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Bounded Selective Spanning with Extended Fast

Enumeration for MIMO-OFDM Systems Detection
Yun Wu, Member, IEEE, and John McAllister, Senior Member, IEEE,

Abstract—Sphere decoders allow receivers in Multiple-Input
Multiple-Output (MIMO) communications systems to detect
QAM symbols with quasi-optimal accuracy and low complexity
compared to the ideal Maximum Likelihood (ML) detector.
However, their high complexity relative to simple linear detectors
means that the latter are still usually adopted, despite their lower
detection performance. Configurable sphere decoders such as
Selective Spanning Fast Enumeration (SSFE) allow complexity to
be reduced at the cost of lower performance and are hence ideal
for transceivers for Internet-of-Things (IoT) equipment, where
scale, operating context and resource and energy budgets vary
dramatically. However, SSFE still suffers performance limita-
tions due the internal heuristics employed for symbol selection
and enumeration and real-time, software-defined realisations for
even moderately demanding MIMO standards, such as 802.11n,
have not been recorded. This paper presents a new variant of
SSFE which, by employing novel fast symbol enumeration and
modulation dictionary spanning heuristics increases performance
and computational efficiency to the point where very substantial
reductions in resource can be achieved without impacting detec-
tion accuracy relative to SSFE. This is demonstrated via a series
of FPGA-based detectors 2 × 2 and 4 × 4, 16-QAM 802.11n
MIMO.

Index Terms—Field Programmable Gate Array (FPGA), Pro-
cessor, Real-Time, Multi-Input Multi-Output (MIMO), Orthogo-
nal Frequency-Division Multiplexing (OFDM), Sphere Decoder,
802.11n

I. INTRODUCTION

MULTIPLE-INPUT, Multiple-Output (MIMO) commu-

nications systems [1] exploit spatial diversity to provide

wireless communications channels of unprecedented capacity

and throughput. These capabilities have seen MIMO adopted

to increasing degrees in standards relevant to the IoT, such

as 802.11n [2] , LTE and LTE-Advanced [3], 5G [4] and the

emergence of MIMO technologies of very large-scale for next

generation cellular communications [5].

A MIMO system employs multiple antennas at both trans-

mitter and receiver terminals to enhance both signal quality

and data rate by exploiting spatial diversity [6]. Fig. 1 shows a

generic model of MIMO system with Nt transmitting antennas

and Nr receiving antennas.

In the context of IoT, equipment can vary dramatically

in its scale (i.e. number of antennas), modulation density,

operating environment and channel quality, energy budget and

data rates [7]. This means that embedded MIMO transceiver

algorithms and architectures must be highly adaptable for

use in different contexts. One particularly problematic area

is symbol detection: the estimation of transmitted symbols

Authors undertook this work at the Institute of Electronics, Communi-
cations and Information Technology (ECIT), Queen’s University Belfast, UK
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Fig. 1: MIMO System Model

from those received. Simple equalizers are low-cost but offer

low performance detection, but more capable approaches, such

as sphere decoders can be highly computationally complex.

In order to bridge this gap between detection performance

and cost, a series of ’adaptive’ detectors have emerged which

permit trade-off of detection performance with cost [8], [9], a

critical capability for IoT equipment.

Selective Spanning with Fast Enumeration (SSFE) [10] is

particularly promising approach. It enables very low cost and

potentially good performance by design-time tuning of the

computational complexity and detection performance [10], [8].

However, despite these advantages, SSFE currently suffers

from restrictions. Specifically,

• It is only capable of enumerating 8 candidate symbols, ir-

respective of the cardinality of the modulation dictionary.

This limits detection accuracy for even moderately-sized

modulation schemes.

• It enumerates redundant or known-impossible symbols in

certain scenarios, again potentially restricting detection

accuracy.

This paper resolves these issues. It presents a novel Bound-

ary Selective Scanning with Extended Fast Enumeration (BSS-

EFE) algorithm1 with the following characteristics:

• A novel Boundary SS (BSS) heuristic which avoids

enumerating known-impossible symbols, improving BER

performance by an average of 1 dB (25.9%) SNR as

compared to SSFE.

• A novel Extended FE (EFE) heuristic, which can span

all members of a QAM constellation. By combining with

BSS, this enhances performance by a further 1 dB SNR

whilst reducing computational complexity by 16.3% as

compared to SSFE.

• Novel FPGA-based BSS-EFE detectors are presented

which enable real-time detection for 2× 2 and 4× 4 16-

1A preliminary version of this work was presented in [11]
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QAM 802.11n with performance and/or cost substantially

in advance of SSFE.

The rest of this paper is organized as follows. Sections III

and IV describes SSFE and quantify its effectiveness, before

Sections V and VI introduce BSS-EFE. The performance and

complexity of BSS-EFE are described in Section VII, before

Section VIII realises and analyses BSS-EFE.

II. BACKGROUND

A. MIMO Detection and Sphere Decoding

In a typical Nt×Nr MIMO system, such as that in Fig. 1 a

bit stream b is modulated and multiplexed onto Nt transmitters

to form a transmitted symbol vector s ∈ C
Nt×1. At the Nr-

element receiver, the received symbol vector y ∈ C
Nr×1,

is retrieved and an estimate s̃ of s made. The relationship

between s̃ and y is assumed to be of the form (1)

y =

√
ρ

Nt

·H · s+ w (1)

where w ∈ C
Nr×1 is the vector of mutually independent and

identically distributed complex Additive White Gaussian Noise

(AWGN) elements with power σ2
w. ρ is the Signal-to-Noise

Ratio (SNR) denoted by
σ2

s

σ2
w

, where σ2
s the signal power of

s. The Rayleigh-distributed fading multipath channel between

transmitter and receiver is represented by H ∈ C
Nr×Nt where

hi,j , represents the unit-power fading path between the ith

receive and jth transmit antennas.

