog n) time usingO (n) work ona CRCW
PRAM. Recently, Dyer [26] has given a@(logn(log logn)9-1)-time method that uses
O(nlogn(log logn)?-1) work in the EREW PRAM model. In addition, we have recently
learned that Sen [66] has independently discovered a CRCW PRAM method that runs
in O((log logn)?+1) time usingO(n) work.

1.4. Our Results for Parallel Linear Programming

In this paper we give a deterministic parallel method for fixed-dimensional linear pro-
gramming that runs ir0((loglogn)?) time usingO(n) work in the CRCW PRAM
model. Thus, our method improves the work bound and the computational model of the
Ajtai-Megiddo method while matching their running time, which is also an improve-
ment over the time bound of Deng’s method doe 2. (It is also slightly faster than the
recent result by Sen, which uses an approach that is considerably different than that for
our method.) In addition, our method can be implemented in the EREW PRAM model
to run inO(logn(log logn)9-1) time usingO(n) work, which improves the work bound

of the parallel method by Dyer. At a high level our method is actually quite simple: we
efficiently derandomize a simple recursive procedure using our parallel procedure for
e-net construction.

The remainder of this paper is structured as follows. In the next section we review
some of the probabilistic background we will be using in subsequent sections. Since
a work-efficient parallel algorithm immediately implies an efficient sequential method,
we describe all of our procedures as parallel algorithms. We begin this discussion in
Section 3, where we give fast, but work-inefficient, parallel methods. In Section 4 we de-
scribe how to apply a divide-and-conquer strategy to make these methods work-efficient.
We give applications of these methods to fixed-dimensional linear programming in
Section 5, and we conclude in Section 6.

2. Probabilistic Preliminaries

Our approach to constructing small-sizédr )-nets and1/r)-approximations of range
spaces with bounded VC-exponent is to derandomize a straightforward probabilistic
algorithm that is based upon tiendom samplingechnique [20]. We perform this
derandomization using th®unded independenderandomization technique [5], [41],

[44], [45], [64], which assumes our algorithm uses random variables that ark-anibe
independent. Thus, before we give our methods, we review these concepts (see also [5]
and [57]).

2.1. Random Sampling

Since the probabilistic algorithm we wish to derandomize is based upon random sam-
pling, we begin by saying a few words about this technique. The generic situation is
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that one is given a seX of n objects and an integer parametgrand one wishes to
construct a random subs¥t c X of sizes. Sequentially, this is quite easy to do. In
this paper we assume such a sample is chosen by defining, for each elenmeit

in parallel, a random variabl¥; that is 1 with probabilitys/n; we use the rule that
X € Y if Xj = 1[12]. Note thata set gfY| = X3 + Xz + --- + Xp unique elements is
guaranteed, but its size may not be equa, talthough it is easy to see, by the linearity
of expectation, thaE(|Y]) = s.

2.2. k-Wise Independence

In order to apply the bounded-independence derandomization technique, we must restrict
our setX of random variables to be onkrwise independente., the variables in any
subsefy C X are guaranteed to be mutually independefwif < k. Given a seX of

n objects and an integer paramedewe define &-wise independent expected s-sample

of X to be a sample determined byk-wise independent indicator random variables,
X®, X, x®, wherex® = 1with probabilityp = s/n. Note that in this notation

X™ = X; hence, we may omit the superscript if the underlying random variables are
mutually independent.

Unfortunately, restricting our attention kawise independent indicator random vari-
ables prevents us from directly using the well-known and powerful Chernoff bounds [5],
[17], [35], [57] for bounding the tail of the distribution of their sum. Nevertheless, as
shown by Rompel [62] (see also [64]), we may derive something analogous:

Lemma 2.1[62]. Let X® be the sum of n k-wise independent random variables taking
on values in the rangp, 1], with © = E(X®), where k is a positive even integ&hen
there is a fixed constants 0 such that

Kk k2 k/2
Pr(IX(k)—ule)§C< “; ) :

foranyi > 0.

2.3. Derandomization via Bounded Independence

We are now ready to review thmunded independentechnique for derandomizing a
probabilistic algorithm [5], [41], [44], [45]. We use the parallel formulation of Luby [44],
which is based upon a combinatorial construction of Joffe [38] (see also [41]). In this
formulation, we assume we have a parallel probabilistic algoritRamdom, which is
designed so that all the randomization is contained in a sitiglce stepln addition,

we assume the following:

1. Random succeeds with constant probability even if the underlying random vari-
ables are onlk-wise independent.
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2. Each random variabl¥; takes on value$xy, o, ..., Xm}, wherem is bounded
by a polynomidt in n.

3. Thereisaprime numbgibounded by a polynomialim andintegers; 1,n; 2, . ..,
Ni m, such thatX; takes on valug; with probabilityn; j /g (with Z;“:l nij = d).
Of course, such a prime number can be easily foun@ {f) time in the CRCW
PRAM model using a polynomial number of processors.

