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Bounded Linear Logic : 
A Modular Approach to Polynomial Time Computability 

Jean-Yves Girard Andre Scedrov Philip J. Scott 

1 Introduction 

In recent years, especially with the development of large-scale computation and 

with the possibility of machines making dramatic decisions, issues such as soft- 

ware reliability, maintenance, and verification have become essential in theoretical 

computer science. In other words, the study of these topics and of program specifi- 

cations as a means of facilitating them is now central, independently of traditional 

tenets such as the search for good algorithms. 

There are many forms of specifications. For example, one can think of in- 

put/output specifications, among the most basic being when one is asked to spec- 

ify that an input is an integer. There are also probabilistic specifications, when a 

certain percentage of error is allowed. One can also have complexity specifications 

about space or time needed to execute a program. In all cases the specifications 

are well-defined mathematical properties, which can be expressed in the usual for- 

malism for mathematics, even if they are somewhat unusual from the viewpoint 

of standard mathematics. In particular a classical mathematical proof that an 

algorithm meets a given specification will be considered as completely satisfactory, 

even if the proof is not constructive. The situation changes radically, however, if 

one now insists on a standardized, modular, "industrial" approach to the question. 

Since there has been much discussion about the merits of typed vs. untyped 

programming paradigms, and since our paper proposes yet another typed calculus, 

it is appropriate to say at the outset that if one absolutely insists on efficient 

programs, one should use languages that allow maximum flexibility. However, if 

one is interested in reliable programs that can be maintained in a changing systems 

environment, then a language will have to be concerned with specifications. In the 

first case one shall get a hand crafted or one off product that may be a marvel or 

might contain awful bugs-and such programs use so many "tricks" that proofs of 

their correctness with respect to a given specification will be rather exceptional. In 

the second case the programming methods are limited-usually by a rather awkward 

system of basic specifications called types - but the product is guaranteed a certain 



industrial level of "quality control" . The two forms of programming will coexist 

forever, and the fact that the industrial approach is-at present-very inefficient is 

not an argument for the superiority of the other "hand crafted" one. In particular, 

it does not make the slightest difference that the system that we are presenting 

here is so delicate to use that in its present form it has hardly any practical value. 

Rather, our paper shows the possibility of a logical (i.e., standardized, modular, 

industrial) approach to complexity specifications, and this phenomenon is radically 

new. 

The industrial approach to specifications therefore relies on an integrated com- 

putational paradigm, where basic specifications are built together with the algo- 

rithms. At compilation time these basic specifications are checked, then erased 

to produce machine code. This is the description of the typed approach; in this 

approach we can combine instructions only in certain cases. Each program and 

subprogram is assigned a type which describes in shorthand which pluggings it 

accepts : for instance the type A implies B given to a program means that one 

can see it as a function waiting for an input labeled A and which can in turn give 

an output labeled B. Hence the main activity of typed programming is to match 

types, which can often be difficult in the extant systems. 

The activity of manipulating types was recognized a long time ago as analo- 

gous to proving theorems in intuitionistic logic-this is now technically known as 

the Curry-Howard isomorphism (or the propositions-as -types paradigm)-but the 

origins of this idea date back to old intuitionism in the early 1900s and especially 

to Heyting and Kolmogorov in the 1920s. The situation is actually more involved: 

the idea makes better sense when combined with formalist tradition; logic offers 

not only a paradigm for basic specifications but also a mode of execution, namely 

through cut-elimination or its variants, e.g., natural deduction, all dating back to 

Gentzen's work in the 1930s. Here we show that this paradigm "computation as 

cut elimination" is flexible enough to express a notion of feasible computation. 

There are many typed lambda calculi , among them is system 3 introduced in 

1970 by one of the authors [12, 201. This system is characterized by an extreme 

economy of means and the possibility of easy definition of many current specifica- 

tions. Although the system is far from being as flexible as we would like it to be, it 

is fair to say that F or its various improvements do not look ridiculous as integrated 

'The broader distinction between h a n d  craf ted and i n d u s t r i a l  may be illustrated by the fact 

that a product such as  the "daily special" in a restaurant with traditional cuisine can be very good 

or very bad, with its price bearing no relation to its quality, whereas an industrial product such 

as fast food is just a "safe bet"-neither very good nor very bad-and with a good ratio between 

price and quality. Moreover, any quarrel between these two activities is nonsense as long as one 

of them does not pretend to invade .the domain of the other-domains which are distinguished by 

verbs like to d i n e  versus t o  eat . Another important difference between one off and industrial 

products usually becomes apparent when the product breaks down. Just imagine trying to get an 
antique clock repaired. It is very likely that the entire clock will have to be replaced or some of its 
parts will have to be custom made (at a great cost) because the parts or even the materials may 

be unavailable. On the other hand, if a modern watch breaks down, it probably needs just a new 
module. In other words, a one off product is an indivisible object, while an industrial product is 

more an idea of an object, realized by exchangeable parts. 



programming paradigms. The expressive power of 3 is immense and precisely for 

that reason, because it accepts too many functions, 3 only yields input/output 

specifications. Here let us be precise : it is true that we can abstractly measure the 

expressive power of typed systems, and that for instance certain restrictions can 

drastically lower the complexity of typed algorithms, but all current restrictions 

cannot be detected from the viewpoint of feasibility. For example, some authors 

insist on the impredicativity of T as a defect-as if one were still living in a world 

of lurking paradoxes-but restricting 3 to so-called ramified systems contradicts 

the flexibility of typing without yielding any feasibly detectable lowering of com- 

plexity. Rather, the issue lies already on the propositional level. One must keep in 

mind that even simply typed calculi have complexity measures which are towers 

of exponentials. 

In fact, prior to this paper there has been no example of an integrated typed 

system yielding complexity specifications; the input/output style of specification is 

the only one that has been treated. For instance, we understand that probabilistic 

specification needs a kind of probabilistic logic which is sorely missing. 

Before arriving at our solution, let us try to position it with respect to vaguely 

related works on the theme logic and complexity. There are obvious solutions to 

obtain a feasibly typed system; e.g., take system 3 and a clock: instead of typing 

something INT implies INT (from integers to integers) we can type it INT implies 

(ERR + INT), which means that when the time is over, the program (if it has 

not finished computing) returns an error message. The brutal character of this 

answer is plain but the true reason for its stupidity is not completely obvious: in 

our opinion this system guarantees temporal specifications but is no longer able to 

guarantee input/output specifications, which are much more basic! 

A more elaborate system, Cook and Urquhart's feasible functionals of finite 

type [8, 71, proposes a generalization of polynomial time to finite types. Although 

this system is interesting in its own right, it is not helpful for our purposes because 

its higher type dependencies are not polynomial but hyperexponential. Further- 

more, it cannot be used to check that a numerical function is polynomial time, 

since it takes as primitive all polynomial time functions. 

The first connection between proof theory and polynomial time computability 

was established in the work of Buss [3, 21, who introduced first-order systems of 

"bounded arithmetic" with proof-theoretic strength corresponding to polynomial 

time computation and in which precisely the polynomial time functions could be 

defined by certain formulas. In this work the logical systems are external to the 

computational paradigm itself, which is given by a Turing machine with a clock 

(in the form of "bounded primitive recursion"). As far as we know, there has been 

no proposal of an integrated paradigm given by the inherent structure of proofs in 

the systems of bounded arithmetic. 

The originally interesting idea of a polynomially graded logic [27] did produce a 

type system with explicit resource bounds, but it stumbled on the impossibility of 

having a notion of higher type feasible functional without artificial complications, 

which were partly caused by superimposing the external computational paradigm 



of a Turing machine with a clock onto the Curry-Howard paradigm. As we observed 

above, the notion proposed by Cook et al. is not really an answer since the higher 

type dependencies are hyperexponential, i.e., the inner structure of the systems in 

[8, 71 is not polynomial. In [27] the authors actually got closer to a true solution; 

unfortunately it was necessary to introduce indices of polynomial time machines, 

i.e., to presuppose here too a polynomial time structure. 

Outside proof theory, it is difficult not to be struck by the work on finite model 

theory [24, 31, 22, 23, 251, which has nothing to do a priori with typing but which 

has the inner coherence that is missing in all the approaches just discussed : in 

the finite model theory approach, polynomials appear for combinatorial reasons, 

simply because DATALOG computations can be bounded by means of binomial 

coefficients. Here it is important to remark that the computational mechanism of 

DATALOG itself (given by its forward chaining style) is not addressed by logical 

characterizations stemming from finite model theory. However, this lack of an 

integrated paradigm is compensated for by non-trivial results of Immerman [24] 

and Vardi [31], who show that polynomial time functions receive a definition not 

in terms of polynomial time. This is obviously a great logical achievement, even if 

we are not seeking this kind of logical analysis here. What we shall present below 

has very little to do with this approach but the fact is that we will also derive 

polynomial time from something not presupposing polynomial time and that at a 

certain point combinatorial polynomials will play an essential role. In the future 

a connection between these two approaches would be very exciting, but proof 

theory and model theory are often such orthogonal approaches that one should 

not daydream too much. 

Our aim in this paper is not just to express polynomial time computability as 

provability of formulas in a logical system, but to provide a notion of polynomial 

time computation intrinsically within a logical system, according to the Curry- 

Howard paradigm "computation as cut elimination". In other words, we propose 

a modular typed computation paradigm as an alternative to the paradigm of a 

Turing machine with a clock. Let us start with the idea of a complexity specifi- 

cation (not necessarily polynomial time). The above discussion of previous typed 

attempts makes it plain that taking the actual complexity as a primitive parameter 

does not lead to an integrated typed system. This should not be too surprising; in 

mathematics certain interesting notions never led to conceptualization for want of 

modularity (for instance, there is a non-commutative theory of groups but no the- 

ory of non-commutative groups). We therefore seek a notion more primitive than 

complexity, i.e., something that can produce complexity restrictions but which 

cannot be reduced to complexity. In our approach, this more primitive notion 

will basically be the contraction rule of Gentzen sequent calculus, to which Linear 

Logic [13] gives a very special status. It will turn out that controlling contraction 

is an indirect way of controlling time complexity, but for instance no way-direct 

or indirect-is known of controlling space complexity in this manner. (Does this 

mean that space complexity has no logical meaning in the sense above, or does 
this only indicate that our present tools are desperately poor?) 



A first approximation to Linear Logic is Rudimentary Linear Logic (RLL) , 
i.e., sequent calculus without weakening and contraction. One of the most imme- 

diate features of RLL is its linear time normalization procedure: in fact it is easy 

to see that the number of rules strictly decreases during normalization, i.e., the 

procedure can be carried out in a kind of "shrinking space" which forces linear 

time. Moreover, and this should be emphasized, the situation still holds with full 

second order. So we begin to see a possible restriction of system T along feasibility 

lines. This is a fantastic medicine with respect to problems of complexity, except 

that the patient is dead! Without contraction the expressive power of logic is so 

weak that one can hardly program more than programs permuting the components 

of a pair. 

Fortunately, Linear Logic is not about the removal of contraction and weaken- 

ing, but about their transformation into logical rules for special connectives, the 

so-called exponentials ! and ?. In fact by allowing the use of exponentials we 

compensate for the drastic fall of expressive power, compensate so much that we 

get the usual intuitionistic systems (this is no surprise since Linear Logic has been 

carefully designed to obtain roughly the same expressive power). Therefore our 

only hope is to seek an intermediate system between RLL and full Linear Logic. 

The first attempt will be successful. 

Linear Logic is based on the idea of resources , an idea violently negated by the 

contraction rule. The contraction rule states precisely that a resource is potentially 

infinite, which is often a sensible hypothesis, but not always. The symbol ! can 

be used precisely to distinguish those resources for which there are no limitations. 

From a computational point of view !A means that the datum A is stored in the 

memory and may be referenced an unlimited number of times. In some sense, ! A  
means forever". In these times of great utopias falling, "forever" is no longer 

a viable expression, and in Bounded Linear Logic (BLL) it is replaced by more 

realistic goals: reuse will be possible, but only a certain number of times limited 

in advance. Instead of !A BLL features bounded reuse operators !,A , which in- 

tuitively mean that the datum A is stored in the memory and may be referenced 

up to x times. Now the fundamental point about BLL is that the basic properties 

involve polynomials. This is very easy to understand: the worst use of a bounded 

exclamation mark !,A is morally the same as using A and A and . . . and A, x 
times, when and is given the technical meaning of the multiplicative conjunction 

times ( = @ ). When we thus interpret the rules of exclamation mark we see poly- 

nomials occuring in a very natural way. In fact this translation can also be applied 

to proofs ; in this case we discover that we have a locally polynomial translation 

from BLL to RLL: ! 2 . .  .!2A (n times) translates to &A, but !2x...!2xA translates 

to @p,nA, a bound which is a polynomial in x. This is why, whereas the full 
translation is exponential, we can speak of local polynomiality, here xn. The com- 

bination of a locally polynomial procedure and a linear procedure (normalization 

in RLL) yields a locally polynomial time way of computing. 

Technically speaking what we have just explained is only a rough justification 

of our main result statcd below; this way of computing should not be used because 



it is only polynomial space. Our main result states that if a function is typed in 

BLL from dyadic integers (i.e., integers in dyadic notation) to themselves, then 

normalization terminates in polynomially many steps in the length of the input 

(Theorem 4.4). Furthermore, in this case the size of normalization is also polyno- 

mial in the length of the input and as a consequence, the function is polynomial 

time (Theorem 5.3). Less unexpected, but of course also essential, is the converse 

theorem which says that all polynomial time functions can be obtained in this 

way, i.e., can be typed in BLL (Theorem 6.1). Although the idea is clear, the main 

result is technically difficult and uses very refined techniques of Linear Logic; the 

converse simply avoids the trap of RLL, i.e., a system with no expressive power. 

