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In this article, we exhibit a large class of Banach spaces whose open unit balls are bounded symmetric 

homogeneous domains. These Banach spaces, which we call J*-algebras, are linear spaces of operators 

mapping one Hilbert space into another and have a kind of Jordan tripte product structure. In particular, all 

Hilbert spaces and all B*--algebras are J*-algebras. Moreover, all four types of the classical Cartan domains 

and their infinite dimensional analogues are the open unit balls of J*-algebras, and the same holds for any 

finite or infinite product of these domains. Thus we have a setting in which a large number of bounded 

symmetric homogeneous domains may be studied simultaneously. A particular advantage of this setting is 

the interconnection which exists between function-theoretic problems and problems of functional analysis. 

This leads to a simplified discussion of both types of problems. 

We shall see that the open unit balls of J*-algebras are natural generalizations of the open unit disc of 

the complex plane. In fact, we give an explicit algebraic formula for Mobius transformations of these balls 

and show that the origin can be mapped to any desired operator in the ball with one of the Mobius trans- 

formations. An extremal form of the Schwarz lemma then leads immediately to the representation of each 

biholomorphic mapping between the open unit balls of two J*-algebras as a composition of a Mobius trans- 

formation and a linear isometry of one of the J*-algebras onto the other. Such linear isometries reduce to a 

multiplication by unitary operators for mappings in the identity component of the group of all biholomorphic 

mappings of the open unit ball of a C*-algebra with identity. However, in general, linear isometries of one 

J*-algebra onto another can be complicated. Still, using the mentioned Schwarz lemma and Mobius trans- 

formations, we show that all such linear isometries preserve the J*-structure. 

A consequence of these results is that the open unit balls of two J*-a{gebras are holomorphically 

equivalent if and only if the J*-algebras are isometrically isomorphic under a mapping preserving the J * -  

structure. Another consequence is that the open unit ball of a J*-algebra is holomorphically equivalent to a 

product of balls if and only if the J*-algebra is isometrically isomorphic to a product of J*--algebras. 

The last result connects the factorization of domains with the factorization of J*-algebras and has a 

number of interesting applications. For example, using Cartan's classification of bounded symmetric domains 

in C n, we classify all J*-algebras of dimension less than 16. Moreover, we reduce the problem of classifying 

all finite dimensional J*-algebras to the problem of finding some J*-algebras whose open unit balls are 

holomorphically equivalent to the two exceptional Cartan domains in dimensions 16 and 27, respectively, 

when such J*-algebras exist. If there are such J*-atgebras in both cases, then every bounded symmetric 
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domain in C n is holomorphically equivalent to the open unit ball of a J*-algebra. Also, for J*-algebras 

having an isometry, we obtain an algebraic condition which implies that the open unit ball of the J*-algebra 

is not holomorphically equivalent to a product of balls. As expected, none of the infinite dimensional 

analogues of the four types of classical Cartan domains is holomorphically equivalent to a product of balls. 

The unit spheres of many J*-algebras contain small subsets playing the same role as the distinguished 

boundary of polydiscs. In fact, any non-empty subset of the unit sphere of a J* algebra which is stable 

under the application of the Mobius transformations and under multiplication by complex numbers of unit 

modulus is a boundary for the algebra of all bounded complex-valued functions holomorphic in the open 

unit ball of the J*-algebra and continuous in its closure. Three particularly interesting stable subsets of a 

J*-algebra are (when non-empty) the set of extreme points of the closed unit ball, the set of all isometries, 

and the set of all unitary operators. For a finite dimensional J*-algebra, the Shilov boundary for the 

mentioned algebra of functions is the set of extreme points of the closed unit ball of the J*-algebra. We 

give an algebraic characterization of extreme points and determine these explicit ly for the J*-algebras whose 

open unit balls are classical Cartan domains. 

Finally, we show that the open unit balls of a large number of J*-algebras are holomorphically 

equivalent to an explicit ly constructed unbounded affinely homogeneous domain in the J*-algebra which 

plays the role of the upper half-plane. These upper half-planes are operator-theoretic analogues of Siegel 

domains of genus 2. Siegel's generalized upper half-plane and tubes whose base is a future light cone are 

included as special cases. 

This article generalizes and expands Chapter IV of the author's thesis, written under the direction of 

Professor Clifford Earle. 

§ 1. Generalities 

Let X and Y be complex normed linear spaces and let ~ be an open subset of X. (To avoid trivialities, 

all normed linear spaces considered will be assumed to be different from the zero space,) A function 

h: ~"  -* Y is said to be holomorphic (in ~ ) if the Fr~chet derivative of h at x (denoted by Dh(x)) exists 

as a bounded complex-linear map of X into Y for each x c =~/. If ~ f '  is an open subset of Y, a function 

h: ~ -* ~)" is said to be a biholomorphic mapping (of o~/onto ~ ' )  if the inverse function h - l :  ~ '  -+ Z3" 

exists and both h: ~ - +  Y and h -1 : ,~ '  ~ X are holomorphic. The sets ~ and ,~'  are said to be 

holomorphically equivalent if there exists a biholomorphic mapping of ~ / o n t o  ~f ' .  A domain ~ is said 

to be homogeneous if for each pair of points x,y G ~"  there exists a biholomorphic mapping h: ~ f - *  ,~f 

with h(x) = y. If in addition the mappings h can be chosen to be affine mappings, ~ is said to be affinely 

homogeneous. Further, ,~b'is said to be a symmetric domain if for each x E ~ there exists a biholomorphic 

mapping h: ~ ' - *  ~ such that h has x as its only fixed point and h 2 = I, where I is the identity map on ~f. 

Throughout, the open (resp., closed) unit ball of a complex normed linear space X is denoted by X 0 

(resp., X1). Thus 
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XO= { x E X :  Ilxll < 1), X 1 = ( x C X :  Ilxll ~< 1}. 

A point x (E X 1 is said to be an extreme point (resp., a complex extreme point) of X 1 if the only y C X 

satisfying IIx+Xyll ~< 1 for all real (resp., complex) numbers ;k with IXI ~< 1 is y = 0. Clearly any extreme 

point of X 1 is a complex extreme point of X 1. 

In a previous paper [14] (see also [15] and [16] ), the author proved 

Theorem 1. If h: X 0 -* YO is a biholomorphic  mapping with h(O) = O, fllen h is the restriction to X 0 of a 

linear isometry o f  X onto Y. 

Now if X 0 is a homogeneous domain, any biholomorphic mapping of X 0 onto YO may be proceeded by 

a biholomorphic mapping of X 0 onto itself so that the composition takes 0 to 0. Thus we obtain 

Corollary I.  Suppose X 0 is a homogeneous  domain.  Then  the domains  X 0 and YO are holomorphically 

equivalent if and only if the spaces X and Y are isometrically isomorphic.  

For example, suppose that H is a complex Hilbert space and that H 0 is holomorphically equivalent to a 

domain X 0 x Y0" Clearly X 0 x Y0 = (X x Y)0 when X x Y has the norm II(x,y)ll = max {llxll, Ilyll), and we 

shall see later that H 0 is a homogeneous domain. Hence by Corollary 1, the spaces H and X x Y are 

isometrically isomorphic. Then since all unit vectors in H are extreme points of H1, the same must be true of 

X x Y. But for each x @ X with Ilxll = 1, the point (x,0) is a unit vector in X x Y which is not an extreme 

point of (X x Y)I" Thus we conclude that H 0 is not holomorphicalfy equivalent to any domain of the form 

X 0 x YO" Clearly this result contains Theorem 2.1 of [11]. (A more general result is given in Theorem 8 

below.) 

Further, note that if X 0 is a homogeneous domain then it is automatically symmetric. Indeed, given 

x E XO, let g be a biholomorphic mapping of X 0 onto itself with g(x) = O, and define h = g- lo Log, where 

Lx = - x  for x @ X O. It is easy to verify that h has the required properties. 

It would be interesting to know whether or not Corollary 1 holds without the assumption that X 0 is a 

homogeneous domain. 

§2. J*-algebras and Cartan domains 

Let H and K be complex Hilbert spaces and let £(H,K) denote the Banach space of all bounded linear 

operators from H to K with the operator norm. For each operator A (E £(H,K) there is a uniquely determined 

operator A* C £(K,H) such that (Ax,y) = (x,A*y) for all x E H and y c K. It is easily verified that * satisfies 

the usual laws of an adjoint operation [25, p.105]. 

