
1

Bounded Model Debugging
Brian Keng,Student Member, IEEE,Sean Safarpour,Member, IEEE,and

Andreas Veneris,Senior Member, IEEE

Abstract—Design debugging is a major bottleneck in modern
VLSI design flows as both the design size and the length
of the error trace contribute to its inherent complexity. With
typical design blocks exceeding half a million synthesized logic
gates and error traces in the thousands of clock cycles, the
complexity of the debugging problem poses a great challenge to
automated debugging techniques. This work aims to address this
daunting challenge by introducing the Bounded Model Debugging
methodology that iteratively analyzes bounded sequences of the
error trace. Two techniques are introduced in this methodology
to solve this growing problem. The first technique iteratively
analyzes bounded subsequences of the error trace of increasing
size until the error is found or the entire trace is analyzed. The
second technique partitions the error trace into non-overlapping
bounded sequences of clock cycles which are each separately
analyzed. A discussion of these two techniques is presented
and a unified methodology that leverages the strengths of both
techniques is developed. Empirical results on real industrial
designs show that for large designs and long error traces the
proposed methodology can find the actual error in 79% of cases
with the first technique and 100% of cases with the second
technique. In cases where the methodology is not used only 21%
of cases are able to find the actual error. These numbers confirm
the benefits of the proposed methodology to allow conventional
automated debuggers to handle much larger real-life circuits.

Index Terms—Debugging, Verification, RTL, Interpolation,
VLSI

I. I NTRODUCTION

The relentless consumer appetite for innovative electronic
devices places great demands on the performance of modern
Very Large Scale Integration (VLSI) designs. An inevitable
result of this trend is an increase in both their size and
complexity. This leads to significantly greater costs in both
design verification and the subsequent debugging process.
Since the complexity of both these tasks is projected to
increase by nearly two orders of magnitude in the next few
years [1], the research community is challenged to generate
new Computer Automated Design (CAD) verification and
debug methodologies to meet the time-to-market demands and
the current growth rate of the semiconductor industry [2].

Manuscript received December 22, 2009; revised April 07, 2010. Current
version published June 7, 2010. This paper was recommended by Associate
Editor A. Kuehlmann.

Brian Keng is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada(email:
briank@eecg.toronto.edu).

Sean Safarpour is with Vennsa Technologies, Inc., Toronto,ON M5V 3B1,
Canada (email: sean@vennsa.com).

Andreas Veneris is with the Department of Computer Science andthe
Department of Electrical and Computer Engineering, University of Toronto,
Toronto, ON M5S 3G4, Canada (email: veneris@eecg.toronto.edu).

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Property and equivalence checkers [3], [4], assertion-based
verification and functional coverage tools [5], and recent
advances in powerful solving engines such as Binary Decision
Diagrams (BDD), Boolean satisfiability (SAT), and Satisfiabil-
ity Modulo Theories (SMT) [6]–[8] have allowed verification
Computer Aided Design (CAD) tools [9]–[12] to achieve great
strides into their ability to aid engineers in detecting functional
design errors. Despite these developments, there has been
relatively less work directed towards debugging the error once
it has been detected. In this work, the term debugging repre-
sents the process that follows functional verification where
a failure is detected and the engineer tries to pin-point the
location of the error and fix it. This issue is increasingly
becoming a bottleneck as it has been reported that debugging,
a predominantly manual process today, consumes up to 60%
of the total verification time [13]. Therefore, it is important
to develop automated debugging tools to alleviate this manual
resource-intensive process.

A central reason behind the complexity of debugging is
the increasing design size and the length of counter-examples.
Today, typical design blocks can exceed half a million synthe-
sized logic gates. Further, counter-examples (i.e., error traces)
returned by dynamic or formal verification methodologies can
be thousands of cycles long [14]. Most existing automated
debugging solutions replicate the combinational part of the
circuit for as many cycles as the counter-example requires
before they operate [15]–[18]. Due to this, the debugging
complexity of a sequential circuit directly depends on the
number of cycles in the error trace [19] and it grows exponen-
tially with the number of injected errors. Admittedly, to cope
with this daunting challenge, engineers must invent new CAD
techniques to alleviate the manual debugging pain.

This work aims to address these concerns by introducing
a set of techniques, which are collectively referred to as
Bounded Model Debugging (BMD), to cope with the growing
complexity of the design debugging problem. The central
theme behind BMD is the use of bounded subsequences of
the error trace called windows to manage the excessive error
trace length of modern designs. Each window is iteratively
analyzed starting from the cycle where the failure first occurs.
By iteratively analyzing bounded windows instead of the entire
error trace, a dramatic reduction in the memory and run-time
requirements of the debugger are achieved.

The first BMD technique calledwindow expansion[20] is
motivated by the empirical observation that functional errors
are often excited in close temporal proximity to their failure
point. It stems from the practical experience of verification
engineers who begin their analysis for clock cycles just prior
to the failure in the error trace. Later, they progressively
expand their search radius to larger windows of clock cycles

2

near the failure until the error is found. Similarly, window
expansion begins by constructing a small debugging instance
for a bounded suffix window of an error trace containing
the failure. Based on the solutions returned, the methodology
determines whether to expand the bound of the suffix or
if the results are complete. This process repeats until either
the resources are exhausted or the algorithm terminates with
complete results.

The second BMD technique calledwindow partitioning[21]
generalizes the window expansion approach for SAT-based
debugging as it divides the error trace into non-overlapping
bounded windows and analyzes each one separately. It be-
gins this process by constructing a debugging instance for
a bounded suffix window of the error trace. The solutions
are analyzed to determine whether the results are complete,
and if they are not, an over-approximation of that instance is
generated in the form of an interpolant. Using the interpolant,
the next bounded window in the sequence is analyzed by
explicitly modelling that window and combining it with the
interpolant from the previous iteration. By iteratively analyzing
a fixed sized bounded window, it avoids the costly computation
of explicitly modelling the entire error trace. This results in a
significant reduction in the amount of resources needed which
may come at a small sacrifice to the final resolution, that is,
the number of suspect locations returned.

Both BMD techniques have their own strengths and trade-
offs where one may be preferred over the other under certain
conditions. A discussion of these techniques is presented
that describes the conditions under which each technique
should be used in an automated debugging flow. From these
discussions, a unified methodology is developed that leverages
their strengths and balances their inherent trade-offs.

An extensive set of experiments on large hardware designs
with long error traces from bothOpenCores [22] and
industrial partners illustrates the benefits of this work. The
window expansion and window partitioning techniques are
able to successfully find the actual error in 79% and 100%
of the instances respectively while previous work is only able
to find the actual error 21% of the cases.

The remaining sections are organized as follows. Section II
introduces background information and notation necessaryto
understand the contributions in this work. Section III describes
motivation for the intuition behind the BMD methodology.
Window expansion is introduced in Section IV and window
partitioning is presented in Section V. Section VI presentsa
discussion of these two techniques as well as a unified BMD
methodology. Experiments are presented in Section VII and
Section VIII concludes this work.

II. PRELIMINARIES

A. Notation and Definitions

The lettersx, y and s refer to the set of primary inputs,
primary outputs and state (memory) elements, respectively.
Furthermore,xi, yi and si denote Boolean vectors in theith

clock-cycle, or time-frame, of the sequential operation of a
circuit. Similarly, xi

j , yi
j andsi

j refer to thejth indexed bit in
the ith time-frame. Finally,Xi, Y i andSi denote a predicate

for the ith clock cycle on the primary inputs, primary outputs
and state elements, respectively. The behavior of a sequential
circuit C can be described formally by a transition relation,
T (si, si+1, xi, yi), which is true if and only if given the
current-statesi, applying primary inputsxi to C will generate
primary outputsyi and the next-statesi+1.

An error trace of length k + 1 returned by a dynamic or
formal verification tool generated from the erroneous design,
is denoted byVk

0 . It consists of an initial state predicate, a
vector of primary input predicates and a vector ofcorrect or
expectedprimary output predicates for clock cycles0 to k,
which can be written as:

Vk
0 = 〈S0, 〈X0, . . . ,Xk〉, 〈Y 0, . . . , Y k〉〉 (1)

The error trace can be thought of as a cycle-accurate counter-
example containing an initial state and a sequence of input
values as well as a sequence of expected output values gen-
erated from a high-level reference model (e.g. C or Matlab).
By simulating the design with the error trace, we demonstrate
a mismatch between the erroneous circuit and its expected
behavior. Note that each of the predicates can be written as
unit clauses representing the value for each of the respective
signals in each time-frame.

A window of an error trace from clock-cyclesp to q, is
defined as a consecutive subsequence of an error trace,Vq

p =
〈Sp, 〈Xp, . . . ,Xq〉, 〈Y p, . . . , Y q〉〉 whereSp is calculated by
applying the initial state predicate and the firstp primary
input predicates to the transition relation,i.e. simulating the
erroneous circuit forp cycles. A prefix window(Vp−1

0) and
suffix window(Vk

p) denote windows either starting at the first
clock cycle or ending at the last clock cycle respectively. In
our presentation, we will occasionally omit the term window
and just use the terms of suffix or prefix instead.

