
Bounded Pushdown Dimension vs Lempel Ziv
Information Density

Pilar Albert1, Elvira Mayordomo1(B), and Philippe Moser2

1 Departamento de Informática e Ingenieŕıa de Sistemas,
Instituto de Investigación en Ingenieŕıa de Aragón,
Universidad de Zaragoza, 50018 Zaragoza, Spain

elvira@unizar.es
2 Department of Computer Science, National University of Ireland Maynooth,

Co Kildare, Ireland
pmoser@cs.nuim.ie

Abstract. In this paper we introduce a variant of pushdown dimension
called bounded pushdown (BPD) dimension, that measures the density
of information contained in a sequence, relative to a BPD automata,
i.e. a finite state machine equipped with an extra infinite memory stack,
with the additional requirement that every input symbol only allows
a bounded number of stack movements. BPD automata are a natural
real-time restriction of pushdown automata. We show that BPD dimen-
sion is a robust notion by giving an equivalent characterization of BPD
dimension in terms of BPD compressors. We then study the relationships
between BPD compression, and the standard Lempel-Ziv (LZ) compres-
sion algorithm, and show that in contrast to the finite-state compressor
case, LZ is not universal for bounded pushdown compressors in a strong
sense: we construct a sequence that LZ fails to compress significantly,
but that is compressed by at least a factor 2 by a BPD compressor. As
a corollary we obtain a strong separation between finite-state and BPD
dimension.

Keywords: Information lossless compressors · Finite state (bounded
pushdown) dimension · Lempel-Ziv compression algorithm

1 Introduction

I first learned of Rod Downey through his papers with Mike Fellows on Para-
meterized Complexity. Their idea that the computational complexity of a prob-
lem should take into account the importance of different parameters of the input
affected deeply our understanding of inherent difficulty. Their 1999 book, Para-
meterized Complexity, is still the reference book on the subject (later improved
by their 2013 book). In 2000 Rod started taking an interest in Algorithmic Ran-
domness which quickly made him one of the main researchers in the field, he has
written hundreds of papers and the main book on the topic with Denis Hirschfeldt.
He is now the driving force in the Algorithmic Randomness community and his
c© Springer International Publishing AG 2017
A. Day et al. (Eds.): Downey Festschrift, LNCS 10010, pp. 95–114, 2017.
DOI: 10.1007/978-3-319-50062-1 7

96 P. Albert et al.

work encouraging students and young researchers is simply amazing. This paper
is dedicated to his 60th birthday, for many years to come Rod!

Effective versions of fractal dimension have been developed since 2000 [11,12]
and used for the quantitative study of complexity classes, information theory
and data compression, and back in fractal geometry (see [8,13,14]). Here we
are interested in information theory and data compression, where it is known
that for several different bounds on the computing power, effective dimensions
capture what can be considered the inherent information content of a sequence
in the corresponding setting [14]. In the today realistic context of massive data
streams we need to consider very low resource-bounds, such as finite memory or
finite-time per input symbol.

The finite state dimension of an infinite sequence [3], is a measure of the
amount of randomness contained in the sequence within a finite-memory setting.
It is a robust quantity, that has been shown to admit several characterizations in
terms of finite-state information lossless compressors (introduced by Huffman [3,
9]), finite-state decompressors [4,16], finite-state predictors in the logloss model
[1], and block entropy rates [2]. It is an effectivization of the general notion of
Hausdorff dimension at the level of finite-state machines. Informally, the finite
state dimension assigns every sequence a number s ∈ [0, 1], that characterizes the
randomness density in the sequence (or equivalently its compression ratio), where
the larger the dimension the more randomness is contained in the sequence.

Doty and Nichols [5] investigated a variant of finite-state dimension, where
the finite state machine comes equipped with an infinite memory stack and is
called a pushdown automata, yielding the notion of pushdown dimension. Hence
the pushdown dimension of a sequence, is a measure of the density of random-
ness in the sequence as viewed by a pushdown automata. Since a finite-state
automata is a special case of a pushdown automata, the pushdown dimension
of a sequence is a lower bound for its finite state dimension. It was shown in
[5], that there are sequences for which the pushdown dimension is at most half
its finite state dimension, hence yielding a strong separation between the two
notions. Unfortunately the notion of pushdown dimension is not known to enjoy
any of the equivalent characterizations that finite state dimension does. More-
over, the computation time per input symbol can be unbounded, which rules out
this model for many real-time applications.

In this paper we introduce a variant of pushdown dimension called bounded
pushdown (BPD) dimension: Whereas pushdown automata can choose not to
read their input and only work with their stack for as many steps as they wish
(each such step is called a lambda transition), we add the additional real-time
constraint that the sequences of lambda transitions are bounded, i.e. we only
allow a bounded number of stack movements per each input symbol.

We define the notion of bounded pushdown dimension as the natural effec-
tivitation of Hausdorff dimension via Lutz’s gale characterization [11]. We pro-
vide evidence that bounded pushdown dimension is a robust notion by giv-
ing a compression characterization; i.e. we introduce BPD information-lossless
compressors and show that the best compression ratio achievable on a sequence

Bounded Pushdown Dimension vs Lempel Ziv Information Density 97

by BPD compressors is exactly its BPD dimension. This BPD information-
lossless compressors include all that have been used for instance in XML com-
pression [7,10].

In the context of compression, we study the relationship between BPD com-
pression and the standard Lempel-Ziv (LZ) compression algorithm [17]. It is well
known that the LZ compression ratio of any sequence is a lower bound for its
finite state compressibility [17], i.e. LZ compresses every sequence at least as
well as any finite-state information lossless compressor. We show that this fails
dramatically in the context of BPD compressors, by constructing a sequence
that LZ fails to compress significantly, but is compressed by at least a factor 2
by a BPD compressor, thus yielding a strong separation between LZ and BPD
dimension. This separation improves that achieved in [15] for (unbounded) push-
down dimension versus LZ and that of [5] between finite state dimension [3] and
pushdown dimension.

Section 2 contains the preliminaries, Sect. 3 presents BPD dimension and its
basic properties, Sect. 4 proves the equivalence of BPD compression and dimen-
sion and Sect. 5 contains the separation of BPD compression from Lempel Ziv
compression.

