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Abstract. Let 0 < θ < 1 be an irrational number of bounded type.
We prove that for any map in the family (e2πiθz + αz2)ez , α ∈ C, the
boundary of the Siegel disk, with fixed point at the origin, is a quasi-
circle passing through one or both of the critical points.

1. Introduction

Let F be a family of holomorphic functions fixing the origin. If f ∈ F is
holomorphically conjugate on a neighborhood of the origin to an irrational
rotation then the largest domain on which this conjugation is defined is called
the Siegel Disk of f . The Siegel disk ∆f belongs to the Fatou set and the
boundary of ∆f belongs to the Julia set of f . Two natural questions about
the boundary of ∆f are:

1. When is it a Jordan curve?
2. When does it contain a critical point of f?

Both these questions are far from solved for general families. Many authors
have made contributions to these problems for various families. The reader is
referred to [4], [5], [15], [9], and [20] for more details.

Suppose the multiplier of f ∈ F at the origin is λ = e2πiθ. It is well
known, ([5],[19]), that a sufficient condition for f to have a Siegel disk at the
origin is that θ be of bounded type. Under this condition, it was proved in
[9] that the boundary of the Siegel disk must contain a critical point. This
indicates that the answer to the first question might also always be positive if
θ is of bounded type. In a recent unpublished manuscript, Shishikura proved
that the boundary of a Siegel disk of a polynomial map of degree ≥ 4 and θ
of bounded type is always a quasi-circle. This, together with the results of
Douady and Zakeri [5][17][20], imply that the answer to the first question is
always positive for all such polynomial maps.

Theorem (Douady-Zakeri-Shishikura). Let θ be a bounded type irrational
number and let n ≥ 2 be an integer. Then the boundary of the Siegel disk of
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the polynomial map

P (z) = e2πiθz + a2z
2 + · · · + anz

n, an 6= 0,

centered at the origin, is a quasi-circle passing through at least one critical
point of P (z).

It would be extremely interesting if the generalization of the above theorem
to families of entire functions were true. In this paper, we restrict our attention
to a narrow class of entire functions, namely, those functions which have the
following form

P (z)ez = (e2πiθz + a2z
2 + · · · + anz

n)ez.

The reason that we consider such functions is that they are a rather simple
class of entire functions of “finite type”; that is functions with finitely many
critical and asymptotic values. In fact, they seem relatively close to polyno-
mials in that they have only finitely many critical points and finitely many
zeros. On this basis, we ask the following question:

Question. Let θ be an irrational number of bounded type and let n ≥ 2 be an
integer. Then is the boundary of the Siegel disk of the entire map

f(z) = (e2πiθz + a2z
2 + · · · + anz

n)ez,

centered at the origin, a quasi-circle passing through at least one critical point
of f(z)?

In the case that a2 = · · · = an = 0, the answer was shown to be positive
by Geyer:

Theorem (Geyer[7]). Let θ be a bounded type irrational number. Then the
boundary of the Siegel disk of the entire map e2πiθzez, centered at the origin,
is a quasi-circle passing through the unique critical point.

The main purpose of this paper is to prove a similar theorem for entire
maps with P (z) quadratic:

Main Theorem. Let θ be a bounded type irrational number. Then for any
entire map,

fa(z) = (e2πiθz + az2)ez, a ∈ C − {0},

the boundary of the Siegel disk centered at the origin is a quasi-circle passing
through one or both the critical points of fa(z).

The main tool of the proof is to use techniques of quasi-conformal mappings
presented in [21](see also §3) to construct a function with a Siegel disk from a
function with an attracting fixed point. This construction is similar in spirit
to the one introduced by Cheritat [4] where he uses a Blaschke product model.
Our construction has the advantage that it automatically induces a surgery
map S defined on a one-dimensional parameter space of functions with an
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attracting fixed point. By using an argument of Zakeri([20]), we prove that
the surgery map S is continuous. The proof of the Main Theorem is then
completed by showing that the surgery map S is surjective.

Now let us sketch the proof. We fix a θ of bounded type once and for all
and set λ = e2πiθ. In §2, for each fixed t ∈ C − {0}, we introduce the one
complex dimensional parameter space Σt as follows:

Σt = {f(z) = (tz + αz2)eβz
∣∣ f ′(1) = 0, αβ 6= 0}.

We mark the critical points and show that each Σt can be parameterized by
the value β, and that under this parametrization, Σt is homeomorphic to the
punctured sphere S2 − {0,∞,−1,−2} (Lemma 2.1).

We will be interested in two particular spaces: Σ1/2 containing functions
with an attracting fixed point and Σλ which is the space of functions in our
main theorem conjugated by the map z → βz. To differentiate between
functions in these spaces we will denote those in Σ1/2 by fβ and those in Σλ
by gβ. It turns out that the two critical points of fβ and gβ are the same. We
mark them and denote them by 1 and cβ.

For each fβ ∈ Σ1/2, we introduce a geometric object Dβ, which is a simply
connected domain containing the origin (Definition 2.1). The key property of
Dβ is the following:

Theorem 2.1. ∂Dβ is a K−quasi-circle that passes through at least one of
the critical points of fβ. Moreover, K is independent of β.

In §3, we study the topological structure of the parameter space Σ1/2. The
main purpose of that section is to prove the Structure Theorem for t = 1/2:

Theorem 3.1 (Structure Theorem for Σt). There is a simple closed curve
γ which separates {−2,∞} and {0,−1} such that if β lies in the component
of S2 \ γ containing {−2,∞} then ∂Dβ passes through the critical point cβ,
but not the critical point 1, and if β lies in the other component, ∂Dβ passes
through the critical point 1 but not the critical point β. Moreover, γ is invari-
ant under the involution σ : β → −(β + 2)/(β + 1) which interchanges the
marked critical points.

The curve γ separates Σ1/2 into two components. We use Ωint to denote
the bounded component, and Ωout the unbounded one.

In §4, we construct a surgery map S : Ωint → Σλ. In §5, adapting an argu-
ment of Zakeri, [20], we show that the map S can be continuously extended
to Ωint such that S(0) = 0 and S(−1) = −1.

In §6, we prove that the image of γ under the map S is a simple closed
curve Γ ⊂ Σλ, which consists of all the maps for which the boundaries of
the Siegel disks are quasi-circles passing through both of the critical points
(Lemma 6.3). We use Θint to denote the bounded component of Σλ −Γ, and
Θout the unbounded one. We prove that the space Σλ is symmetric about
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the curve Γ under the map σ : β → −(β + 2)/(β + 1) induced by the linear
conjugation map z 7→ z/cβ and that the map S : γ → Γ has topological degree
1, (Lemma 6.3 and 6.4). It follows that S : Ωint → Θint is surjective, which
in turn implies the Main Theorem and the Structure Theorem for Σλ.

2. The Maximal Linearizable Domain Dβ

2.1. The parameterization of Σt. For fixed t 6= 0,∞, we use Σt to denote
the space of all entire maps of the form

f(z) = (tz + αz2)eβz

such that f ′(1) = 0 and αβ 6= 0. This normalization marks the critical points.
For f ∈ Σt, to simplify the notation, we suppress the dependence of f on t
and the dependence of α on β.

Lemma 2.1. The space Σt is homeomorphic to the punctured sphere S2 \
{−1,−2, 0,∞}.

Proof. For each f ∈ Σt, by definition, f ′(1) = 0. By a simple calculation, this
is equivalent to

(1) α = −t
β + 1

β + 2
.

Thus α is uniquely determined by β and it follows that the map ρ : f → β is
a homeomorphism from Σt to S2 \ {−1,−2, 0,∞}. �

Note that these functions fix the origin. Moreover, straight forward com-
putations show that there are exactly two asymptotic values, the origin and
infinity. There are only two zeros, the origin and (β + 2)/(β + 1). Every
other point has infinitely many pre-images. Unless β = −1 ± i, there are two
distinct marked critical points, 1 and cβ = −(β+2)/β(β+1) and two distinct
critical values.

We will be interested in Σt for two specific values of t, t = 1/2 and t = λ =
e2πiθ where θ is the irrational of bounded type fixed in the introduction.

Remark 2.1. The functions in these spaces are of finite type; they have only
finitely many singular values and in fact only finitely many critical points. The
classification of their Fatou components is thus fairly simple. It is known, (see
for example, [8]) that there are no wandering domains and no Baker domains
for such entire functions. There is one grand orbit of components in the Fatou
set with a forward invariant component containing the origin. For t = 1/2 it
is attracting and contains at least one critical point and for t = λ it is a Siegel
disk whose boundary contains the closure of the forward orbit of at least one
critical point. In both cases, this grand orbit contains the asymptotic value at
the origin.
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There can be at most one other grand orbit of components and it will contain
the orbit of the “other critical point”. This cycle can only be attracting, super-
attracting, parabolic or contain another cycle of Siegel disks. In this paper,
this potential second cycle will not play a role.

