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Bounded rational agents playing a public goods game
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An agent-based model for human behavior in the well-known public goods game (PGG) is developed making
use of bounded rationality, but without invoking mechanisms of learning. The underlying Markov decision
process is driven by a path integral formulation of reward maximization. The parameters of the model can
be related to human preferences accessible to measurement. Fitting simulated game trajectories to available
experimental data, we demonstrate that our agents are capable of modeling human behavior in PGG quite well,
including aspects of cooperation emerging from the game. We find that only two fitting parameters are relevant
to account for the variations in playing behavior observed in 16 cities from all over the world. We thereby find
that learning is not a necessary ingredient to account for empirical data.
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I. INTRODUCTION

The arguably most important question of our time is
how humankind can devise a sustainable management of its
ecological niche on planet Earth [1]. Scientific problems con-
cerning the many aspects of sustainability have thus attracted
the interest of an increasingly active research community
since about the turn of the millennium [2]. Aside from se-
vere problems in dealing with limited planet resources and
a changing global climate, a topic of major concern is the
possible response of human societies to these stimuli. Having
to deal with dire consequences of rapidly changing conditions,
unwanted collective behavior may result, such as sedation or
civil war. Hence an important goal of legislation and policy
making is to have these systems evolve in a way which is as
beneficial as possible for its agents.

Since legislation can only change the interaction rules
which apply in human encounters, there is a need for the-
oretical modeling which is capable to predict the collective
behavior in human societies on the basis of these interac-
tion rules [3]. This bears close similarity to the physics of
phase transitions and critical phenomena, where one seeks
to predict the collective behavior of a large number of sim-
ilar subsystems (such as molecules) solely from their known
mutual interactions [4,5]. This paradigm has been applied suc-
cessfully, e.g., in modeling the emergence of polarization in
opinion dynamics [6–8], where collective behavior was found
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to depend sensitively on details in the mutual interactions of
agents. Hence in order to develop a predictive model of col-
lective phenomena in societal dynamics, one has to model the
interactions between individuals in a way sufficiently formal
for access by theory, but still resembling human encounters as
closely as possible.

While the interactions of opinions in topical space may
be modeled by comparably simple mathematical structures
[7,8], more general interactions between humans, including
exchanges of resources and emotions, requires a much higher
degree of modeling complexity. A classical paradigm for
achieving such modeling is game theory, which has grown
into a mature field of research, with extensions towards col-
lective phenomena having emerged in recent years [9–14].

A frequently studied example is the so-called public goods
game (PGG), in which players contribute resources to a com-
mon (public) pot, from which disbursements are paid back to
all players equally [5,12,15,16]. This may be seen as modeling
a wide variety of social interactions, since both contributions
and disbursements may be monetary (e.g., taxes), goods (e.g.,
public infrastructure), activities (e.g., chores in a common
household), or emotions (e.g., enjoying a tidy common house-
hold). In a society, every player is participating in many such
games at the same time, such that society may, e.g., be viewed
as a network of many PGG, coupled by the players they have
mutually in common. The prediction of collective behavior in
such a network rests, in the first place, on careful modeling of
the agents and their interactions.

Despite extensive research in recent decades, the question
how human behavior, as regards PGG, should be cast into
a suitable model agent, must still be considered open. In
PGG experiments played over a number of consecutive rounds
among the same group of players, one widely observes that
contributions to the common pot (referred to as cooperation)
tend to decrease gradually from one round to the next [5,17].
This is not straightforward to account for through a simple
Markovian agent model with a fixed transition matrix. Fur-
thermore, it is commonly assumed that agents have full access
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FIG. 1. Top: Trajectory of a single group game played among
citizens of Athens [17]. Contributions of all four players are shown,
in different styles. Bottom: Intragroup vs intergroup variance in the
average contributions of players. Each data point corresponds to
one city. The significant offset of the data above the fist diagonal
demonstrates the substantial coupling between players playing in the
same group.

to all information necessary to perform optimal moves (“ra-
tional” agents), and are also designed to use this information
exhaustively in search of a Nash equilibrium. As the latter
can be shown to consist in defecting, i.e., zero contribution
(assuming that the number of rounds are finite and known to
all the players), this is clearly at variance with experimental
data [18,19].

In search for less simplistic model agents which better
account for experimental data, concepts of learning [20,21]
have been put forward. In fact, the observed declining trend
in average cooperation could be accounted for quite well
[15,16]. However, a glance at typical game trajectories sheds
some doubt on this to be the sole explanation. The top panel
of Fig. 1 shows the trajectory of a single PGG (played
among four citizens of Athens for ten subsequent rounds

[17]), showing the contributions of all players. It is not ob-
vious what players should even try to “learn” from each
other in such erratic trajectories. Nevertheless, the declining
trend in contributions shows up once many trajectories are
averaged [17]. It thus appears reasonable to investigate as
well other possible extensions (other than learning) of agents
with respect to the simple (fixed transition matrix rational)
agent.

It is clear that real players are characterized by a certain
lack of information as well as by limited resources to use the
information they have access to. This observation is reflected
in the concept of bounded rationality [22,23], which we focus
on in the present paper. Our goal is to develop model agents
whose parameters can be related to measurable individual
preferences [24], and at the same time are capable to model
experimental data on human playing behavior. As we will
show, we are able to account for human playing behavior, both
its “volatility” and the observed decline of cooperation, in 258
games [17], by merely assuming some foresight and bounded
rationality, but without invoking any learning mechanism.