For this work, we assume that the error is first observed in
the last clock cycle of the error trace. If this is not the case,
a shorter error trace can be trivially generated by taking the
shortest prefix that exhibits the erroneous behavior.

B. SAT-based Design Debugging

Design debugging finds all error locationsuspectsthat
explain the erroneous behavior of a design exposed by a
given error trace [23]. Theerror cardinality N of a debugging
problem refers to the number of distinct suspects returned
in a solution by the method used. A debugging method is
said to becompletefor a given error cardinality if it returns
all solutions whose functions can be separately modified to
fix the erroneous behavior. Most existing methodologies for
sequential circuits replicate the state transition of the circuit
for the length of the error trace [19], a fact that imposes
performance constraints because the complexity of debugging
grows exponentially to the number of errors [15]:

(combinational circuitry ∗ # trace cycles)# errors (2)

Historically, fault diagnosis techniques such as simula-
tion, BDDs and path-tracing [23] were first used to tackle
debugging. Complementary techniques such as trace mini-
mization [14] are also developed to reduce the debugging

3

complexity by minimizing the error trace before debugging.
More recently, SAT-based methodologies are shown to exhibit
significant performance advantages when compared to tradi-
tional techniques [15]. Following the original work, extensions
using Quantified Boolean Formula (QBF) [19], maximum
satisfiability [16], UNSAT cores [24] and others [25], [26]
extend the benefits of the original methodology. With no loss
of generality, this paper presents BMD in terms of SAT-based
debugging. As such, we present some essentials that remain
relevant to the work presented here.

SAT-based design debugging [15] encodes the design debug-
ging problem into a SAT instance for each given error trace.
Each satisfying assignment to this instance corresponds toa
suspect that can correct the erroneous behavior in the design.
This instance is created in several steps.

First, the transition relation is enhanced by introducing
a correction modelfor each potential error location (gate,
module etc.). Each correction model has an associated suspect
variable,ei, which works as follows: ifei = 1 then theith

potential error location is disconnected from its fan-in and
becomes a free variable. This can be achieved either through
adding multiplexors [15], or directly in conjunctive normal
form (CNF). This enhanced transition relation is denoted by
Ten(si, si+1, xi, yi, e).

Next, Ten is unrolled as a time-frame expanded model
for the length of the error trace, such that the next-state of
time-framei is connected to the current-state of time-frame
i + 1, and the error trace predicates are applied to the initial
state, input and output variables. An error cardinality constraint
ΦN (e) is also added to denote the search forN errors. Given
an error traceVk

p , debugging is encoded in SAT as follows:

Debugk
p =Sp ∧ ΦN (e)∧

(

k
∧

i=p

Xi ∧ Y i ∧ Ten(si, si+1, xi, yi, e)
)

(3)

where a satisfying assignment provides a solution in the form
of a set of suspects. Returned solutions can be used as blocking
clauses to allow the algorithm to iterate multiple times and
return all possible suspect error locations [15]. The following
example illustrates the process described above.

Example 1 Figure 1 shows a two time-frame expanded circuit
of an erroneous two gate design with one state element.
The correction models for each gate are denoted by⊗. The
suspect variables for these correction models aree1 and e2

corresponding to gatesg1 andg2 respectively. The actual error
inserted in the design is that the gateg2 is be a buffer instead
of an inverter. The error trace:

V1
0 = 〈s0

0, 〈x
0
1 ∧ x0

2, x
1
1 ∧ x1

2〉, 〈y
1
1 ∧ y1

2〉〉

demonstrates an erroneous behavior of the circuit. ForN = 1,
a satisfying assignment for{e1, e2} is e1 ∧ e2.

C. Unsatisfiable Cores and Interpolants

Given a SAT instanceφ in CNF that is unsatisfiable, an
UNSAT core denoted byU , is a subset of clauses ofφ which

y
0
2y

0
1

s
0
00

x
0
1 x

0
2 x

1
1

y
1
1 y

1
2

x
1
2

s
1
0

1 1

1 111

e1

e2

g1

e1

e2

g1

g2g2

Fig. 1. Design unrolled for 2 clock cycles with correction models

is also unsatisfiable. Modern DPLL [27] solvers can generatea
proof of unsatisfiability along with a corresponding resolution
graph that shows that a SAT instance is unsatisfiable [28].
The resolution graph demonstrates how clauses inφ can be
combined to generate the empty clause.

An interpolant [29] is a Boolean formula that can be
generated from a resolution graph. For a given unsatisfiable
formula φ whose clauses can be partitioned into two subsets,
A and B, an interpolant is a formulaP , with the following
properties:

(a) A → P
(b) B ∧ P is unsatisfiable.
(c) P only contains only common variables ofA andB.

Formula P can be thought of as a particular over-
approximation of the clauses inA that is UNSAT when
combined withB and only involve variables common toA
and B. Interpolants have been used in several applications
including model checking [30] and synthesis [31]. There
exists an algorithm [30] that can generate an interpolant as
a Boolean circuit from the resolution graph. This algorithm
can be computed in linear time in the number of vertices plus
literals in the resolution graph.

III. M OTIVATION

This section gives motivation for the BMD methodology
by building intuition for the empirical observation that er-
rors are usually located in close temporal proximity to their
observation points. It begins with a probabilistic analysis of
the likelihood that an error can propagate and be observed a
given number of cycles later. By making assumptions about
the probability of the error propagation and observability, the
analysis is then simplified and presented graphically to gain
intuition about this empirical observation.

It should be noted that this discussion uses a probabilistic
argument which may not precisely model actual circuit behav-
ior. It is also not used as a basis for the theory or mechanics
of the BMD methodology described in later sections. Instead,
the purpose of the analysis in this section is to reinforce the
empirical observation that errors are usually located close to
their failure points.

Proposition 1 Assuming that a single error is excited in clock
cycle 1 and no other errors are excited in any other clock
cycles, letpropi be the probability of the error propagating
from cyclei to i + 1 and obsi be the probability of observing

4

a failure in clock cyclei, given that the error has propagated
to that cycle. Also assume that the input vector sequences
are temporally independent and stationary random sequences.
Then, the probability of observing the first failure in clock

cycled is pd =

d−1
Y

i=1

propi ×

d−1
Y

i=1

(1 − obsi) × obsd.

Proof: Let Wi = {an error propagates from cyclei to
cycle i + 1 if it has propagated to cyclei }, and Oi = {a
failure is observable in cyclei if an error has propagated to
cycle i }, andE1 = {an error is excited in clock cycle1}.
Probability pd can be stated in terms of eventsWi, Oi, and
E1:

pd = P

d−1
\

i=1

Wi ∩

d−1
\

i=1

Oi ∩ Od

˛

˛

˛ E1

!

. By applying the

identity P
`

A ∩ B
˛

˛ C
´

= P
`

A
˛

˛ C
´

× P
`

B
˛

˛ A ∩ C
´

, we

get pd = P

d−1
\

i=1

Wi

˛

˛

˛ E1

!

× P

d−1
\

i=1

Oi

˛

˛

˛

d−1
\

i=1

Wi ∩ E1

!

×

P

Od

˛

˛

˛

d−1
\

i=1

Oi ∩

d−1
\

i=1

Wi ∩ E1

!

. Here, the eventsOd and

d−1
\

i=1

Oi are conditionally independent ofE1 ∩

d−1
\

i=1

Wi. Thus,

P

Od

˛

˛

˛

d−1
\

i=1

Oi ∩

d−1
\

i=1

Wi ∩ E1

!

= P

Od

˛

˛

˛

d−1
\

i=1

Wi ∩ E1

!

. As a

result,pd can be simplified

pd = P

d−1
\

i=1

Wi

˛

˛

˛ E1

!

× P

d−1
\

i=1

Oi

˛

˛

˛

d−1
\

i=1

Wi ∩ E1

!

×

P

Od

˛

˛

˛

d−1
\

i=1

Wi ∩ E1

!

.

One of the assumptions made is that input vectors in
successive cycles are all (temporally) independent. Thus,
any Wi is independent ofWj for all cycles i 6= j:
P
`

Wi ∩ Wj

˛

˛ E1

´

= P
`

Wi

˛

˛ E1

´

× P
`

Wj

˛

˛ E1

´

.

As a result,P

d−1
\

i=1

Wi

˛

˛

˛ E1

!

=

d−1
Y

i=1

P
`

Wi

˛

˛ E1

´

.

Similarly, by the assumption, anyOi is independent ofOj

for all cyclesi and j:

P

Oi ∩ Oj

˛

˛

˛

d−1
\

k=1

Wk ∩ E1

!