2.2. The maximal linearizable domain Dβ. Let us fix t = 1/2 throughout
this section. From now on, we will identify the space Σ1/2 with the parameter

space S2 \ {−1,−2, 0,∞}. For each β ∈ Σ1/2, let us denote

fβ(z) = (z/2 + αz2)eβz,

where α is given by formula (1) with t = 1/2.
Now for each β we define a domain Dβ as follows. Let ∆ denote the

unit disk and L1/2 : ∆ → ∆ denote the contraction map defined by z →
z/2. Because the origin is an attracting fixed point with multiplier 1/2, fβ is
holomorphically conjugate to L1/2 in a neighborhood of the origin.

Definition 2.1. For each β ∈ Σ1/2 we define Dβ to be the maximal subdomain
of the immediate attracting basin of the origin on which fβ is holomorphically
conjugate to the linear map L1/2 : ∆ → ∆.

The main purpose of this section is to prove the following theorem.

Theorem 2.1. There is a constant K > 1 such that for all β ∈ Σ1/2, ∂Dβ is
a K−quasi-circle that passes through at least one of the critical points of fβ.

We break the proof into a series of lemmas. In these we always have
β ∈ Σ1/2 and the map hβ : ∆ → Dβ is always the unique holomorphic

isomorphism such that hβ(0) = 0, h′β(0) > 0 and h−1
β ◦ fβ ◦ hβ(z) = L1/2(z)

for all z ∈ ∆.

Lemma 2.2. ∂Dβ is a quasi-circle passing through one or both of the critical
points of fβ.

Proof. Since the origin is an attracting fixed point of fβ, there must be a
critical point in its immediate basin of attraction. By the maximality of Dβ,
it follows that ∂Dβ must pass through at least one critical point of fβ.

By the definition of hβ we have

fβ(Dβ) = fβ ◦ hβ(∆) = hβ ◦ L1/2(∆).

Let T1/2 = {z
∣∣ |z| = 1/2}. It follows that ∂(fβ(Dβ)) = ∂hβ ◦ L1/2(∆) =

hβ(T1/2) is a real-analytic curve. Since fβ has exactly one finite asymptotic
value which is at the origin, and the origin is contained in the interior of
fβ(Dβ), there are no asymptotic values of fβ on ∂fβ(Dβ). Thus ∂Dβ is a

bounded component of the lift of the real analytic curve ∂fβ(Dβ) by f−1
β and

is therefore a piecewise smooth curve with at most two corners at the critical
points. It follows that Dβ is actually a quasi-circle with finite Euclidean
length. �



6 LINDA KEEN AND GAOFEI ZHANG

For any set X ⊂ C, define the Euclidean diameter of X by

Diam(X) = sup
a,b∈X

|a− b|.

For a piecewise smooth arc segment I ⊂ C, let |I| denote the Euclidean length
of I.

We will need to estimate the relative diameters and lengths of quantities
defined for each β. For simplicity, and to avoid the need for many constants,
we introduce the following notation. For two quantities X = X(β) and Y =
Y (β), we use the notation X 4 Y to mean that there is a constant C > 0,
independent of β, such that X ≤ CY . Similarly, we use X >≍ Y to mean
that there exist constants 0 < C < C′, independent of β, such that CY ≤
X ≤ C′Y .

The next lemma is a technical lemma. Recall that ∆1/2 = {z
∣∣ |z| < 1/2}

and that T1/2 = ∂∆1/2. For readability we drop the subscript β.

Lemma 2.3. Let h : ∆ → D be a univalent map such that h(0) = 0. Suppose
that x and y are two distinct points on h(T1/2) which separate h(T1/2) into two
disjoint arc segments I and J and suppose that I is the shorter arc, |I| ≤ |J |.
Then |I| 4 |x − y| where the constant is independent of β and the chosen
points x, y.

Proof. Let L be the straight segment which connects x and y. We now have
two cases to consider. In the first case, L ⊂ D. Then L′ = h−1(L) ⊂ ∆ is
a smooth curve segment connecting two points x′ and y′ on T1/2. Suppose
x′ and y′ separate T1/2 into two arc segments I ′ and J ′ such that h(I ′) = I
and h(J ′) = J . By the Köbe distortion theorem, and the assumption that
|I| ≤ |J |, we have |I ′| 4 |J ′| and hence |I ′| 4 |L′|. Note the distortion theorem
implies that the constant is independent of β and the points x, y.

Now there are two subcases. In the first subcase, there is an r, 1/2 < r < 1
such that L′ is contained in ∆r. By Köbe’s theorem and the fact that |I ′| 4

|L′|, we deduce that |I| 4 |L|. Here the constant depends on r but not on β.
In the second subcase there is no such r. Choose r0, 1/2 < r0 < 1 and let
L′′ ⊂ L′ ∩ ∆r0 be the component of L′ that contains one of the end points
of L′, say x′. Again we have |I ′| 4 |L′′| and applying Köbe’s theorem once
more, we get |I| 4 |h(L′′)| 4 |L|. Here the constant depends on the choice of
r0 but not on β or the points x, y.

In the second case, L is not contained in D. Again choose r0, 1/2 < r0 < 1,
and let L0 be the component of L ∩ D that contains one of the end points
of L, say x. Then h−1(L0) ⊂ ∆ and intersects Tr0 . Since h−1(x) ∈ T1/2, it

follows that |I ′| 4 |h−1(L0)| and therefore by Köbe’s theorem again, we get
|I| 4 |L0| 4 |L|. Here again the constant depends on r0 but not on β or the
points x, y. �
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By Lemma 2.2, each ∂Dβ is a quasi-circle for some Kβ. We now claim we
can use the same constant for all β in a compact subset of Σ1/2.

Lemma 2.4. For any compact set Λ ⊂ Σ1/2, there is a K > 1, depending
only on Λ, such that for every β ∈ Λ, ∂Dβ is a K−quasi-circle.

Proof. Let C be the complex plane. First we claim that there is a compact set
E ⊂ C depending only on Λ such that Dβ ⊂ E for every β ∈ Λ. If the claim
were not true there would be a sequence {βn} ⊂ Λ such that βn → β ∈ Λ
and such that Diam(∂Dβn

→ ∞. Set hn = hβn
and h = hβ . Then hn → h

uniformly on compact subsets of ∆. Therefore, there is some compact set
W ⊂ C such that fβn

(∂Dβn
) = hn(T1/2) ⊂W .

Now since the Euclidean diameter of ∂Dβn
goes to infinity, it follows that

when n is large enough, there are arbitrarily long segments An of ∂Dβn
outside

any fixed disk. Since fβn
(∂Dβn

) is bounded away from zero and infinity, it
follows that for all z ∈ An the argument of βnz stays in a wedge about the
imaginary axis. That is, given any L > 0 there exist R > 0 and arcs An of
∂Dβn

outside ∆R whose Euclidean diameter is greater than L and such that
one of the following two inequalities

(2) | arg(βnz) − π/2| < π/4 or | arg(βnz) + π/2| < π/4

holds for all z ∈ An. This implies, however, by taking L large enough, that
as z varies continuously along An, we can make arg eβnz vary from 0 to 2π
any number of times. On the other hand, as z varies along An, it follows
from inequalities (2) that the variation of arg(z/2+αβn

z2) remains bounded.
Therefore, taking n large enough we can make the image fβn

(An), which is
a sub-arc of hn(T1/2), wind around the origin any number of times. This
contradicts the fact that hn → h uniformly as n → ∞ on the compact set
T1/2 ⊂ ∆, proving the claim.

Fix β and let x and y be any two points on ∂Dβ. Denote by I and I ′

the two Jordan arcs they determine on ∂Dβ and label them so that fβ(I) is
shorter than fβ(I

′). Let L be the straight segment joining x and y. Since
∂Dβ is a quasi-circle, the quantity

Q(β) = Q(I, L) = Diam(I)/|L|

is bounded for all pairs (x, y) on ∂Dβ. It will suffice to show that there is an
upper bound on Q(I, L) for all β ∈ Λ.

By Lemma 2.3, we have

(3) |fβ(I)| 4 |fβ(x) − fβ(y)|.

From (3) and the definitions of Diam and length, we have

(4) |fβ(I)| 4 |fβ(x) − fβ(y)| 4 Diam(fβ(L)) 4 |fβ(L)|.
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Let q be a point on the closed segment L such that maxz∈L |f ′
β(z)| is

achieved so that

(5) |fβ(L) ≤ |f ′
β(q)||L|.

Now fix R ≥ 2 and consider the annulus

AR = {z
∣∣ 2 Diam(I)/3R ≤ |z − x| ≤ 3 Diam(I)/4R}

centered at the endpoint x of I. Let Î be one of the closed components of
I ∩ AR that connects the two boundary components of A. It follows that
|Î| ≥ Diam(I)/12R.

Let p be a point on |Î| such that minz∈|Î| |f
′
β(z)| is achieved so that

(6) |fβ(Î)| ≥ |f ′
β(p)||Î|.

Combining these relations we have

(7)
|f ′
β(q)|

|f ′
β(p)|

≥
|fβ(L)|

|fβ(Î)|

|Î|

Diam(I)

Diam(I)

|L|
≥

1

12R

|fβ(L)

|fβ(Î)|
Q(I, L).

Note that by (4), we always have

|fβ(Î)| 4 |fβ(L)|.

Putting this into (7) we have

(8) Q(I, L) 4
|f ′
β(q)|

|f ′
β(p)|

.

