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Abstract

The Bounded Negativity Conjecture predicts that for any smooth complex
surface X there exists a lower bound for the selfintersection of reduced divisors
on X. This conjecture is open. It is also not known if the existence of such
a lower bound is invariant in the birational equivalence class of X. In the
present note we introduce certain constants H(X) which measure in effect the
variance of the lower bounds in the birational equivalence class of X. We focus
on rational surfaces and relate the value of H(P2) to certain line arrangements.
Our main result is Theorem 3.3 and the main open challenge is Problem 3.11.
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1 Introduction

In recent years there has been growing interest in constraints on negative curves on
algebraic surfaces. The Bounded Negativity Conjecture (BNC for short) is probably
the most intriguing open question in this area, see for example [7, Conjecture 1.2.1],
[3, Conjecture 1.1].

Conjecture 1.1 (Bounded Negativity Conjecture). For every smooth projective
surface X, there exists an integer b(X) such that C2 > −b(X) for every reduced
curve C ⊂ X.

This Conjecture is well known to be false in finite characteristic. In the present
paper we work therefore in the setting of complex algebraic varieties, where it re-
mains open.

Conjecture 1.1 is related to a number of interesting questions. The present note
is motivated by the following problem.

Problem 1.2 (Birational invariance of the BNC). Let X and Y be birationally
equivalent projective surfaces. Does BNC hold for X if and only if it holds for Y ?
In other words: is the bounded negativity property a birational invariant?
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Remark 1.3. Note, that a solution to the above problem is not known even if Y is
the blow-up of X in a single point.

Of course, if BNC is true in general, then the above problem has an affirmative
solution. However, even in that situation, it is still of interest to know how the
bounds b(X) and b(Y ) are related in terms of the complexity of a birational map
between X and Y .

In the present note we study Problem 1.2 for blow-ups Ys of P2 in arbitrary sets
of s points. A recent preprint by Ciliberto and Roulleau [4] addresses BNC on blow-
ups of P2 in general points. These two set-ups are quite different. It is predicted by
the Segre-Harbourne-Gimigliano-Hirschowitz (SHGH) Conjecture that (−1)-curves
are the only negative curves on blow-ups of P2 in general points, independent of
their number s. On the other hand, if one is allowed to pick any s points, it is
elementary to see that one can obtain reduced curves C for which C2 is arbitrarily
negative by allowing s to grow. This raises the question of the boundedness of C2/s;
see Problem 3.11. Our main result, Theorem 3.3, shows that C2/s > −4 for reduced
curves C on Ys which are strict transforms of configurations of lines in P2. In fact,
all examples that we know, of reduced curves C for which C2/s 6 −2, are strict
transforms of configurations of lines. This has led to our expectation that the most
negative values of C2/s come from configurations of lines, but we have not been
able to prove this so far. We also include a short discussion of the only two line
arrangements we know of for which C2/s 6 −3.

2 Local negativity

Let X be a smooth projective surface for which Conjecture 1.1 is true (such as
X = P2) and let C be a reduced curve on X. Let s be a positive integer and let
P1, . . . , Ps be mutually distinct smooth points on C. Finally, let f : Y → X be the
blow-up of X at the points P1, . . . , Ps with exceptional divisors E1, . . . , Es. Then
for the proper transform

C̃ = f∗C −
s∑

i=1

Ei,

we have C̃2 = C2−s > −b(X)−s, hence b(Y ) > b(X)+s. So it is easy to find surfaces
birational to a given surface and carrying arbitrarily negative curves. In order to
avoid trivial situations of that kind, we introduce the following H–constants, which
measure the local negativity of curves on surfaces (in analogy to the local positivity
measured by Seshadri constants).

