BuULL. AUSTRAL. MATH. Soc. 41A28, 41430, 41465
VoL. 40 (1989) [37-48]

BOUNDED MEASURABLE SIMULTANEOUS
MONOTONE APPROXIMATION

SALEM M.A. SAHAB

Let X = [a,b] be a closed bounded real interval. Let B be the closed linear space of
all bounded real valued functions defined on X, and let M C B be the closed convex
cone consisting of all monotone non-decreasing functions on X. For f,g € B and a fixed
positive w € B, we define the so-called best L o-simultaneous approximant of f and g¢
to be an element h* € M satisfying

max ([If = k*ll, , llg - &%, ) = d < max (IIf — &ll,,, llg - &, ),

for all h € M, where
Hfll, = sup w(2)|f(=)l.

LASLAN

We establish a duality result involving the value of d in terms of f , g and w only.
If in addition f , ¢ and w are continuous, then some characterisation results are
obtained.

1. INTRODUCTION

Let X = [a,b] be a closed bounded interval of the real line. Let B = B(X) be the
linear space of all bounded real valued functions defined on X. Let M = M(X) C B
be the closed convex cone of monotone non-decreasing functions defined on X . Given
afixed w € B, w(z) > & > 0 for all z € X, define a weighted uniform norm ||.||,, on
B by

(1) 1£ll,, = sup(w(@)|f(2)] : = € X).

The problem we are investigating in this paper is : Given f and g in B ,find h* € M,

if one exists, such that

2 d=max(lf —A'll,,lg - A*ll,,) = infmax(|f — hll, , g — kll,,)-

where the infimum is taken over all A in M . Such h* is called a best Lo -stmultaneous
approzimant of f and g , abbreviated b.s.a. . Note that if f # g then d > 0. Of
course, when w =1 , we have the usual well known uniform, or T'chebychev, norm.
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In (1} Ubhaya treated the case of the Lo.-approximation to a single function f
by elements of M. He gave an explicit formula for computing d in terms of f and
w only, where f is the function to be approximated with respect to the norm given
by (1). He also characterised the set of all L,, approximants of f, and he established
properties of this solution set and its behaviour on some parts of X. In addition , if
f , w are continuous, f ¢ M, he proved the existence of an infinitely differentiable
function h € M which is a best Loo-approximant of f .

Our main objective here is to generalise Ubhaya’s results to the simultaneous ap-
proximation case. In Section 2 we start with the elimination of the trivial possibilities
of values of d compared to the value of the distance between M and either of f or
g alone. Then we generalise the duality results established in [1]. We also show the
existence of a function h* € M satisfying (2), and we give an explicit expression of the
set of all such solutions which clearly forms a convex subset of M.

For simplicity, we supress w from the norm notation in (1) and (2).

2. DUALITY AND CHARACTERISATION

LEMMA 1. Suppose that f,g € B ANM . Then h* = (f+9)/2 is a best Loo-
simultaneous approximant of f and g.

PROOF: Suppose there exists A € M such that

max (|| f - gl llg — All) < max(||f —R*||,llg — %) = [If — gll /2.
Then Nf—gll=1If —h+h—gll <lf=Rl+llg— Al

<\f-gll/2+If-gll/2=1f —gll.

This is a contradiction! This establishes the Lemma. However it can be easily seen by
an example that A® is not unique in general. 0

Remark 1. (i) When f = g we end up with the single approximation case discussed
in [1].

(ii) If f # g , and there exists an element foo € M such that ||g — fool| < ||f — fooll
and fo, is a best L ,-approximant of f , then clearly

max (|lg — fooll s If = fooll) = If = fooll < If — Rl < max(|[f = Rll,llg — All)

for all A € M and hence fo, is a best Ly-simultaneuos approximant of f and g .
To this end , we shall exclude for all practical purposes the three cases encountered
above in Lemma 1 and Remark 1. With this assumption in mind we proceed to the

next step.
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Let A be the closed triangle given by
A ={(z,y) € [a,8] x [a,8] : = < y}-
We also define the following

u(z,y) = w(z)w(y)/(w(z) + w(y));
61 = sup{u(z,y)(f(z) — 9(v)) : (z,y) € A}
8; = sup{u(z,y)(9() — f(y)) : (=,y) € A},
¢ = max{6;,6.};
Ty = {(=,y) € & ul@, y)(f(z) — g(y)) = 6}
Ty = {(z,y) € A :u(z,y)(9(z) — f(y)) = 0}
T=T1UTy;
P =|J{=z9]: (z,y) € T};
m(z,y) = (w(z)f(z) + w(y)g(y))/(w(z) + w(y)), =z,ye€X.

