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Abstract. C Bounded Model Checking (CBMC) is one of the leading
approaches to automatic software analysis. The key idea is to (i) build
a propositional formula whose models correspond to program traces (of
bounded length) that violate some given property and (ii) use state-of-
the-art SAT solvers to check the resulting formulae for satisfiability. In
this paper we propose a generalisation of the CBMC approach based
on an encoding into richer (but still decidable) theories than proposi-
tional logic. We show that our approach may lead to considerably more
compact formulae than those obtained with CBMC. We have built a pro-
totype implementation of our technique that uses a Satisfiability Modulo
Theories (SMT) solver to solve the resulting formulae. Computer experi-
ments indicate that our approach compares favourably with and on some
significant problems outperforms CBMC.

1 Introduction

SAT-based Bounded Model Checking (BMC) [1] was originally proposed as a
complementary technique to OBDD-based model checking for the automatic
analysis of finite state systems (e.g. hardware circuits). The key idea is to en-
code bounded behaviours of the system that enjoy some given property as a
propositional formula whose models (if any) describe a system trace leading to
a violation of the property.

The application of Bounded Model Checking to software poses new chal-
lenges, as most programs are inherently infinite-state and new, non trivial issues
such as the handling of (recursive) function calls and the modeling of complex
data structures must be properly addressed. An elegant solution to the prob-
lem is proposed in [2, 3] and implemented in the CBMC (C Bounded Model
Checking) model checker. The approach amounts to (i) building a propositional
formula whose models correspond to program traces (of bounded length) violat-
ing some given property and (ii) using state-of-the-art SAT solvers to check the
resulting formulae for satisfiability.

In this paper we propose a generalisation of the CBMC approach. Instead of
encoding the program into a propositional formula, we encode it into a quantifier-
free formula to be checked for satisfiability w.r.t. some given decidable theory



(henceforth called background theory) and use a state-of-the-art SMT (Satisfia-
bility Modulo Theories) solver to perform the satisfiability checking.

We show that our approach may lead to considerably more compact formulae
when arrays are involved in the input program. In particular the size of the
formulae generated by our approach does not depend on the size of the bit-vector
representation of the basic data types nor on the size of the arrays occurring in
the program, whereas the encoding technique implemented in CBMC depends
on both. Experimental results obtained with a prototype implementation of our
technique, called smt-cbmc, confirm the effectiveness of our approach: smt-

cbmc scales significantly better than CBMC on a number of problems involving
complex interactions of arithmetics and arrays manipulation as the size of the
arrays occurring in the input program increases.

Structure of the paper. In the next section (Section 2) we provide a brief intro-
duction to SMT and present a set of decidable theories that we will refer to in
the rest of the paper. In Section 3 we present our generalisation to the CBMC
approach: we describe the generation of the formula, the different approaches
to solve the formula, and how error traces are reconstructed by exploiting the
information returned by the SMT solver. In Section 4 we describe our prototype
tool smt-cbmc and present the experimental results. In Section 5 we discuss the
related work and finally, in Section 6, we draw some concluding remarks.

2 Satisfiability Modulo Theories

Given a decidable theory T and a quantifier-free formula φ in the same language
as T , we say that φ is T -satisfiable if and only if there exists a model of T which
is also a model of φ or, equivalently, if T ∪{φ} is satisfiable. An SMT solver for T
is a program capable to determining the T -satisfiability of every quantifier-free
formula φ in the same language as T . Let Γ ∪ {φ} be a set of formulae in the
same language as T , we say that φ is a T -consequence of Γ , in symbols Γ |=T φ,
if and only if every models of T ∪ Γ is a model of φ. Obviously, the problem of
determining whether C |=T φ holds can be reduced to the problem of checking
the T -satisfiability of C ∪ {¬φ}.