Definition 1. A J*-algebra is a closed complex-linear subspace ~)~ of £(H,K) such that AA*A  @ e~_ when- 

ever A E Q~., 
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Throughout, unless otherwise specified, ~ , ~ ,  and ~" denote arbitrary J*-algebras. 

Many familiar spaces are J*-algebras, For example, any Hilbert space H may be thought of as a J * -  

algebra since H can be identified with the space £(C,H), where C denotes the complex plane. Also any C * -  

algebra is obviously a J*-algebra and hence by the Gelfand-Naimark theorem [31, p,244], any B*-algebra 

may be thought of as a J*-algebra. 

respectively, then 

is easily seen to be a J*-algebra. 

Further, if C and D are self-adjoint operators in £(H) and £(K), 

= { A E £ ( H , K ) :  AC = DA} 

Define a set q~[ to be a Cartan factor of 

type I  if ~ = £(H,K), 

t ype l l  if ~[ = { A G £ ( H ) :  A t = A ) ,  

t y p e l I l  if ~ = { A E £ ( H ) : A t = - A ) ,  

where A t = QA*O and Q is a conjugate-linear map on H with IIQII < 1 and Q2 = I. (Such a map always exists 

and is called a conjugation.) Polarization shows that Q reverses inner products and it follows that (A*) t = 

(At) * for all A @ £(H). Consequently, all the Cartan factors of type [-[II are J*-algebras. Note that the 

infinite dimensional domains considered in [11] and [28] are the open unit balls of Cartan factors of types 

I and II. Moreover, each of the Cartan domains [10, §24] of types I-III is the open unit ball of a finite 

dimensional Cartan factor of the corresponding type. 

A Cartan factor of type IV is a closed subspace q~ of £(H) such that the adjoint of each operator in 

~[ is in ~]: and such that the square of each operator in ~ is a scalar multiple of the identity operator 

I on H. It is clear from the identities 

AB + BA = (A+B)2 -A2 -B  2 

(1) 
AB*A = ( A B * + B * A ) A - - B * A  2 

that ~ is a J*-algebra. Note that ~[. is also a Hilbert space in an equivalent norm since the equation 

AB* + B*A = 2(A,B)i 

defines an inner product on ~ and clearly ~/~llAII 2 % (A,A) ~< tlAII 2 for all A (E ~ . Conversely, any 

Hilbert space H can be obtained as the Hilbert space associated with a Cartan factor of type IV. In fact, if 

x -~ ~ is a conjugation on H, there exists a Hilbert space K and a linear map x -~ A x of H into £(K) such that 

(2) A~ = A ~  and A2x = (x ,~) l ;  

and consequently, (Ax,Ay) = (x,y) and Ilxlt ~ IIAxll ~<X/~- llxll. Moreover, identifying H with its image o).:[ 

under the map x -+ A x, we have 
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~ ' 0  = { x ~E H: Itxll 2 +V41xl l4-1(x,~) l  2 < 1} . 

Thus each of the Cartan domains of type IV  is the open unit  ball of a f inite dimensional Cartan factor of  

type IV. (See [19, p.48] .) Verif ication of the unproved assertions above is given at the end of this section. 

If ¢~[ and ~ are J*-algebras, the product space ~ x ~ can be made into a J*-algebra in a 

natural way. Indeed, if ~ and ~ are subspaces of £(H,K) and £(H',K') ,  respectively, define 

¢'~ x , ~  = {(A,B): A@ °z[ ,  B E  ~ }, 

where (A,B) is the operator from the Hilbert space H x H' t o t h e  Hilbert space K x K' given by (A,B)(x,y) = 

(Ax, By). Clearly ~ x J~ is a J*-algebra and it is easy to show that 

(4) II(A,B)II = max{ l lA I l ,  l lBII). 

There is no dif f icul ty in extending this definit ion and equality (4) to the case of f inite or infinite products. 

Thus in particular, any product of open unit balls of J*-algebras is the open unit ball of the corresponding 

product of the J*-algebras, which is itself a J*-algebra. 

Clearly J*-algebras are not algebras in the ordinary sense; however, as the fol lowing proposition shows, 

J*--algebras do contain certain symmetrically formed products of  their elements. 

Proposition 1. Let A, B, C C 9J~ and let p be any polynomial .  Then  

(a) AB*C + CB*A E ~ , (b) A(B*A) n = (AB*)nA E 9J. , 

(c) p(AB*)C + Cp(B*A) E 93C, (d) p(AB*)Cp(B*A) C 9~ . 

Proof. Part (a) fol lows from the identities 
3 

4 A B * A =  Z; ( -1 )k (8+ ikA) (B+ ikA)* (B+ ikA)  

k=0 

AB*C + CB*A = (A+C)B*(A+C)- -AB*A-CB*C,  

and part (b) fol lows from the identi ty 

A(B*A)  n = A [B(A*B)  n - l ]  *A, 

part (a) and induction. To prove part (c), it suffices to observe that the operator 

(AB*)nc + C(B*A) n = A [ ( B A * ) n - I B ]  *C + C[B(A*B) n - l ]  *A 

is an element of ¢~ by parts (a) and (b). Finally, part (d) follows from part (c) and the identity 
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p ( A B * ) C p ( B * A )  

: p ( A B * ) [ p ( A B * ) C + C p ( B * A ) ]  

+ [ p (AB* )C  + Cp(B*A) ]  p (B*A)  

- [ p2 (AB* )C  + Cp2 (B*A ) ] .  

A map L: q~ -~ ~ is said to  be a J*-isomorphism i f  L is a bounded l inear bi ject ion o f  ~t~ on to  

satisfying 

(5) L ( A A * A )  = L ( A ) L ( A ) * L ( A )  

for  atl A E cZ~ . Note that  the identit ies given in the p roo f  o f  Proposi t ion 1 show that  any l inear map 

L: ~ -* ~ satisfying (5) commutes wi th each o f  the formulas (a ) - (d ) .  

Every J * -a lgeb ra  is isometr ical ly J * - i s o m o r p h i c  to a J * -a lgeb ra  o f  operators on a Hi lber t  space. In 

fact, i f  H and K are Hi lbert  spaces, the map L: £(H,K)  -~ £(H x K) def ined by L (A) (x ,y )  = (0,Ax) is a l inear 

isometry satisfying (5). 

Certain kinds of  operators in ~ and relations between them can be characterized ent i rely in terms o f  

the J * - s t r uc tu re  and thus are preserved under J * - i somorph isms.  For example, an operator  B is a partial 

isometry [25, p.111] i f  and onty i f  BB*B = B. Another  example, which wilt be useful later, is the equivalence 

o f  the condi t ions 

(6) A ' B = 0  and BA*  =0 ,  

(6') B A * A  + A A * B  = 0. 

To prove this, all we must show is that (6') ~ (6). Suppose (6') holds. Put 

P = ( B A * ) ( B A * ) * ,  Q = A A * ,  R = BB*, 

and note that  each o f  these operators is positive. Mul t ip ly ing equat ion (6') on the right by B*,  we have 

P + QR = 0; and taking adjoints we obtain QR = RQ, so both P and QR are positive. Therefore P = 0, and 

consequently,  BA*  = 0. Similar ly, mul t ip ly ing equat ion (6') on the left  by B*, we obtain A *B  = 0. This 

completes the proof.  Ano ther  example of  interest is the equivalence o f  the condi t ions 

(7) CB*A  = A B * C  = C for  all C •  ~ . ,  

(7") AB*C  + CB*A = 2C and A B * C B * A  = C fo r  atl C C ~ ,  

which is easily proved. If  the under ly ing Hi lbert  spacesHand K for  ~ are chosen so that  they are no larger 
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than necessary, condition (7) asserts that B ~ is the inverse of A. 

Note that the operator norm satisfies 

(8) IIAA*AII = IIAII 3 

for all A C £(H,K), since 

ItAA*AII 2 = I I (AA*A)* (AA*A) I I  = II(A*A)311 = IIA*AII 3 = IIAII 6. 

