
transactions of the
american mathematical society
Volume 318. Number 2. April 1990

BOUNDED POLYNOMIAL VECTOR FIELDS

ANNA CIMA AND JAUME LLIBRE

Abstract. We prove that, for generic bounded polynomial vector fields in R"
with isolated critical points, the sum of the indices at all their critical points is
(-1)" . We characterize the local phase portrait of the isolated critical points
at infinity for any bounded polynomial vector field in R" . We apply this char-
acterization to show that there are exactly seventeen different behaviours at
infinity for bounded cubic polynomial vector fields in the plane.

0. Introduction

Let X : U —> Rk be a vector field where U is an open set of Rk . Let
y(t) = y(t, x) be the integral curve of X such that y(0) = x. Let Ix be its
maximal interval of definition. We shall say that X is a bounded vector field if
for all x e U, there exists some compact set K c U such that y(t) G K for
each t g Ix n (0, +00).

In § 1 we introduce the stereographic compactification of X, s(X). We then
use the index formula of Bendixson and the Poincaré-Hopf theorem to prove
the following result:

Proposition A. Let X be a bounded polynomial vector field in the plane. If all
the critical points of s(X) are isolated, then the sum of the indices at all those
critical points is 1.

In §2 we use the Poincaré compactification of X, p(X), to characterize the
local phase portrait of the isolated critical points at infinity for bounded poly-
nomial vector fields X = (P, Q) in the plane. The degree n of X is defined
by n = max{degreeP, degree Q}. We denote by ix(q) the index of Y at a
critical point q of X. We then prove the following theorem:

Theorem B. Let X be a bounded polynomial vector field in the plane. If q is
an isolated infinite critical point of X, then

(a) The local phase portrait of p(X) at q is described in Figure 2.2 (resp.
Figure 2.4) when the degree of X is even (resp. odd).
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558 ANNA CIMA AND JAUME LLIBRE

(b) ipiX)ÍQ) = 0 when the degree of X is even.
ic) ip(X)ia) ~ *p{X)\s'iy) when the degree of X is odd. Here, p(X)\Sx denotes

the restriction of the vector field p(X) to the equator S1 of the Poincaré sphere.

In §3 we use Theorem B to show that there are seventeen different behaviours
at infinity for bounded polynomial vector fields of degree three. This statement
can be formalized as

Theorem C. The phase-portrait in a neighbourhood of infinity for any bounded
cubic system with isolated infinite critical points is topologically equivalent to

Figure 1.1. The phase portraits in a neighbourhood of
infinity for the bounded cubic vector fields with isolated
infinite critical points
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BOUNDED POLYNOMIAL VECTOR FIELDS 559

a particular picture in Figure 1.1. All these behaviours are realized by the systems
given in Table 1.1.

X,

X5:

X7:

X9:

l13-

'15-

X

Table 1.1. System Xl realizes the behaviour (i) of Figure 1.1
for i=l ,2, ... ,11.

x = -100x3 + 51x2y-24y3,

y ■■

X

24x3- 100x2y-51xy2.
2 2 3■ xy + 2x - 2xy + y ,

2   , 2x + xy 2yJ

x = (-l/2)x2y + 3/2xy2->'3;

y = (l/2)xy2-(l/2)y3 + x.

2 3x — y + 3x y - x ,
2 2y = -x y - 3xy .

x = -x3 - 6xy2 + 6y ,
y = -x y - 6xy  + 6y .
x = -x - xy2 - 4y3,

y = -5y + xy.
x = 3xy + y3,
y = -3xy  - x.

-x y

17-

y = -x2y.
3 2 3x = -x - x y - y ,

3 2 2y = x  — x y + xy .

X2:
x = -2xy + y ,

2      -.3y = x + xy  - 2y .
( x = -x3 + (l/2)x2y

X4:l

X.

îo-

■12-

"14-

116 ■

- xy2 - y3,

[ y = -x2y-(l/2)xy2 -y2
x = -x + 7x  - lOxy

2   , 2 3-y  +xy  -y ,

y = (5/2)x + x + 2xy

x = 4x  - xy -y ,
y = x2 + xy2 -2y\

»   3   ,      3x = -2x  + y ,
3-2y = x  - 2x y.

x = -4x + 3xy2 - 4y3,
-,   2 3y = -y - 2y  - y .

2 2 3x = x  - xy - xy  -y ,
2   , 2 3y = x  + xy  - y .

x = y\
3y = -x .

In §4 we prove that Proposition A also holds for a generic family of bounded
polynomial vector fields in R" . We call aFm the set of all polynomial vector
fields X = (Px, P2, ... , P") defined on R" with degree />'' = mi and m =
(mx,m2, ... ,mf).  We denote by P'm   the homogeneous part of degree mi

of P'. Let &m be the set of all X e S?m such that the system P¡n = 0 for
i =1,2,... ,n has only the trivial solution x, = x2 = • • • = xn = 0. In other
words when Iefm all the solutions of system P' = 0, for i = 1, 2, ... , n ,
lie in the "finite part" of R" ; for more details see Appendix 2. In the case
where m¡ = m¡ for all i, j = 1,2, ... , n and X G AA?m , the linear part of
p(X), at the critical points q at infinity, has an eigenvalue different from zero.
It is precisely this eigenvalue that determines whether the orbits of X go off
or come from infinity in the direction determined by q (see Lemma 4.1). It is
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560 ANNA CIMA AND JAUME LLIBRE

proved (see Appendix 2) that Is^B is a generic condition. We then use the
Poincaré compactification in R" (see Appendix 1), the Poincaré-Hopf theorem
and the Center Manifold Theorem (see [GH]) to prove the following theorem.

Theorem D. Let X g AA?m be a bounded polynomial vector field in Rn such
that all the critical points of p(X) are isolated and degree(P') = m, for i =
1, 2, ... , n. Then

£'x = (-0".
/

where the sum is defined over the indices of all the critical points of X.

We note that Theorem D is a (nonvacuous) statement for odd degree poly-
nomial vector fields (see Proposition 4.2).

