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BOUNDEDLY HOLOMORPHIC CONVEX DOMAINS

DonGg S. Kim

A boundedly holomorphic convex domain is a holomor-
phically convex domain with respect to the algebra of bounded
holomorphic functions in the domain. The followings are
shown in this paper: In a Riemann domain, a boundedly
holomorphic convex domain is a domain of bounded holomorphy.
With some restrictions, the converse is true. The spectrum
of the algebra B of bounded holomorphic functions is an
envelope of bounded holomorphy provided that the completion
of B with the topology of uniform convergence on compact
subsets is stable under differentiation. Finally, Stein mani-
folds of bounded type are introduced.

Let (X, 4)) and (X, A,) be complex (analytic) manifolds. A map
a: X, — X, said to be biholomorphic if & is a homeomorphism of X,
onto X, and both @ and a™ are holomorphic. « is called a spread
map if o is a locally biholomorphic. We denote a complex manifold
(X, A; @) with a spread map @. A Riemann domain is a complex
manifold which spreads in (C", £7). We denote B(X) for the algebra
of all bounded holomorphic functions on X.

DEFINITION 1. Let (X, A) be a complex manifold and D be open
in X. Let B= B(D). D is said to be boundedly holomorphic convex
if hulL,K = K, = {xe D; |f(x)] = || fllx for all fe B} is compact pro-
vided K is a compact subset of D.

An open set D of X is called a region of bounded holomorphy if
there is an f € B(D) for which every boundary point of D is a boundary
singularity in the sense that f has no bounded analytic continuation
to any open neighborhood of any boundary point (see [5]).

The following natural questions arise; if boundedly holomorphie
convex domains are domains of bounded holomorphy, and vice versa.
The answer for the first is affirmative.

LEMMA 1. Let {a,} be a sequence of complex numbers such that
la, | = 1. And let {f.} be a sequence of bounded complex fumnctions
on a set X such that >,|f.(x)| converges uniformly on x. Then the
nfinite product

F@) = T1 (@ + £,(x)

converges uniformly on X.
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THEOREM 1. Let (X, 4; a) be a Riemann domain. If it is bound-
edly holomorphic convex then it is a domain of bounded holomorphy.

Proof. Assume that X is connected. Write X = Uz, K,, where
K,CK,, and K, = {ve X; |f(@)| < || fllx, for all fe B(X)}. Let {x}
be a countable dense set in X, and let 4, = 4(x;, d(x,)), where d(x) =
sup {r; 4(x, 7)}; 4(z, r) is the neighborhood of 2 which is homeomorphic
by a onto a polydisec with center a(x) and radius » in C* Let {S,}
be a sequence

Au An Aza Au Az, Aay Au Az, M

such that each 4, occurs in {S,} infinitely many times. Take v,¢
S, — K, and choose a function 9. € B(X) such that ||g.|lx = 1 and
19.¥.)| > llgall,. By taking sufficiently high power of g, we can
find f, such that ||f.llx =1, |fu(w.)| =1/9, and [fullx, <1/(n-2™),
where [, > nandl,e Z,. Also, by induction, we can arrange [,,, > [,.
Put f,= (9/10) f, (for simplicity use the same f,), then [|f,|. = 9/10,
|faws)| = 1/10, and |[|f.|lx, < (9/10) - (1/n-2'). Put f.(y,) = @, and
consider Iy, (&, — f,)!». Since

::1 n- ”fn”K” < (9/10) ¢ 2—ln < o0, H:=1 (a'a - fn)ln

converges uniformly on compact subsets of X to a holomorphic func-
tion f. And since ||a, — f.|lx =1, fe B(X). Furthermore, ||f.|lx, < @,
for all » so that (a, — f,)| K, is a unit of C(K,); the Banach algebra
of continuous complex functions on K,. Thus

fIE, =1imI] (@, — f.)» K ;

the uniform limit in C(K)), is a unit of C(K,). Thus f # 0 in X.