Hence any bounded linear map L: ~ ~ ~ which satisfies (8) also satisfies tILtl ~< 1, since 

IIL(A)II 3= I IL (A)L(A)*L(A) I I= I IL (AA*A) I I~< I IL I I  IIAA*AII =IILII IIAll 3 

for all A E "9/, Consequently, by the closed graph theorem, any J*- isomorphism is an isometry (cf. [20, 

p.330] ), A converse to this is given in Theorem 4 below. 

The rest of this section will be devoted to a further discussion of the Cartan factors of type IV, which 

are of special interest. 

A Cartan factor of type IV can be defined, alternately, as the closed Hnear space spanned by a spin 

system [38], i.e., a family (Ucz} of setf-adjoint unitary operators on a Hilbert space such that 

U~ U/~ + U/3 Ue = 0 when c~ ~ /3. For, it is easy to see that any such space is a Cartan factor of type IV. 

Conversely, as we have seen, any Cartan factor of type IV is a Hilbert space with conjugation and hence has 

an orthonormal basis f.Ue} of self-conjugate elements. Thus {Ucx} is a spin system and its closed 

span is the Cartan factor. Spin systems with any given finite number of elements can be constructed 

explicit ly by taking certain Kronecker products of the Pauli spin matrices. Indeed, the set of all 2 n x 2 n 

matrices 

Px~xQx Ix - - - x ]~__ , . __ j ,  k = O  . . . . .  n, 

k n-k-1 

whereP= (0_1)1 0 and Q=(10 1) or (0 i- O) , i  is a spin system having 2n+l elements. 

Let H be a Hilbert space with conjugation x ~ E, and let x --* A x be a linear map on H satisfying (2). 

Given x,y E H, let ;k 1 and X 2 be the roots of the polynomial p0,) = X2-2(x,Y)X + (x,x)(y,y).  It will be 

useful to know that 

(9) e(AyA x) = (X 1 , X 2} , 

where o denotes the spectrum. To see this, put A = AyA x and B = AxAy,  and note that A8 = BA and 

(XI-A)(M--8)  = p(X)L Hence a(A) c {~Xt, X2}.  Also if X 1 ~ • (A) , i t  follows that 8 = XlI,  SO 
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A = 2 ( x , ~ ) I - B  = ),21 . But then X 1 # X 2 and ~,2Ax = A x A  = BA x = X1Ax,  a contradict ion. Thus (9) 

holds. In particular, since I IAxl l2 is the largest number in O(AxAx) ,  we have 

I IAxl l2 = l lxl l  2 + v / l l x l l4 -1 (x ,E) l  2 , 

which justifies (3). Also, i t  fol lows from the above proof that 

1 + A x A  { 
(10) ( I+  A,~ A x ) - I  - 1 + 2(x,y) + (x,~)(~,y) 

Next, fo l lowing ChevalIey [5, p .38] ,  we construct a linear map x -+ A x on H satisfying (2). (Such a map 

is a complex analogue of what Segal [34] has called a Cli f ford distr ibut ion over H, which extends a 

construction of Cartan [4, §93] .) Let E be the exter ior algebra of H and note that E is an inner product 

space [13, p . lO6] .  Given x E H, let &x be the antiderivation [13, p.112] of E satisfying 5xy  = (x ,~) l  for 

y E H a n d d e f i n e £ x ( e ) = x / ~  e for a l l e@E.  Then £x 2 = 0 ,  £ x S x + S x £  x = ( x , E ) l , a n d £ x  = d E '  Define 

Ax  = £x + &x" Thus A x is a linear map on E and the map x ~ A x is linear. Moreover, the above equalities 

imply  that (2) holds, and A x is bounded on E since 

IIAxel l2 < ( (AxA x + AxAx)e,e)  = 2 I lxl l  2 Ilell 2 

for all e E E. Consequently, each operator A x extends uniquely to the complet ion K of E, and thus the map 

x -* A x is as required. 

Alternately, suppose we already have a spin system { Uc~) wi th the same cardinal i ty as the dimension of 

H. Then there is a bi jection between an orthonormal basis for H of self-conjugate elements and {Uc~}, and it 

fol lows from the last inequali ty that this bi jection extends to a linear map x ~ A x on H with the required 

properties. 

§3. Mobius transformations and biholomorphic mappings 

Theorem 2. For each B E 9.I0, the M~Jbius transformation 

TB(A ) = ( I -BB*)-½(A+B)(I+B*A)-I(I_B*B)½ 

is a biholomorphic mapping of  ¢2[ 0 onto itself with TB(0) = B. Moreover, 

TB 1 = T - B '  TB(A)* = TB*(A*), IITB(A)II <~ TIIB It (WAll), 

and 

DTB(A)C = ( I - B B * ) ½ ( I + A B * ) - I c ( I + B * A ) - I ( I _ B * B )  ½ 

f o r A E  9.I 0 a n d C E  ~I .  
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Here positive and negative square roots are defined by the usual power series expansions and I at each 

occurrence denotes the identity mapping on the appropriate underlying Hilbert space. 

Corollary 2. The open unit ball of any J*-algebra is a bounded symmetric homogeneous domain. 

Example 1. Let C(S) be the space of all continuous complex-valued functions vanishing at infinity on a 

locally compact Hausdorff space S. Then with the identification mentioned in §2, the space C(S) is a J * -  

algebra and we have 

Ty(x) = X+Y 
l+~x 

for x,y E C(S)o. Note that if S is a discrete set with exactly n elements, then C(S) 0 is the open unit polydisc 

in C n. (One may also view the open unit polydisc in C n as the open unit ball of the J*-algebra of all nxn 

diagonal matrices with complex entries.) 

Example 2. Let H be a Hilbert space and let y @ H O. Then identifying H with £(C,H), we have y*w = (w,y) 

for w E H, Let Ey be the linear projection of H onto the subspace spanned by y. Then by the power series 

expansion, 

( ] - y y  *)-½ = ( [ - I ly l l2Ey) -½ = I + [(1-11y112)-½-1 ] Ey , 

so 

Ty(x) = y+EyX +~/1-11ylIZ ( [ -Ey)X 

1 + (x,y) 

for x (Z H O. When H is finite dimensional, H 0 is sometimes referred to as a hyperball. 

Example 3. Let H be a Hilbert space with conjugation x ~ E. Then H can be identified (after renorming) 

with a Cartan factor 9~ of type IV and ~ 0  is given by (3). Let y E ~ 0 and let Ey be the projection of 

H onto the space spanned by y and ~'. (Explicit ly, 

(yy.  ~ . ) 2  

E y -  ilyl14 i(y,~)l 2 

if y and ~ are linearly independent.) Then by (1), (10) and a computation, we have 

[ l+(x ,y) ]  y + [(x,E)+(x,~)] ~ + L y x  

Ty(x) - l+2(x,y) + (x,~)(~,y) 

for x C ~)~0' where 

Ly = (1-t ly l l2)Ey + j 1 - 2  Ilyll2+l(y,~)l 2 ( l -Ey) .  

When H is finite dimensional, ~ ' 0  is sometimes referred to as a Lie bail. 
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As in the case of one complex variable, one can use the MSbius transformations together with the 

Schwarz lemma and Cauchy estimates to prove function-theoretic inequalities. In particular, Theorems 7 and 

11 and Corollaries 5 and 6 of [18] hold for all J*-algebras. Further, with the aid of Theorems 1 and 2, one 

can show that 

d(A,B) = t anh - l ( l l T_B(A) l l )  

is a complete metric on 2 0 and that the Schwarz-Pick inequality holds for d. See [9] for a generalization. 

The formula for the M~bius transformations of Theorem 2 is apparently due to  Potapov [29; Ch.1, § 1 ] ,  

although he considered these transformations in a much more restrictive setting. The formulas deduced in 

Examples 2 and 3 appear in a slightly different form in [27] and [24, (16)],  respectively. For expositions of 

the classical theory of biholomorphic mappings and homogeneous domains in C n, see [1] ,  [10] ,  and [26] .  

