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Abstract Let 1 < p < ∞ and 0 < q < p. We prove necessary and sufficient

conditions under which the weighted inequality

(∫ ∞

0

(∫ t

0

f (x)U (x, t) dx

)q

w(t) dt

) 1
q

≤ C

(∫ ∞

0

f p(t)v(t) dt

) 1
p

,

where U is a so-called ϑ-regular kernel, holds for all nonnegative measurable functions

f on (0,∞). The conditions have an explicit integral form. Analogous results for the

case p = 1 and for the dual version of the inequality are also presented. The results

are applied to close various gaps in the theory of weighted operator inequalities.
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1 Introduction

Operators of the general form

T f (x) =

∫ ∞

0

f (y)U (x, y) dy,

where U is a kernel, play an indispensable role in various areas of analysis. The means

of their investigation, naturally, greatly depend on additional properties of the kernel

U .

In the present article, we study the so-called Hardy-type operators

H f (x) =

∫ x

0

f (y)U (y, x) dy, and H∗ f (x) =

∫ ∞

x

f (y)U (x, y) dy, (1)

where the kernel U : [0,∞)2 → [0,∞) is a measurable function which has the

following properties:

(i) U (x, y) is nonincreasing in x and nondecreasing in y;

(ii) there exists a constant ϑ > 0 such that for all 0 ≤ x < y < z < ∞ it holds that

U (x, z) ≤ ϑ (U (x, y) + U (y, z)) ;

(iii) U (0, y) > 0 for all y > 0.

If ϑ > 0 and U is a function satisfying the conditions above with the given parameter

ϑ in point (ii), then we, for the sake of simplicity, call U a ϑ-regular kernel.

The simplest case of a ϑ-regular kernel U is the constant U ≡ 1, with which H and

H∗ become the ordinary Hardy and Copson (“dual Hardy”) operators, respectively.

Other examples of ϑ-regular kernels include the Riemann–Liouville kernel

U (x, y) = (y − x)α, α > 0,

the logarithmic kernel

U (x, y) = logα
( y

x

)
, α > 0,

and the kernels

U (x, y) =

∫ y

x

u(t) dt and U (x, y) = ess sup
t∈(x,y)

u(t),

where u is a given nonnegative measurable function. To be formally correct, let us

assume that all these kernels are defined by the respective formulas above for 0 ≤ x <

y < ∞, and by 0 for 0 ≤ y ≤ x < ∞. Hardy-type operators with these kernels find

applications, for instance, in the theory of differentiability of functions, interpolation

theory and more topics involving function spaces. The two last-named examples of
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Boundedness of Hardy-type operators with a kernel. . . 549

ϑ-regular kernels prove to be particularly useful in research of the so-called iterated

Hardy operators [2,5], for example.

The particular aspect we investigate in this paper is boundedness of the operators

H and H∗ with a ϑ-regular kernel U between weighted Lebesgue spaces. In order to

define these spaces, we need to introduce several auxiliary terms first.

Throughout the text, by a measurable function we always mean a Lebesgue mea-

surable function (on an appropriate subset of R). The symbol M+ denotes the cone

of all nonnegative measurable functions on (0,∞). A weight is a function w ∈ M+

on (0,∞) such that

0 <

∫ t

0

w(s) ds < ∞ for all t > 0.

Finally, if v is a weight and p ∈ (0,∞], then the weighted Lebesgue space L p(v) =

L p(v)(0,∞) is defined as the set of all real-valued measurable functions f on (0,∞)

such that

‖ f ‖L p(v) :=

(∫ ∞

0

| f (t)|p v(t) dt

) 1
p

< ∞ if p < ∞,

‖ f ‖L∞(v) := ess sup
t∈(0,∞)

| f (t)| v(t) < ∞ if p = ∞.

Note that if p ∈ (0, 1), then (L p(v), ‖ · ‖L p(v)) is in general not a normed linear space

because of the absence of the Minkowski inequality in this case. However, as we deal

only with the case 1 ≤ p < ∞ anyway, this detail is not of our concern here.

Throughout the text, if p ∈ (0, 1) ∪ (1,∞), then p′ is defined by p′ =
p

p−1
.

Analogous notation is used for q ′.