Finally define the functions h and % on [a,b] by

h(z) = sup{[f(z) V 9(z) — 8/w(2)] : z € [a, 2]},
h(z) = inf{[f(2) A g(z) + 8/w(z)] : 2 € [=,b]},

where fV g = max(f,g) and fAg=min(f,g).

Remark 2. (i) In general 6, # 6;. We assume here that §, < 6, = 6.

(1) T # 0. However T might consist of a single point (z,y) with « < y,
hence P could consist of a single point z € [a,b].

(i) h and % are both monotone non-decreasing .

(iv) 6=0ifandonlyif f=ge M.

(v) I h* is a best L-simultaneous approximant of f and g, then A" + ¢
is a best L,-simultaneous approximant of f 4+ ¢ and g + ¢ where c is a
constant. Therefore we may assume without loss of generality that both
f and g are non-negative and so is h* .

Example. Let X = [0,1]. Define f and g as follows: f(0) =3, f(1/3) =0, f(2/3) =
5, f(1) = 4 and the graph of f is linear between these points. Let ¢g(0) =3, ¢g(1/2) =1,
g9(2/3) = 1, g(1) = 3 and the graph of g is linear between these points. Let w = 1.
Then 6, =(5—-1)/4=2>60,=(3-0)/2=3/2, T = {(2/3,2/3)} and P = {2/3}.
Notice also that h(2/3) = 7;(2/3) =m(2/3,2/3) = 3, and h(z) < h(z) for all = £ 2/3.
However |If — bl = lg — hll = |[f B = lg B = 2= 6, = 0.
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Remark 3. By [1], the L,-distance between f and M is given by

0= sup u(z,y)(f(z) - f(y))
(z,y)EAN

Clearly 8 > max(8f,8,) , because of the assumption following Remark 1.

THEOREM 2. Let f, g and w be as specified in Section 1. Let 8 be as defined

above. Then
(3) 0= d= inf max(lf - hll,lo - hl).

Hence 6 < max (|| £, llgll)-

PROOF: We show first that § = 6; <y = max(||f — A||,|lg — h||) for any arbitrary
he M. Solet (z,y) € A. Then

w(z)|f(z) — h(z)|
w(y)|g(y) — h(y)l

By monotonicity of k., we have h(y) — h(z) 2 0, so we obtain

’
and

I =Rl
l

< <7
<llg =Rl < n.

f(z) —9(y) < f(z) — 9(y) + h(y) — (=),
< (w(2)|f(z) = h(z)|/w(z)) + (w(y)lg(y) ~ ~(y)l/w(y)),
< | f = Al fw(z) + llg ~ Rl /w(y),
< (Y/w(z) + 1/w(y))n = (w(z) + w(y))n/w(z)w(y),
or w(z,y)(f(=) - 9(y)) <7

Since (z,y) € A is arbitrary, we conclude that § < n. Since h was arbitrary, we get
0 < d. Next we show that @ = max (||f — k||, |lg ~ R||). Let = € [a,b]. By the definition
of h, we have A(z) = f(z) V g(z) — 8/w(z) , or equivalently

(4) w(z)(h(z) - f(z)) > -
and
(5) w(z)(k(x) - 9(z)) > 9.

Now, let ¢ > 0 be given. Then there exists z € [a,z] such that
k() < £() V g(2) — 8/w0(z) +e.

We have two symmetric cases to consider. It suffices to treat one of them:
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Case 1. f(z) = g(z) ;80
(6) h(z) < f(z) — 0/w(z) + &.
By the definition of 8 we have

(7) 8 > (1/w(z) + 1/w(2)) ™ (f(2) - 9(2)),
or f(z) — 0/w(z) € g9(z) + 8/w(z).

Cowmbining (6) and (7) we obtain
h(z) < g(z) + 8/w(=) + .
Since € wns arbitrary, we conclude that h(z) < g(z) + 8/w(z), or
(8) w(z)(h(z) - g(=)) < 0.

Thus (5) together with (8) imply that ||h —g|| € 6. It remains to show that
w(z)(k(z) — f(z)) < 0. Indeed we have by the definition of # together with Remark 3
that

0> 85> (1/w(z) +1/w(=) " ((2) - f(z),
£(2) = 0/w(2) < £(z) + 6/ w(=).

