
Bounded Parallelism in Array Grammars
Used for Character Recognition

Henning Fernau 1. and Rudolf Freund 2

1 Wilhelm-Schickard-Institut fiir Informatik, Universits Tfibingen
Sand 13, D-72076 Tfibingen, Germany

emaih f ernau@inf ormat ik. uni-tuebingen, de

2 Institut ffir Computersprachen, Technische Universit/i.t Wien
Resselgasse 3, A-1040 Wien, Austria
email: freund~}csdec 1. tuwien, ac. at

A b s t r a c t . The aim of this paper is to elaborate the power of cooperation
in generating and analysing (handwritten) characters by array grammars.
We present various non-context-free sets of arrays that can be generated
in a simple way by cooperating distributed array grammar systems with
prescribed teams working in different modes and show the power of the
mechanism of cooperation for picture description and analysis as well as
the efficiency of these models where several sets of productions work in
parallel on the given sentential form.

1 I n t r o d u c t i o n

Cooperation of agents is a usual strategy for approaching complex problems. This
strategy is supposed to increase the total competence of the individual agents
working together for solving a common task. The recognition of specific patterns
like (handwritten) characters can be seen as such a complex task that might
be attacked by several agents working in parallel on the underlying pattern.
Moreover, the forming of different teams of specialized agents working on the
pattern in different modes during subsequent stages of the recognition procedure
can improve the overall efficiency.

Cooperating array systems turned out to be quite useful for picture represen-
tation, "simple" systems being able to describe "complicated" sets of pictures [7].
A similar conclusion was obtained for picture description by using programmed
array grammars [12], which, in fact, are grammar systems provided with a con-
trol on sequencing the work of components. Also the matr ix array grammars
introduced in [23] can be considered as a particular case of grammar systems;
they consist of two components, the horizontal and the vertical one, working
first in the horizontal and then in the vertical one, until producing an array that
cannot be~ processed any more (which resembles the t-mode of derivation in [5],
[6]).

* Supported by Deutsche Forschungsgemeinschaft grant DFG La 618/3-1.

41

Cooperating string grammar systems were introduced in [17] and further de-
veloped in [5]. In cooperating distributed (array) grammar systems, a finite num-
ber of components, i.e., sets of (array) productions, cooperates guided by a spe-
cific strategy, e.g., an activated component can perform an arbitrary number
of derivation steps, exactly k derivation steps, at least k derivation steps, or at
most k derivation steps; in the maximal derivation mode (t-mode), the activated
component has to work as long as possible. The generative power of cooperating
distributed grammar systems with several variants of cooperation strategies has
been studied in many papers (for details the reader is referred to [6]); cooperat-
ing distributed array grammar systems were investigated in [7]. The formation
of teams of productions as another method of cooperation was considered in [14]
(where all possible teams of a constant size were considered) and in [20] (where
the more flexible formation of prescribed teams was introduced).

In this paper, we restrict ourselves to two-dimensional array grammar sys-
tems with prescribed teams in order to obtain concise but depictive representa-
tions of the pictures in our examples; yet we think that already these results we
elaborate in this paper demonstrate the power which evolves from cooperation
when using prescribed teams in the case of array grammars. In particular, we
sketch how these grammar systems can actually be employed for character recog-
nition purposes. On the other hand, one of the advantages of array grammars is
given by the simplicity to cover also higher dimensions (e.g., see [3]); in the same
way, the mechanism of cooperation in array grammar systems can be extended
to higher dimensions in an obvious and easy way, e.g., three-dimensional array
grammar systems with prescribed teams promise to be an interesting tool for
the generation and the analysis of three-dimensional objects.

In the next section, (two-dimensional) arrays and array grammars are defined,
whereas in the third section array grammar systems with prescribed teams of
array productions and the different derivation modes are introduced; we present
some examples for languages of rather complicated pictures which can easily be
described by array grammar systems with prescribed teams of array productions.
In the fourth section, we describe how (handwritten) characters can be analysed
by using suitable array grammar systems with prescribed teams of array pro-
ductions; a short discussion of the results exhibited in this paper and an outlook
to future research topics conclude the paper.