In the following, assume that ϑ ∈ (0,∞), U is a ϑ-regular kernel, H is the corre-

sponding operator from (1) and v, w are weights. Boundedness of H between L p(v)

and Lq(w) corresponds, by definition, to validity of the inequality

(∫ ∞

0

(∫ t

0

f (x)U (x, t) dx

)q

w(t) dt

) 1
q

≤ C

(∫ ∞

0

f p(t)v(t) dt

) 1
p

for all functions f ∈ M+, and it was completely characterized for p, q ∈ [1,∞]. The

authors credited for this work are Bloom and Kerman [1], Oinarov [15] and Stepanov

[20]. The results of [15], for instance, have the following form.

Theorem ([15, Theorem 1.1]) Let 1 < p ≤ q < ∞. Then H : L p(v) → Lq(w) is

bounded if and only if

E1 := sup
t∈(0,∞)

(∫ ∞

t

U q(t, x)w(x) dx

) 1
q

(∫ t

0

v1−p′

(x) dx

) 1
p′

< ∞
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550 M. Křepela

and

E2 := sup
t∈(0,∞)

(∫ ∞

t

w(x) dx

) 1
q

(∫ t

0

U p′

(x, t)v1−p′

(x) dx

) 1
p′

< ∞.

Moreover, the least constant C such that the inequality

‖H f ‖Lq (w) ≤ C ‖ f ‖L p(v) (2)

holds for all f ∈ M+ satisfies C ≈ E1 + E2.

Theorem ([15, Theorem 1.2]) Let 1 < q < p < ∞ and r :=
pq

p−q
. Then H :

L p(v) → Lq(w) is bounded if and only if

E3 :=

(∫ ∞

0

(∫ ∞

t

U q(t, x)w(x) dx

) r
q

(∫ t

0

v1−p′

(x) dx

) r
q′

v1−p′

(t) dt

) 1
r

< ∞

and

E4 :=

(∫ ∞

0

(∫ ∞

t

w(x) dx

) r
p

w(t)

(∫ t

0

U p′

(x, t)v1−p′

(x) dx

) r
p′

dt

) 1
r

< ∞.

Moreover, the least constant C such that (2) holds for all f ∈ L p(v) satisfies C ≈

E3 + E4.

The conditions obtained in [1,20] have a slightly different form, a more detailed

comparison between them is found in [20].

As for the “limit cases”, conditions for the case p = ∞ and q ∈ (0,∞] are

obtained very easily, the same applies to the case q = 1 and p ∈ [1,∞) in which one

simply uses the Fubini theorem. Yet another possible choice of parameters is p = 1

and q ∈ (1,∞]. It was (at least for q < ∞) included in [15, Theorem 1.2] and the

conditions may be recovered from that article by correctly interpreting the expressions

involving the symbol p′ in there. Another option is to follow the more general theorem

[9, Chapter XI, Theorem 4].

If 0 < p < 1, then the operator H can never be bounded (provided that U , v, w

are nontrivial, which is always assumed here). The problem in here lies in the fact that

for each t > 0 there exists ft ∈ L p(v) which is not locally integrable at the point t .

For more details, see e.g. [13].

No such difficulty arises if 0 < q < 1 ≤ p < ∞. In this case, H may indeed be

bounded between L p(v) and Lq(w) and it is perfectly justified to ask for the conditions

under which this occurs. As for the known answers to this question, the situation is

however much worse than in the other cases.

When assumed U ≡ 1, i.e. for the ordinary Hardy operator, the boundedness

characterization was found by Sinnamon [17] and it corresponds to the condition

E3 < ∞ (with U ≡ 1, of course). In the general case, in [20] it was shown that the
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condition E3 < ∞ is sufficient but not necessary for H : L p(v) → Lq(w) to be

bounded, while the condition

E5 :=

⎛
⎝

∫ ∞

0

(∫ ∞

t

U q(t, x)w(x) dx

) p′

q

v1−p′

(t) dt

⎞
⎠

1
p′

< ∞

is necessary but not sufficient. For related counterexamples, see [19]. The fact that the

two conditions do not meet is a significant drawback. An equivalent description of the

optimal constant C in (2) is usually substantial for the result to be applicable in any

way.

Lai [12] found equivalent conditions by proving that, with 0 < q < 1 < p < ∞,

the operator H is bounded from L p(v) to Lq(w) if and only if

D̃1 := sup
{tk }

∑

k

(∫ t(k+1)

tk

w(t) dt

) r
q

(∫ tk

t(k−1)

U p′

(x, tk)v
1−p′

(x) dx

) r
p′

< ∞

as well as

D̃2 := sup
{tk }

∑

k

(∫ t(k+1)

tk

w(t)U q(tk, t) dt

) r
q

(∫ tk

t(k−1)

v1−p′

(x) dx

) r
p′

< ∞.