Suppose for some yc X, rad (f, y) > d(y) + ¢, where rad (f, ») is
the radius of convergence of f at y. Since {x,} is a dense subset of
X we can choose z;, close enough to y such that rad (f, z,) > d(=,) +
¢/8 and the power series 7 at =, converges in A(ee(xy), d(xe) + €/3).
Since every 4, occurs in {S,} infinitely often 4(x,, d(x;)) contains in-
finitely many points y,, and f has a zero of order n at y,. Choose
{s.} C {a(y.)} C 4(a(x), d(x,)) such that s, — s,€ A(a(z), d(xy)). Then,
by continuity, for any k&, ---, k,

kit tka

aZ{cl cee az’;” f(So) = 1213]0; mf(sn) = O .

Qe tk

_ Hence the power series expansion F at s, is identically zero, so
S =0, which is a contradiction. Thus rad (f, ) = d(y) for all ye X.
Since fe B(X), X is a domain of bounded holomorphy.
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For the second question we raised; if a domain of bounded holo-
morphy is boundedly holomorphic convex, we first give a couple of
examples of domains of bounded holomorphy which are not boundedly
holomorphic convex.

ExAMPLE 1.! Let D={(z,w)eC%|w|<e "}, If f,e 2(C), |f.]| <
k.em*® with Xk, < o, then Y f,()w" is bounded in D. It follows
that D is a domain of bounded holomorphy but it is not boundedly
holomorphic convex.

ExAMPLE 2. Let D = {(?,w)eC% |2| < |w| <1}, Then D is a
domain of bounded holomorphy but it is not boundedly holomorphic
convex.

Thus we need some restrictions to claim an affirmative answer
for the question.

Let (X, A) be a complex manifold and B = B(X). Denote B for
the closure of B in C(X) with the topology of uniform convergence
on compact subsets of X (abbreviate as c.o. topology). If all partial
derivatives of functions in B are in B, B is said to be stable under
differentiation.

Although the following propositions and their proofs are analogue
to those for unbounded functions (see Katznelson [4] or Gunning and
Rossi [3]), they have their own right for bounded functions.

PrOPOSITION 1. Let (X, A; @) be a Riemann domain such that
d(K) < oo for a compact subset K of X, and let B = B(X). Suppose
B is stable under differentiation. Then (1) implies (2) and, in addi-
tion, if X 1s finitely sheeted (2) implies (3).

(1) (X, A; @) is a domain of bounded holomorphy,

(2) d(K) = d(K,) for all compact subsets K of X,

(8) (X, 4; a) is boundedly holomorphic convex.

Note. If D is merely a domain of holomorphy then (2) need not
be true; let D = 4(0,1) — {0}, the punctured open unit dise in C, and
K be the circle with center 0 and radius 1/3. Then K, = K and
d(K) = d(K,) = 1/3. On the other hand K, = 4(0,1/3) — {0} and
d(K,) = 0.

PROPOSITION 2. Let (X, 4; @) be a Riemann domain and o« be a
bounded spread map; t.e., fi, ++,fn€ B(X) where a = (fi, +++, fn)-
Suppose that B(X) separates the points of X. If d(K) = d(K,) for
all compact subsets K of X then X is boundedly holomorphic convex.

i1Example 1 is provided by the referee.
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NoTE. Let D be a domain in Example 2 and B = B(D). Then
B is an algebra which is not stable under differentiation, for, if so
D is boundedly holomorphic convex by Propositions 1 and 2.

DerFINITION 2. Let R(C", <7) be the category whose objects are
complex manifolds (X,, A4,; «,) spread in (C", <#) and morphisms are
spread maps G,.: (X,, 4,; &) — (X,, 4,; «,) such that a, = a,-B,. Let
S(X, 4; a, F') be the class of (8,; X,, A,; &) such that 5,: (X, 4; @) —
(X,, A,; @) is a morphism with a = a,08, and BFA,(X,) D F, where
BF is the adjoint of B,. We define a quasi-order in S(X, A4;«, F') as
follows: (8,; X,, 4,; ) < (B.; X,, A,; «,) if and only if there exists a
morphism v: (X,, 4,; o) — (X, 4,; «,) such that B, =v-p3, and @, =
a,ov. With respect to this quasi-order there is a maximal object
which is unique within biholomorphic morphism. We call this object
the F-envelope of holomorphy of (X, 4; ). If FF = B(X) we call it
the envelope of bounded holomorphy.