Over the last three decades, a great deal of attention has been paid to solv-
ing the SMT problem for a number of (decidable) theories of interest such as,
e.g., Linear Arithmetics, the theory of lists, the theory of arrays, and—more
recently—the theory of bit-vectors. The practical relevance of these theories in
verification cannot be overestimated as arithmetics, lists, arrays, and bit-vectors
are ubiquitous in Computer Science. Moreover, since these entities rarely occur
in isolation, the problem of building SMT solvers for the combination of two (or
more) decidable theories (say T1∪T2) out of SMT solvers for the component theo-
ries (say T1 and T2) has also been thoroughly investigated and solutions identified
[4, 5]. More recently the problem of combining the effectiveness of state-of-the-
art SAT solvers with SMT solvers has received growing attention and has led to
a new generation of SMT solvers capable of remarkable performance [6].



In the rest of this section we give a brief description of the decidable theories
that are relevant for the present paper.

Linear Arithmetics. By Linear Arithmetics we mean standard arithmetics (either
over Z, Q, or R) with addition (i.e. +) and the usual relational operators (e.g. =,
<, ≤, >, ≥) but without multiplication. Multiplication by a constant, say n ∗ x
where n is a numeral, is usually allowed but it is just a notational shorthand for
the (linear) expression x+ · · · + x with n occurrences of the variable x.

The theory of arrays. Arrays are data structures representing arbitrary asso-
ciations of elements to a set of indexes. Unlike arrays available in standard
programming languages, the arrays modelled by the theory of arrays need not
to have finite size. Given sorts index, elem and array for indices, elements,
and arrays (resp.) and function symbols select : array × index → elem and
store : array×index×elem → array, the standard presentation of the theory
of arrays consists of the following two axioms:

∀a, i, e. select(store(a, i, e), i) = e

∀a, i, j, e. (i �= j ⊃ select(store(a, i, e), j) = select(a, j))

with variable a of sort array, i and j of sort index, and e of sort elem.
SMT solvers for the theory of arrays are described in [7, 8].

The theory of records. Records are data structures that aggregate attribute-value
pairs. Let Id = {id1, . . . , idn} be a set of field identifiers and t1, . . . ,tn be types,
rec(id1 : t1, . . . , idn : tn), henceforth abbreviated rec, is the sort of records
that associate an element of type tk to the field identifier idk, for k = 1, . . . , n.
The signature of the theory of records consists of a pair of function symbols
rselectk : rec → tk and rstorek : rec × tk → rec for k = 1, . . . , n. The theory
is finitely presented by the following axioms:

∀r, e. rselectk(rstorek(r, e)) = e for k = 1, . . . , n

∀r, e. rselectl(rstorek(r, e)) = rselectl(r) for k, l such that 1 ≤ k �= l ≤ n

where r has sort rec and e has sort ti.
A SMT solver for the theory of records is described in [9].

The theory of bit-vectors. Similarly to arrays, bit-vectors associate elements to
a set of indexes, but unlike arrays the set of indexes is finite. Moreover the
element associated to each index is boolean valued. Many theories of bit-vectors
have been proposed in the literature [10–14], the main difference being whether
bit-vectors are allowed to have variable size or not. For our purposes, the theory
of fixed-size bit-vectors does suffice. The theory we consider has a sort bv(n) for
each positive integer n and a rich family of functions symbols consisting of

– word-level functions, e.g. [i:j] : bv(m) → bv(j − i + 1) (bit-vector extrac-
tion) for 0 ≤ i ≤ j ≤ m, @ : bv(m) × bv(n) → bv(m + n) (bit-vector
concatenation) for m,n > 0;



– bitwise functions, e.g.˜: bv(n) → bv(n) (bitwise not), & : bv(n)× bv(n) →
bv(n) (bitwise and), | : bv(n) × bv(n) → bv(n) (bitwise or) for n > 0;

– arithmetic functions, e.g. + : bv(n) × bv(n) → bv(n) (addition modulo 2n)
for n > 0.