2 Preliminaries

We write Z for the set of all integers, N for the set of all nonnegative integers and
Z

+ for the set of all positive integers. Let Σ be a finite alphabet, with |Σ| ≥ 2.
Σ∗ denotes the set of finite strings, and Σ∞ the set of infinite sequences. We
write |w| for the length of a string w in Σ∗. The empty string is denoted λ. For
S ∈ Σ∞ and i, j ∈ N, we write S[i..j] for the string consisting of the ith through
jth symbols of S, with the convention that S[i..j] = λ if i > j, and S[0] is the
leftmost symbol of S. We write S[i] for S[i..i] (the ith symbol of S). For n ≥ 0,
we write S � n for S[0..n − 1]. We use S � 0 for the empty string. For w ∈ Σ∗

and S ∈ Σ∞, we write w � S if w is a prefix of S, i.e., if w = S[0..|w| − 1]. All
logarithms are taken in base |Σ|.

For a string x, x−1 denotes x written in reverse order.

3 Bounded Pushdown Dimension

In this section we first recall Lutz’s characterization of Hasudorff dimension in
terms of gales that can be used to effectivize dimension. Then we introduce
Bounded Pushdown dimension based on the concept of BPD gamblers and give
its basic properties.

Definition [11]. Let s ∈ [0,∞).

1. An s-gale is a function d : Σ∗ → [0,∞) that satisfies the condition

d(w) =

∑

a∈Σ

d(wa)

|Σ|s (1)

for all w ∈ Σ∗.

98 P. Albert et al.

2. A martingale is a 1-gale.

Intuitively, an s-gale is a strategy for betting on the successive symbols of a
sequence S ∈ Σ∞. For each prefix w of S, d(w) is the capital (amount of money)
that d has after having bet on S � |w|. When betting on the next symbol b of a
prefix wb of S, assuming symbol b is equally likely to be any value in Σ, equation
(1) guarantees that the expected value of d(wb) is |Σ|−1

∑

a∈Σ

d(wa) = |Σ|s−1d(w).

If s = 1, this expected value is exactly d(w), so the payoffs are “fair”.

Definition. Let d be an s-gale, where s ∈ [0,∞).

1. We say that d succeeds on a sequence S ∈ Σ∞ if

lim sup
n→∞

d(S � n) = ∞.

2. The success set of d is

S∞[d] = {S ∈ Σ∞ | d succeeds on S}.

Observation 3.1. Let s, s′ ∈ [0,∞). For every s-gale d, the function d′ : Σ∗ →
[0,∞) defined by d′(w) = |Σ|(s′−s)|w|d(w) is an s′-gale. Moreover, if s ≤ s′, then
S∞[d] ⊆ S∞[d′].

Lutz characterized Hausdorff dimension using gales as follows.

Theorem 3.2 [11]. Given a set X ⊆ Σ∞, if dimH(X) is the Haussdorf dimen-
sion of X [6], then

dimH(X) = inf{s | there is an s − gale d such that X ⊆ S∞[d]}
The idea for a Bounded Pushdown dimension is to consider only s-gales that

are computable by a Bounded Pushdown (BPD) gambler. Bounded Pushdown
gamblers are finite-state gamblers [3] with an extra memory stack, that is used
both by the transition and betting functions. Additionally, BPDGs are allowed
to delay reading the next character of the input –they read λ from the input–
in order to alter the content of their stack, but they cannot do this more than a
constant number of times per each input symbol. During such λ-transitions, the
gambler’s capital remains unchanged.

The betting function returns a probability measure over the input alphabet.

Definition. Let Σ be a finite alphabet. ΔQ(Σ) is the set of all rational-valued
probability measures over Σ, i.e., all functions π : Σ −→ [0, 1] ∩ Q such that∑

a∈Σ

π(a) = 1.

We are ready to define BPD gamblers.

Definition. A bounded pushdown gambler (BPDG) is an 8-tuple G =(Q, Σ,
Γ, δ, β, q0, z0, c) where

Bounded Pushdown Dimension vs Lempel Ziv Information Density 99

• Q is a finite set of states,
• Σ is the finite input alphabet,
• Γ is the finite stack alphabet,
• δ : Q × (Σ ∪ {λ}) × Γ → Q × Γ∗ is the transition function (for simplicity

we use the notation δ(q, b, a) = ⊥ when undefined; and we write δ(q, b, a) =
(δQ(q, b, a), δΓ∗(q, b, a)),

• β : Q × Γ → ΔQ(Σ) is the betting function,
• q0 ∈ Q is the start state,
• z0 ∈ Γ is the start stack symbol,
• c ∈ N is a constant such that the number of λ-transitions per input symbol is

at most c,

with the two additional restrictions:

1. for each q ∈ Q and a ∈ Γ at least one of the following holds
• δ(q, λ, a) =⊥
• δ(q, b, a) =⊥ for all b ∈ Σ

2. for every q ∈ Q, b ∈ Σ ∪ {λ}, either δ(q, b, z0) =⊥, or δ(q, b, z0) = (q′, vz0),
where q′ ∈ Q and v ∈ Γ∗.

We denote with BPDG the set of all bounded pushdown gamblers.

The transition function δ outputs a new state and a string z′ ∈ Γ∗. Informally,
δ(q, w, a) = (q′, z′) means that in state q, reading input w, and popping symbol
a from the stack, δ enters state q′ and pushes z′ to the stack.

Note that w can be λ (i.e., a λ-transition: the input is ignored and δ only
computes with the stack) but this only happens at most c times per input
symbol. Any pair (state, stack symbol) can either be a λ-transition pair or a
non λ-transition pair exclusively, because the first additional restriction enforces
determinism.

Moreover, since z0 represents the bottom of the stack, we restrict δ so that
z0 cannot be removed from the bottom by the second additional restriction.

We can extend δ in the usual way to

δ∗ : Q × (Σ ∪ {λ}) × Γ+ → Q × Γ∗,

where for all q ∈ Q, a ∈ Γ, v ∈ Γ∗, and b ∈ Σ ∪ {λ}

δ∗(q, b, av) =
{

(δQ(q, b, a), δΓ∗(q, b, a)v) if δ(q, b, a) �=⊥,
⊥ otherwise.