2 A r r a y s a n d A r r a y G r a m m a r s

The reader is assumed to be familiar with the basic notions and results of formal
language theory (e.g., see [8], [22]). Hence, in this section we only introduce the
definitions and notations for arrays and array grammars ([4], [7], [11], [12], [21]).

For an alphabet V, by V 2+ we denote the set of two-dimensional non-empty
finite and connected arrays of symbols in V (patterns obtained by marking with
symbols in V a finite number of unit squares of the plane; as neither the origin
nor the axes of the plane are fixed, each pattern is identified by its marked
squares, without reference to its "position" in the plane). The elements of V 2+

42

are called pictures (arrays) over V and sets of pictures (arrays) are called array
languages.

Given an array x E V 2+ (for some alphabet V) and a finite pat tern a of
symbols in V U {#}, we can say that a is a sub-pattern of x, if we can place
a on x such that all squares of a marked by symbols in V coincide with the
corresponding symbols in x and each blank symbol # in a corresponds to a
blank symbol # in x.

An (isometric) array grammar is a construct G = (VN, # , VT, S, P) , where
VN, VT are disjoint alphabets, # is a special (blank) symbol, S E N, and P is
a finite set of rewriting rules of the form a ---*/~, where a,j3 are finite patterns
over VN U VT (A {#} satisfying the condition that the shapes of a and /~ are
identical (we say that they are isometric); for a more precise definition of array
grammars , the reader is referred to [4], [12], [18], or [21].

Thus, for an array g rammar G = (V N , # , V T , S , P) we can define the re-
lation x ~ y, for x , y E (VN U VT) 2+, if there is a rule ~ --. t3 E P such
tha t c~ is a sub-pat tern of x and y is obtained by replacing c~ in x by fl (re-
member tha t c~ and f? are isometric). The reflexive and transitive closure of

is denoted by =:=:~*, and the array language generated by G is defined by
L(G) = { x �9 V~ + [S ~ * x } . An array production a --+ fl in an array g rammar
is said to be

1. monotone if the non -# symbols in a are not replaced by # in/?,
2. #-context-free if a consists of exactly one nonterminal and some occurrences

of blank symbols # ,
3. context-free if it is #-context-free and ~ contains no symbol # ;
4. regular, if it is of one of the following forms:

A __+ B a , A # ___+ a B , ~A _._. B A a ! A ' B E VN '
a ' # - - ~ B ' A- -~a , where (a � 9

An array g r a m m a r is said to be of type E N U M A , M O N A , ~ - CFA, CFA,
or R E G A , respectively, if every array production in P is arbitrary, monotone, # -
context-free, context-free, or regular, respectively. The same notat ion is used for
the corresponding (families of) array languages. These families of array languages
form a Chomsky-like hierarchy [4]: R E G A C C F A C M O N A C E N U M A .

3 P r e s c r i b e d t e a m s

The definition of the parallel application of a constant number of array produc-
tions to a given array is the crucial point in the definition of array grammars
with prescribed teams of array productions. For the definition of (string) gram-
mars with prescribed teams of context-free (string) productions the reader is
referred to [20]. An array grammar system with prescribed teams is a construct
G = (VN, # , VT, S, (R, T)) , where VN and VT are finite disjoint sets of non-
terminal and terminal symbols, respectively, # ~ VN (A VT is the blank symbol,
S E VN is the start symbol, R is a (non-empty) finite set of (non-empty) finite

43

sets of array productions over VN U VT, and T is a (non-empty) finite set of
teams, where each team is a (non-empty) subset of R, i.e.,

R = { R h l l < h < n } , n ~ l,
Rh = {Ph3 I i < l < nh } , 1 < h < n, nh :> 1,

where the PhJ are array productions over VN U VT,
T = { Q i] l < i < m } , m > _ l ,
O i = { Pi,j [l <_ j <_ mi } , mi > l ,

where Pij E R for 1 <_ j <_ m i and 1 < i < m.
For X E { E N U M A , M O N A , ~ - C F A , C F A } , G is called of type X if every

production Ph,l, 1 < h < n, 1 < l < nh, is of type X.