1. Index for bounded polynomial vector fields in the plane

Let X = (P, Q) be a polynomial vector field of degree n in the plane and let
S2 be the two-sphere on R3 defined by the set {y G R3 : y2 +y2 + (y3 - 1/2)2 =
1 ¡4}. The plane R may be identified with the sphere S~ with the "north
pole" p = (0,0, 1) removed. This identification is accomplished by means of
the stereographic projection which assigns to each point (x,, xf) G R the point
ÍV\ ' y2 > ̂ 3) € S2 trough the relations x, = y, /( 1 -yf), x2 = y2/( 1 -y3). Let
X = (Fx, F2, Ff be the induced vector field on S2\{/z} . It can be shown that
the components F (y,, y2, yf) = dyfdt, for i = 1, 2, 3, are

Fx(yx,y2,yf = (i-y,-y]),    P (yzy' TATyJ 'y^>

F2(yx,y2,y3) = -yxy2,    P (y^L_, y^-) + (1 -y3 -y\),

F3(y1,y2,y3) = y1(l-y3),    P (j^-, y^) +y2(l -yf),

This system is not defined at p, but it can be extended to S2 by introducing
a change of time scale. We consider a new variable u defined by dt/du =
(1 - yff . We then obtain the system dyfdu = (1 - yf"F.(yx, y2, yf), for
i = I ,2,3 , which extends analytically the flow of X from S \{p) to S". We
shall call the stereographic compactification of X, s(X), the induced vector field
in the two-sphere. Notice that the behaviour of the orbits of X near infinity is
determined by the behaviour of s(X) near p = (0,0, 1).
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bounded polynomial vector fields 561

Remark 1.1. Let Y be an analytic vector field on a two-dimensional manifold,
and let q be an isolated critical point of Y. Then we know that the local
phase portrait of Y at q is either a focus, a center, or a finite union of elliptic,
hyperbolic and parabolic sectors (for more details, see [L] or [ALGM]). From
now on, we denote by e = e(q) (resp. h = h(q)) the number of elliptic (resp.
hyperbolic) sectors of q .

Proof of Proposition A. If X is a bounded vector field, clearly there are no
orbits of s(X) whose cu-limit is p (otherwise, such an orbit would not be
inside any compact set K c R ). So we have that e(p) = h(p) = 0. Now, from
Bendixson's index formula, i = I + (e - h)/2 (see [ALGM]), we know that the
index of s(X) at p is 1.

Since all the critical points of s(X) are isolated we can apply the Poincaré-
Hopf theorem, and assert that the sum of the indices at all the critical points of
s(X) is equal to 2, which is the Euler-Poincaré characteristic of the two-sphere.
Hence, the sum of the indices at all the critical points of X is 1.   D

2. Local structure at the isolated infinite critical points
for bounded polynomial vector fields in the plane

From now onwards we shall use the Poincaré compactification (see, for in-
stance, [G, S or CGL]). Let X be a polynomial vector field of degree n . First,

2 3we will consider that R" is imbedded in R in such a way that, if (yx, y2,yf)
represents an arbitrary point in R , then R = {(y,, y2, yf g R : y3 = 1}.
We then consider the sphere S" = {(yx,y2,yf) G R3 : y2 + y2 + y\ = 1}, the
Poincaré sphere, which is tangent to R    at the north pole (0,0, 1 ).   After

2 2that, we consider the projection of the vector field X in R onto S obtained
by means of the central projections p+: R —► S and p~ : R —> S . That
is, p+(yx,y2, 1) (resp. p~(yx, y2, 1)) is the intersection of the line joining
(yx,y2, 1) and the origin, with the northern (resp. southern) hemisphere in
S . We thus obtain an induced vector field in the northern and southern hemi-
spheres. In each hemisphere the induced vector field is a copy of X.

We notice that the points at infinity of R , two points for each direction,
are now in a one-to-one correspondence with the points on the equator S1 =
S2 n {y3 = 0}. We now attempt to extend the induced vector field on S2\S* to

2 • 1S . However this vector field blows up as we approach S and the extension
is not possible. Nonetheless, if we multiply it by the factor y"f at each point
y G S \S' , the extension becomes possible. This extended field, which we call
the Poincaré compactification of X and denote by p(X), has S1 as an invariant
set. The Poincaré compactification for polynomial vector fields in Rn is given
in Appendix 1.

In order to obtain the analytical expression for p(X) we shall consider the
two-sphere S    as a differentiable manifold.   We then choose six coordinate
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562 ANNA CIMA AND JAUME LLIBRE

2 2neighbourhoods given by Uj = S n {y¡ > 0} and V¡. = S n {y¡ < 0}, for
i = 1,2,3. The corresponding coordinate maps Fj : Ul■ —► R and G; : Vi —►
R2 are defined by F.(y, ,y2,yf = Gfyx,y2,yf) = (yjjy¡, yk/y¡) for ;' <
k and j, k / i. We shall denote by (y, z) the value of F,(y,, y2, y3) =
C7j (j^,, y2, y3). The expressions for p(X) in V¡ are those in U¡ multiplied by
(-1)"-1 for z = 1,2,3. We note that the integral curves in S are always
symmetric with respect to the origin of R , but p(X) is only symmetric when
z2 is odd. For instance, if n is even and (y,, y2, yf) G S is a contracting
node of p(X) then (-y,, —y2, -yf is an expanding node. We shall call finite
(resp. infinite) critical points of X or p(A') the critical points of p(X) which
are in S2\s'  (resp. S1).

Lemma 2.1. Let X be a bounded polynomial vector field in the plane and let
q be an isolated infinite critical point. Then q cannot be a focus or a centre.
Furthermore, e(q) = 0 and h(q) is even.
Proof. We can assume, without loss of generality, that q is in the local chart
Ux . The critical point q cannot be a focus or a centre because the straight line
z = 0 is invariant by the flow of p(X). For the same reason, if an elliptic sector
exists, its interior must be contained in z > 0 or z < 0, and the homoclinic
orbits of this sector do not lie inside any compact set of R ; in that case the
system will not be bounded. Then e(q) = 0. From Bendixson's index formula
(see [ALGM]) we know that the number of elliptic and hyperbolic sectors have
the same parity. Hence e(q) = 0 implies that h(q) is even.   □

q                          i                          i                          i«—•—» —»   *   *-       —»—•—»- «—#   «-
¿(<?)=1 »'(<,) = -! /(?) = 0 i(q)=0

(a) (b) (c) (d)

Figure 2.1. The index of one-dimensional vector field
at an isolated critical point

Let I: (/-»R be a vector field, where U is an open set of R . Let q be
an isolated critical point of X in U. Then the function X(u)/\\X(u)\\ maps
a small sphere, centered at q, into the unit (k - l)-sphere. It is well known
that the degree of this mapping is called the index of X at q and is denoted
by ix(Q) or i(q). If k = 1 then the index at an isolated critical point can only
be 0, ± 1 . The local phase portrait at this critical point is described in Figure
2.1 (for more details, see [M]).

Proposition 2.2. Let X = (P, Q) be a bounded polynomial vector field of even
degree in the plane. Suppose that q is an isolated infinite critical point of X.
Then the following hold:

(a) The local phase portrait of p(X) at q is described in Figure 2.2.
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(a,) (a2) (bj) (b2)

Figure 2.2. The local phase portrait of an isolated
infinite critical point of a bounded polynomial vector
field of even degree

Proof. We can assume that q is in the local chart Ux and that its coordinates
(y, z) are (0,0). Given Bendixson's index formula and Lemma 2.1 all we
need to show to prove (b) is that the number of hyperbolic sectors, h(q), is
two. Recall that the diametral opposite point of q, (-a), is a critical point
on Vx and that X is a bounded polynomial vector field of even degree. Then,
there are no solutions in {z > 0} n Ux whose az-limit is q , and there are no
solutions in {z < 0} n Ux  whose a-limit is q .