NoTe. The continuation of every function in B(X) to the envelope
is still bounded. To see this, apply the same argument on the en-
velope as in Lemma 15 of Kim [5].

A Bishop’s theorem for an analytic structure on the spectrum of
the algebra A(X) carries in the following way over the bounded
holomorphic functions. Although the proof is analogous to the case
for unbounded functions we put it in detail. We are indebted for
this proof to Quigley [7].

Let (X, A) be a complex manifold and B = B(X) with the c.o.
topology. The spectrum S, of B is the set of all nontrivial continu-
ous complex homomorphisms of B onto C.

THEOREM 2. Let (X, A; &) be a separable Riemann domain. Sup-
pose fieB,i=1,2, -+, m, where & = (fi, +++,f.), and B is stable
under differentiation. Then S, is the envelope of bounded holomorphy.

Proof. We observe that S, = S; in set-wise and also topologically.
Put S = S,. Define &: S— C* by a(®) = (@(f.), -+, ?(f.)) for pe S,
and 0: X — S by p(x) = x,, where 7,(f) = f(x) for all fe B. We will
show that there is an analytic structure 4 on S so that (o; S, 4; @, B)
is the envelope of bounded holomorphy for (X, A: «, B).

(i) We claim that for € S there is a compact set K — X such
that [®(g9)| < |lg|lx for all ge B. If it is not true, let X = U, K,,
where K, are compact and K,c K,.,, then we have g, ¢ B such that
[P(9.)] =1 and [[g.llx, <2 Then Yg, converges to an element of
B, but since @ is continuous on B, #(Zg,) = XP(g,). The latter series
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is not convergent, which is absurd. Thus there is a compact set K
such that [®(9)| =< ||g|lx. Denote this K, K = K,.

(ii) Let P, ={seC"||s — A(®)]l.. < d(K,)} and with ¢, 0 < e <
d(K,) let P, ={seC"||s — &(®)|l. < ¢}. For fe B, e S, and se P,
we define the functional

L(f, %, 9) = Zi9(0Lf)(o, = &A@ -+ (60— A@))

where

. PR
a_.?__f = a" i

a m(f) and Jl=g,J;°*Ju-

Then by a proposition in several complex variables and the continuity
of o,

. oo .
2(o25)| = 04|, = E=ml
for all fe B(X), where (K,). = U{P(x,¢);xc K,}. Hence L(f,®,?)
converges uniformly in z on P, for all fe B so that L(-, ®,?) is
analytic in P,. In particular, L(-, @, s) is continuous for all € S and
se€ P,. Furthermore, since # and d(j/a) are linear, L(-,®,s): B—C
is linear and by using Leibnitz’ formula:
_ink . aeif AT ~\oyfAd
fe aE(f ) g) - il+%=K1 o «;,,+.1Zn':1<ﬂ o (a_&'f)?'(azg) ’

we know that L(-, @, s) is multiplicative. Therefore, L(-,®,s)e S
for e S and se P,. Let ¢, = L(-, ®,s), then L(-, ®,s) has the fol-
lowing properties;

(a) Pue = L(-, P, &(¢)) =P

(b) P.(f) = L(f;, P,8) = 85,1 <j=mn for @ = (fy, -+, [fa)

(¢) a(@,) =s.

(iiiy We topologize S as follows: LetQ, = {®,; se P,}, and Q,,, =
{p,: se P, ). Take the family {Q,,.; €S, 0 < ¢ d(K,)} to be a subbase
then this family gives a topology .o~ on S. We show that 7 -
topology on S is equivalent to the weak topology on S induced by
functions f, where f is the Gelfand transform of f. First, .7 -topology
is finer than the weak topology: It suffices to show that all Fin B
are .7 -continuous. For a given 6 > 0 we must find € > 0 such that
P, € Qy,. = | Fp) — F(@)| < 8, or equivalently such that

seP,.=|p,(f) —P(f)I <o,
or equivalently such that
SeP‘PvESIL(f7¢7S) - L(f’ ¢,a’(¢)' < 0.



