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Abstract—Design debugging is a major bottleneck in modern ~ Property and equivalence checkers [3], [4], assertiomrdbas
VLSI design flows as both the design size and the length verification and functional coverage tools [5], and recent
of the error trace contribute to its inherent complexity. With advances in powerful solving engines such as Binary Detisio

typical design blocks exceeding half a million synthesized logic . P -
gates and error traces in the thousands of clock cycles, the Diagrams (BDD), Boolean satisfiability (SAT), and Satisfiab

complexity of the debugging problem poses a great challenge to ity Modulo Theories (SMT) [6]-[8] have allowed verification
automated debugging techniques. This work aims to address this Computer Aided Design (CAD) tools [9]-[12] to achieve great

daunting challenge by introducing the Bounded Model Debugging  strides into their ability to aid engineers in detectingdtional
methodology that iteratively analyzes bounded sequences of thedesign errors. Despite these developments, there has been

error trace. Two techniques are introduced in this methodology latively | K directed t ds debuaaing th
to solve this growing problem. The first technique iteratively '€'aUVEly €SS WOrK directed towards debugging the errareo

analyzes bounded subsequences of the error trace of increasingit has been detected. In this work, the term debugging repre-
size until the error is found or the entire trace is analyzed. The sents the process that follows functional verification weher

second technique partitions the error trace into non-overlapping a failure is detected and the engineer tries to pin-point the
bounded sequences of clock cycles which are each separately ation of the error and fix it. This issue is increasingly

analyzed. A discussion of these two techniques is presented - . :
and a unified methodology that leverages the strengths of both PECOMING a bottleneck as it has been reported that debugging

techniques is developed. Empirical results on real industrial @ predominantly manual process today, consumes up to 60%
designs show that for large designs and long error traces the of the total verification time [13]. Therefore, it is imponta
proposed methodology can find the actual error in 79% of cases to develop automated debugging tools to alleviate this ralanu
with the first technique and 100% of cases with the second resource-intensive process.

technique. In cases where the methodology is not used only 21% . . . .
of cases are able to find the actual error. These numbers confirm A central reason behind the complexity of debugging is

the benefits of the proposed methodology to allow conventional the increasing design size and the length of counter-exesnpl
automated debuggers to handle much larger real-life circuits. ~ Today, typical design blocks can exceed half a million sgnth

Index Terms—Debugging, Verification, RTL, Interpolation, sized logic gates. Eurther, counter.-c_axa.mples,(error tra(_:es)
VLSI returned by dynamic or formal verification methodologies ca
be thousands of cycles long [14]. Most existing automated
debugging solutions replicate the combinational part & th
[. INTRODUCTION circuit for as many cycles as the counter-example requires

The relentless consumer appetite for innovative elecxtrorﬁmcore they operate [15]{18]. Due to this, the debugging

devices places great demands on the performance of moa%?WpleXity of a sequential circuit directly depends on the

Very Large Scale Integration (VLSI) designs. An inevitabl umbe_r of cycles in the error trace [19] and itgrows exponen-
y g g ( ) g 2 lly with the number of injected errors. Admittedly, topm

result of this trend is an increase in both their size ar{&‘ : . . .
complexity. This leads to significantly greater costs inH:JotWIth th|s daunting c_hallenge, engineers mu_st mve_nt new CAD
design verification and the subsequent debugging procet§ hr?'q“es to gllewate the manual debugging pain. .

Since the complexity of both these tasks is projected to his work aims to add'fess these concerns by introducing
increase by nearly two orders of magnitude in the next fe set of techniques, which are collectively referred to as

years [1], the research community is challenged to gener&gundeq Model Debugging (BMDtp cope with the growing
omplexity of the design debugging problem. The central

new Computer Automated Design (CAD) verification an _ :
debug methodologies to meet the time-to-market demands me behind BMD is '_[he use of bounded subseque_nces of
the error trace called windows to manage the excessive error

the current growth rate of the semiconductor industry [2]. . . L :
trace length of modern designs. Each window is iteratively
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near the failure until the error is found. Similarly, windowfor the i*" clock cycle on the primary inputs, primary outputs
expansion begins by constructing a small debugging instarand state elements, respectively. The behavior of a sdgqlient
for a bounded suffix window of an error trace containingircuit C' can be described formally by a transition relation,
the failure. Based on the solutions returned, the methggoloT'(s*, s**1, 2, y%), which is true if and only if given the
determines whether to expand the bound of the suffix ourrent-state’, applying primary inputs:’ to C' will generate
if the results are complete. This process repeats untikeithprimary outputsy’ and the next-statgi*!.
the resources are exhausted or the algorithm terminatés wit An error trace of length k + 1 returned by a dynamic or
complete results. formal verification tool generated from the erroneous desig
The second BMD technique calledndow partitioning[21] is denoted byV}. It consists of an initial state predicate, a
generalizes the window expansion approach for SAT-baseector of primary input predicates and a vectorcofrect or
debugging as it divides the error trace into non-overlappirexpectedprimary output predicates for clock cyclésto k,
bounded windows and analyzes each one separately. It dsich can be written as:
gins this process by constructing a debugging instance for k 0 0 k 0 k
a bounded suffix window of the error trace. The solutions Vo = (875 (X0, X5), (Y2, Y) (1)
are analyzed to determine whether the results are compléftee error trace can be thought of as a cycle-accurate ceunter
and if they are not, an over-approximation of that instarsce @xample containing an initial state and a sequence of input
generated in the form of an interpolant. Using the intembla values as well as a sequence of expected output values gen-
the next bounded window in the sequence is analyzed bsated from a high-level reference modeld. C or Matlab).
explicitly modelling that window and combining it with the By simulating the design with the error trace, we demonstrat
interpolant from the previous iteration. By iterativelyedyzing a mismatch between the erroneous circuit and its expected
a fixed sized bounded window, it avoids the costly computatidbehavior. Note that each of the predicates can be written as
of explicitly modelling the entire error trace. This resuih a unit clauses representing the value for each of the resgecti
significant reduction in the amount of resources neededtwhisignals in each time-frame.
may come at a small sacrifice to the final resolution, that is, A window of an error trace from clock-cycleg to ¢, is
the number of suspect locations returned. defined as a consecutive subsequence of an error wgce,
Both BMD techniques have their own strengths and tradés?, (X?,..., X %), (Y?,...,Y?)) whereS? is calculated by
offs where one may be preferred over the other under certaipplying the initial state predicate and the figstprimary
conditions. A discussion of these techniques is presentegut predicates to the transition relatiare. simulating the
that describes the conditions under which each technigeroneous circuit fop cycles. A prefix window(Vé”l) and
should be used in an automated debugging flow. From theséfix windovv(Vﬁ) denote windows either starting at the first
discussions, a unified methodology is developed that lgesra clock cycle or ending at the last clock cycle respectivety. |
their strengths and balances their inherent trade-offs. our presentation, we will occasionally omit the term window
An extensive set of experiments on large hardware desigusd just use the terms of suffix or prefix instead.
with long error traces from bottOpenCores [22] and For this work, we assume that the error is first observed in
industrial partners illustrates the benefits of this workeT the last clock cycle of the error trace. If this is not the ¢ase
window expansion and window partitioning techniques ai@ shorter error trace can be trivially generated by takireg th
able to successfully find the actual error in 79% and 100%hortest prefix that exhibits the erroneous behavior.
of the instances respectively while previous work is onlieab
to find the actual error 21% of the cases. B. SAT-based Design Debugging
. The remaining sections are or.ganized as fqllows. Section ”Design debugging finds all error locatiosuspectsthat
introduces background information and notation neces&aryeynain the erroneous behavior of a design exposed by a
undgrst.and the conFrlbgt_lons in t!’lIS work. Section |l dixses given error trace [23]. Therror cardinality N of a debugging
motivation for the intuition behind the BMD methodology, gpiem refers to the number of distinct suspects returned
Window expansion is introduced in Section IV and windovf, 5 so|ytion by the method used. A debugging method is
partitioning is presented in Section V. Section VI preseiSqyiq tq hecompletefor a given error cardinality if it returns
discussion of these two techniques as well as a unified BMl sq1ytions whose functions can be separately modified to
methodology. Experiments are presented in Section VII arﬁQ the erroneous behavior. Most existing methodologies for

