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BOUNDED MEASURABLE SIMULTANEOUS

MONOTONE APPROXIMATION

SALEM M.A. SAHAB

Let X = [a, 6] be a closed bounded real interval. Let B be the closed linear space of
all bounded real valued functions defined on X, and let A/ C B be the closed convex
cone consisting of all monotone non-decreasing functions on X. For f,g 6 B and a fixed
positive w € B, we define the so-called best L^-simultaneous approximant of / and g
to be an element h* G M satisfying

max (||/ - fc'H. , \\g - h'jQ = d <£ max (||/ - h\\w , ||<, - h\\w),

for all h € M, where
||/||,,= sup i»(«)|/(*)|.

We establish a duality result involving the value of d in terms of / , g and w only.
If in addition / , g and w are continuous, then some characterisation results are

obtained.

1. INTRODUCTION

Let X = [a,b] be a closed bounded interval of the real line. Let B = B(X) be the

linear space of all bounded real valued functions defined on X. Let M = M(X) C B

be the closed convex cone of monotone non-decreasing functions defined on X. Given

a fixed t » £ 5 , w(x) ̂  S > 0 for all x £ X, define a weighted uniform norm H-H^ on

B by

(i) ll/L = BuP(w(iB)|/(*)|:a!eJr).

The problem we are investigating in this paper is : Given / and g in B , find h* € M,

if one exists, such that

(2) d = max(||/ - h*\\w , \\g - h'\\J = inf max(||/ - h\\w , \\g - h\\j.

where the iiifimum is taken over all h in M . Such h* is called a best LQQ-simultaneous

approximant of / and g , abbreviated b.s.a. . Note that if / ^ g then d > 0. Of

course, when w = 1 , we have the usual well known uniform, or Tchebychev, norm.
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38 S.M.A. Sakab [2]

In [1] Ubhaya treated the case of the Xoo-approximation to a single function /
by elements of M. He gave an explicit formula for computing d in terms of / and
w only, where / is the function to be approximated with respect to the norm given
by (1). He also characterised the set of all £«> approximants of / , and he established
properties of this solution set and its behaviour on some parts of X. In addition , if
/ , w are continuous, / £ M, he proved the existence of an infinitely differentiable
function h G M which is a best £oo-approximant of / .

Our main objective here is to generalise Ubhaya's results to the simultaneous ap-
proximation case. In Section 2 we start with the elimination of the trivial possibilities
of values of d compared to the value of the distance between M and either of / or
g alone. Then we generalise the duality results established in [1]. We also show the
existence of a function h* G M satisfying (2), and we give an explicit expression of the
set of sill such solutions which clearly forms a convex subset of M.

For simplicity, we supress w from the norm notation in (1) and (2).

2. DUALITY AND CHARACTERISATION

LEMMA 1. Suppose that f,geBnM . Then h* — ( / +g)/2 is a best Loo-

simultaneous approximant of f and g.

PROOF: Suppose there exists h g M such that

mBx{\\f-g\\,\\g-h\\)<max(\\f-h'\\,\\g-h'\\) = \\f-g\\/2.

Then | | / - g\\ = \\f - h + h - g\\ < ||/ - h\\ + \\g - h\\

<\\f-g\\/2 + \\f-g\\/2 = \\f-g\\.

This is a contradiction! This establishes the Lemma. However it can be easily seen by
an example that h* is not unique in general. D

Remark 1. (i) When / = g we end up with the single approximation case discussed
in [1].

(ii) If / ^ g , and there exists an element /<» € M such that ||<; — fooW ^ ||/ — /^H
and /oo is a best Loo-approximant of / , then clearly

max (Us - foo\\, | |/ - /ooll) = ||/ - /coll ^ ||/ - h\\ < max (||/ - h\\, \\g - h\\)

for all h G M and hence / „ is a best ioo-simultaneuos approximant of / and g .
To this end , we shall exclude for all practical purposes the three cases encountered

above in Lemma 1 and Remark 1. With this assumption in mind we proceed to the
next step.
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[3] Simultaneous monotone approximation 39

Let A be the closed triangle given by

A = { ( z , y ) G \a,b]x[a,b}:x^y}.

We also define the following

u(x,y) = w(x)w(y)/(iv(x) + w(y));

9, = sxip{u(x,y){f{x) - g(y)) : (x,y) G A};

02 = sup{u(x,y){g{x) - f{y)) : (x,y) G A};

0 = max{0,,02};

T, = {(x,y) G A : u(x\y)(f(x) - g(y)) = 0}

T2 = {(x,y) G A : u(x,y)(g(x) - f(y)) = 0};

T = Ti UT2;

m(x,y) = (iv(x)f(x) + w{y)g(y))/{w{x) + w{y)), x,y G X.