II. BOUNDED RATIONAL FORESIGHT

It appears reasonable to assume that, depending on the
real-life situation modeled by the PGG, players may try to
think a few steps ahead when deciding on their next move, or
contribution. In fact, it is well accepted in the wider commu-
nity that some foresight, usually cast in the notion of “agency”
[25], is one of the key ingredients in human decision pro-
cesses. This requires intellectual resources, as the course of
the game needs to be anticipated somewhat into the future.
As mentioned above, completely rational players (i.e., with
infinite intellectual resources) will always defect in a finite
PGG, as defection maximizes their gains irrespective of what
other players do (Nash equilibrium). Experimental evidence
about iterated PGG, however, shows that players rarely play
the Nash equilibrium [18,19], but instead contribute substan-
tially, with average contributions typically decreasing from
one round to the next as the game proceeds, irrespective of
the country or culture the players belong to [17].

Inspired from a formulation of bounded rationality [22,23],
we use a path integral formulation to develop a type of model
agent which tries to maximize its gain in future moves, but
exhibits bounded rationality in a manner resembling some
key aspects of a human player. Its parameters can be loosely
attributed to certain traits of human character [24], as we
will discuss in more detail further below. We then use these
parameters to adjust the agent properties such as to fit data
of public goods games which had been played by real human
players [17]. As the public goods game can already be seen as
a collective scenario in some sense, our approach is contrast-
ing other work which assumes some agent behavior a priori
and then immediately focuses on trying to predict collective
effects [14,26,27].

A. Rules of the public goods game (PGG)

The public goods game (PGG) has become one of the
major paradigms in game theory and is played by a finite set
of N players. It can be summarized as follows:
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(1) Each player is provided with the same number τ ∈ N
of tokens.

(2) Each player anonymously contributes an integer num-
ber of tokens to a “public” pot.

(3) Each player receives a return worth the total collection
in the pot, multiplied by a number α ∈ R. This return, plus
the tokens held back initially by the player, is called her
reward.
This completes one round of the game. After that, the game
continues for a finite (and previously known to all players)
number T of rounds. Hence there is a chance for the players
to “learn” over time how their companions are playing, and
possibly to develop strategies to maximize their rewards ac-
cordingly. The PGG is completely characterized by the triple
(N, T, α). The number of tokens, τ , merely provides some
kind of currency unit for the asset to be distributed. It is
significant only to match real playing situations and does not
affect the structure of the game.

Data have been made available from this game for a large
number of players in different cities around the world [17].
In that study, each group consisted of four players. In each
of the cities investigated, a number of groups of four players
each were compiled from citizens in a random fashion. The
number of groups per city varied from ten to 38. Each group
played one game consisting of ten rounds. A maximum of 20
tokens could be invested in each round by a single player. It
is well known from earlier experiments [18] that an increase
in α leads to monotonously increasing contributions by the
agents. In the study we refer to [17] it was chosen α = 0.4.
Wherever appropriate, we will choose the same conditions
in our model in order to achieve maximum comparability,
hence in the remainder of this paper we use (N, T, α) =
(4, 10, 0.4).

While the average contributions were substantially differ-
ent for different cities, it was quite generally found that the
average (over all the trajectories in a city) contributions of the
players tended to decrease gradually as the game proceeded.
An example is shown in Fig. 1(a) for a single group from
Athens. This as well as the rather erratic variations is clearly
at variance with what one would expect for Nash equilibrium
players.

The mutual interaction of the players within a group also
becomes apparent when one considers the variance of the
average contributions of the players. As Fig. 1(b) shows, the
intragroup variance (abscissa) was generally smaller than the
variance of average contributions among all groups of the
same city (ordinate). Since players were picked from citizens
in a random fashion, this suggests a certain degree of coop-
erativity, or peer pressure, between players within the same
group as to the style of playing, either more parsimoniously
or more generously. In the present paper, we will refer to this
phenomenon using the neutral term coupling. The agent we
want to develop should be capable of modeling as many of
these traits as possible.

In the remainder of this section, we will develop our agent
model in detail. In Sec. III we present the numerical imple-
mentation of the model and discuss some simulation results
demonstrating its properties. Results of fitting the model to
experimental data are shown in Sec. IV. Finally, we will
suggest some future directions.

B. Developing the agent model

Exploiting the inherent symmetry in the game, we will state
the model for only one agent with the index k ∈ {1, . . . , N}.
From the perspective of the kth agent we shall often refer to
the other agents as the system, and we call the kth agent the
agent under consideration, or just the agent , for short. First
we will introduce the model assuming full rationality and later
introduce the concept of bounded rational agents. We use the
following notations:

(1) fk,t ∈ N := the contribution (or “action”) of the kth
agent at turn t ∈ {1, . . . , T }.

(2) f̄t = ( f1,t , . . . , fN,t ) is the state of the game at the end
of turn t . The bar on the top represents a vector quantity.

(3) θT
t = ( f̄t , f̄t+1, . . . , f̄T ), is the total trajectory of the

game from turn t to T .
(4) Gk ( f̄t ) = α

∑
i fi,t + (τ − fk,t ) is the immediate gain

of agent k at turn t . The last term represents the “gain” from
what was not contributed.

(5) Gk[θT
t ] = ∑T

t ′=t Gk ( f̄t ′ ) is the cumulative gain of agent
k from turn t to T .

(6) P(θT
t ) := The probability of a trajectory from time t

to T .
The aim of each agent is to maximize the cumulative gain

achieved at the end of all turns. At each round t of the game,
the kth agent chooses an action fk,t so as to maximize the
expected cumulative gain. The latter, however, depends not
only on the agent’s actions but also the other agent’s actions
(i.e., the system). Hence due to the anonymity of the game and
lack of information, the agent can have only a probabilistic
model of the evolution of the system’s state.