Definition 2.1 (H–constants). Let X be a smooth projective surface and let P =
{P1, . . . , Ps} be a set of mutually distinct s > 1 points in X. Then the H–constant
of X at P is defined as

H(X;P) := inf
(f∗C −

∑s
i=1 multPi C · Ei)

2

s
, (1)

where f : Y → X is the blow-up of X at the set P with exceptional divisors
E1, . . . , Es and the infimum is taken over all reduced curves C ⊂ X.
Similarly, we define the s–tuple H–constant of X as the infimum

H(X; s) := inf
P
H(X;P),
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where the infimum now is taken over all s–tuples of mutually distinct points in X.
Finally, we define the global H–constant of X as

H(X) := inf
s>1

H(X; s).

We note that H–quotients of the curves C̃ defined at the beginning of this section
are bounded

C̃2

s
=
C2

s
− 1 > min(C2 − 1,−1) > min(−b(X)− 1,−1).

The relation between the H–constants and the BNC is explained in the following
way. Suppose that H(X) is a finite number (typically a negative number). Then for
any s > 1 and any reduced curve D on the blow-up of X in s points, we have

D2 > sH(X).

Hence BNC holds on all blow-ups of X at s mutually distinct points. On the other
hand, if H(X) = −∞, then BNC might still be true.

It doesn’t come as a surprise that H–constants are very hard to compute in
general. Therefore as the first step towards understanding them, in the next section,
we restrict our attention to blow-ups of the projective plane and to curves C coming
from configurations of lines. Restricting to configurations of lines might seem to be
a strong restriction, but perhaps in fact it is not; see Problem 3.11.

3 Linear local negativity

In this section we are interested in configurations of lines in the projective plane. By
such a configuration we understand a family L = {L1, . . . , Ld} of mutually distinct
lines Li. Let P(L) = {Q1, . . . , Qs} be the set of points in P2, where at least two of
the lines in L meet; we call these points singular points of the configuration. For
a point Q ∈ P2, denote by mQ(L) the number of lines in L passing through that
point.

Now we are in a position to introduce the following variant of Definition 2.1.

Definition 3.1. Let P = {P1, . . . , Ps} be a set of mutually distinct s > 1 points in
the projective P2. Then the linear H–constant at P is defined as

HL(P) := inf
L
HL(P,L),

where for a configuration L we have

HL(P,L) =
d2 −

∑s
i=1mPi(L)2

s
. (2)

Similarly as before, we define the s–tuple linear H–constant as the infimum

HL(s) := inf
P
HL(P),

where now the infimum is taken over all s–tuples of mutually distinct points in P2.
Finally, we define the global linear H–constant of P2 as

HL := inf
s>1

HL(s).
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Remark 3.2. Note that the quotient on the right in (2) agrees with the quotient
under the infimum in (1) for C taken as the union of all lines in L. Note also that
it is not required that the points Pi are the singular points of the configuration or
even that for each of them there is a configuration line passing through. It turns out
however that the quotient (2) is usually minimal when these conditions are fulfilled;
see Corollary 3.8.

Our main result is the following bound on the constant HL. The main point is
that the bound holds for an arbitrary number of points s. Moreover the bound is
very explicit and close to optimal (see Remark 3.9). This is considerable progress
when compared to [2, Section 3.8], where this subject was first taken on.

Theorem 3.3 (Bounded linear negativity on P2). With the above notation, we have

HL > −4.

The main ingredient in the proof of this Theorem is the following inequality due
to Hirzebruch combined with some ad hoc arguments. For k > 2, let tk(L) denote
the number of points where exactly k lines from L meet.

Theorem 3.4 (Hirzebruch inequality). Let L be an arrangement of d lines in the
complex projective plane P2. Then

t2 +
3

4
t3 > d+

∑
k>5

(k − 4)tk, (3)

provided td = td−1 = 0.

Proof. See [9, Section 3 and page 140].

Remark 3.5. Various refinements of the above inequality are known; see for ex-
ample formula ∗(10) on page 141 in [1]. However they don’t contribute towards
improving the lower bound in Theorem 3.3.

Remark 3.6. The proof of the Hirzebruch inequality is based on the logarithmic
Miyaoka–Yau–Sakai inequality, which assumes the complex numbers. See [2, Ap-
pendix] for a detailed proof and some relevant comments.