It follows from (6) that h(z) < f(x) + 6/w(z) + €. Since ¢ was arbitrary, we conclude
that h(z) < f(z) + 0/w(z), or

or

(9) w(z)(h(z) ~ f(=)) < 6.
Combining (4),(5),(8) and (9) shows that
6 > max (||f - k|, llg — &I))-

This establishes the main part of the theorem. The inequality is obtained by putting
h=0e M.

Remark 4. In light of Theorem 2, we see that in order to exclude the case given by
Remark 1(ii} we can not have max g € max f and min f € min g where both of f and

g are continuous on [a,b].
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THEOREM 3. (Characterisation). Let A , & , 8 and d be as defined earlier. Then
hoReM,h<F and 8= d=msx(If - Al lg— l) = max (||£ — K], [ls — ).
Furthermore, for h* € M

(10) 0 =d =max(||f - h*[|,llg - h*[))

holds if and only if R < h* < h .

PROOF: By Remark 2(iii) we have h , h € M. By Theorem 2 and a similar

argument for 2 we obtain
0 =d =max(|f - &ll, g — &ll) = max (|| f — &[], [|g - &]]).

Suppose now that h* €¢ M and 8 = max (||f — h*||,|lg - h*|]) = d. Let z € [a, ]
be arbitrary but fixed, and let € > 0 be given. By the definition of A, there is z € [a, z]
such that h(z) < f(2) V g(2) — 8/w(z) +¢. But

8 > max (w(z)(f(2) — h*(2)), w(z)(9(2) — h7(2))),
which implies that
0/w(z) 2 f(z) — h*(z), and 0/w(z) > g(z) — h*(z).
Hence, h*(z) 2 f(z) v g(z) — 8/w(z).

Thus h(z) < h*(2)+e < h*(z)+¢€. Since ¢ was arbitrary we get h(z) < h*(z). Letting
h* = h we end up with A < k. Similarly we show h* < h.
Next, let h < h* < h. We show that max (||f — h*||,|lg — h*||) = 0. Let z € X .

Then 0 > max (w(z)(f(2) - k(z)), w(z)(9(z) — h(=))),

Z
> max (w(z)(f(z) — B’(z)), (w(z)(g(z) — h*(z))))-
Also 0 > max (w(z)(h(z) - f(z)), w(z)(R(z) — g(=))),
2 max (w(z)(h*(z) — f(z)),w(z)(h"(z) — g(z))).
This says that —0 < w(z)(f(z) — h"(x)) <6,
and similarly -0 < w(z)(g(x) — h*(x)) < 9.
Hence 0 > max(IIf - h°ll llg — A1)
Equality follows from Theorem 2. 1]

LEMMA 4. Suppose f , g and w are continuous.Then h and h are both continu-

ous.

https://doi.org/10.1017/5S0004972700003476 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003476

[7] Simultaneous monotone approximation 43

PrOOF: By the definition of A we may write for y > =,
h{y) = max{h(=), max (f(z) v g(z) — 0/w(z))}.

Hence
h(y) — h(z) = max{0, Jmex, (f(2) V g(2) — 0/w(z) - h(z))}.

But the fact that h(z) 2 f(z) V g(z) — 0/w(z) implies that

0 < A(y) — k(=) < max{0, Jpax, ((f(z) v 9(2) — 8/w(z)) — (f(=) V 9(z) — 0/w(z)))}-

Since f and g are both continuous, we have f V g — /w is also continuous. This
establishes the continuity of A. Similatly we obtain the continuity of k. 0

THEOREM 5. Let f , g and w be continuous with § > 0. Then

(11) P=|Jlorb], n>1,
k=1
a < ap < b b, forallk=1,...,n.
Forn>2 by < ag+1, k=12,... ,n—1,
and (ar,br) € T, for all k.

PRroOOF: Clearly m(z,y) : [a,b] X [a,b] — R is a continuous function. Let
T = {7 Y= m(:c,y),(:c,y) € Ti}; 1=1,2,

Define an equivalence relation ~ on Ti(: = 1,2), by (z1,v1) ~ (z2,v2) <= m(z1,11) =
m(z2,y2) , where (21,11),(22,¥2) € T:. Then the sets

Tl‘y = {(:C,y) €Ty :m(m)y) = 7};
Ty = {(=,y) € T» : m(z,y) = 7}.

are equivalence classes.

Foreach vy e I'=T,UTl; ,let

T,=T]uT,.
Also, let ay = inf{z : (z,y) € 1},
and by = sup{y : (z,y) € T, }.