We denote δ∗ by δ.
For each i ≥ 2, we will use the notation

δi(q, λ, v) = δ(δi−1
Q (q, λ, v), λ, δi−1

Γ∗ (q, λ, v))

where
δ1(q, λ, v) = δ(q, λ, v).

100 P. Albert et al.

Since δ is c-bounded we have that for any q ∈ Q, v ∈ Γ∗,

δc+1(q, λ, v) =⊥

We also consider the extended transition function

δ∗∗ : Q × Σ∗ × Γ+ → Q × Γ∗,

defined for all q ∈ Q, a ∈ Γ, v ∈ Γ∗, w ∈ Σ∗, and b ∈ Σ by

δ∗∗(q, λ, av) = δi(q, av)

if δi(q, λ, av) �=⊥ and δi+1(q, λ, av) =⊥

δ∗∗(q, wb, av) = δi(δQ(q̃, b, ãṽ), λ, δΓ∗(q̃, b, ãṽ))

if δ∗∗(q, w, av) = (q̃, ãṽ), δi(δQ(q̃, b, ãṽ), λ, δΓ∗(q̃, b, ãṽ)) �=⊥ and δi+1(δQ(q̃, b, ãṽ),
λ, δΓ∗(q̃, b, ãṽ)) =⊥, i ≤ c.

That is, λ-transitions are inside the definition of δ∗∗(q, b, av), for b ∈ Σ. Notice
that δ∗∗ is not defined on an empty stack string, therefore av needs to be long
enough in order that δ∗∗(q, b, av) �=⊥.

We denote δ∗∗ by δ, and δ(q0, w, z0) by δ(w). We write δ = (δQ, δΓ∗) for
simplicity.

We also consider the usual extension of β

β∗ : Q × Γ+ → ΔQ(Σ),

defined for all q ∈ Q, a ∈ Γ, and v ∈ Γ∗ by

β∗(q, av) = β(q, a),

and denote β∗ by β.
We use BPDG to compute martingales. Intuitively, suppose a BPDG G is to

bet on sequence S, has already bet on w � S, with current capital x ∈ Q, current
state q ∈ Q and current top stack symbol a. Then for b ∈ Σ, G bets the quantity
xβ(q, a)(b) of its capital that the next symbol of S is b. If the bet is correct (that
is, if wb � S) and since payoffs are fair, G has capital |Σ|xβ(q, a)(b). Formally,

Definition. Let G = (Q,Σ,Γ, δ, β, q0, z0, c) be a bounded pushdown gambler.
The martingale of G is the function

dG : Σ∗ → [0,∞)

defined by the recursion
dG(λ) = 1

dG(wb) = |Σ|dG(w)β(δ(w))(b)

for all w ∈ Σ∗ and b ∈ Σ.

Bounded Pushdown Dimension vs Lempel Ziv Information Density 101

By Observation 3.1, a BPDG G actually yields an s-gale for every s ∈ [0,∞).
We call it the s-gale of G, and denote it by

ds
G(w) = |Σ|(s−1)|w|dG(w).

A bounded pushdown s-gale is an s-gale d for which there exists a BPDG such
that ds

G = d.
Let us define bounded pushdown dimension. Intuitively, the BPD dimension

of a sequence is the smallest s such that there is a BPD-s-gale that succeeds on
the sequence.

Definition. The bounded pushdown dimension of a set X ⊆ Σ∞ is

dimBPD(X) = inf{s | there is a bounded pushdown s − gale d such that X ⊆ S∞[d]}.

4 Dimension and Compression

In this section we characterize the bounded pushdown dimension of individual
sequences in terms of bounded pushdown compressibility, therefore BPD dimen-
sion is a natural and robust definition.

Definition. A bounded pushdown compressor (BPDC) is an 8-tuple

C = (Q,Σ,Γ, δ, ν, q0, z0, c)

where

• Q is a finite set of states,
• Σ is the finite input and output alphabet,
• Γ is the finite stack alphabet,
• δ : Q × (Σ ∪ {λ}) × Γ → Q × Γ∗ is the transition function,
• ν : Q × Σ × Γ → Σ∗ is the output function,
• q0 ∈ Q is the initial state,
• z0 ∈ Γ is the start stack symbol,
• c ∈ N is a constant such that the number of λ-transitions per input symbol is

at most c,

with the two additional restrictions:

1. for each q ∈ Q and a ∈ Γ at least one of the following holds
• δ(q, λ, a) =⊥
• δ(q, b, a) =⊥ for all b ∈ Σ

2. for every q ∈ Q, b ∈ Σ ∪ {λ}, either δ(q, b, z0) =⊥, or δ(q, b, z0) = (q′, vz0),
where q′ ∈ Q and v ∈ Γ∗.

102 P. Albert et al.

We extend δ to δ∗∗ : Q × Σ∗ × Γ+ → Q × Γ∗ as in Sect. 3 for the case of
BPDGs, and denote δ∗∗ by δ and δ(q0, w, z0) by δ(w).

For q ∈ Q, w ∈ Σ∗ and z ∈ Γ+, we define the output from state q on input
w reading z on the top of the stack to be the string ν(q, w, z) with

ν(q, λ, z) = λ

ν(q, wb, z) = ν(q, w, z)ν(δQ(q, w, z), b, δΓ∗(q, w, z))

for w ∈ Σ∗ and b ∈ Σ. We then define the output of C on input w ∈ Σ∗ to be
the string

C(w) = ν(q0, w, z0).

We are interested in information lossless compressors, that is, w must be
recoverable from C(w) and the final state.

Definition. A BPDC C = (Q,Σ,Γ, δ, ν, q0, z0) is information-lossless (IL) if
the function

Σ∗ → Σ∗ × Q

w → (C(w), δQ(w))

is one-to-one. An information-lossless bounded pushdown compressor (ILBPDC)
is a BPDC that is IL.