For a team Qi, 1 < i < m, Qi E T, Qi = {Pi , j [1 <_ j <_ mi} , and two arrays
I11 and 112 E (VN U VT) 2+ a direct derivation step is defined b y /) 1 t-Q~ 112 if
and only if there are array productions pj E Pi,j, 1 < j < mi, such tha t in 111
we can find mi non-overlapping areas such that the sub-patterns of 7)1 located
at these areas coincide with the left-hand sides of the array productions pj and
yield 112 by replacing them by the right-hand sides of the array productions pj.

An application of the team Qi to an array D 1 therefore means the following:
from each set Pi,j, one array production pj is chosen such that p], ...,Pro, can be
applied in a parallel manner to 111 without disturbing each other. Note that the
array productions pj need not all be different although coming from different sets
within the team Qi. Like in cooperating array g r ammar systems (see [7]) also
for array g rammar systems with prescribed teams we can define the derivation
relations f-*Q,, F-Q~, t-~,,<k F-~)~ ,>k and ~_tQ~, respectively, i.e., derivations with the
t eam Qi of arbitrary, of exactly k successive steps, of at most k steps, of at least
k steps, and of as many steps as possible, respectively; this maximal derivation
mode t (according to [20]) is defined more precisely by: 111 t-~, 112 if and only if
111 f - ~ 112 and there is at least one component Pi,jo in the team Qi such that
no array production in Pi,jo can be applied to 7) 2 anymore. In that way, we have
defined different stop conditions for the teams, i.e., conditions when an active
t eam must or can become inactive. Note that in the t -mode a derivation with a
t eam Qi can be blocked, although in every Pi,j we can find an array production
which is applicable to the underlying array. This can happen because no disjoint
areas can be found such that from each Pi,j an adequate array production can
be applied at this area.

For each of these derivation modes d E F, F = {., t}U{~ k, = k, _> k I k ~ 1},
defined above we can define an array language generated by the array g r a m m a r
system with prescribed teams in the derivation mode d by

L(G, d) = {7) e V +2 I {(vs, S)} ~_d 111 [__d ~_d 11r ---- 11,
Qi 1 Qi2 "'" Q i r

r >_l, l <_ij < m , for l < _ j < _ r) .

Let X C { E N U M A , M O N A , ~ - C F A , CFA} . The family of array languages
generated by array g rammar systems with prescribed teams of array productions
of type X in the derivation mode d is denoted by P T (X , d). Some results on these
families of array languges can be found in [13].

44

E x a m p l e 1. The array language L1 n
containing all right angles as depicted
in the figure to the right can be gener- [a
ated by the array grammar system with /
prescribed teams of context-free array n

a

productions a a . . . a

G1 = ({S, U, R) , ~ , {a}, S, (R1, T1)), Right angle with

where arms of equal lengths.

R1 -- {P1, P2, P3, P4, Ps}, T1 = {Q1, Q2, Q3},
Q1 = {P1}, Q2 = {P2, P3}, Q3 = {P4, Ps},

P I = ~--+ a R ' P 2 = -* a '

P4 = {U--+ a}, P5 = { R ~-~ a},
in the derivation modes *, = 1, > 1, and < k for k > 1, i.e., L(GI ,d) = L1
for d E {*,= 1, > 1} U {< k I k > 1}, whereas L(GI ,d ') is empty for the other
derivation modes d' E {= k, _> k I k _> 2} U {t}.

