
Bounded Least General Generalization

Ondřej Kuželka, Andrea Szabóová, and Filip Železný

Faculty of Electrical Engineering, Czech Technical University in Prague
Technicka 2, 16627 Prague, Czech Republic
{kuzelon2,szaboand,zelezny}@fel.cvut.cz

Abstract. We study a generalization of Plotkin’s least general general-
ization. We introduce a novel concept called bounded least general gen-
eralization w.r.t. a set of clauses and show an instance of it for which
polynomial-time reduction procedures exist. We demonstrate the practi-
cal utility of our approach in experiments on several relational learning
datasets.

1 Introduction

Methods for construction of hypotheses in relational learning can be broadly
classified into two large groups: methods based on specialization, so-called top-
down methods, and methods based on generalization, so-called bottom-up meth-
ods. Our main motivation is to be able to learn clauses in a bottom-up manner
more efficiently when we assume that there exist solutions to the learning prob-
lem from some fixed potentially infinite set. In this paper we describe a novel
bottom-up method based on Plotkin’s least general generalization operator [1].
We start by describing generalized versions of θ-subsumption and θ-reduction.
Then we define a generalized version of least general generalization and we show
that its reduced form can be computed in polynomial time w.r.t. practically rel-
evant classes of clauses such as those with bounded treewidth. Informally, if a
learning problem has a solution from a given set of clauses, such as clauses with
bounded treewidth, then some equally good solution not necessarily from that
set can be found using bounded least general generalizations. We demonstrate
practical utility of the approach in experiments on several datasets.

2 Preliminaries: Subsumption, CSP, Treewidth

A first-order-logic clause is a universally quantified disjunction of first-order-
logic literals. We treat clauses as disjunctions of literals and as sets of literals
interchangeably. The set of variables in a clause A is written as vars(A) and the
set of all terms by terms(A). Terms can be variables or constants. A substitution
θ is a mapping from variables of a clause A to terms of a clause B. If A and B are
clauses then we say that A θ-subsumes B, if and only if there is a substitution
θ such that Aθ ⊆ B. If A �θ B and B �θ A, we call A and B θ-equivalent
(written A ≈θ B). The notion of θ-subsumption was introduced by Plotkin as

F. Riguzzi and F. Železný (Eds.): ILP 2012, LNAI 7842, pp. 116–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Bounded Least General Generalization 117

an incomplete approximation of implication. Let A and B be clauses. If A �θ B
then A |= B but the other direction of the implication does not hold in general.
If A is a clause and if there is another clause R such that A ≈θ R and |R| < |A|
then A is said to be θ-reducible. A minimal such R is called θ-reduction of A.

An important tool exploited in this paper, which can be used for learning
clausal theories, is Plotkin’s least general generalization (LGG) of clauses. A
clause C is said to be a least general generalization of clauses A and B (denoted
by C = LGG(A,B)) if and only if C �θ A, C �θ B and for every clause D such
that D �θ A and D �θ B it holds D �θ C. A least general generalization of
two clauses C, D can be computed in time O(|C| · |D|) [2]. Least general gener-
alization can be used as a refinement operator in searching for hypotheses [3,4].
Basically, the search can be performed by iteratively applying LGG operation
on examples or on already generated LGGs. A problem of approaches based on
least general generalization is that the size of a LGG of a set of examples can
grow exponentially in the number of examples. In order to keep the LGGs rea-
sonably small θ-reduction is typically applied after a new LGG of some clauses
is constructed [4]. Application of θ-reduction cannot guarantee that the size of
LGG would grow polynomially in the worst case, however, it is able to reduce
the size of the clauses significantly in non-pathological cases.

Constraint satisfaction [5] with finite domains represents a class of problems
closely related to the θ-subsumption problems. This equivalence of CSP and
θ-subsumption has been exploited by Maloberti and Sebag [6] who used off-the-
shelf CSP algorithms to develop a fast θ-subsumption algorithm.

Definition 1 (Constraint Satisfaction Problem). A constraint satisfaction
problem is a triple (V ,D, C), where V is a set of variables, D = {D1, . . . , D|V|} is
a set of domains of values (for each variable v ∈ V), and C = {C1, . . . , C|C|} is a
set of constraints. Every constraint is a pair (s,R), where s (scope) is an n-tuple
of variables and R is an n-ary relation. An evaluation of variables θ satisfies a
constraint Ci = (si, Ri) if siθ ∈ Ri. A solution is an evaluation that maps all
variables to elements in their domains and satisfies all constraints.