= P

Oi

˛

˛

d−1
\

k=1

Wk ∩ E1

!

×

P

Oj

˛

˛

˛

d−1
\

k=1

Wk ∩ E1

!

.

As a result, P

d−1
\

i=1

Oi

˛

˛

˛

d−1
\

i=1

Wi ∩ E1

!

=

d−1
Y

i=1

P

Oi

˛

˛

d−1
\

k=1

Wk ∩ E1

!

.

Using the above,pd can be simplified to:

pd =

d−1
Y

i=1

P
`

Wi

˛

˛ E1

´

×

d−1
Y

i=1

P

Oi

˛

˛

d−1
\

k=1

Wk ∩ E1

!

×

P

Od

˛

˛

˛

d−1
\

i=1

Wi ∩ E1

!

.

In the assumptions,propj andobsj are defined as:

propj = P
`

Wj

˛

˛ E1

´

and obsj = P

0

@Oj

˛

˛

˛

j−1
\

i=1

Wi ∩ E1

1

A for some

cycle j. Using these definitions,pd can be presented as

pd =

d−1
Y

i=1

propi ×

d−1
Y

i=1

(1 − obsi) × obsd

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

p
d

d: clock cycles

prop=obs=0.5
prop=obs=0.9
prop=obs=0.1

Fig. 2. Three curves ofpd as function ofd

We can simplifypd by assuming thatpropi = prop and
obsi = obs that remain constant for all cyclesi resulting in
pd = propd−1×(1−obs)d−1×obs. This simplified relationship
is plotted in Figure 2 for three values ofprop = obs =
{0.1, 0.5, 0.9}. For values atd = 1 we havepd = P (O1|E1) =
obs. The negative exponential relationship is clear as the three
curves are no longer visible whend > 6. Although overly
simplified, the expression forpd aligns with the observations
made in the field and the experimental results of Section VII.

IV. B OUNDED MODEL DEBUGGING WITH WINDOW

EXPANSION

Instead of debugging the entire error trace, one can apply
any automated debugger to a suffix window of the error trace
to generate a suffix debugging instance. Window expansion
uses this fact to incrementally increase the size of this suffix
window until the error is found. This key idea is illustrated
in Figure 3. The figure shows an unrolled circuit fork + 1
time-frames. The first iteration of window expansion starts
from a suffix of the error trace and iteratively expands the
window under analysis until the error is found. During each
iteration, initial state suspect variables are used to determine if
the current suffix can guarantee a complete result or whether
a larger suffix must be analyzed.

The suffix debugging instance has the benefit of a reduced
problem size due to the reduction in the number of time-
frames analyzed, as also seen by Equation 2. In the worst case,
window expansion can degenerate to a conventional debugging
algorithm where the entire error trace has to be examined but
experiments confirm that this is rarely the case.

It is clear that debugging a suffix instance can only find
errors that are excited and propagated to the primary outputs
within that particular suffix. However, suspects returned from

0

iteration i

iteration1

iteration2iteration i

kk − 2 k − 1i

suspects for
initial state

Fig. 3. BMD window expansion with multiple iterations

5

the suffix debugging instance have a useful property stated in
the next lemma. This lemma guarantees that if a suspect is
found during a suffix debugging instance, it is also a suspect
to the entire error trace. This result is used in later sections
to prove certain properties of the various BMD windowing
techniques that we present.

Lemma 1 For a given error cardinalityN , any solution found
when debugging a suffix of an error traceVk

p , will be found
as a solution when debugging the entire error traceVk

0 .

Proof: Let E be a solution in the form of an assignment
to the suspect variables ine such that for a suffix debugging
instance,Debugk

p ∧ E is satisfiable. We wish to prove the
lemma restated formally as follows:

Debugk
p ∧ E is SAT→ Debugk

0 ∧ E is SAT

From Equation 3, we know thatDebugp−1
0 ∧ Debugk

p and
Debugk

0 ∧ Sp generate the same clauses.Debugp−1
0 is SAT

regardless of the error trace because the failure has not been
observed yet, so there is no mismatch in primary outputs.
Debugp−1

0 ∧ Sp is SAT when no suspect variables are active
because the instanceDebugp−1

0 amounts to simulating the
circuit for the first p cycles of the error trace generating
the same values asSp. Finally, Debugp−1

0 ∧ Sp ∧ E is SAT
because each active suspect variable allows the corresponding
component outputs to become free, which will not change the
satisfiability of an instance if it was already satisfiable.

Therefore, ifDebugk
p∧E is SAT thenDebugp−1

0 ∧Debugk
p∧

E is also SAT, since the only common variables aresp and
e which are fully assigned. As a result,Debugk

0 ∧ Sp ∧ E is
SAT implying thatDebugk

0 ∧ E is SAT as required.

A. Ensuring Completeness

Although Lemma 1 guarantees that a solution to a suffix is a
valid solution for the entire error trace, it does not ensurethat
the set of solutions returned is complete. This is because the
suffix may not contain the excitation of the error. However, if
the error is excited in a cycle that precedes the current suffix,
its effects must propagate through some state elements before
reaching the observed failure at the primary outputs. We use
this observation to ensure completeness for window expansion.

To determine whether or not the results are complete, we
simply need to determine if changing the initial state predi-
cate of the current suffix window will generate a satisfiable
instance. This can be accomplished by introducing aninitial
state suspect variablefor each state element. If an initial state
suspect is returned by the debugger, then it indicates that the
current suffix may not yield complete results and a longer
suffix needs to be analyzed. For example in Figure 3 during
the ith iteration, if the debugger returns a solution including
the initial state suspect (denoted by⊗ in the figure) then the
bounded window must be increased to ensure complete results
are achieved. Alternatively, if the solutions returned contain
no initial state suspects, we can safely conclude the results
are complete.

The introduction of initial state suspects has an impact on
the error cardinality which must be re-examined. The next

y
1
2y

1
1

0 s
1
0

einitial

x
1
1 x

1
2

1 1

11

e1

e2

g1

g2

Fig. 4. Suffix window debugging with initial state suspects

theorem presents an upper bound on the error cardinality to
guarantee the completeness of the approach.

Theorem 1 Let solsN be the solutions returned by debugging
the suffix windowVk

p for error cardinality N . Let solsN+|s|

be the solutions returned by debugging the suffix windowVk
p

with the addition of initial state suspects for error cardinality
N + |s|, where|s| denotes the number of state elements.

If every solution insolsN+|s| does not contain any initial
state suspects, then the solutions found when debugging the
entire error traceVk

0 for error cardinality N will be exactly
solsN .

Proof: From Lemma 1, any debugging solution found for
the suffix Vk

p will be found as a solution to the entire error
traceVk

0 .
We now prove by contradiction that if every solution in

solsN+|s| does not contain any initial state suspects, then any
solution found when debugging the entire error traceVk

0 will
be found inVk

p .
Assume towards a contradiction that, no initial state suspects

are found when the error cardinality isN + |s| and that there
is a satisfying assignment of suspect variablesE that is found
in Debugk

0 but not in Debugk
p . This means thatE contains

a positive assignment to some suspect variables which must
have changed the excitation of the corresponding component
in a cycle prior to the suffixVk

p . To affect an output in thekth

cycle, the component corresponding to the positive assignment
of suspect variables must change the assignment tosp that
differs from the initial state predicateSp for the suffix or else
the instance would be unsatisfiable. However, if it changed
the assignment tosp, an initial state suspect would have been
included in the solutions found when debugging the suffixVk

p

leading to a contradiction. So it must be the case that the
solution would have be found in when debugging the suffix
Vk

p .

Example 2 A suffix debugging instance derived from Exam-
ple 1 is shown in Figure 4. The suffix,V1

1 , is used to produce
a suffix debugging instanceDebug1

1 with N = 2 and an
initial state suspecteinitial. A satisfying solution consists of
activating the suspect variables{einitial, e2}. According to
Theorem 1, the results are not guaranteed to be complete and
the suffix must be expanded.

6

B. Performance Improvements

This section introduces two performance enhancements. The
first relates to the error cardinality while the second one
involves pruning the solution space. Since the difficulty of
the debugging problem grows exponentially with the error
cardinality as shown in Equation 2, it is important to reducethe
size of this parameter. We can alleviate some of the complexity
introduced by Theorem 1 by using a common initial state
suspect variable for all of the initial state variables. In this
way, we do not distinguish between different state variables.
This reduces the error cardinality of the window expansion
method as stated in the next corollary.

Corollary 1 Let solsN be the solutions returned when debug-
ging a suffix windowVk

p for error cardinality N . Let solsN+1

be the solutions returned by debugging the suffix windowVk
p

with the addition of a common initial state suspect for error
cardinality N + 1. If every solution insolsN+1 does not
contain the initial state suspect, then the solutions foundwhen
debugging the entire error traceVk

0 for error cardinality N
will be exactlysolsN .