MIMO detectors seek a solution that minimizes the error be-

tween the estimated and actual transmitted signals, expressed

as [12]

min
xi

‖y −H · xi‖2 , xi ∈ DMc

Nt
, i ∈ [1,MNt

c ] (2)

where Mc denotes the scale of modulation type, DMc

Nt
={

x1,x2, . . .x
Nt

Mc

}
denotes the set of all Mc

Nt possible trans-

mit symbol vectors over Nt transmit antennas and xi =
{s̃1, s̃2, . . . s̃Nt

} is one of the estimated candidate vectors from

DMc

Nt
.

The optimal ML detector attempts to solve the problem

denoted in (2) by exhaustively searching all possible symbol

vectors; the result s̃ML is that with the smallest Euclidean

Distance of all candidate symbol vectors in DMc

Nt
. This es-

tablishes the upper bound on error rate for uncoded MIMO

detectors [13]. However, the solution space DMc

Nt
, is of size

MNt
c leading to exponentially increasing ML detection com-

plexity O
(
MNt

c

)
. Modern wireless standards continuously

increase both the number of antennas Nt and the density of

the modulation scheme Mc [3] and the associated exponential

growth in ML detection complexity is rapidly rendering it

computationally infeasible. For real-time implementation, sub-

optimal detectors are employed instead of ML.

Sphere decoders [14] support quasi-optimal detection per-

formance whilst offering reduced computational complexity

relative to ML [15]. In general, sphere decoding algorithms

traverse a partial hyperspherical-space around the received

symbol DC
Nt

[14] with detection objective given in (2)2:

min
x

‖y −H · x‖2 (3)

via QR decomposition of H this can be reformulated as [7]:

min
x

‖R · (yZF − x)‖2 (4)

where yZF is a received symbol which has undergone ZF

equalization.

Since R is upper triangular, the final row of the matrix

product in (4) has only a single non-zero entry, which can

be considered interference-free [16]. Therefore, the euclidean

distance can be calculated recursively through R, row-by-

row, in reverse order. At each row are calculated the Partial

Euclidean Distance (PED) and the Accumulated PED (APED),

given by:

PEDl =

Nt∑

j=l

r2l,j
∥∥yej − xj

∥∥2 , l ∈ [1, Nt] (5)

and

APEDl =

Nt∑

j=l

PEDj (6)

where yZFj
and xj are the jth element of yZF and x and l

is the index of current layer.

Sphere decoding enables a trade-off of complexity and

detection performance by limiting APEDl in (6) within a

threshold d [15]. Sphere decoding can be expressed as a tree

search structure as shown in Fig. 2 with d a specific radius

from the root limiting the search scope. By retaining only the

leaf nodes within d, (4) becomes a tree search problem [17].

Among the retained leaves, that with the lowest APED is

the final solution. By carefully selecting d and the search

strategy, sphere decoder can outperform linear detection with

considerably lower complexity than ML detection [17].

leaf node

root

PED4

PED3

PED2

PED1

traversed path

D

untraversed path succeed path

... ...

......

l=4

l=3

l=2

l=1

Fig. 2: The Generic Tree-Search Structure of Sphere Decoder

B. Sphere Decoder Enabled Real-Time Detection

The sphere decoder tree-search problem is well known and

strategies such as Depth First Search (DFS), Breadth First

Search (BFS) and Best Metric First Search (BMFS) have been

devised to adapt computational efficiency, determinism, paral-

lelism and performance to support realisations with varying

2Note that all of data values from this point forward have been sorted
according to a policy specific to the class of sphere decoder used
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performance and cost [18]. From the perspective of real-time

implementation, a number of such approaches are notable, in

particular two BFS approaches: the Fixed Complexity Sphere

Decoder (FSD) [19] and Selective Spanning Fast Enumeration

(SSFE) [20]. The former employs a hybrid brute-force/low-

complexity approach which enables quasi-ML detection us-

ing deterministic dataflow through a fixed tree structure,

whilst avoiding computationally demanding operations such

as the sort operations prolific in other approaches [9]. These

characteristics are important from the perspective of real-

time implementation as they enable high performance custom

accelerators to be realised, as demonstrated in a number of

works [9]. SSFE has similar capabilities but has the added

benefit of being adaptable to trade-off algorithm performance

and complexity whilst maintaining the same features which

lend themselves so well to efficient realisation.

III. SELECTIVE SPANNING WITH FAST ENUMERATION -

SSFE

A. The SSFE Algorithm

SSFE is a BFS sphere decoding method which allows

the designer of a system, at design time, to determine the

number of symbols enumerated at each layer of a tree, so

that they can control and trade-off detection performance and

implementation resource and energy cost. Each configuration

is defined by a vector v ∈ (Z+)
m

, with each vi ∈ v defining

the number of symbols enumerated at layer i of the tree. Fig.

3 demonstrates the influence of v on the tree structure for two

example values.

SSFE is generally composed of three phases: preprocess-

ing, symbol enumeration and result selection. Preprocessing

performs two functions: it equalizes the received signal vector

y to produce yZF and orders the channel matrix H such that

the ith detected layer is determined by :

ki = arg max
l=[1,Nt]

norml. (7)

where norml is the norm of lth column of H .