We have basically justified that the input/output ratio (in terms of the number 

of rules written) is locally polynomial. Common sense (and good experience in 

proof theory) is enough to convince one that the execution process itself should 

be polynomial time. If one is not satisfied with this kind of handwaving, then one 

must go into painful justifications, for instance, in this paper we use sophisticated 

techniques from linear logic, variations of proof nets. An example of what might 

happen is that in the presence of quantifiers, n iterated substitutions can produce 

an exponential blow-up. This is why at run-time we erase the types (i.e., formu- 

las) and only keep an underlying graph (a kind of proof net), which is enough for 

input/output encoding, and the size of which remains tame. On the other hand, 

we must admit that our way of representing polynomial time functions in BLL is 

not very flexible and that in its present form BLL is not really practical . . .so what 

did we achieve ? 

Surely without the slightest doubt we have shown that a purely logical ap- 

proach to complexity is not absurd. The polynomial time functions arise from a 

bounded exclamation mark and nothing else. In addition, BLL has the capability 

of directly specifying computational complexity on various data types, by using 

their representations as BLL types rather than encoding them as certain lists. ( For 

instance we can type primality test of type TALLY INTEGERS impl ies  BOOLE. ) 
In BLL one also has all the usual facilities of polymorphism-even if we were a bit 

awkward here in making full use of them. From a strict logical viewpoint, as well 

as regarding the flexibility of the system, the main weakness of BLL is the pres- 

ence of explicit resource parameters. Logic is useful only if it is implicit enough. 

If one prefers, logic is the maintenance of implicit data. At the moment we see no 

way to avoid mentioning the resources and still be able to synthesize them. An 

alternative way might be to forget resources by means of existential quantification 

over them, but unfortunately all our polynomial computations would break down 

immediately if we tried to do this. However, it must be noted that the resources 

occur in BLL only through input/output ratios and not at all as complexity mea- 

sures: the complexity remains hidden and this is the reason why our approach 
avoids the problems encountered by previous ones. 



2 Linear Logic 

We recall Gentzen's sequent calculus for intuitionistic logic, e.g. from [20]. A 

sequent is a formal expression I' I- A, where I' is a finite list of formulas and 

A is a formula. One can informally interpret r I- A as meaning "hypotheses r 
intuitionistically entail A." 

Gentzen's sequent calculus involves three structural rules: 

Exchange 

Weakening 

Contraction 

Although these rules are all problematic from the point of view of management 

of limited resources, contraction is by far the worst, cf. [13, 17,291. The contraction 

rule expresses unlimited capability of duplication; it is also the reason for the 

potential infinity of disjunctions in Herbrand expansions. In this paper we are 

especially interested in the effect of Contraction on cut elimination: 

i P 

A, A, A I- B reduces to 
F I - A  A ,A ,AI -B  

r I- A A,AI- B 
r l -A  I',A,At- B 

I ' ,A I - B  
I ' ,r ,A I- B 

Here, one cut is replaced by two cuts and by instances of Contraction and 

Exchange on the formulas in I'. Also notice that this step requires duplication of 

the entire proof of I' I- A. The Contraction rule is the reason why termination of 

cut elimination in. intuitionistic propositional logic is not feasible (termination is 

well-known to be hyperexponential, see below.) 

2.1 Rudimentary Linear Logic (RLL) 

Linear Logic dispenses with the problematic structural rules Contraction and 
Weakening, [13]. In the absence of these structural rules, the propositional con- 

nectives assume a different character. We first discuss one extreme case in this 

vein, a rudimentary propositional system in which Contraction and Weakening 



are removed altogether. Our intuitive description of the connectives of this rudi- 

mentary system is based on the propositions-as-types paradigm mentioned in the 

introduction. 

The system RLL (Rudimentary Linear Logic) has formulae defined inductively 

from atomic formulae (propositional letters) a,P, .  . . by two binary propositional 

connectives: 

( 9  A @ B  (A tensorB = conjunction with no sharing of variables), 

(ii) A -o B (A linearly implies B = the type of functions looking at 

their argument exactly once) 

Instead of stating the Exchange Rule explicitly, it is convenient to formulate se- 

quent~ as formal expressions I' t- A, where I' is a finite multiset of formulas and A 

is a formula. The sequents satisfy the following axioms and rules: 

Axiom: A t A  

Cut: 
I'I-A A,AI-B 

I ' ,A t -B  

Logical: 

A proof in RLL of a sequent I' I- A is a finite labeled rooted tree in which 

the nodes are labeled by sequents in such a way that the leaves are labeled by 

instances of the Identity Axiom, the root is labeled by I' I- A, and the label of each 

node is obtained from the label of its immediate precessor(s) by one instance of a 

rule of RLL. In an instance of a Cut, the formula denoted by A is called the cut 

formula occurrence. We often simply refer to "the cut formula " in a Cut, when 

the context is clear. 

2.2 Normalization in RLL 

We now state the reduction steps in normalization (i.e. cut elimination) in RLL 

and we give a measure # on proofs in RLL that yields a polynomial upper bound 

on the number of reduction steps. This measure will in fact be a bound on the 

number of instances of the rules, including the axioms, in the resulting cut-free 

proof. As for the number of reduction steps, if one counts all the reduction steps, 

including the so-called commutative reductions (all described below), the upper 

bound is cubic in our measure. However, there is a more subtle approach based 

on proof nets [13] that yields a linear upper bound. 

Let #Axiom = 1. If a proof T is obtained from a proof p by a unary rule, let 

#T = #p+ 1. If a proof T is obtained from proofs p and a by a binary rule except 

Cut, let #T = # p  + #a + 1. If a proof T is obtained from proofs p and a by an 



application of the Cut rule, let #a = #p+ #a. (Because we are seeking a cut-free 

proof, we do not need to count the Cut rule.) 

The following figures state the reduction steps. We simultaneously compute 

the measures. 

2.2.1 Axiom Reductions 

The reduction steps of this form apply when one premise of a Cut is an axiom. 

There are two cases: 

Case AL 

A t - A  A,Al-B reduces to 

A , A t - B  

Case AR 

: P 
i P 

I ' t-A Al-A reduces to 

r t - A  
I ' t -A . 

In both cases, the measure decreases from # p  + 1 to #p. 

2.2.2 Symmetric Reductions 

The intuitive motivation of these reductions is that they should apply when the 

left premise of a Cut comes by a logical right rule and the right premise comes by 

the corresponding left rule: 

Case S@ 

. R : w 

; P 

I ' t-A A ,A ,B t -C  

reduces to A t - B  T,A,Bt-  C 
I ' ,A ,At -C 

Let m = #T , n = #p, k = #w. Before reduction the measure is m + n + k + 2; 
after reduction it is m + n + k. 



Case S-0 

reduces to I ' ,AI -B  A , B l - C  
I',A,A I- C 

Let m = #T, n = #p,  k = #w. Before reduction the measure is m + n + k + 2; 

after reduction it is m + n + k . 

2.2.3 Commutative Reductions 

The intuitive motivation for commutative reductions is simply to change the order 

in which an instance of a Cut appears in a proof. Commutative reductions should 

apply when at least one premise of a Cut is a consequence of a rule that does not 

operate on the cut formula. 

Case CL@L 

I' ,C,Dl-A A , A I - B  

reduces to I ' ,A,C,Dk B 
I ' ,A ,C@D I- B 

The measure is # p  + #w + 1,. both before and after this reduction step. 

Case CL -oL: 

~ , A , C - D ~ A  A , A I - B  

I ' ,A ,A,C-o  Dl -  B 



: u : w 

; P  

A , D t A  A , A t B  

reduces to rt-c A,A,Dt- B 
I ' ,A,A,C-oDt- B 

The measure is # p  + #a + #w + 1 both before and after this reduction. 

Case CR @R: 

reduces to I',A<B At-C 
I',A,Al- B@C 

The measure is #p + #a + #w + 1 both before and after the reduction. The case 

in which the cut formula A comes from the right premise of the @R rule is treated 

analogously. 

Case CR-oR 

. . 

reduces to I',A,C I- D 
I ' ,Al -C-oD 

The measure stays #p + #w + 1 during this step. 

Case CRBL: 



I ' I-A A.A.C.DI- B , , ,  

reduces to I ' ,A,C,DF B 
I ' ,A,C@DI-  B 

The measure stays # p  + #w + 1 during this step. 

Case CR-oL: 

: P : w 
: u 

A A,A,DI-B 

reduces to A I - C  I',A,Dl- B 
I ' , A , A , C 4  Dl-  B 

The measure is # p  + #a + #w + 1. The case in which the cut formula A comes 

from the left premise of the +L rule is treated analagously. 

In other words, the measure stays the same during each commutative reduction 

step. 

Now given a proof a and a Cut in a (not necessarily at the root of a ) ,  we can 

use one of the reduction steps to replace the Cut and so obtain a proof a' . If this 

reduction step is one of the Axiom Reductions or the Symmetric Reductions, one 

obtains #a1 < #a. If the reduction step is one of the Commutative Reductions, 

one obtains #T' = #a. 

In order to derive an upper bound on the total number of reduction steps 

starting with a given proof, we will use #a to estimate the number of consecutive 

commutative reduction steps that can be performed starting with any proof a. To 

this end we introduce an auxiliary measure, the cut-size Ial of a proof a. The 

cut-size has the same inductive definition as #a, except that in the case of a Cut 

we let: 

Irl = l ~ l  I +  I r2 I  + #r 

Proposition 2.1 la1 5 ( # T ) ~  for each RLL proof T. 

Proof : By induction on the complexity of the proof a. In the induction step 

the interesting case is when a is obtained by a Cut from a1 and ~ 2 :  because the 



measure # is always a positive integer, one has #xl + #x2 5 2(#7r1)(#x2), and 

thus 1x1 I (#xd2 + (#x2I2 + #~l+ #x2 I (#TI + # r 2 I 2  = (#xl2 

We now verify that the cut-size decreases in commutative reductions. We con- 

tinue the notation introduced above in the definitions of commutative reduction 

steps. 

Case CL@L: the cut size before the reduction step is 1x1 = Ipl+ 1 + Iw I + #T. After 

the reduction step the cut-size is Ixtl = IpI + IwI + (#xf - 1) + 1 = IpI + IwI +#xt = 

lpl+ IwI + #T < 14. 

Case CL-oL: The cut size before the reduction step is 1x1 = lpl+ la1 + 1 + IW I + #x. 

After the reduction step the cut-size is IxtI = 101 + Iwl+ (#?rf - #p - 1) + lpl+ 1 = 

lpl+ lal + IwI + #n - #P < 14. 

Case CRBR: Before reduction the cut-size is ITI = Ip(+lal+lwl+l+#x. After re- 

ductionit is Ixt( = IpJ+lal+(#xt-#w-1)+Iw1+1 = IpI+lal+IwI+#.lr-#p < 1x1. 

Case CR-oR: The cut size before reduction is [TI = Ip(+ Iwl+l+#x. On the other 

hand, after reduction Inti = lpl+ la1 + IwI + (#xt - 1) + 1 = lpl+ IwI + #x < 1x1. 

Case CR@L: Before reduction the cut-size is 1x1 = lpl + IwI + 1 + #x. After re- 

ductionit is (T'I = lpl + IwI + (#TI- 1) + 1 = lpl + IwI +#T < 1x1. 

Case CR-oL: Here 1x1 = Ipl+ la1 + Iw l+  1 + #T. After reduction lxtl = IpI + IwI + 
(#TI - #a - 1) + 101 + 1 = [pi+ la1 + IwI + #x - #a < IT\. 

In summary, when normalizing an RLL proof T, there can be at most #x 

axiom reduction steps or symmetric reduction steps, and between each of those 

steps there can be at most ( # T ) ~  consecutive commutative reduction steps. Thus 

the total number of reduction steps can be at most (#T)~ .  

Another approach, which allows us to dispense with all conlmutative reduc- 

tions, is to consider sequent calculus proofs up to the order of the rules, e.g. to 

consider the proof net representation introduced in [13]. 

2.2.4 Proof Nets 

For the discussion of this approach we assume that the reader is familiar with 

chapters 1-4 of [13] (or cf. [14] or Section 3 of [ll].) First, RLL sequents and 

proofs may be represented in the one-sided sequent calculus for the multiplicative 

fragment of linear logic. Indeed, linear implication A -o B is definable as A' p B, 

i.e. (A @ B')'. An RLL sequent A1,. . . , A, I- B is translated as the one-sided 

sequent I- A*, . . . , A;, B.  It is readily checked that this translation takes rules of 

inference to rules of inference (and hence proofs to proofs): the rules -OR and 

L are translated as the g~ rule and the rule -0L is translated as the 8 
rule. Let us also mention the fact that this translation is conservative, i.e., if the 

translation of an RLL sequent is provable in the multiplicative fragment of linear 



logic, then the sequent is provable in RLL. 

Second, we use the proof net representation of the one-sided sequent calculus 

for the multiplicative fragment of linear logic given in [13]. Combining the two 

interpretations then yields the proof net representation of RLL proofs. The con- 

verse follows from the conservativity of the first translation mentioned above, i.e. 

the Sequentialization Theorem in [13] also holds for RLL. 

We identify RLL proofs with the same proof net representation. In this way the 

only required reduction steps are Axiom Reductions and Symmetric Reductions. 

Any sequence of these reduction steps starting with an RLL proof a must terminate 

in at most #a steps in a cut-free proof net representing a cut-free RLL proof. 

2.2.5 Discussion of second order RLL 

All of the properties of RLL described above, except conservativity of the trans- 

lation into one-sided sequent calculus, remain true if we add impredicative second 

order universal quantification over propositions. The additional rules are 

P I -A  
VR F I- (Va)A 

where A[a := TI is the result of substituting a second order abtraction term T for 

all free occurrences of the propositional variable a in A, and where in the rule VR 

the propositional variable a does not occur free in the formulas in r. We often 

omit parentheses around quantifiers. 

In extending the measure #a and the cut-size 1 ~ 1  the rules VL and VR are 

treated simply as unary rules. Observe that the measure and the cut-size do not 

increase under substitution of second order abstraction terms. In normalization, 

the additional symmetric reduction step is: 

Case SV : 

; P . W 

r I- A A,A[a :=TI I- B 
r I- VaA A,VaA I- B 

P , A I - B  

r I -A[a := T]  A ,A[a := T] I -B  
reduces to r , A I -  B 

In this reduction of the proof .rr to T', the measure decreases from #a = #p + 
#w + 2 to #a' = #p + #w < #a. 