The suprema in here are taken over all covering sequences, i.e. partitions of (0,∞)

(see [12] or Sect. 2 for the definitions), and r :=
pq

p−q
, as usual. Moreover, these

conditions satisfy D̃1 + D̃2 ≈ Cr with the least C such that (2) holds for all f ∈ M+.

Corresponding variants for p = 1 are also provided in [12]. The earlier use of similar

partitioning techniques in the paper [14] of Martín-Reyes and Sawyer should be also

credited.

Unfortunately, even though the D̃-conditions are both sufficient and necessary, they

are only hardly verifiable due to their discrete form involving all possible covering

sequences. This fact has hindered their use in various applications (see e.g. [5]). In

contrast, in the case 1 < q < p < ∞ it is known (see [12,19]) that D̃1+D̃2 ≈ Ar
3+Ar

4.

This does not apply when 0 < q < 1 ≤ p < ∞, as shown by the results of [20]

mentioned earlier.

Rather recently, Prokhorov [16] found conditions for 0 < q < 1 ≤ p < ∞ which

have an integral form but involve a function ζ defined by

ζ(x) := sup

{
y ∈ (0,∞);

∫ ∞

y

w(t) dt ≥ (ϑq + 1)

∫ ∞

x

w(t) dt

}
, x > 0.

The conditions presented in [16] even involve this function iterated three times.

A similar construction was used in the paper [6], also dealing with the same prob-

lem. The presence of such an implicit expression involving the weight w virtually
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prevents any use of these conditions in applications which require further manipula-

tion w (see Sect. 4 for an example). Finding explicit integral conditions for the case

0 < q < 1 ≤ p < ∞, which would have a form comparable e.g. to E3 and E4, hence

remained an open problem.

In this paper, we solve this problem and provide the missing integral conditions. No

additional assumptions on the weights v, w and the ϑ-regular kernel U are required

here, neither are any implicit expressions. The results are presented in Theorems 8, 9

and Corollaries 10, 11. The proofs are based on the well-known method of dyadic

discretization (or blocking technique, see [8] for a basic introduction into this method).

The particular variant of the technique employed here is essentially the same as the

one used in [11]. It is worth noting that the conditions we present here apply to all

parameters p, q satisfying 1 ≤ p < ∞ and 0 < q < p. Therefore, the restriction

q < 1 is, in fact, unnecessary.

Concerning the structure of this paper, this introduction is followed by Sect. 2 where

additional definitions and various auxiliary results are presented. Section 3 consists of

the main results, their proofs and some related remarks. In the final Sect. 4 we present

certain examples of applications of the results.

2 Definitions and preliminaries

Let us first introduce the remaining notation and terminology used in the paper. We

say that I ⊆ Z is an index set if there exist kmin, kmax ∈ Z such that kmin ≤ kmax and

I = {k ∈ Z, kmin ≤ k ≤ kmax} .

Moreover, we denote

I0 := I \ {kmin, kmax} .

Let I be an index set containing at least three indices. Then a sequence of points

{tk}k∈I is called a covering sequence if tkmin = 0, tkmax = ∞ and tk < t(k+1) whenever

k ∈ I \ {kmax}.

Next, let z ∈ N ∪{0} and n, k ∈ N are such that 0 ≤ k < n. We write z mod n = k

if there exists j ∈ N ∪ {0} such that z = jn + k. In other words, k is the remainder

after division of the number z by the number n.

In the next part, we present various auxiliary results which will be needed later.

The first of these is a known result concerning the saturation of the Hölder inequality.

We present an elementary proof of it as well.

Proposition 1 Let v be a weight and 0 ≤ x < y ≤ ∞. Let f be a nonnegative

measurable function on (x, y) and ϕ be a positive locally integrable function on

(x, y). If p ∈ (1,∞), then

∫ y

x

f (s)ϕ(s) ds ≤

(∫ y

x

f p(s)v(s) ds

) 1
p
(∫ y

x

ϕ p′

(s)v1−p′

(s) ds

) 1
p′

. (3)
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Moreover, there exists a nonnegative measurable function g supported in [x, y] and

such that
∫ y

x
g p(s)v(s) ds = 1 and

(∫ y

x

ϕ p′

(s)v1−p′

(s) ds

) 1
p′

=

∫ y

x

g(s)ϕ(s) ds. (4)

In the case p = 1 the statement holds with the expression
(∫ y

x
ϕ p′

(s)v1−p′
(s) ds

) 1
p′

replaced by ess sup s∈(x,y) ϕ(s)v−1(s).