3 Bounded Model Checking of Sequential Software

As in [2], preliminarily to the generation of the formula, we preprocess the in-
put program (Section 3.1). Given a bound n > 0, this amounts to applying a
number of transformations which lead to a simplified program whose execution
traces have finite length and correspond to the (possibly truncated) traces of the
original program. The quantifier-free formula is then obtained by generating a
quantifier-free formula for each statement of the resulting program (Section 3.2)
and the resulting formula is fed to a SMT solver (Section 3.3). If an execution
path leading to a violation of an assert statement occurring in the original pro-
gram is detected, then a corresponding trace is built and returned to the user
for inspection (Section 3.4).

In order to simplify the presentation, we assume that = is the only assignment
operator occurring in the program and that no pointer variables nor conditional
expressions occur in the program. Notice that all these simplifying assumptions
can be readily lifted as in [15].

3.1 The Preprocessing Phase

The preprocessing activity starts by replacing break and continue statements
with semantically equivalent goto statements. The switch construct is replaced
by a proper combination of if and goto statements. Loops are then unwound
by reducing them to a sequence of nested if statements. For instance, while
loops are removed by applying the following transformation n times:

while(e){ I } −→ if(e){ I while(e){ I }}

The last while loop is finally replaced by the statement assert(! e);, called
unwinding assertion. The failure of an unwinding assertion indicates that the
bound n is not sufficient to model the system and the properties entirely, and
that n must be increased.

Non recursive functions are then inlined. Recursive function calls and back-
ward goto’s are unwound similarly to loop statements. Forward goto statements
are transformed into equivalent if statements as explained in [1].

Next we put the program in if normal form by invoking the normalisation
algorithm of Fig. 1 with G = ∅. This normalisation step removes the else

constructs and pushes the if statements downwards in the abstract syntax tree
of the program till they are applied to atomic statements only. An example of
the transformation of a program in if normal form is given in Fig. 2.

Notice that a program in if normal form is a sequence of statements of the
form if(c) s; where s is either an assignment or an assert statement.



procedure Normalise(P ,G)
if P is an assignment or an assert statement then

return if(G∗) P;

else if P = (if(c) P1;) then

return Normalise(P1,G ∪ {c})
else if P = (if(c) P1;else P2;) then

return Normalise(P1,G ∪ {c});Normalise(P2,G ∪ {! c})
else if P = (P1; P2) then

return Normalise(P1,G);Normalise(P2,G)
end if

end procedure

Legenda: If G is a finite set of expressions then G∗ is an expression defined
as follows: ∅∗ = true, {c}∗ = c, and {c1, . . . , cn}

∗ = (c1 && · · · && cn) if n ≥ 2.

Fig. 1. Turning the program in if normal form

i = a[0];

if(x>0){
if(x<10)

x=x+1;

else

x=x-1;

}
assert(y>0 && y<5);

a[y]=i;

if(true) i = a[0];

if(x>0 && x<10) x=x+1;

if(x>0 && !(x<10)) x=x-1;

if(true) assert(y>0 && y<5);

if(true) a[y]=i;

(a) (b)

Fig. 2. Turning a program in if normal form: (a) the original program and (b) the
normalised program.



3.2 The Encoding Phase

The application of the previous transformations leaves us with a program P in
if normal form. We now show how to build two sets of quantifier-free formulae
C and P such that C |=T

∧
P for some given background theory T if and only

if no computation path of P violates any assert statement in P .
Let v be a program variable and i a program location. We define α(v, i) to

be the number of assignments made to v prior to location i. For each statement
in P at location i of the form if(c) v=e; C contains a formula of the form:1

vα(v,i)+1 = (c′ ? e′ : vα(v,i))

where c′ and e′ are obtained from c and e respectively by replacing every vari-
able w with wα(w,i) and every expression of the form a[e] with select(aα(a,j), e).
Similarly, for each statement in P at location i of the form if(c) a[e1]=e2; C
contains a formula of the form:

aα(a,i)+1 = (c′ ? store(aα(a,i), e
′

1, e
′

2) : aα(a,i)) (1)

where c′, e′1, and e′2 are obtained from c, e1, and e2 respectively by substitut-
ing every variable w with wα(w,i) and every expression of the form a[e] with
select(aα(a,j), e).