Let us also check the additional commutative reductions that involve the quan- 

tifier rules. 

Case CLVL: 



: P : w 

r ,C[a :=T] t -A A , A t - B  

reduces to I',A,C[a := TI t- B 

r ,A,VaC I- B 

The measure is # n  = #nl = # p  + #w + 1 both before and after this reduction 

step. The cut-size before reduction is 1x1 = lpl+ 1 + I w I  + # x .  After reduction, it 

is IrlI = lpl + I w I  + (#nl  - 1 )  + 1 = lpl+ I w I  + #?r, less than before reduction. 

Case CRVR : 

reduces to 

We may assume the a does not occur free in r ,  by renaming the bound variables 

in B if necessary (which does not change the measure or the cut-size). Note that 

#T = #n l  = #p+ #w + 1. Also In1 = lpl+ I w I  + 1 + #T. lnlI = IpI + J w I  + (#TI - 

1) + 1 = lpl+ IwI + #T < 1n1. 

Case CRVL : 

reduces to 

Note that #n = #nl  = #p  + #w + 1. Also I T [  = lpl + I w I  + 1 + #n. IxlI = 
Ip( + IwI + (#TI - 1) + 1 = IpI + IwI + #n < 1x1. 



Thus, even for second order RLL, there can be at most (#7r13 sequent reduction 

steps in the normalization of a proof n. This upper bound can again be lowered 

to #n, this time by using the proof net representation given in [15]. 

The results of Section 2.2 may be summarized as follows: 

Theorem 2.2 Let x be a proof in RLL or in  second order RLL. Any sequence of 

reduction steps on n must terminate in a cut-free proof in at most ( # x ) ~  sequent 

calculus reduction steps. This cut-free proof is unique up to order of the instances 

of the rules. It has at most #n instances of the rules, including the axioms. Fur- 

thermore, any sequence of proof net reduction steps on the proof net representing 

n must terminate in at most #n reduction steps. 

Remark : In fact, proof net reductions are completely asynchronous; they do not 

have to be performed sequentially [13, 151. 

The Sequentialization Theorem [15] applies to the discussion of second order 

RLL only with respect to one-sided sequent calculus. There is no claim of conser- 

vativity of one-sided sequent calculus over the two-sided style for the second order 

RLL considered here. However, the fact still remains that for these two presen- 

tations of the sequent calculus, there exists a natural correspondence of normal 

forms of certain types, for example 

Hence for our purposes here, we can still freely use proof net interpretations for 

the two-sided sequent calculi. 

2.2.6 Adding Unrestricted Weakening 

The phenomenon of shrinking proofs observed above remains valid even if one adds 

the structural rule of Weakening: 

or equivalently, if one reformulates the axioms as: 

In this latter system the measure of an axiom is still 1. It is readily checked 

that if 7r is a proof of a sequent A I- A, then for any finite multiset of formulas I", 

there is a proof p of the sequent I", A I- A, where # p  5 #x,  Ipl 5 1x1, and p has 

the same underlying rooted tree as n. This fact allows us to transfer the measure 

of the computations given above to the system with axioms of the form I", A t- A. 



2.3 Linear Logic 

While RLL and the related systems discussed above enjoy fast normalization, these 

systems have little expressive power. The problem of adding expressive power to 

RLL may be resolved by adding a new connective "!" for storage. !A means A 

can be reused ad nauseam. The system LL of linear logic is obtained from RLL 

by adding rules for ! : 

Storage 
!r I- A 

! r  I-!A 
Weakening 

l ? k B  

r, !A I- B 

r, !A, !A I- B 
Contraction Dereliction 

I ' ,AI-B 

r, !A I- B I", !A I- B 

There is now a tremendous increase of expressive power: we can represent first 
order function types by A + B :=!A -o B [13] . It is folklore on finite types 
that there can be no realistic time bounds on computations. Specifically, take a 

ground type 0 and define higher types n+l := n + n. Now define the analog of 

Church numerals p of type n+2, Y{+2 as X f. fp , where the variable f is of type 

n+l. One easily verifies that modulo /l-conversion, Y{+2(f )0Y2+~(f) = Y R ~ (  f) , 
2 - yc Y$+20Y2+2 = Yz2 , and Y1+3(Y2+2) = ~2:~. Therefore Y~+~Y&~ . . Y2 - , 

where c = 2 2z2 '.. is a tower of 2's. 

Furthermore, adding full impredicative second order quantification (V) yields 

a system of L L ~  as strong as system F (= second-order polymorphic lambda 

calculus). In particular, every provably total recursive function of second order 

arithmetic is representable in the system. In other words, in order to produce a 

total numerical function which is not representable in LL2 , one has to go beyond 

most current mathematics. 

2.4 Toward Bounded Linear Logic 

We seek a system intermediate between second order RLL and full second order 

linear logic, which would enjoy feasible normalization and would yet be powerful 

enough to express all feasible functions. To this end we consider bounded reuse , 
roughly !,A with the intuitive meaning that datum A may be reused less than 

a: times. Let us first present just a simplified version of the desired intermediate 

system and the basic intuition behind it; the precise consideration will be taken 

up in sections 3 and 4 below. If I' is A1,. . . ,An we write !aI? for !yl Al, . . . , !y, An. 

The rules for storage naturally induce polynomials: 

Storage 
I-A 

!,;r t!,A 
Weakening 

r t -B  

r, !oA I- B 

r, !=A, !yA I- B 
Contract ion Dereliction 

r ,AI- B 

r , ! , + , ~  k B r, !lA I- B 



We may interpret these rules in second order RLL, by translating !,A as 

1 @A @ . . . @ A , where there are exactly x tensor signs and where 1 may be - 
x 8's 

thought of as Va(a -o a). This translation is logically sound only if we add to 

RLL the unrestricted weakening rules (see section 2.2.6). A consequence of the 

latter is that from (n+ 1)-ary tensorization one can obtain the n-ary one. The ad- 

dition of the unrestricted weakening rules to RLL is of course not problematic. As 

observed at the end of section 2.2.6, proofs still shrink under normalization. The 

weight(measure) associated to a proof is a polynomial, the key cases of Storage 

and Contraction being: 

where n is the number of formulas in I?, and : 

In the cases of Weakening and Dereliction one adds 1. The axioms and cut are 

treated as in RLL. 

Discussion : These formulas basically follow from the translation into RLL men- 

tioned above, but they do involve some overestimates for the sake of uniformity 

in the cases x = 0, y = 0, orn  = 0. Another advantage over the weights assigned 

to the Storage and Contraction rules in [21] ((p + 1)x + n and p + 1, respectively) 

is that the weight of a proof is always positive and hence it easily fits into the 

pattern discussed in section 2.2. As in [21], however, there is still a problem in 

the reduction steps that apply when the cut formula is !,A and the left premise 

of a Cut rule is a consequence of a Storage rule with I' nonempty, i.e. n > 0. The 

answer, as in [21], is to consider modified normalization in which such reduction 

steps are prohibited (see Section 4). Here we present a simplified version of two 

crucial cases of the modified normalization procedure. Observe that the weight 

strictly decreases. 

Reduction step: Storage us. Contraction 



;P 

: P  I-A . W  

I- A I-!vA A, !,A, ! v ~  I- B 
reduces to 

I-!,.A A, !,A B 
A I - B  

Let R and Q be the weights of the proofs p and w, respectively. Let t = u + v .  

The weight of the entire proof before the reduction step is (R+l)t + 1 + Q + 2 = 

(R+l)t + Q + 3. After the reduction step, the weight is (R+l)u + 1 + ( R + l ) v  

+ 1 + Q = (R+l)(u + v )  + Q + 2 = (R+l)t + Q + 2. There is also a similar 

reduction in which the cuts in the reduct are done in a different order: the same 

weights arise in this case. 

Reduction Step: Storage us. Storage 

:P 
: w 

I- A 

A !,A, !,A I- B 
reduces to 

!,A I- B 

lVFA I-!vB 

Again let R and Q be the weights of the proofs p and w, respectively. Let t = v u .  

The weight of the entire proof before reduction is (R+l)t + 1 + (Q+l )v  +(2n+2)v 

+ n + 2 = (R+l)t + (Q+l )v  + (2n+2)v + n + 3. After reduction it is [(R+l)u 

+ Q + 2 ] v + 1 + 2 n v + n = ( R + l ) u v + ( Q + l ) v + v + 1 + 2 n v + n = ( R + l ) t +  

(Q+l)v  + ( 2 n  + l ) v  + n + 1. 

3 The Syntax of Bounded Linear Logic (BLL) 

3.1 Resource Polynomials 

Let (i) be the usual binomial coefficient. In particular (:) = 1. A monomial is 
P 

any (finite) product of binomial coefficients, n ( )  , where the variables z; are 

i= 1 
distinct and ni are non-negative integer constants. 

A resource polynomial is any finite sum of monomials, e.g. O,1, y, 
x + (Z(Z - 1 ) / 2 )  , etc. 

Resource polynomials are closed under sum, product, and composition. Such 



polynomials are exactly the finite dilators of proof theory [16] and are closely 

related to combinatorial functors [9]. 

Given resource polynomials p, q write p q to denote that q - p is a resource 

polynomial. If p L p' and q C q' , then their composites satisfy qop L q'op' . 

3.2 Formulae of BLL 

Formulae (= types) : atomic formulae have the form a@) ; here cr is a second-order 

variable of given finite positive arity and p' here denotes an appropriate non-empty 

list of resource polynomials. 

Formulae are closed under the following operations: 

(i) A @ B  and A - o B  from RLL, 

(ii) (Va)A (second order universal quantification ), 

(iii) (bounded exclamation mark with p a resource 

polynomial not containing x ) . 

Positive and negative occurrences of resource terms in formulae are defined by 

induction as usual; in , p occurs negatively and x is a bound variable not 

occurring in p. Let the free resource variables X I ,  ..., x, occur only positively in B. 

Then Axl, ..., x,.B is a (second order) abstraction term, say T. A[cr := TI denotes 

the result of substituting T for cu in A , i.e. of replacing the atoms cubl, ...,p,) in 

A by B[pl, ..., p,]. Given types A and A' , write A E A' if A and A' only differ in 

their choice of resource polynomials, and 

(i) for any positive occurence of resource polynomial p in A, the homologous p' 

in A' is such that p & p'. 

(ii) for any negative occurence of resource polynomial p in A, the homologous p' 

in A' is such that p' p. 

If r and I" are finite multisets of formulae, F 5 l?' iff it is true componentwise. 

3.3 BLL Sequents 

Sequents have the form r I- B , where I? is a finite (possibly empty) multiset of 

formulae. The formulae in I' are considered indexed but not ordered. (Notation: 

parameters p, q, v, w range over resource polynomials. A[x := p] denotes the sub- 

stitution of p for all free occurences of resource variable x in formula A. From now 

on we write !y<zA instead of the formula !,A (cf. 2.4) .) We may intuitively think 

of !y<pA as 1 8 A[y := 01 8 - .  . 8 A[y := p - 11 

Axiom (Waste of Resources) A I- A', where A L A' (Special case: A I- A ). 

Cut 



I ' ,A,BI-C r l - A  A I - B  

@ I ' ,A@Bt-C @R I ' ,At-A@B 

A A,BI-C r , A I - B  

4L I ' , A , A * B k C  4R I ' l -A-oB 

(! W )  Weakening 

(!D) Dereliction 

(!C) Contraction 

r l - A  

VR r I- (Va)  A 

(provided a is not free in r) 

where p + y is free for x in A. 

!.z<ql(z) Al[y := vi(x) +z] ,...,., I <,,(,)A,[y :=v,(x)+z] I- B ( S ! )  Storage I 
!y<vl(p)+wlA~, . - 7 .y<v,(p)+wnAn I-!z<pB, 

where vi(z) + z is free for y in Ai, where vi(x) = qi(z) and where all formulae 

z<z  

to the left of the t- have the indicated form. 

A proof of a sequent I' I- A in the BLL sequent calculus is a finite labeled 

rooted tree in which the nodes are labeled by BLL sequents so that the leaves are 

labeled by instances of the axiom, the root is labeled by I' I- A, and the label 

of each node is obtained from the labels of its immediate predecessor(s) by an 

instance of a BLL rule. 

Remark: The rules of BLL are written in such a way that given any proof p of a 

sequent I' t- A and given any I" L I' and A L At then a simple change of resource 

parameters will yield a proof of I" I- A' without altering the structure of the 

proof. 

3.3.1 Lambda t e r m  assignment for BLL proofs 

We remind the reader that in Gentzen sequent calculi, as well as in natural de- 

duction calculi, proofs can be represented by lambda terms, cf.[20, Chapter 51. In 

particular, an axiom A I- A' is represented by a : A D a : A', the logical rule -OR 
is represented by A-abstraction or currying: 

while the logical rule -oL is represented by an application of a functional variable, 

here denoted by e: 



The cut rule may be represented by substitution: 

which is certainly denotationally consistent. (However, from a more dynamic view- 

point it would have been more appropriate to define: 

where the explicit substitution is only indicated: it is actually carried out by the 

reduction steps in cut-elimination.) 

This assignment may be extended to the quantifier rules trivially, i.e. the 

quantifier rules have no effect on lambda terms. Since tensor A @ B is definable 

as Va((A -o B -o a) -o a) ,  the assignment given so far yields a lambda term 

assignment for the tensor rules. Finally, the lambda term assignment may be 

extended to BLL trivially, i.e. the storage rules have no effect on the lambda 

terms. 

This lambda term assignment is rather crude (for example, among its short- 

comings are that storage and quantifier rules have no effect). Its sole purpose here 

is to serve as a framework for relating our definition of representability of func- 

tions in BLL (see section 5) to the usual notion of representability of functions 

in lambda calculus. The question of a good syntax for term assignments to BLL 

proofs is open (but see [I] for the case of LL). 