The CSP representation of the problem of deciding A �θ B has the follow-
ing form. There is one CSP variable Xv for every variable v ∈ vars(A). The
domain of each of these CSP variables contains all terms from terms(B). The
set of constraints contains one k-ary constraint Cl = (sl, Rl) for each literal
l = predl(t1, . . . , tk) ∈ A. We denote by Ivar = (i1, . . . , im) ⊆ (1, . . . , k) the
indexes of variables in arguments of l (the other arguments might contain con-
stants). The scope sl of the constraint Cl is (Xti1

, . . . , Xtim) (i.e. the scope
contains all CSP variables corresponding to variables in the arguments of literal
l). The relation Rl of the constraint Cl is then constructed in three steps.

1. A set Ll is created which contains all literals l′ ∈ B such that l �θ l′ (note
that checking θ-subsumption of two literals is a trivial linear-time operation).

2. Then a relation R∗
l is constructed for every literal l ∈ A from the arguments

of literals in the respective set Ll. The relation R∗
l contains a tuple of terms

(t′1, . . . , t
′
k) if and only if there is a literal l′ ∈ Ll with arguments (t′1, . . . , t

′
k).

118 O. Kuželka, A. Szabóová, and F. Železný

3. Finally, the relation Rl of the constraint Cl is then the projection of R∗
l

on indexes Ivar (only the elements of tuples of terms which correspond to
variables in l are retained).

Next, we exemplify this transformation process.

Example 1 (Converting θ-subsumption to CSP). Let us have clauses A and B
as follows

A = hasCar(C) ∨ hasLoad(C,L) ∨ shape(L, box)

B = hasCar(c) ∨ hasLoad(c, l1) ∨ hasLoad(c, l2) ∨ shape(l2, box).

We now show how we can convert the problem of deciding A �θ B to a CSP
problem. Let V = {C,L} be a set of CSP-variables and let D = {DC , DL} be
a set of domains of variables from V such that DC = DL = {c, l1, l2}. Further,
let C = {ChasCar(C), ChasLoad(C,L), Cshape(L,box)} be a set of constraints with
scopes (C), (C,L) and (L) and with relations {(c)}, {(c, l1), (c, l2)} and {(l2)},
respectively. Then the constraint satisfaction problem given by V , D and C rep-
resents the problem of deciding A �θ B as it admits a solution if and only if
A �θ B holds.

The Gaifman (or primal) graph of a clause A is the graph with one vertex for
each variable v ∈ vars(A) and an edge for every pair of variables u, v ∈ vars(A),
u �= v such that u and v appear in a literal l ∈ A. Similarly, we define Gaifman
graphs for CSPs. The Gaifman graph of a CSP problem P = (V ,D, C) is the
graph with one vertex for each variable v ∈ V and an edge for every pair of
variables which appear in a scope of some constraint c ∈ C. Gaifman graphs can
be used to define treewidth of clauses or CSPs.

Definition 2 (Tree decomposition, Treewidth). A tree decomposition of a
graph G = (V,E) is a labeled tree T such that: (i) every node of T is labeled by a
non-empty subset of V , (ii) for every edge (v, w) ∈ E, there is a node of T with
label containing v, w, (iii) for every vertex v ∈ V , the set of nodes of T with labels
containing v is a connected subgraph of T . The width of a tree decomposition T
is the maximum cardinality of a label in T minus 1. The treewidth of a graph G
is the smallest number k such that G has a tree decomposition of width k. The
treewidth of a clause is equal to the treewidth of its Gaifman graph. Analogically,
the treewidth of a CSP is equal to the treewidth of its Gaifman graph.

For example, all trees have treewidth 1, cycles have treewidth 2, rectangular n×n
grid-graphs have treewidth n. Any graph with treewidth 1 is a forest. An illus-
tration of Gaifman graphs of two exemplar clauses and their tree-decompositions
is shown in Table 1. Note that tree decompositions are not unique. That is why
treewidth is defined as the maximum cardinality of a label minus 1. Treewidth
is usually used to isolate tractable sub-classes of NP-hard problems. Constraint
satisfaction problems with treewidth bounded by k can be solved in polynomial
time by the k-consistency algorithm1 [8]. For constraint satisfaction problems

1 In this paper we follow the conventions of [7]. In other works, e.g. [8], what we call
k-consistency is known as strong k + 1-consistency.

Bounded Least General Generalization 119

Table 1. An illustration of Gaifman graphs and tree-decompositions of clauses

Clause Gaifman graph Tree decomposition

← atm(A, h)∧
bond(A,B, 1) ∧ atm(B, c)∧
bond(B,C, 2) ∧ atm(C, o)

A B C
A, B

B, C

← bond(A,B, 1)∧
bond(B,C, 1) ∧ bond(C,D, 1)∧
bond(D,E, 1) ∧ bond(E,A, 1) A

B C

E D

A, C, E

A, B, CC, D, E

with generally unbounded treewidth, k-consistency is only a necessary but not
a sufficient condition to have a solution. If the k-consistency algorithm returns
false for a CSP problem P then P is guaranteed to have no solutions. So, equiv-
alently, if the problem is soluble then k-consistency always returns true. If it
returns true then the problem may or may not have some solutions. Finally, if
the k-consistency algorithm returns true and P has treewidth bounded by k then
P is guaranteed to have a solution.