In the first part of this proof we proved that Dβ is contained in some
compact set E of the complex plane for every β ∈ Λ. From that it follows
that p and q belong to a compact set of the complex plane, and hence the
ratio eβ(p−q) is bounded away from both zero and infinity. Therefore, from
the formula f ′

β(z) = αβ(1 − z)(cβ − z)eβz we see that the size of the ratio

|f ′
β(q)|/|f

′
β(p)| depends on how close the critical points are to p.

We claim that if neither critical point is close to p, the ratio |f ′
β(q)|/|f

′
β(p)|

is bounded. To see this, suppose that

(9) |p− 1| ≥ Diam(I)/6R and |p− cβ | ≥ Diam(I)/6R.

Since p ∈ Î, we have

(10) 2Diam(I)/3R ≤ |p− x| ≤ 3Diam(I)/4R.

From this and |L| ≤ |I| we get

(11) |q − p| ≤ |q − x| + |x− p| ≤ |L| + |x− p| 4 |I|.

Combining (9) and (11) we have

(12) |q − 1| ≤ |p− 1| + |q − p| 4 |p− 1|.
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Replacing 1 by cβ in the relations above we obtain

(13) |q − cβ | ≤ |p− cβ | + |q − p| 4 |p− cβ |.

It follows that if the quasi-conformal constants Kβ are unbounded, the
constant Q(β), and hence the ratio |f ′

β(q)|/f
′
β(p)| can be made arbitrarily

large by taking an appropriate β ∈ Λ. This, together with (12) and (13),
implies that, for any choice of R, one of the inequalities in (9) does not hold
for this β ∈ Λ. In other words, for any R > 0, we can find β ∈ Λ such that
there is a critical point of fβ within Diam(I)/6R of p. This critical point lies
in the annulus

BR = {z
∣∣ Diam(I)/2R < |z − x| < Diam(I)/R}.

Because R was arbitrary in the above argument, we can take β such that
there are also critical points of fβ in the annuli BR/2 and BR/4. These three
annuli are disjoint however, so that fβ must have at least three critical points.
Since it only has two, we conclude that the Kβ are bounded. �

To complete the proof of Theorem 2.1 we turn our attention now to neigh-
borhoods of the boundary points of Σ1/2. It turns out to be more convenient

to consider the family of functions lβ(ξ) = (ξ/2+αξ2/β)eξ linearly conjugate
to fβ(z) by the map ξ = βz. Set l∞(ξ) = ξeξ/2; then lβ → l∞ as β → ∞.

Denote by Uβ and U∞ the maximal linearizable domains of lβ(ξ) and l∞(ξ)
centered at the origin. Then we have

Lemma 2.5. For any M > 2, consider the family

{lβ
∣∣ |β| ≥M} ∪ {l∞}.

Then there is a constant K > 1, depending only on M , such that for all
functions in the family ∂Uβ is a K−quasi-circle.

Proof. Using the linear conjugation we see that ∂Dβ and ∂Uβ are quasi-circles
with the same constant and both contain the same number of critical points.
The argument of Lemma 2.2 applied to l∞ shows that U∞ is also a quasi-
circle. Since the family is compact, the argument in the proof of Lemma 2.4
can be applied to obtain the uniform constant of quasi-conformality. �

As an immediate corollary we have

Corollary 2.1. There is a constant K > 1 such that for all β ∈ Σ1/2 with
|β| ≥ M , ∂Dβ is a K−quasi-circle containing at least one of the critical
points. Moreover, for |β| large, it contains only one, the critical point cβ.

Proof. The first statement follows directly from Lemma 2.5. For the second,
by an argument similar to the first half of the proof of Lemma 2.4, it follows
that for all |β| ≥ M , Uβ are contained in some compact set E′. Suppose |β|
is so large that it does not belong to E′. Then, since the critical points of lβ
are β and βcβ , ∂Uβ can only contain the critical point βcβ . �
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Remark 2.2. The forward orbit of the critical point β may, however, land
inside Dβ; for example if β is large and negative.

Next, set f0(z) = z/2−z2/4 and note that αβ → −1/4 as β → 0; therefore,
fβ → f0 uniformly on any compact set of the complex plane. It follows that
for any m < 1 the family

{fβ
∣∣ β ≤ m} ∪ {z/2 − z2/4}

is a compact family. Moreover, the boundary of the maximal linearizable
domain containing the origin of the function z/2− z2/4 is a quasi-circle. We
have

Corollary 2.2. There is a constant K > 1 such that for all β ∈ Σ1/2 with
|β| < m, ∂Dβ is a K−quasi-circle containing at least one of the critical points.
Moreover, for |β| small, it contains only one, the critical point 1.

Proof. Applying the proof of Lemma 2.4 to this family we obtain uniformity
of the quasi-conformal constant.

Let D0 denote the maximal domain containing the origin on which f0 is
conjugate to a linear map; ∂D0 must contain the unique critical point of
f0. Because fβ → f0 uniformly on compact sets, there is a compact set
E ⊂ C such that, when β is small enough, there are two open topological
disks 0 ∈ Uβ ⊂ Vβ ⊂ E such that fβ : Uβ → Vβ is a polynomial-like map of
degree 2 and therefore that fβ is quasi-conformally conjugate to the quadratic
polynomial f0. For such β, there is only one critical point on ∂Dβ and this
point lies inside E. When |β| is small enough, |cβ | ≈ |2/β| and is outside E.
It follows that ∂Dβ contains only the critical point 1 of fβ . �

Remark 2.3. Again, while the second critical point does not lie inside Dβ,
for some small values of β, its forward orbit may fall into Dβ; for example if
β is small and real.

The corollaries give us uniformity of the quasi-conformal constant in neigh-
borhoods of the boundary points 0 and ∞ of Σ1/2. The proof of Theorem 2.1
is completed by noting that the maps near ∞ and 0 are respectively confor-
mally conjugate to the maps near −1 and −2 by the map z → z/cβ. Therefore
there is uniformity of the quasi-conformal constant and analogous behavior of
the critical points on the boundary of Dβ in these neighborhoods as well.

3. The parameter space Σ1/2

Let γ ⊂ S2 \ {0,−1,−2,∞} be the set which consists of all the values β
for which ∂Dβ passes through both critical points of fβ .

Theorem 3.1. [Structure Theorem for Σ1/2] The set γ is a simple closed
curve which separates {−2,∞} and {0,−1}, such that for every β ∈ Σ1/2,

if β lies in the component of S2 \ γ which contains {−2,∞}, ∂Dβ passes
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through the critical point cβ but not the critical point 1 and if β lies in the
other component, ∂Dβ passes through the critical point 1 but not the critical
point cβ. Moreover, γ is invariant under the map β → −(β + 2)/(β + 1).

A direct calculation shows

Lemma 3.1. cβ = 1 if and only if β = −1 + i or −1 − i.

To find points on the set γ, we consider any continuous curve η : (0, 1) →
Σ1/2 − {−1 + i,−1− i, } such that limt→0 η(t) = 0 and limt→1 η(t) = ∞. Let

t0 = sup{t
∣∣ 0 < t < 1, ∂Ωη(t) passes through 1}

and set β0 = η(t0). By definition, cβ0 6= 1.

Lemma 3.2. ∂Dβ0 passes through both cβ0 and 1.

Proof. By corollaries 2.1 and 2.2, there is a compact set E ⊂ C such that the
point β0 ∈ E for any curve η. Therefore as t → t0, η(t) → β0 , fη(t) → fβ0

locally uniformly and Dη(t) → Dβ0 in the sense of Carathéodory. Therefore if
dH(A,B) denotes the Hausdorff distance between sets, it follows from Theo-
rem 2.1 that ∂Dη(t) and ∂Dβ0 are quasi-circles so that dH(∂Dη(t), ∂Dβ0) → 0

as t → t0. Now by the definition of t0, there is a sequence tk → t−0 such that
∂Dη(tk) passes through 1 for every k ≥ 1 and thus 1 ∈ ∂Dβ0 . Similarly, there

is a sequence tk → t+0 such that ∂Dη(tk) passes through cβ for every k ≥ 1
and thus cβ0 ∈ ∂Dβ0 also. �

Lemma 3.3. For each β ∈ γ, there are exactly two components of f−1
β (fβ(Dβ))

each of which is attached to ∂Dβ at one of the two critical points cβ and 1.
Moreover, one of them is bounded, and the other one is unbounded. In par-
ticular, both components are attached to 1 if cβ = 1.

Proof. Let v1 and vc be the critical values f(1) and f(cβ) respectively. For
i = 1, c, draw paths σi from vi to the origin. For each i = 1, c, there two
components of f−1

β (σi) with endpoint at i. One connects i to the origin and

the other either connects it to the (unique) other pre-image of the origin or is
an asymptotic path extending to infinity. In the first case, f−1

β (σi) is contained

in the unique bounded component U0 of f−1
β (fβ(Dβ)) and in the second, it

is contained in an unbounded component U∞ of f−1
β (fβ(Dβ)) that, in turn,

is contained in the asymptotic tract of the origin. Both these components lie
outside Dβ .