Finally define the functions h and h on [a, b] by

h{x) = sup{[f{z) Wg(z) - 0/w{z)] : z G [a,x]},

h(x) = int{[f(z) A g(z) + 0/w(z)} : z G \x,b)},

where / V j = m a x ( / , g) and / A g = min (/,<?).

Remark 2. (i) In general 6^ ^ 02 • We assume here that 02 < 9i = 0.

(ii) T ^ 0. Ilowever T might consist of a single point (x,y) with x < y,

hence P could consist of a single point x G [a, 6].
(iii) h and h are both monotone non-decreasing .
(iv) 0 = 0 if and only if / = g G M.
(v) If /i* is a best Loo-simultaneous approximant of / and g, then h* + c

is a best .Loo-simultaneous approximant oi f + c and j + c where c is a

constant. Therefore we may assume without loss of generality that both
/ and g are non-negative and so is h* .

Example. Let X = [0,1]. Define / and g as follows: / (0 ) = 3 , / (1 /3 ) = 0, / (2 /3) =
5, / ( I ) — 4 and the graph of / is linear between these points. Let g(0) = 3 , ^(1/2) = 1,
^(2/3) = 1, g(l) — 3 and the graph of g is linear between these points. Let w = 1.
Then 0j = (5 - l ) / 4 = 2 > 02 = (3 - 0)/2 = 3/2 , T = {(2/3,2/3)} and P = {2/3}.
Notice also that h(2/3) = 1(2/3) = m(2/3 ,2/3) = 3 , and h(x) < ~h(x) for all x ^ 2 /3 .
However | | / - All = ||«7 - h\\ = | | / - fe|| = ||5 - h\\ = 2 = 0, = 0.
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R e m a r k 3 . By [1], the Loo-distance between / and M is given by

9f= sup u{x,y)(f(x)-f(y)).
( ) A

Clearly 6 > max(#/,0g) , because of the assumption following Remark 1.

THEOREM 2. Let f, g and w be as specified in Section 1. Let 6 be as defined

above. Then

(3) € = d= in^vMxiW f-h\\,\\9-h\\).

Hence 0 < max

PROOF: We show first that 9 — 9\ ̂  77 = max(||/ — h\\ , \\g — h\\) for any arbitrary

h 6 M. So let (x,y) 6 A. Then

v,(x)\f(x)-h{x)\*Z\\f-h\\^T,,
and

( ) \ ( ) K ) \ \\g - h\\ ^ v.

By mouotonicity of h, we have h{y) — h(x) ^ 0, so we obtain

(*) - h(x)\/w(x)) + (w(y)\g{y) - h(y)\/w(y)),

<\\f-h\\/w(x)+\\g-h\\/w(y),

or u(x,y)(f(x) - g{y)) ^ »?•

Since (a;,j/) G A is arbitrary, we conclude that 9 < 77. Since ft was arbitrary, we get
0 < d. Next we show that 0 = max (||/ - fc||, | | j - ft||). Let x £ [a, 6]. By the definition
of h, we have h(x) > /(*) V ̂ (a;) — 0/w(x) , or equivalently

(4) «,(*)(i(x) - /(*)) > -9,

and

(5) w(x)(h(x)-g(x))>-9.

Now, let e > 0 be given. Then there exists z G [a, a;] such that

h(x) < f(z) V 5(z) - 9/tv(z) + e.

We have two symmetric cases to consider. It suffices to treat one of them:
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[5] Simultaneous monotone approximation 41

Case 1. f(z) ^ g(z) ,so

(6) h(x)^f(z)-0/w(z) + e.

By the definition of 9 we have

(7) 9 > (l/w(z) + l/w(x)yl(f(z) - g(x)),

or

Combining (6) and (7) we obtain

h(x)^g(x) + 9/iv{x) + e.

Since e was arbitrary, we conclude that h(x) ^ g(x) + 9/w(x), or

(8) w

Thus (5) together with (8) imply that \\h — g\\ ^ 6. It remains to show that
w(x)(h(x) — f[x)) ^ 0. Indeed we have by the definition of 0 together with Remark 3
that

S ( / ( ) l { ) ) \ f ( ) / ( ) ) ,
or

f(z) - 0/w(z) < f(x) + 0/w(x).

It follows from (6) that h(x) < f(x) + 0/w(x) + e. Since e was arbitrary, we conclude

that h(x) < f{x) + 9/w(x), or

(9) w(x){h(x) - /(*)) ̂  0.