Luby [44] shows that iiRandom satisfies all of these conditions, then a space*of
points may be constructed so that each point corresponds to an assignment of values to
X1, Xz, ..., Xn. Moreover, eachX; = x; with probabilityn; j /g and theX;’s arek-
wise independeritSince this space is polynomial in size, we may therefore derandomize
Randomby calling it on each of thg* sample points in parallel. Sin&andomsucceeds
with constant probability, at least one of these calls succeeds (in fact, a constant fraction
succeed). The output is given by one of these successful calls (where one breaks ties
arbitrarily). The benefit of using this approach is that it is very simple, and, although
the processor costs may be high, the speed of the algorithm is the same as that used in
Random (plus an additional term for performing anr” on all the results in parallel,
which can be done i©(1) time in the CRCW PRAM model an® (logn) time in the
EREW PRAM model [37], [43], [61]).

Having reviewed the necessary probabilistic preliminaries, we now turn to the problem
of constructing(1/r)-approximations andL/r)-nets.

3. O((nr)°®)-Work Approximation Finding

Before we describe our work-efficient method, however, we first describe some algo-
rithms for constructingl/r)-nets and1/r)-approximations that are fast but not work-
efficient. This approach to constructing small-sized approximations and nets of range
spaces with bounded VC-exponent is to derandomize a straightforward probabilistic
algorithm,Approx, which is based upon thrandom samplingechnique [20].

3.1. Geometric Random Samples

Let (X, R) be a given range space with VC-exponent bounded, figr some constant
e > 0. Given a parameter 2 r < |X|, a parametes that is greater than some fixed
constantsgy > 1, and a positive even integkrlet Y be ak-wise independent expected
s-sample ofX. We explore the probability that is an O(s)-sized (0-relative)1/r)-
approximation or(1/r)-net under various assumptions absatndk. The first lemma
establishes the probability thif| is ©(S).

4 In our usage eacl; will take a value from(0, 1}.
5 Recently, Dietzfelbinger [25] has given an alternative construction that does not make use of the avail-
ability of a primeq.
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Lemma 3.1. LetY be defined as abaweith k > 2 even Then
|1Y] —s| < max{Bc, 1}(sk+ k*)'?,

with probability at leastl — 1/8, for some constant & 0. In particular, if s > C(8)k,
for some constant @) > 0,then||Y| —s| = ®(kY2s'/?) and also| |[Y| — s| < s/2
with probability at leastL — 1/8.

Proof. Y is an expected-sample ofX determined byn indicator random variables.
Since|Y| has meany; = s, we may apply Lemma 2.1 to bound the probability that
does not satisfy the above size condition as

Pr( Y| — sl > (Bo)Yk(sk+ kH)Y?) < 1/8,

wherec is as in the lemma. The bounds claimed follow from this one. O

We therefore bound the probability thétis a (1/r)-net or a(1/r)-approximation.
In particular, letS be a subset oRR, and let Ay (r, S) denote the number of ranges
R € S thatY does not(1/r)-approximate(i.e., the number of range? € S such that
[IY N RJ/IY| = |R|/IX]|| > 1/r), and let\y (r, S) denote the number of rang&se S
suchthatR| > |X|/r butY N R = @. Of course, we desire these “error functions” to be
as small as possible. The next lemma explores how well a rantianhieves this goal
whenY is defined usinds-wise independent random variables.

Lemma 3.2. Let(X,R) be arange spac&siven a parameter G r < |X]|, for some
C > 0, a positive even integer kk n, and a parameter s> rk, let Y be a k-wise
independent expected s-sample ofaKd letS be a subset dR. Then the following is
true with probability at least/2:

1. s— O (kY?sY?) < |Y| < s+ ©(k¥?sY?) and in particular §2 < |Y| < 3s/2.
2. Ay(r, S) < cdf(ks+ k?)¥/2rk|S|/s for some constant & 0.
3. Ny (r, S) < c(2k)¥/?rk/2|8|/s/? for some constant & 0.

Proof.  Our proof is to show that properties 2 and 3 hold with probability at legst 5
each, given property 1, which also holds with probability at led@ét BVe can choose

B = 6 from Lemma 3.1 so that property 1 holds with probabili{¢5So, we assume

that|Y| iss 4 s/2, and consider the quantitdy (r, S). We can write

Av(r,8) =) Y,
ReS
whereYg is an indicator random variable foly*does not(1/r)-approximateR.” We
bound Ay (r, S) by considering its expectation, which, by the linearity of expectation, is
E(Av (. 8) =Y E(Yr) = > Pr(Yr=1).
ReS ReS

We therefore derive a bound for

PriYr = 1) = Pr(| [Y N Rl — [Y[(IRI/m)| > [Y]/r).
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Define random variabldd = |[Y N R| — |Y N R|(|R|/n) andV = |Y N (X\R)|(|R|/n).
Then

PriYr =1) =Pr(JU — V| > |Y]|/r).

Let uy = E(U) anduy = E(V) and note thajuy = uyv = (s|R|/n)(1 — |R|/n).
Thus,

PriYr =1) = Pr(U — py + uv — V| > [Y]/r).
It is easy to verify that this latter probability is bounded by
PrU — uul > [Y[/2r) + Pr(|V — vy | > [Y]/2r).