Proof of Theorem 2. Clearly (1-BB*)½B = B( I -B*B)  ½ by comparison of the power series expansions. Hence 

since 

(A+B)(][+B*A) -1  = B + ( [ -BB* )A( I+B*A)  -1  , 

we have 

(11) TB(A) = 8 + ( I - B B * ) V 2 A ( I + B * A ) - t ( I - B * 8 )  ½ 

for A G ~ . Now the power series expansions for A(I+B*A) - 1 ,  ( I -BB* )  ½ and ( I - B ' B )  1½ converge in the 
0 

operator norm. Hence A( |+B*A) - 1  • ~I~ by part (b) of Proposition 1, and consequently TB( ").].0 ) _C 

by part (d) of  the same proposition, Differentiation of (11) shows that T B has the derivative asserted, so T B 

is holomorphic in 9,~.0. Also it is clear from (11) that TB(0) = 8 and that TB(A)* = TB. (A* ) .  

We wil l  deduce the inequality IITB(A)II < TIIBII(IIAII) from the formula 

(12) [ - T B ( A ) * T B ( A )  = ( | -B'B)1/2( ]  +A 'B)  -1  ( ] - A * A ) ( | + B * A ) - I ( ] - B * B )  1/2, 

which fol lows as in [29; Ch.1, § 1]. Let H be as in Definit ion 1 and let x E H. Taking 

y = ( [ + B * A ) - 1 ( ] - B * B ) ½ x  and applying (12), we have that 

- ( [ I -TB(A ) *TB(A) ]  x,x) = ( ( ] [ -A*A)y,y)  >~ (1- t lAI I2) l ly l l  2 

~> (1- t lAI I2)( I+t lBI I  IIAII)-2(1-118112)llxll 2 

= [1-TIIBII(IIAII) 2] Ilxll 2. 

The desired inequality follows. 

Thus T8( ~ 0 ) _C ~[ 0 and T B is hotomorphic in ~ 0 "  Therefore to finish the proof of Proposition 1, 

it suffices to show that the function h = TBOT B is the identity map | on ~[ O' By what we have already 
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shown, h is a holomorphic mapping of 9J. 0 into itself and Dh(0) = DTB(-B)oDT_B(0)  = L Hence an 

extension of Cartan's uniqueness theorem [14, Th.1] applies to show that h = [, as required. 

Theorems 1 and 2 al low us to give a characterization of all biholomorphic mappings between the open 

unit balls of J*-algebras. 

Theorem 3. Every biholomorphic mapping h: 9.~ 0 -* C O  is of the form 

h = Th(o)oL = LOT_h_l(o ) , 

where L: ¢21 -* ~ is a surjective linear isometry. 

Proof. By Theorem 2, the composit ion Th(1)oh is a biholomorphic mapping of 9,I 0 onto  C 0 which takes 

zero to zero. Hence by Theorem 1, there is a surjective linear isometry L: ~]. ~ ~ with Th(1)oh = L, i.e., 

h=Th(o)oL .  Since 

L(h -1  (0)) = Th(1 ) (0) = -h (0 ) ,  

by (14) below 

as asserted. 

L ° T - h - 1  (0) = Th(0)°L = h, 

In particular, Theorem 3 implies that any biholomorphic mapping h: ~[ 0 -* C 0  is uniquely 

determined by the first two terms in its Taylor series expansion about .0. To see this, observe that 

L = D(T_h(0)oh) (0 )=DT h(0)(h(0))oDh(0). 

By Theorem 3, to obtain an explicit formula for all biholomorphic mappings between the open unit 

balls of two J*-algebras, it suffices to obtain an explicit  formula for the surjective linear isometries between 

the J*-algebras. This has been done in certain cases. (See, for example, [8, p.442],  [12, §3 ] ,  [24] ,  and 

[28] .) In general, surjective linear isometries between J*-algebras can be complicated, Even in the case of 

the finite dimensional Cartan factors, there are surjective linear isometries which are not included in 

expressions given by Hua [19, {}4.3] and Siegel [36, §48] for the biholomorphic mappings of the open unit 

ball. ( For example, the map A -+ A t is a surjeetive isometry of the Cartan factors of  type I with H = K. A 

more subtle example is given by Morita [23] .) However, we do have 

Theorem 4. If L: 9.I -+ ~ is a surjective linear isometry, then 
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L(AB*A) = L(A)L(B)*L(A) 

for all A,B E ~"JJ.. 

Corollary 3. The domains  9.~_ 0 and C 0 are holomorphically equivalent if and only if the J* -a lgebras  9.~ 

and ~ are isometrically J * - i s o m o r p h i c .  

Corollary 4. (Kadison [20] ). Let 2.[ and ~ be C*-a lgebras  each having an identi ty,  and let L: ¢J~ --> 1~ 

be a surjective linear isometry.  Then 

L(A) = Up(A) 

for all A E 9.~, where U is a unitary operator in ~ and p: 2][ -~ ~ is a linear isometry satisfying 

(13) p ( I ) =  I ,  p(A2) = p(A)2,  and p(A*)  = p(A)* 

for a l l A E  9][. 

Corollary 5. Let H be a Hilbert space with conjugation x ~ ~ and let L be an invertible linear operator on H 

which maps  the domain (3) onto itself. Then  L = XO, where IXI = I and O is a uni tary operator on H 

satisfying O ~  = Ox for all x E H, 

Note that Theorem 4, the identity (11 ) and our remarks after Proposition 1 combine to show that any 

surjective linear isometry L: ~.  -* ~ satisfies 

(14) LoT B = TL(B)OL 

f o r B E  2 0. 

Proof of Theorem 4. Let B E1 ~1:0 and set 

h = T_L(B)O LoT B 

By hypothesis and the properties of the Mobius transformations, we have that h: ~ -+ J~ is a 
0 0 

biholomorphic mapping with h(0) = 0. Therefore h is linear by Theorem 1, so Dh(0) = Dh(-B) .  Applying 

the chain rule and the formula for the derivative of the Mobius transformations given in Theorem 2, we have 

[ I - -L (B)L(B)* ]  -~  L((I -BB* )½A( ]  - B ' B )  ~£) [I - -L(B)* L(B)] -½ 

= [ I - L ( B ) L ( B ) * ]  1/2 L ( ( I - B B * ) - t A A ( I - B * B )  -½) [ [ - L ( B ) * L ( B ) ]  ½ 
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for any A C '2~ . Hence by part (d) of Proposition 1, 

L((] - B B * ) A ( ]  --B'B)) = [I --L(B)L(B)*]  L(A) [ t - L ( B ) *  L(B)] 

for any A @ c~[. Replacing B in the last equation by tB (where 0 < t < 1) and then equating the 

coefficients of t 2 on both sides, we have 

L(BB*A+AB*B) = L(B)L(B)*L(A) + L(A)L(B)*L(B), 

and clearly this holds for all A,B E ~1~. Theorem 4 now follows from the above with A = B and the first 

identity given in the proof of Proposition 1. 

Proof of Corollaries 3-5. Corollary 3 is an immediate consequence of Theorem 4 and Corollaries 1 and 2. To 

prove Corollary 4, let U = L([) and define p(A) = U*L(A).  By Theorem 4 and the equivalence of (7) and 

(7'), we have that U is a unitary operator in ~ .  Hence L(A) = Up(A) and p(] ) = [. Applying Theorem 4 to 

the productsA[*A and IA*][ ,  we obtain p(A 2) = p(A) 2 and p(A*) =p(A)* ,  respectively. 

Finally, to prove Corollary 5, note that as shown in §2, there is a linear bijection x -~ A x satisfying (2) 

which maps H onto a Cartan factor ~[ of type IV. Hence L induces a linear map L: ~[ -* ~ [ ,  and by 

hypothesis L is a surjective isometry. Let u E H with Ilull = 1 and 5 = u. Then A u is a unitary operator in 

")~ , so as above, L (A  u) is also a unitary operator in ~2~.. It follows that L'(A u) = XA v, where IXI = 1 and 

v E H w i t h l l v l l =  1 and~ =v.  Hence Lu=Xv. By dividing L by X, we may suppose that Lu=v.  