Before proving our main result, we observe the next simple fact relating how
H-constants HL(P,L) change when the set of points P is modified.

Lemma 3.7. Let L be a line configuration and let P be a set of s points. Let P′ be
obtained from P by adding an additional point Q ∈ P2. Then HL(P′,L) is a weighted
average of HL(P,L) and −mQ(L)2. Precisely,

(s+ 1)HL(P′,L) = sHL(P,L)−mQ(L)2.

Proof of Theorem 3.3. To prove the theorem, we will show that for any configuration
of lines L and points P we have HL(P,L) > −4. First suppose P = P(L) is the full set
of singularities of L. Say L has d lines and s singularities, and let tk for k > 2 denote
the number of singularities of multiplicity k. To apply the Hirzebruch inequality, we
must first deal with the cases where either td or td−1 is nonzero. We assume d > 4
to avoid trivialities.

Case td = 1. In this case all lines in L belong to a single pencil. There is a
single singularity of multiplicity d, P is just the singular point, and HL(P,L) = 0.
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Case td−1 = 1. This case is called a quasi–pencil by Hirzebruch. We have
t2 = d− 1 and all other numbers ti vanish. In this situation we find

HL(P,L) = −2 +
3

d
.

Case td = td−1 = 0. We now use the Hirzebruch inequality and the following
two obvious equalities

a) s = t2 + . . .+ td, b)

(
d

2

)
=

d∑
k>2

tk

(
k

2

)
. (4)

to estimate the HL-constant

HL(P,L) =
d2 −

∑
k>2 k

2tk

s
.

By the combinatorial equalities a), b), and the Hirzebruch inequality, we have∑
k>2

k2tk = 2
∑
k>2

(
k

2

)
tk +

∑
k>2

(k − 4)tk + 4
∑
k>2

tk

= d2 − d− 2t2 − t3 +
∑
k>5

(k − 4)tk + 4s

6 d2 − 2d− t2 −
1

4
t3 + 4s.

We conclude

HL(P,L) =
d2 −

∑
k>2 k

2tk

s
> −4 +

2d+ t2 + 1
4 t3

s
> −4.

Next, fix a configuration L and let P be arbitrary. If HL(P,L) > −1 we are
done, so assume HL(P,L) 6 −1. Let P′ = P ∩ P(L) be the subset of points in
P which are singular for L. Then we can use Lemma 3.7 to compute HL(P,L)
from HL(P′,L) by repeatedly including new points Q with −mQ(L)2 > −1. It
follows that HL(P′,L) 6 HL(P,L). Replacing P by P′ if necessary, we may assume
P ⊂ P(L).

We finally use Lemma 3.7 to compute HL(P(L),L) from HL(P,L) by repeatedly
including new points Q with −mQ(L)2 6 −4. Since HL(P(L),L) > −4, we conclude
HL(P,L) > HL(P(L),L) > −4, completing the proof.

The next corollary follows immediately from the proof of the theorem.

Corollary 3.8. If L is any configuration of lines with HL(P(L),L) 6 −1, then

inf
P
HL(P,L) = HL(P(L),L).

Furthermore, if td = td−1 = 0 then

HL(P(L),L) > −4 +
2d+ t2 + 1

4 t3

s
.

Remark 3.9. The theorem shows that HL is a well-defined real number. A natural
question is whether there is a certain line configuration with ratio HL or if HL is
only a limit of ratios from a sequence of configurations. The least constant HL(P,L)
known to us so far is −225

67 ≈ −3.36; see section 4.2. There is also an example with
HL(P,L) = −3 (see section 4.1).
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The assumption of reducedness is essential, as we now show.

Example 3.10 (The effect of fattening of the configuration). Let L be a configu-
ration of lines and P a configuration of points, and let k > 2 be an integer. Let
kL denote the configuration arising from L by taking all configuration lines with
multiplicity k. Then it is easy to see that

HL(P, kL) = k2 ·HL(P,L).