We have that, on {z = 0} n Ux, y = F(y) = -yP„(l, y) + ß„(l, y) and
z = 0, where n is the degree of X and Pn and Qn are the homogeneous parts
of degree n of P and Q, respectively.   Since (0, 0)  is an isolated critical
point, F(y) = aky  -l-h an+xyn+ , where k > 0 and ak # 0. We consider
three cases.

Case 1. k is odd and ak > 0. In this case the local behaviour of the vector
field at q on z = 0 is shown in Figure 2.1(a). By Remark 1.1 and Lemma
2.1, if h(q) = 0, q will be a source and the system will not be bounded. Since
X is bounded it follows from Figure 2.3(a) that q has no hyperbolic sectors
in z > 0, and that it has exactly two hyperbolic sectors in z < 0. Hence the
possible local phase portraits are drawn in Figures 2.2(a,) and 2.2(a2).

Case 2. k is odd and ak < 0. By an argument similar to the one just used,
it can be shown that q must have two hyperbolic sectors in z > 0 and no
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(a) (b) (C) (d)

Figure 2.3. The behaviour of p(X) on z = 0

hyperbolic sectors in z < 0. Therefore, the behaviour of p(X) near q is as
drawn in Figures 2.2(b,) and 2.2(b2).
Case3. k iseven. From Figures 2.3(c) and 2.3(d), Remark 1.1 and Lemma 2.1,
it follows that h(q) = 2 and q has one hyperbolic sector in z > 0 and another
one in z < 0. Since q can have parabolic sectors, we obtain the remainder
local phase portraits of Figure 2.2.   D

Remark 2.3. From the Poincaré-Hopf theorem on S   (see [M]) we know that

°°      /
where J2oo ; denotes the sum of the indices of p(X) at all the infinite critical
points and £,j denotes the sum of the indices of X at all the finite critical
points. So, if the degree of X is even, Proposition A can also be deduced from
Proposition 2.2(b).

Proposition 2.4. Let X = (P, Q) be a bounded polynomial vector field of odd
degree in the plane. Suppose that q is an isolated infinite critical point of X.
Then the following hold:

(a) The local phase portrait of p(X) at q is described in Figure 2.4.
(b) i ÍXAq) = i ixwi'i0)' wnere P(^)|S   denotes the restriction of the vectorlp(X)\S

field p(X) to the equator S .
Proof. Assume that q is in the local chart Ux with coordinates (y, z) = (0, 0).
Recall that -q is also an infinite critical point and that the expression for p(X)
is the same in Ux and in Vx  (because the degree n of X is odd). Since X is

2       1bounded, there are no orbits in a neighbourhood of q in S \S whose w-limit
is q.

The expression for p(X)\Sx in £/, is (F(y), 0), where F(y) = -yPn(l, y) +
Q„(l,y). Since (0,0) is an isolated critical point, F(y) = aky + ■■■ +
a   ,y"+x , with k > 0 and a, é 0. We consider three cases.ni-1^ h  '

Case 1. k is odd and ak > 0. From Figures 2.1(a) and 2.3(a), ipiX)\s< ia) = 1 •
Since zz is odd we deduce from Figure 2.3(a) that h(q) = 0. From Lemma 2.1
and Bendixson's index formula, we obtain ip(X)ÍQ) = 1 • Furthermore, the only
possible local phase portrait at q is drawn in Figure 2.4(a).
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BOUNDED POLYNOMIAL VECTOR FIELDS 565

Case 2. k is odd and ak < 0. From Figures 2.1(b) and 2.3(b), ip{X)\s'i^) = -* •
To see that ip,X)i<l) = —1 it is sufficient to show that h(q) = 4. It follows from
Lemma 2.1 that h(q) is even. It is easy to see that if h(q) ^ 4 then X is not
bounded (see Figure 2.3(b)). Taking into account that q can have parabolic
sectors, the possible local phase portraits at q are given in Figure 2.4 as cases
(b,), (b2), (b3)and(b4).

Case 3. k is even. From Figures 2.1(c), 2.1(d), 2.3(c) and 2.3(d), ipiX)\sfq)
= 0. By Lemma 2.1, e(q) = 0 and h(q) is even. Then h(q) > 0. If h(q) > 4
then q has at least two stable séparatrices and at least one of them is not
contained in z = 0. Hence h(q) = 2. Therefore ip,X)(q) = 0. In this case, the
local phase portraits at q, for i g {1, 2, 3, 4}, are drawn in Figures 2.4(c()
and 2.4(d;).   D

Theorem B follows from Propositions 2.2 and 2.4.

Figure 2.4. The local phase portraits of isolated infi-
nite critical points of a bounded polynomial vector field
of odd degree

Remark 2.5. Let X be a polynomial vector field in R2 such that all its finite
and infinite critical points are isolated. The Poincaré-Hopf theorem on S1 tells
us that

£W=s?(sl) = 0'
where the sum is over all the critical points of /K^0|S' and &(SX) is the Euler-
Poincaré characteristic of S1 . So, if the degree of X is odd, from Proposition
2.4(b) we obtain £    z = 0 and hence, as in Remark 2.3, Proposition A follows.
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3. Classification of the phase-portraits in a neighbourhood of
infinity of bounded cubic polynomial systems in the plane

Let q be a critical point of a vector field in the plane. We say that q is
elementary if there exists at least a nonzero eigenvalue of its linear part. We say
that q is degenerate if the determinant of its linear part is zero. The following
result is well known (see for instance [ALGM]).

Theorem 3.1. Let q be a critical point of an analytic vector field in the plane. If
q is nondegenerate then it is either a node, a focus, a centre or a saddle. If q
is degenerate and elementary then it is either a node, a saddle or a saddle-node
with index 1,-1 or 0 respectively.

Proposition 3.2. Let (y , 0) be an infinite critical point on the local chart Ux of
a bounded polynomial vector field X = (P, Q) of odd degree n . It follows that

(a) // y} is a root of odd (resp. even) multiplicity of F(y) = -y-P„(l, y) +
Qn(l, y), then the index at (y , 0) is ±1 (resp. 0).

(b) If yj is a simple root of F(y) then (y , 0) is either a node or a saddle.
Proof. Since the expression for the vector field X in the local chart £/, is given
by

f y = i-yPfU y) + Q„iU y)] + z[-yPn_x(i, y) + Qn_x(i, y)]
+ --- + zn[-yP0 + Q0],(3.i;

■Pn(l,y)z-Pn_x(l,y)z2-P0zn+Xn-P

we have that y = F (y) on z = 0 . This, together with the proof of Proposition
2.4, implies that the index at (y., 0) must be ± 1 when the multiplicity of y}
is odd (Cases 1 and 2) and 0 when the multiplicity is even (Case 3). Hence (a)
follows.