Section VIII concludes this work. sequential circuits replicate the state transition of threudt
for the length of the error trace [19], a fact that imposes
Il. PRELIMINARIES performance constraints because the complexity of dehgggi
A. Notation and Definitions grows exponentially to the number of errors [15]:

The lettersz, y and s refer to the set of primary inputs,
primary outputs and state (memory) elements, respectivel
Furthermorex?, 3* and s’ denote Boolean vectors in thé& Historically, fault diagnosis techniques such as simula-
clock-cycle, ortime-frame of the sequential operation of ation, BDDs and path-tracing [23] were first used to tackle
circuit. Similarly, 2, 4% ands} refer to thej*" indexed bit in debugging. Complementary techniques such as trace mini-
theit" time-frame. Finally,X*, Y and S® denote a predicate mization [14] are also developed to reduce the debugging

%combinational circuitry * # trace cycles)® ¢S (2)



complexity by minimizing the error trace before debugging.
More recently, SAT-based methodologies are shown to exhibi
significant performance advantages when compared to tradi-
tional techniques [15]. Following the original work, exséons
using Quantified Boolean Formula (QBF) [19], maximum
satisfiability [16], UNSAT cores [24] and others [25], [26]
extend the benefits of the original methodology. With no loss
of generality, this paper presents BMD in terms of SAT-based
debugging. As such, we present some essentials that remain
relevant to the work presented here.

SAT-based design debugging [15] encodes the design debkig-1. Design unrolled for 2 clock cycles with correction ratsd
ging problem into a SAT instance for each given error trace.
Each satisfying assignment to this instance corresponds tis also unsatisfiable. Modern DPLL [27] solvers can geneaate
suspect that can correct the erroneous behavior in therdesigroof of unsatisfiability along with a corresponding resioin
This instance is created in several steps. graph that shows that a SAT instance is unsatisfiable [28].

First, the transition relation is enhanced by introducin@he resolution graph demonstrates how clauses iTtan be
a correction modelfor each potential error location (gatecombined to generate the empty clause.
module etc.). Each correction model has an associatedduspeAn interpolant [29] is a Boolean formula that can be
variable, e;, which works as follows: ife; = 1 then thei’” generated from a resolution graph. For a given unsatisfiable
potential error location is disconnected from its fan-irdanformula ¢ whose clauses can be partitioned into two subsets,
becomes a free variable. This can be achieved either throughand B, an interpolant is a formul@, with the following
adding multiplexors [15], or directly in conjunctive normaproperties:
form (CNF). This enhanced transition relation is denoted Ry) 4 . p
Ten(s', s 2ty e). (b) B A P is unsatisfiable.

Next, T, is unrolled as a time-frame expanded mode@ P only contains only common variables df and B.
e omocme . covent Sty f g o P can be (UG of a5 & paricuar over.
. | . . amg proximation of the clauses id that is UNSAT when
i+ 1L _and the error trace_predu:ates are appl_|ed_to the_ InItI(Eflgmbined withB and only involve variables common td
state, input and output variables. An error cardinalitystoaint

. . and B. Interpolants have been used in several applications
®(e) is also added to denote the search forerrors. Given P PP

& S . _including model checking [30] and synthesis [31]. There
an error trace/,, debugging is encoded in SAT as follows: exists an algorithm [30] that can generate an interpolant as

Debugzlf =SP A Dy (e)A a Boolean circuit from the resolution graph. This algorithm
& can be computed in linear time in the number of vertices plus

(/\ XIAY' A Ton (s si+1,xi,yi,e)) 3) literals in the resolution graph.

i=p
where a satisfying assignment provides a solution in then for . M OTIVATION
of a set of suspects. Returned solutions can be used astocki This section gives motivation for the BMD methodology
clauses to allow the algorithm to iterate multiple times anoly building intuition for the empirical observation that-er
return all possible suspect error locations [15]. The foity rors are usually located in close temporal proximity to ithei
example illustrates the process described above. observation points. It begins with a probabilistic analysf
the likelihood that an error can propagate and be observed a
Example 1 Figure 1 shows a two time-frame expanded circugjiven number of cycles later. By making assumptions about
of an erroneous two gate design with one state elemetiie probability of the error propagation and observabilite
The correction models for each gate are denotedsbyThe analysis is then simplified and presented graphically tm gai
suspect variables for these correction models areand e2  intuition about this empirical observation.
corresponding to gateg andg, respectively. The actual error It should be noted that this discussion uses a probabilistic
inserted in the design is that the gajgis be a buffer instead argument which may not precisely model actual circuit behav
of an inverter. The error trace: ior. It is also not used as a basis for the theory or mechanics
1 = ;.0 0 1 1 1 1 of the BMD methodology described in later sections. Instead
Vo = {86, (e Awg, 21 A ), (11 A y2)) the purpose of the ane?lzsis in this section is to reinforee th
demonstrates an erroneous behavior of the circuit. Ko 1, empirical observation that errors are usually locatedeckus
a satisfying assignment fdre;, e2} is €1 A es. their failure points.

o Proposition 1 Assuming that a single error is excited in clock

C. Unsatisfiable Cores and Interpolants cycle 1 and no other errors are excited in any other clock
Given a SAT instance) in CNF that is unsatisfiable, ancycles, letprop; be the probability of the error propagating
UNSAT core denoted by¥/, is a subset of clauses afwhich from cycle:i to i + 1 and obs; be the probability of observing



a failure in clock cyclei, given that the error has propagated ! " propoobs=b5 ——
to that cycle. Also assume that the input vector sequences el P opmobaz0.y i
are temporally independent and stationary random sequence '

Then, the probability of observing the first failure in clock
d—1 d—1

cycled is p; = H prop; X H (1 — obs;) x obsg.
i=1 i=1 0.4

0.6

]

Proof: Let W; = {an error propagates from cycleto ozl
cycle i + 1 if it has propagated to cyclé }, andO; ={a [... I

failure is observable in cycle if an error has propagated to 0 b T S —
cycle: }, and E; = {an error is excited in clock cyclé}. d clock cyclos
Probability p;, can be stated in terms of evenfs;, O;, and Fig. 2. Three curves o, as function ofd

FEy:

d—

1 d—1
_ . [ |
éd . <Ol Q ¢ ’ 1) Yy applying We can simplifyp, by assuming thaprop; = prop and
identity P(AnB | C) = P(A|C) x P(B| ANC), We obs; = obs that remain constant for all cyclesresulting in
o oA = prop=1 x (1—obs)?~1 x obs. This simplified relationshi
get pu = P\ Wi | BE) x PN O: | N WinEL) x Pa=Ppropr x{1=0bs 00s. P P
i o1 o1 is plotted in Figure 2 for three values @frop = obs =

—1

ot {0.1,0.5,0.9}. For values al = 1 we havep; = P(O;|E;) =
[ <Od ) Ol o:n Ol win El)' Here, the eventsOy and obs. The negative exponential relationship is clear as thesthre

d—1 -1 curves are no longer visible wheh > 6. Although overly
() O: are conditionally independent of, n (1) wi. Thus, simplified, the expression fgs, aligns with the observations
! a1 a1 =t made in the field and the experimental results of Section VII.
P(Od No.nOwink ) =7 (04| ﬂWmE1>.Asa
i=1