The smallest known values of the constants H(P2;P) come from line configura-
tions. It is therefore reasonable to ask the following question.

Problem 3.11. Does the lower bound −4 remain valid for H(P2)? Or, more di-
rectly: is H(P2) = HL?

As Corollary 3.8 shows, the least HL–constants are typically achieved by taking
the set of points P as the set of singularities in a configuration L. In this case, if d is
the number of lines of a line arrangement L, s is the number of points of intersection
of these lines (with P = P(L)), and the number of lines meeting at the ith point is

mi, then d(d−1) =
∑

imi(mi−1). Thus
d2−

∑
i m

2
i

s = HL(P,L) =
d−

∑
i mi

s = d
s −m,

with m = 1
s

∑s
i=1mi, the average of the multiplicities mi.

If we now define m to be such that d(d − 1) = sm(m − 1) (and hence d2/s >
(m − 1)2 or d√

s
+ 1 > m), then it follows by Lemma 3.13 that HL(P,L) > d

s −m
(and hence HL(P,L) > d(1s −

1√
s
)− 1 > − d√

s
− 1).

Remark 3.12. As an aside we mention that this bound holds for all ground fields
in all characteristics. For example, if one takes L to be all of the lines defined over
a finite field of q elements and P to be all of the points defined over that field, then
s = d = q2 + q + 1 and m = q + 1, so HL(P,L) = −q = −(m − 1). Thus, over
an algebraically closed field of finite characteristic, HL = −∞, so the question of
what is the value of HL, is of interest only in characteristic 0. In fact, note that any
line arrangement L′ and choice of points P′ defined over a finite field of q elements
has d′ 6 q2 + q + 1 lines and s′ 6 q2 + q + 1 points with multiplicity m′i 6 q + 1
at each point, so s′m′(m′ − 1) =

∑
im
′
i(m

′
i − 1) 6 s′q(q + 1) 6 sq(q + 1), hence

HL(P′,L′) > d′

s′ −m
′ > −m′ > −q − 1. Therefore, for any s′ points defined over a

finite field of q elements we have HL(s′) > −q − 1.

Lemma 3.13. Consider any finite set of s positive integers mi. Let m be the average
and let m be defined so that

∑
imi(mi−1) = sm(m−1). Then m > m with equality

if and only if all mi are equal.

Proof. If we let c =
∑

imi(mi − 1)/s, then m = (1 +
√

1 + 4c)/2. As is well known
and easy to prove,

∑
im

2
i /s > m2, with equality if and only if all mi are equal. Thus

c =
∑

imi(mi − 1)/s > m2 − m, so 1 + 4c > 4(m2 − m) + 1 = (2m − 1)2, hence
m = (1 +

√
1 + 4c)/2 > m, with equality if and only if all mi are equal.

In those cases where the mi are all equal, we of course have mi = m = m, but
(over the complex numbers) we know of only one such nontrivial configuration with
m > 2, and hence m = 3 by the Hirzebruch inequality (3). This configuration is the
dual of the Hesse configuration, for which d = 9, s = 12 (under duality, the 9 lines
are the flex points of a smooth plane cubic, and the 12 points are the lines through
pairs of flex points). The series of examples below are constructed in a similar way.
We call the resulting configurations s-elliptic.
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Theorem 3.14. Let s be a positive integer. There exists an arrangement of s2

mutually distinct lines with

t3(s
2) :=

{
1
6(s2 − 1)(s2 − 2) for s not divisible by 3;

1
6

(
(s2 − 1)(s2 − 2) + 16

)
for s divisible by 3;

triple points. Moreover, there are additional s2−1 double points in the first case and
respectively s2 − 9 in the second case (so that for s = 3 there are no double points
at all).

Proof. Let E be an elliptic curve in the complex projective plane given by Weier-
strass equation

y2z = x3 + axz2 + bz3.

