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Bounded Rationality in Newsvendor Models

Xuanming Su

Haas School of Business, University of California, Berkeley, CA 94720, USA

xuanming@haas.berkeley.edu

Many theoretical models adopt a normative approach and assume that decision-makers are
perfect optimizers. In contrast, this paper takes a descriptive approach and considers bounded
rationality, in the sense that decision-makers are prone to errors and biases. Our deci-
sion model builds upon the quantal choice model: while the best decision need not always
be made, better decisions are made more often. We apply this framework to the classic
newsvendor model and characterize the ordering decisions made by a boundedly rational
decision-maker. We identify systematic biases and offer insight into when over-ordering and
under-ordering may occur. We also investigate the impact of these biases on several other
inventory settings that have traditionally been studied using the newsvendor model as a
building block, such as supply chain contracting, the bullwhip effect, and inventory pool-
ing. We find that incorporating decision noise and optimization error yields results that are
consistent with some anomalies highlighted by recent experimental findings.

1. Introduction

The newsvendor model is one of the main building blocks of inventory theory. The model

derives its name from the canonical setting of a newsvendor facing random demand, who

has to decide how many copies of newspapers to order: excess quantities that remain unsold

have no value, but ordering too few copies means that customers have to be turned away

and potential profits are lost. This model has a simple and elegant solution that offers

insights into the optimal balance between the costs of supply-side investment and the costs

of potential foregone profits. It has extensive applications, including inventory management,

capacity planning, and pricing and revenue management.

The current theoretical literature is based primarily on the paradigm of perfect rationality.

In existing models, the newsvendor is a perfect optimizer: without fail, he always chooses

stocking levels that attain the maximum possible level of expected profits. This infallible

newsvendor is an important workhorse of inventory theory and many results are based upon

it. In contrast, recent experimental studies suggest that human decision-makers do not
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solve these inventory problems as theory predicts. One of the most robust experimental

findings is that subjects in newsvendor experiments systematically deviate from the optimal

critical fractile solution. Other anomalies have also been identified in more general supply

chain settings. These empirical deviations challenge the validity of theoretical results in

the literature. This is a significant issue because in practice, many of these newsvendor-

type decisions are made by human decision-makers who suffer from similar psychological

biases. In this regard, we feel that theoretical results based on perfect rationality need to be

reconciled with actual human behavior.

The goal of this paper is to investigate the effect of bounded rationality in traditional

newsvendor models. What happens when newsvendors make mistakes? Are the consequences

of these errors consistent with experimental findings? To address these questions, we adopt

a descriptive decision framework that allows for decision errors. As these errors become

negligibly small, we obtain the standard normative setting of perfect rationality as a special

case. We hope to generalize existing theoretical results while capturing a wider spectrum of

empirically observed behavior.

Our decision model of bounded rationality is derived from classical quantal choice theory

(see Luce, 1959). When faced with alternatives i ∈ I generating utility ui, decision-makers do

not always choose the utility-maximizing alternative i∗ ∈ arg maxi ui. Instead, all possible

alternatives are candidates for selection, but more attractive alternatives (yielding higher

utility) are chosen with larger probabilities. For analytical convenience, we focus on the logit

choice model in which the probability of choosing alternative i is proportional to eui (see

McFadden, 1981, and Anderson, de Palma, and Thisse, 1992). When applied to newsvendor

models, we interpret each possible order quantity x as a “candidate alternative” and the

corresponding expected profit π(x) as the “utility.” The probabilistic choice setup implies

that the newsvendor is subject to decision noise and may make suboptimal ordering decisions.

Unlike conventional models, newsvendor order quantities are no longer deterministic (at the

optimal quantity x∗ = arg maxx π(x)); they are now random variables. Nevertheless, order

quantities that lead to higher expected payoffs are chosen more often. On the terminology:

we stress that “bounded rationality” refers to a wide range of behavioral phenomena (e.g.,

psychological biases, heuristics or rules of thumb, cognitive constraints), and we shall focus

on noisy decision-making as one possible way of incorporating bounded rationality.

Next, we summarize our main results. Using the logit decision model, we offer a complete

characterization of the boundedly rational newsvendor’s order quantity (i.e. its distribution).
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For the special case of uniform demand, we find that the order quantity follows a normal

distribution (truncated at the appropriate cutoff points). For the general case, we offer a

method to calculate the choice distribution and other quantities of interest, such as expected

orders and expected profits. Then, we apply this decision framework to several inventory

settings. Table 1 organizes our findings and compares them with the conventional predictions

under perfect rationality. First, for basic newsvendor decisions, we show that random deci-

sion noise yields systematic biases from the optimal critical fractile solution, and we identify

conditions that lead the boundedly rational newsvendor to over-order or under-order. Next,

in supply contracting, while much of the literature proposes to achieve coordination by allo-

cating a fixed fraction of total profits to the decision maker, we show that this is not feasible

in our model of bounded rationality because the reduced stakes also diminishes the decision-

maker’s incentive to make “good” decisions. Next, our model shows that the bullwhip effect

may arise when decision-makers do not trust their supply chain partners to order optimally

and thus take actions to guard against and correct for others’ biases. Finally, in inventory

pooling, apart from the benefits that have been associated with variance reductions result-

ing from summing random variables, we also identify the (additional) behavioral benefits of

pooling. As summarized in Table 1, there is a large number of experimental observations

that seem to be at odds with conventional theory, but our analysis will show that many of

them are consistent with bounded rationality explanations.

There are two main contributions in this paper. First, we apply the quantal choice

framework to a fundamental operations model. The basic premise that “people need not

optimize, but better decisions are made more often” is intuitively appealing. This quantal

choice approach is sufficiently general to be applicable to a wide variety of settings that

extend beyond newsvendor models, while remaining extremely parsimonious in that there

is only a single parameter to be estimated. We stress that this represents an alternative

theoretical paradigm in operations management. Instead of solving optimization problems

(normative approach), we incorporate bounded rationality and characterize outcomes based

on probabilistic choice models (descriptive approach). Second, our results (accounting for

bounded rationality) are consistent with a wide range of experimental observations that

seem to be at odds with conventional theory (assuming perfect rationality). Hence, we feel

that decision noise and optimization error deserve consideration as a possible explanation for

these empirical newsvendor anomalies. We hope that our results complement the behavioral

and theoretical rationales that have been offered in the literature.
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The remainder of the paper is organized as follows. The literature is reviewed in Section

2. We describe our model of bounded rationality in Section 3 and apply it to the newsvendor

problem in Section 4. In Section 5, we fit our model to experimental data and show that the

data provides empirical support for our specification of bounded rationality. Next, we analyze

the effect of bounded rationality in several different contexts, as shown in Table 1: Section 6

discusses over-ordering and under-ordering, Section 7 explains why “coordinating contracts”

may fail to coordinate the system, Section 8 shows how bounded rationality generates the

bullwhip effect, and Section 9 identifies the behavioral benefits of inventory pooling. Finally,

we offer concluding remarks in Section 10. All proofs are provided in the Appendix.

2. Literature Review

Traditional theory associate rationality with the ability to optimize perfectly: rational agents

will settle for nothing less than the best. In contrast, the concept of bounded rationality

recognizes the inherent imperfections in human decision-making. The seminal work of Si-

mon (1955) proposes “satisficing” as a more accurate way to model decision-making behav-

ior: rather than optimizing perfectly, agents search over the choice domain until they find

something satisfactory. Another broad approach towards bounded rationality is to study

heuristics or rules of thumb; see Geigerenzer and Selten (2001). When the “bounds” on ra-

tionality render optimization infeasible, agents may instead adopt simple heuristics to make

complex decisions. Several well-studied examples include the representativeness heuristic,

the availability heuristic, and the anchoring and adjustment heuristic, which are described

in Tversky and Kahnemann (1974). Yet another approach is to explicitly model agents’

cognitive limitations and the computational complexity of decision tasks. Rubinstein (1998)

surveys this work and discusses it in the context of economic models of decisions and games.

For a review of the evolution and development of bounded rationality, readers are referred

to Simon (1982) and Conlisk (1996).

This paper models bounded rationality by incorporating stochastic elements into the de-

cision process. Instead of choosing the utility-maximizing alternative all the time, decision-

makers adopt a probabilistic choice rule such that more attractive alternatives are chosen

more often. In particular, we focus on the logit choice rule. Our approach is related to three

separate streams of literature. First, there is a rich academic tradition on stochastic choice

rules with the consistency property that better options are chosen more often. This approach

5



can be traced back to Thurstone (1927) and Luce (1959), who set up the mathematical frame-

work and develop invariance properties. Blume (1993) motivates this stochastic approach by

showing that the choice distributions are analogous to Gibbs states, which have proven to be

a useful tool in studying Ising models in statistical mechanics even though their stationary

distributions are not completely known. McKelvey and Palfrey (1995) develop a framework

that admits generalizations of the “better-options-are-chosen-more-often” structure and ap-

plies it to game-theoretic settings. Chen, Friedman, Thisse (1997) consider individuals with

latent utility functions and study the stochastic choice probabilities that emerge. Next, our

model of bounded rationality is mathematically equivalent to the random utility approach

in discrete choice models (see Anderson, de Palma, and Thisse, 1992). In these models,

individuals’ utilities over different alternatives have idiosyncratic taste shocks reflecting un-

observed heterogeneity. The characterization of stochastic choice models as random utility

models was first established by Block and Marschak (1960). The logit choice framework was

originally developed by Luce (1959) and McFadden (1981). The third stream of related mod-

els involves evolutionary adjustment in decision processes. See, for example, Young (1993),

Binmore and Samuelson (1997), Hofbauer and Sandholm (2002) and Anderson, Goeree, Holt

(2004). In these papers, a main interest is in characterizing the steady-state distribution of

decisions over the long run. In particular, Anderson, Goeree, Holt (2004) develop a model

in which agents adjust their decisions toward higher payoffs, subject to normal error, and

show that the long run steady state distribution of this Gaussian process agrees with the

logit choice rule. In our view, the three streams of work reviewed above provide different

justifications to our model of bounded rationality. For concreteness, we shall focus on the

first interpretation; in other words, when we refer to “bounded rationality,” we mean that

individuals need not always pick the best option, but they choose better options more often.