Combining (4),(5),(8) and (9) shows that

0>max{\\f-h\\,\\g-h\\).

This establishes the main part of the theorem. The inequality is obtained by putting
h = 0G M. D

Remark 4. In light of Theorem 2, we see that in order to exclude the case given by
Remark l(ii) we can not have maxy ^ m a x / and m i n / < rnin<; where both of / and
g are continuous on [a, b].
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THEOREM 3. (Characterisation). Let h , ft , 0 and d be as defined earlier. Then
ft , ft € M , ft < ft and 0 = d= max(||/ - ft||, \\g - h\\) = max (||/ - h\\, \\g - ft||) .
Furthermore, for ft* £ M

(10) 0 = d = xn*x(\\f-h*\\,\\g-h'\\)

holds if and only if ft < ft* < ft .

PROOF: By Remark 2(iii) we have h , h € M. By Theorem 2 and a similar
argument for h we obtain

9 = d = max (||/ - All, \\9-h\\) = max (||/ - h\\, \\g - h\\).

Suppose now that ft* e Af and 0 = max(||/ - ft*||, \\g - ft'||) = d. Let x € [a,b]
be arbitrary but fixed, and let e > 0 be given. By the definition of h, there is z € [a, a:]
such that h(x) < f(z) V g(z) - 0/w(z) +e. But

9 > xnax(«;(z)(/(z) - h*(z)),w(z){g(z) - h'(z))),

which implies that
9/w(z) > f(z) - h*(z), and 9/w{z) > g(z) - h*(z).

Hence, h*(z) ^ f(z) V g(z) - 9/w{z).

Thus h{x)-^ h*(z) + e ^ h*(x) + e. Since e was arbitrary we get h(x) < h*(x). Letting
ft* = ft we end up with ft ^ ft. Similarly we show ft* < ft.

Next, let ft ^ ft* ^ ft. We show that max(||/ - ft*||, \\g - ft*||) = 0. Let x 6 X.

Then ^ ^ K / ^ )

> max(to(a;)(/(a!) - h'(x)),(w(x)(g(x) - h*(x)))).

Also Omax (to(z)(ft(z) - /(«)),^(i)^*) - g{x))),

> niax(w;(a:)(ft*(a;) - /(«)), w{x)(h'(x) - g{x))).

Tliis says that -0 < to(x)(/(s;) - ft*(z)) ^ 0,

and similarly -0 < w(a;)(p(K) - ft*(a;)) ^ 0.

Hence 0 > max(||/ - ft*||, \\g - ft'||).

Equality follows from Theorem 2. U

LEMMA 4. Suppose f , g and w are continuous.Then ft and ft are botii continu-

ous.

https://doi.org/10.1017/S0004972700003476 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003476


[7] Simultaneous monotone approximation 43

PROOF: By the definition of h we may write for y > x,

h(y) = max{h(x), max (f(z) V g(z) - 9/w{z))}.

Hence
h(y) — h[x) = max{0, max (f(z) V g(z) — 9/w(z) — h(x))}.

But the fact that h(x) ^ f{x) V g(x) - 9/w(x) implies that

0 < h(y) -h(x)^ max{0, ̂ rnax ({f(z) V g{z) - 9/w{z)) - (f(x) V g(x) - 9/w(x)))}.

Since / and g are both continuous, we have / V j - 9/w is also continuous. This
establishes the continuity of h. Similarly we obtain the continuity of h. D

THEOREM 5. Let f , g and w be continuous with 9 > 0. Then

(11) P- fc=i
a ^ a* ^ &fe ^ b, for ali fc = 1 , . . . , n.

F o r n > 2 6fc < af c + ] , fc = 1 ,2 , . . . , n - 1,

and {o.k,bk)&T, for all k.

PROOF: Clearly m(x,y) : [a,b] x [a,6] n*fl is a continuous function. Let

Ti = {'y:~f = m(x,y),{x,y)£Ti}; i = 1,2,

Define an equivalence relation ~ on Ti(i = 1,2), by (*i, t/i) ~ (^2,2/2) <S= '̂ TI (J ; I , 1/1) =
m{x2,y2) , where (s i , t / i ) , (32,2/2) £ 7i . Then the sets

i7 = {(x,y)eT1 :m(x,y) = 7},

are equivalence classes.

For each 7 e T = Tj U T2 , let

Also, let a7 = inf{a; :(x,y) € T 7 } ,

and 67 = sup{i/:(a;,y) £ T 7 } .