Note thatU = >, g Xi(1 — |R|/n) andV = 3, ¢ Xi(IR[/n). Thus, we may apply
Lemma 2.1 to bound this probability by

. 24k (s|R|/n) + k3]¥/2rk
Yk
for some constart, sinces > kr > 1 and|R| < n. Therefore,
E(Ay(r, S)) < c(d(ks+ kD) k) S| /s,

We may then apply Markov’s inequality (which has no independence assumptions) to
show

) < c(4¥(ks+ k?)¥/2rky sk

Pr(Ay(r, S) > 6c(4(ks+ kH)¥?rk)|S|/s%) < 1/6.
The bound foVy (r, S) is proved similarly, but we give the details here for complete-
ness. We can write
Ny (r,S) = Z ZR,
ReS&|R|>|X|/r
whereZg is an indicator random variable foiy“N R = @ but |R| > |X|/r.” By the
linearity of expectation,

EM(T.S) = Y EZr
ReS&|R|>n/r

Pr({ 1Y N Rl — (s/m R[] = (s/M)|R),
ReS&|R|>n/r

IA

wheren = | X|. Note thalY N R| = >, _g Xi. Thus, we may apply Lemma 2.1 to derive
k(s/n)|R| + K22
(s/m?|RI?
C(Zk)k/zr k/2/sk/2’

Pr(|[Y N Rl — (s/mIR[| = (s/M|R]) = ¢

IA

for some constart > 0, since|R| > n/r ands > rk. Therefore,
EWY (1, 8) < e8| /s,
and we may then apply Markov’s inequality to show that
Ny (1, S) < 6c(2k)K/2rki2| 5| /s/?
with probability 56. This completes the proof. O
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3.2. EREW PRAM Algorithms

Given this lemma, we can apply the bounded-independence derandomization technique
to derive deterministigl/r)-net and(1/r)-approximation construction methods for
range spaces with bounded VC-exponent. We asskinés computable ifD(1) time

using work polynomial inY| on a CRCW PRAM or inO(logn) time on a EREW
PRAM. From the above lemma we can derive the following:

Theorem 3.3. Let(X, R) be arange space with VC-exponent bounded, igresome
constant e> 0, and let n= |X|. Also, let2 < r < n be a given parameteand let
k > Obe an even integer paramet@&hen in the EREW PRAM moddbr some constant
¢ > 0, the following can be constructed in the bounds claimed

1. A (1/r)-approximation A of X, R) of size® (r2kn¥¥) in O((e + k) logn) time
using O(2¢ne+k+1) work.

2. A (1/r)-net B of (X, R) of size®(rkn®¥) in O((e + k)logn) time using
O(2¢net*+1y work

Proof. The methods for constructing these sets are straightforward applications of the
bounded-independence derandomization technigue dsiagR in Lemma 3.2. The

main idea is to set theparameter in Lemma 3.2 so th&f (r, S) < 1andAy(r,S) < 1

(i.e., since they are integer valuégy (r, S) = 0 and Ay (r, S) = 0), while|Y| is ©(s),

with probability 1/2, and then derandomize the implied construction by the bounded-
independence derandomization technique. For example, each probability of the form
s/n can be approximated bjsqg/n]/q, and there is a simple, effective method for
testing if a set satisfies the needed conditions to g ®)-net or(1/r)-approximation

in O(logn) time using a linear number of processors. Thus, siRdes O(n€), and the
probability space in the proof of Lemma 3.2 has sife= O((2n)%), then performing

the (1/r)-net or(1/r)-approximation test for the s&t determined by each point in the
probability space in parallel requiréd(2n®k+1) processors. A constant fraction of
these points are guaranteed to yield satisfactory results, so by taking one such successful
test (arbitrarily) we can construct the desired set. Since all the test computations can
be performed iO(logn) time and selecting a single successful outcome can be done
in time O(log(2n®*k+1)) = O((e + k) logn), the performance bounds of the theorem
follow. |

This, in turn, implies the following:

Corollary 3.4. Let(X, R) be arange space with VC-exponent bounded, lfigresome
constante> 0,and let n= | X|. Alsg let2 <r < n be a given parameter and let> 0
be any fixedsmall) constantThen in the EREW PRAM moddbr some constante 0,
the following can be constructed in the bounds claimed

1. A(1/r)-approximation A of X, R) of size® (r°n®) in O(logn) time using Qn°)
work withc=e(1+ 1/«a) + 1.

2. A (1/r)-approximation C of X, R) of size®(r2logn) in O(log?n) time using
O(ne(2+logn)+1) work.
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3. A(1/r)-net B of(X, R) of size®(rn*) in O(logn) time using @n°) work with
c=e(l+1/a)+1.

4. A(1/r)-net D of(X, R) of size®(r logn) in O(log? n) time using @ne(+ogm+1)
work.

Proof. Simply apply Theorem 3.3. FoA and B takek = e/«. For C and D take
k = elogn. O

Actually, we can apply a simple “recursive refinement” technique to improve this to
the following:

Theorem 3.5. Let(X, R) be arange space with VC-exponent bounded, bgresome
constante> 0,and let n= | X|. Alsg let2 <r < n be a given parameter and let> 0
be any fixedsmall) constantThen in the EREW PRAM moddbr some constant & 0,
the following can be constructed in the bounds claimed