For the discussion which follows, it will prove useful to
introduce the following quantities:

(1) f̄−k,t := The contribution of all agents except the kth
agent at turn t (we may identify f̄t = ( fk,t , f̄−k,t )).

(2) πT
t = ( f̄−k,t , f̄−k,t+1, . . . , f̄−k,T ), the system trajectory

from turn t to T .
(3) P(πT

t ) := The probability of system trajectory from
time t to T .

C. Rational agents

In order to play the game successfully, each agent has to
calculate the likelihood of a particular trajectory of the game
(system + agent) and hence be able to act so as to maximize
the expected gain over the entire trajectory. In this model we
assume that the agents are Markovian, i.e., their decisions in
a given round are dependent only on the state of the game in
the previous round and not on the states further back in the
game history. While this may appear as a gross simplification,
we will see that human playing behavior can be accounted for
quite well by this assumption. The probability of realizing a
trajectory P(θT

t ) is then given by

P(θT
t ) =

T∏
t ′=t

P( f̄t ′ | f̄t ′−1) =
T∏

t ′=t

P( fkt ′ , f̄−kt ′ | f̄t ′−1). (1)

Note that there are two kinds of processes at play here. First,
the stochastic process describing the system (from the per-
spective of the kth agent) which generates f̄−k,t . Second, there
is the choice of the agent, fk,t . Since the game is played
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anonymously, both of these processes can be assumed to be
independent. This can be used to write P( fk,t , f̄−k,t | f̄t−1) =
P( fk,t | f̄t−1)P( f̄−k,t | f̄t−1). We refer to P( f̄−k,t | f̄t−1) as the
transit ion f unct ion. In order to avoid confusion, we rename
it as Q( f̄−k,t | f̄t−1). This now allows us to write

P(θT
t ) =

T∏
t ′=t

P( fkt ′ | f̄t ′−1)Q( f̄−kt ′ | f̄t ′−1)

= P
(
πT

t

)
P
(

f T
t

)
, (2)

where P( f T
t ) = ∏T

t ′=t P( fkt ′ | f̄t ′−1) is called the policy of the
agent.

We now write the optimization problem the agent faces at
turn t as

Vt
[
P
(

f T
t

)] −→ max, (3)

where

Vt
[
P
(

f T
t

)] =
∑
θT

t

P
(
θT

t

)
G
[
θT

t

]
(4)

is the expected cumulative gain (also called the value func-
tional).

The maximum value of Vt will henceforth be called V ∗
t .

Writing G[θT
t ] = G( f̄t ) + G[θT

t+1], the summation can be bro-
ken down into two parts, the first of which is the immediate
expected gain, and the second is the future expected gain. By
additionally using the normalization of the path probabilities
we can write the equation in a recursive form as

V ∗
t

[
P
(

f T
t

)] = max
f T
t

∑
f̄t

P( f̄t | f̄t−1)
[
G( f̄t ) + Vt+1

[
P
(

f T
t+1

)]]
.

(5)
Now, making use of Eq. (2), we can write the above more
explicitly as

V ∗
t = max

f T
t

∑
f̄t

P( fk,t | f̄t−1)

× [Q( f̄−k,t | f̄t−1)Gk ( f̄t ) + Q( f̄−k,t | f̄t−1)Vt+1]. (6)

This equation is known in the literature as the Bellman equa-
tion [28], which was originally used in optimal control theory.
In common applications, this equation also includes a dis-
count factor 0 � γ � 1, which is the factor by which the
future gains are discounted in comparison to immediate re-
wards. One can then write

V ∗
t = max

f T
t

∑
f̄t

P( fk,t | f̄t−1)

× [Q( f̄−k,t | f̄t−1)Gk ( f̄t ) + γ Q( f̄−k,t | f̄t−1)Vt+1], (7)

where γ = 0 would indicate an extremely myopic agent and
γ = 1 would represent an extremely far-sighted agent. In
terms of established preference dimensions, γ should be
closely related to patience [24].

D. Rationally bounded agents

So far the agents have been completely rational. By rational
we mean that the agent is able to perform the computations
and solve the optimization problem mentioned above. The

reader must not confuse this with the notion of rationality
used conventionally in game theory, which not only assumes
infinite computational capabilities but also assumes that the
agent has perfect information about the game and other play-
ers. In our model the agent doesn’t have perfect information
about other players, and this aspect is incorporated by the use
of a transition function. Therefore our rational agents may
not necessarily play the Nash equilibrium in the intermediate
rounds as their contributions will depend on their respective
transition functions.

In order to model real human players, we need to introduce
a form of bounded rat ionality. It can be argued that human
players playing the PGG do not quite maximize the functional
as in Eq. (7), like a fully rational agent might do, due to
either limited time or computational capabilities. Consider, for
instance, a player who has maximally limited computational
capabilities or has zero time to perform the optimization. Such
a player is bound to contribute randomly and independently
of other agents. An agent modeling such behavior would con-
tribute random samples from a prior distribution P0( fk,t ). This
distribution represents the basal tendency of the agent, and
any deviations from the basal play would involve some cost
of performing computations. In this model we assume that the
agents have a computational budget K , which represents the
degree to which they can “deviate” from their basal tendency
in search of an optimal strategy.