446 DONG 8. KIM

Let h(z) = L(f, ?, 2)— L(f, ®, &(®)) = L(f, P, 2) —P(f); then h is analytic
in P,; in particular, & is continuous on P,. Hence there exists ¢ > 0
such that se P, = |h(s)| < 6 which shows that fe B are 7 -continu-
ous. Secondly, the weak topology is finer than .7 -topology: It suf-
fices to show that for ®,€ Q,, there is an open neighborhood of @,
(w.r.t. the weak topology) which is contained in Q,,.. We first observe
that [|@(h) — @@l = [|(R(f) — Puf), -+, (Fa) — Pu(fu) |l Let ¢,
be the radius of maximal polydisc with center a(®,) = s which is
contained in P,. If ||@() — &@®,)|l. <e&, then &(h)eP,, and so
h = hiu € Qp.. Now [[A(h) — &(@,) [l < & iff [A(f) — P(f)| <e, for
1<7¢=<mn. Hence the open neighborhood U,, = {h€ S: | Fih) — Fi@)) | <
&,1 < ¢ < n} is contained in Q,,., which shows Q,, is open w.r.t. the
weak topology.

(iv) Since &(p,) = s, &|®,,. is one-to-one and &|p,, = P,,. And
P = Py € Qu,.. It follows that @: S— C* is a local homeomorphism.
Let A = @&*¢ (the analytic structure on S induced by &), then
(S, 4; @) is a complex analytic manifold. Note that B = {f;feB}c A.
For € 8,seP,, we have (&lQQ\"‘(s) = @, so that fo @lQ)~(s) =
f@) = .f) = L(f, ?,s). Thus fo(@|Q,)(2) = L(f, ®,2) which is
convergent in P,.

(v) (8, 4; @, B) is a B-continuation of (X, 4;«, B). Let m, be
defined by f(z,) = f() for we X,feB. Then m,eS and K, = {z}.
Define p: X — S by p(x) = n,. If T, is the a-polydisc of center 2 and
radius d(K. ) = d(x) then a|T, is one-to-one and a7, = P.. In fact
Ao o) = Ar,) = (T(f), + =, Tf2)) = (fu(@), =+, ful®) = a(x) so that
dop =a. We have shown that the following diagram commutes:

X £ S

~_ _—
a~ @
Cn

Now we have to show f op =f for every fe B. We first observe
that for each ge T,, L(-, 7,, @(q)) = n,. For a(x,) = a(r) and so

L(f, 7., alq) = 2t (0L 7 ) @la), — @) -+ @@, — a@.)

= 537 (0 £ )@(@(@, - a@)? - @@ — a@))

= f(@)

= 7, (f) -
Q., = {(m.);s€ P} = {m,; g€ T,}, so that 0 maps T, one-to-one and
onto Q- AThus 0: X— S is a local homeomorphismA, and for fe B,
fop(x) = f(mr,) = w.(f) = f(w) for all xe X. Hence fop =f for all
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FIGURE 1
fe B. Note that f is bounded on S for all fe B.

(vi) Let X, be a connected component of X and S, be the con-

nected component of S containing X, Let fi, a, 0o, Ao, B, be the
restrlctlons of f,a, p, A, B to X0 and fo, a, A, B, be the restrictions
of f a, A, B to S,. Then (S,, Ay; &, B, is a B,-continuation of (X, A
a,, By). Moreover, we claim that (S,, A,; &y, E) is a maximal B-con-
tinuation. Take (g, X, 4;; a,, B,) € S(X,, A,; &, B)) such that image
B* D By, i.e., for f,e B, there is a unique f, € B, such that f,-8 = f..
To show the above diagrams commute:
Define r: X; — S, by r(x)(f,) = fi(z), x,€ X,. The commutativity of
(1) is given and we have shown the commutativity of (2). To show
4), roB = p,; for me X, and f,€ By, ro B@)(fo) = fi(B(&) = fol@) =
7. (f) = 0(x)(fs). Hence roB8 =0, To show (3), @or=a, Let
@ = (fio, *+ 5 Suo) a0d @ = (fiy, +++, fa)) then Goor(@) = (r@)(fu), -+,
(@) (Fu) = (fu(@), ++«, fu(x,)) for e X,. It x,ep(X)), i.e., x, = Bz,
for some x,€ X, then &, or(®) = &rB®) = (fuB @), ***, faB(@)) =
(Fuo(@o), ==+, Fuo(@)) = (@) = a,R(x) = ay(x). Thus &or = a, on gX,C
X,, and since X, is connected, @,or = a; on X,.