IV. BOUNDED MODEL DEBUGGING WITH WINDOW
EXPANSION

i=1 i=1 .
result,p; can be simplified

d—1 d—1
= P W; | E P 0; . .
b <Zﬂ1 1) ) <ﬂ i Instead of debugging the entire error trace, one can apply
a1 any automated debugger to a suffix window of the error trace
P\ Qa ) QW’"”El ' to generate a suffix debugging instance. Window expansion
One of the assumptions made is that input vectors §#$€S this fact to incrementally increase the size of thifixsuf

successive cycles are all (temporally) independent. Thygndow until the error is found. This key idea is illustrated
any W; is independent ofW; for all cycles i # j: in Figure 3. The figure shows an unrolled circuit for 1

1
WiﬂE1> X
1

PWinW; | B1) =P (Wi | 1) xP (W, | Br). time-frameg. The first iteration of wir_1dow_ expansion starts
- —1 from a suffix of the error trace and iteratively expands the
As aresultr | (Y w; | B | =[P (Wi | B1) . window under analysis until the error is found. During each
Similarly, by tﬁglassumption,iialn@i is independent oD); iteration, initial state suspect variables are used toroete if
for all cyclesi and j: the current suffix can guarantee a complete result or whether
d-1 d—1 a larger suffix must be analyzed.
P <Oi no; ‘ kﬂl Wi “E1> = 7 (Oi 1 kﬂl Wi N El) X The suffix debugging instance has the benefit of a reduced

d—1 problem size due to the reduction in the number of time-
P (Oj ’ () Wi N E1>. frames analyzed, as also seen by Equation 2. In the worst case
k=1 window expansion can degenerate to a conventional debgiggin
algorithm where the entire error trace has to be examined but
s s experiments confirm that this is rarely the case.
I[I7(o: | N\winE:). It is clear that debugging a suffix instance can only find
errors that are excited and propagated to the primary aaitput
within that particular suffix. However, suspects returnemhf

d—1 d—1
As a result, P (ﬂ O | (\Win E1>
=1

i=1

[iJ:éing the ali)zolvepd can be simplified to:
d—1 -1

— d d—1
Pd = HP(W7 { El) X H'P <Oz | m WkﬂE1> X Y Y Y Y Y
i=1 i=1 k=1
d—1 b
P Od)ﬂWmEl . DA 0 peee i | peesrn kb —24k—1H k <
=1
In the assumptiongyrop,; andobs; are defined as: A A A A A
izl initial state B
prop; = P (W; ! Ep) andobs; = P (Oj ‘ m Win E1> for some suspects for iteration 1 |
i=1 iteration 4 iteration 2
cycle j. Using these definitiong;; can be presented as | iteration s |

d—1 d—1

DPg = H prop; X H (1 — obs;) x obsq Fig. 3

1 ey BMD window expansion with multiple iterations
1= 1=



the suffix debugging instance have a useful property stated i
the next lemma. This lemma guarantees that if a suspect is
found during a suffix debugging instance, it is also a suspect
to the entire error trace. This result is used in later sastio
to prove certain properties of the various BMD windowing
techniques that we present.

Lemma 1 For a given error cardinalityN, any solution found
when debugging a suffix of an error trac)i—}f, will be found
as a solution when debugging the entire error tragg.

Proof: Let E be a solution in the form of an assignmentig. 4. Suffix window debugging with initial state suspects
to the suspect variables insuch that for a suffix debugging
instance,Debug]’; A E is satisfiable. We wish to prove the
lemma restated formally as follows:

Debugy A E is SAT — Debugf A E is SAT

theorem presents an upper bound on the error cardinality to
guarantee the completeness of the approach.

Theorem 1 Letsolsy be the solutions returned by debugging
From Equation 3, we know thaDebugg’l A Debug{;‘ and the suffix WindovW[’f for error cardinality V. Let solsy s
Debugh A SP generate the same clausd3ecbug? ' is SAT Pe the solutions returned by debugging the suffix wina}ijw
regardless of the error trace because the failure has nat bééth the addition of initial state suspects for error carelity
observed yet, so there is no mismatch in primary outputd.+ |s|, where|s| denotes the number of state elements.
Debugh™" A SP is SAT when no suspect variables are active If every solution insolsy |5 does not contain any initial
because the instancBebugh~' amounts to simulating the state suspects, then the solutions found when debugging the
circuit for the firstp cycles of the error trace generatingentire error traceVy for error cardinality N' will be exactly
the same values aS”. Finally, Debugg_1 A SP A Eis SAT solsy.
because each active suspect variable allows the corresigond
component outputs to become free, which will not change the Proof: From Lemma 1, any debugging solution found for
satisfiability of an instance if it was already satisfiable. ~ the suffix); will be found as a solution to the entire error
Therefore, ifDebug) AE is SAT thenDebugg_l/\Debug;f/\ traceVy.
E is also SAT, since the only common variables afeand We now prove by contradiction that if every solution in
e which are fully assigned. As a resulebugf A SP A E is  solsy || does not contain any initial state suspects, then any

SAT implying that Debugh A E is SAT as required. m solution found when debugging the entire error traewill
be found inV}.
A. Ensuring Completeness Assume towards a contradiction that, no initial state sctspe

are found when the error cardinality ¥ + |s| and that there
S&a satisfying assignment of suspect varialfiethat is found
Debugf but not in Debugli. This means thaf contains
positive assignment to some suspect variables which must

Although Lemma 1 guarantees that a solution to a suffix i
valid solution for the entire error trace, it does not enghet i
the set of solutions returned is complete. This is because EB

IS# ff|xr:n?3i/ no)t (|:t0 r:jtai\:]n the taixc;:‘at:onr of tge etrrrlor. Hﬁwﬁt\f h ave changed the excitation of the corresponding component
€ error1s excited in a cycie that precedes the currenisu !n a cycle prior to the suffiv)%. To affect an output in thé'”

Irtja?;?nctstrrre u(s)tbg(ra,?\p/):ga::ﬁ??;??hzor?ﬁq jf‘teOS:eumtznaeeb E;?cle, the component corresponding to the positive assgiim
9 b y OUIpULS. suspect variables must change the assignmen? tthat

this observation to ensure completeness for window EXPANS jitters from the initial state predicatg” for the suffix or else

To determine whether or not the results are complete, Wfe instance would be unsatisfiable. However, if it changed

simply need to determme 'f. chang|r?g the initial statg p.redihe assignment te®, an initial state suspect would have been
cate of the current suffix window will generate a satlsflabI%

. . ) . o Mcluded in the solutions found when debugging the sufﬁx
instance. This can be accomplished by introducingrdial leading to a contradiction. So it must be the case that the

state suspect variabler each state element._ If. an initial stateSolution would have be found in when debugging the suffix
suspect is returned by the debugger, then it indicates lieat {,, n
current suffix may not yield complete results and a longef’
suffix needs to be analyzed. For example in Figure 3 during
the i*" iteration, if the debugger returns a solution includingxample 2 A suffix debugging instance derived from Exam-
the initial state suspect (denoted byin the figure) then the ple 1 is shown in Figure 4. The suffi;, is used to produce
bounded window must be increased to ensure complete resaltsuffix debugging instanc®ebug; with N = 2 and an
are achieved. Alternatively, if the solutions returned team initial state suspect;,;;i.;. A satisfying solution consists of
no initial state suspects, we can safely conclude the sesuttivating the suspect variablege;,itiqi, €2}. According to
are complete. Theorem 1, the results are not guaranteed to be complete and
The introduction of initial state suspects has an impact dhe suffix must be expanded.