The functional form of the cost of computation is adopted
from [22,23]. Making use of it, we constrain the optimization
problem in Eq. (7) by the computational budget of the agent
and write the optimization problem faced by the agent on turn
t as

V ∗
t = max

f T
t

∑
f̄t

P( fk,t | f̄t−1)
[
Q( f̄−k,t | f̄t−1)Gk ( f̄t )

+ γ Q( f̄−k,t | f̄t−1)Vt+1],

with DKL[P( fk,t | f̄t−1)||P0( fk,t | f̄t−1)] � K. (8)

K is the computational budget of the agent in round t ,
DKL(·||·) is the Kullback-Leibler divergence, and P0( fk,t | f̄t−1)
is the prior distribution. We can introduce a Lagrange param-
eter to write the optimization problem as

V ∗
t = max

f T
t

∑
f̄t

P( fk,t | f̄t−1)

[
Q( f̄−k,t | f̄t−1)Gk ( f̄t )

− 1

β
log

P( fk,t | f̄t−1)

P0( fk,t | f̄t−1)
+ γ Q( f̄−k,t | f̄t−1)Vt+1

]
, (9)

where β is the inverse of the Lagrange parameter for the
bounded optimization problem. Because we have an in-
equality constraint, an additional condition for optimality
is given by the KKT condition [29], i.e., 1

β
{DKL[P∗( fk,t

| f̄t−1)||P0( fk,t | f̄t−1)] − K} = 0. This means that if the optimal
action is within the bounds of the computational capabilities
of the agent, the agent will act optimally, else β is chosen such
that DKL[P∗( fk,t | f̄t−1)||P0( fk,t | f̄t−1)] = K and P∗( fk,t | f̄t−1) is
a solution of Eq. (9).
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This concludes the model of the agent, which can be
seen as defined by the quadruple (Q( f̄−k,t | f̄t−1), P0( fk,t | f̄t−1),
K, γ ). The transition model encapsulates the agent’s inter-
nal model of the system, the prior action represents the
basal tendency of the agent, K expresses the computational
limitations, and γ represents the degree of myopia of the
agent. Although K could in principle vary from one round
to another, we assume the computational constraint K to
be the same for all the rounds, considering it as a trait of
the agent.

We now turn to solving Eq. (9). The value function at
turn t cannot be evaluated, because future actions are not
known ab initio and yet they need to be considered in the
optimization problem. This problem can be resolved in the
same spirit as Bellman’s, through what is called backward
induction. Instead of starting from turn t , we can start from
the last turn and obtain a series of nested functions which
can then iteratively lead to turn t . Although simple in prin-
ciple, an analytical solution can be obtained only in a few
special cases. Numerical solution of this problem, however,
is straightforward.

III. NUMERICAL SIMULATIONS

A. Model assumptions

First, we make the simplifying assumption that the prior
of the agent P0( fkt | f̄t−1), is independent of the previous state,
i.e., we replace P0( fkt | f̄t−1) with P0( fkt ). This explicitly ex-
cludes any learning mechanism, as we want to explore to what
extent we can account for observed behavior exclusively by
bounded rational foresight.

Second, we assume that the agents have truncated Gaussian
priors given by

T G( f ; m, σ ) =
{
N e

( f −m)2

2σ2 , 0 � f � τ,

0, otherwise,

where we set τ = 20 in order to relate to the data we intend to
compare our simulations with [17]. N is the normalization
constant, along with a fixed variance σ 2 = 25. By varying
the peak m ∈ (−∞,∞) of the distribution we can span the
basal tendencies from being very greedy (small m), indif-
ferent (intermediate m), or very benevolent (large m). The
corresponding prior distributions are displayed in Fig. 2. The
parameter m, which may serve as a fitting parameter deter-
mined individually for each agent, is constant over the full
game. It can be seen as resembling a character trait of the
respective player.

Third, because of the anonymity of the players in the
game we can assume symmetry across the f̄−kt variables
and separately across the f̄−kt−1 variables in Q( f̄−k,t | f̄t−1).
Additionally, we need only to consider the distribution of
the means of f̄−kt and f̄−kt−1 as these are the only relevant
quantities in the game. Therefore, from the definition of the
agent we replace the transition function Q( f̄−k,t | f̄t−1) with

Q(μt |μt−1, fkt−1), where μt =
∑

i �=k fit

N−1 .
Finally, we assume that the transition function

Q(μt |μt−1, fkt−1) is a truncated Gaussian with the most

FIG. 2. Basal tendencies of the agents P0( fk,t ) as given by trun-
cated Gaussian prior distributions with variable m.

likely value of the Gaussian given by

μ
peak
t =

{
μ′

t−1 + ξ+|μ′
t−1 − fkt−1|, μ′

t−1 − fkt−1 < 0

μ′
t−1 − ξ−|μ′

t−1 − fkt−1|, μ′
t−1 − fkt−1 > 0

(10)
and some fixed variance (σtrans = 3) [30]. Here μ

peak
t is the

most likely value of μt , μ′
t−1 is the observed value of μt−1 and

ξ± are scalar parameters. This assumption is based upon the
idea that an agent’s contributions can either have an encour-
aging or a discouraging impact on other agents, and ξ+ and ξ−
control the degree to which other agents are being encouraged
or discouraged. In summary, the prior distributions are param-
eterized by m, while the transition functions are parameterized
by ξ±.

B. Relation to known human preferences

Accordingly, each agent is completely described by its
tuple (ξ±, m, K, γ ), which is considered constant over the
game it plays. It is instructive to compare these parameters to
known human preference parameters used, e.g., in the Global
Preference Survey (GPS [24]). In that work, which provides a
compilation of economic preferences all across the planet, six
parameters affecting human choices are considered: patience
(willingness to wait), risk taking (willingness to take risks in
general), positive reciprocity (willingness to return a favor),
negative reciprocity (willingness to take revenge), altruism
(willingness to give to good causes), and trust (assuming
people have good intentions).