This metric always orders the decoded signals from highest

to lowest power. During symbol enumeration, SSFE performs

APED calculations given by (5); ŷn at each stage is given by

ŷn = yn −
Nt∑

l=n+1

rn,l
rl,l

(ŝl − ŷl) , (8)

SSFE employs a ’fast’ enumeration heuristic spanning a

partial set of the QAM constellation. The heuristic enumer-

ates candidate symbols based on the sliced value of the

ZF equalized symbol ŝn. A sequence of candidate symbols

S = {ŝi}7i=0 are enumerated described in (9), where d =
ŷn − Q (ŷn), φ = ℜ (d) > ℑ (d), Rsgn = sgn (ℜ (d)) and

Isgn = sgn (ℑ (d))




ŝ1 = ŝ0 + 2 · (Rsgn · φ+ j · Isgn · (!φ)) ,
ŝ2 = ŝ0 + 2 · (Rsgn · (!φ) + j · Isgn · φ) ,
ŝ3 = ŝ0 + 2 · (Rsgn + j · Isgn) ,
ŝ4 = ŝ0 − 2 · j · Isgn,
ŝ5 = ŝ3 − 4 · j · Isgn,
ŝ6 = ŝ0 − 2 ·Rsgn,
ŝ7 = ŝ3 − 4 ·Rsgn,

(9)
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(b) v = [1, 1, 2, 8]

Fig. 3: SSFE Configuration Examples

The final detected symbol vector ŝ is then selected from

the paths formed by the combinations of enumerated symbols

according to

ŝ = argmin
ŝj

(APEDj), j ∈ [1,

Nt∏

l=1

vl] (10)

B. SSFE: Analysis

SSFE is very effective when a designer is concerned not

only with detection performance, but also by the performance

and cost of realising the detector. The number of candidates

enumerated can be controlled to trade detection performance,

which increases as the number of candidates increases, with

the resource, performance and energy cost of enumerating

those candidates. SSFE places control of this balance in the

hands of the designer, who defines the configuration vector v.

However, there are some limitations associated with SSFE:

• Selective spanning: Regardless of the size of the modu-

lation dictionary, a maximum of eight candidate symbols

may be enumerated; in the case of even 16-QAM, this

represents only 50% of the candidate dictionary and

potentially restricts performance.

• Fast enumeration: Fig. 4 illustrates the behaviour of

the FE process in the case of an arbitrary value of

yZF = (3.5, 3.5) assuming 16-QAM. As this shows, ŝ0
takes a value at the edge of the valid constellation; when

the enumeration process is followed, six of the eight

symbols enumerated are outside the valid constellation
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and therefore impossible. The computations expended

considering these symbols is therefore wasted.
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ŝ2

ŝ3
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16−QAM constellations

Equalized signal
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Fig. 4: Example SSFE Enumeration Procedure

Hence, SSFE offers many advantages in the context of some

restrictions. By enabling design-time trade-off of performance

and cost, whilst avoiding sort operations at each layer, as

experienced in K-best detectors [9], SSFE places powerful

control of performance and cost in the hands of the designer.

However, its scope and the efficiency of its selective spanning

and fast enumeration strategies potentially restrict performance

and increase cost. The aims of this paper are two-fold:

• Boundary Selective Spanning: This work aims to elim-

inate the inefficiency in the SSFE selective spanning

processing to ensure that only valid QAM constellation

points are enumerated.

• Extended Fast Enumeration: This work aims to extend

the customisability of SSFE by allowing enumeration of

customisable numbers of constellation points up to the

limit imposed by the modulation dictionary.

We will resolve these issues in the following contexts:

• ’Hard’ detection: Standalone estimation of the transmit-

ted symbol in the absence of side-channel information

from channel decoding is assumed. The alternative ’soft’

approaches are frequently based on hard detection algo-

rithms and hence this work may be further developed to

realise a soft detection strategy.

• MIMO scale: IoT devices and networks promise MIMO

topologies of widely differing scales, from a minimum of

two-antenna units to much larger-scale topologies for top-

end LTE and LTE-A communications. This paper focuses

on 2×2 and 4×4 MIMO employing 16-QAM modulation

as standard in, for example, 802.11n Wi-Fi.

IV. SSFE ENUMERATION EFFICIENCY

The SSFE symbol enumeration heuristic is independent of

modulation scheme and has two potential limitations: it can

enumerate only eight candidate symbols and in its current

form may enumerate symbols outside of the valid modulation

dictionary Ω.

The former limitation is clear from examination of the

enumeration heuristic, presented in Section III and the latter

is illustrated in Fig. 4. In that case, the enumeration route

traverses a sequence where ŝ1 - ŝ3, ŝ5 and ŝ7 all lie outside

of the valid constellation. Accordingly, enumerating these

symbols represents redundant computation, since it is known

that they are infeasible, yet are not treated as such.

To quantify the efficiency of the SSFE enumeration heuristic

it is desired to characterise for each received symbol the set

of enumerated candidates which are invalid, i.e. |J | where

J = {j : j ∈ S, J /∈ Ω}. To gauge this efficiency, equiproba-

ble transmitted symbols in Ω are assumed for each antenna in

the long term. The specific symbols enumerated and hence

J , depending on the location of the ZF equalized symbol

ŷn, as described in (9) relative to the valid constellation.

By considering the possible values ŷn may take and their

orientation relative to the feasible constellation points, broad

classes of redundant enumeration scenarios emerge.

Consider the value of ŷn relative to lower and upper bound

thresholds, τl =
√
Mc − 2 and τu =

√
Mc − 1 where Mc =

|Ω| is the cardinality of the modulation dictionary. Based on

the value of ŷn with respect to these bounds, four classes of

enumeration route can be identified, each of which corresponds

to a different number of invalid symbols i ∈ {2, 3, 4, 5} being

enumerated. These classes are defined as S2 − S5 below.