It is easy to see that L(G1, d) = L1 : After once applying the singleton team
Q1, the team Q2 is applied n - 2 times (n > 2) in such a way that from P2

the array production -- ~ -+ U is applied, whereas from P3 the array production
t] a

R # --+ aR is taken. Finally, the team Q3 is applied in the last step, i.e., from
P4 the array production U -+ a is taken, whereas from P5 the array production
R ---+ a is applied, which yields the terminal array as depicted above with arms
of equal lengths. Observe that except for the array production in P1 all other
array productions appearing in G1 are even regular. D

In addition to the single derivation modes in F, we can also consider complex
modes of the form {fl , ..., fd} , fi E F, F = {*, t} U {= k, _ k, > k}, and assign
different modes of that form to each team. In that way we obtain internally
hybrid array grammar systems with prescribed teams (theoretical results about
internally hybrid string grammar systems can be found in [9]):

An internally hybrid array grammar system with prescribed teams is a con-
struct G = (VN, # , VT, S, (R, T)), where VN, VT, # , S, R are as in array gram-
mars with prescribed teams, and T is a (non-empty) finite set of teams and
complex derivation modes, i.e.,

R = { R h l l < h < n } , n > _ 1,
Rh = {PhJ] l < l < n h } , 1 < h < n , nh >_ 1,

where the Ph,l are array productions over Vjv U VT,
T = {(Qi, F/)] 1 < i < m}, m >_ 1,
Fi is a non-empty finite subset of F, 1 < i ~ m,
Qi = (Pi,i [l <- j <- mi } , mi >- l,

where Pi,i E R for 1 <_ j <_ m i and 1 < i < m.
For X E { E N U M A , M O N A , ~r C F A } , G is called to be of type X if

every production PhJ, 1 < h "(n, 1 < I < nh, is of type X.

45

For a pair (Qi, F/) consisting of a team and its assigned set of derivation
modes and two arrays 2)1 and ~)2 E (VN U VT) +2 a direct derivation step is
defined by 2)1 t-(Q,F0 •2 if and only if~)l t-{/i i/)2 for every f E Fi, i.e., for each
derivation mode f in Fi the array :P2 must be derivable from the array :Pl by
the team Qi in the mode f .

Let X E { E N U M A, M O N A , # - C F A, C F A }. The family of array languages
generated by internally hybrid array grammar systems with prescribed teams of
array productions of type X is denoted by P T I H (X) .

R e m a r k 1. Observe that obviously not every combination of single derivation
modes yields a meaningful complex derivation mode, e.g., {< kl, _> k2} yields a
contradiction for kl < k2; on the other hand, for kl > k2 this set describes an
interval of derivation steps between kl and k2; for kl = k~ the set {< kl, _> k2}
has the same effect as {= k2}. []
E x a m p l e 2. The array language L1 containing all right angles with arms of
equal lengths as already described in Example 1 in a similar way can be generated
by the internally hybrid array grammar system with prescribed teams of context-
free array productions

G2 = ({S, U, R}, # , {a}, S, (R2,T2)),
/~2 = {P1, P2, e3, P4, Ps}, T2 = {(Q~, {/}) , (Q~, {g}), (Qa, {h})},
Q~ = {P~}, Q~ = {P~, P3}, Q3 = {P~, P~),

PI = #---+ a R ' P 2 = ---+ a '

�9 P4 = {U --+ a} , P5 = { R - + a} ,
with f and h being any of the derivation modes t , . , = 1, > 1, or _< k for k > 1,
and g being any of the derivation modes *, -- 1, >_ l, or < k for k > l. By taking
>_ k (with k _> 2) for g we obtain the sublanguage of L1 containing all right
angles the arms of which have a length of at least k + 1. []
E x a m p l e 3. We now construct the array language LH of H shapes with the
horizontal line at the middle of the vertical ones. (This language is used in [24] as
an example of a set of pictures that can be generated by an indexed right-linear
matrix array grammar, but not by a context-free matrix array grammar.) This
array language LH can be generated by the internally hybrid array grammar
system with prescribed teams of context-free array productions

a3 = ({21, S2, A1, Au, A3, A4}, #, {a}, S, (}~3, T3)),
Ra = {Pj I 1 <_ j < 8}, Ta = {(Q1, {1}), (Q2, {t}), (Q3, {t})},
Q] = {P1}, Q2 = {P2, P3, P4}, Q3 = {Ps, P6, P7, Ps},