The following description of the k-consistency algorithm is based on the pre-
sentation by Atserias et al. [7]. Let us have a CSP P = (V ,D, C) where V is
the set of variables, D is the set of domains of the variables and C is the set
of constraints. A partial solution ϑ is an evaluation of variables from V ′ ⊆ V
which is a solution of the sub-problem P ′ = (V ′,D, C). If ϑ and ϕ are partial
solutions, we say that ϕ extends ϑ (denoted by ϑ ⊆ ϕ) if Supp(ϑ) ⊆ Supp(ϕ)
and V ϑ = V ϕ for all V ∈ Supp(ϑ), where Supp(ϑ) and Supp(ϕ) denote the
sets of variables which are affected by the respective evaluations ϑ and ϕ. The
k-consistency algorithm then works as follows:

1. Given a constraint satisfaction problem P = (V ,D, C) and a positive integer
k.

2. Let H be the collection of all partial solutions ϑ with |Supp(ϑ)| < k + 1.
3. For every ϑ ∈ H with |Supp(ϑ)| ≤ k and every V ∈ V , if there is no ϕ ∈ H

such that ϑ ⊆ ϕ and V ∈ Supp(ϕ), remove ϑ and all its extensions from H .
4. Repeat step 3 until H is unchanged.
5. If H is empty return false, else return true.

A basic property of k-consistency that we will also need is the following. If the k-
consistency algorithm returns true for a CSP problem then it will also return true
for any problem created from the original problem by removing some variables
and some constraints, i.e. with a subproblem. This can be seen by noticing that if

120 O. Kuželka, A. Szabóová, and F. Železný

the k-consistency algorithm starts with a set H of partial solutions and returns
true then it must also return true if it starts with a superset of this set. The
set of partial solutions of the subproblem must necessarily be a superset of the
set of partial solutions of the original problem projected on the variables of the
subproblem (from monotonicity of constraints).

It is easy to check that if a clause A has treewidth bounded by k then also the
CSP representation of the problem of deciding A �θ B has treewidth bounded
by k for any clause B. It is known that due to this and due to the equivalence of
CSPs and θ-subsumption, the problem of deciding θ-subsumption A �θ B can
be solved in polynomial time when clause A has bounded treewidth.

Proposition 1. We say that clause A is k-consistent w.r.t. clause B (denoted
by A �k B) if and only if the k-consistency algorithm executed on the CSP
representation of the problem of deciding A �θ B returns true. If A has treewidth
at most k and A�k B then A �θ B.

Proof. Follows directly from the solubility of CSPs with bounded treewidth
by the k-consistency algorithm [7] and from the equivalence of CSPs and θ-
subsumption shown earlier in this section.

3 Bounded Subsumption

In this section, we introduce bounded versions of θ-subsumption and develop
methods for working with them. We start by defining x-subsumption and x-
equivalence which are weaker versions of θ-subsumption and θ-equivalence.

Definition 3 (x-subsumption, x-equivalence). Let X be a possibly infinite
set of clauses. Let A, B be clauses not necessarily from X. We say that A x-
subsumes B w.r.t. X (denoted by A �X B) if and only if (C �θ A) ⇒ (C �θ B)
for every clause C ∈ X. If A �X B and B �X A then A and B are called
x-equivalent w.r.t. X (denoted by A ≈X B). For a given set X, the relation �X

is called x-subsumption w.r.t. X and ≈X is called x-equivalence w.r.t. X.

Conventional θ-subsumption is a special case of x-subsumption. It is an
x-subsumption w.r.t. the set of all clauses. It is not hard to check that x-
subsumption is a transitive and reflexive relation on clauses and that x-
equivalence is an equivalence-relation on clauses. Definition 3 provides no efficient
way to decide x-subsumption between two clauses as it demands θ-subsumption
of an infinite number of clauses to be tested in some cases. However, for many
practically relevant sets of clauses X , there is a relation called x-presubsumption
which implies x-subsumption and has other useful properties as we shall see later
(for example, it allows quick finding of reduced versions of clauses etc.).