Proof Assume p > 1, the case p = 1 is treated analogously. Estimate (3) fol-

lows from the Hölder inequality. If
∫ y

x
ϕ p′

(s)v1−p′
(s) ds < ∞, then the choice

g := ϕ p′−1v1−p′
(∫ y

x
ϕ p′

(s)v1−p′
(s) ds

)− 1
p

gives (4). If
∫ y

x
ϕ p′

(s)v1−p′
(s) ds = ∞

and v > 0 a.e. on (x, y), then there exists a sequence {En}n∈N of pairwise disjoint

measurable subsets of (0,∞) such that
(∫

En
ϕ p′

(s)v1−p′
(s) ds

) 1
p′

= 2n for all n ∈ N.

Then, by the previous part, for each n ∈ N there exists a measurable function gn such

that gn = 0 on (0,∞) \ En ,
∫

En
g

p
n (s)v(s) ds = 2−n and

∫
En

gn(s)ϕ(s) ds = 1.

Define g :=
∑

n∈N
gn . Then it holds that

∫ ∞

0

g p(s)v(s) ds =

∫ ∞

0

(
∑

n∈N

gn(s)

)p

v(s) ds =
∑

n∈N

∫

En

g
p
n (s)v(s) ds = 1

and
∫ ∞

0 g(s)ϕ(s) =
∑

n∈N

∫
En

gn(s)ϕ(s) = ∞. This gives (4). Finally, if there exists

a set E ⊂ (x, y) of finite positive measure and such that v = 0 on E , then (4) is

obtained by choosing g := v
− 1

p ϕ p′−1χE

(∫
E

ϕ p′
(s) ds

)− 1
p
, applying the convention

“ 0
0

= 0”. ⊓⊔

A discrete variant of the previous result reads as follows.

Proposition 2 Let I be an index set. Let {ak}k∈I and {bk}k∈I be two nonnegative

sequences. Assume that 0 < q < p < ∞. Then

(
∑

k∈I

a
q
k bk

) 1
q

≤

(
∑

k∈I

a
p
k

) 1
p
(

∑

k∈I

b

p
p−q

k

) p−q
pq

.

Moreover, there exists a nonnegative sequence {ck}k∈I such that
∑

k∈I
c

p

k = 1 and

(
∑

k∈I

b

p
p−q

k

) p−q
pq

=

(
∑

k∈I

c
q
k bk

) 1
q

.
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The next proposition was proved in [7, Proposition 2.1], more comments may be

found e.g. in [11]. It is a fundamental part of the discretization method.

Proposition 3 Let 0 < α < ∞ and 1 < D < ∞. Then there exists a constant

Cα,D ∈ (0,∞) such that for any index set I and any two nonnegative sequences

{bk}k∈I and {ck}k∈I, satisfying

b(k+1) ≥ D bk for all k ∈ I \ {kmax} ,

it holds that

kmax∑

k=kmin

(
kmax∑

m=k

cm

)α

bk ≤ Cα,D

kmax∑

k=kmin

cα
k bk

and

kmax∑

k=kmin

(
sup

k≤m≤kmax

cm

)α

bk ≤ Cα,D

kmax∑

k=kmin

cα
k bk .

The following result is an analogy to the previous proposition. We present a simple

proof, although the result is also well known (see [4, Lemma 3.3]).

Proposition 4 Let 0 < α < ∞ and 1 < D < ∞. Then there exists a constant

Cα,D ∈ (0,∞) such that for any index set I and any two nonnegative sequences

{bk}k∈I and {ck}k∈I, satisfying

b(k+1) ≥ D bk for all k ∈ I \ {kmax} ,

it holds that

sup
kmin≤k≤kmax

(
kmax∑

m=k

cm

)α

bk ≤ Cα,D sup
kmin≤k≤kmax

cα
k bk .

Proof It holds that

sup
kmin≤k≤kmax

(
kmax∑

m=k

cm

)α

bk = sup
kmin≤k≤kmax

(
kmax∑

m=k

cmb
− 1

α
m b

1
α
m

)α

bk

≤ sup
kmin≤k≤kmax

(
kmax∑

m=k

b
− 1

α
m

)α

bk sup
k≤i≤kmax

cα
i bi

≤ sup
kmin≤k≤kmax

(
b

− 1
α

k

kmax−k∑

m=0

D− m
α

)α

bk sup
k≤i≤kmax

cα
i bα

i
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≤

(
∞∑

m=0

D− m
α

)α

sup
kmin≤i≤kmax

cα
i bα

i

=
D

(D
1
α − 1)α

sup
kmin≤i≤kmax

cα
i bα

i .