There is a recent stream of work on behavioral operations management; see reviews

by Bendoly, Donohue, and Schultz (2006), Gino and Pisano (2006), and Loch and Wu

(2007). This emerging literature points out fundamental inconsistencies between empirical

observations and theoretical predictions in a variety of operations settings, and underscore

the need to reconcile these findings. In a similar spirit, our current work applies quantal

choice models to newsvendor-type scenarios, and shows that bounded rationality provides a

potential explanation for some of these inconsistencies. Here, our goal is theory-building: we

seek to extend the decision-making foundations of existing theory in order to better match

empirical observations in the laboratory.
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We shall organize this review into the four areas listed in Table 1. First, for the basic

newsvendor model, it is well-known that the optimal solution is characterized by the critical

fractile; see Porteus (2002). However, Schweitzer and Cachon (2000) present experimental

evidence of decision biases in this basic model. With a uniform demand distribution, they find

that subjects tend to order too much of “low-profit” products and too few of “high-profit”

products. These results are consistent with two behavioral explanations: subjects may have

a preference to reduce ex-post inventory error, or they may suffer from the anchoring and

insufficient adjustment heuristic (so their orders are biased towards the mean). There are

subsequent studies that conduct experiments to investigate the effect of feedback and learning

in the newsvendor problem. Bolton and Katok (2005) show that requiring newsvendors to

commit to standing orders focuses their attention on long-term profits and results in better

decision-making. Benzion, Cohen, Peled, and Shavit (2005) identify a significant previous-

period effect, but it weakens over time as subjects learn. Lurie and Swaminathan (2005)

show that more frequent feedback may sometimes degrade performance. Bostian, Holt,

and Smith (2007) find that the bias of order quantities towards the mean can be explained

by an adaptive learning model. In this paper, we demonstrate that bounded rationality,

modeled via stochastic choice rules (i.e. decision noise), can generate some of these laboratory

observations.

Second, we position our work with respect to the theoretical literature on supply chain

coordination, which is well-developed. When decisions in a supply chain are made by in-

dividual parties with misaligned interests, the double marginalization problem arises and

system optimal profits can not be attained. To rectify this situation, various supply con-

tracts have been proposed. These contracts coordinate the system by aligning individual

incentives with system objectives. Examples of such contracts include buy-back contracts

(e.g., Pasternack, 1985), quantity flexibility contracts (e.g., Tsay, 1999), markdown money

(e.g., Tsay, 2001), sales rebates (e.g., Taylor, 2002), and revenue sharing contracts (e.g.,

Cachon and Lariviere, 2005). For a review of the supply chain contracting literature, readers

are referred to Cachon (2003). Recently, Katok and Wu (2006) investigate the performance

of these coordinating contracts in the laboratory. They test the performance of two mech-

anisms: buy-back contracts and revenue sharing contracts. They observe that, in contrast

to theoretical predictions, coordination is not achieved. In a similar spirit, we also find that

coordination may not be feasible when the decision-maker is boundedly rational.

Third, we discuss the theoretical and experimental literature related to the bullwhip ef-

7



fect. The bullwhip effect refers to the tendency for the variance of orders to increase upstream

along the supply chain. This is demonstrated in the important paper by Lee, Padmanab-

han, and Whang (1997), who also identify four separate causes of bullwhip effect: demand

signal processing, inventory rationing, order batching, and price fluctuations. Theoretical

studies suggest that in the absence of the physical causes listed above, the bullwhip effect

will not arise. On the experimental side, the first study demonstrating the bullwhip effect is

by Sterman (1989). There are two important contributions in this seminal paper: first, the

study introduces an empirical framework for predicting subjects’ choices by assuming that

they follow a decision rule based on the anchor-and-adjust heuristic, and second, it identifies

underweighting of the supply line as another cause of the bullwhip effect. That is, because

subjects do not fully account for quantities in the supply line, they may over-order and

generate instability that triggers off the bullwhip effect. In a subsequent experiment with

a commonly known demand distribution, Croson and Donohue (2006) controls for all four

physical causes but find that the bullwhip effect still persists. Finally, even in an experiment

in which the demand is constant and publicly known, Croson, Donohue, Katok, and Sterman

(2006) find evidence of the bullwhip effect. They suggest that it arises because subjects may

place excessive orders to address the perceived risk that others will not behave optimally,

and call this coordination risk. These experimental studies show that beyond its physical

properties, the bullwhip effect is also very much a behavioral phenomenon. In this paper,

we apply our framework of boundedly rational decision-making in such settings. To a large

extent, we find that the theoretical predictions of our model agree with the experimental

findings reviewed above.

Fourth, we discuss the theoretical literature related to inventory pooling. The classic

study by Eppen (1979) shows that in a multi-location inventory setting, consolidating stocks

at a centralized location (instead of holding separate inventories at individual locations) leads

to a reduction in total costs; further, the magnitude of these pooling benefits depends on

the correlation of demands. Although inventory pooling leads to lower costs, Gerchak and

Mossman (1992) show that it does not necessarily lead to lower inventory levels. We extend

this work by showing that beyond the physical benefits, there are also behavioral benefits to

inventory pooling.

From a meta-modeling perspective, the existing body of work on random supply processes

provides a physical analogue to our behavioral notion of bounded rationality. This literature,

which traces back to Karlin (1958), studies the impact of physical phenomena such as yield

8



uncertainty in the production process, supply unreliability and disruptions (e.g., breakdowns,

natural disasters or labor strikes), and inventory record inaccuracy. For a sample of different

modeling approaches, readers are referred to the review by Lee and Yano (1995), as well as

more recent papers by Chen, Yao, and Zheng (2001), Tomlin and Wang (2005), Kok and

Shang (2006), and Dada, Petruzzi and Schwarz (2006). Ultimately, the modeling root in

most of this literature, which also forms the core of our notion of bounded rationality, is that

the supply X is a random variable. The causes may be behavioral or physical in nature,

but the consequence is the same: supply is uncertain. Under physical constraints, the agent

is capable of making an optimal decision but may still experience a suboptimal outcome

because the agent is not perfectly capable of implementing the decision. In contrast, under

behavioral constraints, the agent faces a suboptimal outcome because he/she is not able to

make the optimal decision in the first place (even though the decision, once made, can be

implemented accordingly). Although the motivation and practical contexts behind these two

perspectives are completely different, they can be examined from a similar modeling angle.

There are two noteworthy differences between supply uncertainty and bounded ratio-

nality as modeled in this paper. First, we capture boundedly rational decision-making by

postulating that better choices are made more often. This implies that the resulting decision

noise is intricately related to the underlying decision problem. In contrast, most practical

interpretations of supply uncertainty models do not require a close relationship between sup-

ply disruptions and the underlying economic context; for instance, less severe disruptions

(analogous to better decisions) do not necessarily occur more frequently. Second, in many

models of supply uncertainty, the actual quantity being supplied is usually less than the in-

tended quantity. On the other hand, in our model of bounded rationality, the chosen quantity

may either be larger or smaller than the optimal quantity; the only consistency condition

we impose is that better decisions are made more often. Nevertheless, from a managerial

perspective, the insights that can be gleaned from studying random supply processes may

have analogous interpretations for behavioral settings of bounded rationality. In our analysis

below, we shall draw such parallels wherever possible.

3. A Model of Bounded Rationality

The standard approach in most normative analysis assumes perfect rationality on the part

of the decision-maker. Specifically, when faced with a choice among different alternatives
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i ∈ I, the perfectly rational decision-maker always chooses the most preferred option(s)

i∗ ∈ arg maxi ui. In contrast, to capture bounded rationality, we apply the multinomial logit

choice model and assume that the decision-maker chooses alternative i ∈ I with probability

ψi =
eui/β

∑
i∈I eui/β

. (1)

Similarly, the logit choice probabilities over a continuous domain Y are given by the density

ψ(y) =
eu(y)/β

∫
y∈Y eu(y)/β

(2)

with distribution Ψ(y) ≡ ∫ y

−∞ ψ(v)dv. In other words, the agent’s choice is a random variable

Y ∈ Y . As noted by Anderson, de Palma and Thisse (1992) (page 4), this probabilistic

approach provides a way to model bounded rationality. With this logit structure, better

alternatives are chosen more often. Although the best option is no longer chosen with

probability one, it nonetheless will be the mode of the choice distribution. The logit model

is sometimes called the log-linear model because the log odds of choosing one alternative

over another is proportional to the payoff difference between the two alternatives.

The parameter β can be interpreted as the extent of cognitive and computational limita-

tions suffered by the decision-maker. To understand this, observe that as β →∞, the choice

distribution in (1) approaches the uniform distribution over I in the limit. In this extreme

case, the decision-maker lacks the ability to make any informed choices and instead random-

izes over the alternatives with equal probabilities. On the other hand, as β → 0, the choice

distribution in (1) becomes entirely concentrated on the utility-maximizing alternative (as-

suming it is unique), and this coincides with the choice of a perfectly rational decision-maker;

when there are multiple alternatives attaining the maximum utility, the choice distribution

approaches the uniform distribution over these utility-maximizing alternatives, which is also

consistent with perfect rationality. Therefore, we shall interpret the magnitude of β as the

extent of bounded rationality.

The multinomial logit model described above has been frequently used in different con-

texts. Under one interpretation, the noise terms εi reflect heterogeneity that is unobserved

by the modeler; despite the presence of noise, the decision-maker is perfectly rational, but

he is just taking some unobserved factors into account. Alternatively, as in our model, the

noise terms are the explicit result of bounded rationality. Both interpretations are reason-

able, and they lead to the same probabilistic choice outcomes. In this paper, we shall adopt
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the bounded rationality interpretation as this facilitates comparing our results with recent

experimental findings, in which all other external attributes have been controlled for.

Before proceeding, we put forth two invariance properties. First, consider affine transfor-

mations of the decision domain, i.e., instead of choosing y ∈ Y , suppose that the decision-

maker chooses ỹ ∈ Ỹ , where ỹ ≡ ay + b and Ỹ ≡ aY + b for some constants a and b. Such

transformations of the decision domain does not affect utility, so the utility function over Ỹ
is given by ũ(ỹ) = u(y). This can be interpreted as purely a change in the way choices are

named or labeled. In particular, the multiplicative factor a changes the units of the choices

(e.g. from kilograms to tonnes) and the additive term b changes the location of “zero.”