S2 =

{
ŷn :

(τ2 > |ℜ(ŷn)| ≥ τ1 ∧ |ℑ(ŷn)| < τ1)∨
(τ2 > |ℑ(ŷn)| ≥ τ1 ∧ |ℜ(ŷn)| < τ1)

}

S3 =

{
ŷn :

(|ℜ(ŷn)| ≥ τ2 ∧ |ℑ(ŷn)| < τ1)∨
(|ℑ(ŷn)| ≥ τ2 ∧ |ℜ(ŷn)| < τ1)

}

S4 =

{
ŷn :

(τ2 > |ℜ(ŷn)| ≥ τ1 ∧ |ℑ(ŷn)| > τ1)∨
(τ2 > |ℑ(ŷn)| ≥ τ1 ∧ |ℜ(ŷn)| > τ1)

}

S5 =
{
ŷn : (|ℜ(ŷn)| ≥ τ2 ∧ |ℑ(ŷn)| ≥ τ2)

}

Fig. 5 illustrates each of these regions for a 16-QAM

constellation. Note that
⋂5

i=2 Si = ∅. Adopting P (i) to denote

the probability that ŷn falls into Si, then the probability that a

given entry of a sequence of k enumerated symbols is outside

of the the valid constellation set Ω, P (ŝn /∈ Ω) is given by

P (ŝn /∈ Ω) =

5∑

i=2

P (i)
i

k
(11)

The variation in relative frequency of occurrence of each

of S2 − S5 with SNR is illustrated in Fig. 6 for k = 8, 16-

QAM modulation and i ∈ {2, 3, 4, 5}. These measures are

derived by Monte-Carlo simulation for 1× 105 symbols. The

values of γi = P (i) i
k

and the overall proportion of symbols

enumerated which are invalid are all quoted. As this shows,

both γi and P (ŝn /∈ Ω) gradually stabilize as SNR increases

to a proportion of approximately 19% of enumerated symbols

which are invalid.

Repeating this procedure for modulation schemes varying

between 4-QAM to 64-QAM with k = 4 and k = 8 produces

the enumeration efficiency measurements given in Fig. 7. As

this shows, as the order of the modulation scheme increases,

the proportion of redundant enumerations decreases, but in



5

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

real

im
a

g

 

 

N/A

S
2

S
3

S
4

S
5

Fig. 5: 16-QAM Invalid Enumeration Regions

SNR (dB)
0 5 10 15 20 25 30 35 40

R
a

ti
o

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P (bsn =2 +)
.5

.4

.3

.2

Fig. 6: Enumeration Redundancy variation with SNR (16-

QAM, k = 8)

all cases at least 10% of enumerated symbols are invalid

over all tested modulation schemes. Hence, even if highly

efficient architectures are produced for SSFE, over 10% of its

operations are redundant at each antenna when 4 or 8 symbols

are enumerated.
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Fig. 7: Enumeration Redundancy for Different Schemes

Motivated by these observations, a bounded spanning

method is described to solve the redundant enumeration issue

in Section V, before a novel strategy is proposed in Section VI

to resolve the constraint on the size of the set of enumerated

symbols.

V. BOUNDED SELECTIVE SPANNING FOR QAM

In Fig. 4, the enumerated symbols {ŝ1, ŝ2, ŝ3, ŝ5, ŝ7} are

known not to be possible, but are still enumerated, leading to

at least 10% redundancy in the computational effort expended

enumerating symbols. This section describes a Bounded Selec-

tive Spanning (BSS) process which avoids enumerating sym-

bols known to be impossible, instead enumerating valid alter-

natives, with the ultimate goal of increasing the computational

efficiency of the detection process and hence potentially either

increase detection performance for the same computational

effort, or reduce implementation cost for the same detection

performance requirement.

The challenge in defining the BSS scheme is to identify

a heuristic which maps each invalid enumerated point to

a valid alternative to increase detection performance (i.e.

minimise BER), whilst minimising computational complex-

ity. For instance, one potential solution could be to record

the sequence of enumerated symbols, identifying the invalid

symbols as they are enumerated, and map each of these

to the closest (by Euclidean distance measurement) valid

symbol which is not enumerated. However, to do so would

require the calculation of a series of highly complex Euclidean

distance measurements, including square root operations, and

comparison operators. It would be much more desirable to

exploit a scheme which applies simple, primitive arithmetic

or logical operations to map these invalid symbols to valid

alternatives as they are enumerated.

As an illustration, consider Fig. 8 which shows (shaded) the

valid set of symbols in the constellation set Ω for 16-QAM,

with those beyond the boundary known to be outside of Ω and

therefore invalid.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

 

 

Invalid Regin

Valid Region

τ
u

Fig. 8: The Bound of 16-QAM

For a given QAM constellation size, the set of valid

points Ω are defined as {{|ℜ(ŷn)| ≤ τu} ∨ {|ℑ(ŷn)| ≤ τu}}.

Hence τu demarcates a ’container’ such that when the enu-

meration path for a given ŷn crosses the threshold, the

corresponding enumerated symbol ŝi /∈ Ω and is therefore

invalid. Specifically, ŝi is considered invalid when ŝi ∈
{{|ℜ(ŷn)| > τu} ∨ {|ℑ(ŷn)| > τu}}, where τu =

√
Mc − 1

as in Section IV.
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Each symbol, however, is composed of a real part and an

imaginary part, either of which may be valid or invalid. We

propose a BSS scheme that for each enumerated symbol ŝi
an alternative symbol s̃i ∈ Ω is enumerated. s̃i are translated

from ŝi by considering the real and imaginary parts of ŝi to

alternatives independently in the case where they exceed τu
in Fig. 8, otherwise they remain unchanged. This is achieved

by adding to ŝi an offset δi such that

s̃i = ŝi + δi for i = 0, · · · , 7 (12)

where

δi

{
= 0 when ŝi ∈ Ω

6= 0 otherwise
(13)