Clearly a7 = 67 if and only if T7 = (a;,x) for a single point x 6 [0,6]. Suppose
a7 < 67. We assert that m(a7 ,67) = 7 , and so (o7,67) £ TT. Indeed by the definitions
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of inf and sup, there are sequences (xn, yn), (un,vn) £ T, n = 1,2,. . . such that xn —> a7

and v n —+ 67 . Let us assume without loss of generality that (xn)yn) £ T j , so we obtain
for all n ,

(12) m(xn,yn) = («>(*„) + w(yn))-\w(xn)f{xn) + w(yn)g(yn)) = 7 ,

and

(13) 9 = (w(xn) + w(3/n))-1«;(xn)W(yn)(/(a:n) - 5(yn)).

We now have two cases to consider:

Case 1. There is a subsequence (un,vn) E T"i such that vn —+ by, and

(14) m(un, vn) = (w(un) + w(vn))"
1(ty(ttn)/(Mn) + w(vn)g(vn)) = 7.

and,

(15) 9 = (t«(ttn) + t»(t;B))-yun)Tc.K)(/(«») - »(»„))•

Hence from (12) and (13) we get

e/w(xn) + 6/w{yn) = /(«„) - g(yn),
or

/(«„) - 9/w(xn) = g(yn) + 9/w{yn) = j .

Similarly (14) aud (15) imply that

/(«„) - 0/w{un) = y(vn) + 9/w{vn) = 7.
Hence,

/(«„) - 9/w{xn) = 7 = 0 M + 9/w(vn).

Letting n —+ 00, we conclude by the continuity of / , g and w that

(16) /(aT) - tf/W(a7) = 7 = j(67) + tf/to(67),

so that

(17) (w{ay) + W (6 7 ) ) - 1
W (a>(

Thus , (a 7 ,6 7 ) 6 T1. Substituting for ^ in (17), using the first part of (16), we conclude
that m ( a 7 , 6 7 ) = 7 . This proves the assertion for case 1.
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Case 2. There is no sequence (un,vn) € T^ for which vn —> 67, that is, vn —> by if and

only if (un,vn) G T^". In such a case we can argue that 9 = 9f which is contradictory

to our assumption.Therefore only case 1 is valid.

Next we show that for (x,y) € T, x < y we have [x,y] D [aT,67] ^ 0 if and only if

m(a;,y) = 7 . By the definition of 9 , we have

(18) / (x ) - 0/W(z) < 9(y) + 9lw(y).

If [a7, 67] D [s,3/] 7̂  0, then it follows from the definition of a7 and 67 that ay ^ y and
67 ^ x. From (16),(17),(18) and the definition of 9 it follows that

/ (*) - «/w(x). < <7(&7) + tf/w(67) - 7

= f(a1)-6/w{ay)

(19) < ff(») + 9/w(y).

Since (x,y) G T, (18) holds with equality, and therefore (19) implies that

/(*) - 0/w{x) = g(y) + 0/w{y) = 7 ,

or alternatively m(x,y) = 7. The converse follows immediately from the definition of

a7 and 67.

By the uniform continuity of / and g we can easily deduce the first part of the

theorem, that is, T is finite and hence P is a finite union of closed sub-intervals. 0

THEOREM 6. Let f , g , w , 9 and P be as in the previous Theorem. Then

h(x) = h(x) if and only if x £ P,

with hix) = M^) — Tn{ak,bk) for aJi x € [a/b,6fc] and aJi k,

where m(ak,bk) < m{ak+1,bk+1), k - 1,2,... ,n - 1.

Moreover

w(x)\f(x) - h(x)\ = W(y)b(y) - h(y)\ = 9, (x,y) € Tu

and

% w(*)|ff(«) - M*)l = », (*,y) G r2.

PROOF: TO obtain the first part of the Theorem we start by showing that h{x) = -yk

for all a; £ [a/t,6fc]. In (16), let a7 = ak , 67 = 6*. and 7 = 7^. Hence we obtain

f{ak) - 9/w{ak) = 7fc = 9{h) + 9/w(bk), k = 1, . . . ,n.

If a ̂  z ̂  6fc, then by the definition of 0 we have

/ (*) - tf/w(z) < fir(&fc) + 6/w{bk) = 7fc.
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Since 9 ̂  0g, it follows that

9(z)-e/w(z)^g(bk) + 0/w(bk)=7k,
and hence

f{z)y g{z)-eiw{z)^lk.

From the definition of h we conclude that h(x) §C fk for all a; € [a, bk]. But then

lk(ak) ^ f(ak) - 0/w(ak) = j k .