Lemma 1. The choice distribution is invariant to affine transformations of the decision

domain. Specifically, let Ψ(y) be the choice distribution over Y and let Ψ̃(ỹ) be the choice

distribution over Ỹ. Then, Ψ(y) = Ψ̃(ỹ).

There is a similar result for additive transformations in the utility function, i.e., the

decision-maker faces utility function ũ(y) = u(y) + a instead of u(y).

Lemma 2. The choice distribution is invariant to additive transformations in the utility

function. Specifically, let Ψ(y) be the choice distribution with respect to u(y) and let Ψ̃(y) be

the choice distribution with respect to ũ(y). Then, Ψ(y) = Ψ̃(y).

However, the choice distribution is affected by multiplicative transformations in the utility

function. As we shall see in the subsequent analysis, this effect has important implications.

Most significantly, it suggests that stake sizes have an impact on decision outcomes.

4. The Newsvendor Model under Bounded Rationality

We now apply the logit choice framework to the newsvendor problem. Recall that the

canonical setting involves a newsvendor who has to determine how many copies of newspapers

to order. Each copy costs c but can be sold at price p, where p > c. The random demand

D has density f and distribution F ; we shall write F̄ ≡ 1− F . Demand that is not fulfilled

is lost, and leftover copies have zero value. (Although it is straightforward to incorporate

a salvage value, we prefer to suppress it for notational clarity; by virtue of Lemma 2, the

analysis can easily be modified to include a salvage value s by replacing p and c by p − s

and c− s.) Given this setup, the newsvendor’s expected profit when ordering x copies is

π(x) = pE min(D, x)− cx, (3)
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which is uniquely maximized at x∗ = F−1(ξ); here, ξ ≡ 1− (c/p) is the critical fractile and

1− ξ ≡ c/p is the optimal stockout probability.

Let us introduce some terminology. We shall refer to the profit-maximizing ordering

quantity x∗ as the optimal solution, which is chosen whenever the newsvendor is perfectly

rational. However, under bounded rationality, the newsvendor’s ordering quantity is subject

to noise and becomes a random variable. We shall refer to this as the behavioral solution

and denote it using x[ (for the realization) and X[ (for the random variable).

Given the problem data, it is straightforward to use (2) to write down the behavioral solu-

tion of the newsvendor problem. We assume that the decision domain S ⊆ R is the smallest

interval containing the support of f . In other words, the boundedly rational newsvendor may

order any quantity between the smallest possible and largest possible demand realizations.

Then, the probability density function of the behavioral solution is

ψ(x) =
eπ(x)/β

∫
S

eπ(v)/βdv
=

e(pE min(D,x)−cx)/β

∫
S

e(pE min(D,v)−cv)/βdv
. (4)

We stress that the decision domain S plays an important role in this logit choice setup.

This will become evident in subsequent analysis, where we study the behavioral solution X[

through its density ψ.

4.1 Uniform Demand

Suppose that the demand D is uniformly distributed between a and b, with b > a ≥ 0. Then,

the newsvendor’s profit function in (3) can be simplified into a quadratic function

π(x) = Ax2 + Bx + C, (5)

with coefficients A = − p
2(b−a)

, B =
(

pb
b−a

− c
)
, and C = − pa2

2(b−a)
. This quadratic structure is

essential and gives us the following result.

Proposition 1. Let D ∼ U [a, b]. Then, the behavioral solution to the newsvendor problem

follows a truncated normal distribution over [a, b], with mean µ and variance σ2 given by

µ = b− c

p
(b− a), (6)

σ2 = β
b− a

p
. (7)
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Corollary 1. Let D ∼ U [a, b]. Then, the expected behavioral solution is

EX[ = µ− σ · φ( b−µ
σ

)− φ(a−µ
σ

)

Φ( b−µ
σ

)− Φ(a−µ
σ

)
, (8)

where φ(·) and Φ(·) denote the standard normal density and distribution functions.

Observe that the parameter µ of the behavioral solution coincides with the optimal

solution x∗. This is natural because the optimal solution uniquely maximizes expected

payoffs and thus should be the unique mode of the behavioral solution, which occurs at µ for

a truncated normal distribution. Next, observe that the variance of the behavioral solution

σ2 is proportional to β, as expected, since bounded rationality (larger β) increases noise in

the decision-making process. It is also intuitive that the variance increases with the range

b−a of the demand distribution (a wider range generates a more complex decision task) but

decreases with p (higher prices increases the stakes and results in better decisions).

The main message from this result is: under bounded rationality, uniform demand yields

normally distributed choices (with appropriate truncations). From an experimental stand-

point, there is no dearth of laboratory data for the uniform demand case. Many experiments

are run using uniform demand because this is easier to understand for subjects. Therefore,

our theory provides testable implications that can immediately be put to the test. In par-

ticular, given experimental data on subjects’ ordering decisions, we may fit the truncated

normal distribution to the data to obtain estimates of the parameters. Since the model of

perfect rationality (with β = 0) is a special case of our model, we may test this hypothesis

to detect the presence of bounded rationality. Significant evidence for β > 0 would support

the presence of bounded rationality. This procedure is reported in detail in Section 5.

4.2 Triangular Demand

Next, we consider the special case of triangular demand distributions. Experimentally, apart

from uniformly distributed demand, the triangular distribution is another special case that

can be easily understood by the subjects. Besides, compared to the uniform distribution, the

triangular distribution offers a more accurate representation of demand in practical settings.

Here, we consider triangular demand distributions with range [0,100]. This is without

loss of generality via a straightforward translation. We use h ∈ [0, 100] to denote the peak

of the triangular demand density. Then, the probability density function for demand is

f(x) =

{ x
50h

, x ≤ h,
100−x

50(100−h)
, x > h.

(9)
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Under this demand density, it is straightforward to derive the newsvendor profit function

π(x) using (3). Observe that while the profit function is quadratic in the case of uniform

demand, it is now cubic in the case of triangular demand. As such, the behavioral solution

X[ can not be characterized using standard probability distributions. Therefore, we shall

proceed to study its properties numerically.

To generate Figure 1, we consider several different triangular demand distributions, with

peak densities at h = 0, 20, 40, 60, 80, 100; the range is maintained as [0, 100]. Each of these

demand distributions is represented by one of the six charts in Figure 1. We set price p = 1.

For each demand density, we plot the expected behavioral orders EX[ against the profit

margin (defined as a percentage of price); we do this for β = 1, 5, 10, 20. To compute the

expected behavioral solution EX[, we calculate the behavioral density using (4).

Now, we make some observations using Figure 1. Notice that in all six plots, along the

x-axis, there is some profit margin level (call it PML) where the curves corresponding to

different values of β approximately intersect. For profit margins below PML, the expected

order quantities EX[ tend to increase as the bounded rationality parameter β increases; in

contrast, the reverse is true for profit margins above PML. This suggests that with triangular

demand distributions, bounded rationality leads to an increase in order quantities under low

margin conditions, but it leads to a decrease in order quantities under high margin conditions.

This is reminiscent of results with the flavor of “regression to the mean” except that here,

bounded rationality is pushing order quantities towards the mid-point m of the range of

possible demand realizations (namely, m = 50) instead of the mean, which is (100 + h)/3.

Another observation is that the “threshold” profit margin level PML, which distinguishes

low-margin conditions from high-margin conditions, decreases as the peak density h increases.

In our numerical example, as h increases from 0 to 100, we see that PML decreases from

0.75 to 0.25 (approximately).

4.3 General Demand

When the newsvendor faces a general demand distribution, the behavioral solution can not

be expressed in terms of explicit distributions such as the (truncated) normal. Nevertheless,

we shall show that it is possible to characterize the expected order quantities and expected

profits in the general case.

The key observation is that the behavioral solution X[ belongs to an exponential family

of probability distributions, parameterized by the price p and cost c.

14



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

Profit Margin (as % of price)

E
xp

ec
te

d 
O

rd
er

 , 
E

X
b

Triangular Distribution with 
 Range [0,100] and Peak = 0

β=1
β=5
β=10
β=20

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

Profit Margin (as % of price)

E
xp

ec
te

d 
O

rd
er

 , 
E

X
b

Triangular Distribution with 
 Range [0,100] and Peak = 20

β=1
β=5
β=10
β=20

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

Profit Margin (as % of price)

E
xp

ec
te

d 
O

rd
er

 , 
E

X
b

Triangular Distribution with 
 Range [0,100] and Peak = 40

β=1
β=5
β=10
β=20

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

Profit Margin (as % of price)

E
xp

ec
te

d 
O

rd
er

 , 
E

X
b

Triangular Distribution with 
 Range [0,100] and Peak = 60

β=1
β=5
β=10
β=20

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

100

Profit Margin (as % of price)

E
xp

ec
te

d 
O

rd
er

 , 
E

X
b

Triangular Distribution with 
 Range [0,100] and Peak = 80

β=1
β=5
β=10
β=20

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

100

Profit Margin (as % of price)

E
xp

ec
te

d 
O

rd
er

 , 
E

X
b

Triangular Distribution with 
 Range [0,100] and Peak = 100

β=1
β=5
β=10
β=20

Figure 1: Expected order quantities for triangular demand distributions with range [0, 100]
and peaks at h = 0, 20, 40, 60, 80, 100. The price is fixed at $1. In each case, we plot expected
orders EX[ against profit margins (as a fraction of price) for β = 1, 5, 10, 20.

Definition. A family {Hη} of probability distributions is said to form an s-dimensional

exponential family if these distributions have densities of the form

h(x; η) = l(x) exp

{
s∑

i=1

ηiTi(x)− A(η)

}
. (10)

The parameters η are referred to as the natural parameters.

Observation. The family of choice distributions {Ψp,c}, where Ψp,c has density

ψp,c(x) =
e(pE min(D,x)−cx)/β

∫
S

e(pE min(D,v)−cv)/βdv
, (11)

forms a 2-dimensional exponential family, with natural parameters η1 = p/β, η2 = c/β, T1(x) =

E min(D, x), T2(x) = −x, l(x) ≡ 1, and

A(η1, η2) = ln

(∫

S

e(η1E min(D,v)−η2v)dv

)
. (12)

We proceed to state a well-known fact about exponential families.