Now since AxA~A x = 2(x ,y)Ax-(X,~)A ~ by (1), Theorem 4 applied to L shows that 

(15) 2[ (x ,y ) - (Lx ,  Ly)] Lx = ( x , E ) L ~ -  (Lx ,Lx )Ly  

for all x,y C H. Taking y = u in (15) and using the fact that L is one-to-one, we have 

m 

2[ (x ,u) - (Lx ,  Lu)] x = [ (x ,%)- (Lx,Lx) ]  u, 

and consequently (Lx, Lx ) = (x,~) for all x E H. Given y E H, this implies that (Ly,Lu) = (y,u), and hence 

taking x = u in (15), we obtain 

L~ - Ly = 2[(u,y) - (Lu, Ly)] Lu = 0. 

Thus L = O. 

To exclude complicated surjective linear isometries, following R. S. Phillips [28],  we now restrict our 

attention to the identity component of the group G( ~'[0 ) of all biholomorphic mappings of @ 0 onto itself, 

where G( ~[0 ) has the topology induced by the metric 

d{hl,h 2) = sup{llh I (A)-h2(A)I I :  A E °z~0}. 



26 

Theorem 5. Let ~ be a C* algebra with identity. Then each function h in the identity component  of 

G(9.I0) is o f  the form 

(16) h(A) = Th(0)(UAV ) = UT h_I(0)(A)V, 

where U and V are unitary operators in the weak operator closure of ~l.. 

Corollary 6, Let ¢2~ be a W*-algebra.  Then the identity component  of  G( 9.I 0 ) is the set of  all functions 

of  the form (16) where U and V are unitary operators in "2I, or equivalently, the set of  all functions of the 

form 

(17) Z -* ( A Z + B ) ( C Z + D )  1, 

where A, B, C, D are operators in ~ .  satisfying 

/ A  B \ * / I  0 A B l 0 A B I 0 A 

D,,0" i)(c D)=(0 I)=(C D)(0 ;)* / 

Note that Corollary 6 contains the general symptectic case of Theorem 1 of [28] .  

Proof of Theorem 5, Let G e be the identity component of G(°Z~0), and Iet £e be the identity component of 

the group £ of all surjective linear isometries p: '~  ~ °2I satisfying (13). We first show that if h E G e then 

(18) h(A) = Th(0)(Up(A)) , A @ "~'0' 

where U is a unitary operator in 9.1 and p E £ e .  Given h ~ G  e,define L h = T  h(o)oh. By Theorem 3, L h is  

a surjective linear isometry of ~.  onto itself, and it can be verified that the map h ~ L h is continuous on 

G( ~ 0 ). Define ~(h) = Lh(I)* L h, Then by Corollary 4, ~ is a continuous mapping of G( "210 ) into £ and 

~(I ) = I. Hence ¢ maps G e into £e, and (18) follows. 

Now £e is generated by any of its neighborhoods of I. Hence Theorem 5 follows from (18) and the 

following: 

Lemma 1. If p C £ and IIl-pll ,< 2/3, then there is a unitary operator U in the weak operator closure of  "~ 

such that p(A) = UAU* for all A C ~ [ .  

Proof. By a result of Kadison and Ringrose [21 ] ,  all we need to show is that p is product preserving. By [20] ,  

p is the sum of a *- isomorphism and a *-ant i- isomorphism, say #. In particular, ~ is a product reversing 

mapping of ~ onto ~ ' ,  where ~ and ~ '  are C*-subalgebras of ~ ,  and ~ = p/~.~. We will show that 
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~ '  is commutative. It then follows that ~p is product preserving, and hence so is p. 

Now for anyA,  BE  ~ ,  

II p(A)p (B)-p(B )p(A)ll 

= Itp(BA)--BA+[B--p(B)] A + p(B) [A-p(A) ]  ~1 

311I-pll IIp(A)ll I Ip(B)l l ;  

consequently, 

IICD-DCll < 2 IICII IIDIt 

for all nonzero C,D E ~ '. If ~ i '  is not commutative, then as remarked in [6] there is an operator C E J~ ' 

with C 2 = 0 and C #0. Let D = CC*-C*C.  Clearly D ~0 and IIDII ~< IlCll 2. Moreover, IICD-DCll = 

2 IlCC*CII = 2 IICII 3 by (8), Hence 

IICD--DCll = 2 IICII llDll, 

a contradiction. Thus ~ '  is commutative, as we wished to show, 

Proof of Corollary 6. An easy argument given in [28, p.17] shows that the set of all transformations(17) is a 

connected subgroup S of G(9.].0), and it is easy to see that S contains all transformations of the form (16). 

Hence S is precisely the set of transformations (16) and S is the identity component of G( ~'2~ 0). 

It seems reasonable to conjecture that Theorem 5 holds for any J*-algebra ~ where U and V are 

unitary operators on the underlying Hilbert spaces. In particular, it follows from Theorem 3, [3, Theorem E] 

and [24] that this holds for all finite dimensional J*-algebras which are products of Cartan factors of types 

l-IV. (Note that by [4, §97] any rotation of C n can be represented as a transformation A ~ UAV on the n -  

dimensional Caftan factor of type IV.) 

§4. Factorization of algebras and domains 

Call a domain ,~'a product of balls if there exist complex normed linear spaces X and Y such that 

d~" = X 0 x YO' The following theorem shows that the ball ")'~0 is holomorphically equivalent to a product 

of balls if and only if ~T. is isometrically J*- isomorphic to a product of J*-algebras. 

Theorem 6. Let X and Y be complex normed linear spaces and suppose N 0 is holomorphically equivalent 

to X 0 x Y0" Then there exist J*-subalgebras ~ and ~ of e~ which are isometrically isomorphic to X 

and Y, respectively, such that ~ is isometrically J*-isomorphic to the J*-algebra ~l~ x ~ . 

Corollary 7. Let ~ be a J*-algebra containing an isometry. Suppose that if E is a projection of the form 

E = B*B where BE 9~ and if 
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(19) EA*A = A*AE 

for all A C 2 ,  then E = 0 or AE = A for all A C ~'[~. Then "2~ 0 is not holomorphically equivalent to a 

product of balls. 

It is easy to show that the converse of Corollary 7 holds when q~. is such that AB*C E ~ whenever 

A,B,C C ~3.~. 

Proof of Theorem 6. Let the space X x Y have the norm II(x,y)ll = max { l lx l l ,  IlylI}. Then by hypothesis, 

"~ 0 is holomorphically equivalent to (X x Y)0 so "~ is isometrically isomorphic to X x Y by Corollaries 1 

and 2. It follows that there exist complementary projections E and F on ~ such that the spaces ~ = Rge E 

and ~" = Rge F are isometrically isomorphic to X and Y, respectively, and 

(20) IIAlt = max(l lE(A)l l ,  IIF(A)II} 

for a l l A E  ~ .  Given lXl = l ,  define L X = E+ X F and note that L X is a linear isometry of "2~ onto itself, 

Hence by Theorem 4, 

(21) Lx(AB* A) = Lx(A) LX( B)* Lx(A) 

for all A,B E &'[. Varying X in (21), we obtain E(AB*A) = E(A)E(B)*E(A) for aH A,B E ~ and similarly 

F(AB*A) = F(A)F(B)*F(A) for all A,B E (~ , Hence ~ and ~ are J*-subalgebras of ~ . .  Defining 

L(A) = (E(A),F(A)), we see by (4) and (20) that L is a linear isometry of ~ onto the J*-algebra ,~ x @" . 

Therefore, ~. and ~ x (~ are isometrically J*- isomorphic by Theorem 4. 

Proof of Corollary 7. Suppose 9.~. 0 is holomorphically equivalent to a product of balls. Then by Theorem 6, 

there exist J*-algebras ~ and (~ such that ~ is isometrically J*- isomorphic to ~ x (~ .  Now given any 

two operators V and A in ~} x ~ ' ,  there exist operators V 1 , V2, A 1 , and A 2 in ~ x ~" such that 

V = V I + V  2,  A = A I + A  2,  

VIV ~=AIv ~=A2V ~ =AIA {=0, V~V I =V~A I = V~A 2 = A{A I = 0; 

moreover, there are operators A for which neither A 1 nor A 2 is 0. Hence by the equivalence of (6) and (6'), 

the same is true for any two operators V and A in ")~ . Let V be an isometry, Then 

I = V * V  : V ~ V  1 + V ~ V  2 , 

and multiplying both sides of this equation by E = V~V 1, we see that E is a projection. Moreover, 
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A I ( I - E )  = A2E = 0, so 

(22) A 1 = AE, A 2 = A( I -E) .  