It is well known that taking the point at infinity e = (0 : 1 : 0) as the neutral element
for addition on E, the group law is defined geometrically, i.e.

P +Q+R = e if and only if P,Q,R ∈ E are collinear. (5)

Let Es denote the subgroup of E consisting of s–torsion points. Then there is an
isomorphism Es ' (Z/sZ)2. Under this isomorphism s–torsion points P,Q,R are
collinear if and only if their sum (in (Z/sZ)2) is equal zero. Moreover if P and Q
are two s–torsion points on E, then the line joining these points (or the tangent if
P = Q) intersects E in another s–torsion point. Now we need to count those lines
which pass through exactly 3 mutually distinct s–torsion points. Their number is
equal to the number of unordered triples P,Q,R ∈ (Z/sZ)2 such that these three
points are all distinct and their sum is zero.

There are s4 ordered triples (P,Q,R) satisfying P + Q + R = 0 (of course R is
determined by P and Q). All triples with at least two points equal are of the form

(P, P,−2P ), (P,−2P, P ) or (−2P, P, P ). (6)

Now the counting splits according to divisibility of s by 3. If s is not divisible by
3, then there are no nonzero three–torsion points in Es, therefore there are exactly
3(s2 − 1) + 1 triples as in (6). Thus there are exactly s4 − 3(s2 − 1) − 1 ordered
triples consisting of three distinct points. For P distinct from zero triples as in (6)
give lines passing through only two points. We have 3(s2−1) such triples. We don’t
consider the tangent line through 0, which corresponds to the triple (0, 0, 0). Passing
to unordered triples we need to divide by 6 the number of triples with 3 distinct
elements and by 3 the number of triples with one element repeated. Dualizing the
above picture we get the first case of the Theorem.

If s is divisible by 3 then all 9 three–torsion points are in Es, therefore there are
exactly 3(s2 − 9) + 9 triples as in (6). Now there are 9 three–torsion points so that
the number of pairs with only one element repeated is 3(s2 − 9). Counting further
analogously as above and dualizing we obtain the second case of the Theorem.

Since in the complex projective plane the dual Hesse configuration is the unique
nontrivial configuration of lines with only triple intersection points that we know of,
it is a natural problem of independent interest to wonder if this is in fact the only
such configuration. The following problem might be viewed as a first step towards
understanding configurations having only triple points.

Problem 3.15. Let L = {L1, . . . , Ls} be a configuration of lines with only triple
intersection points. Can L be equipped with a group structure?
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Of course, the question above has an affirmative answer for the dual Hesse con-
figuration. A possible way to introduce a group structure on a configuration L with
only triple intersection points would be as follows. We fix one configuration line, say
L1 and declare it as the neutral element. If a line L intersects L1 in some point P ,
then the third line passing through P will be −L. This explains the addition for lines
L,M in the same pencil as L1. For the general case, assume that the intersection
point P = L ∩M does not belong to L1. Let N be the third line passing through
P . Then we set L+M = −N . We were not able to verify if this construction does
indeed lead to a group structure on L.

In the next section, we discuss some other interesting configurations coming from
unitary reflection groups and compute their linear H–constants.

4 Arrangements of lines with low linear H–constants

As an alternative to asking for configurations with only triple points, one can ask
for configurations with no double points. We know of only three kinds of line ar-
rangements (over the complex numbers) for which there are no double points.

For the first, one generalizes the dual of the Hesse configuration. Recall that
the original Hesse configuration consists of 12 lines passing through the flexes of a
smooth plane cubic. The 9 lines of its dual can be taken to be the linear factors of
(y3− z3)(x3− z3)(x3− y3). The generalization consists of the lines Ln given by the
factors of (yn − zn)(xn − zn)(xn − yn) for n > 3. Urzúa calls the resulting configu-
rations Fermat arrangements [11, Example II.6]. The corresponding points are the
n2 points of intersection of xn− zn = 0 and yn− zn = 0, together with the three co-
ordinate vertices. The three coordinate vertices occur with multiplicity n; the other
n2 points are triple points. For these we have HL(P(Ln),Ln) = 3n−3n−3n2

n2+3
> −3

with limn→∞HL(P(Ln),Ln) = −3.
There are only two other arrangements L with no double points that we know

of, one due to Klein [10] with 21 lines (for which HL(P(L),L) = −3) and another
due to Wiman [12] with 45 lines (for which HL(P(L),L) = −225