Proof: This follows directly from Theorem 1, where
instead of multiple initial state suspect variables, you have
one that corresponds to the entire set of initial state variables.

The second performance enhancement uses Lemma 1 to
reduce the problem size in later iterations by re-using results.
During each iteration the debugger will find suspects for a
given suffix. Lemma 1 states that every suspect found (except
initial state suspects) is a suspect for the entire trace. This
means that in future iterations we can safely ignore these
suspects and reduce the search space.

C. Overall Algorithm

Algorithm 1 presents pseudo-code for the overall window
expansion algorithm. The algorithm works by incrementally
solving larger debugging instances by expanding the suffix
window using the parameterstride, which can be chosen
based on the design size to provide a trade-off between number
of iterations and system resources. Initially, the algorithm
uses the suffix window from clock cyclek − stride to
k − 1. The BMD iterations are executed by the while loop
on line 5 to line 14 where successive debugging problems
are constructed with longer suffixes. On line 6 the suffix
window debugging instance is created and solved. Once the
solutions are removed and the initial state suspect is addedas
a potential error location, a new debugging instance is created
with error cardinality set toN + 1 on line 9. If this does
not yield solutions that include the initial state suspect the
algorithm exits with complete results as stated in Corollary 1.
Otherwise, the algorithm removes the initial state suspectfrom
consideration for the next iteration of the loop and expandsthe
suffix window bystride.

Algorithm 1 BMD with Window Expansion
1: stride := expansion rate of algorithm
2: procedure BMD EXPANSION(stride)
3: e := set of potential suspect variables
4: sols ← ∅, p ← (k − stride)
5: while p >= 0 do
6: solsN ← solsN∪ SOLVEALL(Debugk−1

p (N, e))
7: e ← e − solsN

8: e ← e ∪ einitial

9: solsN+1 ← SOLVEALL(Debugk−1
p (N + 1, e))

10: if einitial /∈ sol for all sol ∈ solsN+1 then
11: return solsN

12: end if
13: e ← e − einitial, p ← p − stride
14: end while
15: return solsN

16: end procedure

V. BOUNDED MODEL DEBUGGING WITH WINDOW

PARTITIONING

BMD with window partitioning extends the results of the
previous section to provide an attractive trade-off between
performance and resolution for hard-to-debug problem in-
stances. It does this by dividing the error trace into multiple
non-overlapping bounded windows, iteratively analyzing each
window separately. Each iteration directly models the current
window and usesinterpolantsgenerated from previously ana-
lyzed windows to over-approximate the unmodelled suffix and
examine a “sliding window” of clock cycles from the error
trace.

The key idea is demonstrated in Figure 5 where it shows
an unrolled circuit fork + 1 time-frames. The error trace is
partitioned into multiple fixed sized windows that are analyzed
separately. In the first iteration, a standard suffix window of
the error trace is used. If complete results are not guaranteed,
the next non-overlapping window is then examined. However,
in these subsequent iterations Equations 3 cannot be directly
applied to the current partition because it does not model the
erroneous behavior leading up to the observed failure. To solve
this problem, an interpolant (P k

i+2 in Figure 5) is generated
from previously solved iterations to over-approximate the
unmodelled suffix to ensure the erroneous behavior is properly
constrained. By only directly modelling a bounded window of
the error trace in each iteration, a drastic reduction in run-
time and memory is achieved at the cost of a potential loss in
resolution. This window partitioning methodology is described
in detail in the following subsections.

A. UNSAT Cores and Suffix Window Debugging

When debugging a suffix window, we can gain valuable
information about suspects as stated by Lemma 1. However,
there is also valuable information about the debugging problem
in the resulting UNSAT core of a suffix debugging instance
after all the solutions have been found. The intuition behind
this idea is that if an UNSAT core exists in a suffix debugging
instance that does not involve initial state variables, then it

7

kk − 11 i i + 1

i i + 1

iteration1iteration⌈k/step⌉ iteration⌈(k − i)/step⌉

P k
i+2

0

Interpolant

Fig. 5. BMD window partitioning

must exist in the entire debugging instance. This implies
that the complete set of solutions have been found in the
suffix debugging instance. The following theorem describes
this property in more detail.

Theorem 2 LetU be an UNSAT core generated after blocking
all satisfying assignments to solutions forDebugk

p . If U ∩
Sp = ∅ then the suspects found inDebugk

p will be exactly the
suspects found in the entire debugging instanceDebugk

0 .

Proof: From Lemma 1, any solution found inDebugk
p

is a solution found in the entire debugging instanceDebugk
0 .

Now we prove by contradiction that any suspect found in
Debugk

0 will ALSO be found in Debugk
p if U ∩ Sp = ∅.

Assume towards a contradiction thatE is an assignment to the
suspect variables such thatDebugk

0 ∧E is SAT andDebugk
p ∧

E is UNSAT. And let U be the UNSAT core derived after
blocking all solutions to suspects forDebugk

p , which contains
no clauses inSp.

Since Debugk
p ∧ E is UNSAT, E is not blocked by any

of the blocked solutions (denoted byblocked solutionsk
p) to

Debugk
p . This means thatDebugk

0 ∧E ∧ blocked solutionsk
p

is satisfiable. However we know that in terms of clauses,
U ⊆ (Debugk

p ∧ blocked solutionsk
p − Sp) ⊆ Debugk

0 ∧
blocked solutionsk

p, since U does not contain any clauses
from Sp. However, if Debugk

0 ∧ blocked solutionsk
p ∧ E is

satisfiable, thenU ∧ E is satisfiable. ButU is an UNSAT
core, which is a contradiction. So it must be the case that
Debugk

p ∧ E is SAT.
Theorem 2 gives a condition to decide if debugging the

current suffix window gives complete results. Notice that this
argument does not depend on the error cardinality since both
instances have the same cardinality. However in a similar man-
ner to Theorem 1, if the UNSAT core contains state variables,
to achieve complete results the prefix of the error trace must
be analyzed. This is shown in the following example that
illustrates a case where Theorem 2 cannot be applied.

Example 3 A suffix debugging instance derived from Exam-
ple 1 is shown in Figure 6. The suffix,V1

1 , is used to produce
a suffix debugging instanceDebug1

1 with N = 1. The clauses
for the suffix debugging instance are shown to the right of the
circuit diagram. This instance is unsatisfiable. The following
is an UNSAT core from the instance:

(x1
2)(y

1
1)(y1

2)(s1
0)(e1 + e2)(x1

2 + y1
2 + e2)(s

1
0 + y1

1 + e1)

y
1
2y

1
1

x
1
2x

1
1

1 1

0 s
1
0

e1

e2

g1

1 1

(s1
0)(x

1
1)(x

1
2)(y

1
1)(y

1
2)

(s1
0 + y

1
1 + e1)(x

1
1 + y

1
1 + e1)

(s1
0 + x

1
1 + y

1
1 + e1)

(x1
2 + y

1
2 + e2)(x1

2 + y
1
2 + e2)

(e1 + e2)(e1 + e2)

g2

Fig. 6. UNSAT core from suffix window debugging

Using Theorem 2, we know thatDebug1
1 does not result in the

complete set of suspects toDebug1
0 because the UNSAT core

contains the clauses1
0 ⊆ S1, so the prefix of the error trace

still needs to be analyzed.

B. Prefix Window Debugging

Debugging a prefix window of an error trace requires
additional consideration. Since the failure occurs in the last
time-frame, modelling a prefix of the error trace according
to Equation 3 will result in a trivially satisfiable instance
since all the primary outputs will match the expected outputs
in the error trace. To ensure that the observed erroneous
behavior in the last time-frame constrains the prefix debugging
instance properly, the prefix debugging instance is formulated
in two parts. The first part uses the conventional SAT-based
formulation (Equation 3) using a prefix of the error trace and
the second part uses an interpolant approximating time-frames
for the corresponding suffix of the error trace.

For a suffix debugging instance, an interpolant can be
generated by partitioning the clauses into two subsetsA and
B as follows:

A =

k
∧

i=p

Xi ∧ Y i ∧ Ten(si, si+1, xi, yi, e)

B =Sp ∧ ΦN (e) ∧ blocked solutions (4)

Intuitively, A represents the enhanced transition relation as
well as the primary input and output values for each time-
frame of the suffix window. SubsetB represents the initial
state predicate, cardinality constraint and blocked solutions.
The common variables are exactly the initial state and suspect
variables. Using this partition an interpolantP k

p can be gener-
ated from the resolution graph using the algorithm from [30].

The interpolant can be interpreted as an over-approximation
of the suffix debugging instance that retains the cause of
unsatisfiability i.e. the observed failure. It captures how the
observed failure relates to the state and suspect variables. The
benefit of usingP k

p is that, in most cases, the interpolant will
be significantly smaller than explicitly modelling the time-
frames. In cases where it is larger, the time-frames can be
used directly, bounding the size of the problem. However,
experimental results confirm that the interpolant is smaller than
explicitly modelling the circuit.