Since A } A  1 = 0, we have A*AE = EA*AE, and taking adjoints we obtain (19), Hence by hypothesis, one of 

the operators (22) is always 0, the desired contradiction. 

Clearly one can obtain algebraic identities satisfied by any hermitian projection [2] on a J*-algebra 

by equating the coefficients of the powers of X in (21) where Ikl 2 is replaced by 1. These identities imply in 

particular that the identity map is the only hermitian projection E on a B*-atgebra with identity 1 such that 

E(1) = 1. 

The rest of this section is devoted to applications of Theorem 6 and its corollary, 

Call a J*-algebra 9.~ a finite dimensional Cartan factor if °2"0 is holomorphically equivalent to one of 

the Caftan domains of types I-VI. By Corollary 3, we have already determined up to isometric J * -  

isomorphism all finite dimensional Cartan factors except possibly for a 16 dimensional one and a 27 

dimensional one. (See §2.) Clearly no finite dimensional Cartan factor (except for the 2-dimensional one of 

type IV) is isometrically J*--isomorphic to a product of J*-algebras, otherwise the associated Cartan domain 

would be reducible. 

Theorem 7. Every finite dimensional J*-algebra is isometrically J*-isomorphic to a product of finite 

dimensional Cartan factors. In particular, every J* algebra of dimension less than 16 is isometrically J * -  

isomorphic to a product of finite dimensional Cartan factors of types l - IV.  

Proof of Theorem 7. Let ~ be an n-dimensional J*-algebra and identify ~. with C n. By Corollary 2 and 

Cartan's classification [3] of bounded symmetric domains, there exist domains d3" 2 . . . . .  d3" k in the spaces 

n 2 n k = 
X 2 = C . . . . .  X k = C , respectively, such that 9.I 0 *£~2 x. • .x "~'k' and each d~f. is holomorphically 

I 

equivalent to a Cartan domain of type I -V I .  Since 9~[ 0 is a balanced convex open subset of C n, each d~'j 

is a balanced convex open subset of Xj so ,d)'. is the open unit ball of Xj with respect to some norm. Then 
J 

is the space X 2 x . ,  .x X k with the max norm on coordinates since the open unit balls of these spaces 

agree. By successive application of Theorem 6, it follows that each Xj is isometrically isomorphic to a J * -  

algebra 9~. and consequently each 9~. is a finite dimensional Cartan factor. Hence 9J. is isometrically 
l I 

isomorphic to the J*-algebra 9~ 2 x. - -x ~ k" and this isomorphism is a J*- isomorphism by Theorem 4. 

Theorem 8. The open unit balls of the following J*-algebras are not holomorphically equivalent to a 

product of balls: all Cartan factors of type I - IV  except the 2-dimensional one of type IV; all W*-algebras 

which are factors in the usual sense; all spaces C(S), where S is compact and connected. 

For a description of a large number of W*-algebras which are factors, see [33, §4]. 
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Proof of Theorem 8. It is easy to see from Corollary 7 that Theorem 8 holds for W*-algebras which are 

factors and for spaces C(S), where S is compact and connected. 

Suppose ~. is a Cartan factor of type 1, i.e., ~T~ = £(H,K). There exist conjugations Q1 on H and Q2 

on K, and clearly the map A -* Q1A*Q2 is a linear isometry of £(H,K) onto £(K,H). Hence by the compara- 

bi l i ty of cardinal numbers, it suffices to consider only the case where dim H ~< dim K. Note that in this case 

£(H,K) contains an isometry. Suppose E is a projection in £(H) satisfying (19). Given x E H and y E K with 

llyll = 1, take A = yx* .  Then A * A  = x,x*, so, 

0 = E A * A ( I - E ) x  = t l ( ] -E)xl l2Ex, 

Consequently, Ex = 0 or Ex = x for each x E H, and it is easy to show that this implies that E = 0 or E = ][. 

Suppose ~ is a Cartan factor of type I[. Clearly ! C ~ .  Suppose E is a projection in £(H) satisfying 

(19), and let 

Hr= { x E H :  7 = x } ,  

where O(x) = ~ is the given conjugation on H. Then given x E Hr, the operator A = xx*  satisfies A t = A so 

A E ~).~. The argument given for Cartan factors of type I now applies to show that E = 0 on H r or E = | on 

H r . B u t H = H r + i H  r , s o E = 0 o r E  =] .  

Suppose ~ is a Cartan factor of type I lL Since Theorem 8 is classical [3] when H is finite dimensional, 

we may suppose that H is infinite dimensional. Then there is an orthonormal basis for H in H r and this basis 

can be partitioned into two equivalent sets {e~} and' {e~}. Let U be the operator on H defined by Ue(x = e~x 

and Ue~ =-ec~. Then U=QUQ,  U 2 = - l a n d  U* = - U .  Hence U is a unitary operator in ~ . .  

Now suppose E is a projection in £(H) satisfying (19). Let x be a unit vector in H r and extend x to an 

orthonormal basis for H r. This basis is then an orthonormal basis for H and may be partitioned into sets {x } ,  

{ec~ } ,  and {e~z}, where the last two sets are equivalent. Let A be the operator on H defined by Ax = O, 

Aec~ =e~x, andAe~x =-e(x. T h e n A = Q A Q ,  A*  = - A , a n d A  2 = x x * - ] .  HenceAE 9]. a n d A * A = l - x x * .  

The argument given for Cartan factors of type [! now applies to show that E = 0 or E = ][. 

Suppose ~ is a Cartan factor of type IV and that dim ,b~ > 2. Then "~ is the space spanned by a 

spin system which we write in the form {U O} U {Ucx}, where U 0 is distinct from any of the Uc/S. Taking 

Ve = iU0Ue, we see that (Vc~} is a spin system with at least two elements and that the J*-algebra 

=U09~. is the cfosed space spanned by the set { !}  U {Vc~}. Since 9][ is isometrically J*-isomorphic 

to ~ ,  it suffices to show that ~ satisfies the hypotheses of Theorem 6. Suppose (19) holds. Taking 

A = l + v ~ x i n ( 1 9 ) , w e h a v e E v  e = V ~ E f o r a l l  cc ThenEB =BE =B,so  

E = ( B B * + B * B ) - B * B 2 B  * E 

since ~ contains the squares and adjoints of each of its elements. Hence Vc~E + EV e = X~! +/lc~Vc~,where 

Xc~ and #~x are complex numbers. But since Vc~E = EVc~, it follows that 2E =/~xl + X~V~x for all c~, so E = 0 

o r E = [ .  
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§5. Function-theoretic boundaries and extreme points 

In this section we show that the sets defined below play the role of function-theoretic boundaries for 

the open unit balls of J*-algebras. 

Definition 2. A non-empty subset I '  of the unit sphere of 92[ is said to be stable if the transformation 

A ~ T B ( X A )  takes I ~ to £ for each BC ¢'~0 and each complex number X w i th lX l=  1. 

Clearly any non-empty intersection of stable sets is stable. Also, any component of a stable set is 

stable; indeed, suppose F' is a component of a stable subset F of 92( and l e t A E  P ' , B E  ~ 0  andlXl= 1, 

Then the map t ~ TtB(XtA) on [0,1] is a continuous curve in £ connecting A to TB(XA), so TB(XA) E £ '. 

Therefore, the transformation A -* TB(XA) takes F '  to I" ', as required. Note that by Theorem 3 and (14), 

every biholomorphic mapping of N 0 onto "~0 extends to a homeomorphism of ¢~['1 onto ~ 1 which 

takes stable sets to stable sets. 

Proposition 2. Any of the following subsets of 9~ is stable if non-empty : 

(a) the unitary operators in 9.I , (b) the isometries in "2I., (c) the extreme points of 9.~ 1. 

Proof. By definition or by Theorem 1 t below, an operator B E ~. is in the sets described in (a), (b), or (c) 

if and only if both B*B = I and BB* = 1, B*B = [, or ( I -BB* )A ( I -B *B )  = 0 for all A E q~ , respectively. 