1. A(1/r)-approximation A of X, R) of size Qr?+*) in O(logn) time using Qn°)
work withc=e(1+ (44 2max2, a})/a) + 1.

2. A (1/r)-approximation C of X, R) of size Qr2logr) in O(logn + log?r) time
using Q(n%+1 4 r%elogeny work.

3. A(1/r)-net B of(X, R) of size Qr*) in O(logn) time using Qn°) work with
c=el+ (4+2max2 a})/a) + 1.

4. A (1/r)-net D of (X, R) of size Qrlogr) in O(logn + log?r) time using
O(n9e+1 + r9e|og(cr)) work.

Proof. The structure of the proof is to apply the previous corollary to refine recursively
our approximations to be of a size depending only pnotn. The main idea of this
approach is to take advantage of an observation of Mato[#7] on an additive property

of e-approximations, which states thataapproximation of &-approximation of a set

X is itself an (e + §)-approximation ofX. Thus, to construct the s& we proceed

as follows: Ifr > n/8, then we construc immediately using Corollary 3.4(1) to

get a Yr-approximation of sizeD(r?n?) where = 8. This yields a set of size
O(r?+*) in time O(logn), which for the sake of an inductive argument we characterize
as being at modt, logn — by logr, for constantd, > b; > 1. Otherwise, if < n'/8,

then we recursively construct @/r?)-approximationA’ of (X, R) of size at most
c1(r?)?+* for some constant; (to be defined below). By induction, this recursive call
takes time at mosg logn — by log(r?). We then apply Corollary 3.4(1) to construct
a[(1/r) — (1/r?]-approximationA of A’ with sizeco[r2/(r — 1)]%c;(r?)@?+# for a
constanp = «/(4+2u) < 1/2. By the additive property af-approximations, the set{

will be a(1/r)-approximation of X, R). Moreover, if we choose;, > (4cp)Y1=# then

|A] < cir 2. This final call to the method of Corollary 3.4 takes ti@élog | A|), which

is at mosth, logr, for some constarii, > 0. Thus, the total time requiredlig logn —

by log(r?)+b, logr, which is at moshy logn—by logr, if by > by. For the work, note that

the computation is a sequence of applications of Corollary 3.4(1) on sets of size rapidly
decreasing. At the bottom of the recursion (when the approximation size is largest),
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Corollary 3.4(1) is used witl# = 8«, while at the other steps Corollary 3.4(1) is used
with 8 = a/(4+2a). Hence the work i© (n°) with ¢ = e(1+ (4+2max2, a}) /a) + 1.

The seC is constructed similarly, in that we first construct the Aets above to be a
(1/2r)-approximation, with sayg = 1, and we then apply Corollary 3.4(2) to construct a
(1/2r)-approximation of even smaller size (we leave the details to the reader). Likewise,
for the setdB andD we first construct &1/2r )-approximation and then find&,/2r )-net
of that, taking advantage of the additional property that-aret of as-approximation
of a setX is an(e + §)-net of X. O

Note that our methods for constructiigand B are in the complexity class NC for
all values ofr, but our methods for constructirg and D are in NC only for constant
values ofr.

3.3. CRCW PRAM Algorithms

Unfortunately, we cannotimmediately derRely(log logn)-time methods for the CRCW
PRAM from the above analysis, for checking if a givésatisfies the condition for being
a (1/r)-approximation require® (logn/log logn) time using a polynomial number of
processor, by a simple reduction from the parity problem [9]. We can avoid this lower
bound, however, by checking this condition approximately rather than exactly.

To do this we use a fast method forapproximate countind31], [33], where one
wishes to compute the sum of an arraydifits with a relative error of. That s, ifx is the
number of 1's in the array, then we desire a valusuch thak /(1+ 1) < X’ < (1+A)X.

Lemma 3.6[31]. PerformingA-approximate counting of an n-element Boolean array
with 2 = (log N)~, can be done in @1) time using Q(n 4+ N)®) work on a CRCW
PRAM for any fixed constant s 0.

We use this lemma to estimate the si?és0 R|, |Y|, and|R]|, all of which involve
computing the sum oD (n) bits. We therefore denote each of the estimates we need as
YN R/, Y|, and|R|’, respectively. (We may assume thAt is known explicitly.) Say
that a selY is A-estimatedo be as-relatives-approximation if

[YORY IRI” _ IRl
— - < +e.
Y1 IX X

Lemma3.7. If Y is A-estimated to be &-relative e-approximation then Y is a
(6) + 35)-relative 2¢-approximation providedx < 1/4.

Proof. SupposeY is r-estimated to be a-relative e-approximation. Observe that
IY N RI/IY] < (14 0)3Y N R/'/IY] and that|R|’/|X| < (1 + A)|R|/|X|. Thus,
by the definition ofY, we can derive the following bound ofY N R|/|Y| — |R|/|X] |

IYNR" [R/
Y1 [X]

Jr‘IYF\RI IYNR'l |IR" IR
Y] Y1 IX] X
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<sa+n B L@z ORC G R,
X] N TN

= (/\+(1+A)5)|R| +/\(2+A)|Ym Rf
IX] Y|

+ €.

We also know that

IYORI" _ (1+5)|R|/
Yy - X

+¢

A+1)A+ 6)E +&.
[X]

IA

Thus, we can combine the above bounds to derive the following bountonR|/|Y| —
IRI/IX]:
IR| IR|

O+ (1+A)6)% A2 <<1+x)(1+5>W +e) +e
G A2 At nd ey R

X + A+ 124+ 1)e)

R
< (6A + 35)% + 2¢,

providedi < 1/4. O

Likewise, we have the following:

Lemma 3.8. IfY isang-approximationthen Y will ber-estimated to be 4i-relative
2¢-approximationif A < 1/4.