Clearly ay = b, if and only if Ty = (z,z) for a single point = € [a,b]. Suppose
ay < by. We assert that m(a,,by) = v, and so (a,b,) € T,. Indeed by the definitions
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of inf and sup, there are sequences (Zn,yn), (tn,vn) € T,n =1,2,... suchthat z, — a,
and v, — b,. Let us assume without loss of generality that (z,,y,) € T}, so we obtain

forall n ,
(12) M(2n,Yn) = (W(@n) + w(Yn)) " (w(@n) f(2n) + ©(Yn)g(¥n)) =7,
and

(13) 0 = (w(zn) + w(yn)) " w(zn)w(yn)(f(2n) — 9(un))-

We now have two cases to consider:

Case 1. There is a subsequence (up,v,,) € Ty such that v, — by, and

(14) m(tn, vn) = (w(u,) + w(vn))_1 (w(wn) f(wn) + w(va)g(vn)) = 7.
and,
(15) 0 = (w(un) + w(‘vn))_lw(un)w(‘vn)(f(un) = g(va))-

Hence from (12) and (13) we get

0/w(zn) + 0/w(yn) = f(zn) — g(yn),
f(zn) — 8/w(zn) = g(yn) + 0/w(yn) = 7.

or

Similarly (14) and (15) imply that

f(uﬂ) - o/w(un) = g(vn) + o/u’(vn) =7.

Hence,
f(zn) = 0/w(zs) = v = g(vn) + 0/w(v,).

Letting n — oo, we conclude by the continuity of f , ¢ and w that

(16) flay) — 0/w(ay) =71 = g(by) + 0/w(by),
so that
(17) (w(aq) + w(by)) " w(ay)w(by)(F(ay) — g(by)) = 0.

Thus,(a~,by) € T. Substituting for ¢ in (17), using the first part of (16), we conclude

that m(a,,b,) = v. This proves the assertion for case 1.
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Case 2. There is no sequence (un,v,) € Ty for which v, — by, thatis, v, — b, if and
only if (n,v,) € T, . In such a case we can argue that 6 = 8¢ which is contradictory
to our assumption.Therefore only case 1 is valid.

Next we show that for (z,y) € T,z < y we have [z,y] N [ay,by] # O if and only if
m(z,y) = 7. By the definition of # , we have

(18) f(z) — 0/w(z) < g(y) + 6/w(y).

If [ay,by] N [z,y] # 0, then it follows from the definition of ay and b, that ay < y and
by > =. From (16),(17),(18) and the definition of # it follows that

f(z) — 8/w(z). < g(by) + 8/w(by) =7
= flay) — 6/w(a,)
(19) < g(y) +6/w(y).

Since (z,y) € T, (18) holds with equality, and therefore (19) implies that
f(z) — 0/w(z) = g(y) + 0/w(y) =,

or alternatively m(z,y) = 4. The converse follows immediately from the definition of
ay and b,.

By the uniform continuity of f and g we can easily deduce the first part of the
theorem, that is, I' is finite and hence P is a finite union of closed sub-intervals. 0

THEOREM 6. Let f , g, w , @ and P be as in the previous Theorem. Then

h(z) = h(z) ifand only ifz € P,

with h(z) = h(z) = m(ax,bx) for all x € [ay,by] and all k,
where m(ag,be) < m{agt1,be+1), k=1,2,... ,n~1.
Moreover

w(z)|f(z) - h(z)| = w(y)lg(y) - h(y)| =0, (z,y) € T,

and

w(y)lf(y) — h(y)| = w(=z)lg(z) - A(z)| =0, (z,y) € T

ProOF: To obtain the first part of the Theorem we start by showing that h(z) = &
for all = € [ak,bi]. In (16), let @, = ar , by = by and v = v4. Hence we obtain

f(ar) — 0/w(ar) = vk = g(be) + 0/w(be), k=1,...,n.
If a € z € by, then by the definition of § we have

f(2) ~ 0/w(z) < g(be) + 0/w(br) = .
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Since 8 > 84, it follows that
9(z) — 8/w(2) < g(br) + 0/w(bi) = Yks
f(z)V g(2) — 0/w(z) < .
From the definition of A we conclude that h(z) < yx for all 2 € [a,b;]. But then
hax) = f(ar) — 0/w(ar) = .
By monotonicity of h it follows that for any = € [ag, bx] we have

h(z) > h(ar) > Y-

and hence

Hence h(z) = for all = € [ax,bx]. '

Similarly we show that h(z) = v, for all z € [ax, bk].