Hence Proposition 2 is an immediate consequence of (12) and the complementary formula 

(23) I_TB(A)TB(A) .  = ( I _ B B . ) I / ~ ( I + A B . ) - I ( I _ A A . ) ( I + B A  . - I ( I _ B B .  72 , 

which follows from (1 2) and the equality 

I -TB(A)TB(A)*  = 1-TB. (A*)*TB. (A*) .  

There are many J*-algebras for which one of the sets (a)-(c) is non-empty. For example, if "~ is a 

B*-algebra with identity, obviously ~ contains a unitary element. Also if ~ = £(H,K), where H and K 

are (possibly infinite dimensional) Hitbert spaces with dim H ~< dim K, then q~ contains an isometry. 

Further, if q~ is any finite dimensional J*.-algebra or, more generally, any J*-algebra which is closed in the 

weak operator topology, then ~ 1 has an extreme point. (To see the last assertion, apply the Krein-  

Milman theorem and the fact that ~ is compact in the weak operator topology [8; Ex.6, p.512] .) 
1 

Let X be a complex normed linear space. The hoiomorphic hull of a subset A of X (which we denote by 

Co A) is defined to be the set of all x C X such that Ig(x)l <~ t whenever g: X -* C is a holomorphic function 

satisfying tg(y)l ~< 1 for all y @ A. Clearly Co A is closed, and by a well-known separation theorem [8; Th.10, 

p.417], it follows that 
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(24) Co A C C_ co A, 

where co A denotes the closed convex hull of A. 

We can now state the main result of this section (cf. [17] and [22, Prop. 3.2] .) 

Theorem 9 (Maximum principle). Let F be a stable subset of  9i  and let h: 9 i  0 ~ X be a holomorphic 

function with a continuous extension to 9~[ 0 U F. Then 

(25) hi N 0) c Coh ( r ) .  

In particular, if h is bounded on F, 

(26) Ilh(B)ll ~< sup{llh(A)ll : A @ P) 

for all B E 9~ 0. Moreover, h is completely determined by its values on F. 

Note that if S is the unit circle, the components of the set of unitary elements of C(S) are just the 

homotopy classes of continuous mappings of S into itself. Thus C(S) has inf ini tely many disjoint closed 

stable subsets. 

Letting h be the identity map on 9j~ in (25) and applying (24), we obtain a result which considerably 

extends the Russo-Dye theorem [32, Th.1 ] .  

Corol lary 8. If lP is a component  of  any non-empty one of  the sets (a) - (c)  of  Proposition 2, then 9~ 1 = co E 

For example, let ~ be a Cartan factor of type IV and note that all normal operators in 9,~ are scalar 

multiples of self-adjoint unitary operators in ~ .  By Corollary 8 above and Lemma 2 of [17] ,  the convex 

hull of the set of all unitary operators in ~ contains eZ~. 0. Hence if H is any Hilbert space with conjugation 

x -+ ~, the norm whose open unit ball is given by (3) is the largest norm on H which agrees with the Hilbert 

norm on self-conjugate elements. (This has been observed in the finite dimensional case by Druzkowski [7] .) 

In f inite dimensional J*--algebras there is a smallest closed stable set. Indeed, 

Corollary 9. Suppose 9.I is finite dimensional. Then the set 8~ of extreme points of  9.~ 1 is the Bergman- 

Shilov boundary for 9I 0, i.e., & is the smallest closed subset of the unit sphere of  9 I  with the property 

that every complex-valued function holomorphic in 9~ 0 and continuous in 9~ 1 assumes its maximum 

absolute value on ~.  Moreover, & is connected and is contained in the closure of  every stable subset of  ¢2~. 

For example, it is known [19, p.6] that the Bergman-Shilov boundary for a classical Cartan domain ~ f  

of 
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(a) 

(b) 

CI d ) ' ,  

(c) 

type [ with n < m is the set of all isometries in CI ~ , 

type I with n = m, type I[, type III  with n even, or type IV is the set of all unitary operators in 

type I I l  with n odd is the set of all operators V C CI ~ f  satisfying V*V = I - x x *  for some x E C n 

with tlxll = 1. 

To see this, apply Theorem 11 below to show that each of the sets described is a set of extreme points of 

CI ~ r  and observe that each of the sets is closed and stable. Note that the Bergman-Shilov boundary for 

any finite product of the above domains is the corresponding product of the Bergman-Shilov boundaries for 

each of the domains. 

Proof of Theorem 9. Let g: X ~ C be a holomorphic function and suppose Ig(x)1% 1 for all x E h(P). 

Given B E 2 0 and A E F, by hypothesis TB(XA) @ F whenever IXl = 1. Hence the function 

f(X) = goh(TB(XA)) 

satisfies If(k)l ~< 1 for IXI = 1, and clearly f is holomorphic in the open unit disc and continuous in its closure. 

Consequently, by the (classical) maximum principle, Ig(h(B))l = If(O)1% 1. Therefore, h(B) @ Co h(['), which 

proves (25). Note that (26) follows from (25), (24), and the convexity of balls. The last part of the theorem 

is immediate from the formula 

h(B)= 2~- f2nh(TB(eiOA))dO, 

which follows from the mean value property for vector-valued holomorphic functions. 

Proof of Corollary 9, Let A be the Bergman-Shilov boundary for ~. 0' (The existence of A is well known 

[10, p.217] ,) By Theorem 9 and the compactness of ~ 1' it follows that A is contained in the closure of 

every stable subset of 9].. In particular, since each component of & is a stable subset of ~. and & is 

closed (see Theorem 11 below), we have that A C ~ and ~ is connected. On the other hand, 

~[1 - Co A c co A so ~ C_ A bya converse to the Krein-Milman Theorem [8; Lemma 5, p.440]. 

Theorem 10 (Schwarz lemma). Let 11: 9][ 0 ~ X 1 be a holomorphic function with h(O) = 0 and put 

L = Dh(O). If L takes a stable subset P of "2~ into a set of complex extreme points of X 1, then h = L. 

Proof. Given A @ P , define f(X) = 1 h(~A) for 0 < lXl < t and take f(0) = L(A). Clearly the composition 

of f with any bounded linear functional on X is holomorphic in the open unit disc z&, and hence by the 

(classical) maximum principle and the Hahn-Banach theorem, we have f(A) C_ X 1. Then since L(A) is a 

complex extreme point of X 1, it follows that f is constant by the Thorp-Whitley maximum principle [37]. 
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(See [14] for a simple proof which applies to this slightly more general situation.) 

Now given0 < r < 1, de f i neg (B)=h ( rB ) - -  L(rB) f o r B E  9/1" Then g is continuous in 9/1 and 

holomorphic in N 0 ,  and by the above g vanishes on F. Hence g vanishes identically in ~ 1  by Theorem 9. 

Therefore h = L. 

Theorem 11. The extreme points of 9.I 1 coincide with tile complex extreme points of 9~ 1 

precisely those operators B E ~ satisfying 

and are 

(27) (I BB*)A(I-B*B) = 0 

for all A E 9J~. In particular, every extreme point of 9.I 1 is a partial isometry. 

Note that Theorem 11 extends a result of Kadison [20] .  For the proof, we first establish an inequality 

of independent interest. 

Proposition 3. I f  B E £(H,K) I ,  then 

liB + (I-BB*)IAA(I-B*B)½11 ~ l 

for all A E£(H,K)  with IIAII ~< ½. 

Proof. First observe that the functions B ~ ( I - B ' B )  y2 and B -* ( I -BB* )  ½ are defined and continuous in 

£(H,K) 1 by the (commutative) Geifand-Naimark theorem [31, Th. 4.2.2] and the uniform convergence of 

the binomial series for ( l - t )  ½ on [0,1].  Hence if TB(C) is defined by (11) for C @ £(H,K) O, Theorem 2 

implies that 

(28) IITB(C)II ~< 1. 

Given A E £(H,K) with IIAll < 1/2, take C = A(I - -B*A) - 1 .  Then C @ £(H,K), IICII ~< IIAII(1-11AII) - 1  < 1, and 

A = C(I+B*C) - 1 .  Hence Proposition 3 fot~ows from (28). 