The linear part of the infinite critical point (y}, 0) is

(F'(yj)
v   0      -P„(l,y,)

If y is a simple root of F(y) then (y., 0) is elementary. From (a) and
Theorem 3.1 we obtain (b).   D

Lemma 3.3. Let X = (P, Q) be a cubic vector field and assume that y = 0 is a
double root of F(y). Consider the system (3.1) and let 8(y, z) = yz-zy. When
y and z begin with terms of, at least, second order and 03, the homogeneous
part of third degree of 8, is identically zero, then configurations (cf), (cf), (d2),
and (d3) in Figure 2.4 are not possible.

Proof. We can write Pfx, y) = rx3 + sx2y + txy2 + hy3, Qfx, y) = dx3 +
ex2y + fxy2 + gy3, P2(x, y) = ax2+ bxy + cy2, Q2(x, y) = ax2 + ßxy + yy2,
Px(x,y) = mx + ny , Qx(x, y) = px + qy , P0 = p0 and Q0 = q0 . Then we
have that F(y) = d + (e - r)y + (f - s)y2 + (g - t)y3 - hy4 . Hence, d = 0,
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e - r = 0 and f - s ±0. System (3.1) can now be written as:
(3.2)
( y = az + (f- s)y2 + (ß - a)yz + pz2 + (g - t)y3 + (y - b)y2z

+ (q - m)yz2 + qQz3 - hy4 - cy3z - ny z2 - p0yz ,
2,2,2 3,3 22 3 4z = -rz - syz - az  - ty z - byz  - mz  - hy z - cy z  - nyz  - p0z ,

where a = r = 0. Since dfy, z) = -z[fy  + ßyz + pz ] = 0 then / = ß =
p = 0.

The directional blowing-ups (y, z) ^> (y, k) defined by z — ky, and (y, z)
—► (w, z) defined by y = wz, allow us to write system (3.2) as the pair:

í y = y\s + (g - t)y -ak- hy2 + (y - b)yk - cy2k

(3.3)

and
(3.4)

+(q - m)yk2 - ny2k2 + q0yk3 - p0y2k3],

I k = y2[-k(g + yk + qk2 + q0k3)],

2 2 1
(w = z [q0 + qw + yw  + gw ],

2r i 2,2 2 22,3   2,z = z [-a - sw — mz - bwz — p0z  — tw z — nwz  - cw z  — hw z ],

respectively. Call (3.5) and (3.6) the systems (3.3) and (3.4) after a change in
2 2     itime scale given by dt = y dt and dx = z dt respectively. Then system (3.5)

2 1on y = 0 becomes dy/dx = -s - ak and dk/dx = -k(g + yk + qk + q0k ),
2 1and system (3.6) on z = 0 becomes dw/dx = q0 + qw + yw + gw and

dz/dx = -a - sw .
When q0 = 0 the straight line y = 0 is invariant by the flow (3.2) and in

consequence the local phase-portraits (c2), (c3), (d2) and (d3) in Figure 2.4 are
not possible. So we shall assume that q0 ^ 0.

When a = 0 we do not have any critical points on y = 0 for system (3.5)
(since f-s = -s fO) or on z = 0 for system (3.6) (since q0 ^ 0). Therefore
(y, z) = (0, 0) has one hyperbolic sector in z > 0, another one in z < 0 and
the number of parabolic and elliptic sectors is zero.

Assume now that a ^ 0. If there exists a critical point (y, k) for system
(3.5) on y = 0 which is different from (0,0), then (y, k) = (0,k), where
— —3 —2 — —
k = (-s/a) ^ 0 is such that q0k + qk + yk + g = 0. The linear part of (0, k)
is

f(g-t) + (y-b)k + (q-m)f+ q0k -a \
V 0 -g-2yk-3qf-4q0ki) '

From §7, §8 and Theorems 65 and 67 of [ALGM] and a/0 we know all the
local phase-portraits near (y, k) = (0, k). Taking into account that y = 0 is
not invariant by the flow (3.5), we can draw all the local phase-portraits near
(y, z) = (0, 0). We observe that configurations (c2), (c3), (d2) and (d3) in
Figure 2.4. do not appear,   o
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Proposition 3.4. Let X = (P, Q) be a cubic vector field and assume that y = 0
is a double root of F(y). If the local phase-portrait of (y, z) = (0, 0) for system
(3.2) is topologically equivalent to (cf), (cf), (df) and (d3) in Figure 2.4, then
y = 0 is also a double root of Pfl, y).

Figure 3.1. Saddle-nodes near (y, z) = (0, 0). The
slope o of the separatrix 5 at (0,0) is o = 0, o <£
{0, oo} and a = oo in cases (c21), (c22)
spectively

and (c23-1' re-

Proof. From (3.2) the linear part of (y, z) = (0, 0) is
0     a
0    -r

From Theorem 65 of [ALGM] and configurations (c2), (c3), (d2), (d3) in Figure
2.4, it follows that r must be zero.

When q / 0, the change of time scale given by dx = a dt allows us to
apply Theorem 65 of [ALGM]. Hence, y = 0 implies z = (-(/ - s)/a)y +

2 2       1higher-order terms and z(y, (-(/ - s)/a)y ) = (s(f - s)/a )y + higher-order
terms. Since (f - s) ± 0,5 = 0 is a necessary condition for the existence
of a saddle node. In short, Pfl, 0) = r = 0 and, since a ^ 0, we have
(dPf(l, y)/dy)\   0 = 5 = 0. Hence the proposition follows.

Assume a = 0. Consider the directional blowing-ups defined in Lemma 3.3,
and get
(3.7)

y = y[(f - s)y + (g- t)y2 + (ß- a)yk - hy3 + (y - b)y2k + pyk2
3,   ,   , ,   2,2 3,2   , 2,3 3,3,-cy k + (q- m)y k  - ny k + q0y k - p0y k ],

k = y[-fk - gyk - ßkL
and

yyk pk2 - qyk3 - q0yk4],

(3.8)
w = z[p + ßw + qaz + fw2 + qwz + yw'z + gw3z],

z[-az - swz - mz  -bwz 2    2 1 11tw z - nwz - hw z ].z = z\-az - swz - mz  -owz  - p0z
Let 5 be the only separatrix which is different from z = 0. We consider three
cases depending on the values of the slope of 5 at the origin (see Figure 3.1).
Similarly we could analyze the cases corresponding to the local phase portraits
represented in (d2), (c3) and (d3) in Figure 2.4.
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By Lemma 3.3, at least one of the coefficients ß, p or /, in systems (3.7)
and (3.8), is different from zero. Also / - s ^ 0 because y = 0 is a double
root of F(y).