Fact. Let X be from an exponential family with density (10). Then,

E(Ti(X)) =
∂

∂ηi

A(η). (13)
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Based on this fact, it is then straightforward to write down the following result.

Proposition 2. Let X[ be the behavioral solution to the newsvendor problem with price p

and cost c, so the natural parameters for the choice distribution are η1 = p/β and η2 = c/β.

Then, we have

EX[ = − ∂A

∂η2

(η1, η2), (14)

Eπ(X[) = p
∂A

∂η1

(η1, η2) + c
∂A

∂η2

(η1, η2). (15)

This result highlights the important role played by the function A(η1, η2) in our model

of bounded rationality based on logit probabilities. Through this function, we can calculate

moments of interest, such as expected order quantities and expected profits. This approach

is useful for empirical and numerical studies in two ways. First, it allows us to replace

integration (expectation) with differentiation, which is easier to compute. Instead of taking

an expectation by integrating the density function (11), we can simply differentiate A(η1, η2)

and approximate its value using two data points. Second, it offers a way to estimate the

value of β using aggregate data via the method of moments. For example, given laboratory

data on average order quantities, an estimate of β would be the value at which the partial

derivative −∂A/∂η2, evaluated at η1 = p/β, η2 = c/β, matches the observation.

5. Empirical Evidence for Bounded Rationality

The goal of this section is to provide empirical evidence for our model of bounded rationality,

using a dataset of newsvendor-type decisions made by individual subjects. In particular, we

specify a statistical model for newsvendor decisions, and we fit our model to the data to

obtain maximum-likelihood estimates of the bounded rationality parameter β. Finally, we

show that our fitted model explains the data significantly better than the alternative that

does not take bounded rationality into account.

First, we describe the data-set. This data-set consists of a series of newsvendor ordering

decisions made by human subjects. Each subject participated either in the low-profit or

high-profit condition, and made a sequence of 100 ordering decisions for the same parameter

values. For the high-profit condition, demand is uniform between 1 and 100, price is 12, and

cost is 3, so the optimal ordering quantity is 75. For the low-profit condition, demand is

uniform between 51 and 150, price is 12, and cost is 9, so the optimal ordering quantity is
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again 75. There are 20 subjects participating in the low-profit condition and 18 subjects for

the high-profit condition, so the data consists of 3800 quantity decisions altogether. Readers

are referred to Bolton and Katok (2005) for more details on the experimental procedures

used in collecting this data.

Our statistical model is

Yk = X[
k + εk, (16)

where Yk is the observed order quantity for decision k, X[
k follows the same distribution as the

behavioral solution X[ obtained in Section 4, and εk are i.i.d. error terms. Since the demand

is uniformly distributed, we know from Section 4.1 that the behavioral solution is truncated

normal with mean at the optimal quantity x∗ = 75 and standard deviation τ ≡
√

β b−a
p

. We

assume that

X[
k ∼ N †(x∗, τ 2), (17)

εk ∼ N(0, σ2), (18)

where N † denotes the truncated normal distribution. There are two parameters τ and σ to

be estimated. Given the data, the likelihood function is

L(τ, σ|Y) =
n∏

k=1

∫ U

L

φ

(
Yk −m

σ

)
dΨ(m), (19)

where L and U denote the lowest and highest possible demand realizations, φ(·) denotes the

standard normal probability density function, and Ψ(·) denotes the probability distribution

function of the behavioral solution X[ as given in (17). We stress that the perfect rationality

model, under which τ = 0 and thus X[ ≡ x∗, is a special case of our model. In particular,

to investigate whether the data suggests the presence of bounded rationality, we may test

whether τ = 0.

Our estimation strategy follows a data sub-sampling approach analogous to the bootstrap.

We generate bootstrap samples from the dataset as follows. Let yij denote the j-th quantity

decision made by subject i, where i ∈ {1, . . . , I} and j ∈ {1, . . . , J}. Here J = 100 is the

total number of decisions made by each subject and I is the number of subjects (I = 18 in

the high-profit condition and I = 20 in the low-profit condition). Then, to generate each

bootstrap sample {z1, . . . , zI}, we randomly sample each zi uniformly from {yij : 1 ≤ j ≤ J}.
Each bootstrap sample is indicative of the quantity decisions made by our subject population.

For each bootstrap sample (of size I), we obtain the parameter estimates τ̂ , σ̂ that maximize
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the likelihood function (19) above. We used a total of B = 10, 000 bootstrap replicates.

In other words, we obtain B estimates (one from each bootstrap replicate) of τ and σ in

the model (16)-(18) above. Using the 2.5-th and 97.5-th percentile of these estimates, we

obtain bootstrap confidence intervals for our parameters estimates τ̂ , σ̂. Our results are

summarized in Table 2. Given these estimates, the log-likelihoods of our fitted model are

-78.81 and -86.15 for the high-profit and low-profit conditions respectively.

High-profit condition:
Maximum-likelihood estimate 95% Confidence intervals

τ̂ 28.84 (20.92,38.79)
σ̂ 0.0448 (0.00001,0.1177)

Low-profit condition:
Maximum-likelihood estimate 95% Confidence intervals

τ̂ 25.31 (17.66,35.33)
σ̂ 0.0791 (0.00001,0.1392)

Table 2: Maximum-likelihood estimates of τ and σ under both low-profit and high-profit
conditions.

Next, as a benchmark for comparison, we fit the data to the reduced model with τ = 0,

which corresponds to perfect rationality. Using the same bootstrap samples generated above,

we can obtain the maximum-likelihood estimate σ̂ and then use it to compute the likelihood

of our fitted model. In Table 3, we report the log-likelihood values of our full model (above)

and the reduced model here, for both low-profit and high-profit conditions.

High-profit condition Low-profit condition
Log-likelihood of full model, lfull -78.81 -86.15

Log-likelihood of reduced model, lreduced -81.92 -88.97
Difference, lfull − lreduced 3.11 2.82

Table 3: Log-likelihoods of full and reduced models under both low-profit and high-profit
conditions.

In terms of fit, we are interested in how well our model (16) performs compared to the

reduced model with τ = 0. Since our full model has one additional parameter, it naturally

performs better, so we need to penalize the additional degree of freedom in some way. One
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common criterion for model selection is the Bayes Information Criterion (BIC)

BIC = l(θ̂)− d log(n)

2
, (20)

where l(θ̂) is the log likelihood of the fitted model, θ̂ are the fitted parameters, d is the number

of parameters, and n is the data set size. Compared to alternatives such as the Akaike

Information Criterion (AIC) and Mallow’s Cp criterion, the BIC is a relatively conservative

model selection criterion that favors simpler models. In the present context, the BIC of our

full model is

BICfull = l(τ̂ , σ̂)− d log(n)

2
, (21)

while the BIC of our reduced model is

BICreduced = l(σ̂)− d log(n)

2
. (22)

These values are reported in Table 4. Since BICfull > BICreduced, this criterion, despite its

conservative nature, chooses the full model over the reduced model, suggesting that our model

with bounded rationality is preferred over the alternative model with perfect rationality.

High-profit condition Low-profit condition
BIC of full model -81.70 -89.15

BIC of reduced model -83.37 -90.47

Table 4: Bayesian Information Criterion of full and reduced models under both low-profit
and high-profit conditions.

As a final test, we consider the likelihood ratio test. Here we wish to test the hypothesis

that τ = 0. Since the log likelihoods of the full and reduced models, lfull and lreduced, are

given in Table 3, we can directly compute the test statistic χ2 = 2(lfull − lreduced). This

yields χ2 = 6.22 and χ2 = 5.64 for the high-profit and low-profit conditions. Under the

assumptions of our full and reduced models, the test statistic follows a χ2-distribution with

one degree of freedom, which has a critical value χ2
1(0.95) = 3.84. Since our test statistics

exceed the critical value, we reject the hypothesis that τ = 0. In other words, this suggests

that there is significant evidence for bounded rationality (with β > 0) in our model.

6. Distortion in order quantities

In this section, we investigate the effect of bounded rationality on expected order quantities.

How does the behavioral mean order quantity EX[ differ from the optimal solution x∗?
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We would like to distinguish the situations in which the boundedly rational newsvendor

over-orders (i.e. when EX[ < x∗) from the situations in which he under-orders (i.e. when

EX[ > x∗). We identify two underlying effects that may cause such distortions.

First, when the newsvendor is boundedly rational, order quantities tend to be biased

toward the midpoint of the range of possible demand realizations. We call this the midpoint

bias. The anchoring heuristic (see Tversky and Kahnemann, 1974) provides a behavioral

rationale for this effect. When the demand density f has support [a, b], so that a and b are

the smallest and largest possible demand realizations, the midpoint is m ≡ (a + b)/2. The

following result establishes this bias for the special case of uniform demand.

Proposition 3. Suppose that the demand density f is constant over [a, b]. Then, there is

under-ordering when x∗ > m and over-ordering when x∗ < m.

There is an equivalent way to describe this result. Let us say that the newsvendor’s

product is a high-profit product if the critical fractile ξ ≡ c/p < 0.5 and a low-profit product

if the critical fractile ξ ≡ c/p > 0.5. Equivalently, p > 2c for a high-profit product and p < 2c

for a low-profit product. Then, for uniformly distributed demand, there is under-ordering for

high-profit products and over-ordering for low-profit products. This terminology has been

introduced by Schweitzer and Cachon (2000), who also provide experimental evidence for

this result. Specifically, in their study, demand was uniformly distributed between 0 and 300

and p = 12. For the low-profit condition, c = 9 (i.e. the critical fractile ξ = 75%) and for the

high-profit condition, c = 3 (i.e. the critical fractile ξ = 25%). Using data from 33 subjects,

each making 15 newsvendor decisions for each condition, they found that in the high-profit

condition, the average order was significantly lower than the optimal order, and in the low-

profit condition, the average order was significantly higher than the optimal order. Schweitzer

and Cachon considered many explanations for their observations (such as risk aversion, loss

aversion, waste aversion and stockout aversion), and identified two consistent explanations:

preferences to reduce ex-post inventory error, and the anchoring and insufficient adjustment

bias. Here, we show that under bounded rationality, the midpoint bias provides a possible

alternative explanation.