We now prove the second part of the theorem consisting of the last two equations .
Let (z,y) € T = T1UT;. Assume without loss of generality that (z,y) € Ty. The other
case is similar. Since T is finite, we must have m(z,y) = v for some k = 1,2,... ,n,

so it follows that [z,y] C [ax,br]. Since h is non-decreasing we have
T = h(ax) < h(z) < R(y) < R(bi) = vk,
so that hA(z) =, and
w(z)|f(z) — k(z)| = w(z)|f(z) — m(z,y)l,
= w(@)|f(z) — (v(=) + w(y)) " (w(z)f(z) + w(y)g(v)),
(w(z) + w(y) " w(z)w(y)| f(=) - g(y)| = 8.

Similarly,
w(y)lg(y) — R(y)| = w(y)lg(y) — m(z,v)l,
= w(y)lg(y) — (w(z) + w(y)) " (w(=z)f(z) + w(y)9(¥))l,
= (w(z) + w(y)) " w(z)w(y)lg(y) - f(z)] = 6.

0
LEMMA 7. Suppose that f , g and w are continuous, and that 0 < 84,0, < 6.
Then h(z) > v, for z > by,
and h(z) < v, for z < ay.

PROOF: Suppose that for some = > by we have E(m) = 4. Then by the definition
of h(z), there exists y € [z,b] such that

h(z) = v = min (f(y), 9(y)) + 8/w(y).

We have two cases to consider:
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Case 1. f(y) < g(y), so that
(20) h(z) = f(y) + 0/w(y) = Te-
In such a case we claim that 8 = u(ax,br)(g(ar) — f(b)). If not, then we must have
0 = u(ax,br)(f(ar) — g(bs)). Hence
(21) flax) — 8/w(ak) = f(ar) — u(ar, be)(f(ar) — 9(bx))/w(ar) = -
Combining (20) and (21) results in

f(ar) — 0/w(ar) = f(y) +8/w(y),

or _ w(ax)w(y) ar) —
0= ey (e — F@) <o

This is a contradiction! Therefore our claim holds and we have

g(ar) — 8/w(ar) = g(ax) — (w(ar) + w(be)) " w(be)(g(ar) - f(br)),
= (w(ax) + w(be)) " (wlar)g(ar) + w(br) (b)),
=7 = f(y) + 8/w(y),
or 9(ar) — f(y) = (1/w(ar) + 1/w(y))6.
Hence - 8 = u(ak,y)(g(ae) ~ f(v))-
which implies that (ax,y) € T, and by Theorem 5 we conclude that [ax,y] C [ax, bk

which is a contradiction since ay < by < y. Therefore there is no > by, for which
h(z) = v ,that is, h(zx) > v for = > b.

Case 2. ¢g(y) < f(y). The same argument applies. This concludes the proof of the
first part. The other part is similar. 1]
THEOREM 8. Let f ,g and w be continuous on (a,b]. If 0 < 85 , 6, < @, then

n—1

k(z) < R(z) for all z € [a,a;]U (U) U (bn,b] .

k=1
PROOF: Suppose that for some t € (bx,ak41) , & = 1,2,...,n — 1, we have
h(t) = h(t). Then by the definitions of b and %, there exists u € [be,t] , v € [, ary1]
such that
h(t) = max (f(u), g(u)) — 0/w(u),
(22) = min (f(v),9(v)) + 8/w(v) = h(¢).
Notice that if u < by, then clearly h(z) = A(bx) = v for all = € (bi,t] which

contradicts the definition of br. Therefore u € [be,t]. Similarly we must have}v €
[t,aks+s]- In (22) suppose f(u) > g{u). We also have two cases here:
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Case 1. f(v) > g(v), so we obtain

b(t) = f(u) — 0/w(u) = g(v) + 8/w(v) = h(¢),

or = @0 oy o) w<o
-—('w(u)-l-w('v))(f() 9(v)), < v,

This says that (u,v) € T, or there exists some ¢ such that (u,v) C [a;,b;]. This is a

contradiction, since we have by < u <t < v € agyy-

Case 2. f(v) < g(v) , so we obtain

Bt) = f(u) — 8/w{u) = f(v).+ 8/w(v) = h(t),
or o w(w)w(v) W) — f(o
= (w(u)+w(v) (f(u) f( ))Sofn

contradicting our assumption that ¢ > §;.
In the cases t € [a,ay] or t € (b,,b] we follow the same line of argument. Hence,
Theorem 8. 0
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