To see that the unbounded component U∞ is also unique, recall that there
are only two asymptotic values, zero and infinity. Each has an asymptotic
tract and these are separated by the two infinite rays R±

β = {z
∣∣ arg(βz) =

±π/2} whose arguments differ by π. These are therefore the only infinite rays
r(t) such that limt→1 fβ(r(t)) 6= 0,∞ — that is, the Julia rays.
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If there were an unbounded component V∞ 6= U∞, then both V∞ and U∞

would lie in the asymptotic tract of zero. Since they are different components
of f−1

β (fβ(Dβ)), V∞ ∩ U∞ = ∅. The boundary of each would have to be

asymptotic in one direction to some ray rU (t), respectively, rV (t), different
from either of the rays R±

β . Since neither rU (t) nor rV (t) can belong to any

component of f−1
β (fβ(Dβ)) it must be one of R±

β , giving us a contradiction.
Note that this argument also shows that the infinite ends of the boundary of
U∞ are asymptotic respectively to the rays R±

β . �

In the proof of Lemma 3.3, we saw that the boundary of the unbounded
component U is asymptotic to both of the rays R±

β . This implies that the
Julia set of fβ is thin at infinity. The forward orbits of both the critical points
1 and cβ are attracted to the origin since they both lie on ∂Dβ. Using a
standard pull back argument (for instance, see the proof of Theorem 3.2.9
[13]), it is straight forward to prove

Lemma 3.4. For each β ∈ γ, the Julia set of fβ has zero Lebesgue measure.

We now set up a parametrization of the set γ. Recall that for each β ∈ γ,
hβ : ∆ → Ω is the univalent map such that hβ(0) = 0, h′β(0) > 0 and

h−1
β ◦ fβ ◦ hβ(z) = z/2. Since ∂Dβ is a quasi-circle, it follows that hβ can be

homeomorphically extended to ∂∆.
Define the angle between h−1

β (1) and h−1
β (cβ) measured counter-clockwise

by Aβ . Then 0 ≤ Aβ ≤ 2π. Define χ(β) = 1 if the bounded component of

f−1
β (fβ(Dβ)) is attached to 1; define χ(β) = −1 otherwise. Identify the pair

(0, 1) with the pair (2π,−1), and the pair (0,−1) with the pair (2π, 1). Under
this identification, to each β ∈ γ, we can assign a unique pair Iβ = (Aβ , χ(β)).
Since cβ depends continuously on β, we have

Proposition 3.1. The map β → Iβ is continuous on the set γ.

The next lemma says that the value β ∈ γ is uniquely determined by the
pair Iβ = (Aβ , χ(β)).

Lemma 3.5. Let β1, β2 ∈ γ. If Iβ1 = Iβ2 , then fβ1 = fβ2 and therefore,
β1 = β2.

The idea of the proof is to show that if Iβ1 = Iβ2 then fβ1 is conformally
conjugate to fβ2 . Note that since both critical points are attracted to the
origin there is only one grand orbit of components of the Fatou set.

Proof. Let us give a description of the combinatorics of fβ1 ; those for fβ2 will
be the same. For readability we omit the subscript. The description we give
of the grand orbit of D = Dβ works for either β = β1 or β2. Let U denote the

unbounded component and V the bounded component of f−1
β (fβ(D)) outside

D. Assume that U is attached to cβ and V is attached to 1. The same
argument can be applied in the other case.



SIEGEL DISKS OF ENTIRE FUNCTIONS 13

Since the map hβ can be continuously extended to a homeomorphism be-

tween ∆ and D, we can define a continuous family of curves λr , 0 ≤ r ≤ 1,
by

λr(t) = hβ(re
it), t ∈ R.

Define t0 ∈ [0, 2π) by λ1(t0) = cβ .
Next we lift the curves λr, 1/2 < r ≤ 1, using a normalized inverse branch

of fβ taking D to U , to get a continuous family of curves Λr, 1/2 < r ≤ 1,

Λr(t) = f−1
β (λr(t)), t ∈ R.

From the continuity of Λr(t) with respect to r, it follows that

Λ1/2 = {Λ1/2(t)
∣∣ t ∈ R} = ∂D ∪ ∂U ∪ ∂V.

We normalize so that Λ1/2(fβ(1)) = 1; this determines the normalization for
the curves when r > 1/2.

The curves Λr = {Λr(t)
∣∣ t ∈ R} for 1/2 < r < 1 lie outside (D ∪ U ∪ V )

and are infinite curves asymptotic at one end to R+
β and asymptotic at the

other to R−
β . The map fβ from Λr onto λr is infinite to one.

It follows that Λ1 = f−1
β (∂D) is a curve with the same asymptotic and

covering properties. It thus separates f−1
β (D) from its complement. That

is, both f−1
β (D) and its complement in C are simply connected. Note that

f−1
β (D) contains D ∪ U ∪ V .

To keep track of the pre-images of D,U , and V we need an addressing
scheme similar to the one described for the model for quadratics in [14]. Here,
the coverings are infinite to one. Let y0 = Λ1(t0) where t0 = arg h−1

β1
(cβ1) ∈

[0, 2π). The other pre-images are naturally labelled by yn = Λ(t0 + 2πn).
Denote the component of the complement of f−1

β (D) by Y . In Y , label by

U0 the component of f−1
β (U) attached to Λ1 at y0. Then label the components

attached at yn by Un.
There is a branch of f−1

β (Λ1) between each pair Ui and Ui+1; label it Λ1,i;
it extends to infinity in both directions and the map from Λ1,i to Λ1 is one to
one. It is the boundary of a simply connected component of the complement
of f−2

β (D) that we label Yi. Set yi,0 = f−1
β (y0) and label the other pre-images

accordingly.
In this way, increasing the number of subscripts at each stage, we label each

of the components of f−k
β (D) and each of the components of its complement

for all k ≥ 2.
We now use subscripts and superscripts to differentiate between objects

associated to β1 and β2. For instance, D1 and D2 are the maximal linearizable
domains and Λ1

r and Λ2
r are used to denote the curve family Λr for fβ1 and

fβ2, respectively.
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Let H : D1 → D2 be the univalent map defined by fβ1H = Hfβ2 such that
H(1) = 1, and H(cβ1) = cβ2 . Let φ0 : C → C be a quasi-conformal extension
of H such that φ0(∞) = ∞. We will define a sequence of quasi-conformal
maps φn : C → C inductively using the dynamics.

First let us define φ1 and show how the condition Iβ1 = Iβ2 is used. Define
φ1 = φ0 = H on D1. Using the addressing scheme to choose the appropriate
inverse branch of fβ2 , we define φ1 : U1 → U2, V1 → V2 by φ1 = f−1

β2
◦φ0 ◦ fβ1.

For a point in f−1
β1

(D1) \ (D1 ∪ U1 ∪ V1) define

φ1 = f−1
β2

◦H ◦ fβ1

where the inverse is chosen so that if z = Λ1
r(t) then φ1(z) = Λ2

r(t).
We now have a map φ1 : f−1

β1
(D1) → f−1

β2
(D2). Since Iβ1 = Iβ2 , φ1 is

continuous at both the critical points 1 and cβ1 and hence holomorphic on

f−1
β1

(D1).
To extend φ1 to a quasi-conformal homeomorphism of C, define φ1 on

C−f−1
β1

(D1) by φ1 = f−1
β2

◦φ0 ◦fβ1. This is well defined because C−f−1
β1

(D1)
is simply connected, and there is no critical value of fβ2 outside D2.

Now let us assume that for every 1 ≤ k ≤ n, we have a quasi-conformal
homeomorphism φk : C → C defined so that φk : f−k

β1
(D1) → f−k

β2
(D2) is a

holomorphic isomorphism, such that for all z ∈ f−k
β1

(D1),

fβ1(z) = φ−1
k−1 ◦ fβ2 ◦ φk(z).

Define φn+1 as follows. Let W be a component of f−n−1
β1

(D1) − f−n
β1

(D1),
and let Λ be a boundary component ofW which is also a boundary component
of f−n(D1). Define φn+1 on W by φn+1 = f−1

β2
◦ φn ◦ fβ1, where the inverse

branch of fβ2 is chosen respecting the addressing scheme so that on Λ, φn+1 =
φn. Note that φn+1 is well defined on W because W is simply connected and
φn(fβ1(W )) does not contain any critical values of fβ2. Now we can define

φn+1 : f−n−1
β1

(D1) → f−n−1
β2

(Dβ2) to be a holomorphic isomorphism such that

φn+1 = φn on f−n
β1

(D1), and on f−n−1
β1

(D1),

(14) fβ1(z) = φ−1
n ◦ fβ2 ◦ φn+1(z).

It then follows that the boundary of some component Y , of C−f−n−1
β1

(D1), is

mapped by φn+1 to the boundary of some component Y ′ of C − f−n−1
β2

(Dβ2)
with the same address. Note that the component Y is mapped by fβ1 one to

one and onto some component Yi of C−f−n
β1

(D1) and similarly, the component

Y ′ is mapped by fβ2 one to one and onto some component Y ′
i of C−f−n

β2
(Dβ2).