The set P contains a formula of the form (c′ ⊃ e′) for each statement in P at
location i of the form if(c) assert(e);, where c′ and e′ are obtained from c and
e respectively by replacing every variable w with wα(w,i) and every expression
of the form a[e] with select(aα(a,j), e).

C = { i1 = (true ? select(a0, 0) : i0),

x1 = ((x0 > 0 ∧ x0 < 10) ? x0 + 1 : x0),

x2 = ((x1 > 0 ∧ ¬(x1 < 10)) ? x1 − 1 : x1),

a2 = (true? store(a1, y0, i1) : a1)}

P = {true ⊃ (y0 > 0 ∧ y0 < 5)}

Fig. 3. The sets of formulae C and P for the program in Fig. 2.

3.3 Solving the Formula

Solving the Formula with a SAT Solver. In [2] this problem is reduced
to a propositional satisfiability problem which is then fed to the Chaff SAT

1 We use the expression v = (c ? e1 : e2) as an abbreviation for the formula (c ⊃ v =
e1) ∧ (¬c ⊃ v = e2).



solver [16]. This is done by modeling variables of basic data types (e.g. int and
float) as fixed-size bit-vectors and by considering the equations in C and in P as
bit-vectors equations. Each array variable a is also replaced by dim(a) distinct
variables a0, . . . , adim(a)−1 and each formula of the form (1) occurring in C is
replaced by the formula

dim(a)−1∧

i=0

ai
k = ((c ∧ e1 = i) ? e2 : ai

k−1).

Finally each term of the form select(aα(a,j), e) is replaced by a new variable, say
x, and the following formulae are added to C

dim(a)−1∧

i=0

((e = i) ⊃ x = ai
α(a,j))

The resulting set of bit-vector equations are then turned into a propositional
formula. Variables of struct types are treated in a similar way. Notice that
the size of the propositional formula generated in this way depends (i) on the
size of the bit-vector representation of the basic data types as well as (ii) on
the size of the arrays used in the program. It is worth pointing out that if the
program contains a multi-dimensional array a with dimensions d1, . . . , dm, then
the number of added formulae grows as O (d1 · d2 · . . . · dm).

Solving the Formula with a SMT Solver. The alternative approach pro-
posed in this paper is to use a SMT solver to directly check whether C |=T

∧
P .

By proceeding in this way the size of the formula given as input to the SMT
solver does not depend on the size of the bit-vector representation of the basic
data types nor on the size of the arrays occurring in the program.2 Moreover
the use of a SMT solver gives us additional freedom in the way we model the
basic data types. In fact, program variables with numeric type (e.g. int, float)
can be modelled by variables ranging over bit-vectors or over the corresponding
numerical domain (e.g. Z, R, resp.). If the modeling of numeric variables is done
through fixed-size bit-vectors, then the result of the analysis is precise but it de-
pends on the specific size considered for the bit-vectors. If, instead, the modelling
of numeric variables is done through the corresponding numerical domain, then
the result of the analysis is independent from the actual binary representation,
but this comes to the price of loosing completeness of the analysis if non linear
expressions occur in the program.

2 It must be said that SMT solvers for the theory of bit-vectors may expand parts of
the the formula by a technique known as bit-blasting, however this is usually done
as a last resort and in many cases higher level and less expensive techniques are
enough to solve the problem at hand [14].



3.4 Building the Error Trace

Whenever CVC Lite is asked to determine whether Γ |=T φ, but this does not
hold, the tool returns a finite set of formulae K such that Γ,K |=T ¬φ. The set
of formulae K is said to be a counterexample for Γ |=T φ.