Example 4 Figure 7 shows the resulting resolution graph on
the left and interpolant on the right from the UNSAT core in

8

s
1
0

(x1
2) (x1

2 + y
1
2 + e2)

(y1
2 + e2) (y1

2)

(e2)(e1 + e2)

(e1) (s1
0 + y

1
1 + e1)

(y1
1)

(s1
0)

()

1

1

(s1
0)

0

(s1
0 + y

1
1)

e11

0

0e2

Fig. 7. Resolution graph and interpolant

Example 3. Notice how many of the root nodes of the resolution
graph generate constants values in the interpolant. This isa
common occurrence and generally leads to a small interpolant
relative to the UNSAT core that it was derived from.

By combining the interpolant with Equation 3, we can
now construct a prefix debugging instance that only requires
explicitly modelling the prefix window of the error trace. The
interpolant will constrain the final states and suspect variables
of the modelled prefix window implicitly constraining the
failure. The prefix debugging instance constrained with the
interpolant,DebugItpp−1

0 , can be written as follows:

DebugItpp−1
0 = Debugp−1

0 ∧ P k
p (5)

DebugItpp−1
0 will be UNSAT when no suspect variables are

active becauseDebugp−1
0 will be equivalent to simulating the

design for clock cycles0 to p− 1 and will implicitly generate
the initial state predicateSp which is known to be UNSAT
with P k

p .
The next example builds from previous ones to show how a

prefix debugging instance can be created. However, note this
example does not show the benefit of using interpolants to
reduce the size of the problem due to its simplicity.

Example 5 Figure 8 shows how the interpolant generated in
Example 4 can be used to debug a prefix of an error trace.
Notice that the interpolant is significantly smaller than the
resolution graph once the constants propagate through the
gates. In Figure 8, activating suspect variablee2 leads to the
only satisfying assignment. This is consistent with the solution
found in Example 1.

Since P k
p is an over-approximation of the suffix,

s
1
0

e1

e2
1

x
0
2

11

x
0
1

s
0
0

y
0
2y

0
1

0

e1

e2

g1

g2

Fig. 8. Prefix window debugging with an interpolant

DebugItpp−1
0 will not miss any solutions compared to de-

bugging the entire error trace as stated in the next theorem.

Theorem 3 Any suspect found inDebugk
0 will be found in

DebugItpp−1
0 .

Proof: By definition, Debugk
0 = Debugp−1

0 ∧ A, where
A is defined in Equation 4. So any satisfying assignment to
Debugk

0 will satisfy Debugp−1
0 and A. But A → P k

p , so it
also satisfiesP k

p satisfyingDebugItpp−1
0 .

Theorem 3 guarantees that solving the prefix debugging
instance will not miss any suspects, however it may be the
case that extra solutions will be returned that will not be found
when debugging the entire error trace. This is due toP k

p being
an over-approximation of the suffix which may not constrain
the prefix as strongly as explicitly modelling time-framesp
to k directly. However, the relative increase in the number of
extra solutions is usually small as seen in the experimental
results.

C. Overall Algorithm

By using the ideas of suffix and prefix debugging, it is
possible to further divide the debugging problem into smaller
windows that model a user-defined number of time-frames.
Algorithm 2 presents pseudo-code for a scalable debugging
algorithm that divides an error trace of lengthk into ⌈k/step⌉
windows, wherestep is a user-defined parameter that specifies
the maximum number of simultaneous time-frames to be
directly modelled. This parameter can be chosen based on the
design size to balance the number of iterations and system
resources.

The algorithm iteratively analyzes windows of the error
trace, starting with a suffix (lines 5-15). In each iteration, it
begins by analyzing the current window of the error trace and
finds all suspects shown on line 8. It then generates an UNSAT
core and checks if it contains initial state variables. If itdoes
not, it returns the current set of suspects (lines 9-12) and allows
for an early exit with complete results (Theorem 2). If an early
exit is not taken, it generates an interpolant from the UNSAT
core. Finally, it prunes the search space by removing suspects
found in this iteration.

Algorithm 2 provides a complete method to analyze long
error traces that would not otherwise be possible with other
techniques. However, there is a trade-off between thestep
parameter and the final resolution. Each successive interpolant
generated will potentially be a weaker constraint than the pre-
vious one. By settingstep to a small value, too many solutions
can be returned. One way to cope with this is to provide a
ranking of the solutions to the user so they can concentrate
their effort on the most likely solutions. Algorithm 2 implicitly
gives a useful ranking of solutions. More confidence can be
given to solutions found in earlier iterations because a stronger
constraint is used for the approximation of the suffix. In the
case of the first iteration, all solutions found in the suffix will
be found when debugging the entire error trace, as stated in
Lemma 1.

9

Algorithm 2 BMD with Window Partitioning
1: step := maximum number of time-frames
2: procedure BMD PARTITION(step)
3: e := set of potential suspect variables
4: sols ← ∅, P ← 1

5: while k > 0 do
6: p ← max(k − step, 0)
7: inst ← Debugk−1

p (N, e) ∧ P
8: sols ← sols ∪ SOLVEALL(inst)
9: U ← EXTRACTUNSATCORE(inst, sols)

10: if U ∩ Sp = ∅ then
11: return sols
12: end if
13: P ← GENERATEINTERPOLANT(U)
14: e ← e - sols, k ← k - step
15: end while
16: return sols
17: end procedure

VI. A U NIFIED BMD M ETHODOLOGY

This section provides a discussion on the benefits, trade-
offs, and application of the window expansion and window
partitioning techniques under a unified BMD methodology.
It begins by analyzing each technique and describes the
situations in which they are appropriate. This is followed by a
discussion of a unified BMD methodology that leverages the
strengths of both techniques.

The window expansion technique incrementally formulates
the debugging problem by examining suffix windows of in-
creasing size allowing for incremental user feedback. It isa
complete method that provides significant benefit in terms of
memory and run-time especially in earlier iterations when the
suffix window is small. In later iterations where the suffix
window is large, this benefit is reduced and in the worst case
can degenerate to analyzing the full error trace which may
require excessive resources.

The window partitioning technique on the other hand,
divides the error trace up into non-overlapping partitions
and separately examines each partition using interpolantsto
approximate the unmodelled suffix. It provides the ability to
fully analyze long error traces because each partition is much
smaller than the full error trace. However, due to the use of
the interpolant as an over-approximation this technique may
result in a loss of resolution causing too many suspects to be
returned.

Both these techniques should be used in situations that
leverage their strengths. Window expansion is best utilized as
the default methodology for an automated design debugging
flow because it provides complete results for each suffix
it analyzes. Since many real-world errors are likely to be
close to their failure points, this methodology will find many
errors quickly with good resolution. In cases where window
expansion exceeds the system resources, the only alternative
is to use the window partitioning technique to analyze long
error traces and find “deep” bugs even though there might be
some potential loss in resolution. Using these two guidelines,

the next section develops a unified BMD methodology that
leverages the strengths of both techniques.

A. Overall Algorithm

By combining the window expansion and window partition-
ing techniques, a unified methodology can be developed that
provides a more favourable trade-off compared to using the
techniques separately.

The unified methodology begins by dividing the error trace
into partitions using the window partitioning technique. For
each partition, instead of using Equation 3 directly on the par-
tition, it uses the window expansion technique to incrementally
solve each one of them. Using both BMD techniques together
provides a more flexible trade-off between resolution and
resources. It addresses the two major challenges with usingthe
BMD techniques in isolation. It addresses the first challenge
by using the window partitioning technique to overcome the
resource limitation of the window expansion technique. The
second challenge is addressed by providing an incremental
window expansion formulation to find an exact set of solutions
for each partition.

The guidelines for the unified methodology are similar
to the guidelines for the individual BMD techniques. The
partition sizes should be as large as possible to ensure that
the over-approximation does not return too many solutions.
The window expansion technique is utilized on each partition
to provide quick incremental results back to the user. In this
situation, the number of times the interpolant is used as an
approximation is minimized so that the resolution does not
suffer, while the window expansion technique still provides the
benefit of an incremental formulation for each large partition.

Algorithm 3 presents pseudo-code for the unified BMD
algorithm combining both window expansion and window
partitioning. The algorithm is passed two parameters,step
andstride, that control the expansion rate and the maximum
number of time-frames for each partition. Each iteration
of the loop on line 6 examines a window of time-frames
corresponding to each partition. This process is similar to
Algorithm 2. The difference lies on line 8 where BMD with
window expansion runs on the current partition instead of
directly solving Equation 3. By using the window expansion
algorithm, each partition is solved incrementally gainingthe
benefit of both the window partitioning and window expansion
algorithms.