= 5 1 # ~ a S2 ,P2 = $ 2 : ~ a S 2 , S2 # --~ a a ,
A~ # A4

P1

t='3 = {A1 ---+ A 1 } , P4 = { A2 ---+ A2} ,

--+ A1 A1---+ P6 = P s = A1 a ' '

r ---+ A 3 A 3 ---+ a P s =
P T = A3 a ' ' #

a A2 ----+a}
-+ A2 '

a A4 - -~a}
---+ A4 '

46

We obtain L (G3) = LH. Here is an example of a derivation in G3:

a a

A1 A1 A3 a a
$1 ::::V {t} :::=~{~} ::=:~{t} Q1 a $2 Q2 a a a a Qa a a a a

A2 A2 A4 a a
a a

If the final array productions Ai --+ a are not applied synchronously taken from
P4+i, 1 < i < 4, then the derivation in Ga is blocked without any possibility to
yield a terminal array any more.

As all the derivation modes equal the maximal derivation mode, the previous
construction not only shows that LH E P T I H (CFA) \ C F A , but also that
LH C P T (C F A , t) k C E A , because L (G~, t) = LH for the array grammar system
with prescribed teams G~ = ({$1, $2, A1, A2, A3, A4}, ~ , {a}, S, (R3, T~)), T~ =
{Q1, Q2, Q3}. By taking T3 = {(Q1, {t}), (Q2, { t , _ k}), (Q3, {t, _> m})} in G3
we can generate only those arrays of H shapes where the length of the horizontal
line is at least k + 3 and the length of the vertical lines is at least 2m + 3. With
(Q2, { t ,_ k}) instead, the length of the horizontal line is restricted to be at most
k § 3. By taking (Q2, {t, >_ k, < / }) , k < l, the length of the vertical lines is
determined to be an uneven number between 2k + 3 and 2l + 3. []

4 A n a l y s i n g s y s t e m s

In pattern recognition, we are more interested in analysing devices than in gen-
erating mechanisms as they were introduced in the preceding section. In order
to avoid the inherent non-determinism that usually arises when turning from
generating grammars to analysing or accepting grammars ([2]), we propose an-
other interpretation of the generating array grammars described above in order
to obtain analysing mechanisms, which, for example, can be used for pattern
recognition, e.g., for the recognition of (handwritten) characters in a similar way
as described for array grammars in [25] and for programmed array grammars in
[10]:

Given G, an internally hybrid array grammar system with prescribed teams
of type C F A , we only allow one further derivation step with a selected team, if
the following conditions hold:

1. The number of non-terminal symbols in the current sentential form equals
the number of components of the team, i.e., by applying the team all the
non-terminal symbols appearing in the current array are derived in parallel.

2. The shape of the sentential form after this derivation step is part of the
shape of the originally given array and, moreover, at each position where
we already find a terminal symbol in this sentential form, this symbol must
coincide with the corresponding symbol at this position in the originally
given array.

47

A given array is said to be accepted by G if there is a derivation sequence
in G obeying the rules above and finally leading to a terminal array coinciding
with the originally given array.

The first condition guarantees that during a derivation the number of non-
terminal symbols in an underlying sentential form is bounded by the maximal
number of components of a team. According to these definitions, all the examples
of internally hybrid array g rammar systems with prescribed teams of type C F A
constructed in the preceding section can also be interpreted as analysing devices
in the sense defined above, thus accepting the same array languages as they
generate. If we allow #-context-free array productions instead of context-free
ones only just in order to be able to deal with possible gaps in the pixel images
of pat terns to be recognized, we have to use a weaker condition

2'. At each position where we already find a terminal symbol in the underlying
sentential form, this symbol must coincide with the corresponding symbol
at this position in the originally given array.

This weaker condition means that the non-terminal symbols of the current
sentential form may also occupy positions that are only occupied by the blank
symbol in the originally given array.