3.4 Proof nets for BLL 

We now extend to BLL the proof net representation of RLL proofs mentioned 

in section 2.2.4. Proof structures (with boxes) , and in particular proof nets as 

discussed below, are defined almost exactly as in Chapter 2 of [13], with the quan- 

tifiers treated as in [15]. The exceptions are that our axioms must reflect waste 

of resources, that we do not consider additive connectives at all, that we consider 

bounded operators !x<p and ?x<p instead of ! and ?, resp., and that the weakening 

rule is treated as a link, not as a box. An alternative approach to proof nets , 
given in [lo], Chap.3-6, and [ll], Section 3, provides an amenable framework for 

our treatment of the weakening rule. 

A proof of a BLL sequent A1,. . . ,An k B will be represented by a proof net 

with conclusions A:, . . . ,A:, B. For a BLL formula C, C' is a formula defined 

as follows (see [13]). First, translate A -o B as A' p B. Second, if C is an atomic 

BLL formula, let C' be a new formula in an expanded language and let (c')' 
be C. (A @ B)' is A' p B', (A g~ B)' is A' @ B', (VaA)' is 3aAL, 

1 is (?,+A)' is Then let (Axl,. . . , xn.B)' be Axl,. . . , x,.B . 
(The reader will note that A" is A.) If a resource term p occurs positively in 



A, it occurs negatively in A' and vice versa. The relation A 5 A' is extended 

accordingly. 

Proof structures are non-empty labeled graphs whose labels consist of (oc- 

currences of) formulas, connected by various kinds of links or boxes in which 

there are certain distinguished multisets of premises and conclusions , as defined 

below. Links will correspond to the Axiom and Rules of Inference of BLL and are 

defined as follows (where A, B, . . . denote formula occurrences) : 

I I 

(Axiom Link) A' A' , where A E A'. The conclusions of this link 

are A' and A'. There are no premises. (This link represents the Axiom). 

Note: since conclusions form a multiset, this link is considered to be the 

same as the link given by the figure - 
A' A', where A C A'. 

(Cut Link) 

is a link, with no conclusions and premises A and A'. (This link represents 

the Cut Rule.) Note that since we identify A" with A, this Cut Link is 

considered to be the same as the one where we interchange (the positions of) 

A and A'. 

(Tensor Link) 

is a link whose conclusion is A @ B and whose premises are A and B. (This 

link represents the rules @R and -oL.) Note that, unlike the Axiom and Cut 

Links, the tensor link is not symmetric in A and B. 

(p Link) 

is a link whose conclusion is A p B and whose premises are A and B. (This 

link represents the rules @L and -oR.) As in the case of the Tensor Link, 

the p Link is not symmetric in A and B. 

(V Link) 

A 

VCYA 

'not necessarily planar 



is a link whose conclusion is VaA and whose premise is A. Here a is the 

eigenvariable of the V link and it is forbidden to use it as the eigenvariable 

of any other V link, see [15]. (This link represents the rule VR.) 

(3 Link) 

is a link whose conclusion is 3aA and whose premise is A[a := TI. (This link 

represents the rule VL.) 

The links for the operators ?z<p are as follows: 

(Weakening Link) 

?z<wA 

is a link whose conclusion is ?,<,A and which has no premises. (This link 

represents the Weakening rule !W). 

(Dereliction Link) 

is a link whose conclusion is ?,<l+wA and whose premise is A[x := 01. (This 

link represents the Dereliction rule !D .) 

a (Contraction Link) If p + y is free for x in A, then: 

is a link whose conclusion is ?z<p+q+wA and whose premises are ?z<PA and 

?y<qA[x := p + Y] (This link represents the Contraction Rule !C .) 

Finally, proof structures may contain boxes [13], which could be considered as 

links of a special kind, defined as follows: 

(!,<, Boxes) 



is a proof box (or simply: box ) whose main door is !=+B and whose auxiliary 

?yn<vn(p)+w, A,. This box has as conclusions doors are ?yl<vl(p)+wlA1,. . , . 
all of the doors, both main and auxiliary. (This box will represent the Storage 

rule S! .) We allow boxes to contain other proof structures. 

Proof structures are built from links and boxes as described above, subject to 

the following requirements: 

Every occurrence of a formula in the proof structure is the conclusion of 

exactly one link or box, and a premise of at most one link. 

a Whenever a box contains a formula occurring in a link (either as a premise 

or a conclusion) then this box must contain all other formulas occurring in 

the link. 

a Given any two boxes in a proof structure, either (i) their respective contents 

and conclusions must be completely disjoint, or else (ii) one box must be 

properly contained in the other. 

The conclusions of a proof structure are the conclusions of its links (and of its 

boxes) that do not appear as premises of other links. 

Remark: Since a proof structure within a box may contain other boxes, etc., we 

have really given a definition of proof structure by induction on the depth of nested 

boxes. 

Following [13], one may assign proof structures to (sequential) Gentzen proofs 

in BLL. Among all possible proof structures, one can distinguish those which so 

arise (i.e. from proofs in linear sequent calculus); these are called proof nets ([13]). 

There is a mathematical characterization (so-called correctness criterion ) picking 

out those general proof structures which are actually proof nets. This criterion 

can be phrased in terms of trips, as in 1131 but for our purposes, the treatment 

by means of acyclic connected graphs [ll, 101 is somewhat more amenable. In 

particular, the correctness criterion for a weakening link may be stated as the 

existence of a "pointer" to another link in the proof structure. The correctness 

criterion for V-links is stated by means of arbitrary pointers to the links in the 

proof structure that contain a free occurrence of the eigenvariable [15]. In either 

case, these pointers are not allowed to enter or exit any boxes. Regarding boxes 

3This is not the way weakening links are treated in (101. Our precise correctness criterion for 

a proof structure with weakening links is the simultaneous existence for each weakening link of 

a "virtual premise", i.e., the choice of another (occurrence of a) formula in the proof structure, 

in such a way that this bigger graph enjoys the correctness criterion known in the absence of 

weakening links, namely that each subgraph obtained in a certain way is acyclic and connected 

[ l l ,  15). The new criterion is easily shown to be correct, but it is not very satisfactory, because its 

preservation under cut-elimination is not conceptually immediate. Indeed, during cut-elimination 

some virtual premise may be destroyed. In such a case, we must show that we could have indeed 

chosen a virtual premise that has not been destroyed. This offers no difficulty, but one has to go 
through a big number of cases. 



in proof nets, they may themselves only contain arbitrary proof nets, rather than 

arbitrary structures. The correctness criterion for boxes can be found in Chapter 6 

of [lo] (by means of acyclic connected graphs) or in [13] by means of trips. Finally, 

in addition to correctness criteria in proof nets, we restrict box formation so that 

one considers only boxes of the form 

where a is a proof net whose conclusions are indicated, where 1 5 j 5 n,  and 

0 5 n,  and the vj satisfy the same conditions as in the Storage rule. 

As in Section 3.3 above, we observe that if Ai E A:, l < i < n  and if the Ai's 

are the conclusions of a proof net v, then there is another proof net v' with the 

same graphical structure whose conclusions are the Ai's. Finally, observe that the 

links and boxes presented above can also be thought of as inductive clauses in an 

inductive definition of a proof structure with given conclusions starting from the 

Axiom Links (see also [lo] for a complete treatment). 

3.5 The weight of a BLL proof structure 

We assign a polynomial I I T I I  to every BLL proof structure .rr (and hence to every 

BLL proof). The polynomial I I T I I  will be called the weight of .rr. 

The weight of every link except Contraction is 1 (this includes the Axiom 

link). The weight of Contraction is 2. The weight of a box whose content is 

proof structure a , with n auxiliary doors and whose resource polynomial at  the 

main door is p, is ( 1 1  0 1 1  (2) + 1) + 2np + n + 1. (If a box has no contents, we 
Z<P 

arbitrarily set llall = 0. This situation never arises in the case of proof nets .) 
Finally, the weight of a proof structure is defined to be the sum of the weights of 

its links and boxes. 

The following three propositions are readily checked. We use the pointwise 

order of polynomials with respect to non-negative integer arguments. 

Proposition 3.1 Let A1,. . . ,A, be the conclusions of a proof net  v and let Ai C 

A:, 1 I i I n. Then  a simple change of resource parameters in v yields a proof 

net v' whose conclusions are A;, . . . ,A',, such that Ilv'll 5 llvll . 

Proposition 3.2 Let v be a proof net and let p be a resource polynomial free for 

substitution for the free resource variable x i n  v. Let v[x := p] be the result of 



substituting p for all free occurrences of resource variable x in  v .  Then v[x := p] 

is a proof net and Ilv[x := p]ll 2 llv11[x := p] .  

Proposition 3.3 Let v be a proof net and let T be a second order abstraction term 

Axl . . . Ax,.B, where all free occurrences of the resource variables X I , .  . . , x ,  in B 

are positive. Let v [a  := T ]  be the result of substituting T for all free occurrences 

of a second order variable a in the proof net v .  Then v is a proof net and 

II4a := Till 2 11v11. 

The analogous properties hold for the BLL sequent calculus. 

4 Normalization and Proof Nets 

4.1 Normalization in BLL 

We shall refer only to proof nets. The analogous discussion for the BLL sequent 

calculus is indicated in Appendix A. Here we define the proof net reduction steps 

and simultaneously show that the weight of a proof net decreases. The weight 

analysis can be extended to the BLL sequent calculus reductions by using cut-size, 

analogously to section 2.2 above. 

Definition 4.1 In BLL proof nets, an instance of the cut link is boxed when it is 

contained in a proof box. 

Our normalization procedure will eliminate only non-boxed cuts. We cannot 

eliminate boxed cuts because the polynomial p at the main door of a box may be 

0 , in which case the weight is no longer strictly monotone under reduction. 

Definition 4.2 In BLL proof nets, an instance of the cut link is irreducible if it 

is boxed or if one of its premises is a box with at least one auxiliary door, where 

the cut formula is at the main door, and the other premise is a conclusion of a 

Weakening, Dereliction, or Contraction link, or a box. 

Definition 4.3 A BLL proof net is irreducible if it contains only irreducible cuts 

(if any). 

It is understood that the reduction steps given below do not apply to irreducible 

cuts. 

Axiom Reductions 

Let A A'. Then: 

v v' - 
A'- A' A ' ~  reduces to A ~ ,  



see Proposition3.1. The weight decreasesfrom llull+1 to llu'll 5 Ilull. 

Again, A L A' . Then: 

n 
A AL A' reduces to A' 

see Proposition 3.1 . The weight again decreases from llull + 1 to IIu'II 5 Ilull. 

Symmetric Reductions 

reduces to 
A B  AL BL 
A B B  A ~ ~ B I  

A AL BL B 

where A~ and BL are among the conclusions of the given proof net w. The weight 

decreases from l l ~ l l  + 11P11 + llwll + 2 to l I " I I  + IIPII + IIwII. 

reduces to: 

the weight decreases from llv11+ 11p11+ 2 to IIu[a := TI(( + I I P I I  I llull+ I l ~ l l ,  See 
Proposition 3.3 . 

SSW 



C1 

reduces to: i 

B1 - .  - B, 

The weight decreasesfrom E(IIuII(x)+1)+11p11+2 to IIpII. 
X<P 

SSD 

reduces to 

The weight decreases from x (IIvII(z) + 1) + llpll + 2 to I[V[X := O]JI + 11p11. 
x < l + w  

SSC 

reduces to: 

The weight decreases from x (llu(((x) + 1) + 1lp11 + 3 to 
x<p+q+w 



(See Proposition 3.1 for the latter inequality.) 

SSS 

reduces to: 

The weight decreases from 

to: 



Therefore: 

Theorem 4.4 In any BLL proof net v, any sequence of reductions on reducible 

cuts must terminate in at most llvll steps. 

It may be readily seen that the reductions are locally confluent (i.e. weak Church- 

Rosser), and hence that: 

Proposition 4.5 The proof net reductions on reducible cuts satisfy the Church- 

Rosser property. 

Definition 4.6 The irreducible form of a proof net .rr is the result of eliminating 

all reducible cuts in T .  

Elimination of reducible cuts yields a kind of subformula property given in 

Lemma 4.8 below. Let us first begin with a 

Definition 4.7 A formula in the expanded language for BLL (see Section 3.4) is 

accessible if each negative occurrence of a universal quantifier or a bounded excla- 

mation mark and each positive occurrence of an existential quantifier or a bounded 

question mark, is nested within a positive occurrence of a bounded exclamation 

mark (i.e. negative occurrence of a bounded question mark). 

The proof of the following Lemma is left to the reader. 

Lemma 4.8 An irreducible proof net with accessible conclusions contains only 

boxed cuts. 

While the analog of this lemma can be established within the BLL sequent 

calculus, the argument is much more direct and perspicuous by means of proof 

nets. 

BLL versions of polymorphic definitions of most common data types (lists, 

trees, etc.) will not be accessible in the sense of the definition above. The solution 

to this problem will be presented in the next section. 

5 Normalization in BLL as Polynomial Time Compu- 

tation 

An aspect of modularity in BLL is that the notion of size of data is given by their 

type. For example, the data type of tally natural numbers of size at most x is: 



From now on, we simplify notation, associating the linear implication -0 to the 

right. Also the scope of the quantifier is the maximum possible. Note that erasing 

the resource information gives the linear logic version of the polymorphic type of 

natural numbers V a  !(a -0 a )  -0 a -0 a , ([20], Chapter 11 ) in which the (tally) 

natural numbers are represented as freely generated by a tally "successor" function, 

by reusing this function under iteration as much as one likes. Our definition of N, 
follows the same pattern, except that access to the "successor" function is allowed 

only up to x times (see Example 5.1). 

Similarly, we consider the type of lists on two symbols, of size at most x: 

Again, erasing the resource information yields the linear logic version of the 

polymorphic type of lists on two symbols V a  !(a -0 a ) -0 !(a -0 a ) -0 a + a ,  

where such lists are represented as freely generated by two "successor" functions 

("append first symbol" or "append second symbol"), by reusing these functions 

under combinations of iteration and composition as much as one likes. Our defi- 

nition of Nz follows the same pattern, except that access to the two "successors" 

is allowed only up to x times (see Example 5.2). 