There is a large body of literature on why these preferences
are considered particularly important for economic decisions
[31–34], but this shall not concern us here. What we
immediately recognize is a relation between the parameter
ξ+ and ξ− in our model on the one hand and positive and
negative reciprocity on the other hand. Furthermore, patience,
which is measured by the willingness to delay a reward if
this increases the amount rewarded, obviously relates to the
foresight expressed by the attempt to maximize the reward
path integral (instead of focusing on the reward in a single
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TABLE I. Backward Induction.

1: function POLICYM, tmax

2: t = tmax

3: E = 0
4: V = 0
5: while t > 0
6: for 0 � f1,t−1 � τ do
7: for 0 � μt−1 � do
8: for 0 � a � τ do
9: E[a] = GAIN(Q, a, μt−1, f1,t−1, V)

10: end for
11: j = arg maxE
12: policy[t, f1,t−1, μt−1] = (δk j )k∈{0,...,(N−1)τ }
13: V = policy[t, f1,t−1, μt−1] · E
14: end for
15: end for
16: t = t − 1
17: end while
18: RETURN policy
19: end function

round). Notions like risk taking, altruism, and trust will cer-
tainly reflect in the value m assigned to a player, and to some
extent also affect ξ±. Hence the ingredients of our model
are by no means ad hoc, but are widely accepted to exist,
to be relevant for decisions, and to vary considerably among
different cultures across the globe [24].

C. Algorithm

Above we used backward induction to compute the
(bounded rational) policy of an agent. For a more instruc-
tive description of the algorithm, we now describe the fully
rational case in more detail (see Table I). The corresponding
policy can be obtained again by backward induction, using the
transition matrix for the system, with the transition matrix P.

We use the notation μt−1 := 1
N−1

∑
k �=1 fk,t−1 for the cu-

mulative bets of the other agents and assume for simplicity
that the agent the policy of which we are interested in has
index 1.

Here δk j is the Kronecker delta, bold notation refers to
vector-valued variables, and the GAIN function is defined as

GAIN(Q, a, μt−1, f1,t−1, V) = Q(·|μt−1, f1,t−1) · {γ V + α[(0, . . . , (N − 1)τ ) + a] + τ − a},

where Q(·|μt−1, f1,t−1) refers to the probability distribution
vector of having certain cumulative bets given μt−1 and f1,t−1.

For bounded rational agents, the method is more or less
identical, except that instead of having delta distributions with
their peak at the maximum expected value, we need to solve
the constrained maximization problem. In terms of the algo-
rithm, this means that instead of immediately taking the delta
distribution, we first check if DKL(P0||δ) � K for the agent’s
prior P0, the delta distribution as described in line 12 of the
algorithm and his rationality parameter K . If this is the case,
the computational cost of playing optimally in this situation is
compatible with the computational budget of our agent, so his
policy is exactly δ.

Otherwise, we find β such that

DKL(P0||P∗) = K.

Here P∗( fk,t ) = cP0( fk,t ) exp(βE [ fk,t ]), fk,t ∈ {0, . . . , τ }
where c is just a normalizing constant to get a probability
distribution.

Note that for this algorithm one needs to know both μt−1

and fk,t−1 in order to evaluate the expected cumulative gain.
This leads to a problem for the first round, as no history yet
exists. Therefore in our implementation we manually initialize
the group with an appropriate state f̄0. For instance, when fit-
ting simulations to experimental data, we initialize the group
of agents with the initial contributions of the corresponding
players. The code was written in Python using the just-in-time
compiler Numba [35] and the numerical library Numpy [36].

D. Solution space of the model

In this section we will demonstrate the kind of behavior
our model agents can exhibit. Since the main goal of the
present work is to develop agents whose playing behavior is

similar to that of the players in Ref. [17], we set (N, T, α, τ ) =
(4, 10, 0.4, 20), as was chosen in that study, for the remainder
of this paper. Due to the high dimensionality of the parameter
space, we show game trajectories for four-player groups with
only a few configurations given by (ξ±, m, K, γ ).

1. Choice of ξ±

In order to understand the significance of ξ±, we con-
sider fully rational agents for the sake of simplicity, with
(m, K, γ ) = (10,∞, 1), and consider the average (over
rounds and agents) contribution of the group, 〈A〉, while the
two components of ξ are varied. Writing ξ+ = r cos θ and
ξ− = r sin θ , it can be seen from Fig. 3 that 〈A〉 seems to
depend only on r, while the polar angle θ has no effect on
〈A〉. The only region which is nongeneric is close to the origin
(r � 0.3), where the dependence of 〈A〉 is steep, and levels
off at minimal contributions for r � 0.1. r = 0 corresponds
to the case when the agent decouples itself from the rest of
the agents, i.e., the agent believes that its actions will have no
impact on other agents’ behaviors. In this case, the agent plays
at Nash equilibrium, i.e., contributes nothing. This is known
to be at variance with real player behavior, hence we should
avoid small r when choosing ξ± in the model.