Intuitively, a BPDC compresses a string w if |C(w)| is significantly less than
|w|. Of course, if C is IL, then not all strings can be compressed. Our interest
here is in the degree (if any) to which the prefixes of a given sequence S ∈ Σ∞

can be compressed by an ILBPDC.

Definition. If C is a BPDC and S ∈ Σ∞, then the compression ratio of C on
S is

ρC(S) = lim inf
n→∞

|C(S[0..n − 1])|
n

.

The BPD compression ratio of a sequence is the best compression ratio
achievable by an ILBPDC, that is

Definition. The bounded pushdown (i.o.) compression ratio of a sequence S ∈
Σ∞ is

ρBPD(S) = inf{ρC(S) | C is a ILBPDC}.

The main result in this section states that the BPD dimension of a sequence
and its ILBPD compression ratio are the same, therefore BPD dimension is the
natural concept of density of information in the BPD setting.

Theorem 4.1. For all S ∈ Σ∞,

dimBPD(S) = ρBPD(S).

The rest of this section is devoted to proving Theorem 4.1.

Bounded Pushdown Dimension vs Lempel Ziv Information Density 103

Definition. A BPDG G = (Q,Σ,Γ, δ, β, q0, z0) is nonvanishing if 0 < β(q, z)(b)
< 1 for all q ∈ Q, b ∈ Σ and z ∈ Γ.

Lemma 4.2. For every BPDG G and each ε > 0, there is a nonvanishing
BPDG G′ such that for all w ∈ Σ∗, dG′(w) ≥ |Σ|−ε|w|dG(w).

Proof of Lemma 4.2. Let G = (Q,Σ, δ, β, q0,Γ, z0) be a BPDG, and let ε > 0.
For each q ∈ Q, z ∈ Γ, b ∈ Σ,

1 − |Σ|−ε
∑

b∈Σ

β(q, z)(b) = 1 − |Σ|−ε > 0,

so we can choose β′(q, z)(b) > 0 rational such that

|Σ|−εβ(q, z)(b) < β′(q, z)(b) < 1 − |Σ|−ε
∑

a∈Σ,a�=b

β(q, z)(a)

and ∑

b∈Σ

β′(q, z)(b) = 1.

Then, 0 < β′(q, z)(b) < 1 for each q ∈ Q, b ∈ Σ and z ∈ Γ, therefore the BPDG
G′ = (Q,Σ, δ, β′, q0,Γ, z0) is nonvanishing.

Also, for all q ∈ Q, b ∈ Σ, z ∈ Γ,

β′(q, z)(b) ≥ |Σ|−εβ(q, z)(b)

so for all w ∈ Σ∗, dG′(w) ≥ |Σ|−ε|w|dG(w). �

Proof of Theorem 4.1. Let S ∈ Σ∞, n ∈ N.
To see that dimBPD(S) ≤ ρBPD(S), let s > s′ > ρBPD(S). It suffices to

show that dimBPD(S) ≤ s. By our choice of s′, there is an ILBPDC C =
(Q,Σ,Γ, δ, ν, q0, z0) for which the set

I = {n ∈ N | |C(S � n)| < s′n}

is infinite.

Construction 4.1. Given a bounded pushdown compressor (BPDC)
C = (Q,Σ,Γ, δ, ν, q0, z0), and k ∈ Z

+, we construct the bounded pushdown
gambler (BPDG) G = G(C, k) = (Q′,Σ,Γ′, δ′, β′, q′

0, z
′
0) as follows:

(i) Q′ = Q × {0, 1, . . . , k − 1}
(ii) q′

0 = (q0, 0)

(iii) Γ′ =
(c+1)k⋃

i=1

Γi

(iv) z′
0 = z2k

0

104 P. Albert et al.

(v) ∀(q, i) ∈ Q′, b ∈ Σ, a ∈ Γ′,

δ′((q, i), b, a) =
((

δQ(q, b, a), (i + 1) mod k
)
, ̂δΓ∗(q, b, a)

)

where for each z ∈ (Γ′)+, z ∈ Γ+ is the Γ-string obtained by concatenating
the symbols of z, and for each y ∈ Γ+, if y = y1y2 · · · y2kl+n with n < 2k,
then ŷ ∈ (Γ′)+ is such that ŷ1 = y1 · · · y2k+n, ŷ2 = y2k+n+1 · · · y4k+n, . . . ,
ŷl = y2k(l−1)+n+1 · · · y2kl+n.

(vi) ∀(q, i) ∈ Q′, a ∈ Γ′,

δ′((q, i), λ, a) =
((

δQ(q, λ, a), i
)
, ̂δΓ∗(q, λ, a)

)

.

(vii) ∀(q, i) ∈ Q′, a ∈ Γ′, b ∈ Σ

β′((q, i), a)(b) =
σ(q, bΣk−i−1, a)

σ(q,Σk−i, a)

where σ(q,A, a) =
∑

x∈A

|Σ|−|ν(q,x,a)|.

Notice that the fact that C is a BPDC is needed for the Construction 4.1 to
be possible, since in order to define β′ we need ν on inputs of length k to depend
on a bounded number of stacks symbols. For a general PDC the computation of
ν(q, x,) for |x| ≤ k could depend on an unbounded number of stack symbols.

Lemma 4.3. In Construction 4.1, if |w| is a multiple of k and u ∈ Σ≤k, then

dG(wu) = |Σ||u|−|ν(δQ(w),u,δΓ∗ (w))| σ(δQ(wu),Σk−|u|, ̂δΓ∗(wu))

σ(δQ(w),Σk, δ̂Γ∗(w))
dG(w).

Proof of Lemma 4.3. We use induction on the string u. If u = λ, the lemma
is clear. Assume that it holds for u, where u ∈ Σ<k, and let b ∈ Σ. Then

dG(wub) = |Σ|σ(δQ(wu), bΣk−|u|−1, ̂δΓ∗(wu))

σ(δQ(wu),Σk−|u|, ̂δΓ∗(wu))
dG(wu)

= |Σ|1−|ν(δQ(wu),b,δΓ∗ (wu))| σ(δQ(wub),Σk−|u|−1, ̂δΓ∗(wub))

σ(δQ(wu),Σk−|u|, ̂δΓ∗(wu))
dG(wu)

so by the induction hypothesis the lemma holds for ub. �

Lemma 4.4. In Construction 4.1, if w = w0w1 · · · wn−1, where each wi ∈ Σk,
then

dG(w) =
|Σ||w|−|C(w)|

n−1∏

i=0

σ(δQ(w0 · · · wi−1),Σk, ̂δΓ∗(w0 · · · wi−1))
.