By monotonicity of ft it follows that for any x £ [ak, bk] we have

h(x) > h(ak) > l k .

Hence h{x) = -yk for all a; € [ak,bk].

Similarly we show that h(x) = ~fk for all a: £ [afc,&fc].

We now prove the second part of the theorem consisting of the last two equations .
Let (x, y) G T — T\ UT2 • Assume without loss of generality that (x,y) £ Ti. The other
case is similar. Since V is finite, we must have m(x,y) = 7*. for some ft = 1,2,... , n ,
so it follows that [x,y] C [ajt,&fc]. Since h is non-decreasing we have

Ik = h(ak) ^ h(x) < h(y) < h(bk) = -yk,

so that ft(x) — 7fc and

io(x)\f(x) - h(x)\ = w(x)\f(x) - m(x,y)\,

= w(x)\f(x) - (w(x) + w(y))-1(w(x)f(x) + w(y)g(y))\,

= (w(x) + w{y))-1w{x)w{y)\f(x) - g{y)\ = 0.

Similarly,

w(y)\g{y) - h{y)\ = w(y)\g(y) - m{x,y)\,

= y(y)\g(y) - («»(*) + w{y))-\w(x)f(x) + w(y)g(y))\,

= (w(x) + w(y))-1w(aJHy)|,(y) - f(x)\ = 9.

0

LEMMA 7. Suppose that f , g and w are continuous, and that 0 < 0f ,9g < 9.

Then h{x) > j k , for x > bk,

and tk(x) < 7fc> for x < ak.

PROOF: Suppose that for some x > bk we have h(x) = -yk. Then by the definition
of h(x), there exists y £ [x,b] such that

h{x) = 7fc = win (f(y),g{y)) + 0/w(y).

We have two cases to consider:
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Case 1. f(y) < g(y), so that

(20) K(*) = /(v) + «M») = 7fc.

In such a case we claim that 0 = u(ak,bk)(g(ak) — f{bk)). If not, then we must have
0 = u(ak,bk)(f(ak)~g(bk)). Hence

(21) f{ak) - 0/w(ak) = f(ak) - u(ak,bk)(f(ak) - g(bk))/w(ak) = 7fc-

Combining (20) and (21) results in

f{ak)-0/w{ak) = f{y)+ 6/w{y),

(w(ak)+\v(y)y

Tliis is a contradiction! Therefore our claim holds and we have

g{ak) - 0/w(ak) = g(ak) - (w(ak) + iv(bk)y
1w(bk)(g(ak) - f{bk)),

= (iu{ak) + w{bk))-\w(ak)g{ak) + w(bk)f(bk)),

or g{ak) - f(y) = {l/w(ak)

Hence 0 = u(ak,y)(g(ak) - f{y)).

which implies that (ak, y) £ T, and by Theorem 5 we conclude that [ak, y] C [ak, bk]

which is a contradiction since ak < bk < y. Therefore there is no x > bk, for which
h(x) = fk ,that is, h(x) > j k for x > bk.

Case 2. g(y) < f(y). The same argument applies. This concludes the proof of the
first part. The other part is similar. D

THEOREM 8. Let f ,g and w be continuous on [a, 6]. If 0 < 0f , 0g < 0, then

h(x) < h(x) for aJJ x £ [a,^] U I ( J 1 U (bn,b\.
\fc=i/

PROOF: Suppose that for some t € (bk,ak+^) , k = 1,2,.. . ,n — 1, we have
h(t) — h(t). Then by the definitions of h_ and h, there exists u € [bk,t] , v € [^
such that

h(t) = max(/(«),g{u)) - 0lw{u),

(22)

Notice that if tt < 6^, then clearly h(x) — h(bk) = fk for all z € (&*)<] wliich
contradicts the definition of bk. Therefore u 6 [6*, t]. Similarly we must have i; 6
[f,ojt-(-j]. In (22) suppose f(u) > g(u). We also have two cases here:
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Case 1. f(v) > g(v), so we obtain

h(t) = f{u) - e/w(u) = g(v) + 9/w(v) = h(t),

This says that (u,v) £ T, or there exists some i such that (u,v) C [oi,6{]. Tliis is a
contradiction, since we have & f c < « < i < v ^ a-k+i •

Case 2. f{v) < g(v) , so we obtain

h(t) = / ( i t) - tf/w(u) = /(») .+ fl/w(v)

contradicting our assumption that 6 > 9f.

In the cases < € [a,ai] or < £ (bn,b] we follow the same line of argument. Hence,
Theorem 8. D
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