Some caveat is in order concerning the polar angle, θ .
When ξ+ > ξ− (θ < π/4), a strongly oscillating behavior is
observed in the contributions for intermediate time (see inset
in Fig. 3). These oscillations (which do not have a visible ef-
fect on the average 〈A〉) occur because agents believe, judging
from their own ξ+, that it is easier to encourage people to
contribute highly, and harder to discourage them. Therefore,
the strategy agents adopt is to contribute highly once, so as to
encourage all the other agents to contribute highly and then
contribute nothing, reaping the benefits from the contribution
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FIG. 3. Group average contribution, 〈A〉, as a function of
r = √

ξ 2− + ξ 2+ for four different values of the polar angle, θ ∈
{0, π

6 , π

3 , π

2 }. The data collapse shows that the polar angle (hence the
ratio ξ+/ξ−) is not relevant for the average contribution. The inset
shows spurious oscillations for θ < π/4, which are not observed in
real games and should therefore be avoided by proper choice of ξ+
and ξ−.

of the other agents. The oscillations can then be observed
because all the agents are employing the same strategy, and
all of them are Markovian. Such oscillations are unnatural for
human player groups, and can be considered an artifact due to
the strictly Markovian character of the agents.

In order to model human players, it seems therefore rea-
sonable to keep r sufficiently far away from zero and to
assume ξ− > ξ+. The latter may as well be seen as reflect-
ing a tendency to be risk-averse, which is characteristic of
human players to a certain extent. Aside from the observations
summarized above, we did not find our simulations to depend
strongly on ξ±. In our simulations, we therefore set ξ+ = 0.1
and ξ− = 0.5 and keep these values fixed for the remainder of
this paper. Additionally, we initialize all following simulations
with f̄0 = (10, 10, 10, 10), except when fitting experimental
data.

2. Impact of K

It should be clear from the previous section that fully ra-
tional agents (i.e., K = ∞) act independently of their priors.
Figure 4(a) shows simulations of a group of four identi-
cal rational agents with (m, K, γ ) = (5,∞, 1). We see that
identical rational agents play identically. Although fully ra-
tional (K = ∞), the agents do not play Nash equilibrium,
but contribute substantially. This is because with our choice
of ξ±, r = 0.26 is sufficiently large to prevent players from
“decoupling.” Notice also that rational agents always con-
tribute zero tokens in the last round. This corresponds to
the Nash equilibrium in the one-round PGG, as the sole
purpose of contributing was to potentially encourage others
to contribute in future rounds, which is expressed by the
ξpm. In the inset of Fig. 4(a) we also see the impact of γ

on rational agents. Here we have three agents (open circles)

FIG. 4. Full game trajectories of a group of four fully rational
agents. In (a) all agents are (m, K, γ ) = (5, ∞, 1). For the inset, one
agent has different γ = 0.7 (solid circles). Panels (b) and (c) show
ensemble average trajectories over 10 000 simulation runs with three
agents (open circles) as before and one different agent (solid circles)
with the same m and γ , but K reduced to 3 and 0, respectively.

with (m, K, γ ) = (5,∞, 1) and one agent (solid circle) with
(m, K, γ ) = (5,∞, 0.7).

Computational limitations make the agent’s action random
and dependent on the prior probabilities. Again we have a set
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of three identical rational agents (circles) with (m, K, γ ) =
(5,∞, 1), and we show the impact of K by varying it for the
fourth agent (solid circles). In Figs. 4(b) and 4(c), we show
the ensemble average trajectory of the group and a different
agent which has K = 3 and K = 0, respectively. Notice the
dissimilarity from the case when all the agents were fully
rational.

In Fig. 4(c) we see the effect of complete lack of any
computational ability. The agent just acts according to its
prior, unaffected by the play of other agents, as is seen from
the flat average trajectory. The preferred contribution of the
agent is given by the average of the truncated Gaussian prior
with m = 5, which is ≈6.24.

3. Impact of m

As mentioned previously, m only has an impact on agent
behavior for finite K . In order to investigate its impact on
agent behavior, we therefore construct a group of three iden-
tical rational agents with (m, K, γ ) = (5,∞, 1) and a single
agent with K = 3 and γ = 1, for which we vary m. As can be
seen from the ensemble averaged trajectories shown in Fig. 5,
m has a monotonous impact of the average contribution of
all the agents. Notice that the agent with m = 0 plays like
rational agents in the last rounds and the agent with m = 20
plays like the rational agents in the intermediate rounds. As
mentioned before, this is because the optimal strategy is close
to the agent’s basal tendency in these regimes. Bounded ra-
tional agents with higher values of m will not be able to play
rationally in the last round, as can be seen in Figs. 5(b) and
5(c).

4. Mutual coupling of agents

Referring to the correlations displayed in Fig. 1(b), we
now consider the intragroup coupling of agents. This can be
investigated by composing a group of three identical agents
with K = 0 as the “system” and one agent as the “probe.”
K must vanish for the system in order to ensure that there
are no repercussions of the probe agent’s behavior upon the
system. We then vary m of the system and observe the ensuing
changes on the contribution of the probe agent. The result is
shown in Fig. 6. Here we have chosen a benevolent rational
player as the probe. Clearly, its contributions are very much
dominated by the contributions of the three system players,
which demonstrates considerable coupling between the play-
ers within a group.