By equation (14), it follows that φn(∂Yi) = ∂Y ′
i and therefore φn+1(∂Y ) =

∂Y ′. Now we define φn+1 : Y → Y ′ by setting φn+1 = f−1
β2

◦ φn ◦ fβ1 . In this

way we extend φn+1 to all the components of C − f−n−1
β1

(D1) and obtain a
quasi-conformal homeomorphism φn+1 : C → C.
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By induction, we have a sequence of quasi-conformal homeomorphisms
{φn} of the complex plane such that each φn is conformal on f−n

β1
(D1), and

its Beltrami coefficient satisfies

‖µφn
‖∞ ≤ ‖µφ1‖∞ < 1.

Taking a convergent subsequence of {φn}, we get a pair of limit quasi-conformal
homeomorphisms of the sphere, φ and ψ, which fix 0, 1, and ∞ and satisfy the
functional relation fβ1(z) = φ−1 ◦ fβ2 ◦ ψ(z). It follows from the above con-
struction that φ = ψ on the grand orbit of D1. Since both critical points are
attracted to the origin, by Remark 2.1, this grand orbit is the full Fatou set
of fβ1 . Since the Fatou set of fβ1 is dense on the complex plane, φ = ψ every-

where. Since φ is conformal on
⋃

0≤k<∞ f−k
β1

(D1), which, by Lemma 3.4, has
full measure, it is conformal everywhere and must be the identity, completing
the proof. �

In the next lemma we show that Iβ is surjective.

Lemma 3.6. For each pair (θ, χ) where 0 ≤ θ ≤ 2π and χ = 1 or −1, there
is a unique β ∈ γ such that Iβ = (θ, χ).

Proof. Recall that when β = −1 + i or −1− i, cβ = 1. In both cases, the two

components of f−1
β (fβ(Dβ)), which are in the outside of Dβ , are attached to

∂Dβ at 1: the configurations are complex conjugates of one another. These
cases realize the combinatorial pairs (0,+1), which is identified with (2π,−1),
and (0,−1), which is identified with (2π, 1).

Suppose now that 0 < θ < 2π. Choose some curve η as defined for
Lemma 3.2 and let β0 = η(t0). Under conjugation by z 7→ z/cβ, the sign
of χ(β) will reverse, and A(β) will become 2π − A(β). We therefore restrict
our consideration to the assumption that χ = χ(β0). We want to construct a
function fβ such that Iβ = (θ, χ).

For t > 0, set Dt = {z
∣∣ |z| < t}. Take r small enough that Dr is contained

in fβ0(Dβ0). Take any two points x1, x2 ∈ ∂Dr such that the counterclockwise
angle from x1 ro x2 is equal to θ. Define a quasi-conformal homeomorphism
g : Dβ0 − Dr → fβ0(Dβ0) − Dr/2 such that

g|∂Dβ0 = fβ0|∂Dβ0 , g|∂Dr(z) = z/2,

and

g2(1) = x1, g2(cβ0) = x2.

Such a g obviously exists. Define

(15) F (z) =





fβ0(z) for z /∈ Dβ0 ,

z/2 for z ∈ Dr,

g(z) for z ∈ Dβ0 \ Dr.
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β1

β2

γ+

γ−

Figure 1. The curve γ ⊂ Σ1/2

Now we can pull back the complex structure on Dβ0 and use the dynam-
ics to obtain an F−invariant complex structure on the Riemann sphere. We
identify the structure with the Beltrami differential µ = ∂F̄/∂F , ‖µ‖∞ < 1.
Let ω be the quasi-conformal map which solves the Beltrami equation with
coefficient µ and which fixes 0, 1, and ∞. Then G = ω ◦ F ◦ ω−1 is an entire
function. Since ω and its inverse are Hölder continuous at infinity, it follows
that G is of finite order. Since fβ0 has an asymptotic value, G is transcenden-
tal. From the construction of G, it follows that G has an asymptotic value at
zero, has two zeros and two critical points, and has an attracting fixed point
at the origin with multiplier 1/2; G therefore belongs to Σ1/2. Moreover, both
critical points lie in the boundary of the maximal linearizable domain of G
centered at the origin. It follows that there is a β ∈ γ such that G = fβ.
By construction, the map fβ realizes the pair (θ, χ) and by Lemma 3.5, β is
unique. �

For each 0 < ξ < 2π, by Lemmas 3.5 and 3.6, there is a unique value,
denoted by β+(ξ) ∈ γ such that Iβ+ = (ξ,+1), and a unique value, denoted
by β−(ξ) ∈ γ such that Iβ−

= (ξ,−1).

Lemma 3.7. The map β+, β− : (0, 2π) → S2\{−1,−2, 0,∞} are continuous.

Proof. We only prove the continuity of β+. The same argument proves the
continuity of β−.

Assume β+ is not continuous at some 0 < ξ < 2π. Then there is a sequence
ξn → ξ and some δ > 0 such that |β+(ξn) − β+(ξ)| > δ. By Corollaries 2.1
and 2.2 we see that, in a small neighborhood of each singularity of Σ1/2, ∂Dβ

contains exactly one critical point and therefore, that the sequence {β+(ξn)}
is contained in some compact set K ⊂ S2 \ {−1,−2, 0,∞}. Passing to a
convergent subsequence, we may assume that β+(ξn) → β for some β.
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An argument similar to that of Lemma 3.2 proves, however, that ∂Dβ

passes through both 1 and cβ so that β ∈ γ. By Proposition 3.1, Iβ = (ξ,+1)
and by Lemma 3.5, β+(ξ) = β. This contradiction completes the proof. �

We now have all the ingredients to prove the Structure Theorem for Σ1/2.

Proof of Theorem 3.1. It is not difficult to see that limξ→0 β+(ξ) =
limξ→2π β−(ξ) = β1, limξ→2π β+(ξ) = limξ→0 β−(ξ) = β2 and {β1, β2} =
{−1 + i,−1 − i}. In addition, by Lemma 3.5, both β+ and β− are injective.
It follows that γ = β+([0, 2π]) ∪ β−([0, 2π]) = γ1 ∪ γ2 is a simple closed curve
(see Figure 1). In fact, when β varies along one of the curves of γ1 or γ2,
the component of f−1

β (fβ(Dβ)) attached to 1 is bounded, and when β varies
along the other one, the component is unbounded.

Set σ : β → −(β+ 2)/(β+ 1). The map ξ = z/cβ conjugates fβ to fσ(β) so
that γ is invariant under σ. In addition, any continuous curve in Σ1/2 joining
zero to infinity must intersect γ by Lemma 3.2 so that γ separates zero and
infinity.

Let Ωint, Ωout denote the bounded and unbounded components of Σ1/2 −
γ. It follows that zero is a puncture of Ωint and infinity is a puncture of
Ωout. Since σ(0) = −2, it follows that for β in a small neighborhood of −2,
∂Dβ passes through only cβ. The curve γ thus must separate 0 and −2 and
therefore −2 is a puncture of Ωout. Similarly, since σ(−1) = ∞, γ separates
−1 and infinity, and therefore, −1 is a puncture of Ωint. Since γ is invariant
under σ, σ(Ωint) = Ωout and σ(Ωout) = Ωint. �

4. The Surgery Map S

In this section, we will define a surgery map S : Ωint → Σλ, which can then
be continuously extended to Ωint. The main idea is based on a construction
from [21], which allows one to construct a Siegel disk from an attracting fixed
point.

We begin by recalling some basic facts about real-analytic curves. A curve
η is called real-analytic, if for each x ∈ η, there is a domain D with x ∈ D,
and a univalent map h defined on D such that h(D ∩ η) is a segment of R

(or equivalently a circle). We need the following generalized version of the
Schwarz reflection principle, [1],

Lemma 4.1. Let U be a domain such that η ⊂ ∂U is an open and real-
analytic curve segment. Suppose f is a holomorphic function defined on U
such that f can be continuously extended to η and f(η) is also a real-analytic
curve segment. Then f can be holomorphically continued to a larger domain
which contains η in its interior.

We now use β ∈ Ωint to construct a real analytic circle homeomorphism.

For β ∈ Ωint, let Uβ , Vβ denote the unbounded components of Ĉ − ∂Dβ
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and Ĉ − fβ(∂Dβ), respectively. Let vβ = fβ(1) ∈ ∂Vβ . By the Riemann
Mapping Theorem, for eachw ∈ ∂Uβ, there is a unique conformal isomorphism
σβ,w : Vβ → Uβ such that σβ,w(vβ) = w and σβ,w(∞) = ∞. Note that as w
varies on ∂Uβ, the maps {(σβ,w ◦ fβ)|∂Uβ} form a continuous and monotone
family of topological circle homeomorphisms. By Proposition 11.1.9 of [11], it
follows that there is a unique w, say wβ ∈ ∂Uβ, such that the rotation number
of (σβ,wβ

◦ fβ |∂Uβ) is the θ we fixed in section 1. To simplify the notation,
we denote σβ,wβ

by σβ .

Let ψβ : Ĉ − ∆ → Uβ be the Riemann map such that ψβ(∞) = ∞ and
ψβ(1) = 1.