Proof SupposeY is an e-approximation. Then, observing that N R|/|Y| <
(L+2)?Y N R|/|Y], we can bound|Y N R|’/|Y| = |[R|'/|X]| | by

‘|YOR| IR| ’|YOR|’ IYAR[| [IR [R/
[Y] [X] Y| [Y] [X] IX]
IYAR| AR/

+
[Y] |X]

<e+A24+A)

<e+r24+1) (ﬂ—i-s) + MRY
IX] [X]

1+ M|RY AR/

[X] [X]
IRl
IX]|

=e(@+r22+1)+A2+MHA+A) +2)

IR’
IX]’

providedi < 1/4. O

< 2¢+4A
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Say thaty is A-estimated to be asrnet if Y N R # ¢ for eachR with |R|" > ¢|X].
We make use of the following observation.

Lemma 3.9. IfY is A-estimated to be an-net then Y is a(1 + A)e-net If Y is an
e-net then Y will bex-estimated to be &1 + A)s-net

These lemmas, together with previous results, imply the following:

Theorem 3.10. Let(X, R) be arange space with VC-exponent bounded byresome
constant e> 0, and let n= |X]. Alsg let2 < r < n be a given parameter and let
a > 0be any fixedsmall) constantThen in the CRCW PRAM moddbr some constant
¢ > 0, any of the following can be constructed in the bounds claimed

1. A (log N)~P-relative (1/r)-approximation A of X, R) of size®(r?n®) in O(1)
time using @n° - (n + N) f®) work with c= e(1 + 1/«).

2. A(log N)P-relative(1/r)-approximation B of X, R) of size® (r2logn) in O(1)
time using Qne+°9m . (n 4 N) F®) work.

3. A(1/r)-net C of (X, R) of size®(rn%) in O(1) time using @n°) work with
c=e(l+1/a)+ f).

4. A (1/r)-net D of(X, R) of size®(r logn) in O(1) time using Q@ne@*+ogm+f(d))
work.

Proof. We begin with the sef\. We can set the parame&e= ©(r°n®) in Lemma 3.2

so that any expectestsampleY is a (1/4r)-approximation with probability at least
1/2. By Lemma 3.8, this implies that in applying the bounded independence derandom-
ization technique there will be sométhat isi-estimated to be axdrelative (1/2r)-
approximation. However, by Lemma 3.7, this in turn implies tfias a (18))-relative
(1/r)-approximation. By taking. = (log N)~®+, we therefore force such¥ito be

a (log N)~P-relative (1/r)-approximation (forN larger than some constant). The rest

of the construction, then, is a straightforward (CRCW PRAM) implementation of the
bounded-independence derandomization technique following the argument of the proof
of Theorem 3.3. For the s&, using Lemma 3.9, it suffices to use estimates within a
constant factor (sdN is a constant). The methods for constructing the other sets are
similar applications of the bounded-independence technique. O

As in our EREW algorithms, we can apply a composition technique to improve the
size bounds in the above constructions. Unlike our EREW methods, however, our CRCW
PRAM size-efficient methods will not run quite as fast as the size-inefficient methods
of Theorem 3.10. Our methods are based in part on the following additive property for
8-relativee-approximations.

Lemma 3.11. IfY is ad;-relativee;-approximation for(X, R) and Z is as,-relative
gp-approximation for(Y, R|y), then Z is a(8; + 8, + 8182)-relative (e1(1 + 82) + &2)-
approximation for(X, R).



Bounded-Independence Derandomization of Geometric Partitioning 411

Proof. LetRbe arange ifk. We can write

1ZAR| |R| 1ZAR| IYNR|| [IYNR IR
Tixi| = v T X

|Z] |X] |Z] Y [X]
<8|YmR|+ +8|R|+
< 02 &2 1o, T €1

[Y] [X]
< ((14—31)@ +€1> + & + 51ﬂ + &1
[X] [X]
3 IR
= (61+62+ 5152)m + e1(1+ 82) + &2,
which establishes the lemma. O

We also use the following observation:

Lemma 3.12. If Y is a§-relative e1-approximation for(X, R) and Z is ane;-net
(Y, R|y), then Z is an(e; + £2)/(1 — §)-net for (X, R).

Our main CRCW PRAM result, then, is the following:

Theorem 3.13. Let(X, R) be arange space with VC-exponent bounded byrsome
constant e> 0, and let n= |X]|. Alsg let2 < r < n be a given parameter and let
a > 0be any fixedsmall) constantThen in the CRCW PRAM moddbr some constant
¢ > 0, any of the following can be constructed in the bounds claimed

1. A (logN)~P-relative (1/r)-approximation A of(X,R) of size Qr2+®) in
O(log logn) time using @n®-(n+N) f®) work with c=e(1+(4+2 max2,a}) /).