That is, when ŝi ∈ Ω, then that candidate symbol is retained,

and when ŝi /∈ Ω an alternative candidate is identified. The

real and imaginary components of the offset are calculated

to provide a horizontal translation (real component) or ver-

tical translation (imaginary component) when required. To

derive the directions of these translations, we note that the

real (imaginary) components’ translations must have positive

polarity when ℜ{ŝ0} > 0 (ℑ{ŝ0} > 0) and negative when

ℜ{ŝ0} < 0 (ℑ{ŝ0} < 0). Hence the direction of translation

can be determined based only on the polarity of ŝ0. To

determine the size of the translation, it is noted that, since

the SSFE enumeration heuristic successively enumerates the

symbols closest to the sliced value of the equalized signal,

the points enumerated will form a cluster around the first

point enumerated, with the number of neighbouring points

enumerated in each direction around ŝ0 at maximum given

by ⌊√vi⌋−1. Finally, the offset takes the value zero when the

magnitude of the respective component exceeds τu, otherwise

a non-zero translation is applied. Accordingly, the magnitude

of the translation required can be encapsulated in a parameter

qi.

qi =
⌊√

vi − 0.1
⌋
+ 1 (14)

and the offset δi derived according to

δi = −2 · qi · {(ℜ (ŝi) > τu) · sgn (ℜ (ŝ0))
+j · (ℑ (ŝi) > τu) · sgn (ℑ (ŝ0))} (15)

The symbols enumerated by BSS-FE, {s̃i}7i=0 are defined

by adding δ to the symbols identified by the standard SSFE

enumeration heuristic; i.e. {ŝi}7i=0 are as given by (9). Since

ŝ0 is always sliced to a valid constellation point, the additive

offset given by (15) is only applied to the remaining enumer-

ating symbols. With the defined enumerating bound, an offset

is defined to regulate the invalid enumerating symbol back to

the modulated constellation plate.

Fig. 9 presents an example of the effect of this translation for

an enumeration path in S4. It shows how the symbols ŝ2− ŝ5,

enumerated by SSFE, but which are invalid, are mapped to

valid points s̃2 − s̃5 via the additive offsets δ2 − δ5. Note that

none of s̃2 − s̃5 would otherwise have been enumerated and

in each case are the closest possible points to ŝ2 − ŝ5 whilst

increasing distance from it, in keeping with the original SSFE

strategy.
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Fig. 9: Bounded Spanning

It should be noted that, whilst the addition of the offset

will increase computational complexity of BSS-FE above the

levels experienced by SSFE, this extension is in keeping

with the reliance of SSFE on only simple arithmetic and

logical operators, avoiding euclidean distance measurements or

complex arithmetic operations such as square-root3. Applying

BSS, the enumeration efficiency is 100%, with no invalid

QAM constellation symbols considered during the enumer-

ation process.

A. BSS-FE: BER v.s. Complexity

The BSS scheme proposed potentially increases detection

performance since it eliminates the possibility of enumerating

invalid points, which will always result in a symbol error. To

illustrate this performance increase the Bit Error Rate (BER)

performances of SSFE employing the standard enumeration

scheme, and SSFE employing BSS (BSS-FE) are analysed in

the context of an ideal MIMO OFDM fading channel with

AWGN when perfect complex Gaussian cyclic-prefix (CP) is

employed. Uncoded hard decisions are made in the context

of 4 × 4 MIMO employing 16-QAM for 1 × 105 48-symbol

frames, according to the 802.11n standard [2]. The BER for a

variety of configuration vectors v are shown in Fig. 10.

As shown, BSS-FE offers consistently superior BER per-

formance to SSFE in all cases; for SSFE schemes enumer-

ating more than one symbol on multiple levels, such as the

[1, 1, 2, 4], BSS-FE enables approximately 1.0 ∼ 1.5 dB

SNR gain beyond SSFE. For SSFE schemes enumerating

more than one symbol in a single layer, such as [1, 1, 1, 4]
performance gain varies between 0.4 ∼ 0.6 dB, with an

average improvement of 0.5 dB.

This increased, performance, however, comes at increased

computation cost - specifically, in order to calculate and apply

3Note that the square-root required for evaluation of (14) depends only
on v, while is defined at compile-time and hence may be evaluated off-line
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Fig. 10: BSS-FE BER Performance, 4× 4

the offsets in (12). Fig. 12 illustrates the increase in the

number of arithmetic operations experienced as a result of

employing BSS. As this shows, BSS-FE requires 4% - 10.2%

(average 7.1%) more operations than SSFE. The relative scale

of the increase reduces as the enumeration varies between

v = [1, 1, 1, 4] to v = [1, 2, 4, 8]. This increased cost, however,

has an associated reduction in BER of 5% - 36.8% (20.9% on

average.)

VI. EXTENDED FAST ENUMERATION FOR QAM

As outlined in Section III, v represents the unique config-

uration of each SSFE scheme with each vi ∈ v representing

the number of symbols enumerated at stage i in the detection

tree. However, the enumeration strategy outlined in Section

III is limited to eight symbols. This has a number of benefits;

it allowed the inventors to devise a low-complexity, iterative

heuristic which can enumerate n ∈ [1, 8] symbols confident,

whichever number of symbols are enumerated, they are the

n closest to the equalized symbol in Euclidean terms, and

enumerated in order of increasing distance from it. Further-

more, this can be achieved without having to measure the

Euclidean distance nor incur the cost of expensive square-

root and comparison operations. However, it means that the
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Fig. 11: BSS-FE BER Performance, 2× 2

set of possible symbols for even moderately sized modulation

alphabets, such as 16-QAM, cannot be fully enumerated,

potentially restricting BER performance. In this section we

propose an Extended Fast Enumeration (EFE) scheme to

overcome this restriction.

The challenge in devising an EFE approach is to identify

a heuristic which allows the same iterative nature, similarly

avoids euclidean distance measurements, but is extensible to

any number of symbols. This latter requirement in particular

precludes hand-crafting optimised heuristics of the type used

in SSFE. Hence, the EFE approach is an approximation

motivated by the SSFE enumeration process.