Proof of Theorem 11. Note that Proposition 3 holds wi thout  the exponents, and hence any complex 

extreme point of ¢~. satisfies (27). Thus to finish the proof, it suffices to  show that any operator B 
1 

satisfying (27) is a partial isometry and an extreme point of c2~ I '  Clearly B = BB*B since 

(B -BB*B) * (B -BB*B)  = B * [ ( I - B B * ) B ( I - B * B ) ]  = 0, 

and consequently E = B*B and F = BB* are projections. Hence B isa partial isometry. Suppose A E ¢d~[. 

and l i B + A l l , < 1 .  L e t x C H ,  where H is as in Definition l a n d s e t y  = Ex. Then 
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Ilyll 2 ~> IIBy -+ Ayll  2 = tIByll 2 + 2 Re(By,Ay) + IIAyll 2. 

Choosing the appropriate sign, we have that Ilyll 2 >~ llBylt 2 + ItAyll2; but IIBylt 2 = llyll 2, so Ay = O. 

Hence AE = O. A similar argument beginning with the inequality l iB* -+ A*II % 1 shows that A*F = O, i.e., 

FA = 0. Hence A = ( I - F ) A ( I - E )  = 0, as required. 

§6.  A generalization of the upper half-plane 

Note that any bounded linear operator A on a Hilbert space H can be written in the form 

A = R e A + i l m A ,  where 

_ A + A *  _ A - A *  
R e A - ~  and I m A  2i 

and clearly both Re A and Im A are self-adjoint operators. Write A > 0 when A is self-adjoint and there is an 

e > 0 such that (Ax,x) /> e Ilxll 2 for all x E H. 

Theorem 12. Let 9.I be a J * - a l g e b r a  containing an isometry V. Define 

= ( A C  9 . I : I m V * A - A * ( I  V V * ) A >  0) .  

Then ~ is an u n b o u n d e d  convex domain  in *2I and the  Cayley t ransformat ion 

S(A) = i (A+V)( I -V*A)  1 

is a biholomorphic  mapping of N 0 onto  ~ .  Moreover, if V is a uni tary operator or if ~ is such that 

AB*C E ~ whenever A,B,C C c2~ , then ~ is affinely homogeneous .  

Clearly Cartan factors of type [ with H = K and all Cartan factors of type ]I contain the identity 

operator. Also, Caftan factors of type I[[ with the dimension of H even or infinite and all Cartan factors of 

type IV contain a unitary operator. (See the proof of Theorem 8.) Thus the corresponding upper half-planes 

~£ are affinely homogeneous tubular domains. Further, if H and K are (possibly infinite dimensional) 

Hilbert spaces with dim H ~< dim K, then £(H,K) contains an isometry and products AB*C whenever it 

contains A, B and C. Thus, for example, Theorem 12 covers the case considered in Theorem 6.1 of [12]. 

Note that any product of upper half-planes of J*-algebras which each have an isometry is the upper 

half-plane of the product of the J*--algebras with respect to the product isometry. 

Example 1. View the elements of £(C n) as nxn matrices with complex entries and let 

= (A  C £(cn): A t = A}. Take V = I. Then 9.~ 0 and ~ are Siegel's generalized unit disc and 

generalized upper half-plane, respectively. (See [35] .) 
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Example 2. Let H be a Hilbert space and let v be a uni t  vector in H. Then v is an isometry since v*v  = 1, and 

the corresponding upper half-plane is 

= ( x  E H: lm(x,v) > l lx--(x,v)vl I2).  

Example 3 (Fuks [10, p.318] ). Let 9,~ = £(C n, cm),  where n < m and view ~ as the set of all mxn 

A I 
matrices wi th complex entries. Each A C 9~ can be wri t ten in the form A = [ A 2 ] ,  where A 1 and A 2 are 

nxn and ( m - n ) x  n matrices, respectively. Take V = [ ~)], where I is the ident i ty nxn matrix. Then V is an 

isometry and the corresponding upper half*plane is 

A 1 
= { [ A 2 ] :  I m A  1 - A } A  2 > 0 )  . 

Example 4 (cf. [3, p.149] ). Let H be a Hilbert space with conjugation x ~ E and let v be a unit vector in H 

with 7 = v. As shown in §2, there exists a linear transformation x -* A x satisfying (2) which allows us to 

ident i ty H with a Cartan factor ~ of type IV. Take V = A v and note that V is unitary. Since Im AvA x = 

i [ ( E , v ) I - A v A R e  x ] for all x E H, it fol lows from (9) that the corresponding upper half-plane is 

= { x  C H: (Im x,v) > t lRe [x - (x , v )v ]  II). 

This domain is mapped by the invertible linear map Lx = (x,v)v + i [ x - ( x , v ) v ]  onto the domain 

= { x E H :  ( I m x , v ) > l l l m [ x - ( x , v ) v ] l l ) ,  

which is a tube whose base is a future l ight cone. Also, S" = LoS is a b iholomorphic map of 9~ 0 onto ~ ,  

and by (1) and (10), 

S(x)  = i [ 1 - ( x , E ) ]  v - 2 [ x - ( x , v ) v ]  
1-2(x ,v)  + (x,E) 

Proof of  Theorem 13. Put IM A = lm V ' A - A *  ( I - V V * ) A  for A E 9~. It fol lows from Proposition 1 and 

the power series expansion for S(A) that S maps 9.~ 0 into ~[.. By a computat ion,  

IM S(A) = (I - A ' V )  - I  (1 - A * A ) ( I - V * A )  - 1  , 

so S maps 9,[ 0 into ~ .  A similar ident i ty (which can be derived from the one above) shows that the trans- 

formation S - 1  given by 

S - I ( A )  = (AV*+ i  [ ) -1  ( A - i V )  

maps ~ into ~]~0" (Note that if A E ~ ,  the numerical range of V * A  lies in the upper half-plane so - i  is not 

in the spectrum of V*A. )  It is easy to verify that S -1  is the inverse of S and that both S and S - 1  are 
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holomorphic where defined. Hence S is a biholomorphic mapping of  @ 0 onto ~ .  

Clearly ~ is unbounded since it contains all positive multiples of V. To see that ~ is convex, let 

A, B E ~ a n d t a k e C = t A + ( 1 - t ) B ,  where 0 ~< t ~< 1. Then 

IM C > t A * ( I - V V * ) A  + ( 1 - t ) B * ( [ - V V * ) B - C * ( | - V V * ) C  

= t ( 1 - t ) ( A - B ) * ( I - V V * ) ( A - B )  >/ 0, 

so C E ~ .  

Suppose that ~ contains AB*C whenever it contains A, B and C. To show that ~ is affinely 

homogeneous, it suffices to show that for each BE ~ ,  the transformation 

RB(A) = V Re V*B + V( IM B)V2V*A( IM B) 1/~ 

+ iVB* ( ] [ -VV* ) [2A(  IM B) ½ + B] 

+ ( t - V V * ) [ A (  IM B)~£+B] 

is an invertible mapping of ~ onto itself with RB(iV) = B. By hypothesis, the map A -+ A( IM B) takes 

into 9,i, and since ( IM B) 1/2 is the l imit in the operator norm of a sequence of polynomials in IM B, it 

fol lows that the map A ~ A( IM B) y2 takes ~.  into ~L. Hence R B maps ~ into "2~. A computation 

shows that RB(iV) = B and that 

IM RB(A) = ( IM B)Y2(IM A)( IM B) ½. 

Hence R B maps ;~ into itself. It can be verified that the inverse of R B is given by 

R~ I (A )  = V( IM B)- I /2 [V*A-Re V * B - i B * ( [ - V V * ) ( 2 A - B ) ]  ( IM B) -1/2 + ( ] - V V * ) ( A - B ) (  IM B) ~1/2 

and that R~ 1 maps ~ into ~ . .  It then follows from the identity given above that R~ 1 maps ~£ into itself. 

Therefore R B is as required. 

Now suppose instead that V is a unitary operator. Since the J*-algebras ~ and V* ~. are isometrically 

J*- isomorphic,  we may assume that V = I. Then by part (d) of Proposition 1 and the fact that ( Im B) 1/~ is 

the l imit of a sequence of polynomials in Im B, the transformation 

RB(A) = Re B + (Im B)½A(lm B) ½ 

maps ~ into ~ .  The argument given above now applies to show that ~ is aff inely homogeneous. 
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Our construction and discussion of the domain 5{ is based on the theory of Siegel domains of genus 2 

given in [30, Ch,1]. 
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