the error cardinality which must be re-examined. The next



B. Performance |mpr0vements Algorlthm 1 BMD with Window EXpanSion

1. stride := expansion rate of algorithm
This section introduces two performance enhancements. The procedure BMD_EXPANSION(stride)
first relates to the error cardinality while the second one;; . := set of potential suspect variables
involves pruning the solution space. Since the difficulty ofs.  so15 — (), p — (k — stride)
the debugging problem grows exponentially with the errors,  \while p >= 0 do

cardinality as shown in Equation 2, it is important to redtiee . solsy « solsyU SOLVEALL (Debugh~' (N, e))
size of this parameter. We can alleviate some of the contglexi ;. e e — solsy
introduced by Theorem 1 by using a common initial stateg. e — eU einitial
suspect variable for all of the initial state variables. hist . solsn 1 — SOLVEALL(Debugh= (N + 1,¢))
way, we do not distinguish between different state vargble,g. if einitiar & sol for all sol € solsy41 then
This reduces the error cardinality of the window expansiogy. return solsy
method as stated in the next corollary. 12: end if

13 € < € — Cipitial, P < P — stride

4 end while
5: return solsy
16: end procedure

Corollary 1 Letsolsy be the solutions returned when debug-i
ging a suffix WindOV\VI’f for error cardinality V. Letsolsn 1
be the solutions returned by debugging the suffix wind{jw
with the addition of a common initial state suspect for error
cardinality N + 1. If every solution insolsy+; does not
contain the initial state suspect, then the solutions fowhen

debugging the entire error trac®? for error cardinality N
will be exactlysolsy. BMD with window partitioning extends the results of the

previous section to provide an attractive trade-off betwee
performance and resolution for hard-to-debug problem in-
stances. It does this by dividing the error trace into midtip
non-overlapping bounded windows, iteratively analyziagte
window separately. Each iteration directly models the entrr

wijndow and useiterpolantsgenerated from previously ana-
The second performance enhancement uses Lemma J] 0

reduce the problem size in later iterations by re-usingltesu yzed windows to over-approximate the unmodelled suffix and

During each iteration the debugger will find suspects for %xirenlne a "sliding window" of clock cycles from the error

. . r
given suffix. Lemma 1 gtates that every SUSpeCt. found (excep he key idea is demonstrated in Figure 5 where it shows
initial state suspects) is a suspect for the entire tracés Th - . )

. . ; . an unrolled circuit fork + 1 time-frames. The error trace is
means that in future iterations we can safely ignore these . . . : i . .
suspects and reduce the search space partitioned into multiple fixed sized windows that are analy

' separately. In the first iteration, a standard suffix winddw o

the error trace is used. If complete results are not guazdnte
_ the next non-overlapping window is then examined. However,
C. Overall Algorithm in these subsequent iterations Equations 3 cannot be lglirect
applied to the current partition because it does not model th

Algor_lthm 1 F’Tese“ts pseudotcode for the oyerall windo rroneous behavior leading up to the observed failure. i@ so
expansion algorithm. The algorithm works by mcrementalrlai;Is

solving larger debugging instances by expanding the su IS problem, an mterpolantP(’;z In Figure 5) is generated

ind ina th tertrid hich be ch m previously solved iterations to over-approximate the
window ‘using the parametesiride, which can be ChoSen ., ,qe|ied suffix to ensure the erroneous behavior is phoper
based on the design size to provide a trade-off between num

¢ iterafi q ‘ Initially. the aldmonit Snstrained. By only directly modelling a bounded window of
of lterations and system resources. intiaily, e.agmm the error trace in each iteration, a drastic reduction in run
uses the suffix window from clock cyclé — stride to

. . X time and memory is achieved at the cost of a potential loss in
k — 1. The BMD iterations are executed by the while loo y P

Resolution. This wind titioni thodology is delsed
on line 5 to line 14 where successive debugging problern?ssdoe?ali??n th :fmw%p:&;sgg?ogn;ne odology is détse

are constructed with longer suffixes. On line 6 the suffix

window debugging instance is created and solved. Once the o )

solutions are removed and the initial state suspect is added® UNSAT Cores and Suffix Window Debugging

a potential error location, a new debugging instance istedea When debugging a suffix window, we can gain valuable
with error cardinality set taV + 1 on line 9. If this does information about suspects as stated by Lemma 1. However,
not yield solutions that include the initial state suspédw t there is also valuable information about the debugginglprob
algorithm exits with complete results as stated in Corgltar in the resulting UNSAT core of a suffix debugging instance
Otherwise, the algorithm removes the initial state susfrent  after all the solutions have been found. The intuition behin
consideration for the next iteration of the loop and expahds this idea is that if an UNSAT core exists in a suffix debugging
suffix window by stride. instance that does not involve initial state variablesnthie

V. BOUNDED MODEL DEBUGGING WITH WINDOW
PARTITIONING

Proof: This follows directly from Theorem 1, where
instead of multiple initial state suspect variables, yoweha
one that corresponds to the entire set of initial state k&
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. ) L Fig. 6. UNSAT core from suffix window debugging
Fig. 5. BMD window partitioning

L . N . Using Theorem 2, we know thatebugi does not result in the
must exist in the entire debugging instance. This 'mpl'%mplete set of suspects Rrbug] because the UNSAT core

that the complete set of solutions have been found in tggntains the clause! C S', so the prefix of the error trace
suffix debugging instance. The following theorem describ%ﬁ” needs to be angly_zed

this property in more detail.

Theorem 2 LetU be an UNSAT core generated after blockin@. Prefix Window Debugging

aI1I7 satisfying assignments to solutioni fd_ﬂebugg- If N Debugging a prefix window of an error trace requires

5P = () then the suspects found Mecbug, will be exacktly the aqditional consideration. Since the failure occurs in thst |

suspects found in the entire debugging instantéugy. time-frame, modelling a prefix of the error trace according
Proof: From Lemma 1, any solution found iBebug" tq Equation 3_W|II result in a trivially satisfiable instance

. . ) . L P since all the primary outputs will match the expected owput

is a solution found in the entire debugging instadeebug;. .

Now we prove by contradiction that anv suspect found in the error trace. To ensure that the observed erroneous

W We prove by Ict y susp NG Pehavior in the last time-frame constrains the prefix debmgyg

E i i ko P _
f eb“gf \;V'\lllv ArI&SO bit;cogin?i ': fggugpn i U| r; rﬁ nt_t (Z)fh instance properly, the prefix debugging instance is fortedla
SSUME towards a contradictio S an assignmentto e, 4 parts. The first part uses the conventional SAT-based

H k H k
suspect variables such thRebugg A I is SAT andDebug, A ¢ 1ation (Equation 3) using a prefix of the error trace and

gol(fk'lr:N;SaﬁzoiA?gr:sttgsbi t‘;sufg?sﬁ-r ,Soreh.gﬁrgloeri;:srthe second part uses an interpolant approximating tintadsa
‘N9 Ut usp cougy, Wit NS for the corresponding suffix of the error trace.

