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Abstract. We prove that every set system of bounded VC-dimension has a fractional
Helly property. More precisely, if the dual shatter function of a set system F is bounded
by o(mk), then F has fractional Helly number k. This means that for every α > 0 there
exists a β > 0 such that if F1, F2, . . . , Fn ∈ F are sets with

⋂
i∈I Fi �= ∅ for at least α

(
n
k

)
sets I ⊆ {1, 2, . . . , n} of size k, then there exists a point common to at least βn of the Fi .
This further implies a (p, k)-theorem: for every F as above and every p ≥ k there exists
T such that if G ⊆ F is a finite subfamily where among every p sets, some k intersect,
then G has a transversal of size T . The assumption about bounded dual shatter function
applies, for example, to families of sets in Rd definable by a bounded number of polynomial
inequalities of bounded degree; in this case we obtain fractional Helly number d+1.

1. Introduction

The well-known theorem of Helly states that if C is a finite family of convex sets in
Rd such that any d + 1 or fewer of the sets of F intersect, then

⋂
C �= ∅; we say that

the d-dimensional convex sets have Helly number d + 1. A vast number of Helly-type
results are known; see, e.g., [8].

Here we consider fractional Helly-type theorems. We introduce them briefly; they
are discussed more leisurely in [12], together with other topics of this paper, such as
VC-dimension and (p, q)-theorems.

The original fractional Helly theorem for convex sets in Rd , asserts the following
(here and in what follows, we use the notation [n] = {1, 2, . . . , n} and

(X
k

)
for the system

of all k-element subsets of X ):
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Theorem 1 [10]. For every d ≥ 1 and every α ∈ (0, 1] there exists a β = β(d, α) > 0
with the following property. Let C1, . . . ,Cn be convex sets in Rd such that

⋂
i∈I Ci �= ∅

for at least α
( n

d+1

)
index sets I ∈ ( [n]

d+1

)
. Then there exists a point contained in at least

βn of the Ci .

LetF be an arbitrary set system. For sets F1, F2, . . . , Fn ∈ F and an index set I ⊆ [n],
we write FI for

⋂
i∈I Fi . We say thatF has fractional Helly number k if for every α > 0

there exists a β > 0 such that if n is any natural number and F1, F2, . . . , Fn ∈ F are
sets such that FI �= ∅ for at least α

(n
k

)
sets I ∈ ([n]

k

)
, then there exists a point common

to at least βn of the Fi . We say that F has the fractional Helly property if it has a finite
fractional Helly number.

Note that this definition formally makes sense only for infinite set systems F ; if F is
finite, then the fractional Helly number is trivially 1, since β can be chosen in dependence
on the number of sets in F . However, in concrete examples, we usually also have an
explicit dependence of β on α, and so we can make conclusions about finite set systems
too.

Although the fractional Helly property appears less intuitive than the Helly property,
and its conclusion is weaker, it seems much better behaved and more robust in general
than the Helly property. Here are some examples:

• There is a fractional Helly theorem for hyperplane transversals of convex sets in
Rd [1] although there is no finite Helly number.
• For convex lattice sets in Zd (i.e., intersections of convex sets in Rd with the d-

dimensional integer lattice), the Helly number is 2d , anomalously large, but the
fractional Helly number is only d + 1 [4].
• If a familyF has fractional Helly number k then the family {F1∪F2 : F1, F2 ∈ F},

too, has fractional Helly number k, as is easily checked; for the Helly number this,
of course, fails badly.

In this paper we further support the above thesis by adding a wide class of examples
with the fractional Helly property: all set systems of bounded VC-dimension.