Let K be a counterexample for C |=T

∧
P . We have defined a procedure that

builds an error trace witnessing the violation of an assert statement occurring
in the program P . The procedure (shown in Figure 4) traverses the control flow
graph GP of P starting from the first statement of P . Whenever a conditional
statement if(e) is met, then the “then” branch is taken if C,K |=T e. If instead
C,K |=T ¬e, then the “else” branch is taken. The control flow graph GP of P

is a directed graph GP = (NP , SuccP ), where NP = {1, . . . , n} is the set of
vertices and SuccP : NP → 2NP maps each vertex in the set of its successors.
For every vertex i such that 1 ≤ i ≤ n, si denotes the program statement
corresponding to i. By convention, node 1 of GP denotes the first statement of
P to be executed. If si is a conditional statement (i.e. it is of the form if(e)), then
SuccP (i) = {TsuccP (i), F succP (i)}, where TsuccP (i) (FsuccP (i)) denotes the
successor of i when e evaluates to true (false, resp.). If si is an assignment or an
assertion statement, SuccP (i) = {j}, with j ∈ NP , and we define sSuccP (i) = j.

1: procedure ErrorTrace(i, K)
2: if si is an assignment then

3: Print(“Assignment:”, si)
4: ErrorTrace(sSuccP (i), K)
5: else if si is if(e) then

6: if C,K |=T e then

7: ErrorTrace(TSuccP (i), K ∪ {e})
8: else if C,K |=T ¬e then

9: ErrorTrace(FSuccP (i), K ∪ {¬e})
10: else

11: Let 〈j, c〉 ∈ {〈TsuccP (i), e〉, 〈FsuccP (i),¬e〉}
12: be non-deterministically chosen.
13: ErrorTrace(j, K ∪ {c})
14: end if

15: else if si is assert(e) then

16: if C,K |=T e then

17: ErrorTrace(sSuccP (i), K)
18: else

19: Print(“Assertion violated:”, assert(e))
20: Halt

21: end if

22: end if

23: end procedure

Fig. 4. Building the program trace.



Notice that lines 11–13 of the algorithm allow for the non deterministic selec-
tion of a branch of a conditional statement if neither C,K |=T e nor C,K |=T ¬e
hold. This is necessary because the counterexample K might not be sufficient
to determine the branch to choose. In this event, the branch can be chosen non
deterministically. Notice that this is a form of “don’t care” non-determinism
and therefore no backtracking is necessary. As an example of this, it can be
noted that in the program of Figure 2 the assertion is violated independently
from the value of variables x and i, and therefore also independently from the
choice of the branches of the if statements. In fact, CVC Lite outputs a coun-
terexample K = {y0 ≥ 5} for which neither C,K |=T (x0 > 0 ∧ x0 < 10) nor
C,K |=T (x0 > 0 ∧ ¬(x0 < 10)) hold.

4 Experimental Results

In order to assess the effectiveness of our approach we have developed a prototype
implementation called smt-cbmc. smt-cbmc consists of four main modules,
implemented in about 5,000 lines of Prolog code. The first module parses the
input program, the second carries out the preprocessing, the third builds the
quantifier-free formula, and the fourth module solves the formula according to
the user options by invoking CVC Lite.3 The latter module also builds and prints
the error trace whenever a counterexample is returned by CVC Lite.

We have run smt-cbmc against a number of families of C programs. Each
family of programs is parametric in a positive integer N and such that both the
size of the arrays occurring in the programs and the number of iterations done
by the programs depend on N . Therefore the instances become harder as the
value of N increases. The benchmark problems considered are:

– BubbleSort.c(N), an implementation of the Bubble Sort algorithm [17],
– SelectSort.c(N), an implementation of the Selection Sort algorithm [17],
– BellmanFord.c(N), an implementation of the Bellman Ford algorithm [18,

19] for computing single-source shortest paths in a weighted graph, and
– Prim.c(N) an implementation of Prim’s algorithm [20] for finding a mini-

mum spanning tree for a connected weighted graph.