We choose to write the first symbol as 1 and the second symbol as 2, antici- 

pating the dyadic notation used in Section 6 below. 

Most common data types (lists, trees, etc.) can be given a similar treatment 

in BLL, by maintaining the analogy with their representation in system T given, 

for example, in [20]: section 11.4. For the purposes of establishing the connection 

between normalization in BLL and the ordinary notion of polynomial time com- 

putability, we shall concentrate on the type of dyadic lists and on a simpler but 

related type of tally natural numbers. 

Example 5.1 : The tally natural number 2 is represented by the following 

cut-free BLL proof of I- N2. (Hint: reading BLL proofs bottom up gives a much 

better understanding of the structure). 



The lambda term assignment mentioned in section 3.3.1 assigns Church nu- 

meral 2 , i.e. X f  .Xu. f  ( f  ( a ) ) ,  to the BLL proof above: 

a  : a ( 0 )  D a  : a ( 0 )  b : a ( 1 )  D b : a ( 1 )  
-OL 

f  : a ( 0 )  -o a ( l ) ,  a  : a ( 0 )  D f ( u )  : a ( 1 )  c : a ( 2 )  D c : a ( 2 )  
-OL 

f  : a ( 0 )  -o a ( l ) ,  g : a ( 1 )  4 a ( 2 ) .  a  : a ( 0 )  D g ( f ( a ) )  : a ( 2 )  
!D 

f : ! y < i ( f f ( ~ )  -O f f ( ~  +I)), g :  -0 ~ ( 2 ) .  a  : f f ( O )  D ~ ( f ( u ) )  : f f ( 2 )  
! D 

f : ! y < l ( ~ ( ~ )  -0 a ( y  + I ) ) ,  g : ! y < l ( ~ ( ~  + 1 )  4 + 2 ) ) ,  a  : d o )  D g ( f  ( a ) )  : 4 2 )  
! C 

f : ! y < . r ( f f ( ~ )  -0 a(!/ + 111, a  : ~ ( 0 )  D f ( f  ( ( L ) )  : ~ ( 2 )  
4 R  

f : ! y < 2 ( 4 ! / )  -0 a ( y  + 1 ) )  D ~ a .  f (f ( a ) )  : a ( 0 )  -0 ~ ( 2 )  -on 
D X f.Xa. f (f ( a ) )  : !,<n(a(!/) -o a ( y  + 1 ) )  -0 ~ ( 0 )  --o a ( 2 )  

D Xf.Xa.f ( f  ( a ) )  : Q a ! y < ' ( a ( y )  -0 a ( y  + 1 ) )  -0 a(O) -0 ~ ( 2 )  
Q R  

Let us also display the proof net representation of the BLL proof of N2 given 

above: 

This proof net determines the BLL proof given above unicll~cly up to thc order of 

the rules 4 L  and !D . The proof net is itself uniquely determined by its conch~sion 

N2 and by the labeled graph with the indicated order on bintu-y links: 



We shall use this important fact in the discussion of polynomial time computation 

by normalization, given below. 

All the facts mentioned in this example easily generalize to any Church numeral 

X f .Xu. f (f . . . (f (a) . . .) . Note that because of waste of resources expressed by 

axioms and rules, the tally natural number n can be represented by a cut-free 

proof of I- Nk, for any n < k. This is the most general form of cut-free proofs of 

I- Nk, up to the order of sequent calculus rules . 

Example 5.2 : The dyadic list 112 is represented by the following cut-free proof 

of I- N;. 



The associated lambda term is X f.Xg.Xa.g( f (f ( a ) ) )  : N; . The proof net 

representation of the cut-free proof just given is displayed in Figure 5.1 . This 

proof net determines the cut-free proof given above uniquely up to the order of 

the rules. The proof net is in turn uniquely determined by its conclusion N$ and 

by the labeled graph: 



This important fact will be used in the discussion of polynomial time computation 

by normalization (see below). The facts stated in this example easily generalize 

to all dyadic lists. As in Example 5.1, note that because of waste of resources 

expressed by axioms and rules, any dyadic list of length 5 k can be represented 

by a cut-free proof of N:. This is the most general form of cut-free proofs of N: , 
up to the order of sequent calculus rules. 
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Example 5.3 : The successor on the tally natural numbers is represented by the 

cut-free BLL proof of N, I- N,+I shown in Figure 5.2. 

The reader will easily verify that the lambda term assignment mentioned in 

section 3.3.1 yields: 

e : N ,  bXf.Xa.f(e(f)(a)):Nx+l 

or, equivalently, 

e : N, D Xf-fO(e(f)) : NX+I 

The proof net representation of this BLL proof is shown in Figure 5.3 . 

Example 5.4 : There are two successors on dyadic lists. One of them, "Append 

1" , is displayed in Figure 5.4. The lambda term assignment mentioned in section 

3.3.1 yields: 

The proof net corresponding to the BLL proof given in Figure 5.4 is shown in 

Figure 5.5. 

Example 5.5 : A Reuse or Storage Functional on dyadic lists is given by the 

following proof of I- Ng 4 ! y < l ~ z  , where x, y are resource variables. Let v be 

the canonical proof of k Ni representing the empty list (analogous to Example 

5.2), and let sl and s2 be the canonical proofs of N: I- N:+~, representing the 

two dyadic successors (see Example 5.4). Consider the following proof Eo: 

and consider the proofs 01, a2 , where a1 is: 

where the reader will notice that 1 = 1, as required in the formulation of the rule 

Y<l 
S! in Section 3.3. a2 is built from s2 accordingly. We proceed as follows, writing r[x] 

for ! y < l ~ 2  and B[x] for !,<,(r[z] -or[z+l])  -o!,<,(r[z] 4 r [z+l] )  + r [ O ]  - O ~ [ X ] .  



This completes the construction of the reuse functional of type N: -o ! y < l ~ : .  A 

similar and somewhat simpler definition can be given for the reuse functional of 

type N, -0 !,<lN,. These functionals are the BLL versions of the "shaving" or 

"linearizing" functionals discussed in [It?], Theorem 3. They are also closely related 

to Krivine's recent work on "storage functionals" [26]. 

Let E,  S1, S2 be the lambda terms assigned to the proofs EO, 01, 02, resp. 

Then r = Xb.b(S1)(S2)(e) is the term assigned to the reuse functional of type 

N~-O!,<~N:. Here E is Xf.Xg.Xa.a, S1 is Xe.Xf.Xg.Xa.f(e(f)(g)(a)), and S2 is 
Xe.X f .Xg.Xa.g(e( f )  (9) (a)). We conclude this example by observing that the part 

of the construction of the reuse functional given by the last proof figure displayed 

above works in general for any type r[x], for any proof p of I- r[O],  and for any 

proofs q5 and 7 of I- r[z] --o T[Z + 11. If the corresponding lambda terms are t, F, 
and G, then the lambda term assigned to the resulting proof of I- Nf -0 r[z] is 

Xb.b(F) (G) (t), see the Iteration Lemma in Section 6 below. A similar observation 

holds for tally natural numbers N, instead of dyadic lists N:. We shall also denote 

by r the lambda term associated to the tally reuse functional N, -0 !,<1Nx. 

Example 5.6: Let 112 be the cut-free BLL proof of I- N: representing the dyadic 

list 112, given in Example 5.2. Consider the following BLL proof: 

Example 5.5 

with x :_ 3 
N: I- N: !,<IN: I- 

*L 
j 112 I- N: * !,<IN: N: -O!,<~N:, N: k ! y < l ~ :  

I- N: N: I- 
Cut 

Cut 
I- !,<IN: 

and its corresponding proof net: 



Example 5.5 I I I Examnle 5.2 I 
I I 

I with x := 3 
N$ ?,<IN:' 

(N: ~ ? , < 1 ~ ~ ' ) '  ~1 @ ? y < l ~ l L  ~ 4 '  N: ! y < ~ ~ z  

We urge the reader to work out the complete analysis of the reduction in this 

simple example. One important observation here is that in the configuration 

where !y<l~:+l is at the main door and neither !,<IN? nor ? , < 1 ( ~ ~ + ~ ) '  is a 

conclusion of an axiom link, the cut involving the main door cannot be eliminated 

until the cut involving the auxiliary door has been eliminated (cf. the reduction 

step SSS). In turn, the cut involving the auxiliary door cannot be eliminated unless 

its other premise ! y < l ~ ;  is at the main door of a box that has no auxiliary doors 

(again, cf. the reduction step SSS). Thus, at some point in the reduction process, 

we may encounter at  worst the configuration 

At this point, the 0 box must first "enter" the 1 box through its auxiliary 

door by the reduction step SSS: 



Now the 1 box must first enter the 2 box through its auxiliary door by the 

reduction step SSS: 

etc. 

The irreducible form of this proof net is: 

where F, K, are proof net representations of the proofs v, sl and ss, resp. from 
Example 5.5. This proof net comes from the following BLL proof, up to the order 

of the rules: 



-. 
t- N; 

L U t  
N: i N; 

S ! !D 
t - ! y < l ~ ;  !,<IN: t- N$ : s 2 ( x  : 

Cut 
t- N; N; I- N; 

S ! 
k!v<l~ ;  ! v < l ~ ;  t- N: 

!D 

Cut 

Recall from Examples 5.2 and 5.5 that b = X f .Xg.Xa.g(f (f ( a ) ) )  is the lambda 

term assigned to the proof 112 and that r = Xb.b(S1)(S2)(e) is the lambda term 

assigned to the reuse functional on dyadic lists. The lambda term assigned to the 

proof given at the beginning of this example is r(b) : ! y < l ~ :  . It is important 

to observe that the lambda term assigned to the last BLL proof just considered, 

which corresponds to the irreducible form, is not the ordinary normal form of 

r(b) , since the irreducible proof (net) still does contain some cuts. 

Furthermore, it is important to observe that an irreducible form such as the 

one given above can be recovered up to waste of resources from the i~lformation 

containing: 

the conclusion ! y<l  N: , 

the formal structure obtained by forgetting the types but keeping the boxes 

and the rule labels, including those inside the boxes, which in this example 

is: 



the knowledge that each Pi comes from either one of the dyadic successors 

Sl ,S2.  

In particular, the formal structures pi, pj, . . . distinguish between the two suc- 

cessors. A similar and somewhat easier observation of this nature can be made 

in the case of !y<lNk. ( For a deeper analysis of the last point, see Lemma 5.1 

below.) 

We conclude this example by noting that, in contrast to the situation just 

described, the cut-free proof net representing the dyadic list 112 (see Example 5.2) 

is the irreducible form of 

This proof net represents the proof 

for which the associated lambda term is 

X f  .Xs.Xa.(Xf .Xg.Xa(Xf .Xg.Xa.(Xf .Xg.Xa.a)(f )(g)(a))(f )(9)(a))(f )(9)(a) : N; - The 
normal form of this term is Xf.Xg.Xa.g(f (f (a))), the term associated to the proof 

representing 112 (see Example 5.2). I3 

Now we can formulate the solution to the problem mentioned at the end of 

Section 4, that N, and N: are not accessible. The main idea is to employ the 

reuse functional and rather than normalizing reducible cuts in the proof net repre- 

sentation of a given proof of N:, we instead normalize reducible cuts in the proof 

net representation of a given proof 7r of I- N; 

Example 5.5 

Nf I- N: !,<IN: l - ! y < l ~ :  
-OL : I- N:-~!,<~N; N~ , - !~<~N; ,  N; I - ! ~ < ~ N $  

Cut 
I- N; N: I-!,<~N: 

Cut 
I-!y<lN: 



The conclusion ! y < l ~ :  is accessible and Lemma 4.8 will apply (similarly, we 

work with !y<lNx instead of Nx ). 
As we have already mentioned, this method is motivated independently by two 

sources. One is in the notions of "shaving" or "linearizing" functionals in [18], 
Theorem 3. The other source is Krivine's recent work [26], the point of which 

is to use leftmost reduction in lambda calculus: in spite of the obvious fact that 

leftmost reduction can force us to compute the same integer several times, Krivine 

manages to force the evaluation to occur exactly once. His storage functionals do 

not yield the ordinary normal form of the integer but rather something like n cuts 

applied to 0 and successor. Similar methods have been applied in Linear Logic in 

recent work of L. Regnier. 

Now the rules we use in BLL are a kind of symmetrization of leftmost reduction. 

The idea is that the only relevant difference between left and right is that in f ( a )  , 
a is inside an S! box. 

Lemma 5.1 below is stated for the particular case of tally integers. The case 

of dyadic lists is completely analogous. 

Lemma 5.1 I n  Bounded Linear Logic, one can construct proofs with associated 

lambda terms as follows: 

( i )  D 0 : !y<lNo 

(ii) D S : ! y < l N x ~ ! y < l N r + l  

(iii) D r  : N , - O ! ~ < ~ N ,  

such that whenever a tally integer n is  the ordinary normal form of a closed term 

t : Nk,  then an  irreducible proof with associated term Sn(0) : !y<lNk is  the result 

of eliminating all reducible cuts from the proof with associated term r(t) : !y<lNk. 

Before we give the proof of Lemma 5.1, let us explain the irreducible forms we 

are looking for. We describe them in the framework of sequent calculus; up to the 

order of rules this will contain all possible irreducible forms. We remind the reader 

of examples 5.5 and 5.6. In particular, part (iii) of the statement of Lemma 5.1 

concerns the tally version of the reuse functional given in Example 5.5. 

A zero-proof Z,, where a is a non-negative integer, is the only proof of !y<lNa 

obtained by waste of resources from the cut-free proof with associated Church 

numeral 0 = X f .Xa.a (recall Example 5.1). 