Next, we describe the second decision bias. Consider the case where the demand density

is monotone. An increasing density suggests that demand is more likely to be high, whereas a

decreasing density suggests that demand is more likely to be low. Our next result shows that

the behavioral solution is distorted in the direction of low-probability demand realizations.
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Figure 2: Newsvendor profit functions (solid lines) for linear probability densities (dashed
lines) over [0,100]. On the left, p = 10, c = 2.5, so the optimal quantity is 50. On the right,
p = 10, c = 7.5, so the optimal quantity is again 50.

We call this the rare-event bias. One potential behavioral explanation is that decision-makers

tend to place excessive weight on rare occurrences (as in the probability weighing function

of cumulative prospect theory in Tversky and Kahneman, 1992). In order to control for

midpoint bias described earlier, we assume that the optimal solution occurs precisely at the

midpoint m.

Proposition 4. Suppose that x∗ = m. Then, there is over-ordering when f is decreasing

over [a, b] and there is under-ordering when f is increasing over [a, b].

This result becomes quite intuitive when one visualizes the shape of the profit function

π(x). Let us consider the two examples in Figure 2, with linearly increasing or decreasing

demand densities. Given that the optimal solution x∗ occurs at the mid-point m, when f is

decreasing (as in the left panel), profits fall from the optimal level faster when x is decreased

below x∗ compared to when x is increased above x∗. This implies that over-ordering is

less costly compared to under-ordering, and hence occurs more frequently. The combined

effect is that the expected behavioral order EX[ exceeds the optimal quantity x∗, so there is

over-ordering on average. Similarly, the reverse is true when f is increasing (as in the right

panel). Notice that the rare-event bias may distort order quantities away from both the

mean and the median. For example, in Figure 2, when the demand density is decreasing (on

the left panel), the mean and median demands are both smaller than m, but the expected

order quantity EX[ is greater than m. This suggests that results of “regression toward the

mean” (typically for uniform demand settings) do not capture the complete picture.

In the analysis above, we have made assumptions to isolate the two decision biases from

each other. In Proposition 3, to control for the rare-event bias, we focus on uniform demand

with all realizations equally likely. In Proposition 4, to suppress the midpoint bias, we

assume that the optimal solution is located at the mid-point. However, in most instances of
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Figure 3: Behavioral (solid) and optimal (dashed) solutions for truncated normal demand
with µ = 100, σ = 20 and support [0, 200], p = 10, and c = 1 (left), c = 9 (right).

the newsvendor problem, both effects are present and they may run in opposite directions.

Next, we provide a numerical example to illustrate the combined effect of both decision

biases. In this example, we assume that the demand follows a truncated normal distribution

with µ = 100, σ = 20 and support [0, 200]. We assume that p = 10 and separately consider

cases with c = 1 and c = 9. The optimal solution x∗ is obtained using the critical fractile and

the mean behavioral solution EX[ is computed using the procedure outlined in Proposition

2. The results are summarized in Figure 3, with each panel corresponding to each value of c.

In each panel, the solid lines represent the behavioral expected orders EX[ and the dashed

lines represent the optimal order quantities x∗. When c = 1, the optimal order quantity

x∗ exceeds µ, so the midpoint bias distorts decisions downwards; however, since the normal

density is decreasing at x∗, the rare-event bias distorts decisions upwards. When these two

effects are put together, we observe over-ordering for small values of β and under-ordering

for larger values of β. This suggests that the rare-event bias is dominant for small values

of β while the mid-point bias is dominant for large values of β. When c = 9, the directions

of both decision biases are reversed. Nevertheless, a similar argument leads to the same

conclusion: as β increases, decisions are first governed by the rare-event bias and then the

midpoint bias takes over at larger values of β. The reason becomes clear when one recalls

that as β → ∞, the choice distribution becomes uniform over the choice domain, and the

expected behavioral order EX[ coincides with the midpoint m in the limit. It is therefore

not surprising to find that the midpoint bias dominates for large values of β.

7. Supply Chain Coordination

The newsvendor model is an indispensable building block in the operations literature on

supply chain coordination and contracting. This literature recognizes the problems caused

by decentralized decision-making in a supply chain: when different parties act according
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to their own interests, system-wide optimal performance can not be attained. The general

paradigm to solve these double marginalization problems is to design coordinating contracts

that align the incentives of individual parties with the objectives of the entire supply chain. In

this section, we will see that in the presence of bounded rationality, supply chain coordination

can no longer be achieved in this manner.

The basic model of a decentralized supply chain consists of a single manufacturer and a

single retailer. The manufacturer produces the good at unit cost c and sells it to the retailer

at the wholesale price w ≥ c. The retailer decides how many units x to procure before selling

to the market at price p. His profit function is πR(x) = pE min(D, x)−wx, while total profits

for the supply chain is given by πS(x) = pE min(D, x)− cx. It is well-known that the order

quantity x∗S that maximizes total supply chain profits satisfies F̄ (x∗S) = c/p but the retailer’s

profit-maximizing order quantity x∗R satisfies F̄ (x∗R) = w/p ≥ c/p. Therefore, the retailer

orders too little. Although standard theory concludes that system profits are lost, under

bounded rationality, it is possible to construct examples in which double marginalization is

beneficial. (Intuitively, this may occur when the centralized seller systematically over-orders

and double marginalization helps to correct for these errors.)

How can the supply chain optimum be achieved? The literature has proposed many

alternative solutions. First, consider the buy-back contract. Under this contract, the man-

ufacturer agrees to buy back unsold units at the buy-back price b. In this case, the retailer

faces the profit function πR(x) = (p − b)E min(D, x) − (w − b)x. When the contractual

parameters w, b are chosen such that for some λ ∈ [0, 1], b = (1−λ)p and w = (1−λ)p+λc,

the retailer’s profit function becomes πR(x) = λ[pE min(D, x) − c] = λπS(x), which is a

constant fraction of total supply chain profits. Therefore, by maximizing his own profits,

the retailer is also maximizing supply chain profits because his payoff is always a constant

fraction λ of total profits. In this way, the social optimum can be attained even though the

ordering decision is made by the retailer considering only his own profits. Another possible

alternative is the revenue sharing contract. Under this contract, the retailer agrees to share

his sales revenue with the manufacturer; specifically, he pays the manufacturer r for every

unit sold. Then, the retailer’s profit function becomes πR(x) = (p − r)E min(D, x) − wx,

which reduces to πR(x) = λ[pE min(D, x) − c] = λπS(x) when we choose r = (1 − λ)p and

w = λc. As before, the retailer now enjoys a fixed λ share of total system profits. The supply

chain is thus similarly coordinated.

As we have seen, one general approach in supply chain coordination is to align individual
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incentives with social objectives by devising contractual transfers so that the decision-maker’s

payoff function πR(x) is a constant proportion λ of the social welfare function πS(x). While

this approach is valid under perfect rationality, the next result shows that it does not always

achieve coordination under bounded rationality.

To be precise, under boundedly rational decision-making, we say that the system is “coor-

dinated” when decentralized control yields centralized profit levels. In other words, verifying

system coordination involves comparing: (i) a decentralized system in which inventory deci-

sions are made by a boundedly rational retailer, and (ii) a centralized system controlled by

a boundedly rational newsvendor; further, the decision-makers in both cases share the same

bounded rationality parameter β. When decentralized expected profits reach the same level

as centralized profits, we say that system coordination is achieved.

Proposition 5. Let X[
1 and X[

2 denote the behavioral decisions of two decision-makers with

the same bounded rationality parameter β but facing different utility functions u1(x) = λ1π(x)

and u2(x) = λ2π(x), where λ1 > λ2. Then, Eπ(X[
1) > Eπ(X[

2).

Corollary 2. Consider a supply chain facing newsvendor profit function π(x) = pE min(D, x)−
cx. Let X[

i denote the behavioral solution when the decision-maker enjoys λi share of the

total profits. Then, when λ1 > λ2, we have Eπ(X[
1) > Eπ(X[

2).

In a centralized system, the newsvendor’s share of total profits is λ = 1. However, in

a decentralized system, the decision-maker (retailer) enjoys only a reduced share of λ < 1.

Assuming the same bounded rationality parameter β for both decision-makers, our result

indicates that total expected profits are lower in the decentralized system. This shows even

when incentives are perfectly aligned, coordination can not be attained when decision-makers

are boundedly rational.

This theoretical result is consistent with recent experimental findings in the literature.

Katok and Wu designed experiments on supply chain contracting and demonstrate that

under contracts that are theoretically proven to coordinate the system, human subjects

make ordering decisions that do not lead to perfect coordination. Their findings are based

on buy-back contracts and revenue-sharing contracts. They not only discover that both

contracts do not achieve coordination, but also identify systematic differences between these

two contractual forms. Our current model of bounded rationality explains why coordination

does not occur, but does not distinguish between different contractual forms that align

incentives in the same way.
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The novel finding herein is that it is not sufficient to align the ratio of marginal costs

and benefits; the actual margins must be aligned to achieve coordination. In other words,

for the newsvendor problem, it is important to align the actual overage and underage costs

(two numbers) instead of simply aligning the retailer’s critical fractile (one number). In

particular, when the retailer receives a fixed share of total system profits (this aligns the

ratio of margins but scales down both underage and overage costs), there is an efficiency

loss. One possible explanation is that when payoffs are scaled down, the decreased stakes

held by the decision-maker makes his choices more prone to errors and biases. This suggests

that in order for an agent’s decentralized decisions to coincide with the system’s centralized

decisions, the agent must be the sole stakeholder of the system. This points to the strategy

of “selling the firm” to the agent, which can be implemented using a two-part tariff. Here,

the manufacturer charges the retailer a fixed fee T and then sells to him at cost. In this case,

the manufacturer’s transfer payment T does not affect the retailer’s decisions, which are thus

made from the perspective of a sole owner. Therefore, two-part tariffs can coordinate the

supply chain under our model of bounded rationality.