Assume that we are in case (c21) in Figure 3.1. Since the slope of s in
(c21) is zero, it follows from (3.7) that either p ¿ 0 and ß - 4pf < 0, or
p = ß = 0 and / t¿ 0. In short f ¿0. This, together with (3.8), implies that
ß2 - 4pf < 0. Therefore, pf > 0. Since the linear part at (y,k) = (0, 0) is

the critical point (y, k) = (0, 0) is a node or a saddle. If it is a node then
pf > 0 and in consequence the point (y, z) = (0, 0) is formed by two elliptic
sectors. If it is a saddle then the point (y, z) = (0, 0) is formed by two
hyperbolic sectors. Hence case (c21) is not possible.

Assume that we are in case (c22). Since the slope of 5 in (c22) is not infinite,
it follows from (3.8) that p ^ 0. Since the slope of 5 in (c22) is different from
zero we have, from (3.7), that ß - 4pf = 0, /? ^ 0 and f ^ 0. Therefore,
on the straight line y = 0, the system (3.7) has the critical points (0, 0) and
(0, k) where k = [-ß/(2p)] ¿ 0. The linear part at (y, k) = (0, k) is

f f-s + (ß-a)k + pt     (A
\-k(g + yk + qk2 + q0k3)    0j '

If (f-s) + (ß- a)k + pf = -s - ok ± 0 then (by Theorem 65 of [ALGM]),
(y, k) = (0, k) is a node, a saddle or a saddle-node. Using its linear part it
follows that (y, k) = (0, 0) is a node or a saddle. When we draw the local
phase-portrait at (y, z) = (0, 0) we see that (c22) is not possible. Therefore,
assume that s + ak = 0. If g + yk + qk + q0k  = 0, then on the straight line
k = k we have that k_= -k(f + ßk + pf) - ky(g + yk + qf + q0f) = 0. So
the straight line z = ky is invariant by the flow of (3.2). Again, case (c22) is

— —2 —3
not possible. Hence, g + yk + qk + q0k ^ 0. With the coordinates ( Y, A)
defined by Y = y and A = k - k, the system (3.7) becomes

Y = CXY  - aYA + higher-order terms,

Á = Dx Y + D2 Y A + \ßA2 + higher-order terms,
where

Cx = g - t + (y - b)k + (q - m)t + q0t,
— — —3 -4

Dx = -gk -yk-qk -q0k  ^ 0,

D2 = -g - 2yk - 3qk  - 4q0k .
We now change the time scale by ds - D, dt so as to be able to apply Theorem
67 in [ALGM]. Let  Y = (-ß/2Dx)A2 + ■■■   be the solution of Á = 0 in a
neighbourhood of (0,0). Then, Y((-ß/2Dx)A2+- ■■ , A) = (aß/2D2x)A3+- ■ ■ .
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In order to obtain (c22) we apply Theorem 67 and deduce that (y, k) = (0, k)
must be a saddle-node. Hence Y((-ß/2Dx )A2 -\— , A) must have a first term
of even order, i.e., a = 0. From s+ak = 0 it follows that (dPf 1, y)/dy)\v=0 =
5 = 0. Therefore, since Pfl, 0) = r = 0, we have that y = 0 is a double root
of Pfl,y).

Assume that we are in case (c23). We need the point (0, 0) to be the only
critical point of system (3.8); in particular p = 0. Also (0, 0) must be the
unique critical point of system (3.7) on y = 0, i.e., ß = 0 or f = 0. But
/ = 0 implies that the linear part at (y, k) = (0, 0) is

(o   o)
where 5^0 since /-5 ^ 0. Then, by Theorem 65 in [ALGM], (y, k) = (0, 0)
is a saddle-node with the parabolic sector filling the region k > 0 or k < 0
depending on the sign of ß. Therefore there are orbits of the system (3.2)
outside z = 0 such that their a-limit is the critical point (y, z) = (0,0).
Hence, since we are in case (c23), / / 0 and ß = p = 0. So the linear parts of
systems (3.7) and (3.8) at the critical points (y, k) = (0, 0) and (w, z) = (0, 0)
are, respectively,

(V-/) - (Si)-
Therefore, (y, k) = (0, 0) is a node or a saddle. Since (y, z) = (0, 0) is of
type (c23), it must be a saddle. Notice that q0 ̂  0 ; otherwise the straight line
y = 0 would be invariant by the flow of (3.2) in contradiction with the local
behaviour of (c23). When a ^ 0, by Theorem 65 of [ALGM], there are orbits of
system (3.2) in z < 0 and z > 0 such that their a-limit or colimit is the critical
point (y, z) = (0, 0). These orbits come from orbits of system (3.8) which start
or end at (w , z) = (0, 0) in the direction q0z + aw = 0. So a = 0. We can
now apply Theorem 67 of [ALGM] after changing the time scale by ds = q0dt.
Since (y, z) = (0, 0) is a saddle-node of type (c23), (w, z) = (0, 0) in system
(3.8) must be a saddle-node. Let z = (-f/qfw H— be the solution of w = 0

2 1in a neighbourhood of the origin. Then z = (sf/q0)w + higher-order terms.
To obtain a saddle-node at (w , z) = (0, 0), z must have a first term of even
order in w ; so 5 = 0. Also, in this case, P3(l, 0) = (dPfl, y)/dy)\v=0 = 0.
The proposition is now proved.   D

Proof of Theorem C. Let X = (P, Q) be a bounded cubic system in the plane
and set F(x, y) = xQ(x, y) - yP(x, y). Assume, for instance, that F has
one double real root y, and two simple real roots y1,yll- By Proposition 3.2,
the critical points (y2, 0) and (y3, 0) are a node or a saddle, and (y,, 0)
has zero index. By Proposition 2.4, we can have three possibilities for (y,, 0)
determining configurations (2), (3) or (4) in Figure 1.1.

When F has two double real roots we know, from Propositions 3.2 and 2.4,
that there exist six possible kinds of behaviour at infinity. However, for cubic
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vector fields, only five of them are possible. They are (5), (6), (7), (8) and (9)
in Figure 1.1. By Proposition 3.4, two saddle-nodes at infinity of type (c2), (c3),
(d2) or (d3) cannot coexist. In this way we obtain Figure 1.1.

Table 1.1 follows in a straightforward way by using §7, §8, Theorem 65 and
67 of [ALGM] and the blow-up techniques.   D

The method applied to classify the phase-portraits for the bounded cubic
systems with isolated infinite critical points, in a neighbourhood of infinity,
also works for any bounded polynomial system with isolated infinite critical
points. The classification for the bounded linear (resp. quadratic) systems is
easy (resp. known, see [DP]). No specific work has been done for bounded
systems of degree greater than three.