2. A (log N)~P-relative (1/r)-approximation C of(X, R) of size Qr?logr) in
O(log logn) time using @n°e. (n + N)f® 4 rcloar (v 1 N)f®) work

3. A(1/r)-net B of(X, R) of size Qr ***) in O(log logn) time using Qn°¥*) work.

4. A (1/r)-net D of (X,R) of size Qrlogr) in O(loglogn) time using
O(n®€ + rcloany work.

Proof. We address the construction of getWe describe it as a recursive procedure. If
r >n'/8 then we apply Theorem 3.10 to constru¢2#og logn—log logr) (log N)~®+b-
relative(1/r)-approximation of siz€ (r %) in O(1) time usingO((n+ N)f®) work.
For the purposes of the recursion, we refer to the running time of this method as being
by loglogn — by log logr, for constantd; > b, > 1. If r < n/8, then we recursively
construct &2 log logn — log log(r 2)) (log N)~®+D-relative(1/r 2)-approximationA’ of
size at most; (r2)%+*, for some constart; > 1 (which we set below). We inductively
assume this takes time at mbstog logn — b, log log(r 2). We then apply Theorem 3.10
to construct alog N)~®+2-relative [1/r) — (1/r?)(3/2)]-approximationA of A’ in
O(1) additional time using ((n+ N) F®+2) work. By Lemma 3.11Ais a(2 log logn —

log logr)(log N)~P-relative (1/r )-approximation of(X, R). The size ofA is at most
Co[r?/(r — 3/2)]%(cer #24)#], which is at most;r 2, if we choose the constangs<
a/(4 4 22) andc; > (16cy)Y 1P, Likewise, the total running time of constructing
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A is by loglogn — by loglog(r?) + bs, for some constartts; > 1. This, of course, is
b, loglogn — b, log logr, if by > ba.

Our method for constructing is first to constructA as a(log N)~®+D-relative
(1/2r)-approximation and then construatiag N)~®+V-relative(1/3r )-approximation
of that. The set8 and D are constructed in a similar manner, in that we first find a
(1/5)-relative(2/5r )-approximation and then form(@/5r )-net of that, which will be a
(1/r)-net for (X, R) by Lemma 3.12 (we leave the details to the reader). |

4. O(nrPD)-Work Approximation Finding

As already mentioned, the methods of the previous section run very fast in parallel. Their
work complexities are quite high, however. In this section we show how to reduce this
significantly.

Let (X, R) be arange space with VC-exponent boundee We need another simple
lemma, which is an adaptation of an observation made by Mato[#7].

Lemmad4.l. SupposeY, Y, ..., Yyares-relatives-approximations for disjointrange
spaceg X1, Rlx,), (X2, Rlx,); - - - » (Xm, Rlx,,), respectivelywhere the Xs have equal
cardinality,and X= X; U XoU---U Xpn. Then Y=Y, U Y, U - .- U Yy is as-relative
g-approximation for( X, R).

Proof. ForanyR € R, we can write

YOR R} _ 1 Xm:IYiﬂRI |IRN X
Y] IX] m|= [Yil Il
12'": IYi NR|[RN X
T m&< | Y Xl |
Moreover,RN X; is arange iR |x, . Therefore, foi =1,2,..., m,

‘IYiﬂRI IRN Xl IRN Xi|
— <

il IXil 7 Xl
Thus,
IYNR] |R] 18 IRN X;|
‘ MIIXI SE;<5 X “)
=5ﬂ+8,
IXI
which establishes the lemma. O

Given arange spade, R) with bounded VC-exponent, and a parameter 2 < n,
we wish to develop an efficient divide-and-conquer method for constructisigedative
(1/r)-approximationy of (X, R) of size O(r2*¢) using onlyO(nr°®) work, for any
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small constantsy, > 0 anda > 0, wheren = |X|. We achieve this by designing an
algorithm,Approx, which almost achieves this goal, in that it has a good work bound,
but does not quite achieve the size bound @pprox procedure is a modification of
earlier simple divide-and-conquer method of MatekiT48]). We can then follow this

by a call to Theorem 3.13 to improve the size bound, while keeping the work bound at
O(nroMy,

We defineApprox in terms of potential functionsi(n) ande(n), that dictate the
relative error and absolute error of the approximation that we return. Specifically, given
any fixed constanty < 1/4, Approx produces & (n)-relatives(n)-approximation,Y,
of (X, R), where

1
1) 8o — 1
(n) < éo rlogn D
and
e(n) < logn — 1\ /ulogn—1 } @
logn nlogn r

wherey is a constant strictly less thapZf (1), where the functiorf is asin Lemma 3.6.
Thisis, of course, a slightly stronger approximation thégieelative(1/r )-approximation
would be, but this formulation will prove easier to work with in our recursive algorithm.

Algorithm Approx (r, (X, R)).

1. If n < r?, then returnX.

2. Otherwise, divideX into m equal-sized subsetXi, Xo, ..., Xy and call
Approx (r’, (Xi, R|x;)) recursively for each in parallel, wherer’ = r and
m = n” with 0 < ¥ < 1 being a constant to be set in the analysis. (Note: if
wlognt=v < 1/8,, then we do not recurse, but simply retinso as to preserve
the invariant of (1).)