⊓⊔

Applying Proposition 3, one obtains the following two results. They are useful to

handle inequalities involving ϑ-regular kernels.

Proposition 5 Let 0 < α < ∞ and ϑ ∈ [1,∞). Let U be a ϑ-regular kernel. Then

there exists a constant Cα,ϑ ∈ (0,∞) such that, for any index set I, any increasing

sequence {tk}k∈I of points from (0,∞] and any nonnegative sequence {ak}k∈I\{kmax}

satisfying

a(k+1) ≥ 2ϑαak for all k ∈ I \ {kmax, kmax − 1} , (5)

it holds that

kmax−1∑

k=kmin

akUα
(
tk, tkmax

)
≤ Cα,ϑ

kmax−1∑

k=kmin

akUα
(
tk, t(k+1)

)
.

Proof Naturally, we may assume that I contains at least three indices. Let k ∈ I\{kmax}.

By iterating the inequality

U (x, z) ≤ ϑU (x, y) + ϑU (y, z) (x < y < z) (6)

from the definition of the ϑ-regular kernel, we get

U
(
tk, tkmax

)
≤ ϑU

(
tk, t(k+1)

)
+ ϑU

(
t(k+1), tkmax

)

≤ ϑU
(
tk, t(k+1)

)
+ ϑ2U

(
t(k+1), t(k+2)

)
+ ϑ2U

(
t(k+2), tkmax

)

...

≤

kmax−1∑

m=k

ϑm−k+1U
(
tm, t(m+1)

)

= ϑ−k

kmax−1∑

m=k

ϑm+1U
(
tm, t(m+1)

)
. (7)

Set bk := ϑ−αkak for k ∈ I \ {kmax}. Then, by (5), for all k ∈ I \ {kmax, kmax − 1} it

holds that b(k+1) ≥ 2bk . We obtain

kmax−1∑

k=kmin

akUα
(
tk, tkmax

)
≤

kmax−1∑

k=kmin

ϑ−αkak

(
kmax−1∑

m=k

ϑm+1U (tm, t(m+1))

)α
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=

kmax−1∑

k=kmin

bk

(
kmax−1∑

m=k

ϑm+1U
(
tm, t(m+1)

)
)α

≤ Cα

kmax−1∑

k=kmin

bkϑ
α(k+1)Uα

(
tk, t(k+1)

)

= Cαϑα

kmax−1∑

k=kmin

akUα
(
tk, t(k+1)

)
. (8)

To get the inequality (8), we used Proposition 3, setting D := 2 and cm :=

U (tm, t(m+1)) for the relevant indices m. This proves the statement. ⊓⊔

Proposition 6 Let 0 < α < ∞ and ϑ ∈ [1,∞). Let U be a ϑ-regular kernel. Then

there exists a constant Cα,ϑ ∈ (0,∞) such that, for any index set I, any increasing

sequence {tk}k∈I of points from (0,∞], any β ∈ (0,∞), any nonnegative sequence

{ak}k∈I\{kmax} satisfying

a(k+1) ≥ 2α+1ϑαak for all k ∈ I \ {kmax, kmax − 1} , (9)

and any nonnegative sequence {bk}k∈I\{kmax} it holds that

kmax−1∑

k=kmin

ak

(
kmax∑

i=k+1

Uβ(tk, ti )bi

) α
β

≤ Cα,ϑ

kmax−1∑

k=kmin

akUα(�k)

(
kmax∑

i=k+1

bi

) α
β

.

Proof Since

Uβ(x, z) ≤ (ϑU (x, y) + ϑU (y, z))β ≤ (2ϑ)β
(
Uβ(x, y) + Uβ(y, z)

)

whenever 0 < x < y < z < ∞, the kernel Uβ is (2ϑ)β -regular. Assume that I

contains at least three indices, and let k ∈ I \ {kmax}. By the argument from (7), one

gets

kmax∑

i=k+1

Uβ(tk, ti )bi ≤ (2ϑ)−βk

kmax∑

i=k+1

bi

i−1∑

m=k

(2ϑ)β(m+1)Uβ(�m)

= (2ϑ)−βk

kmax−1∑

m=k

(2ϑ)β(m+1)Uβ(�m)

kmax∑

i=m+1

bi .