Definition 4 (x-presubsumption). Let X be a set of clauses. If �X is the
x-subsumption w.r.t. X and �X is a relation such that: (i) if A�XB and C ⊆ A
then C �X B, (ii) if A ∈ X, ϑ is a substitution and Aϑ�x B then A �θ B, (iii)
if A �θ B then A �X B. Then we say that �X is an x-presubsumption w.r.t.
the set X.

Bounded Least General Generalization 121

The next proposition shows that if X is a set of clauses and �X is an
x-presubsumption w.r.t. X then �X provides a sufficient condition for x-
subsumption w.r.t. X .

Proposition 2. Let X be a set of clauses. If �X is x-subsumption on X and
�X is an x-presubsumption w.r.t. X then (A �X B) ⇒ (A �X B) for any two
clauses A, B (not necessarily from X).

Proof. We need to show that if A �x B then (C �θ A) ⇒ (C �θ B) for all
clauses C ∈ X . First, if A�xB and C ��θ A then the proposition holds trivially.
Second, C �θ A means that there is a substitution ϑ such that Cϑ ⊆ A. This
implies Cϑ �X B using the condition 1 from definition of x-presubsumption.
Now, we can use the second condition which gives us C �θ B (note that C ∈ X
and Cϑ�X B).

We will use this proposition in the next section where we deal with bounded
reduction of clauses. We will use it for showing that certain procedures which
transform clauses always produce clauses which are x-equivalent w.r.t. a given
set X .

In the experiments presented in this paper, we use x-presubsumption w.r.t.
bounded-treewidth clauses based on k-consistency algorithm.

4 Bounded Reduction

Proposition 2 can be used to check whether two clauses are x-equivalent w.r.t.
a given set of clauses X . It can be therefore used to search for clauses which
are smaller than the original clause but are still x-equivalent to it. This process,
which we term x-reduction, will be an essential tool in the bottom-up relational
learning algorithm presented in this paper.

Definition 5 (x-reduction). Let X be a set of clauses. We say that a clause
̂A is an x-reduction of clause A if and only if ̂A �θ A and A �X

̂A (where �X

denotes x-subsumption w.r.t. X) and if this does not hold for any clause B � ̂A

(i.e. if there is no B � ̂A such that B �θ A and A �X B).

For a given clause, there may be even smaller x-equivalent clauses than its x-
reductions but those might be more specific than the original clause which would
be a problem for computing bounded least general generalizations (introduced
later in this paper). There may also be multiple x-reductions differing by their
lengths for a single clause.

Example 2. Let X = {C} be the set containing just the clause C = e(V,W) ∨
e(W,X)∨ e(X,Y)∨ e(Y, Z). Let us have another clause A = e(A,B)∨ e(B,C)∨
e(C,A) for which we want to compute its x-reduction w.r.t. the set X . We can
check relatively easily (e.g. by enumerating all subsets of literals from A) that
the only x-reduction of A is A itself (up to renaming of variables). However,
there is also a smaller clause x-equivalent to A and that is A′ = e(X,X). The

122 O. Kuželka, A. Szabóová, and F. Železný

x-equivalence of A and A′ follows from the fact that C �θ A and C �θ A′ and
there is no other clause other than C in the set X . It might seem that the clauses
A and A′ are x-equivalent only because the set X used in this example is rather
pathological but, in fact, the two clauses are also x-equivalent w.r.t. the set of
all clauses with treewidth at most 1.

In order to be able to compute x-reductions, we would need to be able to decide
x-subsumption. However, we very often have efficient decision procedures for
x-presubsumption, but not for x-subsumption. Importantly, if there is an x-
presubsumption �X w.r.t. a set X decidable in polynomial time then there is a
polynomial-time algorithm for computing good approximations of x-reductions.
We call this algorithm literal-elimination algorithm.

Literal-Elimination Algorithm:

1. Given a clause A for which the x-reduction should be computed.
2. Set A′ := A, CheckedLiterals := {}.
3. Select a literal L from A′\CheckedLiterals. If there is no such literal, return

A′ and finish.
4. If A�X A′ \ {L} then set A′ := A′ \ {L}, else add L to CheckedLiterals.
5. Go to step 3.

The next proposition states formally the properties of the literal-elimination
algorithm. It also gives a bound on the size of the reduced clause which is output
of the literal-elimination algorithm.

Proposition 3. Let us have a set X and a polynomial-time decision procedure
for checking �X which is an x-presubsumption w.r.t. the set X. Then, given a
clause A on input, the literal-elimination algorithm finishes in polynomial time
and outputs a clause ̂A satisfying the following conditions:

1. ̂A �θ A and A �X
̂A where �X is an x-subsumption w.r.t. the set X.

2. | ̂A| ≤ | ̂Aθ| where ̂Aθ is a θ-reduction of a subset of A’s literals with maximum
length.