How can such grammars be implemented as character recognizers?
We sketch our approach by using Example 1:
As we have to start with the context-free start production in P1 with the

U a
right-hand side we have to search for a sub-pat tern . In case an element a R a a

of L1 is given, the starting point is unique, and it can be found using, e.g., the
2-dimensionM Knuth-Morris-Prat t algorithm presented by Bird [1], also refer
to [15]. The nonterminals U and R correspond to heads of a parallel machine with
common memory (or simply to pointers in case of a sequential implementat ion).
There are obvious implementations of our algorithm on PRAMs and related
machine models [16]. Because of condition 1, we only have a bounded parallelism
in the recognition process, which is indeed a very realistic assumption. The
recognition process proceeds with applying Qu until one of the heads sees a
blank symbol "ahead". Finally Qa has to be applied once. If then there are no
unread symbols left in the given pattern, the pat tern belongs to L1.

In a similar manner, it is possible to construct a deterministic parallel rec-
ognizer for H shapes from grammar G3. Of course, in general nondeterministic
parallel recognizers are obtained (as sketched in [19] for parallel array grammars) .
It would be interesting also from a theoretical point of view to investigate further
the determinism restriction introduced in this section. In addition, several such
parallel character recognizers may work in parallel on the same given pat tern.

As the lines appearing in pixel images of pat terns like handwrit ten characters
may have deviations, we also have to allow additional rules in the component of
a t eam describing such a line, e.g., we can replace the component

t)2 = $ 2 # - - + a S 2 , S2 • --+ a a
7~ A4

48

in the internally hybrid array grammar system with prescribed teams G3 from
Example 3 by

p 2 = {S2~___+aS~ ' $2 a ~ $2 ~ A 3 }
--~ , ~ $ 2 # --~ a a

$2 $2 a ' ~ A4

where the array productions $2 a ~ $2 allow devia- # --~ $2 and $2 --+ a

tions of the horizontal line of the character H. In a similar way, array productions
can be added to P~, P6, PT, Ps, in order to allow deviations in the vertical lines
forming the H. Analogously to [10], [25], these deviations can be summed up to
an error or distance measure in an additional attribute vector assigned to the
sentential forms, and finally remaining pixels not covered by a derivation can
also be counted as errors increasing this distance measure that is a measure for
the distance between a given pattern and an ideal one. For lack of space we can-
not go into the details of these constructions, because in this paper our emphasis
is lying on how generating devices can be used as analysing mechanisms in an
efficient way using the advantages of bounded parallelism.

5 S u m m a r y

In this paper, we have introduced internally hybrid array grammar systems with
prescribed teams not only as generating devices for various (non-context-free)
sets of rather complex pictures, but also as syntactic analysing mechanisms for
pixel images of patterns like (handwritten) characters. The special interpretation
of the application of the components of a team in such an array grammar system
forces the components to work in parallel on all the non-terminal symbols of
the current sentential form which allows for efficient implementations avoiding
the difficulties usually arising with the inherent non-determinism in analysing
grammars. Thorough practical investigations of all the variants of array grammar
systems with prescribed teams introduced in this paper as well as a comparison
of these variants with other methods (e.g., see [3], [10], [26]) remain for future
research.

A c k n o w l e d g e m e n t s . We are very grateful to Gheorghe P~.un and Markus
Hotzer for many interesting and fruitful discussions on different variants of team
grammar systems as well as on many specific topics of array grammars.

R e f e r e n c e s

1. R. S. Bird, Two dimensional pattern matching, IPL 6 (1977) pp. 168 - 170.
2. H. Bordihn, H. Fernau, Accepting grammars and systems via context condition

grammars, Journal of Automata, Languages and Combinatorics 1 (1996).
3. C. H. Chen, L. F. Pau, P. S.-P. Wang (eds.), Handbook of Pattern Recognition

Computer Vision, World Scientific Publ., Singapore, 1993.