We may even go one step further and argue that in our model, there is potential for

super -coordination. That is, expected profits may be higher in a decentralized system (under

bounded rationality) relative to a centralized system (also under bounded rationality). By

Proposition 5, this may occur if each ordering decision made by the retailer accounts for

λ > 1 times of total system profits. This can be implemented in several ways. First, suppose

that a manufacturer sells to a retailer who is constrained to place the same orders over n

periods. Then, under some contract that gives the retailer λ share, his payoff from each

decision is essentially nλ times of the system’s per period profits. Decentralization is thus

beneficial as long as nλ > 1. Bolton and Katok (2005) experimentally demonstrates the

benefits of having retailers commit to their standing orders over multiple periods. However,

we stress that these benefits should be attributed to commitment (to placing the same orders

several times) rather than decentralization per se, although the latter may facilitate such

commitment.

Another way to achieve super-coordination is to use sales rebates. Suppose that the

manufacturer charges a wholesale price w but offers a sales rebate of r per unit (so the

retailer makes p + r from each unit sold). For some λ > 1, let r = (λ− 1)p and w = λc. Let

us also use a fixed transfer T to allocate some surplus to the manufacturer (so this is a two-

part tariff coupled with a sales rebate). Then, the retailer’s payoff function is λπS(x) − T .
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Since the transfer T does not affect retailer decisions, and since λ > 1, expected profits are

higher here than in the centralized system with profit function πS(x).

In general, increasing the monetary stakes associated with each decision epoch generates

better decisions. From a behavioral standpoint, this is intuitive since people tend to allocate

more cognitive and computational effort into more important tasks. In our model, notice

that increasing λ achieves the same effect as decreasing β; essentially, a decision-maker facing

increased stakes is akin to one who is “more rational.” Since λ can not increase indefinitely

(i.e., λ → ∞), this suggests that all the scenarios discussed in this section can not match

the ideal centralized benchmark with a perfectly rational decision-maker (with β = 0).

Therefore, the reader should be cautious when interpreting our notion of super-coordination.

In summary, we have seen how bounded rationality can enrich the supply chain co-

ordination framework. While the conventional normative approach predicts that perfect

coordination is attained as long as the decision-maker’s payoff function is a fixed λ share

of total profits, our descriptive model of bounded rationality shows that the magnitude of

λ also plays an important role. Specifically, when λ < 1, as in most cases studied in the

literature, perfect coordination is not achieved. In contrast, contractual arrangements may

give rise to individual decisions with λ > 1, under which there is super-coordination.

8. Bullwhip Effect

In this section, we discuss the relationship between bounded rationality and the bullwhip

effect. The bullwhip effect refers to a commonly observed phenomenon in supply chains:

the variance of orders tends to increase dramatically as we move upstream along the supply

chain. In a seminal analysis, Lee et al. (1997) identify four different sources of the bullwhip

effect: demand forecasting, inventory rationing due to supply constraints, order batching,

and price fluctuations. They show that each of these factors can independently generate the

bullwhip effect.

We shall analyze a model that eliminates the physical causes of the bullwhip effect that

have been identified in the literature. In other words, in our setup, a standard normative

analysis following the conventional paradigm of perfect rationality would not yield the bull-

whip effect. However, we find that once bounded rationality is introduced, the bullwhip

effect emerges. This suggests that apart from the physical causes of the bullwhip effect,

which have been well-studied, there are also behavioral causes such as bounded rationality.
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The model consists of a serial supply chain indexed by i = 1, . . . , n. Market demand is

fulfilled at stage i = 1, each member at stage i procures supply from the adjacent upstream

member at stage i + 1, and production is initiated at stage i = n. We assume that market

demand D, with distribution F , is independent across periods. We consider an infinite-

horizon, discrete-time model, with the following sequence of events in each time period.

First, units previously shipped from the upstream neighbor are received (at stage i = n,

units entered into production are completed). Let xi denote the inventory position at stage

i at this point. Second, demand Di is realized at each stage i; this refers to market demand

D at stage i = 1 and orders from downstream neighbors at stage i = 2, . . . , n. Third, units

are shipped off to fulfill demand, lowering the inventory position at stage i to xi−Di. If this

is positive, leftover inventory is carried over to the next period, incurring a holding cost of

hi per unit. If this is negative, there is a back-ordering cost of bi per unit. (Alternatively, we

may assume that there is an alternative supply source, from which units can be borrowed at

a cost of bi per unit.) Finally, units are ordered from the upstream neighbor. We use Oi to

denote the order submitted by member i to member i + 1 at the end of the period.

Let us see how this model eliminates all the four physical causes of the bullwhip effect.

First, there is no demand forecasting effects because market demand is i.i.d. across periods

with a commonly known distribution. Second, there is no inventory rationing, which elimi-

nates strategic gaming effects. Third, since there is no fixed cost, order batching is irrelevant.

Finally, there is no price fluctuations in this model.

Under perfect rationality, this model can be solved using a standard newsvendor analysis.

Consider the decision problem at stage i = 1 of choosing the inventory level xi. The trade-

off is between ordering too much (incurring excessive holding costs) and ordering too little

(incurring excessive borrowing costs). The problem can be formulated as

min
x∈S

hE[x−D]+ + bE[x−D]− (23)

⇔ min
x∈S

(h + b)E[x−D]+ − bE(x−D) (24)

⇔ max
x∈S

−(h + b)E[x−D]+ + bx (25)

⇔ max
x∈S

(h + b)E min(D, x)− hx, (26)

where the subscript i has been omitted for brevity. This is a newsvendor problem with

p = h + b and c = h, so the optimal solution x∗ satisfies F (x∗) = b/(h + b). The optimal

order-up-to level x∗ represents a target inventory position that the decision-maker would like
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to maintain. At stage i = 1, for a given order-up-to level x∗1, orders submitted at the end of

each period is always equal to the demand realization in that time period, so that inventory

would be brought back up to the target level x∗1 in the next period. This implies that demand

faced by the adjacent upstream member i = 2 is equal to market demand, but lagged by

one time period. This upstream member thus faces the same demand distribution, solves

a similar newsvendor problem, and submits orders that are equal to market demand (but

now lagged by two periods). Using an inductive argument, it then follows that the orders

placed by each supply chain member are all lagged versions of the same market demand, so

these orders follow the same distribution F . In other words, the variance of orders remains

constant throughout the supply chain, and there is no bullwhip effect.

Now let us see what happens under bounded rationality. For simplicity, we begin with

a two-echelon model (n = 2), although the analysis carries forward to the general case. We

also assume that the decision domain S = R is stationary. This yields the following result.

Proposition 6. Suppose that the decision-makers at stage i = 1, 2 are boundedly rational

with parameter βi. Then, there exists independent random variables ε1, ε2 such that

O1 =d D + ε1, (27)

O2 =d D + ε1 + ε2, (28)

and V ar(εi) = 0 if and only if βi = 0.

Corollary 3. (i) V ar(Oi) = V ar(D) +
∑i

j=1 νj, where νi = 0 if and only if βi = 0.

(ii) V ar(Oi) ≥ V ar(Oi−1), with equality if and only if βi = 0.

This result demonstrates that the bullwhip effect can persist even when its physical causes

have been removed. As long as some agents in the supply chain are boundedly rational (with

βi > 0), the variance of orders will strictly increase upstream along the supply chain.

There is ample experimental evidence in the literature showing that the bullwhip effect

persists even when its physical causes have been controlled for. In a seminal study that

predates Lee et al. (1997)’s taxonomy of the causes of the bullwhip effect, Sterman (1989)

controls for three causes (inventory rationing, order batching, and price fluctuations), and

leaves demand signal processing as a potential cause since subjects were not informed of the

demand distribution. Subsequently, Croson and Donohue (2006)’s experiment also controls

for the fourth cause by using a publicly known (uniform) demand distribution. In both
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studies, the bullwhip effect is observed. Furthermore, both studies identified the failure to

account adequately for the supply line as an important cause of the bullwhip effect; that

is, subjects do not fully account for orders that have been placed but have not yet arrived.

The framework of analysis is due to Sterman (1989). Subjects are assumed to make ordering

decisions using the anchor and adjustment heuristic (see Tversky and Kahnemann, 1974):

they first anchor on the expected demand rate, and then adjust their order quantities to

correct discrepancies between desired and actual stock, both on hand and in the supply line.

In both studies, fitting experimental data to this heuristic decision rule yields parameter

estimates that demonstrate underweighting of the supply line, which leads to overordering

and system instability. In contrast to these studies, there is no supply line in our setup

here. Orders placed at the end of each period will always arrive at the beginning of the next

period. Yet, our analysis suggests that the bullwhip effect remains. What, then, is causing

the bullwhip effect?

Our results provide an alternative behavioral explanation, and we demonstrate it an-

alytically. We point out that the bullwhip effect is potentially a phenomenon that arises

whenever individuals attempt to guard against and correct for the mistakes that others may

make. The underlying mechanism is made transparent in Proposition 6. In the normative

model, orders at every stage should follow the same distribution as the market demand, so

V ar(Oi) = V ar(D) for each i. Now, suppose that the decision-maker at i = 1 is boundedly

rational but the one at i = 2 is perfectly rational, i.e. β1 > 0 and β2 = 0. Then, while it is

clear that V ar(O1) > V ar(D), we also end up with V ar(O2) > V ar(D). The order variance

at i = 2 has been increased from the normative benchmark of V ar(D) even though the

decision-maker there is perfectly rational, and this increase arises solely because of the need

to recognize the decision biases of downstream members. Of course, if the decision-maker

at i = 2 is also boundedly rational, the order variance will be increased further. This in

turn increases the burden of upstream members to account for his decision biases, and the

variance increase is propagated upstream. The bullwhip effect thus arises.

There is experimental evidence supporting this explanation. Croson, Donohue, Katok,

and Sterman (2006) conduct an experiment in which the demand is constant (four units

per period) and commonly known, and the system begins in equilibrium. With this setup,

it is optimal to order four units every period at each stage. Yet, in their experiment, this

does not happen and the bullwhip effect is still observed. Post-experimental questionnaires

suggest that although subjects realized what the optimal policy was, they were uncertain

29



whether the other players understood it. Lack of trust in others’ actions may generate

suboptimal order quantities. Once initial deviations from optimal orders occur, the system

is knocked into disequilibrium and the bullwhip effect eventually occurs. The authors call

this “coordination risk.” Our model of bounded rationality complements this work by offering

a quantitative framework to model coordination risk. For example, applying our framework

to their experimental setup with D ≡ 4, we can use Proposition 2 to iteratively compute the

behavioral solutions X[
1, X

[
2, X

[
3, X

[
4, using the order distribution at each stage as the demand

distribution at the next upstream stage. Experimental results can then be used to estimate

the values of βi at each stage.