67 ≈ −3.36). These
are essentially the only line arrangements we know of with HL(P(L),L) 6 −3; we
will see in §4.3 that certain subconfigurations of the Wiman configuration have this
property too.

The examples above, i.e., the Fermat, Klein and Wiman arrangements, also are
interesting for another reason. Let I(P ) ⊂ C[x, y, z] be the homogeneous ideal of a
point P ∈ P2. Then the homogeneous ideal of a finite set of points {P1, . . . , Ps} ⊂ P2

is I =
⋂

i I(Pi), and the mth symbolic power of I can be defined to be I(m) =⋂
i I(Pi)

m. It is typically quite rare to have a failure of containment I(3) 6⊆ I2. But
if I is the ideal of the points of intersection of the lines for any of these three cases,
we have I(3) 6⊆ I2 (see [5, 8] for the Fermat arrangements). We suspect that the
same holds for s-elliptic configurations, but we are not dwelling on this problem
here.

We hope to come back to the ideal theoretic properties related to configurations
of lines in a separate paper in the near future.

Now we address the two exotic configurations in more detail.
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4.1 The Klein configuration of 21 lines

The Klein configuration is a projective configuration of 21 lines whose intersections
consist of precisely 21 quadruple points and 28 triple points, defined over R[

√
−7].

In this case HL(P(L),L) =
d−

∑
i mi

s = 21−168
49 = −3. The projective coefficients

(α : β : γ) for each of the lines α · x+ β · y + γ · z = 0, taken from [6] and numbered
1 through 21, are as follows:

1 : (1 : 0 : 0) 2 : (0 : 1 : 1) 3 : (a : 1 : −1)
4 : (a : −1 : 1) 5 : (0 : −1 : 1) 6 : (1 : a : −1)
7 : (a : −1 : −1) 8 : (−1 : 1 : a) 9 : (a : 1 : 1)
10 : (−1 : a : 1) 11 : (−1 : −1 : a) 12 : (1 : 0 : 1)
13 : (−1 : a : −1) 14 : (1 : a : 1) 15 : (−1 : 0 : 1)
16 : (1 : −1 : a) 17 : (1 : 1 : a) 18 : (0 : 0 : 1)
19 : (−1 : 1 : 0) 20 : (1 : 1 : 0) 21 : (0 : 1 : 0)

Here a is a complex root of x2 +x+2, so the other root is −(a+1). Now we present
projective coordinates of points of intersection of the 21 lines above:

quadruple points

1 : (1 : 0 : 0) 2 : (1 : −a− 1 : −1) 3 : (1 : a+ 1 : 1)
4 : (1 : −a− 1 : 1) 5 : (1 : −1 : 1 + a) 6 : (0 : 1 : 1)
7 : (a+ 1 : −1 : 1) 8 : (0 : 0 : 1) 9 : (a+ 1 : −1 : −1)
10 : (a+ 1 : 1 : 1) 11 : (1 : 0 : −1) 12 : (1 : 1 : a+ 1)
13 : (1 : −1 : 0) 14 : (a+ 1 : 1 : −1) 15 : (1 : a+ 1 : −1)
16 : (1 : 0 : 1) 17 : (0 : 1 : −1) 18 : (1 : 1 : 0)
19 : (1 : −1 : −1− a) 20 : (1 : 1 : −1− a) 21 : (0 : 1 : 0)