ISP
no clauses ins®. For a suffix debugging instance, an interpolant can be

Since Debug, A E'is UNSAT, E is not blocked b}! any generated by partitioning the clauses into two subsetnd
of the blocked solutions (denoted bYocked_solutions;) to B as follows:

Debug;f. This means thaDebugt A E A block‘ed_solutions’;
is satisfiable. However we know that in terms of clauses,
U C (Debug’; A blocked_solutionsg — SP) C Debugh A 2
blocked_solutionsk, since U does not contain any clauses ;}p .
from SP. However, if DebugéC A block:ed_solutions’,f AFEis B =57 A @n(e) Ablocked_solutions (4)
satisfiable, then/ A E is satisfiable. ButU is an UNSAT |ntuitively, A represents the enhanced transition relation as
core, which is a contradiction. So it must be the case th@b” as the primary input and output values for each time-
Debugy A E is SAT. B frame of the suffix window. SubseB represents the initial
Theorem 2 gives a condition to decide if debugging thgtate predicate, cardinality constraint and blocked &mist
current suffix window gives complete results. Notice thas thThe common variables are exactly the initial state and suispe
argument does not depend on the error cardinality since b@#yiables. Using this partition an interpmaﬁ]f can be gener-
instances have the same cardinality. However in a simila-mated from the resolution graph using the algorithm from [30]
ner to Theorem 1, if the UNSAT core contains state variables, The interpolant can be interpreted as an over-approximatio
to achieve complete results the prefix of the error trace musgt the suffix debugging instance that retains the cause of
be analyzed. This is shown in the following example thainsatisfiabilityi.e. the observed failure. It captures how the
illustrates a case where Theorem 2 cannot be applied.  observed failure relates to the state and suspect variahes
benefit of usingPIﬁc is that, in most cases, the interpolant will
Example 3 A suffix debugging instance derived from Exanbe significantly smaller than explicity modelling the time
ple 1 is shown in Figure 6. The suffiX{, is used to produce frames. In cases where it is larger, the time-frames can be
a suffix debugging instanc®ebugi with N = 1. The clauses used directly, bounding the size of the problem. However,
for the suffix debugging instance are shown to the right of tleperimental results confirm that the interpolant is sméfian
circuit diagram. This instance is unsatisfiable. The follogy explicitly modelling the circuit.
is an UNSAT core from the instance:

k
A= N\ X AY AT, (s, s 2ty e)

N TN T T L Example 4 Figure 7 shows the resulting resolution graph on
(22)(y1)(y2) (sg) (e1 + €2) (22 + y2 +e2)(so +y1 +€1)  the left and interpolant on the right from the UNSAT core in



(”5)\5/“’2'*‘2) DebugItph~" will not miss any solutions compared to de-
Bre) @) bugging the entire error trace as stated in the next theorem.
N
(G@U}” Theorem 3 Any suspect found iBebugt will be found in
€ (+ul+ea) DebugItpy~".
N
(ykﬁ+ ) Proof: By definition, Debugl = Debugh™" A A, where
(51) o) A is defined in Equation 4. So any satisfying assignment to
N Debugl will satisfy Debugl~ ' and A. But A — PF, so it
0 also satisfies”* satisfying Debugltp}~". n
Theorem 3 guarantees that solving the prefix debugging
Fig. 7. Resolution graph and interpolant instance will not miss any suspects, however it may be the

case that extra solutions will be returned that will not benfd

Example 3. Notice how many of the root nodes of the resoluti$it€" debugging the entire error trace. This is du@fdbeing .
graph generate constants values in the interpolant. This is@n over-approximation of the suffix which may not constrain

common occurrence and generally leads to a small intergolaiii€ Prefix as strongly as explicitly modelling time-frames
relative to the UNSAT core that it was derived from. to k directly. However, the relative increase in the number of

extra solutions is usually small as seen in the experimental
By combining the interpolant with Equation 3, we camesults.
now construct a prefix debugging instance that only requires
explicitly modelling the prefix window of the error trace. &h
interpolant will constrain the final states and suspeciadeis C. Overall Algorithm
of the modelled prefix window implicitly constraining the

. . o . g By using the ideas of suffix and prefix debugging, it is
E;gjrfélgnhteljzgiz)};fﬂj gg;r;gbg]?/;[/?i?t(; chmfsc‘)tlrlg',csd with thpeossible to further divide the debugging problem into serall
! 0 1 .

windows that model a user-defined number of time-frames.

Debugltpg_l = Debugg_l /\pzﬂc (5) Algorithm 2 presents pseudo-code for a scalable debugging

algorithm that divides an error trace of lendthinto [k/step]

Debugltpf~" will be UNSAT when no suspect variables arevindows, wherestep is a user-defined parameter that specifies
active becaus®ebugl ' will be equivalent to simulating the the maximum number of simultaneous time-frames to be
design for clock cycle$ to p —1 and will implicitly generate directly modelled. This parameter can be chosen based on the
the initial state predicaté” which is known to be UNSAT design size to balance the number of iterations and system
with PF. resources.

The next example builds from previous ones to show how aThe algorithm iteratively analyzes windows of the error
prefix debugging instance can be created. However, note thisce, starting with a suffix (lines 5-15). In each iterafidn
example does not show the benefit of using interpolants f@gins by analyzing the current window of the error trace and
reduce the size of the problem due to its simplicity. finds all suspects shown on line 8. It then generates an UNSAT

core and checks if it contains initial state variables. lddtes
Example 5 Figure 8 shows how the interpolant generated imot, it returns the current set of suspects (lines 9-12) dods
Example 4 can be used to debug a prefix of an error trac®r an early exit with complete results (Theorem 2). If arlyear
Notice that the interpolant is significantly smaller tharethexit is not taken, it generates an interpolant from the UNSAT
resolution graph once the constants propagate through tleere. Finally, it prunes the search space by removing stspec
gates. In Figure 8, activating suspect variaklg leads to the found in this iteration.
only satisfying assignment. This is consistent with thet&sl  Algorithm 2 provides a complete method to analyze long
found in Example 1. error traces that would not otherwise be possible with other
techniques. However, there is a trade-off between dhg

Since P, is an over-approximation of the SlJffIX’parameter and the final resolution. Each successive ingrpo

.1 generated will potentially be a weaker constraint than tige p
n vious one. By settingtep to a small value, too many solutions
%? can be returned. One way to cope with this is to provide a
o st e . ranking of the solutions to the user so they can concentrate
e their effort on the most likely solutions. Algorithm 2 impiily
gives a useful ranking of solutions. More confidence can be
given to solutions found in earlier iterations because @nsfer
. . constraint is used for the approximation of the suffix. In the

case of the first iteration, all solutions found in the suffiX w
be found when debugging the entire error trace, as stated in

Fig. 8. Prefix window debugging with an interpolant
Lemma 1.



Algorithm 2 BMD with Window Partitioning the next section develops a unified BMD methodology that
1: step := maximum number of time-frames leverages the strengths of both techniques.
2: procedure BMD_PARTITION(step)
3: e .= set of potential suspect variables

A. Overall Algorithm

4: sols — (), P — 1 o ) ) _ -

5 while & > 0 do By combining the window expansion and window partition-
6: p — maz(k — step,0) ing techniques, a unified methodology can be developed that
7. inst Debug’zf_l(N, ) AP prov@es a more favourable trade-off compared to using the
8: sols « sols U SOLVEALL (inst) technlquee separately. ) o

9 U « EXTRACTUNSATCORE(inst, sols) _ The ur_ll_fled me_thodology_ begins by_c_j|V|_d|ng the error trace
10: if UNSP =0 then into partitions using the window partitioning techniqueor F
11- return sols each partition, instead of using Equation 3 directly on tae p
12: end if tition, it uses the window expansion technique to incremignt

13- P « GENERATEINTERPOLANT(U) solve each one of them. Using both BMD techniques together
14- e — e-sols, k — k - step provides a more flexible trade-off between resolution and
15: end while resources. It addresses the two major challenges with tiséng
16: return sols BMD techniques in isolation. It addresses the first chakeng

by using the window partitioning technique to overcome the
resource limitation of the window expansion technique. The
second challenge is addressed by providing an incremental

window expansion formulation to find an exact set of soligion
VI. AUNIFIED BMD METHODOLOGY for each partition.