49

4. C. R. Cook, P. S.-P. Wang, A Chomsky hierarchy of isotonic array grammars and
languages, Computer Graphics and Image Processing 8 (1978) pp. 144 - 152.

5. E. Csuhaj-Varjfi, J. Dassow, On cooperating distributed grammar systems, Eli(
26 (1990) pp. 49 - 63.

6. E. Csuhaj-Varjfi, J. Dassow, J. Kelemen, Gh. P~un, Grammar Systems. (Gordon
and Breach, 1994).

7. J. Dassow, R. Freund, Gh. P~tun, Cooperating array grammar systems, Int. Journ.
of Pattern Recognition and Artificial Intelligence 9, 6 (1995) pp. 1 - 25.

8. J. Dassow, Gh. P~un, Regulated Rewriting in Formal Language Theory. (Springer,
Berlin, 1989).

9. H. Fernau, R. Freund, M. Holzer, "External versus internal hybridization for co-
operating distributed grammar systems", Technical Report 185-2/FR-1/96, Tech-
nische Universits Wien, 1996.

10. R. Freund, "Syntactic recognition of handwrit ten characters by programmed ar-
ray grammars with at tr ibute vectors", Seventh International Conference on Image
Analysis and Processing, Bari, Italy, in: Progress in Image Analysis and Processing
III(ed. S. hnpedovo, World Scientific Publ., Singapore, 1993) pp. 3 5 7 - 364.

11. R. Freund, Gh. P~un, One-dimensional matrix array grammars, EII(29 (1993)
pp. 1 - 18.

12. R. Freund, "Control mechanisms on #-context-free array grammars", in: Mathe-
matical Aspects of Natural and Formal Languages. (ed. Gh. P~un, World Sci. Publ.,
Singapore, 1994) pp. 9 7 - 136.

13. R. Freund, "Array grammars with prescribed teams of array productions", Devel-
opments in Language Theory'95, Magdeburg, 1995.

14. L. Kari, A. Mateescu, Gh. P~un, A. Salomaa, "Teams in cooperating grammar
systems", Journal of Experimental and Theoretical A I 7 (1995) pp. 347-359.

15. R. M. Karp, R. E. Miller, A. L. Rosenberg, "Rapid identification of repeated pat-
terns in strings, trees and arrays", in: Proc. 4th AnnualACM Symposium on Theory
of Computing (1972) pp. 125 136.

16. J. van Leeuwen (ed.), Handbook of Theoretical Computer Science; Volume A: Al-
gorithms and Complexity. (The MIT Press/Elsevier, 1990).

17. R. Meersman, G. Rozenberg, "Cooperating grammar systems", in: Proc. MFCS
'78, LNCS 64 (Springer, 1978) pp. 364 - 374.

18. D. L. Milgram, A. Rosenfeld, "Array automata and array grammars", in: Inform.
Processing '71, (North-Holland, 1972) pp. 69 - 74.

19. A. Nakamura, K. Aizawa, Acceptors for isometric parallel context-free array lan-
guages, IPL 13 (1981) pp. 182 186.

20. Gh. P~un, G. Rozenberg, Prescribed teams of grammars, Acta Informatica 31, 6
(1994) pp. 525 - 537.

21. A. Rosenfeld, Picture Languages. (Academic Press, Reading, MA, 1979).
22. A. Salomaa, Formal Languages. (Academic Press, Reading, MA, 1973).
23. G. Siromoney, R. Siromoney, K. Krithivasan, Abstract families of matrices and

picture languages, Computer Graphics and Image Processing 1 (1972) pp. 234
307.

24. K. G. Subramanian, L. Revathi, R. Siromoney, "Siromoney array grammars and
applications", pp. 55 73, in: [26].

25. P. S.-P. Wang, An application of array grammars to clustering analysis for syntactic
patterns, Pattern Recognition 17, 4 (1984) pp. 441 - 451.

26. P. S.-P. Wang (ed.), Array Grammars, Patterns and Recognizers, World Scientific
Series in Computer Science 18, World Scientific Publ., Singapore, 1989.