Proof. We start by proving ̂A �θ A and A �X
̂A. This can be shown as follows.

First, A �X A′ holds in any step of the algorithm which also implies A �X A′

using Proposition 2 and consequently also A �X
̂A because ̂A = A′ in the last

step of the algorithm. Second, ̂A �θ A because ̂A ⊆ A. Now, we prove the second
part of the proposition. What remains to be shown is that the resulting clause ̂A
will not be bigger than ̂Aθ. Since ̂A ⊆ A and A �θ

̂Aθ, it suffices to show that ̂A
cannot be θ-reducible. Let us assume, for contradiction, that it is θ-reducible. If
̂A was θ-reducible, there would have to be a literal L ∈ ̂A such that ̂A �θ

̂A\{L}.
The relation �X satisfies (A �θ B) ⇒ (A�X B) therefore it would also have to

hold ̂A �X
̂A \ {L}. However, then L should have been removed by the literal-

elimination algorithm which is a contradiction with ̂A being output of it. The
fact that the literal-elimination algorithm finishes in polynomial time follows
from the fact that, for a given clause A, it calls the polynomial-time procedure
for checking the relation �X at most |A| times (the other operations of the
literal-elimination algorithm can be performed in polynomial time as well).

Bounded Least General Generalization 123

So, the output ̂A of the literal elimination algorithm has the same properties as
x-reduction (̂A �θ A and A �X

̂A) with one difference and that is that it may

not be minimal in some cases, i.e. that there may be some other clause B � ̂A
and having these properties.

5 Bounded Least General Generalization

In this section, we show how x-reductions in general, and the literal-elimination
algorithm in particular, can be used in bottom-up approaches to relational learn-
ing. We introduce a novel concept which we term bounded least general gener-
alization. This new concept generalizes Plotkin’s least general generalization of
clauses.

Definition 6 (Bounded Least General Generalization). Let X be a set of
clauses. A clause B is said to be a bounded least general generalization of clauses
A1, A2, . . . , An w.r.t. the set X (denoted by B = LGGX(A1, A2, . . . , An)) if
and only if B �θ Ai for all i ∈ {1, 2, . . . , n} and if for every other clause C ∈ X
such that C �θ Ai for all i ∈ {1, 2, . . . , n}, it holds C �θ B.

The set of all bounded least general generalizations of clauses A1, A2, . . . An

w.r.t. a set X is a superset of the set of conventional least general generalizations
of these clauses. This set of all bounded least general generalizations of clauses
A1, A2, . . . An is also a subset of the set of all clauses which θ-subsume allA1, A2,
. . . An. There are two main advantages of bounded least general generalization
over the conventional least general generalization. The first main advantage is
that the reduced form of bounded least general generalization can be computed
in polynomial time for many practically interesting sets X . The second main
advantage is that this reduced form can actually be smaller than the reduced
form of conventional least general generalization in some cases.

It is instructive to see why we defined bounded least general generalization
in this particular way and not in some other, seemingly more meaningful, way.
Recall that our main motivation in this paper is to be able to learn clauses more
efficiently when we know (or assume) that there exist solutions to the learning
problem (clauses) from some fixed potentially infinite set. Having this motivation
in mind, one could argue that, for example, a more meaningful definition of
bounded least general generalization should require the resulting clause to be
from the set X . However, least general generalization would not exist in many
cases if defined in this way, which is demonstrated in the next example.

Example 3. Let X = {C1, C2, . . . } be a set of clauses of the following form: C1 =
e(A1, A2), C2 = e(A1, A2) ∨ e(A2, A3), C3 = Let us also have the following
two clauses: A = e(K,L)∨ e(L,K), B = e(K,L)∨ e(L,M)∨ e(M,K). We would
like to find a clause from X which would be their least general generalization
but this is impossible for the following reason. Any clause from X θ-subsumes
both A and B but none of them is least general because for any Ci ∈ X we
have Ci+1 ��θ Ci, Ci+1 �θ A and Ci+1 �θ B. On the other hand, bounded least

124 O. Kuželka, A. Szabóová, and F. Železný

general generalization, as actually defined, always exists which follows trivially
from the fact that the conventional least general generalization as computed by
Plotkin’s algorithm is also a bounded least general generalization.

Note that we would have to face the same problems even if X consisted of
more general clauses, for example, ifX consisted of clauses of treewidth bounded
by k or of acyclic clauses etc, so they are not caused by some specificities of the
rather artificial set X .

The reduced forms of bounded least general generalizations can often be com-
puted in polynomial time using the literal-elimination algorithm.