A successor step Sabc, where the non-negative integers a,b, c satisfy a 5 b < c, 

is the only cut-free proof obtained from the cut-free proof S, of N, I- Nx+l given 

in Figure 5.2 by the following steps: let x = b, obtaining a proof Nb I- Nb+1. Then 

waste N, into Nb and Nb+1 into N,, obtaining a proof N, I- N,. Applying !D , 
we obtain Sabc, which proves !y<1Na I- Nc. 

If II is a proof of a formula !y<lNa , a successor of II is any proof II' of some 

!y<lNc obtained from 11 by first applying a cut with some Sat,,-, then applying the 

S! rule. 



The irreducible proof that we obtain will consist of iterated successors of some 

zero-proof, analogous to Example 5.6. 

We emphasize that for the eventual computation, resources will be erased and 

therefore only the number of successors made from zero will be remembered. 

Proof of Lemma 5.1: 

By induction on kt 5 k + 1 we shall show that either the irreducible form of r(t) is 

some iterated successor of zero, the number of iterations being less than k' , or it is a 

kt-iterated successor of a proof of some !y<1Na, which is an S! box. With k' = k+ 1 

only the first possibility remains. As in the case of Lemma 4.8 , the argument can 

be formulated either by means of sequents or proof nets, the difference being that 

the latter dispenses with a lot of bureaucracy. In the case kt = 0 we just have to 

show that the irreducible form of r(t) is a box, which is plain from Lemma 4.8 . 
To move from kt to k' + 1 we can assume that the irreducible form of r(t) is the 

kl-th iterated successor of some box which proves !y<lNa . NOW observe that any 

exclamation mark box in the irreducible proof net has a well-defined ancestor in 

the original proof r(t). Now it may be seen that the ancestor of this box cannot 

lie within t . This is because in the reduction step SV the second order abstraction 

term X Z . ! ~ < ~ N ~  has been substituted in t for a generic predicate, i.e. for a second 

order variable which has no internal structure. Therefore, the ancestor is located 

within r. Among the candidates, only two boxes type-check. First, the box for 

0, which yields the first possibility of the case k' + 1. The second one is the box 

for S (which comes from S, mentioned above by applying successively !D and S!); 
this box for S has two conclusions and it can be changed into a box with one 

conclusion only by making some proof II "enter" S through cut-elimination. In 

this case our proof r( t)  will be a (kt + 1)-iteration of II. Now when II enters some 

descendent of this box for S, 11 must be a box: this comes from the restrictions 

on cut-elimination for storage rules. This yields the second possibility of the case 

kt  + 1.0 

Remark: The reasoning in this proof clearly applies to Linear Logic when the 

resource information is omitted. 

Recalling the discussion before the proof of Lemma 5.1 and Examples 5.5 and 

5.6 and the subsequent discussion, let us state: 

Definition 5.2 A function 4 from dyadic lists to dyadic lists is represented in 

Bounded Linear Logic by  a proof F of N: 4 N:,) if for every dyadic list b of 

length < n and the corresponding cut-free proof b of N:, the irreducible proof net 

with conclusion !Y<l~;(n)  that corresponds to the dyadic list 4(b) is the irreducible 

form of the proof net representation of the BLL proof displayed in Figure 5.6 . 
A function from dyadic lists to dyadic lists is representable in Bounded Linear 

Logic if there exists a resource polynomial p ( x )  and a BLL proof of I- NZ -o N:(,) 

that represents 4. Similarly for functions on tally natural numbers and for func- 

tions of several arguments, perhaps some tally, some dyadic. 

We again emphasize that in the actual computation by cut elimination, much 



of the type information is erased first, so the result will be a graphical configuration 

of the successors "append 1" and "append 2" that uniquely determines +(b). 

Discussion: In regard to Definition 5.2 above, note first of all that the lambda 

term f associated to the BLL proof F has type N~ =% N2 in system 7 (erase all 

resource information and exclamation marks from the BLL proof F). Thus if i5 is 
the dyadic Church numeral corresponding to the cut-free proof b, then f(6) has 

a normal form which must be a dyadic Church numeral. Let r be the lambda 

term associated to the reuse functional given in Example 5.5. r(f(E)) is the term 

associated to the proof given in Figure 5.6. Furthermore, because of the dyadic 

case of Lemma 5.1, the irreducible form in the situation described in Definition 

5.2 is the same as for the following: 

Reuse, with z:=p(n) -- 

N;(n) I- ~ z n )  ! y < l ~ z n )  ~ ! y < l N ; ( ~ )  

N2 
-0L im n p(n) ~ ~ n ~ ~ ! ~ < l ~ : ( n ) , ~ ~ ~ n ~  !y<1N;(nl 
Cut 

t- N3rn) q r n )  t-!y<~~?L,l 
r\'-' Cut 

I-'~<IN;(~) 

- - 
whose associated lambda term is r(+(b)), where +(b) is the Church numeral as- 

sociated to #@). In other words, because of the dyadic case of Lemma 5.1 , we 

may equivalently require that the ordinary normal form of f(E) must represent 

#(b). Lemma 5.1 seemingly states only one direction, but the other follows also 
by Lemma 5.1 because of the Church-Rosser property and because f(E) has a 

normal form. However our representation by irreducible forms rather than by nor- 

mal forms is much more economical from the point of view of computation. In 

particular, our approach yields a feasible computation. 

Theorem 5.3 Any function from dyadic lists to dyadic lists represented by a proof 

of l- N: -4 N:(,) in  Bounded Linear Logic is computable in  polynomial time. 
Furthermore, the required polynomial can be obtained explicitly from the weight of 

the representing BLL proof of I- N: -o N;(,) . 

Proof: Let F be a proof of t- N: -o N;,) that represents a function + from dyadic 

lists to dyadic lists. Let IIF(((x) be the weight of F and let p(x) be the weight of the 

proof that defines the reuse functional, given in Example 5.5. For any dyadic list b 

of length at most n, let b be the cut-free proof of I- N: representing b (see Example 

5.2). Observe that the weight ((bll is linear in n. Referring to the proof displayed 

in Figure 5.6, we readily see that its weight is Q(n) = (IFll(n) + p(n) + k n  + 1, for 

some constants k and I .  By Theorem 4.4, therefore, the irreducible form of this 
proof, which by Lemma 5.1 and by the discussion after Definition 5.2 uniquely 

determines 4(b) will be reached in at most Q(n) steps. Thus it suffices to show that 

the computation uses only polynomial space with respect to resource parameters 

(if we have a procedure that uses polynomially many steps and is polynomial 



space, then it is polynomial time.) The argument will apply to any proof net with 
2 conclusion N, . 

We first observe that we may erase the types (i.e. formulas) and keep only 

the information about links and boxes. This information suffices to carry out the 

reduction steps. As we have noted in Example 5.6 and Lemma 5.1, after eliminating 

all reducible cuts, we are left with a formal trace of the irreducible form of a 

given proof, from which the irreducible form can be uniquely determined. In fact, 

the formal trace itself already determines the required dyadic list +(b)  uniquely. 

However, we are still left with the problem of duplication of boxes in the reduction 

step SSC. 

The solution will involve creating a new pointer to the address of the box 

instead of duplicating the box explicitly. More precisely, let us assume that we 

have a finite list of signatures . . . ; , which are basically natural 

numbers. (A natural number n is intended to indicate n auxiliary doors of a black 

box.) We shall consider a "dynarnical proof net" without formulas, by using formal 

axioms from the given finite list of signatures. Such a dynamical proof net may 

have many formal axiom links that have any positive number of conclusions. Any 

such formal axiom link with n + 1 conclusions will refer to a unique item on the 

list of signatures, which is an occurrence of n. Such a formal axiom link with 

n + 1 conclusions is intended to replace a maximal box with n + 1 doors in a proof 

net without formulas. Therefore, these formal axiom links will also refer to a list 

of certain formal boxes in a way that will be inductively defined below. We will 

establish that the size of this dynamical proof net evolves polynomially during the 

elimination of reducible cuts. 

The initial structure may be described as follows. Let Pi be the immediate 

content of the ith box in the formal structure obtained from a given proof net 

by erasing the formulas but keeping the names of links. Po is taken as minimal, 

i.e., there are no boxes inside Po. The signature of Po is obvious: there must be a 

bijection between the signature and the doors of Po, which relates the distinguished 

dot to the main door. PI, on the other hand, might use Po as a module. We indicate 

that by using, if needed, only the formal axiom link that refers to the signature of 

Po. Furthermore, P1 has its own signature defined as in the case of Po, etc. Notice 

that for this initial configuration, the structure of using a box inside another will 

be quite limited, because the nested structure is a non-rooted tree, and if the same 

box should occur in two different places in this tree, we cannot expect to see that 

at compile time. Because we are referring only to immediate subboxes, a formal 

box can be referred to by at most one other formal box later in the list. 

The list of formal boxes will increase during the elimination of reducible cuts, 

but the increase will take place only in the case SSS, see Section 4. Each time 

such a reduction step takes place, a new formal box is created because a minor 

premise (a formal box with signature ; ) enters a major premise (a formal box 

with arbitrary signature) through a distinguished auxiliary door. Therefore the 

new formal box is uniquely described by: 

the address of the major premise in the previously created list, 



the address of the minor premise in the previously created list, 

the signature of the new formal box, and 

an integer j  5 n, where n refers to the signature of the major premise. 

Let us recall that in each reduction step the weight strictly decreases, and 

therefore the list of formal boxes is polynomial in the resource parameters. Let us 

also observe that there is a fixed bound, say N, on the number of auxiliary doors 

of each formal box in the created list. 

During the elimination of reducible cuts, at each moment we have a dynamical 

proof net with pointers to the list of formal boxes and to their signatures. We now 

show that the size of these dynamical proof nets evolves polynomially. 

We have to count the number of links. This is mainly taken care of by the 

weight. In particular, for the formal axiom links that replace boxes with n + 1 
doors, the weight is at least n + 1 (see section 3.5). However, the weight does 

not count cuts, which therefore must be counted separately. Given a cut, consider 

the two links leading to the premises and arbitrarily pick one of them. Recall 

(from section 3.5) that each link except cut has a positive weight. Because of the 

presence of formal axiom links in a dynamical proof net, links may have at most 

maxi N+1, 2 ) 5 N+2 conclusions. 

Since we chose an injection from cuts to other links, then each such link in a 

dynamical proof net is related to at most N + 2 cuts. Thus the number of cuts is 

at most (N+2) times the weight. Therefore the total size is linear in the weight. 

It remains to state the reduction steps involving formal boxes, but relying only 

on the information available at each step. There are four cases (see section 4): 

SSW: Note that one simply destroys a part of the structure. 

SSC: Create a copy of a formal axiom link (not the whole box) together with a 

pointer to the same place as the original. 

SSS: Remove the cut with the minor premise, replace the major premise with 

another formal axiom with a smaller number of conclusions, and make a 

pointer to the new box described above. 

SSD: Consider the formal box y involved in the cut. Trace back through the 

hereditary major premises until we get to the initial list of formal boxes, say 

to the item i. Make a cut with the conclusion of Pi that gives rise to the 

main door of the ith formal box on the initial list. However, this formal box 

has side doors, all of which are linked to formal boxes through: 

minor i 

minor M jor 

minor Major 

Y 



where the Majors give the addresses for the relevant side doors. In 0; make 

cuts between these side doors and new axioms, each with exactly one con- 

clusion. Each of these new axioms should now refer to the corresponding 

minor, the address of which is known (see the four items in the creation of 

new boxes discussed above) . 

The argument is analogous in the tally case. We obtain: 

Theorem 5.4 Any function from tally natural numbers to tally natural numbers 

represented by a proof of I- Nx -o Np(x) i n  Bounded Linear Logic is  computable i n  

polynomial t ime with respect to' tally length. Furthermore, the required polynomial 

can be obtained explicitly from the weight of the representing BLL proof of t- 

Nx -0 Np(,) .El 

Another proof of Theorem 5.4 will be given at the end of Section 6. 

6 Representing Polynomial Time Functions in BLL 

In this section we show the converse of Theorem 5.3: 

Theorem 6.1 Every polynomial time computable function can be represented i n  

Bounded Linear Logic by a proof of I- N: 4 N;(~)(,), for some resource polynomial 

P -  

The reader will recall that the notion of "function represented by a proof in BLL" 

is specified in Definition 5.2. 

This section is simply a series of exercises about the flexibility of the typing rules 

of BLL. Let us point out that the lambda terms associated to the BLL proofs (cf. 

3.3.1) that we construct for the purpose of representing polynomial time functions 

on natural numbers are convertible to the type erasures of lambda terms ordinarily 

used for representing these functions in system 3 as functions on dyadic lists, i.e. 

as terms of type N2 + N2. Thus, from this point of view, we do not actually 

construct any new representations. In particular, the question of representing 

fast algorithms and the question of tightness of time bounds arising from BLL 

representations will be studied elsewhere. Here we simply check that resource 

information is incorporated into the BLL inference rules in a flexible enough way 

to express the ordinary lambda term representations of certain functions on dyadic 

lists. We rely on Cobham's well-known characterization of the class of polynomial 

time functions P as the smallest class of functions closed under composition and 

limited recursion on notation, and containing certain initial functions [5]. 

Remark: The presentations in the literature of Cobham's characterization of P 
vary, e.g. [28] considers functions whose inputs and outputs are only those binary 

lists that encode natural numbers under the usual binary encoding, while [30] and 

[32] consider functions whose inputs and outputs are natural numbers in dyadic 



notation. We consider dyadic notation, customarily written as lists of 1's and 2's) 

instead of binary lists of 0's and 1's. Denote the function that appends symbol i 
to (the end of) list I by 1 * i . Formally, we defme dya(0)  = s = the empty 

list ; dya(2i  + 1)  = d y a ( i )  * 1, dya(2i  + 2 )  = dya( i )  * 2 . In this way we obtain a 

one-to-one correspondence between natural numbers and dyadic lists. 

The following two lemmas are obtained by straightforward generalization of 

the construction given in Example 5.5. 