Bounded Pushdown Dimension vs Lempel Ziv Information Density 105

Proof of Lemma 4.4. We use induction on n. For n = 0, the identity is
clear. Assume that it holds for w = w0w1 · · · wn−1, with each wi ∈ Σk, and let
w′ = w0w1 · · · wn. Then Lemma 4.3 with u = wn tells us that

dG(w′) =
|Σ|k−|ν(δQ(w),wn,δΓ∗ (w))|

σ(δQ(w),Σk, δ̂Γ∗(w))
dG(w)

whence the identity holds for w′ by the induction hypothesis. �

Lemma 4.5. In Construction 4.1, if C is IL and |w| is a multiple of k, then

dG(w) ≥ |Σ||w|−|C(w)|− |w|
k (l+log m+log k+1),

where l = �log |Q|� and m = max{|ν(q, b, a)| | q ∈ Q, b ∈ Σ, a ∈ Γ2}.
Proof of Lemma 4.5. We prove that for each z ∈ Σ∗,

σ(δQ(z),Σk, δ̂Γ∗(z)) ≤ |Σ|l+log m+log k+1.

To see this, fix z ∈ Σ∗ and observe that at most |Q| strings w ∈ Σk can
have the same output from state δQ(z) with stack content δΓ∗(z). Therefore, the
number of w ∈ Σk for which |ν(δQ(z), w, δΓ∗(z))| = j does not exceed |Q||Σ|j .
Hence

σ(δQ(z), Σk, δ̂Γ∗(z)) =
∑

w∈Σk

|Σ|−|ν(δQ(z),w,δΓ∗ (z))| ≤
mk∑

j=0

|Q||Σ|j |Σ|−j = |Q|(mk + 1)

≤ |Σ|l+log m+log k+1.

It follows by Lemma 4.4 that

dG(w) = |Σ||w|−|C(w)|− |w|
k (l+log m+log k+1). �

Lemma 4.6. In Construction 4.1, if C is IL, then for all w ∈ Σ∗,

dG(w) ≥ |Σ||w|−|C(w)|− |w|
k (l+log m+log k+1)−(km+l+log m+log k+1),

where l = �log |Q|� and m = max {|ν(q, b, a)| | q ∈ Q, b ∈ Σ, a ∈ Γ2}.

Proof of Lemma 4.6. Assume the hypothesis, let l and m be as given, and let
w ∈ Σ∗. Fix 0 ≤ j < k such that |w|+ j is divisible by k. By Lemma 4.5 we have

dG(w) ≥ |Σ|−jdG(w0j)

≥ |Σ|−j+|w0j |−|C(w0j)|− |w0j |
k (l+log m+log k+1)

= |Σ||w|−|C(w0j)|− |w|
k (l+log m+log k+1)− j

k (l+log m+log k+1)

≥ |Σ||w|−|C(w)|− |w|
k (l+log m+log k+1)−(km+l+log m+log k+1) �

106 P. Albert et al.

Let l = �log |Q|� and m = max{|ν(q, b, a)| | q ∈ Q, b ∈ Σ, a ∈ Γ2}, and fix k ∈
Z

+ such that l+log m+log k+1
k < s − s′. Let G = G(C, k) be as in Construction

4.1. Then, by Lemma 4.6, for all n ∈ I we have

d
(s)
G (wn) ≥ |Σ|sn−|C(wn)|−n

k (l+log m+log k+1)−(km+l+log m+log k+1)

≥ |Σ|(s−s′− l+log m+log k+1
k)n−(km+l+log m+log k+1)

Since s − s′ − l+log m+log k+1
k > 0, this implies that S ∈ S∞[d(s)

G].
Thus, dimBPD(S) ≤ s.
To see that ρBPD(S) ≤ dimBPD(S), let s > s′ > s′′ > dimBPD(S). It suffices

to show that ρBPD(S) ≤ s. By our choice of s′′, there is a BPDG G such that
the set

J = {n ∈ N | ds′′
G (wn) ≥ 1}

is infinite. By Lemma 4.2 there is a nonvanishing BPDG G̃ such that
d
˜G(w) ≥ |Σ|(s′′−s′)|w|dG(w) for all w ∈ Σ∗.

Construction 4.2. Let G = (Q,Σ,Γ, δ, β, q0, z0) be a nonvanishing BPDG, and
let k ∈ Z

+. For each z ∈ Γ∗ (long enough for dGq,z
(w) to be defined for all w ∈

Σk) and q ∈ Q, let Gq,z = (Q,Σ,Γ, δ, β, q, z), and define pq,z : Σk → [0, 1] by
pq,z(w) = |Σ|−kdGq,z

(w). Since G is nonvanishing and each dGq,z
is a martingale

with dGq,z
(λ) = 1, each of the functions pq,z is a positive probability measure on

Σk. For each z ∈ Γ∗, q ∈ Q, let Θq,z : Σk → Σ∗ be the Shannon-Fano-Elias code
given by the probability measure pq,z. Then

|Θq,z(w)| = lq,z(w)
lq,z(w) = 1 + �log 1

pq,z(w)�

for all q ∈ Q and w ∈ Σk, and each of the sets range(Θq,z) is an instantaneous
code. We define the BPDC C = C(G, k) = (Q′,Σ,Γ′, δ′, ν′, q′

0, z
′
0) whose compo-

nents are as follows:

(i) Q′ = Q × Σ<k

(ii) q′
0 = (q0, λ)

(iii) Γ′ =
(c+1)k⋃

i=1

Γi

(iv) z′
0 = z2k

0

(v) ∀(q, w) ∈ Q′, b ∈ Σ, a ∈ Γ′,

δ′((q, w), b, a) =

{
((q, wb), a) if |w| < k − 1,

((δQ(q, wb, a), λ), ̂δΓ∗(q, wb, a)) if |w| = k − 1.