Fig. 13 illustrates an example enumeration route for 16-

QAM symbols enumerated as a result of the same equalized

symbol considered in Fig. 4. As it shows, the general approach

is to enumerate symbols in either a ’spiral’ of increasing radius

around the initial estimate as that in Fig. 44.

This is achieved by reformulating the original enumeration

4Note that, for clarity of focus on EFE, during this section we do not
consider the issue of invalid symbol enumeration.



8

128 114

232

186

250
220

458

364

698

540

[1,4] [2,4] [1,8] [2,8] [4,8]

Detection Scheme

0

100

200

300

400

500

600

700

800

N
u

m
b

e
r 

o
f 

A
ri
th

m
e

ti
c
 O

p
e

ra
ti
o

n
BSS-FE

SSFE

(a) 4× 4

368 354

712 666

1192
1082

730 700

1418 1324

4538

4124

[1,1,1,4] [1,1,2,4] [1,2,2,4] [1,1,1,8] [1,1,2,8] [1,2,4,8]

Detection Scheme

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u
m

b
e
r 

o
f 
A

ri
th

m
e
ti
c
 O

p
e
ra

ti
o
n

BSS-FE

SSFE

(b) 2× 2

Fig. 12: BSS-FE Complexity Comparisons
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conditions in (9) to the alternative in (16).




ŝ0 = Q
(
ŷZF nt,i

)
, i ∈ [1,MNt

c ], nt ∈ [1, Nt]

ŝk+1 = ŝk + z1 · (−1)
w+1

,

ŝl+1 = ŝl + z2 · (−1)
w+1

,

(16)

where ŷZF nt,i denotes the ntth ZF equalized signal with

canceled noise for ith enumerating symbol.

This approach ensures a consistently increasing distance

from the initial symbol estimate but is not limited to 8

points but rather is directly controlled by the enumerating

configuration vector v via the terms w, k and l in (17).




w ∈
[
1,
⌈√

vi + 0.25− 0.5
⌉]

,
k ∈ [(w − 1) · w + 1, w · w] ,
l ∈ [w · w + 1, (w + 1) · w] .

(17)

However, whilst these control the scale of enumeration, they

do not influence the direction, which may proceed in either a

clockwise or anticlockwise direction around ŝ0. The direction

is important since it can have a strong influence, for the same

number of enumerated points, on the number which are valid.

This direction is controlled by z1 and z2 in (16) as defined in

(18).

{
z1 = sgn (ℜ (d)) · φ+ j · sgn (ℑ (d)) · (!φ),
z2 = sgn (ℜ (d)) · (!φ) + j · sgn (ℑ (d)) · φ, (18)

Consideration of this approach makes a number of important

points clear. Firstly, it is important to note that complex

arithmetic operations, such as square-root, are not required

at run-time5, maintaining the commitment of SSFE to an

enumeration process dependent on only simple arithmetic and

logical operations. In addition, the enumeration strategy is not

optimal - symbols are not enumerated in the same order as they

are in SSFE; rather it a heuristic approximation in the same

vain, extended to any number of symbols. Given, however, that

is is an approximation, it is important to consider whether a

serious impact is experienced on detection performance.

Fig. 14 illustrates the BER of a series of SSFE and SS-

EFE configurations for 4× 4 16-QAM MIMO systems, under

similar simulation conditions employed in Section IV. As this

shows, the performance difference between SSFE and SS-EFE

for these configurations is negligible.

VII. BSS-EFE: COMPLEXITY AND PERFORMANCE

ANALYSIS

This section measures the complexity and performance

consequences of the novel enumeration strategies employed in

BSS-EFE. Fig. 15 shows the BER performance of a variety of

BSS-EFE configurations for 4×4 16-QAM MIMO exploiting

V-BLAST antenna ordering (i.e. antennas are decoded in order

of decreasing received signal power). The configurations span

the least complex (enumeration of a single symbol at each

antenna) up to full enumeration SSFE-[16,1,1,1].

As shown, the performance of the detector steadily increases

with the number of symbols enumerated and, accordingly,

the complexity of the detector. The arithmetic complexity

of SSFE, SS-EFE, BSS-FE and BSS-EFE are described in

Table I. The number of symbols which may be enumerated by

SSFE is configurable, with an upper limit of eight. As defined

in (9), the complexity of enumerating each symbol is variable

and hence the enumeration complexity is variable depending

5The square-root used to evaluate w in (17) is dependent only on v and
may be pre-computed off-line
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Fig. 14: SS-EFE BER Performance, 4× 4
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Fig. 15: BSS-EFE BER for 4× 4 16-QAM MIMO

on the number of symbols enumerated at each search tree

layer. To allow for this complexity, we use the vectors add =
[0, 4, 6, 8, 9, 10, 11, 12] and mul = [0, 4, 6, 6, 6, 7, 7, 8], where

each addi ∈ add (muli ∈ mul) represents the number

of addition/subtraction (multiplication) operations required to

enumerate ŝi ∈ [1, 8]. Based on these, the complexity of

SSFE may be represented as per the first row in Table I. Note

that, since the only differences between SSFE, BSS-FE and

BSS-EFE lie in the process of identifying and enumerating

symbols, the other computational costs (most particularly,

the APED calculations) are not included in this comparison.

Note that, whilst BSS-FE, SS-EFE and BSS-EFE increase

complexity relative to SSFE, they do not increase the order

of the complexity and hence, in the limit, exhibit similar

computational complexity.