Proposition 4. Let X be a set of clauses and let �X be an x-presubsumption
w.r.t. the set X then the clause

Bn = litelimX(LGG(An, litelimX(LGG(An−1, litelimX(LGG(An−2, . . .)))))

is a bounded least general generalization of clauses A1, A2, . . . , An w.r.t. X
(here, litelimX(. . .) denotes calls of the literal-elimination algorithm using �X).

Proof. First, we show that B �θ Ai for all i ∈ {1, 2, . . . , n} using induction on n.
The base case n = 1 is obvious since then B1 = A1 and therefore B1 �θ A1. Now,
we assume that the claim holds for n−1 and we will show that then it must also
hold for n. First, Bn = LGG(An, Bn−1) θ-subsumes the clausesA1, . . . , An which
can be checked by recalling the induction hypothesis and definition of LGG.
Second, litelimk(LGG(An, Bn−1)) must also θ-subsume the clauses A1, . . . , An

because litelimk(LGG(An, Bn−1)) ⊆ LGG(An, Bn−1).
Again using induction, we now show that C �θ Bn for any C ∈ X which

θ-subsumes all Ai where i ∈ {1, . . . , n}. The base case n = 1 is obvious since
then B1 = A1 and therefore every C which θ-subsumes A1 must also θ-subsume
B1. Now, we assume that the claim holds for n − 1 and we prove that it must
also hold for n. That is we assume that

C′ �θ Bn−1 = litelimX(LGG(An−1, litelimX(LGG(An−2, litelimX(. . .)))))

for any C′ ∈ X which θ-subsumes the clauses A1, A2, . . . , An−1. We show that
then it must also hold C �E Bn = litelimX(LGG(An, Bn−1)) for any C ∈ X
which θ-subsumes the clauses A1, A2, . . . , An. We have C �θ LGG(An, Bn−1)
because C �θ Bn−1 which follows from the induction hypothesis and because any
clause which θ-subsumes bothAn andBn−1 must also θ-subsumeLGG(An, Bn−1)
(from the definition of LGG). It remains to show that C also θ-subsumes
litelimX(LGG(An, Bn−1)). This follows from

LGG(An, Bn−1) �X litelimX(LGG(An, Bn−1))

(which is a consequence of Proposition 3) because if

LGG(An, Bn−1) �X litelimX(LGG(An, Bn−1))

Bounded Least General Generalization 125

then

(C �θ LGG(An, Bn−1)) ⇒ (C �θ litelimX(LGG(An, Bn−1)))

for any clause C ∈ X (this is essentially the definition of x-subsumption).

One of the classes of clauses w.r.t. which the reduced forms of bounded LGGs
can be computed efficiently is the class of clauses with bounded treewidth. What
we need to show is that there is a polynomial-time decidable x-presubsumption
relation. In the next proposition, we show that k-consistency algorithm [7] can
be used to obtain such an x-presubsumption.

Proposition 5. Let k ∈ N and let �k be a relation on clauses defined as follows:
A �k B if and only if the k-consistency algorithm run on the CSP-encoding
(described in Section 2) of the θ-subsumption problem A �θ B returns true. The
relation �k is an x-presubsumption w.r.t. the set Xk of all clauses with treewidth
at most k.

Proof. We need to verify that �k satisfies the conditions stated in Definition 4.

1. If A�k B and C ⊆ A then C �k B. This holds because if the k-consistency
algorithm returns true for a problem then it must also return true for any of
its subproblems (recall the discussion in Section 2). It is easy to check that
if C ⊆ A are clauses then the CSP problem encoding the θ-subsumption
problem C �θ B is a subproblem of the CSP encoding of the θ-subsumption
problem A �θ B. Therefore this condition holds.

2. If A ∈ X, ϑ is a substitution and Aϑ�k B then A �θ B. The CSP encoding
of the problem A �θ B is a subproblem of the problem encoding Aϑ �θ

B, in which there are additional constraints enforcing consistency with the
substitution ϑ (because the set of constraints of the former is a subset of the
constraints of the latter). Therefore if Aϑ�k B then also A�k B and, since
A ∈ X , it also holds A �θ B.

3. If A �θ B then A �k B. This is a property of k-consistency (recall the
discussion in Section 2).

6 Experiments

In this section, we describe experiments with a simple learning method based
on three main ingredients: (i) bounded least general generalization w.r.t. clauses
of treewidth 1, (ii) sampling and (iii) propositionalization. The method is very
simple once we use the machinery introduced in the previous sections. It re-
peats the following process for each different class label Ki until a specified
number of features covering different subsets of examples is reached: It sam-
ples a random set of k examples {e1, . . . , ek} with class label Ki. Then it com-
putes clauses C1 = litelim(LGGX(e1, e2)), C2 = litelim(LGGX(C1, e3)), . . . ,
litelim(LGGX(Ck−2, ek)) and stores them. The LGGs are taken w.r.t. the set
X of all clauses with treewidth 1 having constants in arguments specified by a

126 O. Kuželka, A. Szabóová, and F. Železný

simple language bias. In the end, it computes extensions of the stored clauses
(i.e. computes the sets of examples covered by particular clauses). The con-
structed clauses and their extensions give rise to an attribute-value table in
which attributes are clauses and the values of these attributes are Boolean val-
ues indicating whether a clause covers an example. This attribute-value table
can be then used to learn an attribute-value classifier such as decision tree or
random forest.