triple points

22 : (0 : 1 : a) 23 : (0 : 1 : −a) 24 : (a : −1 : 0)
25 : (0 : a : −1) 26 : (−a+ 1 : 1 : −1) 27 : (1 : −1 : a− 1)
28 : (1 : 1− a : 1) 29 : (a : 1 : 0) 30 : (1 : −a : 0)
31 : (1 : −1 : 1− a) 32 : (1 : 1 : a− 1) 33 : (1 : 0 : a)
34 : (1 : a : 0) 35 : (1 : −1 : 1) 36 : (1 : a− 1 : 1)
37 : (0 : a : 1) 38 : (a− 1 : 1 : 1) 39 : (a : 0 : 1)
40 : (1 : 1 : −1) 41 : (1 : 1 : 1) 42 : (1 : 0 : −a)
43 : (1 : 1 : −a+ 1) 44 : (a− 1 : 1 : −1) 45 : (1 : −a+ 1 : −1)
46 : (1 : a− 1 : −1) 47 : (a− 1 : −1 : −1) 48 : (1 : −1 : −1)
49 : (a : 0 : −1)

The first 21 points are the points where 4 lines meet. The remaining 28 points are
where exactly 3 lines meet. Moreover, each line contains 4 of the first 21 points
and 4 of the last 28 points. The following array is the incidence matrix for the
configuration, so the entry in row i and column j has a 1 if and only if line i
contains point j.

5 10 15 20 25 30 35 40 45

. . . . . . . . .

1 0000010100000000100011101000000000001000000000000

2 1000001000000100100000000100000000100001000100000

3 0100010000010100000000000011010010000000000000000
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4 0010011000000000001000000000000001000000011001000

5 1000010011000000000000000000000000000100100000110

6 0000001000010011000001010000001000000000000000100

7 0000100010000010100000000000000111010000000000000

8 0000000001000010011000001101000000000010000000000

9 0001000001000000100100000000011000000000010010000

10 0100100001000001000000100000100000000000001100000

11 0100001000001000000100000000000000011110000000000

12 0100000000100010000010000000000000000001000011010

13 0001000000100100001001000000100100000100000000000

14 0010000010100000000100110110000000000000000000000

15 0011000000000001000010000001000000110000100000000

16 0010100000000100010000000000000000001000000010101

17 0001000010011000000000001000000000000000000101001

18 1000000000001000010010010000110001000000000000000

19 0000000100010000010100000000000100000001101000000

20 0000100100001000001000000010001000100000000000010

21 1000000100100001000000000000000010000010010000001

4.2 The Wiman configuration of 45 lines

The Wiman configuration is a projective configuration of 45 lines whose 201 inter-
sections consist of precisely 36 quintuple points, 45 quadruple points, and 120 triple

points. In this case HL(P(L),L) =
d−

∑
i mi

s = 45−720
201 = −225

67 ≈ −3.36. This is
the most negative example we know. We define A and B in terms of an algebraic
element a whose minimal polynomial is a4−a2 + 4. Then A = −(a3−3a−2)/4 and
B = (a3 + a− 2)/4.

Then the coefficient vectors of the lines are:

1 : (0 : 1 : 0) 2 : (A− 1 : A : 1) 3 : (0 : 0 : 1)
4 : (−A+ 1 : A : −1) 5 : (A : 1 : A− 1) 6 : (−A : 1 : −A+ 1)
7 : (A− 1 : −B : −AB −A) 8 : (−A+ 1 : −B : AB +A) 9 : (−A+ 1 : A : 1)
10 : (A : 1 : −A+ 1) 11 : (−1 : A− 1 : A) 12 : (−AB − 1 : 1 : −B − 1)
13 : (−A+ 1 : B : −AB −A) 14 : (A : −AB +B : −B − 1) 15 : (−AB −A : −A+ 1 : −B)
16 : (A− 1 : A : −1) 17 : (−A : 1 : A− 1) 18 : (1 : A− 1 : −A)
19 : (AB + 1 : 1 : B + 1) 20 : (A− 1 : B : AB +A) 21 : (−A : −AB +B : B + 1)
22 : (AB +A : −A+ 1 : B) 23 : (B + 1 : −AB − 1 : 1) 24 : (1 : A− 1 : A)
25 : (1 : −A+ 1 : A) 26 : (−AB − 1 : 1 : B + 1) 27 : (−A−B : AB +A− 1 : 0)
28 : (−B : 1 : −AB −A+B) 29 : (−AB − 1 : −1 : B + 1) 30 : (−B − 1 : A : −AB +B)
31 : (−B − 1 : −AB − 1 : −1) 32 : (A+B : AB +A− 1 : 0) 33 : (B : 1 : AB +A−B)
34 : (B + 1 : A : AB −B) 35 : (AB +A− 1 : 0 : −A−B) 36 : (1 : 0 : 0)
37 : (−B − 1 : A : AB −B) 38 : (0 : −A−B : AB +A− 1) 39 : (−B : 1 : AB +A−B)
40 : (B + 1 : −B : −A+B + 1) 41 : (1 : −AB : −AB −A+B + 1) 42 : (0 : −A−B : −AB −A+ 1)
43 : (B + 1 : AB + 1 : −1) 44 : (A+B : 0 : −AB +B + 1) 45 : (B : A−B − 1 : −B − 1)

The coordinates of the configuration points can be then easily calculated. We refrain
however from an explicit but somewhat lengthy list and content ourselves with the
remark that the points are equidistributed in this case as well. There are 4 quintuple,
4 quadruple and 8 triple points on each of the configuration lines.

4.3 Subconfigurations of special configurations

We close the paper by noting that the Wiman and Klein configurations also have
subconfigurations L′ ⊂ L with highly negative constants HL(P(L′),L′) by the next
result.
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Proposition 4.1. Let L be a configuration of d lines and let P = P(L) be the set
of singularities of L. Suppose each line in L contains the same number n of points
of P. Let L′ ⊂ L be a subconfiguration of d′ lines. Then

HL(P,L′) = HL(P,L) +
(d− d′)(n− 1)

s
.

Proof. Say P = {Q1, . . . , Qs} and put mi = mQi(L) and m′i = mQi(L
′). Observe

that d′(d′ − 1) =
∑

im
′
i(m

′
i − 1) since P contains the singularities of L′. Also, since

every line in L contains n points of P, we have (d − d′)n +
∑

im
′
i =

∑
imi. We

conclude

HL(P,L′) =
d′ −

∑
im
′
i

s
=
d′ + (d− d′)n−

∑
imi

s
= HL(P,L) +

(d− d′)(n− 1)

s
,

as claimed.

Remark 4.2. With the hypotheses of the proposition, suppose HL(P(L),L′) 6 −1.
Then we have an inequality

HL(P(L′),L′) 6 HL(P(L),L′) = HL(P(L),L) +
(d− d′)(n− 1)

s

as in the proof of Theorem 3.3. However, for “large” subcollections L′ ⊂ L we often
have an equality P(L′) = P(L).

Example 4.3. Here are some explicit applications of Proposition 4.1 to the Wiman
configuration L. Let L′ ⊂ L be a subcollection and let L′′ = L− L′ be its comple-
ment.

If L′′ is a single line, then HL(P(L′),L′) = −220
67 ≈ −3.28.

Next suppose L′′ is a pair of lines. ThenHL(P(L),L′) = −215
67 ≈ −3.21 regardless

of what pair of lines L′′ is. If the lines in L′′ meet at a point of multiplicity at least 4 in
L, then P(L′) = P(L) and HL(P(L′),L′) = −215

67 . On the other hand, if they meet at
a point Q of multiplicty 3 in L then L′ has only 200 singularities, P(L) = P(L′)∪{Q},
and mQ(L′) = 1. We use Lemma 3.7 to compute HL(P(L′),L′) = −161

50 = −3.22.
Similar computations of the constants HL(P(L′),L′) can be performed as the

size of L′′ grows, but the combinatorics of L obviously plays an important role in
determining all the constants obtainable in this way.
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