To show that (S, Ay &, B) is B-continuation of (X, 4;; a,, B.).
For x,e X,, let »(x) = € S,. Let Q,c S, Take an a,-polydisc T,
of center «, such that o, T, = P, (a,(%,) = &, r(x,) = &\(®) is the center).
Then by (8), T, = Q,,. and r|T, is one-to-one since «,|T, &|Q,, are
one-to-one. Thus r is a local honAleomorphism. Now we kriow that
fioB = fo= foo 00 thus Joorep =fOiI00 = fo = fi°B. Hence foor = f;
on BX,c X,. Since X, is connected f,or = f, on X,. We have shown
that the following diagrams are commutative:

/\
\ /& e

l fbeﬁo
\fb\so/fo'

FIGURE 2

X

X

@
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It follol)vs that (S,, A,; @, B,) is the B-envelope of holomorphy of
(X,, Ay @, B,).

(vii) Let E be the union of connected components S, of S such
that XN S, # @. Then (0; E, A|E; &|E, B|E) is the B-envelope of
holomorphy of (X, 4; @, B). Finally we show that F = S; assume
peS — K. AChoose K,, K, compact in X. Let E,,(Ks,) be the uniform
closure of B|po(K,) in p(0(K,)). Then Sy = hulljo(K,) is compact in
its induced weak topology from S and is the maximal ideal space of
E,,(Kw. Since K is open and closed, Sk, N E is open and closed in Sk,
and is compact. Then, by the Silov idempotent theorem there exists
ge Emm, such that

g\(h) — Jl, he SKQD - (SKgo n E)
[0, he Sk, N E

since o(K,) ©Sx, N E, [|gll,x,, = 0 while g(®) = 1. This is absurd.
Thus E = S. The proof is complete.

DEFINITION 8. A complex manifold (X, A) is a Stein manifold
of bounded type if it satisfies the following conditions:

(a) For every compact subset K of X, K, is compact,

(b) B(X) separates the points of X,

(¢) Every point of X has a local coordinate system consisting
of functions in B(X).

ExXAMPLES. Any analytic polyhedron in C=®, in particular, a
polydise, is a Stein manifold of bounded type, so is an annulus in C.
A relatively compact domain D in C such that D = int D is also a
Stein manifold of bounded type.

A punctured open disc in C is not a Stein manifold of bounded
type, though it is a Stein manifold. Nor the domains in Examples
1 and 2.

If (X, A) is a Stein manifold of bounded type, it is a Stein mani-
fold. Moreover, by Theorem 4 in Ch. 9 of Cartan [2], A(X) = B(X).
Conversely, if (X, A) is a Stein manifold with A(X) = B(X), then it
is a Stein manifold of bounded type.

We gather the above discussions in the following theorem.

THEOREM 3. Let (X, A; a) be a separable Riemann domain with
a bounded spread map. Then (1) tmplies (2) and (2) tmplies (3):

(1) (X, 4; ) is a Stein manifold of bounded type.

(2) Every monzero continuous homomorphism of B(X) 1is the
point evaluation of X.

(3) (X, 4;a) is a domain of bounded holomorphy.
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Furthermore, if B(X) separates the points of X and B(X) is stable
under differentiation then (3) implies (1).

REMARK. For a domain D of bounded holomorphy, B(D) need
not be stable under differentiation; for instance, the domains in Ex-

amples 1 and 2.
Example 2 shows that even if B(D) separates the points of D, B(D)
is not stable under differentiation, consequently B(D) & ~ (D).

The author wishes to thank Professor Frank D. Quigley for his
suggestions.
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