Computation of attribute-value tables is the only place where the exponential-
time θ-subsumption is used. Using the rather costly θ-subsumption as a covering
relation only for construction of the attribute-value table is a good compromise.
From the positive side, θ-subsumption is intuitive (certainly more so than the
polynomial-time x-subsumption) and also quite expressive (again, more expres-
sive than x-subsumption) so it makes sense to use it for computing extensions.
However, using θ-subsumption for reduction of clauses, for which we use the
polynomial-time k-subsumption, would be much more costly.

We evaluated the novel method called Bottom in experiments with four rela-
tional datasets: Mutagenesis [9], Predictive Toxicology Challenge [10], Antimi-
crobial Peptides [11] and CAD [12]. The first two datasets are classical datasets
used in ILP. The first dataset contains descriptions of 188 molecules labelled
according to their mutagenicity. The second dataset consists of four datasets
of molecules labelled according to their toxicity to female mice, male mice, fe-
male rats and male rats. The third dataset contains spatial structures of 101
peptides, which are short sequences of amino acids, labelled according to their
antimicrobial activity. The last dataset contains description of class-labeled CAD
documents (product structures).

Table 2. Accuracies estimated by 10-fold cross-validation using transformation-based
learning with random forests and our propositionalization method (Bottom)

Mutagenesis PTC(FM) PTC(MM) PTC(FR) PTC(MR) Peptides CAD

nFOIL 76.6 60.2 63.1 67.0 57.3 77.2 92.7
Bottom 78.9 62.4 65.2 59.5 62.2 82.2 95.8

In the experiments, we use random forest classifiers learned on attribute-
value representations of the datasets constructed using our novel method. We
compare the results obtained by our method with nFOIL [13] which is a state-
of-the-art relational learning algorithm combining FOIL’s hypothesis search and
Naive Bayes classifier. Cross-validated predictive accuracies are shown in Table
2. Our method achieved higher predictive accuracies than nFOIL in all but
one case. This could be attributed partly to the use of random forests instead
of Naive Bayes. However, it indicates the ability of our method to construct
meaningful features in reasonable time. We used sample size equal to five for
all experiments. The number of features constructed for every class was set to
100. Features were always constructed only using training examples from the

Bounded Least General Generalization 127

given fold. Numbers of trees of random forests were selected automatically using
internal cross-validation. The average runtimes of our method were: 0.3 min for
Peptides, 0.6 min for CAD, 2.4 min for Mutagenesis, 4.4 min for PTC(MR), 5.1
min for PTC(FM), 9.8 min for PTC(FR) and 9.9 min for PTC(MM).

7 Related Work

The first method that used least general generalization for clause learning was
Golem [3]. Golem was restricted to ij-determinate clauses in order to cope with
the possibly exponential growth of LGGs. However, most practical relational
learning problems are highly non-determinate. A different approach was taken
in [14] where an algorithm called ProGolem was introduced. ProGolem is based
on so-called asymmetric relative minimal generalizations (ARMGs) of clauses
relative to a bottom clause. Size of ARMGs is bounded by the size of bottom
clause so there is no exponential growth of the sizes of clauses. However, ARMGs
are not unique and are not least-general.

Recently, an approach related to ours has been introduced [15] in which arc-
consistency was used for structuring the space of graphs. There, arc-consistency
was used as a covering operator called AC-projection. In contrast, we do not
use the weaker versions of θ-subsumption (x-subsumptions) as covering opera-
tors in this paper but we use them only for reduction of clauses which allows
us to guarantee that if a solution of standard learning problems with bounded-
tree-width exists, our method is able to solve the learning problem. Thus, our
approach provides theoretical guarantees which relate directly to learning prob-
lems with standard notions of covering (i.e. θ-subsumption), whereas the other
approach can provide guarantees only w.r.t to the weaker (and less intuitive)
AC-projection covering relation. Our framework is also more general in that it
allows various different classes of clauses w.r.t. which it can compute bounded
LGGs.