Lemma 6.2 (Iteration Lemma) 
1. Tally Case. Let ~ [ z ]  be a type in which all free occurrences of resource 

parameter z are positive. Given B L L  proofs of t- T [ O ]  and I- ~ [ z ]  -o T [ Z  + 11 
with associated lambda terms t and F ,  respectively, one can construct a proof of 

t- N, -o ~ [ x ]  with associated lambda t e rm  X n . ( n ) ( F ) ( t )  . 
2. Dyadic Case. Let ~ [ z ]  be a type in which the free occurrences of resource 

parameter z are positive. Given a B L L  proof of I- T [ O ]  , and two B L L  proofs 

of I- T [ Z ]  + T [ Z  + 11 with associated lambda terms t ,  F ,  and G,  respectively, 
one can construct a B L L  proof of I- N: 4 T [ X ]  with associated lambda t e rm  

X w . ( w ) ( F ) ( G ) ( t )  . 

Intuitively, the role of the Iteration Lemma (say, its dyadic case) may be de- 

scribed as follows. For instance, r [ z ]  may be N:(,) and the given BLL proofs of 

I- N:(,,) and (two proofs of) t- N:(,) + N:(,+~) may represent a dyadic list a and 

functions f and g, respectively. Then the function h defined by iteration 

will be represented by the proof of I- N: -o N:(,). (Strictly speaking, the sense in 

which the two given BLL proofs of I- N;(:) 4 N$,+~) represent functions f and 

g, respectively, is not specified by Definition 5.2, but the required more general 

definition is obvious from Definition 5.2). 

Lemma 6.3 (Reuse Lemma) 
1. Tally Case: Let 0 and S be lambda terms expressing the tally numeral zero and 

the tally successor, respectively, described in Examples 5.1 and 5.3. One can con- 

struct a B L L  proof of I- Nx + !y<y~Nz with associated lambda t e rm  Xn.n(S)(O) . 
2. Dyadic Case: Let E ,  S1, and S2 be lambda terms expressing the empty list and the 

two successors "Append 1" and "Append 2", respectively, described in Examples 

5.4 and 5.5. One can construct a B L L  proof of I- N~,-O!~ ,~IN:  with associated 

lambda t e rm  Xb.b(S1) ( S 2 )  ( E )  . 

In either case of Lemma 6.3, we denote the resulting lambda term by r . 
Among the consequences of the Reuse Lemma are the following derived infer- 

ence rules: 



i.e., unrestricted Weakening and Contraction on N: and N,. Furthermore, the 

induced lambda term assignment is: 

c': ~ , U : N ; , ~ : N ;  ~ t :  B c ' : J ? , a : N , , b : N ,  ~ t :  B 

c ' : I ' , a : N :  D t [ a : = r ( a ) , b : = r ( a ) ] :  B c ' : r , a : N ,  ~ t [ a : = r ( a ) , b : = r ( a ) ] :  B 

Another way to apply the Reuse Lemma is through interaction with the S! 
rule, e.g. as in the proof of Proposition 6.5 below. 

Let us first show that polynomials on tally natural numbers are representable 

in BLL. 

Proposition 6.4 Tally addition is representable by a BLL proof of t- Nx 8 Ny -0 Nx+y 

Proof: As in system 3 and untyped lambda calculus, the intuitive motivation for 

this representation is the equation 

where f lc is the Ic-fold composition f 0 f 0 .  . . 0 f of an endofunction with itself. First, 

using -0L and VL with Ny as VaA and Xz.a(x + z) as T yields a BLL proof of: 

Ny,!z<y(a(x+~)*a(x+z+l)),a(x)~a(a:+~) . 

On the other hand, a BLL proof of: 

is readily obtained by VL and -oL. Now we use Cut on these two proofs, with a(x) 

as the cut formula, and thus obtain a BLL proof of: 

whence by Contraction: 



By -OR and V R  we obtain: 

N z ,  N y  t- NZ+, 

Now the desired BLL proof of 

I- Nz 8 N y  4 N z + v  

is obtained by @L and +R . 

Proposition 6.5 Tally multiplication is representable by a BLL proof of 

k N z @ N y ~ N z y  . 

Proof: Again as in system 7, the intuitive motivation for this representation is the 

equation: 
( f " ) "  = f n m  

where f is the k-fold composition f 0 f 0 .  . . 0 f of an endofuction with itself. First, 

using -oL and using VL with N y  as VaA and Xzl.a(zy + z') as T yields a BLL 

proof of: 

N y  , !z'<y(a(zY + 2') -o ~ ( Z Y  + Z' + 1))  , ~ Z Y )  I- ~ ( Z Y  + Y )  7 

hence by - OR :  

and thus by ~ereliction: 

!zt<lNy, ! z ~ < y ( ~ ( z y  + t') 4 a(zy  + Z' + 1))  I- a(zy )  -O a(zy  + y) . 

One now applies the S! rule 4,  where the formula a ( z y  + z') -o a(zy  + z' + 1)  is 

thought of as a(yl )  -O a(yl + l ) [y l  := zy + z'], and where y' does not occur in 

!zl<lNy . One obtains a BLL proof of: 

On the other hand, using +L and using VL, with N x  as V aA  and Xz.a(zy) as T 
yields a BLL proof of: 

Now use Cut on the two proofs constructed, with !,<,(a(zy) -o a(zy  + y))  as the 

cut formula, obtaining a BLL proof of: 

41n which w e  set, in order, y = y t , z  = z l , z  = r , p  = z , q l ( r )  = l , q z ( r )  = y; thus, v l ( p )  = p  , 
and v z ( p )  = PY. 



Nx,  !y'<xNy , !y'<zy(ff(yf) -0 a(yf + 111, 4 0 )  I- ff(xy) , 

hence by -oR and VR: 

Nx !yt<xNy I- Nry 7 

By the Reuse Lemma and by using Cut, one obtains 

Nx , N, I- NX, 

and thus the desired BLL proof of 

I- N, @ N y  4 Nzy - 
can be obtained by @L and -OR. 

Corollary 6.6 Any polynomial p(xl,. . . xk) in k arguments with non-negative 

integer coeficients is representable by a BLL proof of 

NZl @ NZ2 ' '. @ N x k  -o Np(Z17-..,Zk) ' 

Proof: First, note that any such polynomial is a resource polynomial. Next, since 

xk = x* . . . OX (k times) , the proof of Proposition 6.5 yields a BLL proof of: 

N,, ... , N, I- N , h  

and hence by multiple contraction on N, (justified by the Reuse Lemma) one 

obtains a BLL proof of N, I- N,k and hence of I- N, 4 NZh by 4 R .  Similarly, 

nx can be represented by a BLL proof of N, I- N,, . Now the corollary follows 

by Proposition 6.4 and by Reuse. 

We have already represented in BLL dyadic constants, the two dyadic successors, 

and projections, cf. Examples 5.2 and 5.4 and comments after the Reuse Lemma 

(Lemma 6.3). We now represent in BLL a relatively fast-growing function that 

can be used to majorize the initial functions in Cobham's characterization of P .  

Proposition 6.7 Let g(a, b) be defined by iteration on b: 

where f (a, d) is itself defined by iteration on a: 

The function f is representable by a BLL proof of I- N: @ N: -o N:+,. The 

function g is representable by a BLL proof of I- N? @ N: -O N:~+~.  



Proof: First we shall use the dyadic case of the Iteration Lemma (Lemma 6.2) to 

represent f .  It suffices to consider Ad. f .  Let o[z ]  be N; + N:+,. For z  = 0 let 

I- N: -o N: be obtained from an Axiom by 4 R .  

Both cases of the iterative step are the same. The required BLL proof of 

I- u[z ]  -0 u[z  + 11 is constructed as follows. Consider the BLL proof sl of 
N: I- N:+~ given in Figure 5.4 (which represents the successor "Append 1") 

and set x  := y + z  in that entire BLL proof (with the bound resource variable y 

renamed to y'). We obtain a BLL proof of N:+, I- N:+,+~. Also consider the 

BLL proof of N: + N:+, , N: I- N:+, obtained by applying one instance of 4 L  

to two Axioms. Now use Cut, where the cut formula is N:+,, thus concluding 

N: 4 N:+, , N: I- N:+,+~. Now use - O R  twice. The Iteration Lemma then 

yields a BLL proof of I- N: -o (N: 4 N;+,). The corresponding BLL proof of 

I- N: B N: 4 N:+, represents the function f introduced above. 

Now let us represent the function g. We consider Aa.g. Let r [ z ]  be N: 4 

N:,+~. For z  = 0, let I- N; be the BLL proof representing the list 2, cf. Example 

5.2 for comparison. Apply weakening on N:, as justified by the Reuse Lemma (cf. 

the comments after Lemma 6.3) and thus obtain a BLL proof of N: I- N: . Apply 

-OR. The resulting BLL proof of I- N: -0 N? represents the constant function 2. 

In the iterative step both cases are the same. The desired BLL proof of 

I- ~ [ z ]  -o r [ z+ l ]  may be obtained as follows. F'rom the BLL proof of !- N: 8 N: -o 

N:+, that represents f , given above, and the BLL proof of N: , N: , N: B N: -o 

N$+, I- N:+, obtained by BR and *L from Axioms, one can construct a BLL 

proof of N: , N: I- N:+, by using Cut, where the cut formula is N: B N: + N;+,. 
Let y = x z  + 1  in this entire BLL proof, renaming bound variables if necessary. 

One obtains a BLL proof of N: ,N:,+~ I- N:(,+~)+~. On the other hand, a 

BLL proof of N: 4 N:,+~, N: I- N:,+~ is readily available by using -oL on 

Axioms. Now use Cut on the latter two BLL proofs, where the cut formula is 

N:,,~, yielding: 

Now use contraction on N: as justified by the Reuse Lemma (cf. the comments 

after Lemma 6.3). One obtains: 

Now use - O R  twice to obtain the required BLL proof of l- ~ [ z ]  -o r [ z  + 11. 
Hence by the Iteration Lemma (Lemma 6.2) one constructs a BLL proof of N: -o 

(N: 4 N:,+~). The corresponding BLL proof of F N: B N: -o N:,+~ represents 

the function g. 

We now show how to represent several auxiliary functions. 

Proposition 6.8 The functions pl ( a )  = 1  * a and p2(a) = 2 * a  are representable 

by BLL proofs of I- N: -o N:+*. 



Proof : We consider pl , the representation of p2 being analogous. Recall the BLL 

proof sl that was given in Figure 5.4, which represents the successor S1, "Append 

1". We modify that proof as follows. Consider the larger(1eft) branch above 

the lowest instance of -oL. Throughout that branch, except in N:, replace each 

instance of !y<x(a(y) -O a(y + 1)) and of !y<z+l(a(y) -0 a(y + 1)) by !y<x(a(y + 
1) -a a(y + 2)), a(0) by a(1), and a(x) by a (x  + 1). The last rule in the branch 

is QL, but now with Xy.a(y + 1) as T (instead of Xy.a(y), as in Figure 5.4). The 

branch now concludes with: 

We can use -oL on this proof and on Axiom a(0) I- a(0) to obtain: 

hence by Dereliction: 

and then by Contraction: 

Another instance of !y<l(a(y) 4 a(y + 1)) can be introduced by Weakening, and 

then Contraction can be used w.r.t. the other !y<z to conclude: 

from which one obtains I- N: -o N:+~ by three applications of -OR, one application 

of QR, and another application of -OR.  Note that the lambda term associated to 

this entire BLL proof is Xe.X f.Xg.Xa.e(f)(g)(f (a)). 

The function reversing dyadic lists, rev, may be defined by iteration from pl and 

P2: 

The dyadic case of the Iteration Lemma (Lemma 6.2) and Proposition 6.8 

readily yield: 

Corollary 6.9 The function i-ev reversing dyadic lists may be represented by a 

BLL proof of t- N: -o N:. 

Let us define, for any types A and B: 



Note that erasing all resource information results in the usual definition of weak 

sum in system 7. Furthermore, as in system 7, in BLL one can derive: 

so that the associated lambda terms are type erasures of the canonical polymorphic 

left and right inclusions and of the polymorphic "definition by cases" in system T ,  
respectively. 

Although the analog of Lemma 5.1 can be established for type N; @ N: @ N:, for 

our purposes it suffices to state the following proposition by means of lambda terms 

associated to BLL proofs. The reader should recall the notion of the lambda term 

a representing a dyadic list a as discussed in Example 5.2 as well as the discussion 

after Definition 5.2. 

Proposition 6.10 One can construct a E L L  proof Bpd of I- N: -o N~@N:@N: 
whose associated lambda term bpd satisfies for any dyadic list a : 

i n  the sense of convertibility, where 7i is  the lambda term representing a, and where 

left, mid, and right are type erasures of the canonical polymorphic inclusions into 

the weak sum. 

Proof: We use the dyadic case of the Iteration Lemma (Lemma 6.2). Let ~ [ z ]  

be N; @ N: @ N:. When z  = 0 take the BLL proof obtained by Cut from the 

canonical BLL proof representing the empty list E and the canonical BLL proof 

"Left" N; I- N; @ N; @ N;. Its associated lambda term is Ee f t ( ~ ) .  In the iterative 

step for S1, first consider the BLL proof of N~@N:@N: I- N:+~ defined "by Cases" 

from Axiom N; I- N:+~, from the BLL proof sl of N: I- N:+~ given in Figure 5.4 

(with z  for z), and from the BLL proofs:! of N: I- N:+~. Then cut this BLL proof 

defined by cases with the canonical BLL proof "Mid" of N:+~ I- N~@N:+~@N:+~. 

Now use -OR to obtain the BLL proof of I- ~ [ z ]  * T [ Z +  11 ; let M be its associated 

lambda term. In the iterative step for S 2 ,  the construction is the same, but with 

"Right" instead of "Mid". Consider the BLL proof of I- r [ z ]  -0 r[z+ 11 so obtained 

and let R be its associated lambda term. Apply the dyadic case of the Iteration 

Lemma to obtain the BLL proof Bpd of I- N, + N; @N: @N: and let bpd be its 

associated lambda term. One easily checks that bpd(S1(7i)) = M(bpd(a) )  = mid(i i)  

and bpd(S2(8))  = R(bpd(6))  = right(&) for all binary lists a. 