(vi) ∀(q, w) ∈ Q′, a ∈ Γ′,

δ′((q, w), λ, a) = ((q, w), a).

Bounded Pushdown Dimension vs Lempel Ziv Information Density 107

(vii) ∀(q, w) ∈ Q′, b ∈ Σ, a ∈ Γ′,

ν′((q, w), b, a) =
{

λ if |w| < k − 1,
Θq,a(wb) if |w| = k − 1.

Since each range(Θq,z) is an instantaneous code, it is easy to see that the BPDC
C = C(G, k) is IL.

Notice that the fact that G is a BPDG is needed for the construction 4.1 to
be possible, since in order to define ν′ we need dG on inputs of length k to depend
on a bounded number of stacks symbols. For a general PDG the computation of
dG(q, w,) for |w| = k could depend on an unbounded number of stack symbols.

Lemma 4.7. In Construction 4.2, if |w| is a multiple of k, then

|C(w)| ≤
(
1 +

2
k

)
|w| − log dG(w).

Proof of Lemma 4.7. Let w = w0w1 · · · wn−1, where each wi ∈ Σk. For each
0 ≤ i < n, let qi = δQ(w0 · · · wi−1) and zi = δΓ∗(w0 · · · wi−1). Then,

|C(w)| =
n−1∑

i=0

lqi,zi
(wi)

=
n−1∑

i=0

(
1 + �log

1
pqi,zi

(wi)
�
)

≤
n−1∑

i=0

(
2 + log

1
pqi,zi

(wi)

)

=
n−1∑

i=0

(

2 + log
|Σ|k

dGqi,zi
(wi)

)

= (k + 2)n − log
n−1∏

i=0

dGqi,zi
(wi)

= (k + 2)n − log dG(w) = (1 +
2
k

)|w| − log dG(w) �

Lemma 4.8. In Construction 4.2, for all w ∈ Σ∗,

|C(w)| ≤
(
1 +

2
k

)
|w| − log dG(w).

Proof of Lemma 4.8. If |w| is multiple of k, then we apply the Lemma 4.7.
Otherwise, let w = w′z, where |w′| is a multiple of k and |z| = j, 0 < j < k.
Then, Lemma 4.7 tell us that

|C(w)| = |C(w′)|
≤

(
1 +

2
k

)
|w′| − log dG(w′)

≤
(
1 +

2
k

)
|w′| − log(|Σ|−jdG(w))

=
(
1 +

2
k

)
|w| − log dG(w) − 2j

k

≤
(
1 +

2
k

)
|w| − log dG(w). �

108 P. Albert et al.

Fix k > 2
s−s′ , and let C = C(G̃, k) be as in Construction 4.2. Then Lemma 4.8

tell us that for all n ∈ J ,

| C(wn) | ≤
(
1 +

2
k

)
n − log d

˜G(wn)

≤
(
1 +

2
k

+ s′ − s′′
)
n − log dG(wn)

≤
(2

k
+ s′

)
n − log ds′′

G (wn)

≤
(2

k
+ s′

)
n

< sn.

Thus, ρBPD(S) ≤ s. �
The corresponding result for strong (packing) dimension and a.e. compression

ratio holds by a proof similar to that of Theorem 4.1.

Theorem 4.9. For all S ∈ Σ∞,

DimBPD(S) = RBPD(S).

5 Separating LZ from BPD

In this section we prove that BPD compression can be much better than the
compression attained with the celebrated Lempel-Ziv algorithm.

We start with a brief description of the LZ algorithm [17].
We finish relating BPD dimension (and compression) with the Lempel-Ziv

algorithm. Given an input x ∈ Σ∗, LZ parses x in different phrases xi, i.e.,
x = x1x2 . . . xn (xi ∈ Σ∗) such that every prefix y � xi, appears before xi in the
parsing (i.e. there exists j < i s.t. xj = y). Therefore for every i, xi = xl(i)bi for
l(i) < i and bi ∈ Σ. We denote the number of phrases of x as C(x) = n.

LZ encodes xi by a prefix free encoding of l(i) and the symbol bi, that is, if
x = x1x2 . . . xn as before, the output of LZ on input x is

LZ(x) = cl(1)b1cl(2)b2 . . . cl(n)bn

where ci is a prefix-free coding of i (and x0 = λ).
LZ is usually restricted to the binary alphabet, but the description above is

valid for any Σ.
For a sequence S ∈ Σ∞, the LZ compression ratio is given by

ρLZ(S) = lim inf
n→∞

|LZ(S � n)|
n

.

It is well known that LZ [17] yields a lower bound on the finite-state dimension
(or finite-state compressibility) of a sequence [17], i.e., LZ is universal for finite-
state compressors.

The following result shows that this is not true for BPD (hence PD) dimen-
sion, in a strong sense: we construct a sequence S that cannot be compressed by
LZ, but that has BPD compression ratio less than 1

2 .

Bounded Pushdown Dimension vs Lempel Ziv Information Density 109

Theorem 5.1. For every m ∈ N, there is a sequence S ∈ {0, 1}∞ such that

ρLZ(S) > 1 − 1
m

and
dimBPD(S) ≤ 1

2
.

Proof of Theorem 5.1. Let m ∈ N, and let k = k(m) be an integer to be
determined later. For any integer n, let Tn denote the set of strings x of size n
such that 1j does not appear in x, for every j ≥ k. Since Tn contains {0, 1}k−1 ×
{0} × {0, 1}k−1 × {0} . . . (i.e. the set of strings whose every kth bit is zero), it
follows that |Tn| ≥ 2an, where a = 1 − 1/k.

Remark 5.2. For every string x ∈ Tn there is a string y ∈ Tn−1 and a bit b
such that yb = x.