5. Groups of identical agents

So far we have focused on the impact of parameters on
the behavior of individual agents. It is similarly instructive to
study the behavior of groups of identical agents when their
parameters are varied simultaneously. Results for the impact
of m and K on 〈A〉 for groups of identical agents are summa-
rized in Fig. 7. An initial contribution of 10 tokens is assumed
for each agent. Obviously, m and γ have a monotonous im-
pact on the average contributions. At high values of K , the
average contribution of the group becomes more and more
independent of the priors [convergence of all curves towards
the right margin of Fig. 7(a)]. Also note that at very small K ,
the contribution is totally governed by the priors. This is not

FIG. 5. Full game ensemble average trajectories of group
of four agents. There are three identical agents (open circles)
with (m, K, γ ) = (5, ∞, 1) and one different agent (solid cir-
cle) with (a) (m, K, γ ) = (0, 3, 1), (b) (m, K, γ ) = (10, 3, 1), and
(c) (m, K, γ ) = (20, 3, 1).

the case with γ . At high values of K , γ has a large impact on
〈A〉 [Fig. 7(b)], while at low values of K , γ has little or no
impact on the 〈A〉.
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FIG. 6. Demonstration of coupling among agents within one
group. A benevolent rational agent (dashed curve) with (m, K, γ ) =
(20,∞, 1) is made to play in two different systems, with either
m = 0 (greedy, top, solid curves) or m = 20 (benevolent, bottom,
solid curves). The system agents are all chosen with K = 0 in order
to prevent repercussions of the agent under consideration (dashed)
onto the system.

It is furthermore interesting to note that 〈A〉 varies with
K appreciably only in an intermediate range of m. In the
inset of Fig. 7(a), we plot the square of the derivative of 〈A〉
(suitably smoothed) with respect to K , averaged over the full
range of m. We find a pronounced peak at K ≈ 2.5. In this
range, 〈A〉 is sensitive as well to m and γ . Hence we may
say that the system has a particularly high susceptibility to
parameter changes in this range. This is interesting in view
of K being intimately related to the Lagrange parameter β,
which can be viewed as an inverse generalized temperature
[22,23]. A peak in susceptibility may be analogous to a phase
transition, when thermal energy comes of the same order as
the coupling energy between agents. This will be investigated
in more detail in a forthcoming study.

FIG. 7. The dependence of the average contribution 〈A〉 on agent
parameters in a group of identical agents. The ensemble average was
determined over 10 000 runs. In each panel, the dotted curve is for
(m, γ ) = (10, 1).

IV. FITTING TO EXPERIMENTAL DATA

Let us now turn to fitting simulated game trajectories to
the data obtained from experiments [17]. The data set in-
cludes full game trajectories of four-player games for ten
rounds. The data spans over 15 different cities across the
world. We fit our model agent to the actual players in the
game. Note that all agent actions are correlated through
their transition functions. Therefore we need to perform the
fits on the whole group, rather than fitting individual play-
ers sequentially. This means we will have to fit the four
quadruples (Q( f̄−k,t | f̄t−1), Kk, mk, γk ), with k ∈ 1, 2, 3, 4 (16
parameters), to 40 data points (four player contributions over
ten rounds). This appears as rather sparse data, in particular as
the data generated in simulations have a strong random con-
tribution. We therefore have to seek some meaningful ways to
reduce parameter space.

First, we fix some of the parameter values by adopt-
ing all assumptions from Sec. III A. Further suggestions
emerge when fitting the eight parameters (Kk, mk ), with k ∈
{1, 2, 3, 4}, to experimental group trajectories. This yields a
two-dimensional histogram over the (K, m)-plane, which is
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FIG. 8. Joint distributions of K and m for Melbourne (top) and
Boston (bottom). There seems to be a clear preference for K ≈ 2.5.

shown for two cities in Fig. 8, assuming γ = 1. While fitted
values for m are scattered widely, there is a preference for
K ≈ 2.5 for both cities. This is in line with the susceptibility
peak we identified in Fig. 7, where agents have access to a
maximum range of game states. Hence we henceforth assume
K = 2.5 for all agents in the fitting procedures. We further-
more assume that all the agents in a group have the same γ .
We also choose the initial condition f̄0 to be the same as that
of the actual players, therefore effectively fitting only nine
rounds. As a result, to each group from the experimental data
we fit the quintuple (γ , m1, m2, m3, m4).

We minimize the mean-squared deviation of the ensemble-
averaged simulated trajectory from the experimental game
trajectory. The quintuple mentioned above was numerically
found using the Simulated Annealing algorithm in Scipy [37].
The optimization problem for the fitting procedure can be
written as

min
(γ ,m1,...,m4 )

10∑
t=2

4∑
k=1

(
f obs
k,t − 〈

f sim
k,t

〉
(γ ,m1,...,m4 )

)2
, (11)

where the f obs
k,t is the observed (from data) contribution of the

kth agent in round t and f sim
k,t is the corresponding contribution

FIG. 9. Two trajectories simulated under identical conditions,
with parameters obtained from fitting the group trajectory displayed
in Fig. 1(a) (data from a Athens group). The same group of agents
yields a different trajectory each time the simulation is run, due to the
inherent randomness of the model. The fitting procedure minimizes
the deviations of the average contribution at each round, as well as
of the variance of these contributions from the observed variance of
player contributions.

from the simulated agent. Furthermore, 〈·〉(γ ,m1,...,m4 ) denotes
the average over multiple simulation runs of the group defined
by the parameters (γ , m1, . . . , m4).

The resulting parameter set found by fitting to a single
group can be used to generate individual game trajectories
of the so obtained group of agents, for comparison with the
experimental trajectory. Figure 9 shows two examples from
the agent group obtained by fitting to the trajectory from an
Athens group, which we displayed in Fig. 1(a).