VII. E XPERIMENTS

In this section, we present experimental results for the
proposed BMD methodology. All experiments are run on a
single core of a Core 2 Quad 2.66 Ghz machine with 8GB of
memory with a timeout of 3600 seconds. The debugger used
is a C++ sequential SAT-based engine based on [15] with a
Verilog frontend to allow for RTL-based diagnosis. MINI SAT-
V1.14 [32] is used to solve all the SAT instances as well as
generate the proofs of unsatisfiability.

The effectiveness of the proposed techniques are shown on
industrial Verilog RTL designs from OpenCores [22] as well
as two commercial designs in production (fxu, rx_comm)

10

Algorithm 3 Unified BMD Algorithm
1: step := maximum number of time-frames
2: stride := expansion rate of algorithm
3: procedure UNIFIED BMD(step, stride)
4: e := set of potential suspect variables
5: sols ← ∅, P ← 1

6: while k > 0 do
7: p ← max(k − step, 0)
8: sols ← sols ∪ BMD EXPANSIONk−1

p (stride)
9: P ← GENERATEINTERPOLANT(U)

10: e ← e - sols
11: end while
12: return sols
13: end procedure

TABLE I
DESIGN CHARACTERISTICS

Design Name # gates # DFFs total #
suspects

ac97 25314 2346 1092
div64bits 75111 5512 143
fdct 377849 5717 4658
fpu 81303 715 939
fxu 602713 29080 33088
mem ctrl 46425 1145 2451
rsdecoder 11380 521 1623
rx comm 586695 30339 15840
spi 2103 132 223
vga 153536 17055 1337
wb 3617 90 407

provided to the authors by semiconductor firms. Table I
presents the design statistics. The four columns show the
design name, number of total gates, number of flip flops and
the total number of potential error locations.

Each debug instance is generated by randomly selecting an
RTL line and inserting a typical industrial RTL error such asa
wrong state transition, incorrect operator or incorrect module
instantiation that is detected by the corresponding design
testbench. The error trace is recorded from the simulation of
the erroneous design with its testbench and suspects returned
correspond to an error location in the RTL. It is important to
emphasize that each RTL suspect may correspond to dozens
of error locations in a gate-level formulation of the debugging
problem. Effectively, multiple gate-level errors are implicitly
detected using this setup.

A. BMD with Window Expansion

The experimental results for the proposed window expan-
sion technique are presented in Table II. For each design in
Table I, an instance is created by inserting an error into the
design. Instances are named by appending a number after the
design name to indicate which error is inserted. The first two
columns of the table show the instance name and the number
of clock cycles in the entire error trace. Each row of the table
corresponds to an instance that is run using both a stand-alone
debugger and the window expansion technique.

The next four columns of the table show the results of
running the stand-alone SAT-based debugger using the entire
error trace. Columns 3-6 represent the run-time in seconds,

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35

so

lu
tio

ns
 fo

un
d

iterations

ac97_ctrl1
fdct2
fpu4
spi1

rsdecoder2
vga2

Fig. 9. # solutions vs. window expansion iterations

peak memory in MB, the number of solutions found as
well as if the actual error inserted is found, respectively.
Terms TO (MEMOUT) refers to a time-out (memory-out)
being declared. For time-out conditions, partial results are
listed in the table. For memory-out conditions, results for
fully completed iterations are listed, however iterationsthat
caused a memory-out are not counted since the CNF cannot
be generated to obtain the results.

Finally, the last five columns of Table II show the results
of the proposed window expansion technique. Algorithm 1
is implemented and run withstride = 10 until either the
algorithm terminates or a time-out or memory-out is declared.
A stride of 10 is chosen so that each iteration of the
window expansion would grow incrementally as to not cause
an immediate memory-out. Columns 7-11 show the run-time
in seconds, peak memory in MB, number of solutions returned,
number of iterations run, and the iteration the actual erroris
found, respectively. A value of0 in the last column translates
to the error not being found by the algorithm.

The benefits of the window expansion technique are clear
from the number of instances where it returns the error
compared to a stand-alone debugger. Window expansion is
able to find the actual error in22 of the 28 instances whereas
the stand-alone debugger is only able to find it in6 cases
due to 20 of the instances being declared with a memory-
out due to excessive unrolling of the time-frames. This shows
the value of incrementally formulating the debugging problem
using window expansion so that the memory resources are not
exhausted as in the case of just the stand-alone debugger.

This incremental formulation also allows the use of ini-
tial state suspects which are effective in8 instances where
complete results are declared before the entire error traceis
analyzed. Moreover, in many of these instances, the actual
error is found in the first iteration. This suggests that the
empirical observation described in Section III is valid.

Figure 9 shows a better picture of how the excitation point
of the error varies with the distance from the failure. The
figure plots the number of solutions returned by window ex-
pansion against the number of iterations. Notice that aftersome
point, the number of solutions returned by window expansion
plateaus indicating that analyzing more of the error trace does
not yield more suspects. For example,fpu4 plateaus at25
solutions in the fourth iteration andspi1 plateaus at27 in the
twentieth iteration. This gives further evidence to confirmour
empirical observation from Section III that errors are generally
excited in close temporal proximity to their failure point.

11

TABLE II
BMD WITH WINDOW EXPANSION RESULTS

Instance Info Stand-alone debugger BMD with Window Expansion
instance # cycles time (s) mem (MB) # sols found time (s) mem (MB) # sols # iters iter found

ac971 680 663 5557 34 yes TO 3250 24 34 1
ac972 986 N/A MEMOUT 0 no TO 2621 41 30 30
div64bits1 110 TO 4614 0 no TO 1783 30 4 2
div64bits2 110 TO 4299 0 no TO 1468 18 4 2
fdct1 184 N/A MEMOUT 0 no TO 3985 41 3 2
fdct2 180 N/A MEMOUT 0 no TO 4194 37 4 1
fpu1 312 N/A MEMOUT 0 no TO 6291 15 15 1
fpu2 312 N/A MEMOUT 0 no 31 557 4 1 1
fpu3 312 N/A MEMOUT 0 no TO 7025 8 17 4
fpu4 642 N/A MEMOUT 0 no TO 5872 30 14 1
fxu1 28 N/A MEMOUT 0 no N/A MEMOUT 30 1 0
fxu2 28 N/A MEMOUT 0 no 590 7655 24 1 1
fxu3 28 N/A MEMOUT 0 no TO 7550 40 1 1
mem ctrl1 757 N/A MEMOUT 0 no 27 409 11 1 1
mem ctrl2 681 N/A MEMOUT 0 no 26 437 5 1 1
rsdecoder1 115 TO 1153 138 yes TO 644 141 4 0
rsdecoder2 196 2557 1783 53 yes TO 1258 53 12 1
rx comm1 253 N/A MEMOUT 0 no TO 4194 18 1 0
rx comm2 156 N/A MEMOUT 0 no TO 4194 17 1 0
rx comm3 99 N/A MEMOUT 0 no TO 4089 15 1 0
rx comm4 195 N/A MEMOUT 0 no TO 7235 44 2 0
spi1 578 103 811 27 yes TO 790 27 58 20
vga1 94 N/A MEMOUT 0 no 103 1783 8 1 1
vga2 507 N/A MEMOUT 0 no 1744 6291 29 5 3
vga3 861 N/A MEMOUT 0 no TO 7332 25 8 1
vga4 561 N/A MEMOUT 0 no TO 7961 30 8 4
wb1 132 5 221 7 yes 3 86 7 1 1
wb2 132 5 183 4 yes 2 83 4 1 1

B. BMD with Window Partitioning

The experimental results for the window partitioning tech-
nique are shown in Table III. Algorithm 2 is implemented and
run with a fixed number of iterations (r = ⌈k/step⌉) for each
instance. As in Table II, each row corresponds to an instance
of the designs in Table I with different values ofr. The same
notation for time-out and memory-out are also used. Again,
partial results are available for the time-out case and in the
memory-out case for iterations that fully complete.

The first column of Table III indicates the instance name.
These are the same instances from Table II so the results are
comparable. The rest of the columns are divided into three sets
of experiments withr set to2, 5 and10 respectively. Columns
2-5 correspond tor = 2, 6-9 for r = 5 and 10-13 forr = 10.
Each set of experiments shows the run-time in seconds, peak
memory in MB, the number of solutions returned as well as
if the actual error is found.

The benefit of the window partitioning technique is appar-
ent when looking at the number of memory-out conditions
compared with using the entire error trace. The number of
memory-out cases are15, 7 and 3 for r = 2, r = 5 and
r = 10 respectively, compared with20 for the full error trace.
As expected the number of memory-out conditions decrease
with smaller window sizes because the peak memory for the
entire run will be decreased with the use interpolants.