4. Generic index for bounded polynomial vector fields in R"

Let
X = (PX ,P2, ... , Pn)

be a polynomial vector field in R" with degree(P') = m for i = 1,2, ... , n .
In this section we shall give a generalization from R to R" of Proposition A.
It is well known that if q G R" is an isolated critical point of X, the index of
X at q can be computed as the sum of the signs of the jacobian of X at all
the A'-preimages near qof a regular value of X near 0 (see [M]).

The expression for the Poincaré compactification of X, p(X), in the local
chart Ux is given by

' ¿i = l-^K + P2J + 'JL~xxpLx +PÏ-J + - + %1-zfi + P2oî.

(4.1)   -

pi 2 r)l m+l pl
^  Zn ~ ~~Zn^m ~ Zn*m-\ ~ " ' ~ Zn       "o '

where z, , z2, ... , zn are the local coordinates of Ux and

Pl = P'k(l,zx,...,zn_x).

The critical points at infinity in the local chart Ux are points (zx, z2, ... , zf)
where zn = 0 and zx, z2, ... , zn_x are given by the solutions of the system

' -zxPxm(l,zx,...,zn_x) + P2m(l,zx,...,zn_x) = 0,

-^¿(i^i.-..^-i) + ̂ (i^i.-.^-i) = o,

.-zn_xPxm(l,zx,...,zn_f + P:n(l,zx,...,zn_x) = 0.

Assume that  O = (0, ... , 0)  is a critical point of (4.1).   Denote by Z =

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



572 ANNA CIMA AND JAUME LLIBRE

(*. From (4.1) we obtain

(4.3) (DZ)(0)

Hence det(DZ)(0)
Z to z„ = 0.

0
(fe)<°> (%f)<°>

(<9zn/<9zn)(0)det(L>Z')(0) where Z' is the restriction of

Lemma 4.1. ^455wznc that (z,, z2, ... , zn) = (0, ... , 0) = O is a critical point
of system (4.1) and that (dzjdzn)(0) > 0 (resp. (dzjdzf(0) < 0). Then
there exist some orbits yx(t) and y2(t) contained in {zn > 0} and {zn < 0}
respectively, such that their a-limit (resp. co-limit) is 0.

Proof. Call a = (dzjdzn)(0) and A = (DZ)(0). It follows from (4.3) that
det(A - ai) = 0 ; i.e., a is an eigenvalue of A . Assume a > 0 (resp. a < 0)
and divide the spectrum of A into three parts o , a , a   such that

Re/U
<0
= 0
>0

if k G as,
if k G ac,
if A G o„

Let the generalized eigenspaces associated to os, oc and ou be Es, El and
Eu respectively. By the Center Manifold Theorem there exist stable and unsta-
ble invariant manifolds IVs and Wu which are tangent to Eu and Es at 0
and a center manifold IVe which is tangent to Ec at 0.

Since a G ou (resp. a G of, K.er(A - ai)" c Eu (resp. Ker(^ - al)" c
Es), where a is the multiplicity of the root a of the characteristic polynomial
det(A - kl) = 0. So, dimKer(yl - ai)" = a and dimKer(^ - al)ß = a for
each ß > a  (see [HS]). We claim that Ker(^ - alf çL {zn = 0}.   To see
this let v
(z,, z2,..

v , ... , v"  be a basis of Ker(/1 - al)a
, z') satisfies z' = 0 for each i = 1, 2, ..

and assume that v   =
. , a . Writing

A =

(

Vo
B

*H-1

a

a simple computation gives

(A - alf

Vo
(B-alf

-n-\
0
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For each i = 1, 2, ... , a , the equation (A - al)"(v') = 0 implies that

(B - al)"w' = 0,    where w' = (z\, ... , z'n_x).

Since the vectors w' are linearly independent, a < dimKer(i? - al)a . Since
det(^ - ai) = (a - A)det(¿? - kl), when a is a root of det(^4 - kl) = 0 of
multiplicity a, a is a root of det(5 - kl) = 0 of multiplicity (a - 1). So,
dim Ker(B - al)"~x = a - 1 = dim Ker(2? - al)a , which is a contradiction. The
claim is proved.

Since Ker(^ - alf C Eu (resp. Ker(^ - alf c Es), Eu £ {z„ = 0} (resp.
Es at {zn = 0}). Hence Eu (resp. Es) intersects transversally the hyperplane
{zn = 0}.   Since  Wu  (resp.   IVs)  is tangent to Eu  (resp. Es), the lemma
follows.     D

Proposition 4.2. Let X = (Px, P2, ... , Pn) g &m be a bounded polynomial
vector field in R" suchthat X has some infinite critical points and degree(P') =
m, for all i = 1,2, ... , n. Then the following hold:

(a) m is odd.
(b) If (zx, ... , zf = (0, ... , 0) is a critical point of system (4.1 ) then a =

(dzjdzn)(0)>0.
Proof. Let q be an infinite critical point. Without loss of generality we can
assume that q is in the local chart Ux and its coordinates are (z,, ... , zf) =
(0, ... , 0). This implies that P'm(l, 0, ... , 0) = 0 for each i = 2, 3, ... , n
(see (4.2)). Since X e &m , a = -P)n(l, 0, ... , 0) must be different from zero.
Otherwise, system P'm(l, 0, ... , 0) = 0, for z = 1, 2, ... , n , has the root
(1,0,...,0).

Assume that m is even. Then, by the Poincaré compactification, if q is an
infinite critical point in the local chart Ux, -q is an infinite critical point in
the local chart Vx . Furthermore, the orbits near q in z > 0 are the orbits
near —q in zn < 0 with reversed orientation. By Lemma 4.1, since a/0,
there exists some orbit of X whose colimit is q or -q. So, the system will
not be bounded. Therefore (a) is proved.

Assume now that m is odd. Then a satisfies a > 0. Otherwise, by Lemma
4.1, there exists some orbit whose a>-limit is q and X will not be bounded.
Hence, (b) follows.    D

Proof of Theorem D. Since the equator of S" is invariant by the flow of p(X),
each infinite critical point of X determines a critical point of p(X)\s„-i . Ap-
plying the Poincaré-Hopf theorem on S"-   we get

E,o"-1n     ,     ,   ,x«-i      í 2   if "is odd,
1p(X)\„ , =*(S     ) = ! + (-!)       =     n    .,    .^ "s"-1 L 0   if « is even.

We assume first that X has no infinite critical points. Then n must be even.
By the Poincaré-Hopf theorem on S"

J2lp(X) = X(Sn) = l + (-l)n = 2.
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On the other hand,

2^*p(X) = ¿-*> *p(X) + ¿-^ '/>(*) + ¿^ 'p(X) = 2¿^'x + ¿^ix-
u„+, K,+l s"-' /

Since ^oo ^ = 0 we obtain J2f»f = l = i~1)" ■
Now we assume that X has infinite critical points. Let q be one of them.