This section provides a discussion on the benefits, trade-The guidelines for the unified methodology are similar
offs, and application of the window expansion and windo#? the guidelines for the individual BMD techniques. The
partitioning techniques under a unified BMD methodologypartition sizes should be as large as possible to ensure that
It begins by analyzing each technique and describes #h& Over-approximation does not return too many solutions.
situations in which they are appropriate. This is followgdeb The window expansion technique is utilized on each partitio
discussion of a unified BMD methodology that leverages i@ Provide quick incremental results back to the user. Is thi
strengths of both techniques. situation, the number of times the interpolant is used as an

The window expansion technique incrementally formulaté¥Proximation is minimized so that the resolution does not
the debugging problem by examining suffix windows of insuffer, while the window expansion technique still prosdiee

creasing size allowing for incremental user feedback. i isPenefit of an incremental formulation for each large pantiti
complete method that provides significant benefit in terms ofAlgorithm 3 presents pseudo-code for the unified BMD
memory and run-time especially in earlier iterations whes t 2/90rithm combining both window expansion and window
suffix window is small. In later iterations where the suffiPartitioning. The algorithm is passed two parametersy

window is large, this benefit is reduced and in the worst ca88dstride, that control the expansion rate and the maximum
can degenerate to analyzing the full error trace which mé&?‘mber of time-frames for each partition. Each iteration
require excessive resources. of the loop on line 6 examines a window of time-frames

The window partitioning technique on the other handgorresponding to each partition. This process is similar to

divides the error trace up into non-overlapping partitior‘(é',gorithm 2. The difference lies on line 8 where BMD with

and separately examines each partition using interpolzmtsw'ndow expansion runs on the current partition instead of

approximate the unmodelled suffix. It provides the ability tdirectly solving Equation 3. By using the window expansion

fully analyze long error traces because each partition ishﬂualgor"Fhm’ each part_ltlon 1S SO!YEd_ mcrementally gainthg i
smaller than the full error trace. However, due to the use BFNefit of both the window partitioning and window expansion
the interpolant as an over-approximation this techniqug m&'gerithms.

result in a loss of resolution causing too many suspects to be
returned. VIl. EXPERIMENTS

17: end procedure

Both these techniques should be used in situations thain this section, we present experimental results for the
leverage their strengths. Window expansion is best utilag proposed BMD methodology. All experiments are run on a
the default methodology for an automated design debuggisiggle core of a Core 2 Quad 2.66 Ghz machine with 8GB of
flow because it provides complete results for each suffiremory with a timeout of 3600 seconds. The debugger used
it analyzes. Since many real-world errors are likely to bis a C++ sequential SAT-based engine based on [15] with a
close to their failure points, this methodology will find nyan Verilog frontend to allow for RTL-based diagnosisIMSAT-
errors quickly with good resolution. In cases where window1.14 [32] is used to solve all the SAT instances as well as
expansion exceeds the system resources, the only alternagienerate the proofs of unsatisfiability.
is to use the window partitioning technique to analyze long The effectiveness of the proposed techniques are shown on
error traces and find “deep” bugs even though there might imelustrial Verilog RTL designs from OpenCores [22] as well
some potential loss in resolution. Using these two guidslin as two commercial designs in productiohx(i, r x_conm
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Algorithm 3 Unified BMD Algorithm = B T

1: step := maximum number of time-frames P et e
2: stride := expansion rate of algorithm 4o . redecoder? T 1
3: procedure UNIFIED_BMD(step, stride) ;

4: e .= set of potential suspect variables

# solutions found

5: sols «— (), P «— 1
6: while £ > 0 do
7: p — max(k — step,0) . o
8: sols «— sols U BMD_EXPANSION: ™! (stride) °© 5 10 15 20 25 B 3
# iterations
o: P «— GENERATEINTERPOLANT(U)
10: e« e - sols Fig. 9. # solutions vs. window expansion iterations
11: end while
12: return sols peak memory in MB, the number of solutions found as
13: end procedure well as if the actual error inserted is found, respectively.
Terms TO (MEMOUT) refers to a time-out (memory-out)
TABLE | being declared. For time-out conditions, partial resuilts a
DESIGN CHARACTERISTICS listed in the table. For memory-out conditions, results for
Design Name|[ # gates | # DFFs | total # fully completed iterations are listed, however iteratidhat
suspects caused a memory-out are not counted since the CNF cannot
ac97 25314 2346 1092 ;
DTS SETLT EET2 13 be generated to obFam the results.
fdct 377849 5717 7G58 Finally, the last five columns of Table Il show the results
fpu 81303 715 939 of the proposed window expansion technique. Algorithm 1
fxu 602713 | 29080 33088 is implemented and run withtride = 10 until either the
mem _ctrl 46425 1145 2451 | ith . . is ded
rsdecoder 11380 551 1623 agorlt‘ m terminates or a time-out or memory-out is declare
rx_comm 586695 | 30339 | 15840 A stride of 10 is chosen so that each iteration of the
spi 2103 132 223 window expansion would grow incrementally as to not cause
9 15§gf$ 170955 123; an immediate memory-out. Columns 7-11 show the run-time

in seconds, peak memory in MB, number of solutions returned,
number of iterations run, and the iteration the actual eisor

provided to the euthors . by semiconductor firms. Table feund, respectively. A value df in the last column translates
presents the design statistics. The four columns show tt%ethe error not being found by the algorithm

design name, number of total gates, number of flip flops andThe benefits of the window expansion technique are clear

the total number of potential error locations. from the number of instances where it returns the error

R_I_Iial.Ch deb;g msttence Its genle.raéedtt?ylrs_r;ﬁomly Seleﬁtmgc%%pared to a stand-alone debugger. Window expansion is
IN€ and inserting a typical Industna EITOr SUCNA8S e to find the actual error i22 of the 28 instances whereas

wrong state transition, incorrect operator or incorrectdoie the stand-alone debugger is only able to find itGircases

instantiation that is detected by the corresponding deagne 1020 of the instances being declared with a memory-
testbench. The error trace is recorded from the simulatfon (9ut due to excessive unrolling of the time-frames. This show

the erroneous design with its testbench and suspects eeltur{he value of incrementally formulating the debugging peobl

correspond to an error location in the RTL. It is important tasing window expansion so that the memory resources are not

emphasize that e_ach RTL suspect may_correspond to dongﬁausted as in the case of just the stand-alone debugger.
of error locations in a gate-level formulation of the debiugg This incremental formulation also allows the use of ini-

problem. Eﬁ_‘ecnvely, multiple gate-level errors are inafily tial state suspects which are effective 8ninstances where
detected using this setup. . )
complete results are declared before the entire error isace
analyzed. Moreover, in many of these instances, the actual
A. BMD with Window Expansion error is found in the first iteration. This suggests that the
The experimental results for the proposed window expa@mpirical observation described in Section Il is valid.
sion technique are presented in Table Il. For each design inFigure 9 shows a better picture of how the excitation point
Table |, an instance is created by inserting an error into tloé the error varies with the distance from the failure. The
design. Instances are named by appending a number afterfipere plots the number of solutions returned by window ex-
design name to indicate which error is inserted. The first twgansion against the number of iterations. Notice that afiare
columns of the table show the instance name and the numpemt, the number of solutions returned by window expansion
of clock cycles in the entire error trace. Each row of thedabplateaus indicating that analyzing more of the error tramesd
corresponds to an instance that is run using both a stamé-alaot yield more suspects. For exampfggu4 plateaus a5
debugger and the window expansion technique. solutions in the fourth iteration argpi 1 plateaus a7 in the
The next four columns of the table show the results dventieth iteration. This gives further evidence to confouar
running the stand-alone SAT-based debugger using theeenémpirical observation from Section Il that errors are gahg
error trace. Columns 3-6 represent the run-time in secondsgited in close temporal proximity to their failure point.
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TABLE Il
BMD wITH WINDOW EXPANSION RESULTS