In summary, our model of bounded rationality complements the recent behavioral op-

erations literature by showing that the bullwhip effect can arise even in the absence of its

physical causes. Furthermore, even in the absence of a supply line (i.e. zero lead-time),

our model still generates the bullwhip effect. This brings out another relevant behavioral

phenomenon (apart from underweighting of the supply line): decision biases may not be

errors in themselves, but rather, they are appropriate safeguards that are taken when one is

not sufficiently confident in others’ actions.

Nevertheless, the conclusion that “there are behavioral causes of the bullwhip effect”

stops short of a more general treatise. One of the fundamental goals of any supply chain is

to match supply with demand, and in this regard, orders generated within the system are

driven by both demand and supply processes. Demand processes trigger order incidence, and

corresponding supply processes trigger order fulfillment. Naturally, there is uncertainty in

both demand and supply processes, and this generates variance amplification upstream, along

the direction of order flow. Although the causes of demand uncertainty, particularly those

pertinent to the bullwhip effect, have been well-studied, the causes of supply uncertainty

have received less attention. Bounded rationality and its associated behavioral phenomena

are one such cause because they introduce noise into an otherwise deterministic decision-

making process. Similarly, other sources of supply uncertainty, such as random yield, have

analogous interpretations. In general, our results suggest that, after controlling for the

physical causes of demand uncertainty, the bullwhip effect may still persist as a result of

supply uncertainty. Interestingly, recent experimental findings by Rong, Shen, and Snyder

(2006) suggest that under supply disruptions, there may be a reverse bullwhip effect that

causes variance amplification downstream rather than upstream.
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9. Inventory Pooling

The goal of this section is to investigate the impact of bounded rationality on the benefits

of inventory pooling. This refers to a commonly-used strategy in multi-location inventory

problems. When demand occurs at different locations, instead of holding separate stocks for

each source of demand, firms may alternatively pool inventory at some centralized location.

Most of the literature on inventory pooling is based on the newsvendor model. The general

conclusion is that centralization generates pooling economies that lead to lower costs (specif-

ically, holding costs and backordering costs) for the system. We are interested in whether

this result continues to hold when the decision-makers are boundedly rational.

We shall use the following setup in our analysis. This is similar to the setting used

in Eppen (1979). Consider the following single-period multi-location newsvendor problem.

There are n different sources of demand, each occurring at a different location. Let Di be

the demand at location i for i = 1, . . . , n and let Fi be its distribution. We assume that the

demand vector follows a multivariate normal distribution; furthermore, let µi and σ2
i denote

the mean and variance of Di, and let σ2
ij and ρij denote the covariance and correlation

coefficient of Di and Dj. First, we treat the decentralized case; that is, separate inventories

are maintained at each location. In this case, the decision variables xi are the quantities to

hold on hand at each location i. There is a holding cost of h for each unit left unsold at the

end of the period, and there is a backlogging penalty of b for each unit of demand that can

not be fulfilled. In other words, the goal at each location i is to minimize the following cost

function

γi(xi) = hE[xi −Di]
+ + bE[xi −Di]

−. (29)

This is equivalent to maximizing the following newsvendor profit function

πi(xi) = pE min(Di, xi)− cxi, (30)

where p ≡ h + b and c ≡ h. Clearly, the optimal solution x∗i at each location satisfies

Fi(x
∗
i ) = 1− (c/p). Next, we treat the centralized case. Here, instead of solving n separate

newsvendor problems for the stocking levels xi at each location, there is only one centralized

stocking decision x to make. Let DT ≡
∑n

i=1 Di denote the total demand from all sources,

and let FT be its distribution. We use µT and σ2
T to denote the mean and variance of the

total demand, so µT =
∑n

i=1 µi and σ2
T =

∑n
i,j=1 σ2

ij. This total demand is to be met from
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the same pool of inventory xT . The goal is to minimize total cost

γT (xT ) = hE[xT −DT ]+ + bE[xT −DT ]−, (31)

which is equivalent to maximizing the following newsvendor profit function

πT (xT ) = pE min(DT , xT )− cxT . (32)

As before, the optimal centralized solution satisfies FT (x∗T ) = 1 − (c/p). The benefits of

inventory pooling can then be studied by comparing the optimal total costs in the two cases:
∑n

i=1 γi(x
∗
i ) in the decentralized case and γT (x∗T ) in the centralized case.

Under perfect rationality, when demands are normally distributed, it is well-known that

optimal decentralized costs
∑n

i=1 γi(x
∗
i ) and optimal centralized costs γT (x∗T ) are respectively

proportional to the sum of standard deviations
∑n

i=1 σi and the standard deviation of total

demand σT (with the same proportionality constant). Notice that σT ≤ ∑n
i=1 σi, with

equality if and only if all the demands are perfectly correlated (i.e. ρij = 1 for all i, j). This

implies the following two results. First, the total cost in a decentralized system is at least as

high as that in a centralized system; in other words, inventory pooling saves costs. Second,

these cost savings depend on the correlation between individual demands; in particular, there

are no cost savings when all the demands are perfectly correlated with one another. These

results are due to Eppen (1979).

We proceed to check whether these predictions are robust against bounded rationality.

Let X[
i denote the behavioral solutions at each location i, and let X[

T denote the behavioral

solution at the centralized location. The following result provides sufficient conditions for

pooling benefits to persist.

Proposition 7. Suppose that the following inequalities hold:

(a) σT ≤
∑n

i=1 σi,

(b) σT ≥ σi for every i = 1, . . . , n.

Then, we have EγT (X[
T ) <

∑n
i=1 Eγi(X

[
i ). In other words, inventory pooling leads to a strict

reduction in total costs.

Let us examine the two conditions of Proposition in greater detail. We already know that

(a) always holds, with equality if and only if the demands at all locations are perfectly corre-

lated with ρij = 1. Next, condition (b) says that the standard deviation of aggregate demand

is at least as large as the standard deviation in any one location, which is likely to hold in
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practical situations (unless substantial negative correlations exist between demand sources).

Hence, under broad conditions, inventory pooling continues to generate cost savings.

In fact, Proposition 7 additionally shows that the reduction in total costs is strictly

positive. For the extreme case with perfectly correlated demands, there is no cost reduction

under perfect rationality. However, under bounded rationality, we observe strictly positive

gains. This suggests that the benefits of inventory pooling extend beyond the physical

benefit that is related to the reduction in variance resulting from summing separate random

demands. On top of that, there may be behavioral benefits of inventory pooling.

To see the intuition behind the behavioral benefits of inventory pooling, let us consider

the following example. Suppose that demand at each separate location is deterministic (i.e.

σi = 0). In this case, it is trivially optimal to stock the quantity that matches demand

exactly. Therefore, under perfect rationality, there is no difference between decentralization

(with individual stocks x∗i = µ∗i ) and centralization (with total stock x∗T = µT ) since zero

cost is attained in both cases. In contrast, under our model of bounded rationality, decision

errors create a disparity between these two cases. Under decentralization, decision errors

|X[
i − µi| at each location accumulate and separately contribute toward aggregate costs.

However, under centralization, these decision errors may cancel out and the expected total

costs are thus decreased. This example illustrates that in an environment with no demand

uncertainty, inventory centralization helps by pooling decision errors across locations.

More generally, inventory pooling achieves two effects: it pools demand uncertainty as

well as supply uncertainty. The former is well-understood and arises because of variance

reduction. The latter, however, deserves elaboration. Bounded rationality (in particular,

our model of decision noise) injects uncertainty into the supply process, and we have seen

above that pooling reduces the aggregate impact of such decision errors. Similarly, inventory

pooling serves to attenuate other sources of supply uncertainty, for instance, random yield,

record inaccuracy, and processing errors. Therefore, it is no wonder that in Proposition 7,

the benefits of pooling persist even when demands are perfectly correlated: these gains are

the result of pooling supply (rather than demand) uncertainty.

10. Conclusion

The classic quantal choice paradigm posits that people do not make the best decision all the

time, but they make good choices more often than worse ones. In this paper, we use this
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framework to capture bounded rationality and apply it to several newsvendor-type inven-

tory settings. Our analysis generalizes existing results and reconciles them with empirical

observations. This suggests that accounting for decision noise and optimization error is one

possible way to enhance the predictive accuracy of theoretical models. We hope that our

modeling approach serves to connect the theoretical and experimental literatures, and in so

doing, stimulate future research on “behavioral theory” in operations management.

We conclude with some suggestions for future research. The first and most impending

direction is experimental. While some of the findings herein have been experimentally vali-

dated by previous studies, many others remain untested. For example, studies of newsvendor

decision biases under non-uniform demand would be a good starting point. The second direc-

tion is applications-oriented. There is a wide variety of situations in which decision-makers

(whether they are firms, workers, or customers) may display some extent of bounded ra-

tionality. In these cases, how are the current theoretical results affected? This is a broad

question that equally applies across different areas, such as operations strategy with bound-

edly rational firms, revenue management with boundedly rational customers, and staffing

and human resource management with boundedly rational workers. Next, another research

direction is to understand the fundamental behavioral mechanisms responsible for biases and

errors. Specifically, how does the bounded rationality parameter β depend on the nature of

the operational task (e.g., complexity and context)? What are the effects of learning on β?

How does individual heterogeneity in β affect the aggregate? From an experimental view-

point, how can β be manipulated? Finally, it is also worthwhile to study the combined effects

of bounded rationality (decision noise) and other behavioral regularities. We believe that

the quantal choice framework, being general yet parsimonious, is well-suited to complement

other behavioral theories.

Appendix

Proof of Lemma 1 Since ỹ ≡ ay + b, we have dỹ/dy = a. Therefore, for any y0, ỹ0

satisfying ỹ0 ≡ ay0 + b, we have
∫ ỹ0

−∞
eũ(ỹ)/βdỹ = a

∫ y0

−∞
eu(y)/βdy, (33)

which implies that

Ψ̃(ỹ0) =

∫ ỹ0

−∞ eũ(ỹ)/βdỹ∫∞
−∞ eũ(ỹ)/βdỹ

=
a

∫ y0

−∞ eu(y)/βdy

a
∫∞
−∞ eu(y)/βdy

=

∫ y0

−∞ eu(y)/βdy∫∞
−∞ eu(y)/βdy

= Ψ(y), (34)
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as desired.