By Theorem 2.1, ∂Uβ = ∂Dβ is a quasi-circle. The curve ∂Vβ = fβ(∂Dβ)
is real-analytic since it is the hβ−image of the circle {z

∣∣ |z| = 1/2}, where as
usual, hβ : ∆ → ∂Dβ is the univalent map that conjugates fβ to the linear
map z 7→ z/2.

Now define a real-analytic critical circle homeomorphism with rotation
number θ by

sβ = ψ−1
β ◦ σβ ◦ fβ ◦ ψβ : ∂∆ → ∂∆.

Lemma 4.2. The circle homeomorphism sβ : ∂∆ → ∂∆ can be analytically
extended to an open neighborhood of ∂∆. For β ∈ Ωint, sβ has one double
critical point at 1. For β ∈ γ ⊂ ∂Ωint, if cβ 6= 1, sβ has two double critical

points at 1, and ψ−1
β (cβ); otherwise, sβ has a critical point at 1 of local degree

5.

Proof. Assume first that β ∈ Ωint so that ∂Dβ contains only the critical point
1 of fβ . Take z ∈ ∂∆. There are two cases.

In the first case, z 6= 1. Then sβ is holomorphic in a half neighborhood N ′

of z exterior to the unit circle. We can take N ′ small enough that sβ maps N ′

homeomorphically to a half neighborhood N ′
2 of s(z), also exterior to the unit

circle. By the Schwarz reflection lemma, sβ can be holomorphically extended
to an open neighborhood N of z so that s maps N homeomorphically to some
open neighborhood of s(z). In the second case, z = 1. Again take a small half
neighborhood N ′ of 1. Note that if N ′ is small enough, the boundary segment
of N ′, which lies on the unit circle, is mapped by fβ ◦ ψβ to a real-analytic
curve segment on ∂Vβ . Applying Lemma 4.1, fβ ◦ψβ can be holomorphically
extended to an open neighborhood N of 1 such that fβ ◦ψβ maps N three to
one to an open neighborhood W of vβ = (fβ ◦ ψβ)(1). We may take N small
enough so that the following holomorphic continuation is valid. Let W ′ ⊂ Vβ
be the half neighborhood of W . Note that the boundary segment of W ′ which
lies on ∂Vβ , is real-analytic and is mapped by ψ−1

β ◦ σβ to a Euclidean arc

segment. By Lemma 4.1 again, ψ−1
β ◦ σβ can be holomorphically continued

to W and it maps W homeomorphically onto some neighborhood of sβ(1). It
follows that sβ is holomorphic at 1 and 1 is a double critical point of sβ .
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0

vβ

fβ

σβ,ω

ω

1

Uβ

Figure 2. The topological circle mapping σβ,ω ◦ fβ : ∂Dβ → ∂Dβ

Now assume β ∈ γ ⊂ ∂Ωint so that by Theorem 3.1, cβ ∈ ∂Dβ. If cβ 6= 1,

then using the same argument for ψ−1
β (cβ) that we used above for ψ−1

β (1),

we can deduce that sβ has a double critical point at ψ−1
β (cβ) too. A similar

argument also works in the case that cβ = 1. We leave the details to the
reader. �

We now need the following theorem due to Herman and Swiatek ([H],[Sw]),

Herman-Swiatek Theorem. Let s : ∂∆ → ∂∆ be a real-analytic critical
circle homeomorphism of rotation number θ. Then s is quasi-symmetrically
conjugate to the rigid rotation Rθ if and only if θ is of bounded type. Moreover,
if s belongs to some compact family F of real-analytic critical circle homeo-
morphisms of rotation number θ, then the quasi-symmetric constant can be
taken to depend only on F .

From the Herman-Swiatek theorem, for each β ∈ Ωint, the circle homeo-
morphism sβ defined in Lemma 4.2 is quasi-symmetrically conjugate to the
rigid rotation Rθ. Let us set f0(z) = z/2 − z2/4 and f−1(z) = ze−z/2. Then
Ωint = {fβ

∣∣ β ∈ Ωint ∪ γ} ∪ {f0, f−1} is a compact family. From this and

the proof of Lemma 4.2, it follows that the family {sβ
∣∣ β ∈ Ωint} is a com-

pact family of critical circle homeomorphisms. Applying the Herman-Swiatek
theorem to this compact family, we have

Lemma 4.3. There exists a constant K, 1 < K < ∞, such that for any
β ∈ Ωint, there is a quasi-symmetric homeomorphism pβ satisfying

1. pβ(1) = 1,

2. sβ = pβ ◦Rθ ◦ p
−1
β ,
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3. the quasi-symmetric constant of pβ is bounded by K.

In order to construct the surgery map S, we will need to consider quasi-
conformal extensions of quasi-symmetric homeomorphisms of the circles ∂∆
and ∂∆1/2. Such extensions can be defined using either the Beurling-Ahlfors
or Douady-Earle extensions. For our purposes, however, it will be necessary
to normalize the extensions so that they fix the origin.

To that end, we introduce a quasi-conformal map of the upper half plane
H that is the identity on the real axis and sends the point w = u+ iv ∈ H to
i. One such map is

Tw(x + iy) = (x− yu/v) + (y/v)i.

For r = 1/2 or 1, let τr : ∆r → H be the conformal isomorphism such that

τr(r) = 0 and τr(0) = i. Then T̃ω = τ−1
r ◦Tw ◦ τr is a quasi-conformal map of

∆r that sends the point τ−1
r (w) to the origin.

Thus given any quasi-conformal map gr of ∆r with ω = τr(gr(0)), the map

g̃r = T̃ω ◦ gr

is a quasi-conformal map of ∆r that fixes the origin. If gr is the Douady-Earle
extension of a quasi-symmetric map then g̃ is the called normalized extension.

As before we let L1/2 denote the linear map z → z/2; we denote by hβ the
univalent map with hβ(0) = 0 and h′β(0) > 0 conjugating the action of L1/2

on ∆ to the action of fβ on Dβ ; and we use ψβ : Ĉ − ∆ → Uβ to denote the
Riemann map such that ψβ(1) = 1 and ψβ(∞) = ∞.

Now, let φβ : Ĉ − ∆ → Vβ be the Riemann map such that φβ(∞) = ∞
and φ′β(∞) > 0.

By Theorem 2.1 and the fact that the family Ωint = {fβ
∣∣ β ∈ Ωint ∪ γ} ∪

{f0, f−1} is a compact family, we have

Lemma 4.4. There is a positive constant M such that for every β ∈ Ωint,
the maps

1. ψ−1
β ◦ hβ : ∂∆ → ∂∆, and

2. L1/2 ◦ φ
−1
β ◦ hβ : ∂∆1/2 → ∂∆1/2, and

3. ψ−1
β ◦ σβ ◦ φβ : ∂∆ → ∂∆

are all M−quasi-symmetric homeomorphisms.

Each of these quasi-symmetric homeomorphisms has a normalized quasi-
conformal extension as does the map pβ. We denote them as follows:

Ψβ = ˜ψ−1
β ◦ hβ : ∆ → ∆,

Φβ = ˜L1/2 ◦ φ
−1
β ◦ hβ : ∆1/2 → ∆1/2,

Λβ = ˜ψ−1
β ◦ σβ ◦ φβ : ∆ → ∆
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and

Pβ = p̃β : ∆ → ∆.

From Lemmas 4.3 and 4.4 it follows that the complex dilation of these maps
is uniformly bounded. That is,

Lemma 4.5. There is a constant 0 < k < 1 such that for every β ∈ Ωint,

|µ
Ψβ

(z)| < k, |µ
Φβ

(z)| < k, |µ
Λβ

(z)| < k, and |µ
Pβ

(z)| < k

hold for almost every point z ∈ C.

Now define σ̂β(z) : C → C to be the normalized quasi-conformal extension
of σβ by setting

(16) σ̂β(z) =

{
σβ(z) for z ∈ Vβ ,

hβ ◦ Ψ−1
β ◦ Λβ ◦ L−1

1/2 ◦ Φβ ◦ h−1
β (z) otherwise.

Set Rβ = P−1
β ◦ Ψβ ◦ h−1

β . Define the model map Fβ : C → C as follows,

(17) Fβ(z) =

{
σ̂β ◦ fβ(z) for z ∈ Uβ ,

R−1
β ◦Rθ ◦Rβ(z) otherwise.

By Lemma 4.5 and the construction of Fβ we have,

Lemma 4.6. There is a constant 0 < k < 1 such that for every β ∈ Ωint ∪ γ,

sup
z∈C

|µFβ
(z)| ≤ k.

The support of µFβ
is contained in

⋃
k≥0 F

−k
β (Dβ).

To obtain the surgery map we want to construct a map in Σλ from the
model Fβ . To do this we define a complex structure that we identify with
the Beltrami differential µβ on the Riemann sphere that is compatible with
the dynamics as follows: For z ∈ C, let m ≥ 0 be the least integer such that
Fmβ (z) ∈ Dβ. If m is finite define µβ(z) to be the pull back of µRβ

(Fmβ (z))

by Fmβ . Otherwise, set µβ(z) = 0. In this way we get a Fβ-invariant complex

structure µβ on the whole Riemann sphere satisfying ‖µβ‖∞ ≤ k < 1. Let
ωβ be the quasi-conformal homeomorphism of the Riemann sphere solving
the Beltrami equation with coefficient µβ fixing 0, 1 and ∞. Then Tβ(z) =

ωβ◦Fβ◦ω
−1
β (z) is an entire function which has a Siegel disk of rotation number

θ. By the construction, the boundary of the Siegel disk is a quasi-circle passing
through critical point 1.