3. LetY, be the setreturned by recursive ¢aknd letY’ = Y; UY,U- - -UYp,. Apply
Theorem 3.10 (not Theorem 3.13) to find’én)-relativee’ (n)-approximationy
of (Y, R|y/), where

__r

2u(1—y)logn

)y — Y 1
‘= (5= iogn) ¢

§'(n) =

and

4. Returny.

Lemma4.2. Approx produces ajs(n)-relative e(n)-approximation Y of X of size
O(r3n?). The work bound can be made(@°¢), for some constant ¢ 1, and the
running time is @log logn) in the CRCW PRAM model

Proof. Our proof is an inductive argument based upon Lemmas 4.1 and 3.11. In par-
ticular, we inductively assume, by Lemma 4.1, tNatis a §(n*~7)-relative e (n*~7)-
approximation, wheré(n) ande(n) are defined as in (1) and (2). Moreover, we induc-
tively assumgY’| is O(n”r3n®-7r), By Lemma 3.11Y will then be a(8(n*"") +
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8 (n) + 8(n*7)8'(n))-relative (s (N*=7)(1 + §(n*7)) + £'(n))-approximation. By our
definition of§’(n) we have

s(nY7) +8'(n) +8(n*7)8'(n) < (7)) +28'(n)

1 Y
= %o plogn@=» g * u(l—y)logn
5 1
= 7 Llogn
= §(n).

In addition, by our definition ot’(n), we have that(n*7)(1 + §(n*"7)) + ¢/(n) is
bounded by

(s ) (oo ) 1 (0 za i) * (a )

logni-v wlognl-v 2(1-y)ulogni-v 2(l—y)logn/ r

lognt~” — 1\ [/plognt7” —1 y 1 y 1
logni-r ) ( wlognl-r + wlognl- V) + <2Iogn1 V> r

logn*™” — 1\ /ulogn—1\ 1 Y 1
_+ — —
logni-v wlogn r 2lognt-v J r

IA

logni- V—l Y wlogn — 1\ 1
lognl-v Iog ni-v wlogn r

logn — 1Y\ /plogn—1\ 1
logn wlogn r

(n).

)

The running time of this algorithm is characterized by the recurrence
T(n)=Tn"7)+b,

for some constart > 1, which implies thaf is O(log logn). To analyze the size bound,

we inductively assume that the size of the approximation returned by each recursive call
is at mostcyr 3n=)7 for some constarg; > 1. Thus, by Theorem 3.10, the size of the
approximation produced can be made to be at mggsiog n)?(cin”r3n1—17)1/4 This

is at mostcir3n? if ¢ > 03/3 The work complexityW(r, n), is therefore bounded by

the recurrence equation
W(r, n) < n”W(r, n*") + O(n”r3n@r7c. prf @y

wherec is the constant in the work bound of Theorem 3.10 (note that in this case
depends only or, the bound on the VC-exponent). If we chogsdo be a constant
strictly smaller than 4c, thenW(r, n) will be O(nr¥°). O

This lemma can in turn be used to derive work-efficient methods for constructing
approximating subsets, as the following theorem shows:



Bounded-Independence Derandomization of Geometric Partitioning 415

Theorem 4.3. Let(X, R) be arange space with VC-exponent bounded, igresome
constant e> 0. Alsg, let constantsx > 0 and0 < § < 1/4 be given Then for some
constant ¢~ 0, the following sets can be produced in the bounds claimed in the CRCW
PRAM

1. A s-relative (1/r)-approximation A of(X, R) of size Qr?t®) in O(loglogn)
time using @nr¢) work.

2. As-relative (1/r)-approximation C of X, R) of size Qr?logr) in O(log logn)
time using Qnr¢'°9") work.

3. A(1/r)-net B of(X, R) of size Qr *™*) in O(log logn) time, using O(nr ) work.

4. A (1/r)-net D of(X, R) of size Qr logr) in O(log logn) time using @nrc'°9r)
work

Proof. The result forA follows by using Lemma 4.2 to produce A3-relative(1/2r )-
approximation of siz&(r 3n?), whereg is the inverse of the constant in Theorem 3.13.
We follow this by a call to Theorem 3.13 to findsa3-relative(1/3r )-approximation of
that. This set will be @-relative (1/r)-approximation of( X, R), which is produced in
O(loglogn) time usingO(nr®) work. The setdB, C, andD are constructed similarly,
using techniques that are now familiar. O

Foranalogous results forthe EREW PRAM model, we may use the following theorem:

Theorem 4.4. Let (X, R) be arange space with VC-exponent bounded, bgresome
constant e> 0. Alsg let « be any positive constanthen for some constant & 0, the
following sets can be produced in the bounds claimed in the EREW PRAM

1. A(1/r)-approximation A of X, R) of size Qr2*¢) in O(logn) time using @nr°)
work

2. A(1/r)-approximation C of X, R) of size Qr2logr) in O(logn + log?r) time
using Q(nre'°9) work.

3. A(1/r)-net B of(X, R) of size Qr*®) in O(logn) time, using O(nr¢) work.

4. A (1/r)-net D of (X, R) of size Qrlogr) in O(logn + log?r) time using
O(nrc'9ry work

Proof. The method is similar to that used to derive the CRCW PRAM bounds, except
that in this case we use Theorem 3.5 (in Step 3) and défiipeox to produce a (0-
relative)e(n)-approximation where

logn—1\ 1
S(n)_< logn >F’

Py Y 1
e = (Iogn1V> r

The time bound for such EREW PRAM implementation can be characterized by the
recurrence (r, n) < T(r, n*~7) + O(logn), which isO(logn). O

by defining
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Inthe next section we explore applications of these two theorems to fixed-dimensional
linear programming.