From Table III, for the same instance, different values
of r produce different results with respect to memory-out
conditions. In some cases, larger values ofr memory-out while
smaller ones run successfully. This can be explained because
the size of the interpolant is not necessarily proportionalto
the SAT instance that the proof of unsatisfiability is derived

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
N

um
be

r
of

 S
ol

ut
io

ns
 (

%
)

Number of Partitions

ac971
fdct2
fpu4
spi1

rsdecoder2
vga1

Fig. 10. Relative solutions vs. # partitions

from. This causes the peak memory to grow larger at higher
values ofr. For example,rsdecoder1 shows a case where
at r = 10 a memory-out condition with peak memory greater
than 8000 MB but r = 2 uses only727 MB and r = 5
uses3041 MB. However, the average memory reduction for
r = 2, r = 5, andr = 10 is 19%, 41% and49% respectively,
compared to debugging the entire error trace, indicating that
the general trend is still a decrease in the peak memory asr
is increased.

A similar occurrence happens for run-time as well. For
example,fpu3 has a time-out atr = 10 while at r = 5
and r = 2 it is able to run to completion. This can be
explained in two ways. First, at larger values ofr there are
more iterations which can potentially increase the run-time
of the technique. Second, the run-time of the SAT instance
is not necessarily proportional to the size of the instance
causing additional discrepancy between the different values of
r. Despite this variability, the reduction in run-time compared
to a conventional debugger is still on average39%, 53% and

12

TABLE III
BMD WITH WINDOW PARTITIONING RESULTS

Instance Info Interpolant, r=2 Interpolant, r=5 Interpolant, r=10
instance time (s) mem (MB) # sols found time (s) mem (MB) # sols found time (s) mem (MB) # sols found

ac971 399 2621 34 yes 177 1016 34 yes 141 554 34 yes
ac972 976 3985 49 yes 390 1573 52 yes 266 1049 67 yes
div64bits1 TO 1992 5 no 452 1049 32 yes 306 1049 47 yes
div64bits2 176 1992 20 yes 194 950 19 yes 279 856 47 yes
fdct1 N/A MEMOUT 0 no TO 4719 32 yes 1238 3251 62 yes
fdct2 N/A MEMOUT 0 no TO 4509 31 yes N/A MEMOUT 61 yes
fpu1 627 6921 16 yes 592 3880 16 yes 758 2412 31 yes
fpu2 275 6501 4 yes 108 2726 4 yes 61 1468 4 yes
fpu3 590 6501 8 yes 2806 3355 60 yes TO 2726 30 yes
fpu4 N/A MEMOUT 0 no TO 5662 41 yes 1831 3355 44 yes
fxu1 N/A MEMOUT 0 no N/A MEMOUT 30 yes TO 7340 30 yes
fxu2 N/A MEMOUT 0 no TO 6711 26 yes TO 6082 31 yes
fxu3 N/A MEMOUT 0 no TO 6187 46 yes TO 5662 46 yes
mem ctrl1 N/A MEMOUT 0 no 486 6082 12 yes 206 2412 12 yes
mem ctrl2 N/A MEMOUT 0 no 180 4194 6 yes 92 2202 6 yes
rsdecoder1 TO 727 80 no TO 3041 383 yes N/A MEMOUT 399 yes
rsdecoder2 1083 1678 65 yes 855 788 73 yes TO 4928 109 yes
rx comm1 N/A MEMOUT 0 no N/A MEMOUT 0 no TO 7979 120 yes
rx comm2 N/A MEMOUT 0 no N/A MEMOUT 0 no TO 5453 128 yes
rx comm3 N/A MEMOUT 0 no TO 7025 119 yes TO 4404 150 yes
rx comm4 N/A MEMOUT 0 no N/A MEMOUT 0 no TO 7550 127 yes
spi1 165 543 36 yes 324 715 82 yes 101 379 84 yes
vga1 490 6187 9 yes 1126 3146 146 yes 1058 2412 160 yes
vga2 N/A MEMOUT 0 no N/A MEMOUT 0 no TO 6921 160 yes
vga3 N/A MEMOUT 0 no N/A MEMOUT 0 no TO 5977 140 yes
vga4 N/A MEMOUT 0 no N/A MEMOUT 0 no N/A MEMOUT 49 yes
wb1 4 131 7 yes 4 78 7 yes 4 88 7 yes
wb2 3 108 4 yes 3 76 4 yes 3 76 4 yes

59% for increasing values ofr indicating that overall smaller
windows still perform better.

The number of solutions returned by the window parti-
tioning technique asr varies for several sample designs is
shown in Figure 10. The solutions are calculated relative to
the total number of potential suspects in the problem which
are listed in Table I. A value of0 indicates the problem
did not return any results due to time-out or memory-out
conditions. In this graph,r = 1 corresponds to the stand-
alone debugger where the entire error trace is used. Notice
that in most cases, the relative increase in suspects asr
increases is relatively small. However, there can exist outliers
such asrsdecoder2. In this instance, the interpolant is a
weak constraint on the partition windows and results in a
large increase in solutions. This outlines the trade-off when
using window partitioning. In cases where the debugging
problem requires excessive resources, the window partitioning
technique effectively reduces the memory and run-time at the
cost of a potential increase in the number of solutions.

C. Unified BMD Methodology

Figure 11 shows a comparison between a stand-alone debug-
ger, window expansion and window partitioning with respect
to number of instances solved. Each instance is categorized
as either able to find the actual suspect, not able to find the
suspect due to time-out, or not able to find the suspect due to
memory-out. Both window expansion and window partitioning
are able to find the error in more instances than a conventional
debugger which is only able to find the actual error in 21%
of the 28 cases. We can also see that the number of instances

where the actual error is found also increases from11 to 22
to 28 for increasing values ofr. This occurs due to the fact
that window partitioning is able to solve instances at larger r
values without triggering a memory-out condition.

When compared to window expansion, window partitioning
is able to find the actual error in 100% of the instances at
r = 10 compared to window expansion finding the actual
error in 79% of the28 instances. While comparing the number
of instances that yield complete results without a time-out
or memory-out condition,r = 10 solves14 instances while
window expansion is only able to successfully complete9
instances. This outlines one of the major benefits of win-
dow partitioning over window expansion showing that using
interpolants can solve more instances while still maintaining
complete results.

Comparing the results from Table II and Table III, the results
show that both window expansion and window partitioning
perform better in most instances than the full error trace
with respect to run-time and peak memory. There are several
outliers for both which occur for relatively small problems
(less than 1000 seconds or 2 GB). This suggests for these
smaller problems running a conventional debugger is sufficient
and the BMD methodology may not be necessary. However for
larger problems (greater 1000 seconds or 2 GB), the advantage
of using BMD is clear as more instances are solved and
dramatic reductions in run-time and peak memory are attained.

Table IV shows a separate set of experiments comparing
the window expansion and window partitioning technique to
determine the effect of the over-approximation of the window
partitioning technique. Instances that are able to complete
more than 10 iterations (100 time-frames) within the given

13

 0

 5

 10

 15

 20

 25

Orig Expansion Partitioning
(r=2)

Partitioning
(r=5)

Partitioning
(r=10)

In
st

an
ce

s

Method

MEMOUT
Not Found
Found

Fig. 11. Solved instances

TABLE IV
COMPARISON OFWINDOW EXPANSION AND WINDOW PARTITIONING

WITH 100 TIME-FRAMES

Instance Info Window Expansion Window Partitioning
(stride=50) (r=2)

instance time mem # time mem #
(s) (MB) sols (s) (MB) sols

ac971 42.15 753 10 26.48 425 10
ac972 44.7 759 7 29.18 429 7
fpu1 320.04 4299 13 199.36 2202 15
fpu3 275.66 4194 8 127.87 2411 8
fpu4 417.35 4299 24 258.32 2307 30
rsdecoder2 168.77 773 52 146.92 586 56
spi1 11.39 150 10 10.26 101 26

time and memory limit are chosen for Table II. Each instance
is modified so that the suffix of the error trace uses at most100
time-frames. A stride of50 is used for the window expansion
technique andr = 2 for the window partitioning technique.

There is a small increase in the number of solutions across
most instances such asac971 andfpu4. However in certain
cases such asspi1, the increase in the number of solutions
can be much larger (10 vs. 26) resulting in a great decrease in
resolution. From the discussion in Section VI, this confirms
the methodology of favouring the window expansion technique
over the window partitioning technique because although on
average the over-approximation may not cause a great decrease
in resolution, there are certain cases in which there can be a
large discrepancy. Since it is not known beforehand whether
the specific instance is one of these cases, it is generally
safer to use the window expansion technique if run-time and
memory resources allow it.

Table V shows experiments run using the unified methodol-
ogy. The hardest instances from Table III that cause a memory-
out but are able to finish at least one iteration are used in these
experiments. The columns of the table list the instance name,
run-time, memory, number of solutions, additional solutions
over Table III and if the actual error is found. The number of
partitions (r = ⌈k/step⌉) are listed beside the instance name
and thestride used is half of the correspondingstep value.