Notice that these programs are well-known and therefore the result of the anal-
ysis is not interesting in itself. However they allow us to carry out a systematic
and quantitave assessment of the tools as the size of the arrays involved in the
programs increases. It is also worth pointing out that all the benchmark problems
considered involve a tight interplay between arithmetics and array manipulation.

We have run both smt-cbmc and CBMC on our benchmark programs. We
report the total time spent by the tools to tackle each individual instance con-
sidered and, when relevant, also the time spent by CVC Lite to solve the formula
generated by smt-cbmc. Times are in seconds. All experiments have been ob-
tained on a Pentium IV machine running Linux with the memory limit set to

3 Currently smt-cbmc can represent numeric data types with corresponding numeric
domains as well as with fixed-size bit-vectors.



800MB and the time limit set to 30 minutes. CBMC has been invoked by manu-
ally setting the unwinding bound (CBMC --unwind n option) and by disabling
simplification (CBMC --no-simplify option).4

All the experiments presented in the rest of this section have been obtained
by modeling the basic data types using bit-vectors thereby enabling the decision
procedure for the theory of bit-vectors available in CVC Lite during the solving
phase. Experimental results indicate that similar performances are obtained by
modeling the numerical variables with the integers thereby enabling the decision
procedure for linear arithmetics available in CVC Lite during the solving phase.

More information about the experiments is available at URL http://www.

ai.dist.unige.it/eureka.

4.1 Sorting algorithms

The Bubble Sort algorithm (see Figure 5) sorts the array a by using two nested
loops that repeatedly swap adjacent elements. The assertion statements at the
end of the program check that the array has been sorted. The parameter N here
determines the size of the array, as well as the number of unwindings for each
loop. Notice that in this case the number of unwindings grows quadratically with
N as there are two nested loops.

int a[N];

void main(){
int i;

a={N-1,. . .,0};
BubbleSort();

for(i=0;i<N;i++)

assert(a[i]==i);

}

void BubbleSort(){
int i,j,t;

for (j=0;j<N-1;j++){
for (i = 0; i< N-j-1; i++){
if (a[i]>a[i+1]){
t = a[i];

a[i] = a[i+1];

a[i+1] = t;

}
}

}

Fig. 5. Source code of BubbleSort.c(N)

The experimental results obtained for this family of programs are given in
Figure 6. Plot (a) shows the time spent by the tools in analysing the program

4 It is worth pointing out that CBMC features also an (undocumented) option --cvc

whose effect is to output the bit-vector equations of the formula in the CVC format
[21]. In this way it is possible to reason at the word-level, but still not using the theory
of arrays. However this option is still experimental and not yet fully operational and
therefore we have been unable to carry out experiments with it.



while plot (b) shows the size (in bytes) of the encodings. In both cases the
value of N is on the the x-axis. CBMC runs out of memory for N = 17, while
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Fig. 6. Results on BubbleSort.c(N)

smt-cbmc can still analyse programs for N = 26. A comparison between the
formulae sizes of smt-cbmc and CBMC substantiates our remarks about the
size of the encodings: the formula built by CBMC for N = 16 is roughly one
order of magnitude bigger than the one built by smt-cbmc.

Similarly to Bubble Sort, Selection Sort (see Figure 7) counts two nested
loops and a swap operation, and the assertions at the end of the program check
that the given array has been sorted. Unlike Bubble Sort, where the swap is
guarded by an if within the nested loop, the swap operation is done N times,
where N is the size of the array, without any guard. Therefore, the encoding
grows as O(N ·dim(a)), where dim(a) is the size of the array. As shown in plot b
of Figure 8), CBMC runs out of memory already for N = 21, whereas smt-cbmc

analyses instances till N = 29.