Lemma 4.7. Tβ ∈ Σλ.
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Proof. We first claim that Fβ has exactly two zeros which in turn implies that
Tβ has exactly two zeros. From the construction, the origin is fixed and is
the only zero in the complement of Uβ , D̄β. In Uβ , fβ has exactly one zero
and since σ̂β(0) = 0, this is a zero of Fβ . Since σ̂β is a homeomorphism, this
proves the claim.

The homeomorphism ωβ preserves the critical structure of Fβ so that Tβ
has exactly two critical points, ωβ(1) and ωβ(cβ), whose orders correspond to
those of 1 and cβ and these points coincide precisely when cβ = 1. Because
ωβ fixes 1, it is a critical point of Tβ .

We claim that the origin is an asymptotic value for Tβ. Let η(t) be an
asymptotic path for fβ so that limt→1 η(t) = ∞ and limt→1 fβ(η(t)) = 0.
We may assume without loss of generality that fβ(η(t)) is not in Vβ so that
σ̂β ◦ fβ(η(t)) is not in Uβ . It follows that limt→1 Fβ(η(t)) = 0 and that
limt→1 Tβ(η(t)) = 0 proving the claim.

Since ωβ is a quasi-conformal homeomorphism of the Riemann sphere, both
it and its inverse are Hölder continuous at infinity. Therefore, because fβ is
an entire function of finite order, so is Tβ.

By construction Tβ has a Siegel disk of rotation number θ centered at the
origin, and T ′

β(1) = 0. It must therefore be that Tβ ∈ Σλ. �

Recall that we denote the map in Σλ corresponding to β by gβ. We have
therefore shown that Tβ = gβ′ for some β′ ∈ Σ. We thus define the surgery
map

S : Ωint → Σλ.

as follows:
To each β ∈ Ωint ∪ γ, set

S(β) = Tβ = gβ′ ,

and for the two punctures {0,−1} of Ωint, set

S(0) = 0 and S(−1) = −1.

In the next section, we will prove that S is continuous on Ωint.

5. The Continuity of the Surgery Map S

The proof of the continuity of the surgery map is based on a similar proof
in §12 of [20].

First though, we need a lemma about quasi-conformal conjugacy classes in
Σλ. The proof holds just as well for Σt for any |t| < 1.

Lemma 5.1. The quasi-conformal conjugacy class Q of gβ in Σλ is an open
set or a point. In particular, for β ∈ γ, the quasi-conformal conjugacy class
of gS(β) is a point.
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Proof. Assume first that the critical points of gβ are distinct and that gβ′ 6= gβ
belongs to Q. Then there is a quasi-conformal homeomorphism of the com-
plex plane φ satisfying φ−1 ◦ gβ ◦ φ = gβ′ . Let µφ be the Beltrami differen-
tial of φ corresponding to the complex structure on C invariant with respect
to gβ . Then, using the “Bers µ-trick” (see for example [6]), the structures
corresponding to tµ for t ∈ ∆ are all invariant with respect to gβ . If we
denote the solutions to the Beltrami equations for tµ by φt, then the maps
gt = φ−1

t ◦ gβ ◦ φt are all holomorphic. Arguing as in the proof of Lemma 4.7
we deduce they are of the form gβ(t) and define an open set in Σλ.

By the Measurable Riemann Mapping Theorem [3], the maps φt, gβ(t), β(t)
and cβ(t) all depend holomorphically on t.

If β0 ∈ γ, the boundary of the Siegel disk of gS(β0) contains two critical
points but in any neighborhood of β0 there are points β for which the boundary
of gS(β) contains only one critical point so that gS(β0) and gS(β) are not even
topologically conjugate. The quasi-conformal class of gS(β0) is therefore a
single point. �

Remark 5.1. The conjugacy classes depend on the orbit structure of the
critical point which does not lie on the boundary of the Siegel disk.

Theorem 5.1. The surgery map S : Ωint → Σλ defined in the last section is
continuous.

Proof. We show first that if β ∈ Ωint − {0,−1}, S is continuous at β. It
suffices to show that S(βn) → S(β) if βn → β.

For each n set Fn = Fβn
. By construction, it follows that Fβ depends

continuously on β and therefore that Fβn
→ Fβ uniformly on compact subsets

of the complex plane. Simplifying the notation of the previous section in the
obvious way we have, S(βn) = ωn ◦ Fn ◦ ω−1

n and S(β) = ωβ ◦ Fβ ◦ ω−1
β .

By Lemma 4.6, for all n, ‖µn‖∞ ≤ k < 1 so that, passing to a convergent
subsequence, we can find a quasi-conformal map ω such that ωn → ω and

S(βn) → G = ω ◦ Fβ ◦ ω−1.

As before, G ∈ Σλ and by definition, G is quasi-conformally conjugate to
S(β). If S(β) = G there is nothing to prove so assume they are not equal.

Let N be an neighborhood of G in Σλ containing S(βn) for large n. By
Lemma 5.1 it follows that S(βn) is quasi-conformally conjugate to G and
hence to S(β). It also follows that Fβn

and Fβ are conjugate.
The theorem will follow if we can prove that ω = ωβ so that S(β) = G.

This will follow by standard quasi-conformal theory (see for example [12]) if
we can show that µn → µβ in the L1(C) norm.

We use the notation area(E) to denote the Lebesgue area in the spheri-
cal metric of a measurable set E in the sphere. From our discussion of the
combinatorics of the sets f−k

β (Dβ)) and the area distortion theorem of quasi-

conformal mappings (for example, Theorem 5.2, [12]), we see that for N large
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enough

(18) area(
⋃

k>N

F−k
β (Dβ)) ≤ δ.

Because Fβn
and Fβ are quasi-conformally conjugate by maps with uni-

formly bounded dilatation we also have, for large enough n,

(19) area(
⋃

k>N

F−k
βn

(Ωβn
)) ≤ δ.

Now let B be an open topological disk such that B̄ ⊂ Dβn
∩Dβ for all n

large enough, and such that for N as above

(20) area
( ⋃

0≤k≤N

F−k
β (Dβ) −

⋃

0≤k≤N

F−k
β (D)

)
≤ δ,

and

(21) area
( ⋃

0≤k≤N

F−k
βn

(Ωβn
) −

⋃

0≤k≤N

F−k
β (D)

)
≤ δ

Now for any ǫ > 0, let

Qǫn = {z ∈ C
∣∣|µβn

(z) − µβ(z)| > ǫ}.

First we have

(22) Qǫn ⊂
⋃

k≥0

F−k
βn

(Ωβn
) ∪

⋃

k≥0

F−k
β (Dβ).

In fact, if z /∈
⋃
k≥0 F

−k
β (Ωβn

) ∪
⋃
k≥0 F

−k
β (Dβ), then µβn

(z) = µβ(z) = 0,

and hence z /∈ Qǫn.

Since B̄ ⊂ Dβn
∩Dβ for all large n, it follows that on

⋃
0≤k≤N F

−k
β (B), µn

is defined by pulling back the complex structure of Rβn
on B by Fn, and µβ

is defined by pulling back the complex structure of Rβ on B by Fβ . Because,
except for a set of measure zero, Fβ , µRβ

and µFβ
depend continuously on β,

it follows that for all large enough n,

(23) Qǫn ∩
⋃

0≤k≤N

F−k
β (D) = ∅.

From equations(18)—(23), we derive that for all large enough n

area(Qǫn) ≤ 4δ.

This implies that µn → µβ with respect to spherical measure. By Lemma 4.3
there is a uniform bound k on all the ‖µβn

‖∞. Passing to a convergent subse-
quence, we conclude ωβn

→ ωβ uniformly on compact sets in the plane which
is what we needed to prove.

Now let us show that S is continuous at the punctures 0 and −1. We need
only to show that limβ→0 S(β) = 0 and limβ→−1 S(β) = −1.
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β1

β2

γ+

γ−

S(β1)

S(β2)

S(γ+)

S(γ−)

S

Figure 3. The map S : γ → S(γ)

First let us prove that limβ→0 S(β) = 0. Let zβ be the non-zero solution of
fβ(zβ) = 0; it is therefore also a solution of Fβ(zβ) = 0. As β → 0, zβ → 2.
By Lemma 4.6, ωβ(zβ) stays bounded away from zero and infinity. As β → 0,
cβ → ∞. Again by Lemma 4.6, ωβ(cβ) → ∞. In other words, as β → 0, the
zero of gS(β) distinct from the origin, stays bounded away from the origin and
infinity, and the critical point of gS(β), distinct from 1, approaches infinity.
From the formula for cβ , it follows that S(β) → 0 as β → 0.