5. Linear Programming in Fixed Dimensions

Recall the geometric view of fixed-dimensional linear programming. For simplicity of
expression, we assume that the optimal ppiekists and is defined by the intersection of
exactlyd half-space boundaries. We also assume that the odgimcontained irP, the
polytope defined by the linear constraints. These assumptions can be removed with minor
modifications to our method (similar to those used, for example, by Seidel [65]). Without
loss of generality, we may additionally assume that (0,0,...,0, 1), i.e., we are
interested in the “lowest” vertex iR. Our method for findingp is inspired by the methods

of Ajtai and Megiddo [3] and Dyer [26], but is nevertheless quite different. We find the
optimal solutionp by calling the following recursive procedure BarLP4(X, 2n).

Procedure ParLP4(X, w).
Output An optimal solutionp for X (using work that iSO (w)).

1. Letn = |X|. If n < nyg, find the optimal solution by any “brute-force” method,
whereng is a constant set in the analysis, and return. Likewisd, # 1, then
compute the minimum of the numbersXhand return.

2. Compute a1/r)-netY for X of size O(r**®) (in the hyperplane set system),
wherer = (w/n)¥¢ such thatc is a constant to be set in the analysis and
« is a sufficiently small constant. By Theorem 4.3, the time needed for this
step isO(loglogn) in a CRCW PRAM implementation oD (logn) time in an
EREW PRAM implementation, by Theorem 4.4; the work needed for this step can
be madeO(w) if ¢ is a constant larger than the constants of Theorems 4.3
and 4.4.

3. Compute the intersection of the half-space¥iand a canonical triangulation
7 [15] of this polyhedral region (with the origin as base apex), using a “brute-
force” method that use®(r¢) work. (In a CRCW implementation this can be
done inO(loglogr) time; an EREW implementation také€3(logr) time. Both
implementations are simple applications of parallel minimum-finding [37], [43],
[61] and are left to the reader.)

4. UsingParLPy_; as a subroutine, determine the simptein 7 that containgp.

This is implemented as follows:

(a) For each simplex in 7 compute the intersection of the half-spacesin
with each ofo’s (d — 1)-dimensional boundary faces. This taka€l) time
with O(nri+®) work, which isO(w) if ¢ > 1+ «.

(b) For each simplex boundary fack we useParLP4_; to solve the lin-
ear program defined by and the half-spaces that intersefct Assum-
ing thatParLP4_; uses linear work, this step can be implemented using
O((n/r)r A+eLd/2)y work, which isO(w) if ¢ > (1+«)|d/2] — 1.

(c) Each point that forms a solution to the linear program for a boundary face
f of simplexo belongs to a lineL¢ that intersectsr. The simplex that
contains the true optimal poimt can therefore be determined®(1) time
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by examining, for each simplex, how thel ; lines for its faces interseet.

Sinced is a fixed constant, this step can be implemented uSifig) work.
Thus, ifc is a large enough constant (which may depend upethen this step
can be implemented using@(w) work.

5. Compress the array of half-spaces whose boundary intersects this sirrguheix
recursively calParLP 4 on this set of at most/r half-spaces. The work bound we
passto this recursive callis, unless this level in the recursion is equatite- 1, for
some integer > 1, in which case we pass the work boung/¢. (To implement
this step in the CRCW PRAM model we ugeapproximate compactiof81],
[34], [46], where one is given an arraywith m of its locations “occupied” and
one wishes to map thesedistinguished elements to an arrByof size(1+ A)m.
The time bound i©(log logn) [31] using linear work. Of course, in the EREW
PRAM model this step can be easily implemente®ifiog n) time via a parallel
prefix computation [37], [43], [61].)

Since this method always recurses in a regioguaranteed to contain the optimal
point and we include in the subproblem all half-spaces whose boundary interseets
will eventually find the optimal poinp. To analyze the time complexity observe that for
every Z level in the recursion the problem size will go frawir to at mosin/r?2. Thus,
the total depth in the recursion tree@log logn). Ford = 2, therefore, the running
time in a CRCW PRAM implementation i©((log logn)?); hence, the running time
ford > 2 is O((loglogn)%) in this model. An EREW PRAM implementation would
take O(lognloglogn) time ford = 2; hence, the running time fa > 2 would be
O(logn(log logn)?~1) in this model. As we have already observed, we cae setthat
the work needed in each level of the recursio@igv). Moreover, since we decrease
by a constant factor evexylevel in the recursion, the total work neededdsn). This
gives us the following:

Theorem 5.1. Linear programming inRY can be solved using @) work and
O((loglogn)?) time on a CRCW PRAMor, alternatively using Qn) work and
O(logn(log logn)d-1) time on an EREW PRANDbr fixed d

6. Conclusion

We have given a general scheme for derandomizing random sampling efficiently in paral-
lel, and have shown how it can be used to solve the fixed-dimensional linear programming
problem efficiently in parallel. Interestingly, Amasi al. [6], [7] have shown how to

use such methods to derive efficient parallel algorithmsifdimensional convex hull
construction, planar segment intersection computatibyfr,)-cutting construction, and
d-dimensional point location. We suspect that there may be other applications as well.
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