4.2 The Bellman-Ford algorithm

The problems of the BellmanFord(N) family model are implementations of the
Bellman Ford algorithm with a graph comprising 5 nodes and N (randomly
generated) edges. Each edge is associated with a (randomly generated) positive
weight. The instance for N = 5 is given in Fig. 9. The edges are represented
by the arrays Source and Dest, the weights by the array Weight. The assert

statements at the end on the program check that all the paths originating from
the source node (represented by 0) have positive weight.

The results of the experiments are given in the plots of Fig. 10, where the
x axis represents the number of edges. Notice that the maximum value for N is
20 in this case as the maximum number of edges in a fully connected directed



int a[N];

void main(){
int i;

a={N-1,. . .,0};
SelectSort();

for(i=0;i<N;i++)

assert(a[i]==i);

}

void SelectSort(){
int i,j,t,min;

for (j=0;j<N-1;j++){
min=j;

for (i=j+1; i<N; i++)

if (a[i]>a[min])

min = i;

t = a[j];

a[j] = a[min];

a[min] = t;

}
}

Fig. 7. Source code of SelectSort.c(N)
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Fig. 8. Results on SelectSort.c(N)

graph is k(k − 1) where k is the number of nodes. Plot (a) displays the time
spent by the tools in analysing the problems while plot (b) shows the size of the
formulae. Notice that the formula generated by CBMC is already one order of
magnitude bigger than the one of smt-cbmc, for N = 12.

4.3 Prim’s algorithm

Prim’s algorithm [20] finds a minimum spanning tree for a connected weighted
graph. As in the Bellman-Ford implementation (Fig. 9), three arrays are used
to model the attributes of the edges that connect the nodes of the graph. We
used instances where the number of nodes of the graph is set to 4 and the
number of edges increases according to the parameter N , starting from N = 4.



int INFINITY = 899;

void main(){

int nodecount = 5;

int edgecount = 10;

int source = 0;

int Source[10] = {0,0,1,0,3,3,0,1,1,3};

int Dest[10] = {1,1,1,1,2,4,4,2,3,3};

int Weight[10] = {0,1,2,3,4,5,6,7,8,9};

int distance[5];

int x,y,i,j;

for(i = 0; i < nodecount; i++){

if(i == source) distance[i] = 0;

else distance[i] = INFINITY;

for(i = 0; i < nodecount; i++){

for(j = 0; j < edgecount; j++){

x = Dest[j];

y = Source[j];

if(distance[x] > distance[y] + Weight[j])

distance[x] = distance[y] + Weight[j];

}

}

for(i = 0; i < edgecount; i++){

x = Dest[i];

y = Source[i];

if(distance[x] > distance[y] + Weight[i]) return;

}

for(i = 0; i < nodecount; i++) assert(distance[i]>=0);

}

Fig. 9. Source code of the instance of BellmanFord(N) for N = 10.

As shown in Fig. 1, already for N = 4 the size of the formula output by CBMC
is roughly 14 times bigger than the one of smt-cbmc. For N = 7 the difference
becomes greater: the formula generated by CBMC becomes roughly 21 times
bigger than the one of smt-cbmc. For N = 8, smt-cbmc analyses the input
program generating a formula of almost 8 MB, while CBMC runs out of memory.

5 Related Work

In the recent years a number of Model Checking procedures and tools have been
developed for the verification of sequential software.
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Table 1. Size (in bytes) of the formulae generated by smt-cbmc and CBMC for
Prim(N).

N smt-cbmc CBMC

4 1,108,211 14,269,837
5 1,460,245 31,453,119
6 2,755,215 59,675,705
7 4,761,352 108,045,992
8 7,704,875 memory out

SLAM [22], BLAST [23], and MAGIC [24] extend a symbolic model checking
procedure for boolean programs with abstraction and refinement. Their approach
has been shown to be very effective on specific application domains such as device
drivers programming. However, when they come to reason about arrays they
trade precision for efficiency. For instance SLAM and BLAST do not distinguish
different elements of an array and this may lead them to report unsound results.