Benchmarksfdct2, fxu1 and rsdecoder1 all return
more solutions than just using window partitioning alone. For
instance,fxu1 returned57 solutions with the unified method-
ology compared with only30 using window partitioning alone.
The additional solutions that the algorithm is able to find are
due to the fact that the window partitioning algorithm causes
a memory-out during one of the iterations while the unified
methodology did not. The memory-out condition is caused

TABLE V
UNIFIED ALGORITHM RESULTS

instance time mem # extra found
(s) (MB) sols sols

fdct2 (r = 10) TO 6920 62 1 yes
fxu1 (r = 5) TO 7444 57 27 yes
rsdecoder1 (r = 10) N/A MEMOUT 404 5 yes
vga4 (r = 10) TO 7759 48 -1 yes

in the window partitioning experiments because the unrolled
design with the interpolant is too large. However, in the case
of the unified methodology the design is unrolled for fewer
frames resulting in the ability to analyze more of the error
trace. In the case ofvga4 however, fewer solutions are found
because of the unified methodology took longer to run due
to the increase in the number of iterations. Considering a
longer time-outvga4 would have found the same number of
solutions before the memory-out condition because it occurred
during the calculation of the interpolant which would be
identical for both instances.

VIII. C ONCLUSION

Debugging today is a predominantly manual process that
has become a bottleneck in the long and costly verification
cycle. This work introduces the Bounded Model Debugging
methodology to help conventional debuggers handle instances
with long error traces. The first BMD technique is based on
the empirical observation that the error is more likely to be
excited within close temporal proximity to the failure point.
It iteratively analyzes larger and larger bounded windows of
the error trace until results are known to be complete. A
second technique is also described in which the error trace
is partitioned into non-overlapping windows each of which
is separately analyzed. A set of comprehensive theoretical
results are presented to guarantee the completeness of both
approaches as well as an in-depth discussion of the two
techniques. Based on those results, a unified methodology is
later developed that leverages the strengths of both techniques.
A set of extensive experiments on industrial designs show
that the proposed framework finds the actual error in more
than 79% of cases with the first BMD technique and 100% of
cases with the second technique and only 21% of the cases
without the BMD methodology. The proposed methodology
allows large debugging problems with very long traces to be
solved efficiently in terms of peak memory and run-time. The
work presented here benefits existing debuggers as it allows
them to handle real-life industrial problems.

IX. A CKNOWLEDGMENT

The authors would like to acknowledge the fundamental
contribution of Prof. Farid Najm in the development of the
probabilistic analysis in Section III.

REFERENCES

[1] D. McGrath, “De Geus touts new products, says ICs will rebound,” EE
Times, March 2009.

[2] International Technology Roadmap for Semiconductors, “ITRS 2007,”
http://www.itrs.net, 2009.

14

[3] E. Clarke, O. Grumberg, and D. Peled,Model Checking. MIT Press,
1999.

[4] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu,“Bounded
model checking,”Advances in Computers, vol. 58, pp. 118–149, 2003.

[5] H. Foster, A. Krolnik, and D. Lacey,Assertion-Based Design. Kluwer
Academic Publishers, 2003.

[6] R. Bryant, “Binary decision diagrams and beyond: Enabling techniques
for formal verification,” in Int’l Conf. on CAD, 1995, pp. 236–243.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,“Chaff:
Engineering an efficient SAT solver,” inDesign Automation Conf., 2001,
pp. 530–535.

[8] A. Biere, “Resolve and expand,” inInt’l Conf. on Theory and Applica-
tions of Satisfiability Testing, 2004, pp. 238–246.

[9] H. Konuk and T. Larrabee, “Explorations of sequential ATPG using
Boolean satisfiability,” inIEEE VLSI Test Symp., 1993, pp. 85–90.

[10] M. K. Ganai, A. Gupta, and P. Ashar, “Efficient SAT-basedunbounded
symbolic model checking using circuit cofactoring,” inInt’l Conf. on
CAD, 2004, pp. 510–517.

[11] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,
“Scalable automated verification via expert-system guided transforma-
tions,” in Formal Methods in CAD, 2004, pp. 159–173.

[12] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for
system-level to RTL equivalence checking,” inDesign, Automation and
Test in Europe, 2009.

[13] H. Foster, “Assertion-based verification: Industry myths to realities
(invited tutorial),” in Computer Aided Verification, 2008, pp. 5–10.

[14] K.-H. Chang, V. Bertacco, and I. L. Markov, “Simulation-based bug
trace minimization with BMC-based refinement,” inICCAD, 2005, pp.
1045–1051.

[15] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,”IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[16] S.Safarpour, M.Liffton, H.Mangassarian, A.Veneris,and K.A.Sakallah,
“Improved design debugging using maximum satisfiability,” inFormal
Methods in CAD, 2007.

[17] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,”IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 27, no. 6, pp. 1138–1149, 2008.

[18] N. K. Jha and S. Gupta,Testing of Digital Systems. Cambridge
University Press, 2002.

[19] H. Mangassarian, A.Veneris, S.Safarpour, M.Benedetti, and D.Smith, “A
performance-driven QBF-based on iterative logic array representation
with applications to verification, debug and test,” inInt’l Conf. on CAD,
2007.

[20] S. Safarpour, A. Veneris, and F. Najm, “Managing verification error
traces with bounded model debugging,” inASP Design Automation
Conf., 2010.

[21] B. Keng and A. Veneris, “Scaling VLSI design debugging with interpo-
lation,” in Formal Methods in CAD, 2009.

[22] OpenCores.org, “http://www.opencores.org,” 2007.
[23] S. Huang and K. Cheng,Formal Equivalence Checking and Design

Debugging. Kluwer Academic Publisher, 1998.
[24] A. Suelflow, G. Fey, R. Bloem, and R. Drechsler, “Using unsatisfiable

cores to debug multiple design errors,” inGreat Lakes Symp. VLSI, 2008.
[25] F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang, “Backspace:

Formal analysis for post-silicon debug,” inFormal Methods in CAD,
2008, pp. 1–10.

[26] O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. Fujita, “A formal
approach for debugging arithmetic circuits,” inIEEE Trans. on CAD,
vol. 28, no. 5, May 2009, pp. 742–754.

[27] M. Davis, G. Logemann, and D. Loveland, “A machine programfor
theorem proving,”Comm. of the ACM, vol. 5, pp. 394–397, 1962.

[28] L. Zhang, “Searching for truth: Techniques for satisfiability of Boolean
formulas,” Ph.D. dissertation, Princeton, 2003.

[29] W. Craig, “Linear reasoning. a new form of the herbrand-gentzen
theorem,”J. Symb. Log., vol. 22, no. 3, pp. 250–268, 1957.

[30] K. McMillan, “Interpolation and SAT-based model checking,” in Com-
puter Aided Verification, 2003.

[31] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable
don’t-care-based logic optimization and resynthesis,” inProceeding of
the ACM/SIGDA international symposium on Field programmable gate
arrays, 2009, pp. 151–160.

[32] N. Éen and N. S̈orensson, “An extensible SAT-solver,” inInt’l Conf. on
Theory and Applications of Satisfiability Testing, 2003, pp. 502–518.

PLACE
PHOTO
HERE

Brian Keng received the B.A.Sc. degree in com-
puter engineering from the University of Waterloo
and the M.A.Sc. degree in computer engineering
from the University of Toronto.

He is currently a Ph.D. student at the University
of Toronto in the Department of Electrical and Com-
puter Engineering. His research interests are in CAD
for design debugging, test and verification of digital
circuits and systems. In particular, he is interested
in topics relating to the theory and application of
formal methods.

PLACE
PHOTO
HERE

Sean Safarpour received the B.A.Sc. degree in
computer engineering from the University of British
Columbia, the M.A.Sc. and Ph.D. degrees in com-
puter engineering from the University of Toronto.

He is currently chief technology officer at Vennsa
Technologies, Toronto, Ontario, Canada, where he
is in charge of research and development. He is the
author of dozens of conference and journal publi-
cations and one book on automated debugging. His
research interests include design debugging, formal
verification techniques and formal engines such as

SAT, QBF and SMT solvers.

PLACE
PHOTO
HERE

Andreas Veneris received a Diploma in Computer
Engineering and Informatics from the University of
Patras in 1991, an M.S. degree in Computer Science
from the University of Southern California, Los
Angeles in 1992 and a Ph.D. degree in Computer
Science from the University of Illinois at Urbana-
Champaign in 1998. In 1998 he was a visiting
faculty at the University of Illinois until 1999 when
he joined the Department of Electrical and Computer
Engineering and the Department of Computer Sci-
ence at the University of Toronto where today he is

an Associate Professor. His research interests include CADfor debugging,
verification, synthesis and test of digital circuits/systems, and combinatorics.
He has received several teaching awards and a best paper award. He is the
author of one book and he holds three patents.

He is a member of ACM, IEEE, AAAS, Technical Chamber of Greece,
Professionals Engineers of Ontario and The Planetary Society.