[ Instance Info i Stand-alone debugger I BMD with Window Expansion ]
instance | # cycles || time (s) [ mem (MB) | # sols | found || time (s) | mem (MB) | # sols | # iters | iter found
ac971 680 663 5557 34 yes TO 3250 24 34 1
ac972 986 N/A MEMOUT 0 no TO 2621 41 30 30
div64bits1 110 TO 4614 0 no TO 1783 30 4 2
div64bits2 110 TO 4299 0 no TO 1468 18 4 2
fdctl 184 N/A MEMOUT 0 no TO 3985 41 3 2
fdct2 180 N/A MEMOUT 0 no TO 4194 37 4 1
fpul 312 N/A MEMOUT 0 no TO 6291 15 15 1
fpu2 312 N/A MEMOUT 0 no 31 557 4 1 1
fpu3 312 N/A MEMOUT 0 no TO 7025 8 17 4
fpud 642 N/A MEMOUT 0 no TO 5872 30 14 1
fxul 28 N/A MEMOUT 0 no N/A MEMOUT 30 1 0
fxu2 28 N/A MEMOUT 0 no 590 7655 24 1 1
fxu3 28 N/A MEMOUT 0 no TO 7550 40 1 1
mem ctrll 757 N/A MEMOUT 0 no 27 409 11 1 1
mem ctrl2 681 N/A MEMOUT 0 no 26 437 5 1 1
rsdecoderl 115 TO 1153 138 yes TO 644 141 4 0
rsdecoder2 196 2557 1783 53 yes TO 1258 53 12 1
rx_comm1l 253 N/A MEMOUT 0 no TO 4194 18 1 0
rx_commz2 156 N/A MEMOUT 0 no TO 4194 17 1 0
rx_comm3 99 N/A MEMOUT 0 no TO 4089 15 1 0
rx_comm4 195 N/A MEMOUT 0 no TO 7235 44 2 0
spil 578 103 811 27 yes TO 790 27 58 20
vgal 94 N/A MEMOUT 0 no 103 1783 8 1 1
vga2 507 N/A MEMOUT 0 no 1744 6291 29 5 3
vga3 861 N/A MEMOUT 0 no TO 7332 25 8 1
vgasd 561 N/A MEMOUT 0 no TO 7961 30 8 4
wbl 132 5 221 7 yes 3 86 7 1 1
whb2 132 5 183 4 yes 2 83 4 1 1
B. BMD with Window Partitioning 40 —

|

35 fdct2 —O—

fpud —3—
30 spil
rsdecoder2
vgal

25

The experimental results for the window partitioning tech-
nigue are shown in Table Ill. Algorithm 2 is implemented and
run with a fixed number of iterations & [k/step]) for each 20
instance. As in Table Il, each row corresponds to an instance 5 /
of the designs in Table | with different values of The same 1
notation for time-out and memory-out are also used. Again, s ‘7@
partial results are available for the time-out case and @& th olgd.éj —
memory-out case for iterations that fully complete. L e

The first column of Table Il indicates the instance name.

These are the same instances from Table Il so the results E#el0. Relative solutions vs. # partitions

comparable. The rest of the columns are divided into three se

of experiments with- set to2, 5 and 10 respectively. Columns from. This causes the peak memory to grow larger at higher
2-5 correspond te = 2, 6-9 forr = 5 and 10-13 for = 10. values ofr. For exampley sdecoder 1 shows a case where
Each set of experiments shows the run-time in seconds, p&k = 10 & memory-out condition with peak memory greater
memory in MB, the number of solutions returned as well d§an 8000 MB but » = 2 uses only727 MB and r = 5

if the actual error is found. uses3041 MB. However, the average memory reduction for

The benefit of the window partitioning technique is appat-= 2, 7 = 5, andr = 10 is 19%, 41% and49% respectively,
ent when looking at the number of memory-out conditioné@mpared to debugging the entire error trace, indicatirg th
compared with using the entire error trace. The number &fe general trend is still a decrease in the peak memory as
memory-out cases are5, 7 and 3 for » = 2, r = 5 and IS increased.

r = 10 respectively, compared witt0 for the full error trace. A similar occurrence happens for run-time as well. For
As expected the number of memory-out conditions decreameample,f pu3 has a time-out at = 10 while atr = 5
with smaller window sizes because the peak memory for thad » = 2 it is able to run to completion. This can be
entire run will be decreased with the use interpolants. explained in two ways. First, at larger valuesiothere are

From Table Ill, for the same instance, different valuesore iterations which can potentially increase the ruretim
of r produce different results with respect to memory-ouf the technique. Second, the run-time of the SAT instance
conditions. In some cases, larger values nfemory-out while is not necessarily proportional to the size of the instance
smaller ones run successfully. This can be explained becaugausing additional discrepancy between the differentesbf
the size of the interpolant is not necessarily proporticiwal ». Despite this variability, the reduction in run-time comgi
the SAT instance that the proof of unsatisfiability is dediveto a conventional debugger is still on avera$8so, 53% and

Relative Number of Solutions (%)
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TABLE Il
BMD wWITH WINDOW PARTITIONING RESULTS

[ Instance Info | Interpolant, r=2 i Interpolant, r=5 I Interpolant, r=10 ]

instance time (s) | mem (MB) | # sols | found || time (s) | mem (MB) | # sols | found || time (s) | mem (MB) | # sols | found
ac971 399 2621 34 yes 177 1016 34 yes 141 554 34 yes
ac972 976 3985 49 yes 390 1573 52 yes 266 1049 67 yes
div64bits1 TO 1992 5 no 452 1049 32 yes 306 1049 47 yes
div64bits2 176 1992 20 yes 194 950 19 yes 279 856 47 yes
fdctl N/A MEMOUT 0 no TO 4719 32 yes 1238 3251 62 yes
fdct2 N/A MEMOUT 0 no TO 4509 31 yes N/A MEMOUT 61 yes
fpul 627 6921 16 yes 592 3880 16 yes 758 2412 31 yes
fpu2 275 6501 4 yes 108 2726 4 yes 61 1468 4 yes
fpu3 590 6501 8 yes 2806 3355 60 yes TO 2726 30 yes
fpud N/A MEMOUT 0 no TO 5662 41 yes 1831 3355 44 yes
fxul N/A MEMOUT 0 no N/A MEMOUT 30 yes TO 7340 30 yes
fxu2 N/A MEMOUT 0 no TO 6711 26 yes TO 6082 31 yes
fxu3 N/A MEMOUT 0 no TO 6187 46 yes TO 5662 46 yes
mem ctrll N/A MEMOUT 0 no 486 6082 12 yes 206 2412 12 yes
mem ctrl2 N/A MEMOUT 0 no 180 4194 6 yes 92 2202 6 yes
rsdecoderl TO 727 80 no TO 3041 383 yes N/A MEMOUT 399 yes
rsdecoder2 1083 1678 65 yes 855 788 73 yes TO 4928 109 yes
rx_comm1l N/A MEMOUT 0 no N/A MEMOUT 0 no TO 7979 120 yes
rx_commz2 N/A MEMOUT 0 no N/A MEMOUT 0 no TO 5453 128 yes
rx_comma3 N/A MEMOUT 0 no TO 7025 119 yes TO 4404 150 yes
rx_comm4 N/A MEMOUT 0 no N/A MEMOUT 0 no TO 7550 127 yes
spil 165 543 36 yes 324 715 82 yes 101 379 84 yes
vgal 490 6187 9 yes 1126 3146 146 yes 1058 2412 160 yes
vga2 N/A MEMOUT 0 no N/A MEMOUT 0 no TO 6921 160 yes
vgas3 N/A MEMOUT 0 no N/A MEMOUT 0 no TO 5977 140 yes
vgad N/A MEMOUT 0 no N/A MEMOUT 0 no N/A MEMOUT 49 yes
wbl 4 131 7 yes 4 78 7 yes 4 88 7 yes
wh2 3 108 4 yes 3 76 4 yes 3 76 4 yes