Tables II and III enumerate the total number of arith-

metic calculations required for a series of configurations

of SSFE, BSS-FE, SS-EFE, and BSS-EFE. As shown, the

bounded spanning and extended fast enumeration strategies

each increase the complexity of the detection process. This

complexity increment is only desirable in the case where

disproportionately large increases in detection performance

result.

Fig. 16 compares the BER performance and arithmetic

complexity of a number of SSFE and BSS-EFE schemes for

4 × 4, 16-QAM MIMO detection under similar experimental

conditions as outlined in Section IV. As this shows, both BSS-

EFE-[1, 2, 2, 12] and BSS-EFE-[1, 1, 4, 12] offer performance

gain of more than 1 dB SNR at BER of 10−3 over SSFE-

[1, 2, 4, 8]. This performance benefit accrues despite the fact

that the BSS-EFE schemes enumerate, respectively, 132 and

156 symbols (as compared to the 168 enumerated by SSFE-

[1, 2, 4, 8] and requiring respectively 3496 and 3880 arithmetic

operations, as compared to the 4124 required by SSFE-

[1, 2, 4, 8]. Similarly, for 2 × 2 systems Fig. 17 compares a

series of SSFE and BSS-EFE configurations. As shown, BSS-

EFE-[1, 15] exhibits similar detection performance to SSFE-

[4, 8] despite enumerating fewer symbols (30 as compared to

32 for SSFE-[4, 8]).
These observations point a a major opportunity enabled by

BSS-EFE - it allows more efficient balancing of computational

effort across the layers of the decoding tree. Specifically, by

enumerating larger numbers of symbols in the first levels of

the tree and fewer at lower levels, BER is potentially increased

even whilst complexity is reduced. This is an approach pro-

moted by FSD [19], [21], but which is not configurable.

The relation to FSD also suggests that it may be worthwhile

to consider the use of alternative ordering strategies when

decoding multiple antennas. SSFE uses a V-BLAST ordering,

decoding antennas in decreasing order of signal power, but

FSD adopts this approach for a subset of the antennas, before

reversing the order to enumerate antennas in increasing order

of received signal power. When this ordering approach is

adopted for 4 × 4 MIMO detection with 16-QAM, the BER

of a subset of the BSS-EFE configurations are as illustrated

in Fig. 18.

The benefit of this approach is clear, with obvious im-

provements in BER performance for all 7 configurations

illustrated in Fig. 18 relative to their counterparts in Fig. 15.

Fig. 19 illustrates the true benefits of this capability. BSS-

EFE-[15, 1, 1, 1] achieves close to the BER performance of

SSFE-[1, 2, 4, 8], with less than 0.2 dB SNR loss but with

complexity reduced substantially be 53.26%. Similarly, BSS-
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TABLE I: Enumeration Arithmetic Complexity

± ×

SSFE
∑Nt

i=1

(

addvi ·
(

∏i−1

j vj

))

∑Nt
i=1

(

mulvi ·
(

∏i−1

j vj

))

BSS-FE

∑Nt
i=1

(

addvi ·
(

∏i−1

j vj

))

+
∑Nt−1

i=1

(

(vi − 1) ·
∏i−1

j=1
vj · (vj > 1) · 2

)

∑Nt
i=1

(

mulvi ·
(

∏i−1

j vj

))

+
∑Nt

i=1

(

∏i−1

j=1
(vj > 1) · 2

)

+ (v1 > 1) · 2 +
∑Nt

i=2

(

(vi − 1) ·
∏i−1

j=1
vj · (vj > 1) · 2

)

SS-EFE

∑Nt
i=2

(

∏i−1

j=1
vj · (vj > 1) · 2

)

+ (v1 > 1) · 2 +
∑Nt−1

i=1

(

(vi − 1) ·
∏i−1

j=1
vj · (vj > 1) · 2

)

∑Nt
i=2

(

∏i−1

j=1
vj · (mi > 1) · 6

)

+ (v1 > 1) · 6

BSS-EFE

∑Nt
i=2

(

∏i−1

j=1
vj · (vj > 1) · 2

)

+ (v1 > 1) · 2 +
∑Nt−1

i=1

(

(vi − 1) ·
∏i−1

j=1
vj · (vj > 1) · 4

)

∑Nt
i=2

(

∏i−1

j=1
vj · (vi > 1) · 8

)

+ (v1 > 1) · 8 +
∑Nt

i=2

(

(vi − 1) ·
∏i−1

j=1
vj · (vj > 1) · 2

)

TABLE II: Complexity Comparisons - 2× 2

v [1,4] [2,4] [1,8] [2,8] [4,8]

SSFE 119 211 225 409 585

SS-EFE 127 235 243 459 651

BSS-FE 144 296 274 578 850

BSS-EFE 152 312 292 612 900

TABLE III: Complexity Comparisons - 4× 4

v [1,1,1,4] [1,1,2,4] [1,2,2,4] [1,1,1,8] [1,1,2,8] [1,2,4,8]

SSFE 354 666 700 1082 1324 4124

SS-EFE 354 666 1082 702 1326 4110

BSS-FE 368 712 1192 730 1418 4538

BSS-EFE 368 704 1168 732 1404 4444

EFE-[15, 1, 1, 1] enables 2 dB SNR and 0.6 dB SNR gain re-

spectively over SSFE-[1, 2, 4, 8] and BSS-EFE-[1, 2, 4, 8] while

maintaining similar levels of complexity reduction.

It is clear that, despite incurring a complexity increase

relative to SSFE when similar configurations are considered,

BSS-EFE offers increased detection performance due to its

ability to avoid enumerating invalid symbols. However, it is

also clear that the ability of BSS-EFE to enable configurations

which SSFE cannot, due to its ability to enumerate only

eight symbols, means that even for moderately dense QAM

constellations, such as 16-QAM, BSS-EFE offers a very ef-

fective combination of higher detection performance and lower

computation cost. Section VIII considers the performance

and cost implications of this reduced complexity for real

implementations.