A similar argument proves that limβ→−1 S(β) = −1. In fact, as β → −1,
zβ → ∞, and cβ → ∞ or, in other words, as β → −1, the zero of gS(β) distinct
from the origin, and the critical point of gS(β) distinct from 1, both approach
infinity. From the formula for zβ, it follows that limβ→−1 S(β) = −1. �

6. The Proof of the Main Theorem

Recall that γ is the union of two Jordan arcs, γ+ and γ−, which connect
β1 = −1 + i and β2 = −1− i, such that when β varies along one of them, the
component of f−1

β (fβ(Dβ)), which is attached to ∂Dβ at 1 is bounded, and
when β varies along the other one, the component is unbounded.

For β ∈ γ, denote the the Siegel disk of S(β) by ∆S(β); it is a quasi-circle
passing through both of the critical points 1 and cS(β). Let hS(β) : ∆ → ∆S(β)

be the holomorphic conjugation map such that hS(β)(1) = 1. Define the

angle from 1 to cS(β) to be the angle from h−1
S(β)(1) to h−1

s(β)(cS(β)) measured

counterclockwise; denote it by AS(β). By the construction of the surgery
map S and Lemma 3.3, it follows that there is exactly one component of
g−1
S(β)(∆S(β)) attached to ∂∆S(β) at each of the critical points, 1 and cS(β).

Denote the component which is attached at 1 by Uβ. Since S is continuous,
it follows that AS(β) depends continuously on β. Therefore, as β varies along
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one of the curves of γ±, AS(β) varies continuously from 0 to 2π and Uβ is
bounded, and as β varies along the other one, AS(β) varies continuously from
0 to 2π and Uβ is unbounded. As a direct consequence, we have

Corollary 6.1. S(γ1) ∩ S(γ2) = {S(β1),S(β2)}.

Lemma 6.1. For β, β′ ∈ γ±, if AS(β) = AS(β′), then S(β) = S(β′).

Proof. Since β, β′ belong to the same arc γ±, both Uβ and Uβ′ are bounded or
both are unbounded. This together with the condition AS(β) = AS(β′) imply
that gS(β) and gS(β′) have the same combinatorial information.

Since AS(β) = AS(β′), there is a univalent map h : ∆S(β) → ∆S(β′) such

that h(1) = 1, h(cS(β)) = h(cS(β′)), and gS(β) = h−1 ◦ gS(β′) ◦ h.

Take φ0 : Ĉ → Ĉ to be a quasi-conformal homeomorphism such that
φ1|∆S(β) = h, and φ0(∞) = ∞. Since ∂∆S(β) is a quasi-circle, this is always
possible. Now let us define a sequence of quasi-conformal homeomorphisms
of the sphere, {φn}, by induction. We need a scheme to assign addresses to

the components of g−k
S(β)(∆S(β)) for each positive integer k. This may be done

in essentially the same manner indicated in the proof of Lemma 3.5.
Given this symbolic description of the components we assume that now

φn is defined and define φn+1. the details here). First define φn+1 = φn on
g−n
s(β)(∆S(β)). For each component W of g−n−1

s(β) (∆S(β)), which is not a compo-

nent of g−n
s(β)(∆S(β)) find the corresponding component W ′, of g−n−1

s(β′) (∆S(β′))

that has the same address as U . Define φn+1 : W → W ′ by φn+1(z) =
g−1
S(β′) ◦ φn ◦ gS(β)(z). Now let Y be a component of C − g−n−1

s(β) (∆S(β)). It is

not difficult to see that W is simply connected and unbounded. Let Y ′ be the
corresponding component of C− g−n−1

S(β′) (∆S(β′)) and define φn+1 : Y → Y ′ by

φn+1(z) = g−1
S(β′) ◦ φn ◦ gS(β)(z).

This inductive process defines a sequence of quasi-conformal homeomor-
phisms, {φn}, of the sphere. From the construction, it follows that for each
n ≥ 1, we have

(1) φn is holomorphic on g−n
s(β)(∆S(β)),

(2) φn+1 = φn on g−n
S(β)(∆S(β)),

(3) gS(β) = φ−1
n ◦ gS(β′) ◦ φn+1,

(4) ‖µφn+1‖∞ = ‖µφn
‖∞,

(5) φn fixes 0, 1, and ∞.

From property (4), it follows that there is a constant k < 1 such that
‖µφn

‖∞ ≤ k for all n. Passing to convergent subsequences, we get two quasi-
conformal homeomorphisms of the sphere, φ and ψ, fixing 0, 1, and ∞, such
that the supports of µφ and µψ are contained in the grand orbit of the Siegel
disk ∆gS(β)

. Moreover, φ = ψ on this grand orbit. Since both β and β′ lie
on γ±, both critical points are attracted to the origin. By Remark 2.1, the
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complement of this grand orbit does not contain any other Fatou components
and so is the Julia set. Thus φ = ψ on a dense set of the complex plane and
therefore everywhere. It follows that gS(β) and gS(β′) are quasi-conformally
conjugate to each other. By the second assertion of Lemma 5.1, we get gS(β) =
gS(β′). �

Lemma 6.2. The sets S(γ+) ⊂ Σλ and S(γ−) ⊂ Σλ are simple Jordan arcs.

Proof. We show S(γ+) is a simple Jordan arc. The same argument applies
to S(γ−). By Lemma 6.1, we have a map χ : [0, 2π] → S(γ+) defined by
assigning to each α ∈ [0, 2π], that β ∈ γ+ such that AS(β) = α. Obviously
the map χ is injective and surjective. Now let us show that it is continuous.
Let αn → α be a sequence such that χ(αn) = S(βn) → S(β′), and χ(α) =
S(β). Now AS(β′) = limn→∞ AS(βn) = limn→∞ αn = α and AS(β) = α.
Lemma 6.1 implies S(β′) = S(β) so that χ is continuous at α. This means
that χ : [0, 2π] → S(γ+) is a homeomorphism and the curves are simple as
claimed. �

Lemma 6.3. S(γ) is a simple closed curve in Σλ, consisting of all maps f
in Σλ, such that the boundary of the Siegel disk of f is a quasi-circle passing
through both critical points. Moreover, the topological degree of the map S :
γ → S(γ) is 1.

Proof. It follows from Corollary 6.1 and 6.2 that S(γ) is a simple closed curve
in Σλ.

Now suppose β ∈ Σλ is such that ∂∆gβ
is a quasi-circle passing through

both 1 and cβ . Then there is some β′ ∈ γ such that the angle between the
critical points of gβ is the same as the angle between the critical points of
S(β′) and such that the components Uβ and US(β′) are either both bounded
or are both unbounded. Then, arguing as in the proof of Lemma 6.2 we
deduce that S(β′) and gβ are quasi-conformally conjugate to each other, and
by the second assertion of Lemma 5.1, we get S(β′) = gβ. This implies that
β ∈ S(γ).

To see the topological degree is one, note that by Lemma 6.2 each γ± is
simple and on the endpoints

S−1(S(β1)) = {β1} and S−1(S(β2)) = {β2}

�

Let Γ = S(γ). Recall that the linear conjugation z 7→ z/cβ induces a map
σ : Σλ → Σλ: β → −(β + 2)/(β + 1).

Lemma 6.4. Σλ is symmetric about Γ under the map σ.

Proof. Since the map σ : β → −(β + 1)/(β + 1) is induced by the linear
conjugation z 7→ z/cβ, it follows that Γ is invariant under the map σ, and
moreover, σ : Γ → Γ is a homeomorphism.
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By Lemma 6.4, it follows that S(Ωint) is a topological disk with boundary
Γ. This implies that S(Ωint) is one of the components of C−Γ. Let us denote
the bounded component of Σλ − Γ by Θint and the unbounded one by Θout.
Since S(0) = 0 , S(−1) = −1, and {−2,∞} ∩ S(Ωint) = ∅, it follows that
Θint = S(Ωint).

Because σ maps the set {0,−1) to the set {−2,∞}, we see that σ(Θint) =
Θout and σ(Θout) = Θint. �

We now have all the ingredients to prove the main theorem. We recall the
statement.

Main Theorem. Let θ be a bounded type irrational number. Then for any

β ∈ Ĉ \ {0,−1,−2,∞}, the boundary of the invariant Siegel disk of the entire
map

fβ(z) = e2πiθ(z −
β + 2

β + 1
z2)eβz,

is a quasi-circle passing through one or both the critical points of fβ(z).

Proof. For β ∈ Θint, the theorem is implied by the surjectivity of the surgery
map S : Ωint → Θint. For β ∈ Θout, by Lemma 6.4, there is a β′ ∈ Θint such
that gβ and gβ′ are linearly conjugate to each other. �

The following theorem summarizes our results and is the structure theorem
for Σλ.

Theorem 6.1. [Structure Theorem of Σλ] There is a simple closed curve
Γ ⊂ Σλ dividing it into two twice punctured disks such that for β ∈ Γ, the
boundary of the Siegel disk passes through both critical points, for β in the
bounded component of Σλ − Γ, punctured at the points {0,−1}, the boundary
of the Siegel disk contains the critical point 1 but not the critical point cβ and
for β in the unbounded component of Σλ−Γ, punctured at the points {−2,∞},
the boundary of the Siegel disk contains the critical point cβ but not the critical
point 1. Moreover, Γ is invariant under the map β → −(β + 2)/(β + 1).
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