We claim that the index of p(X) at q is the same as the index of p(X)\s„-i
at q. To see this, assume that q is in the local chart Ux and its coordinates
are (z, , ... , zf = (0,...,0). By Proposition 4.2, a = -Pxn(l,0,... ,0) >
0. Let Gm(zx, ... , zf) be such that zn = znGm(zx, ... , zf) (see system
(4.1)). Since Gm(0, ... , 0) = -PXm(l, 0, ... , 0) > 0, the algebraic hypersur-
face Gm(zx, ... , zf) = 0 does not contain (0, ... , 0). So, let ô be such
that:

(i) Gm(zx, ... , zf) > 0 for all z G BfO) = {z G R" : ||z|| < 0}.
(ii) Inside Bs(0) there are no critical points of Z different from 0.
Call S^"1 = dBfO) and consider the map S^"1 - S""1 defined by z^

Z(z)/||Z(z)||. To compute the degree of this map we select a regular value
of Z that has all its preimages in the hyperplane zn = 0. We can take, for
instance, z& = (a, 0, ... , 0), because if Z(z) = Z(zf) then ¿n(z) = 0 and
by (i) it implies that zn = 0 (if z& is not regular, we can vary ô slightly).
Let {z1 , ... , z } be the set of all preimages of Z(zf) in S¿-1 . Writing
z   = (z\, ... , z'n_x, zf  and denoting by y'  = (z\, ... , z'n_x)  and ys  =
(3,0, ... ,0) G R"_1 , it follows that the set {y1, y2, ... , yk} is composed
of the preimages of ys by Z', where Z' is the restriction of Z to zn = 0.
From (4.1) we obtain (DZ)(f) = (DZ')(y')iJm(z'). Since Gm > 0 in BfO),
the claim follows.

Applying the Poincaré-Hopf theorem on S"~ and S" we obtain, respec-
tively,

ZJ Zp(A-)/S"-'  = *(S        ) = Zw iX '
oo

and
T/iP(X) = 2J2ix + Ttix = XiSn).

f OO

Since y(S")-^(S"_1) = 2(-l)" we deduce

£'x = ("!)"•   °
/

Appendix 1. The Poincaré compactification

Let X = (Px, P2, ... , Pn) be a polynomial vector field in R" and let m =
max{deg(Pl), deg(P2),... , deg(Pn)} be the degree of X.
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fl+1Consider the hyperplane n = {x G R     : xn+l = 1} in R"+1  and let S" =
{y g R"+ : ||y|| = 1} be the «-sphere in R"+ . Since the origin of R"+ is the
centerof S", for each p = (x,, ... , xn, 1) G n the vector ^(x,, ... , xn,l),

where A(x) = (1 + £"=, x2)1/2 belongs to H+ = {y g S" : yn+, > 0} while the
vector ÂT7j(x,, ... , xn, I) belongs to H_ = {y g S": yn+x < 0} . So we can
define the epimorphisms

/+ : R" - H+ c S"    and   /_ : R" -» H_ c S",

, x„, 1)  and f_(x) = ^L(x,,... ,xn,l).   In thisx,by /+M = jfo(
manner X induces a vector field X in H+uH   defined by X(y) = (Z)/h)tAr(x)
when y = f+(x), and by X(y) = (Df_)xX(x) when y = f_(x).

The expression for X(y) on //+ u i/_ is

/ 1

X(y) = yn+\
-yxy2

-y2yx
2-y2

-yfy\
-y^2

-ynyx

-yny2

\

-y^n

y-y^n+i

-y2yn
-y2yn+l

(P2\

\P"J-yfyn   ■■■   i-y„
-y3yn+i  •■• -yny„+J

where P' = Pl(yx/yn+x,..., yjyn+x) or P' = P'(-yx/yn+x,...,-yjyn+x)
depending on whether yn+x > 0 or yn+, < 0, respectively. This defines an
analytical vector field defined on the whole of S" , namely,

(1) m_1   VI     \
yn+\ x(y)-

This vector field is called the Poincaré compactification of X and it is denoted
by p(X).

To obtain the analytical expression for p(X) we shall consider the zz-sphere
as a differentiable manifold. We choose the 2n + 2 coordinate neighbour-
hoods given by U¡ = {y e S" : y, > 0} and V¡ = {y e S" : y, < 0}, for
i — l ,2, ... , n + l. The corresponding coordinate maps F¡: U¡ —* R" and
G,.: Vi^R" are defined by

Fi(y) = Gi(y) = -(yh,yh,...,yj)
with 1 < j\ < j2 < ■ ■ ■ < jn < n + 1, and jk f= i, for all k = 1, 2, ... , n . We
now do the computations on Ux . Let y G Ux n H+ . Then, (DFX) : TyUx —*
TF](y)R" and

(DFx)fy:fxXX(y))=y':fX(DFx)y(Df+)xX(x)=y:fXD(Fxof+)xX(x),
where y = f+(x). Then,
(2)
D(F{of+)xX(x) = \(-x2Px +xxP2, -XfPx +xxP3, ..

x, -xnPX+xxP" ,-PX),

where P' = P'(xx, x2, ... , xf).
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Let (zx, z2, ... , zf) be the coordinates on [/, , that is:

(z,,z2,...,zfl) = JF,(y,,y2,...,y„+,)=(^,^,...,^±i).

Then (2) becomes

(3)
D(FX of+)xX(x) = zn(-zxPX +P2, -z2PX +P3, ... , -zn_xPX +Pn, -znPX),

where P' = P'(l/zn, zjzn, ... , zn_{/zn).
Since y'"fx = [zn/A(z)]m~] , the vector field (1) becomes

m

(4)      -^t(-z,p' +P2, -z2PX +P3, ... , -Zn_xPx+p\-znPx).
A(z)

If y G Ux n H_ we get the same expression we obtained in (4). In a similar
manner we can deduce the expressions for p(X) in U2, ... , Un. These are,
respectively:

m
Z -> i i x 1 M 1

_«_1-7 p+p     -zP   +P -z      P~ + P     -z P~)

where P1' = P¡ l'Z{
z     zn        n

m

(-zxPn + P] , -z2P" + P2,... , -zn_xP" + Pn-X , -znP"),
A(z)'"-1

where P' = P' l ^
z z        zn n n

The expression for p(X) in Un+X is z'"+ (P , P , ... , P"), where P' =

P\zx,z2,...,zn).
On the other hand, the expression for p(X) in the local chart V¡ is the same

as in U¡ multiplied by (-1)'""1 . Notice that in Vt,y'"fx = [-zJA(z)]m~x =
(-l)m-x[zJA(z)f-x .