VIII. BSS-EFE: PERFORMANCE AND COST

A series of SSFE and BSS-EFE detectors have been created

for Xilinx Virtex FPGA using the FPGA Processing Element

(FPE), shown to be very effective for realising sphere decoder

accelerators in [22]. In all cases Virtex-5 or Virtex-6 technol-

ogy is targetted (with the choice dependent on the scale of

the architectures). To provide a realistic comparison scenario,

all architectures are created to minimise cost and provide

real-time throughput for 4 × 4 and 2 × 2 802.11n MIMO.
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Fig. 16: SSFE/BSS-EFE Comparison, 4× 4 16-QAM MIMO

The crucial architectural features of the FPE realisations

(specifically, the number of SIMD units employed) and the

FPGA performance and cost metrics are quoted and compared

with SSFE alternatives in Tables IV - VI.
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TABLE IV: 4× 4 16-QAM BSS-EFE Implementations

Scheme SSFE BSS-EFE

v [1,1,1,4] [1,1,2,4] [1,2,2,4] [1,1,1,8] [1,1,2,8] [1,2,4,8] [1,2,2,12] [1,1,4,12] [1,1,1,15]

SIMDs 6 6 11 8 12 34 39 40 10

DSP48E1 54 75 135 84 150 578 429 495 160

LUT (×103) 9.8 17.3 30.3 26.3 34.1 212.1 99.6 112.6 47.7

Clock (MHz) 351 347 341 352 343 267 283 252 337

T (Mbps) 534.9 488.5 487.1 491.5 483.3 532.5 497.6 484.8 485.3

TABLE V: 2× 2 16-QAM Implementations

Scheme SSFE BSS-EFE

v [1,4] [1,8] [2,4] [2,8] [1,4] [1,8] [2,4] [2,8] [1,15]

SIMDs 3 4 3 4 3 7 6 7 8

DSP48E1 28 39 28 72 24 63 50 70 100

LUT (×103) 3.8 7.1 4.6 11.6 3.8 11.5 7.6 14.0 21.37

Clock (MHz) 357 347 362 350 361 337 353 343 320

T (Mbps) 241.3 241.5 281.4 257.2 245.9 240.7 254.1 244.7 273.4

TABLE VI: 2× 2 4-QAM Implementations

Scheme SSFE BSS-EFE

v [1,2] [1,4] [2,4] [1,2] [1,4] [2,4]

SIMDs 3 3 4 3 3 4

DSP48E1 16 28 54 24 24 56

LUT (×103) 2.3 4.3 7.5 3.6 3.8 7.9

Clock (MHz) 363 363 363 362 361 351

T (Mbps) 123.8 140.6 136.6 122.0 123.0 133.9

The relative cost BSS-EFE compared to SSFE are illustrated

in Fig. 20 and Fig. 21. As expected, when similar configura-

tions are compared, BSS-EFE architectures generally require

greater resources in order to meet the throughput requirements

- up to 29.1% more LUTs (v = [1, 1, 1, 8]) and 16.7% more

DSP48E1 units (v = [1, 1, 1, 4]). However, as highlighted in

Section VII, this increased cost is accompanied by superior

detection performance and reduced BER.

However, Section VII also reveals a secondary benefit of

BSS-EFE - its ability to support configurations which SSFE

cannot and which enable substantially better detection perfor-

mance and reduced cost. For example, BSS-EFE-[1, 2, 2, 12]
was shown in Section VII was shown to reduce complexity by

16% relative to SSFE-[1, 2, 4, 8], whilst offering superior BER

performance; on implementation, this translates to reductions

in LUT and DSP48E1 cost by 47% and 21% respectively.

Similarly, BSS-EFE-[1, 1, 1, 15] requires 25% and 29% of the

respective LUT and DSP48E1 costs of SSFE-[1, 2, 4, 8], but

achieves the same BER performance mentioned. A similar

scenario holds for 2×2 MIMO - for instance, BSS-EFE-[15, 1]
enables reduced BER as compared to SSFE-[4, 8], yet reduces

DSP48E1 cost by 26%.

IX. SUMMARY

IoT MIMO equipment vary dramatically in scale, operating

contexts and energy, cost and performance budgets. When

realising embedded transceivers for such equipment, it is

therefore vital that designers are able to trade performance

and cost, within this operating context.

Symbol detection is a particular operation of concern; the

leading approaches to supporting this design process, such

as SSFE, include a number of operating inefficiencies and

limitations with constrain performance and efficiency for even

moderate MIMO topologies. This paper has introduced BSS-

EFE, which overcomes these limitations. Specifically, BSS-

EFE uses novel approaches to low-complexity spanning of

the modulation constellation and fast enumeration of symbols

which eliminate the redundancies and constraints inherent

in SSFE. On a like-for-like basis this increases cost, but it

increases performance also. But the central purpose of BSS-

EFE is to enable increased performance at lower cost than

SSFE by enabling configurations which SSFE cannot. This

work has shown that these more efficient configurations can

increase detection performance whilst also enabling substantial

reductions in complexity and implementation cost. When

realised on Xilinx FPGA, these reduced aspects of the system

cost by up to 47%, whilst simultaneously reducing error rates.

Despite these promising foundations, notable avenues for

further work remain to be explored. Prominent is the in-

vestigation of hybrid or ’soft’ detection approaches, which

resolve both the detection and decoding problems in a single

component. Soft detection approaches harnessing BSS-EFE

have not yet been proposed. Similarly, the BSS and EFE

heuristics proposed are by no means the only ones possible,

but are likely representative of families of heuristics which

may solve the same problem, each with differing performance

and cost requirements. It is the authors’ intention that this
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work should serve as motivation for these investigations.
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