V. DISCUSSION

In Fig. 10 we compare the simulated city averages with the
actual city averages. The error bars represent the city-wide
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(a) Athens (b) Bonn (c) Boston

(d) Chengdu (e) Copenhagen (f) Istanbul

(g) Melbourne (h) Minsk (i) Muscat

(j) Nottingham (k) Riyadh (l) Samara

(m) Seoul (n) St. Gallen (o) Zurich

FIG. 10. Actual and simulated city-averaged contributions. The error bars indicate the variance of contributions.

standard deviation of contributions in that round for both the
simulated city and the actual data. The simulated city averages
were evaluated by averaging over multiple simulation runs of
all the groups in the city while keeping the agent parameters
to be the estimated parameters from the fits. Our model not

only accounts for the average contributions and their charac-
teristic decline, but also for the variability of contributions.
The slight underestimation of the variance can be attributed
to the simplifying assumptions we have made in assigning
the same γ to all the players within a group, and setting
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FIG. 11. Coupling in A vs coupling in m as obtained from the
fitted simulations. The gray bar represents the data from Fig. 1(b).

K = 2.5 for all players in general. We see that even though
we have limited our model severely in its scope, we are able
to model the player behavior quite effectively. Note that the
difference between the simulations and the data are much
smaller than the variances of contributions throughout the data
sets. Hence we find that γ and the individual values of m are
sufficient as parameters for obtaining a very good agreement
with experimental data for each city, although both the slope
of the decline and the average contribution varies significantly.
For the sake of completeness at this point, we show the dis-
tributions obtained for m and γ in the Appendix (see Fig. 12)
for each city.

A. Game-induced interagent coupling

Let us now turn to the coupling of players within a group,
as observed from the data in Fig. 1(b). We can quantify this
coupling by taking the ratio of intergroup variance [ordinate
in Fig. 1(b] to intragroup variance [abscissa in Fig. 1(b)].
Specifically, for 〈A〉 and m, we write

Cm = var{m|intergroup}
〈var{mk|intragroup}〉l

(12)

and

CA = var{〈A〉|intergroup}
〈var{〈Ak〉|intragroup}〉l

, (13)

respectively, where “var” is the variance and the index l runs
through all groups of a city.

Results for these couplings as obtained by fitting to the
experimental game trajectories are presented in Fig. 11, where
each data point corresponds to one city. The gray bar rep-
resents the data from Fig. 1(b), where CA is found to range
from 1.25 to 2.7. As m represents the preference inherent to
a single player, the bar is placed at Cm = 1. This corresponds
to the fact that players had been chosen randomly, such that
the intergroup variance of personal preferences must a priori
be equal to the intragroup variance, up to some statistical
fluctuations which we indicate by the fuzzy boundaries of the
gray bar.

The values obtained for CA from the fitted simulations are
found in the same range as that indicated by the gray bar.
This is expected as we have fitted the contributions to those
of the experiments. However, we see that most of the data
points are well above the first diagonal, which shows that
the individual mk are less strongly coupled than the average
individual contributions, 〈Ak〉. There is some coupling effect
on the m since the fitting algorithm cannot distinguish to what
extent a player contributes due to her own preference or due
to entrainment by her fellow players. The offset above the first
diagonal, however, clearly shows that the coupling effect is
present among the model agents. This is another manifestation
of the same phenomenon as demonstrated in Fig. 6.

B. Learning vs bounded rational foresight

While payoff-based learning has been suggested as the ex-
planation of the commonly declining contributions in a PGG
[15,16], we have shown that bounded rational foresight, as
reflected by the model agent used in the present work, can
perfectly well serve as an explanation of this phenomenon.
Moreover, it is capable of accounting for the substantial in-
game variance of contributions which is observed in real
games.

Note that Fig. 10 shows that both the average contribution
and the slope of its decline vary substantially among cities
investigated. Our model suggests that this can be attributed
to different human preference parameters, which are indeed
well known to vary among different cultures. It is not straight-
forward to see why (or at least it is not known that) the
parameters of payoff-based learning should vary in a similarly
pronounced manner. This would be a necessary conclusion if
one wanted to insist on payoff-based learning explaining all
salient features of the data displayed in Fig. 10.

VI. CONCLUSIONS AND OUTLOOK

We have modeled the PGG game as an Markov decision
process with bounded rational agents based on a path integral
formulation of reward maximization, without invoking any
learning mechanism. We found that at least in short games, for
which experimental data are available, our bounded rational
agent is able to. account for human playing behavior in PGG
(cf. Fig. 10).

One may argue that the bound on optimization in the form
of relative entropy [Eq. (9)] is arbitrary for modeling human
agents. In order to come up with a more “physical” bound on
the computational abilities of humans, one would need to have
a model of how humans perform computations through their
neural network and evaluate the thermodynamic work done in
order to perform those computations. Then from the energy
limits of human agents we might be able to quantitatively
derive an appropriate value for K . This is, however, well
beyond what is currently known about computations in the
brain.

Our results suggest that the most important parame-
ters determining the playing behavior for our agents are m
and γ . The question whether bounded rational foresight or
payoff-based learning dominates human decision making in
PGG-type situations must be considered open. Both mech-
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(a) Athens (b) Bonn (c) Boston

(d) Chengdu (e) Copenhagen (f) Istanbul

(g) Melbourne (h) Minsk (i) Muscat

(j) Nottingham (k) Riyadh (l) Samara

(m) Seoul (n) St. Gallen (o) Zurich

FIG. 12. Marginal distributions of γ and m as obtained by performing the fits for various cities.

anisms may play a role; actually, it would be surprising if
one would be completely irrelevant. The relative importance
of these mechanisms is a challenge. One might, for instance,
perform PGG with players the preference parameters of which

have been determined beforehand. Correlating the results with
the parameters m, γ , and ξ± may then yield insight into the
importance of bounded rational foresight in the respective
game.
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APPENDIX: MARGINAL DISTRIBUTIONS OF γ AND m
FOR ALL THE CITIES

For the sake of completion, we provide the marginal distri-
butions of γ and m for the various cities.
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