The vector field p(X) allows us to study the behaviour of X in the neigh-
bourhood of infinity, that is, in the neighbourhood of the equator S" =
{y g S" : yn+x = 0}. From the expressions for p(X) in the local charts Ui and
V■, for z = 1, 2,...,« + 1 , we deduce that the infinity is invariant by the flow
of p(X) and that p(X) has two copies of X on the northern and southern
hemisphere of S" , that is, on Un+X and Vn+] , respectively.

We shall call finite (resp. infinite) critical points of X or of p(X), the critical
points of p(X) which lie on S"\S""'  (resp. S""1).

Notice that the integral curves in S" are always symmetric with respect to
the origin of R"+ , but the vector field is only symmetric when m  is odd.
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Furthermore, due to this symmetry, if y G S" is an infinite critical point
then -y is another one.

Appendix 2. Genericity

Let %Am be the set of polynomial vector fields X = (Px, P2, ... , P") de-
fined on R" with degree(P') = ml and m = (mx ,m2, ... , mf). We can
identify Sfm with R , where N is the number of coefficients of all the P', for
i = 1, 2, ... , n . Let f?m be the set of all X G äfm such that all the solutions
of system P' = 0, for i = 1, 2, ... , n , lie on the "finite part" of R" . That is,
if P is the homogeneous polynomial in the variables xQ, xx, ... , xn of de-
gree mi such that P' (I, xx, ... , xn) = P'(xx, x2,..., xf) and degree(.P') =
degree(P'), then the solutions of system P' = 0, for i = 1,2,...,«, with
x0 = 0, are in the hyperplane at infinity.   So,  X G &m  means that system
P = 0, for i = 1,2,...,«, with x0 = 0 has only the trivial solution
x0 = x, = • • • = xn = 0. Notice that this system is equivalent to system
P'm = 0, for z = 1,2,...,«, where P'm is the homogeneous part of P' of
maximum degree.

We want to see that X g "§m is a "generic" condition. For this we need the
concept of the resultant of two polynomials (see [S]).

Let A(x, y) = a0x'"+axxm~ y-\-r-tfmym and B(x, y) = b0x"+bxx"~1y +
-1- bny" be two homogeneous polynomials associated to the points (a0, ax,
... ,am) G Rm+I  and (b0, bx, ... , bn) G Rn+I .  We claim that there exists a
polynomial R of degree (m+l)(«-r-l) in the variables a0, ax, ... , am, b0, bx,
... ,bn, with the following property: if A and B have some common linear
factor, then R(A, B) = 0. This polynomial is known as the resultant of poly-
nomials A and B.

Assume A = CA  and B = CB, and let  (x,y) ^ (0, 0)  be such that
C(x,y) = 0.   Multiplying A(x, y)  successively by x"~' , x"~2y, ... , yn~x
and B(x,y) by xm~x, xm~2y, ... ,ym~x and renaming xm+n~x, xm+n-2y,

... , /"+"-' by zx,x2, ... , zm+n we obtain

a0zx+axz2 + --- + amzm+] =0,

aQz2 + axZf + --- + amzm+2 = 0,

a0Zn+aiZn+l+-' + anZm+n=°>

b0zx+bxz2 + --- + bnzn+x=0,

b0z2 + bxZf + --- + bnzn+2 = 0,

b0Zm+b^m+X+-' + bnZn+,n=Q-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5 78 anna cima and JAUME LLIBRE

This is a homogeneous linear system of « + m equations with a nontrivial
i   » /—      — —        \ /—m+n—l    —m+n—2— —m+n—\\       Tt ■*solution (zx, z2, ... , zn+m) = (x ,x y,...,y ).   Hence, its

determinant must be zero. We define R(A , B) to be the determinant of the
above system. R(A, B) is a polynomial in the coefficients of A and B and it
satisfies the claim.

Proposition 1. âfm\^m is contained in an algebraic hypersurface of ¡Ac?m; i.e.
there exists a polynomial function <P: Sfm —► R, such that A2AlfffA/m c O_1(0).
Proof. Let X = (Px, P2, ... , Pn) e %?m where m = (mx, m2, ... , mf). Con-
sider the system:

(1) Pim(l,x2,...,xn) = 0,    fori=l,...,n.

We define:

Rj = R(Plmi (1 ,x2,...,xn),PJm(l,x2,..., xf)),     for j - 2, ... , « ,

when interpreting Pm  and P}m  as polynomials in x2 ;

R2j = R(R2,Rj),     forj = 3,...,n,
when interpreting R2 and R- as polynomials in x3 ;

R2fj=R(R2f,R2j),    forj = 4,...,n,
when interpreting R23 and R2j as polynomials in x4 ;

R23-(n-2)j - RiR23-(n-3)(n-2) ' R23-(n-3)j) '       fOT j -K- I, If,
when interpreting Ä23..-B_3w„_2) and i?23...(„_3)y- as polynomials in xrt_, ;

R23-n = RiR23--(n-2)(n-l)> R23-(n-2)n)
when interpreting #23-(n-2)(n-i) and R23-(n-2)n as polynomials in xn .

Notice that .R23...n depends only on the coefficients of P'm , for i = 1, ... , n .

We claim that if one of the roots of the system P'm (xx, x2, ... , xf) = 0, for
z = 1, 2,...,«, is such that x, f 0, then R23...„ must be zero. To see this,
let y, be defined by y, = x ./x, , for j = 1, 2, ... , n, where (xx, x2, ... , xf)
is a solution of the system P'm (xx, x2, ... , xf) = 0.  From the homogeneity

of P'm   we obtain that P'm (1, y2, ... , y„) = 0, for i = 1, 2, ... , n . So, the
polynomials P'm (I, x2,y3, ... ,yn) have the root x2 = y2 in common. Then

Rj(y3,...,yn) = 0,    for j = 2,...,n.

Consider now the system Rx,(x3, y4, ... , yn) = 0. Since the polynomials J?y
have the root x3 = y3 in common, we have that R2j = R(R2, Rj) = 0. In a
similar way we obtain that R2i n must be zero. We shall call O, the polyno-
mial *23 ..„ ■
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Following the same procedure but beginning with systems

(2)       PJmixx, ... , x,_,, l,x;+, , ... , xf) = 0,     for j =1,2, ... ,«;

we can construct the polynomials <P,, 02, ... , <Pn. Now set <P = 0,<I>2 ■ • ■ <E>n .
We claim that ä?m\&m C <P~'(0). Let X G ä?m\&m\ i.e. assume that there
exists a solution (x,, x2, ... , xf of system P'm(xx, x2, ... , xf = 0, for i =
1,2,...,«, where x¡ / 0 for some j G {1, 2,...,«}. Then, <&,(X) = 0
and consequently <P(AT) = 0.   G
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