As a step in representing limited recursion on notation, we represent cutoff on 

dyadic lists. 

Proposition 6.11 The cut-08 function 1, where a [ n  = the list of first n digits of 

a dyadic list a ,  is  representable by a B L L  proof of t- N, 4 N: N:. 



Proof: Here one has to be somewhat crafty. We shall use tally iteration (Lemma 

6.2), but more to the point, in the iteration we shall first reverse the list and we shall 

also keep track of the tail that will have been cut off. Let ~ [ r ]  be N: -o N: 8 N2; 

the Iteration Lemma (tally case) will yield a BLL proof of I- N, -o N: -0 N%N;. 

From this we consider the associated BLL proof of I- N,@N;-~N:@N: and then 

take the left projection (available as a consequence of reuse) and thus obtain the 

desired BLL proof of I- N, 8 N: -o N:. Observe that because of the occurrences 

of resource variable x, iteration has to be on N,, i.e., it has to be tally iteration. 

Before we describe the base and the iteration step, let us give a sample computation 

which we will be representing. Consider the list 112. Then: 

for n = O  : < E, 211 > 

for n = 1  : < 1,21 > 
for n = 2  : < 11,2 > 
for n = 3  : < 1 1 2 , ~  > 
for n > 4 :  < 1 1 2 , ~  > . 

Note that we can use bpd of the right component at stage k (cf. Proposition 6.10) 

to define the left component at stage k + 1 by cases. 

Now let us describe the base and the iteration step of this tally iteration. In the 

base, first take the BLL proof of I- N; representing the empty list (cf. Example 5.2 

for comparison). Second, take the BLL proof of I- N: -0 N: that represents reverse 

(cf. Corollary 6.9 ) and cut with the canonical BLL proof of N: -o N:, N: I- N: 

(built from two axioms by -oL) obtaining a BLL proof of N: I- N:. Now use 8 R  

on the two BLL proofs constructed and then -oR , yielding I- N: -0 N; 8 N: , 
i.e. r[0]. In the iteration step, it suffices to construct a BLL proof of ~ [ t ]  I- r[z+l] ,  

i.e., of N: -o N: 8 N: I- N: -o N:+~ @IN:. This BLL proof will be obtained by 

-OR from a BLL proof of N: -o N: @I N:, N: I- N:+~ @I N: , which in turn can 

be obtained by -oL from an instance of an axiom N: I- N: and from a certain 

BLL proof of N: @ N: I- N:+~ @ N: , which we now describe. First consider 

a BLL proof of N; @ N: @ N: I- N: defined by cases, where the left case is 

a waste of resources Nf I- N: (i.e., an instance of an axiom) and the mid and 

right cases are the identity N: I- N: (again an instance of an axiom). Now use 

Cut with the BLL proof of N: I- N; @ N: b N: corresponding to the BLL proof 

Bpd built in Proposition 6.10, and thus obtain a BLL proof of N: I- N:. By 

the Reuse Lemma and weakening, obtain a BLL proof of N:,N: t N: , which 

we shall here call R. On the other hand, consider the following BLL proof of 

N:, N: b N: b N: I- Ntcl defined by cases. The left case is the BLL proof 

of N:,N; I- N:+~ obtained by Reuse and weakening from waste of resources 

N: I- N:+~. The mid case is the BLL proof of N~,N:  I- N:+~ obtained by Reuse 

and weakening from the BLL proof of N: I- N:+~ given in Figure 5.4 in order 

to represent "Append 1". The right case is similar, with "Append 2" instead. 
Now cut this BLL proof of N:, N; b N$ b N: I- N:+~ with the BLL proof of 



N, I- N; @ N: d N: (corresponding to the BLL proof Bpd built in Proposition 

6.10), and therefore obtain a BLL proof of N;*, N: I- N:+~ which we shall here call 

L. Applying @R to L and R yields: 

whence by Reuse and contractions we obtain: 

Now apply @L. 17 

We now represent in BLL the length function from dyadic lists to tally natural 

numbers: 

Proposition 6.12 The function lth from dyadic lists to tally natural numbers, 

lth(a) = the number of symbols in a, is representable by a BLL proof of I- N& -o 

N, 

Proof. Since l t h ( ~ )  = O,Zth(a * i) = lth(a) + 1, i = 1,2, we may use dyadic iteration, 

see Lemma 6.2. Simply let ~ [ z ]  be N,, in the base take the cut-free proof of I- No 

representing numeral 0 (see Example 5.1 for comparison), and in either iteration 

step take the BLL proof of I- N,  ON,+^ representing the tally successor (obtained 

by 4 R  from Figure 5.2 with z for x). 

Let us now consider limited recursion on notation, usually written as follows. Given 

functions g, hl, ha, and 1, the function f is defined by limited recursion on notation 

if it satisfies: 

Recalling the cut-off function discussed in Proposition 6.11, it suffices to consider 

the following schema instead of limited recursion on notation: 

where q is a polynomial on tally natural numbers with tally natural numbers as 

coefficients, the length of dyadic list ai is k;, 1 5 i 5 n, the length of dyadic list 

b is m , and the length of dyadic list g(a1,. . . , an )  is at most q(kl, . . . , kn,O). We 

shall refer to this schema as Schema (*). 



Proposition 6.13 Let f be defined by Schema (*) from dyadic functions g, hl, h2, 

and from tally polynomial q. Let g be representable by a BLL proof of I- NZ, @ 

- @ NZn -0 N:(, , . . . , y,, 0). Let hi, i = 1,2, be representable by a BLL proof of 

I- Nil @ . . @  Nin @ N: NZ * ~ i i ( n  ,..., ~. , . ,X,U)  , for some resource polynomials 

pi, i = 1,2 . Then f is representable by a BLL proof of I- Nil @ . . . @ Ngn @ 
2 

N: NdYl ,.-., Y n P )  . 

Proof : We suppress parameters for the sake of simplicity. (We may do so because 

of -OR and -0L.) We shall use dyadic iteration (see Lemma 6.2) with ~ [ z ]  being 

N: @N:(,), and then take the right projection. A representation of tally polynomial 

q was given in Corollary 6.6. In the base case, we take the BLL proof oft- N & N ~ ( ~ )  
obtained by @R from cut-free BLL proofs representing the empty list and the 

dyadic list g. In the iteration step, let us consider the case i = 1; the case i = 2 is 

completely analogous. 

Consider the BLL proof of N , , N ~  I- N: corresponding (by -oL and Cut) 

to the BLL proof built in Proposition 6.11 to represent the cut-off function [, and 

let x = q(z + 1), y = p l ( z ,  q(z)). Now we will use Cut, where the cut formula 

is N;l(z,q(z)) 
and where the left premise of the Cut is obtained by letting x = z 

and u = q(r) in the BLL proof of N:,N: I- N;~(,,+) that corresponds (by -oL 

and Cut) to the given BLL proof representing the function hl. Thus we obtain 

N q Z l  N ,  N F N:(,+,) . Now we Cut again, where the cut formula is 

Nq(,+l) , and where the left premise of the Cut is the BLL proof obtained by 

letting x = z + 1 in the BLL proof of I- N: -o N:(,) that corresponds (by -0L 

and Cut) to a BLL proof of I- Nx * Nq(x) that represents the polynomial q, 

see Corollary 6.6. We thus have N,+~,N:, N:(,) I- N:(,+~). This will now be 

the right premise of a Cut, where the cut formula is N,+l and where the left 

premise is the BLL proof of N: I- N,+,, which is in turn obtained by Cut from 

the BLL proofs of N: I- N:+~ and of N:+~ I- N,+l, themselves obtained by the 

obvious change of resource parameters (and by -oL and Cut) from the BLL proofs 

representing "Append 1" and Zth (see Figure 5.4 and Proposition 6.12). In this 

way we reach N:, N:, N:(,) F N:(,+~). Now apply @R, the other premise being the 

BLL proof of N: I- N:+,, which corresponds (by -oL and Cut) to the BLL proof 

representing "Append 1". We thus reach N:, N:, N:, N:(,) I- N:+~ @N:(,+~). The 

Reuse Lemma (Lemma 6.3) allows contractions on N:, so we obtain N:, N:(,) I- 

N:+~ @ N:(,~I). Note that the lambda term associated to the BLL proof we built 
is the term (informally written as) 

We complete the construction by applying @L and -OR 

The reader will readily check that among the first consequences of Proposition 

6.13 are BLL representations of the numerical functions n + 1, 2n,  and n l l  in 

dyadic notation. Combining these with Proposition 6.7 expresses Cobham's initial 

functions. 



We can now conclude: 

Proof of Theorem 6.1. Lemmas 6.1 and 6.2, Propositions 6.3-6.13, and Corollaries 

6.6 and 6.9 yield that the class of dyadic functions representable in BLL includes 

Cobham's initial functions and is closed under limited recursion on notation. By 

using Cut (and -0L and -OR),  the class is also closed under general substitution. 

Hence this class contains all polynomial time computable functions. 

Although the Cobham-style characterization is not known for the tally case, the 

tally analog of Theorem 6.1 may be obtained by using Theorem 6.1 and the rep- 

resentation of the length function given in Proposition 6.12. 

Theorem 6.14 Every function from tally natural numbers to tally natural numbers 

computable in polynomial time in tally length can be represented in Bounded Linear 

Logic by a proof of I- N, -o Np(,), for some resource polynomial p. 

Proof: Let F be a function from tally natural numbers to tally natural numbers 

computable in polynomial time in tally length. Every tally list is a dyadic list 

(in which all symbols are 1); this defines a function D from tally natural numbers 

to dyadic lists such that D(E) = E, D(a * 1) = D(a) * 1. The function D is 

representable by a BLL proof of I- N, -o N:, obtained by tally iteration. Recall 

the function Ith from dyadic lists to tally natural numbers discussed in Proposition 

6.12. The function DoFolth is clearly polynomial time computable in dyadic length. 

So by Theorem 6.1, DoFolth is representable by a BLL proof of, say, I- N: - 
N:(,). But then ZthoDoFolth~D is representable by a BLL proof of I- N, -o Np(,) 
obtained by -oL, Cut, and - O R  from BLL proofs representing D, DoFolth and 

Ith. Since IthoD = identity, it is the case that F = ZthoDoFolthoD, and hence F is 

representable. 

A similar argument may be used to derive the converse of Theorem 6.14, The- 

orem 5.4, from Theorem 5.3. 
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Appendix A: Normalization in BLL sequent calculus 

We outline a similar analysis to Section 4, based on sequents. The basic defi- 

nitions are as follows. In BLL sequent calculus we have: 

a An instance of the cut rule is boxed when it is above a rule S!. 

a A cut is irreducible if it is boxed or if its left premise is S! with a nonempty 

context and its right premise is either !W, !C, !D, or S!. 

a A BLL sequent calculus proof is irreducible if it contains only irreducible cuts 

(if any). 

a A BLL sequent is accessible if each negative occurrence of a universal quan- 

tifier or a bounded exclamation mark is nested within a positive occurrence 

of a bounded exclamation mark. 

It is understood that none of the reduction steps given below apply to irre- 

ducible cuts. 

Axiom Reductions 

A t- A' I?,A"I- B i p1 

r , A  I- B reduces to r ,  A 'I- B 
(see the remark on waste of resources in BLL sequent calculus proofs in section 

3.3). 

: P  
I ? ( A  A ~ - A I  i ,o' 

I? t- A' reduces to I' I-: A' 



(again, see the remark on waste of resources in BLL sequent calculus proofs in 

section 3.3.) 

Symmetric Reductions 

In addition to the reduction steps S@, S-o, and SV described in section 2.2, we 

stipulate the following four steps in which the cut formula begins with a bounded 

exclamation mark and the left premise of a Cut is obtained by an instance of the 

S! rule in which the context is empty, i.e., there are no formulas to  the left of the 

1- : 

. . 

A l - B  reduces to A t B  

reduces to 

where w' is obtained from w as a special case of the remark on waste of resources 

in BLL sequent calculus proofs, section 3.3 . 

reduces to 

68 



reduces to 

: p(y ;  := vi(x) + z )  

t- A; [yi := v; (x) + z ]  : w  

t - ! ;<q ; ( z ]A i [~ i  := v~(x) + Z] ' .  . 7 - z < q j ( x ) A j [ y j  1 := vj(x) + Z] , . . . .,<qi(,lA;[?ji 1 := v ; (x )  + Z] , . . . k B 
I . . * r < q j ( x ) A i [ ~ j  := vj(x) + Z] , . . . I- B 

. . - ! y j < v j ( p ) + w j A j  . . - t- !x<pB 

Commutative Reduct ions 

In addition to the reduction steps CL@L, CL-oL, CLVL. CR@RI CR-oR, CRVR, 
CRBL, CR-oL, and CRVL described in Sections 2.2.3, 2.2.5, we stipulate the 

following commutative reduction steps: 

reduces to 

reduces to 



i P : w  

r ,  !"<,c, ! y < q ~ [ ~  := p + 91 t- A A, A' I- B 

I?, !y<qC[x := p + y] , A I- B 
reduces to r, A, ! X < ~ + ~ + W C  t- B 

CR! W 

: P A,A'F B A A,A'I- B 
r A A,A,  !,<,C t- B r , A  I- B 

r, A, ! x < w ~  t- B reduces to F, A, ! x < w ~  I- B 

1 p A , A , c [ x ' : = o ] ~ B  r 6 A A,A,c[~' :=o] t- B 

I' G A A, A,!x<l+wC I- B I', A, C[X := 01 I- B 

r, A, ! x < I + w ~  I- I3 reduces to r, A, ! x < I + w ~  I- El 

: P : w  

r G A A, A, !.,,c, !,<qc[x := p + y] I- B 

r ,  A, !,,,c, !,<,C[X := p + Y] t- B 

reduces to r, A, !X<,+q+wc I- B 

The analog of Theorem 4.4 can be extended to BLL sequent calculus by using 

cut-size (cf. Section 2.2), in which case all reductions terminate in at most ( l ) ~ 1 ) ) ~  
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