The VC-dimension of a set system F on a ground set X is the maximum size of a
set A ⊆ X that is shattered by F , meaning that {A ∩ F : F ∈ F} = 2A. Examples of
set systems with bounded VC-dimension abound in geometry; see, e.g., [11] for a wider
background. The dual shatter function of F is a function π∗F : N → N, and π∗F (m) is
the maximum number of nonempty fields of the Venn diagram of m sets of F . More
formally, we call two points x, y ∈ X equivalent with respect to sets F1, . . . , Fm if
{i ∈ [m] : x ∈ Fi } = {i ∈ [m] : y ∈ Fi }, and π∗F (m) is the maximum possible
number of classes of this equivalence over all choices of F1, . . . , Fm ∈ F . The dual
VC-dimension of F is the maximum possible number of sets in F with a complete Venn
diagram, i.e., max{k : π∗F (k) = 2k}. It is well known that if the dual VC-dimension is
d∗, then π∗F (m) ≤

∑d∗
i=0

(m
i

)
. Moreover, d∗ ≤ 2d , where d is the VC-dimension, and, in

particular, the VC-dimension is finite iff the dual VC-dimension is.
The dual shatter function seems to be a crucial quantitative parameter of geometric set

systems; for example, it is relevant to the performance of range-searching data structures
[7], and in many cases it essentially determines the discrepancy of the set system [11].
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The following theorem shows a similar phenomenon for the fractional Helly number.

Theorem 2 (Fractional Helly for Bounded VC-Dimension). Let F be a set system
whose dual shatter function satisfiesπ∗F (m) = o(mk) (that is, limm→∞ π∗F (m)/mk = 0),
where k is a fixed integer (in particular, this holds if the dual VC-dimension of F is at
most k−1). Then F has fractional Helly number k.

In contrast, bounded VC-dimension does not guarantee any Helly property. A very
simple example is the system {[n]\{i} : i ∈ [n]}, and more complicated examples will
be mentioned later.

We note that the original Katchalski–Liu theorem (Theorem 1) is not a special case
of Theorem 2, since convex sets in Rd have infinite VC-dimension.

A primary example of geometric families of bounded VC-dimension are semialge-
braic sets in Rd of bounded description complexity. We recall that a set A ⊆ Rd is
semialgebraic if it can be defined by a Boolean combination of polynomial inequalities;
that is, if A = {x ∈ Rd : 
(p1(x) ≥ 0, p2(x) ≥ 0, pr (x) ≥ 0)}, where 
 is a Boolean
formula and p1, . . . , pr ∈ R[x1, . . . , xd ] are polynomials. (The definition of a semi-
algebraic set may also involve quantifiers. However, by a well-known result of Tarski,
quantifiers can be eliminated, and so each such set has an equivalent quantifier-free defi-
nition; see, e.g., [6] for a discussion of semialgebraic sets and quantifier elimination.) We
call the number max(d, r, D), where D is the maximum degree of the pi , the description
complexity of A. Standard estimates on the number of sign patterns of real polynomials
(due to Oleinik, Petrovskii, Milnor, Thom; see, e.g., [5] for precise results and references)
imply that if F is the family of all semialgebraic sets in Rd of description complexity at
most B, then π∗F (m) ≤ Cmd for some C = C(B) and all m. More generally, if F is as
before and F ′ = {F ∩ V : F ∈ F}, where V is a k-dimensional algebraic variety in Rd ,
then π∗F ′(m) ≤ C ′mk , C ′ = C ′(B, k) [5]. We thus have:

Corollary 3. For every fixed B, the family of all semialgebraic subsets of Rd of de-
scription complexity at most B has fractional Helly number d + 1. The system of all
intersections of sets of this family with a fixed k-dimensional algebraic variety has frac-
tional Helly number k + 1.

Here is a nice more concrete example. If F ⊆ Rd is a semialgebraic set of bounded de-
scription complexity, then the set of all j-flats in Rd intersecting F can be represented by
a semialgebraic subset of the affine Grassmannian, which is a ( j+1)(d− j)-dimensional
algebraic variety. Consequently, there is a fractional Helly theorem: IfF is the family all
semialgebraic subsets of Rd of description complexity at most B, F1, . . . , Fn ∈ F , and
at least α

(n
k

)
of the k-tuples of the Fi have a j-flat transversal, where k = ( j+1)(d− j),

then there is a j-flat intersecting at least βn of the Fi . In particular, for line transversals
for semialgebraic sets of bounded description complexity in R3 we obtain the fractional
Helly number 5. (In contrast, there is no fractional Helly theorem for line transversals
of convex sets in R3.)