Let An = {a1, . . . au} be the set of palindromes in Tn. Since fixing the n/2
first bits of a palindrome (wlog n is even) completely determines it, it follows
that |An| ≤ 2

n
2 . Let us separate the remaining strings in Tn − An into two sets

Xn = {x1, . . . xt} and Yn = {y1, . . . yt} with (xi)−1 = yi for every 1 ≤ i ≤ t. Let
us choose X,Y such that x1 and yt start with a zero. We construct S in stages.
For n ≤ k − 1, Sn is an enumeration of all strings of size n in lexicographical
order. For n ≥ k,

Sn = a1 . . . au 12n x1 . . . xt 12n+1 yt . . . y1

i.e. a concatenation of all strings in An (the A zone of Sn) followed by a flag of
2n ones, followed by the concatenations of all strings in X (the X-zone) and Y
(the Y zone) separated by a flag of 2n + 1 ones. Let

S = S1S2 . . . Sk−1 1k 1k+1 . . . 12k−1 SkSk+1 . . .

i.e. the concatenation of the Sj ’s with some extra flags between Sk−1 and Sk.
We claim that the parsing of Sn (n ≥ k) by LZ, is as follows:

Sn = a1, . . . , au, 12n, x1, . . . , xt, 12n+1, yt, . . . , y1.

Indeed after S1, . . . Sk−1 1k 1k+1 . . . 12k−1, LZ has parsed every string of size ≤
k−1 and the flags 1k 1k+1 . . . 12k−1. Together with Remark 5.2, this guarantees
that LZ parses Sn into phrases that are exactly all the strings in Tn and the two
flags 12n, 12n+1.

Let us compute the compression ratio ρLZ(S). Let n, i be integers. By
construction of S, LZ encodes every phrase in Si (except the two flags), by
a phrase in Si−1 (plus a bit). Indexing a phrase in Si−1 requires a code-
word of length at least logarithmic in the number of phrase parsed before, i.e.
log(C(S1S2 . . . Si−2)). Since C(Si) ≥ |Ti| ≥ 2ai, it follows

C(S1 . . . Si−2) ≥
i−2∑

j=1

2aj =
2a(i−1) − 2a

2a − 1
≥ b2a(i−1)

110 P. Albert et al.

where b = b(a) is arbitrarily close to 1. Letting ti = |Ti|, the number of bits
output by LZ on Si is at least

C(Si) log C(S1 . . . Si−2) ≥ ti log b2a(i−1)

≥ cti(i − 1)

where c = c(b) is arbitrarily close to 1. Therefore

|LZ(S1 . . . Sn)| ≥
n∑

j=1

ctj(j − 1)

Since |S1 . . . Sn| ≤ 2k2 +
∑n

j=1(jtj + 4j), (the two flags plus the extra flags
between Sk−1 and Sk) the compression ratio is given by

ρLZ(S1 . . . Sn) ≥ c

∑n
j=1 tj(j − 1)

2k2 +
∑n

j=1 j(tj + 4)
(2)

= c − c
2k2 +

∑n
j=1(tj + 4j)

2k2 +
∑n

j=1 j(tj + 4)
(3)

The second term in Eq. 3 can be made arbitrarily small for n large enough: Let
M ≤ n, we have

2k2 +

n∑

j=1

j(tj + 4) ≥ 2k2 +

M∑

j=1

jtj + (M + 1)

n∑

j=M+1

tj

= 2k2 +
M∑

j=1

jtj + M
n∑

j=M+1

tj +
n∑

j=M+1

tj

≥ 2k2 +
M∑

j=1

jtj + M
n∑

j=M+1

tj +
n∑

j=M+1

2aj

≥ 2k2 +
M∑

j=1

jtj + M
n∑

j=M+1

tj + 2an

≥ M
n∑

j=M+1

tj + M(2k2 + 2n(n + 1) +
M∑

j=1

tj) for n big enough

= M(2k2 +

n∑

j=1

tj + 4

n∑

j=1

j)

Hence
ρLZ(S1 . . . Sn) ≥ c − c

M

which by definition of c,M can be made arbitrarily close to 1 by choosing k
accordingly, i.e.

ρLZ(S1 . . . Sn) ≥ 1 − 1
m

.

Bounded Pushdown Dimension vs Lempel Ziv Information Density 111

Let us show that dimBPD(S) ≤ 1
2 . Consider the following BPD martingale

d. Informally, d on Sn goes through the An zone until the first flag, then starts
pushing the whole X zone onto its stack until it hits the second flag. It then uses
the stack to bet correctly on the whole Y zone. Since the Y zone is exactly the X
zone written in reverse order, d is able to double its capital on every bit of the Y
zone. On the other zones, d does not bet. Before giving a detailed construction
of d, let us compute the upper bound it yields on dimBPD(S).

dimBPD(S) ≤ 1 − lim sup
n→∞

log d(S1 . . . Sn)
|S1 . . . Sn|

≤ 1 − lim sup
n→∞

∑n
j=1 |Yj |

2k2 +
∑n

j=1(j|Tj | + 4j)

≤ 1 − lim sup
n→∞

∑n
j=1 j

|Tj |−|Aj |
2

2k2 +
∑n

j=1(j|Tj | + 4j)

≤ 1
2

+
1
2

lim sup
n→∞

2k2 +
∑n

j=1(j|Aj | + 4j)
2k2 +

∑n
j=1(j|Tj | + 4j)

.

Since

lim sup
n→∞

2k2 +
∑n

j=1(j|Aj | + 4j)
2k2 +

∑n
j=1(j|Tj | + 4j)

≤ lim sup
n→∞

∑n
j=1 j(|Aj | + 4 + 2k2)

∑n
j=1 |Tj |

≤ lim sup
n→∞

∑n
j=1 j(2

j
2 + 2

j
4)

∑n
j=1 2aj

≤ lim sup
n→∞

n2
3n
4

2an

= 0.

It follows that
dimBPD(S) ≤ 1

2
.

Let us give a detailed description of d. Let Q be the following set of states:

• The start state q0, and q1, . . . qv the “early” states that will count up to

v = |S1S2 . . . Sk−1 1k 1k+1 . . . 12k−1|.
• qa

0 , . . . , qa
k the A zone states that cruise through the A zone until the first flag.