Saturn [25] is an efficient software error-detection tool that, like CBMC,
translates C programs into boolean formulae that are then fed to a SAT solver.
One of the distinguishing features of Saturn w.r.t. CBMC is the computation of
summaries for each analysed function in order to speed up the (interprocedural)
analysis. But again efficiency is obtained at the cost of loosing soundness: sim-
ilarly to SLAM and BLAST, Saturn does not distinguish different elements of
an array.

Both CBMC and smt-cbmc treat arrays in a precise way, but they only
consider execution traces of bounded length, limitation that can be mitigated
by iterating the technique for increasing values of the unwinding bound. As
shown in Section 4 smt-cbmc can be considerably more effective than CBMC
when applied to programs involving arrays of non-negligible size. However when



no arrays occur in the program or when the arrays have small size CBMC can
be more effective than smt-cbmc. This suggests that the compilation to SMT
should be seen as a complement and not as an alternative to the compilation
to SAT. An interesting point is to determine syntactic criteria that allow us to
determine for any given program which of the two encoding techniques is likely
to perform best.

6 Conclusion

We have presented a Bounded Model Checking technique for sequential pro-
grams which uses SMT solvers instead of SAT solvers. Our work generalises the
one presented in [2] and we have shown that our encoding technique generates
considerably more compact formulae than CBMC when arrays are involved in
the input program. In particular the size of the formulae generated by our ap-
proach does not depend on the size of the bit-vector representation of the basic
data types nor on the size of the arrays occurring in the program.

Experimental results confirm the effectiveness of our approach: on problems
involving complex interactions of arithmetics and arrays manipulation smt-

cbmc scales significantly better than CBMC as the size of the arrays occurring
in the input program increases.
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13. Möller, O., Rueß, H.: Solving Bit-Vector Equations. In Gopalakrishnan, G., Wind-
ley, P., eds.: Formal Methods in Computer-Aided Design (FMCAD ’98). Volume
1522 of Lecture Notes in Computer Science., Palo Alto, CA, Springer-Verlag (1998)
36–48

14. Bozzano, M., Bruttomesso, R., Cimatti, A., Franzen, A., Hanna, Z., Khasidashvili,
Z., Palti, A., Sebastiani, R.: Encoding RTL Constructs for MATHSAT: a Prelim-
inary Report. In Armando, A., Cimatti, A., eds.: the 3rd International Workshop
on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR 2005).
(2005) To appear on the Electronic Notes in Theoretical Computer Science.

15. Clarke, E., Kroening, D., Yorav, K.: Behavioral Consistency of C and Verilog Pro-
grams. Technical Report CMU-CS-03-126, Computer Science Department, School
of Computer Science, Carnegie Mellon University (2003)

16. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Proceedings of DAC, ACM (2001) 530–535

17. Knuth, D.: The Art of Computer Programming, Volume 3: Sorting and Searching.
Volume 3. Addison-Wesley (1997)

18. Bellman, R.E.: On a Routing Problem. Quarterly of applied mathematics 16

(1958) 87–90
19. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)
20. Prim, R.C.: Shortest Connection Networks and Some Generalisations. Bell System

Technical Journal 36 (1957) 1389–1401
21. Stump, A., Barrett, C.W., Dill, D.L.: CVC: a Cooperating Validity Checker. In

Brinksma, E., Larsen, K.G., eds.: Proceedings of CAV. Volume 2404 of LNCS.,
Springer (2002)

22. Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties of
Interfaces. In: Proceedings of SPIN, Springer New York, Inc. (2001) 103–122

23. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with
Blast. In Ball, T., Rajamani, S.K., eds.: Proceedings of SPIN. Volume 2648 of
LNCS., Springer (2003) 235–239

24. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular Verification of Software
Components in C. In: Proceedings of ICSE, IEEE Computer Society (2003) 385–
395

25. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In Palsberg,
J., Abadi, M., eds.: Proceedings of POPL, ACM Press (2005) 351–363