Alon and Kleitman [3] established an old conjecture of Hadwiger and Debrunner, the
(p, q)-theorem for convex sets: For every integer d, p, q, p ≥ q ≥ d + 1, there exists
T such that whenever F is a finite family of convex sets in Rd such that among every p
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sets ofF , some q intersect, then τ(F) ≥ T ; that is, there is a T -point set intersecting all
sets of F . Their spectacular proof uses the Katchalski–Liu fractional Helly theorem in
an essential way. As discussed in [2], their method can be used to derive (p, q)-theorems
from fractional Helly theorems on a fairly abstract level. These methods immediately
imply that a family F as in Theorem 2 satisfies a (p, k)-theorem (for every p ≥ k):

Theorem 4 ((p, q)-Theorem for Bounded VC-Dimension). LetF be a set system with
π∗F (m) = o(mk) for some integer k, and let p ≥ k. Then there is a constant T such that
the following holds for every finite family G ⊆ F : If G has the (p, k)-property, meaning
that among every p sets of F , some k intersect, then τ(G) ≤ T .

The Alon–Kleitman method is explained in many sources [3], [12], [2], [4], and so we
omit a detailed discussion. However, for readers familiar with the method, we remark
that the first step (showing that the fractional packing number of G is bounded) goes
through unchanged based on the fractional Helly property, as well as the second step
(LP duality), and the third step (ε-net property, or bounding τ in terms of τ ∗) is just the
well-known theorem of Haussler and Welzl [9] about the existence of ε-nets for systems
of bounded VC-dimension.

Already the case p = k in Theorem 4 is interesting and appears nontrivial. It shows
that while a set system of bounded VC-dimension may fail to have a Helly property,
there is always an “almost-Helly theorem” (a Gallai-type theorem according to common
terminology): If every k sets intersect, then all sets can be intersected by a bounded
number of points.

2. Proof of Theorem 2

Let F and k be as in Theorem 2, let α > 0 be given, and let F1, F2, . . . , Fn ∈ F be sets
such that FI �= ∅ for at least α

(n
k

)
k-tuples I ∈ ([n]

k

)
. We may assume that n is larger than

any given constant, for otherwise, for β sufficiently small, it is enough to have a point
in a single Fi .

Using the assumption π∗F (m) = o(mk), we fix m so that π∗F (m) <
1
4α

(m
k

)
, and we

set β = 1/2m. Finally, we assume that n is so large that βn ≥ m.
For contradiction, we suppose that no point is common to βn of the Fi . We consider

an index set J ∈ ([n]
m

)
and a k-tuple I ∈ (J

k

)
. We call the pair (J, I ) good if there is a

point x with x ∈ Fi for all i ∈ I and x �∈ Fj for all j ∈ J\I . We bound below the
probability that a pair (J, I ) chosen uniformly at random is good.

We first choose a random I ∈ ([n]
k

)
, and then we choose the m−k elements of J\I

at random from [n]\I . The probability that FI �= ∅ is at least α. If FI �= ∅, we fix one
point x ∈ FI . By the assumption, x is contained in fewer than βn of the Fi , and so the
probability that none of the sets Fj with j ∈ J\I contains x is at least

(�(1−β)n�
m−k

)
(n−k

m−k

) ≥
m−k−1∏

i=0

(1− β)n − i

n − i
≥

(
(1− β)n − m

n − m

)m

.
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Since we assumed m ≤ βn and β = 1/2m, the above expression is at least (1− 2β)m =
(1 − 1/m)m ≥ 1

4 . Therefore, the probability of a random pair (J, I ) being good is at
least 1

4α.
If we choose a random J ∈ ([n]

m

)
, the expected number of I ∈ (J

k

)
with (J, I ) good

is at least N = 1
4α

(m
k

)
, and so there exists a J with at least this many I . However,

this violates the assumption π∗F (m) < N , since the sets indexed by J have at least N
nonempty fields in their Venn diagram.
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