Proof of Lemma 2

Ψ̃(y) =

∫ y

−∞ eũ(v)/βdv∫∞
−∞ eũ(v)/βdv

=

∫ y

−∞ e(u(v)+a)/βdv∫∞
−∞ e(u(v)+a)/βdv

=
ea/β

∫ y

−∞ eu(v)/βdv

ea/β
∫∞
−∞ eu(v)/βdv

=

∫ y

−∞ eu(v)/βdv∫∞
−∞ eu(v)/βdv

= Ψ(y).

(35)

Proof of Proposition 1 The density of the behavioral solution, from (4) and (5), is given

by

ψ(x) =
e(Ax2+Bx+C)/β

∫ b

a
e(Av2+Bv+C)/βdv

. (36)

The density ζ(x) of a truncated normal random variable over [a, b] with mean µ and variance

σ2 is

ζ(x) =
e−

(x−µ)2

2σ2

∫ b

a
e−

(v−µ)2

2σ2 dv
. (37)

Therefore, over domain [a, b], we have

ψ(x) ∝ e(Ax2+Bx)/β, (38)

ζ(x) ∝ e−
1

2σ2 x2+ µ

σ2 x, (39)

which implies that the behavioral solution has the truncated normal distribution with pa-

rameters µ and σ2 satisfying

A ≡ − p

2(b− a)
= − 1

2σ2
β, (40)

B ≡ pb

b− a
− c =

µ

σ2
β. (41)

Solving these two equations yields the desired values of µ and σ2.

Proof of Proposition 3 When the demand density is constant, we have uniformly dis-

tributed demand. Recall from Corollary 1 that we have

EX[ = µ− σ · φ( b−µ
σ

)− φ(a−µ
σ

)

Φ( b−µ
σ

)− Φ(a−µ
σ

)
, (42)

where µ = b − c
p
(b − a), σ2 = β b−a

p
, and φ(·) and Φ(·) denote the standard normal density

and distribution functions. When x∗ = µ > m, we have |b−µ| < |a−µ|, so φ( b−µ
σ

) > φ(a−µ
σ

),

implying that EX[ < µ = x∗, so there is under-ordering. The same argument shows over-

ordering when x∗ < m.
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Proof of Proposition 4 We first consider the case where f is decreasing over [a, b].

Denote r ≡ (b − a)/2, so b = m + r and a = m − r. Thus, for any y ∈ (0, r], we have

f(m + y) < f(m − y). Now, the assumption x∗ = m implies that c = pF̄ (m), since

F̄ (m) = F̄ (x∗) = c/p is satisfied at the optimal solution x∗. It then follows that for any

y ∈ (0, r],

π(x∗ + y)− π(x∗ − y) (43)

=

∫ m+y

m−y

π′(v)dv =

∫ m+y

m−y

(pF̄ (v)− c)dv = p

{∫ m+y

m−y

F̄ (v)− F̄ (m)dv

}
(44)

= p

{∫ m+y

m−y

F (m)− F (v)dv

}
(45)

= p

{∫ y

−y

F (m)− F (m + v)dv

}
(46)

= p

{∫ y

0

F (m)− F (m + v)dv +

∫ y

0

F (m)− F (m− v)dv

}
(47)

= p

{∫ y

0

[∫ m

m+v

f(z)dz +

∫ m

m−v

f(z)dz

]
dv

}
(48)

= p

{∫ y

0

[∫ v

0

−f(m + z)dz +

∫ v

0

f(m− z)dz

]
dv

}
(49)

= p

∫ y

0

∫ v

0

[f(m− z)− f(m + z)]dzdv > 0. (50)

Since the density of the behavioral solution X[ satisfies ψ(x) ∝ eπ(x)/β, which is increasing

in π(x), we have ψ(x∗ + y) > ψ(x∗ − y) for every y ∈ [0, r]. Together with the fact that

EX[ =

∫ b

a

xψ(x)dx =

∫ x∗+r

x∗−r

vψ(v)dv =

∫ r

−r

(x∗ + v)ψ(x∗ + v)dv (51)

= x∗ +

∫ r

−r

vψ(x∗ + v)dv (52)

= x∗ +

∫ r

0

v[ψ(x∗ + v)− ψ(x∗ − v)]dv, (53)

we conclude that EX[ > x∗, so there is over-ordering when f is decreasing over [a, b]. The

case with increasing f is treated similarly.

Proof of Proposition 5 Let the density of X[
i be ψi(x) = eui(x)/β∫

S eui(v)/βdv
for i = 1, 2. Let

K ≡
∫

S eu1(v)/βdv∫
S eu2(v)/βdv

. Then, we have ψ1(x) > ψ2(x) if and only if

e(u1(x)−u2(x))/β > K (54)

⇔ π(x) >
β ln K

λ1 − λ2

. (55)
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Therefore, for any k ≥ β ln K
λ1−λ2

, we have

P (π(X[
1) ≥ k) =

∫

{v:π(v)≥k}
ψ1(v)dv >

∫

{v:π(v)≥k}
ψ2(v)dv = P (π(X[

2) ≥ k). (56)

Similarly, for any k ≤ β ln K
λ1−λ2

, we have

P (π(X[
1) ≥ k) = 1−

∫

{v:π(v)≤k}
ψ1(v)dv > 1−

∫

{v:π(v)≤k}
ψ2(v)dv = P (π(X[

2) ≥ k). (57)

This shows that π(X[
1) stochastically dominates π(X[

2), so we have our result.

Proof of Proposition 6 Let X[
i and x∗i denote the behavioral solutions and optimal

solutions at stage i = 1, 2. Then, using time subscripts t to avoid ambiguity, we have

O1,t = X[
1,t+1 − (X[

1,t −Dt). (58)

This is because after period t, the inventory position has been lowered from the previous

target of X[
1,t by an amount equal to current demand Dt, and the order O1,t is placed to

replenish inventory to the new target X[
1,t+1. Note that although the targets X[

1,t and X[
1,t+1

follow the same choice distribution, the actual realizations may differ across time periods.

Now, let us define ε1 as the difference between two independent realizations of the random

variable X[
1. Then, we have the first relation (27). Next, for stage i = 2, we similarly have

O2,t = X[
2,t+1 − (X[

2,t −D2,t) (59)

= X[
2,t+1 − (X[

2,t −O1,t−1) (60)

= (X[
2,t+1 −X[

2,t) + (X[
1,t −X[

1,t−1) + Dt−1. (61)

Now, defining ε2 as the difference between two independent realizations of the random vari-

able X[
2, we have (28). Finally, it is straightforward to show that

βi = 0 ⇔ P (X[
i = E(X[

i )) = 1 ⇔ V ar(X[
i ) = 0 (62)

using the Chebyshev inequality. Therefore, it follows that V ar(εi) = 0 if and only if βi = 0.
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Proof of Proposition 7 In the proof, we shall maximize over profit functions πi(xi)

rather than minimize over cost functions γi(xi). For the stocking problem at each location

i, consider the following transformation. Instead of choosing the stocking quantities xi, we

shall choose the standardized stocking quantities zi ≡ (xi − µi)/σi. The profit function over

zi should satisfy π̃i(zi) = πi(xi), so we have

π̃i(zi) = σipE min(Z, zi)− σiczi + (p− c)µi, (63)

where Z is a standard normal random variable. Let Z[
i denote the behavioral solution of

maximizing π̃i(zi). By Lemma 1, we know that behavioral solutions are invariant against

affine transformations of the decision domain, so X[
i = µi + σiZ

[
i and Eπ̃i(Z

[
i ) = Eπi(X

[
i ).

This justifies working in the standardized decision domain. Next, by Lemma 2, we know

that behavioral solutions are not affected by translations in the utility function, so Z[
i is also

the behavioral solution when maximizing zi over the centered profit function

π̃◦i (zi) = σipE min(Z, zi)− σiczi. (64)

Therefore, at each location i, we shall use the standardized and centered profit function π̃◦i (zi)

to characterize the behavioral solution Z[
i . This argument also applies to the centralized case:

we can use the problem of maximizing

π̃◦T (zT ) = σT pE min(Z, zT )− σT czT (65)

over zT to characterize the behavioral solution Z[
T .

Let us define the following canonical newsvendor problem: choose z to maximize

Π(z) = pE(Z, z)− cz, (66)

which we refer to as the canonical profit function. Let φ and Φ denote the standard normal

density and distribution functions. Then, it is easy to see that the solution to the canonical

newsvendor problem z∗ satisfies Φ(z∗) = 1− c/p, and the optimal objective function satisfies

Π(z∗) = p
∫ z∗

−∞ vφ(v)dv ≤ 0. In other words, Π(z) ≤ 0 for every z ∈ R.

Now, observe that π̃◦i (zi) = σiΠ(zi) and π̃◦T (zT ) = σT Π(zT ). Therefore, for each i,

applying Proposition 5 and condition (b) yields the result that EΠ(Z[
T ) ≥ EΠ(Z[

i ), with

equality holding if and only if (b) holds with equality.
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Finally, we can put our conclusions together to write

n∑
i=1

Eπi(X
[
i ) =

n∑
i=1

Eπ̃i(Z
[
i ) =

n∑
i=1

Eπ̃◦i (Z
[
i ) + (p− c)

n∑
i=1

µi (67)

=
n∑

i=1

σiEΠ(Z[
i ) + (p− c)µT (68)

≤
n∑

i=1

σiEΠ(Z[
T ) + (p− c)µT (69)

≤ σT EΠ(Z[
T ) + (p− c)µT (70)

= Eπ̃◦T (Z[
T ) + (p− c)µT = Eπ̃T (Z[

T ) = EπT (X[
T ). (71)

Note that inequality (70) holds because of condition (a) and Π(z) ≤ 0. Now, observe that

(70) binds if and only if (a) holds with equality, and (69) binds if and only if (b) holds with

equality. However, since σi <
∑n

i=1 σi, (a) and (b) can not both bind at the same time.

Therefore, strict inequality must hold in our result.
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