59% for increasing values of indicating that overall smaller where the actual error is found also increases fidnio 22
windows still perform better. to 28 for increasing values of. This occurs due to the fact
The number of solutions returned by the window partthat window partitioning is able to solve instances at lange
tioning technique as varies for several sample designs iyalues without triggering a memory-out condition.
shown in Figure 10. The solutions are calculated relative toWhen compared to window expansion, window partitioning
the total number of potential suspects in the problem whid able to find the actual error in 100% of the instances at
are listed in Table I. A value of) indicates the problem » = 10 compared to window expansion finding the actual
did not return any results due to time-out or memory-ow@rror in 79% of the28 instances. While comparing the number
conditions. In this graphy = 1 corresponds to the stand-of instances that yield complete results without a time-out
alone debugger where the entire error trace is used. Notmememory-out conditiony = 10 solves14 instances while
that in most cases, the relative increase in suspects asvindow expansion is only able to successfully complgte
increases is relatively small. However, there can exisliayat instances. This outlines one of the major benefits of win-
such asr sdecoder 2. In this instance, the interpolant is adow partitioning over window expansion showing that using
weak constraint on the partition windows and results in iaterpolants can solve more instances while still mairtain
large increase in solutions. This outlines the trade-ofemh complete results.
using window partitioning. In cases where the debugging Comparing the results from Table Il and Table Ill, the result
problem requires excessive resources, the window panitiip show that both window expansion and window partitioning
technique effectively reduces the memory and run-time @t therform better in most instances than the full error trace
cost of a potential increase in the number of solutions. with respect to run-time and peak memory. There are several
outliers for both which occur for relatively small problems
. (less than 1000 seconds or 2 GB). This suggests for these
C. Unified BMD Methodology smaller problems running a conventional debugger is safftci
Figure 11 shows a comparison between a stand-alone debargd the BMD methodology may not be necessary. However for
ger, window expansion and window partitioning with respedarger problems (greater 1000 seconds or 2 GB), the advantag
to number of instances solved. Each instance is categorizddusing BMD is clear as more instances are solved and
as either able to find the actual suspect, not able to find teamatic reductions in run-time and peak memory are ataine
suspect due to time-out, or not able to find the suspect due tdrable IV shows a separate set of experiments comparing
memory-out. Both window expansion and window partitioninthe window expansion and window partitioning technique to
are able to find the error in more instances than a convertiodatermine the effect of the over-approximation of the wimdo
debugger which is only able to find the actual error in 21%artitioning technique. Instances that are able to coraplet
of the 28 cases. We can also see that the number of instancesre than 10 iterations1(0 time-frames) within the given
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""""""""""""""""""""""""""""""""""""""" O MEMOUT TABLE V

@ Fourg"™ UNIFIED ALGORITHM RESULTS
250l e
PR T N . instance time mem # extra | found
8 (s) (MB) sols | sols
G N B = fdct2 (- = 10) TO 6920 62 1 yes
g xul (r = 5) TO 7444 57 27 yes
S e B N e rsdecoderl(= 10) | N/A | MEMOUT | 404 | 5 yes
- N B B e e vgad ¢ = 10) TO 7759 48 -1 yes
0 Orig Expansion Partitioning Partitioning Partitioning . i . i i
=2 (=5  (=10) in the window partitioning experiments because the undolle
Method design with the interpolant is too large. However, in theecas
Fig. 11. Solved instances of the unified methodology the design is unrolled for fewer
TABLE IV frames resulting in the ability to analyze more of the error
COMPARISON OFWINDOW EXPANSION AND WINDOW PARTITIONING trace. In the case ofga4 however, fewer solutions are found
WITH 100TIME-FRAMES because of the unified methodology took longer to run due
Instance Tnfo || Window EXpansion Window Partitioning to the increase in the number of iterations. Considering a
(stride=50) (r=2) longer time-outvga4 would have found the same number of
instance ti(m)e (T/IeBT #I ti(m)e &%ﬂ)ﬂ #I solutions before the memory-out condition because it aecur
S sols S SoIs H . H H
57T T IE 753 110 1 2648 1 225 10 Qunng the calculgtlon of the interpolant which would be
ac972 4.7 759 7 20.18 429 7 identical for both instances.
fpul 320.04 | 4299 | 13 || 199.36 | 2202 | 15
fpu3 27566 | 4194 | 8 || 127.87 | 2411 | 8
foud 41735 | 4299 | 24 || 25832 2307 | 30 VIIl. CONCLUSION
rsdecoder2 || 168.77| 773 | 52 || 146.92| 586 | 56 Debugging today is a predominantly manual process that
spil 11.39 | 150 | 10 || 10.26 | 101 | 26

has become a bottleneck in the long and costly verification
cycle. This work introduces the Bounded Model Debugging

time and memory limit are chosen for Table Il. Each instandgethodology to help conventional debuggers handle instanc
is modified so that the suffix of the error trace uses at magt With long error traces. The first BMD technique is based on
time-frames. A stride 050 is used for the window expansionthe empirical observation that the error is more likely to be
technique and = 2 for the window partitioning technique. €xcited within close temporal proximity to the failure pbin
There is a small increase in the number of solutions acrdédteratively analyzes larger and larger bounded windofs o
most instances such ag971 andf pu4. However in certain the error trace until results are known to be complete. A
cases such aspi 1, the increase in the number of solutionsecond technique is also described in which the error trace
can be much larger () vs. 26) resulting in a great decrease inS Partitioned into non-overlapping windows each of which
resolution. From the discussion in Section VI, this confirm§ separately analyzed. A set of comprehensive theoretical
the methodology of favouring the window expansion techaiquesults are presented to guarantee the completeness of both
over the window partitioning technique because although @RProaches as well as an in-depth discussion of the two
average the over-approximation may not cause a great agecrdgchniques. Based on those results, a unified methodology is
in resolution, there are certain cases in which there can béatgr developed that leverages the strengths of both teahsi
large discrepancy. Since it is not known beforehand whethrset of extensive experiments on industrial designs show
the specific instance is one of these cases, it is generdfht the proposed framework finds the actual error in more
safer to use the window expansion technique if run-time afig@n 79% of cases with the first BMD technique and 100% of
memory resources allow it. cases with the second technique and only 21% of the cases
Table V shows experiments run using the unified methoddiithout the BMD methodology. The proposed methodology
ogy. The hardest instances from Table Il that cause a memof}{ows large debugging problems with very long traces to be
out but are able to finish at least one iteration are used sethsolved efficiently in terms of peak memory and run-time. The
experiments. The columns of the table list the instance nanfork presented here benefits existing debuggers as it allows
run-time, memory, number of solutions, additional solngio them to handle real-life industrial problems.
over Table Il and if the actual error is found. The number of
partitions ¢ = [k/step]) are listed beside the instance name IX. ACKNOWLEDGMENT
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