• q1f the first flag state.
• qX

0 , . . . , qX
k the X zone states that cruise through the X zone, pushing every

bit on the stack, until the second flag is met.
• qr

0, . . . , q
r
k which after the second flag is detected, pop k symbols from the stack

that were erroneously pushed while reading the second flag.
• q2f the second flag state.
• qb the betting on zone Y state.

112 P. Albert et al.

Let us describe the transition function δ : Q×{0, 1} ×{0, 1} → Q×{0, 1}. First
δ counts until v i.e. for i = 0, . . . v − 1

δ(qi, x, y) = (qi+1, y) for any x, y

and after reading v bits, it enters in the first A zone state, i.e. for any x, y

δ(qv, x, y) = (qa
0 , y).

Then δ skips through A until the string 1k is met, i.e. for i = 0, . . . k − 1 and
any x, y

δ(qa
i , x, y) =

{
(qa

i+1, y) if x = 1
(qa

0 , y) if x = 0

and
δ(qa

k , x, y) = (q1f , y).

Once 1k has been seen, δ knows the first flag has started, so it skips through the
flag until a zero is met, i.e. for every x, y

δ(q1f , x, y) =

{
(q1f , y) if x = 1
(qX

0 , 0y) if x = 0

where state qX
0 means that the first bit of the X zone (a zero bit) has been

read, therefore δ pushes a zero. In the X zone, delta pushes every bit it sees
until it reads a sequence of k ones, i.e. until the start of the second flag, i.e. for
i = 0, . . . k − 1 and any x, y

δ(qX
i , x, y) =

{
(qX

i+1, xy) if x = 1
(qX

0 , xy) if x = 0

and
δ(qX

k , x, y) = (qr
0, y).

At this point, δ has pushed all the X zone on the stack, followed by k ones. The
next step is to pop k ones, i.e. for i = 0, . . . k − 1 and any x, y

δ(qr
i , x, y) = (qr

i+1, λ)

and
δ(qr

k, x, y) = (q2f
0 , y).

At this stage, δ is still in the second flag (the second flag is always bigger than
2k) therefore it keeps on reading ones until a zero (the first bit of the Y zone)
is met. For any x, y

δ(q2f , x, y) =

{
(q2f , y) if x = 1
(qb, λ) if x = 0.

Bounded Pushdown Dimension vs Lempel Ziv Information Density 113

On the last step δ has read the first bit of the Y zone, therefore it pops it. At this
stage, the stack exactly contains the Y zone (i.e. the X zone written in reverse
order) except the first bit; δ thus uses its stack to bet and double its capital on
every bit in the Y zone. Once the stack is empty, a new A zone begins. Thus,
for any x, y

δ(qb, x, y) = (qb, λ).

and

δ(qb, x, z0) =

{
(qa

1 , z0) if x = 1
(qa

0 , z0) if x = 0.

The betting function is equal to 1/2 everywhere (i.e. no bet) except on state qb,
where

β(qb, y)(z) =

{
1 if y = z

0 if y �= z.

and β stops betting once start stack symbol is met, i.e.

β(qb, z0) =
1
2
.

��
As a corollary we obtain a separation of finite-state dimension and bounded

pushdown dimension. A similar result between finite-state dimension and push-
down dimension was proven in [5].

Corollary 5.3. For any m ∈ N, there exists a sequence S ∈ {0, 1}∞ such that

dimFS(S) > 1 − 1
m

and
dimBPD(S) ≤ 1

2
.

6 Conclusion

We have introduced Bounded Pushdown dimension, characterized it with com-
pression and compared it with Lempel-Ziv compression. It is open whether
BPD compression is universal for Finite-State compression, which is true for
the Lempel-Ziv algorithm.

References

1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong
dimension in algorithmic information and computational complexity. SIAM J.
Comput. 37, 671–705 (2007)

2. Bourke, C., Hitchcock, J.M., Vinodchandran, N.V.: Entropy rates and finite-state
dimension. Theor. Comput. Sci. 349(3), 392–406 (2005)

114 P. Albert et al.

3. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theor.
Comput. Sci. 310, 1–33 (2004)

4. Doty, D., Moser, P.: Finite-state dimension and lossy decompressors. Technical
report, Technical report cs.CC/0609096, arXiv (2006)

5. Doty, D., Nichols, J.: Nichols.: pushdown dimension. Theor. Comput. Sci. 381,
105–123 (2007)

6. Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press,
Cambridge (1985)

7. Hariharan, S., Shankar, P.: Evaluating the role of context in syntax directed com-
pression of xml documents. In: Proceedings of the 2006 IEEE Data Compression
Conference (DCC 2006), p. 453 (2006)

8. Hitchcock, J.M., Lutz, J.H.: The fractal geometry of complexity. SIGACT News
Complex. Theory Column 36, 24–38 (2005)

9. Huffman, D.A.: Canonical forms for information-lossless finite-state logical
machines. Trans. Circ. Theory CT–6, 41–59 (1959)

10. League, C., Eng, K.: Type-based compression of xml data. In: Proceedings of the
2007 IEEE Data Compression Conference (DCC 2007), pp. 272–282 (2007)

11. Lutz, J.H.: Dimension in complexity classes. SIAM J. Comput. 32, 1236–1259
(2003)

12. Lutz, J.H.: The dimensions of individual strings and sequences. Inf. Comput. 187,
49–79 (2003)

13. Lutz, J.H.: Effective fractal dimensions. Math. Logic Q. 51, 62–72 (2005)
14. Mayordomo, E.: Effective fractal dimension in algorithmic information theory. In:

Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing
Conceptions of What is Computable, pp. 259–285. Springer, New York (2008)

15. Mayordomo, E., Moser, P., Perifel, S.: Polylog space compression, pushdown com-
pression, and lempel-ziv are incomparable. Theory Comput. Syst. 48, 731–766
(2011)

16. Sheinwald, D., Lempel, A., Ziv, J.: On compression with two-way head machines.
In: Data Compression Conference, pp. 218–227 (1991)

17. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)

	Bounded Pushdown Dimension vs Lempel Ziv Information Density
	1 Introduction
	2 Preliminaries
	3 Bounded Pushdown Dimension
	4 Dimension and Compression
	5 Separating LZ from BPD
	6 Conclusion
	References