Another approach related to ours is the work of Horváth et al. [4] which is also
based on application of least general generalization. Their approach relies on the
fact that least general generalization of clauses with treewidth 1 is again a clause
with treewidth 1. Since clauses with treewidth 1 can be reduced in polynomial
time and since θ-subsumption problems A �θ B where A has treewidth 1 can be
decided in polynomial time as well, it is possible to construct features in a man-
ner similar to ours using only polynomial-time reduction and θ-subsumption. As
in our approach, the size of the clauses constructed as least general generaliza-
tions may grow exponentially with the number of learning examples. However,
unlike our approach which does not put any restriction on learning examples,
the approach of Horváth et al. requires learning examples to have treewidth 1.
Our approach is therefore more general even if we consider just bounded least
general generalization w.r.t. the set of clauses with treewidth 1.

In a similar spirit, Schietgat et al. [16] introduced a new method based on
computing maximum common subgraphs of outerplanar graphs under so-called
block-and-bridge-preserving isomorphism which can be done in polynomial time.

128 O. Kuželka, A. Szabóová, and F. Železný

This method was demonstrated to be highly competitive to all-inclusive strate-
gies based on enumeration of all frequent graphs while using much lower number
of maximum common subgraphs. Since it requires learning examples to be out-
erplanar graphs, it could not be applied to some of our datasets (e.g. the CAD
dataset or the dataset of antimicrobial peptides). Aside this, another difference
to our method is that it is based on a restricted form of subgraph isomorphism
whereas our method is based on θ-subsumption, i.e. on homomorphism.

8 Conclusions

We have introduced a new weakened version of least general generalization of
clauses which has the convenient property that its reduced form can be computed
in polynomial time for practically relevant classes of clauses. Although this paper
is mostly theoretical, we have also shown the practical utility of the weakened
LGG in experiments where it was able to quickly find good sets of features. In
our ongoing work we are developing a learning system based on the concepts
presented in this paper. The system uses the bounded operations for hypothesis
search and it avoids using the exponential time procedures in the learning phase
altogether. Its description would not fit in the limited space available. It will be
described in a longer version of this paper.

Acknowledgements. This work was supported by the Czech Grant Agency
through project 103/10/1875 Learning from Theories.

References

1. Plotkin, G.: A note on inductive generalization. Edinburgh University Press (1970)
2. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Pro-

gramming. LNCS, vol. 1228. Springer, Heidelberg (1997)
3. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: ALT, pp. 368–381

(1990)
4. Horváth, T., Paass, G., Reichartz, F., Wrobel, S.: A logic-based approach to re-

lation extraction from texts. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989,
pp. 34–48. Springer, Heidelberg (2010)

5. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
6. Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction al-

gorithms. Machine Learning 55(2), 137–174 (2004)
7. Atserias, A., Bulatov, A., Dalmau, V.: On the power of k-consistency. In: Arge,

L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 279–290. Springer, Heidelberg (2007)

8. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier (2006)

9. Srinivasan, A., Muggleton, S.H.: Mutagenesis: ILP experiments in a non-
determinate biological domain. In: ILP, pp. 217–232 (1994)

10. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology chal-
lenge 2000-2001. Bioinformatics 17(1), 107–108 (2001)

Bounded Least General Generalization 129

11. Cherkasov, A., Jankovic, B.: Application of ‘inductive’ qsar descriptors for quantifi-
cation of antibacterial activity of cationic polypeptides. Molecules 9(12), 1034–1052
(2004)

12. Žáková, M., Železný, F., Garcia-Sedano, J.A., Masia Tissot, C., Lavrač, N.,
Křemen, P., Molina, J.: Relational data mining applied to virtual engineering of
product designs. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP
2006. LNCS (LNAI), vol. 4455, pp. 439–453. Springer, Heidelberg (2007)

13. Landwehr, N., Kersting, K., De Raedt, L.: Integrating näıve bayes and FOIL.
Journal of Machine Learning Research 8, 481–507 (2007)

14. Muggleton, S., Santos, J., Tamaddoni-Nezhad, A.: Progolem: A system based on
relative minimal generalisation. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989,
pp. 131–148. Springer, Heidelberg (2010)

15. Liquiere, M.: Arc consistency projection: A new generalization relation for graphs.
In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604,
pp. 333–346. Springer, Heidelberg (2007)

16. Schietgat, L., Costa, F., Ramon, J., De Raedt, L.: Effective feature construction by
maximum common subgraph sampling. Machine Learning 83(2), 137–161 (2011)

	Bounded Least General Generalization
	1 Introduction
	2 Preliminaries: Subsumption, CSP, Treewidth
	3 Bounded Subsumption
	4 Bounded Reduction
	5 Bounded Least General Generalization
	6 Experiments
	7 Related Work
	8 Conclusions
	References