Hence,

kmax−1∑

k=kmin

ak

(
kmax∑

i=k+1

Uβ(tk, ti )bi

) α
β
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≤

kmax−1∑

k=kmin

ak(2ϑ)−αk

(
kmax−1∑

m=k

(2ϑ)β(m+1)Uβ(�m)

kmax∑

i=m+1

bi

) α
β

≤ C̃α,ϑ

kmax−1∑

k=kmin

ak(2ϑ)−αk

(
(2ϑ)β(k+1)Uβ(�k)

kmax∑

i=k+1

bi

) α
β

= C̃α,ϑ (2ϑ)α
kmax−1∑

k=kmin

akUα(�k)

(
kmax∑

i=k+1

bi

) α
β

. (10)

Estimate (10) follows from Proposition 5 and the assumption (9). The proof is now

complete. ⊓⊔

Notice that, by the definitions at the beginning of this section, we consider only

finite index sets (and therefore also finite covering sequences later on). However, all

the results of this section hold for infinite sequences as well. This may be easily shown

by using a limit argument. We will nevertheless continue working with finite index sets

and covering sequences only. The notion of supremum is used regularly even where

it relates to a finite set and where it therefore could be replaced by a maximum. For

further remarks see the last part of Sect. 3.

The final basic result concerns ϑ-regular kernels and reads as follows.

Proposition 7 Let 0 ≤ a < b < c ≤ ∞, 0 < α < ∞ and 1 ≤ ϑ < ∞. Let U be

a ϑ-regular kernel and ψ be a nonincreasing nonnegative function defined on (0,∞).

Then

sup
z∈[a,c)

Uα(a, z)ψ(z) ≤
(
1 + (2ϑ)α

)
(

sup
z∈[a,b]

Uα(a, z)ψ(z) + sup
z∈[b,c)

Uα(b, z)ψ(z)

)
.

If c < ∞, the result is unchanged if the intervals [a, c) and [b, c) in the suprema are

replaced by [a, c] and [b, c], respectively.

Proof The result is a consequence to the following simple observation.

sup
z∈[a,c)

Uα(a, z)ψ(z) ≤ sup
z∈[a,b]

Uα(a, z)ψ(z) + sup
z∈[b,c)

Uα(a, z)ψ(z)

≤ sup
z∈[a,b]

Uα(a, z)ψ(z) + (2ϑ)αUα(a, b) sup
z∈[b,c)

ψ(z)

+ (2ϑ)α sup
z∈[b,c)

Uα(b, z)ψ(z)

= sup
z∈[a,b]

Uα(a, z)ψ(z) + (2ϑ)αUα(a, b)ψ(b)

+ (2ϑ)α sup
z∈[b,c)

Uα(b, z)ψ(z)
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≤
(
1 + (2ϑ)α

)
(

sup
z∈[a,b]

Uα(a, z)ψ(z) + sup
z∈[b,c)

Uα(b, z)ψ(z)

)
.

⊓⊔

3 Main results

This section contains the main theorems and their proofs. Remarks to the results and

proof techniques can be found at the end of the section.

The notation A � B means that A ≤ C B, where the constant C may depend only

on the exponents p, q and the parameter ϑ . In particular, this C is always independent

on the weights w, v, on certain indices (such as k, n, j , K , N , J , μ, . . . ), on the number

of summands involved in sums, etc. We write A ≈ B if both A � B and B � A.

Theorem 8 Let 1 < p < ∞, 0 < q < p, r :=
pq

p−q
and 0 < ϑ < ∞. Let v, w be

weights. Let U be a ϑ-regular kernel. Then the following assertions are equivalent:

(i) There exists a constant C ∈ (0,∞) such that the inequality

(∫ ∞

0

(∫ ∞

t

f (x)U (t, x) dx

)q

w(t) dt

) 1
q

≤ C

(∫ ∞

0

f p(t)v(t) dt

) 1
p

(11)

holds for all functions f ∈ M+.

(ii) Both the conditions

D1 := sup
{tk }k∈I

covering
sequence

∑

k∈I0

(∫ tk

t(k−1)

w(t) dt

) r
q (∫ t(k+1)

tk

U p′

(tk, x)v1−p′

(x) dx

) r
p′

< ∞

and

D2 := sup
{tk }k∈I

covering
sequence

∑

k∈I0

(∫ tk

t(k−1)

w(t)U q(t, tk) dt

) r
q (∫ t(k+1)

tk

v1−p′

(x) dx

) r
p′

< ∞

are satisfied.

(iii) Both the conditions

A1 :=

∫ ∞

0

(∫ t

0

w(x) dx

) r
p

w(t)

(∫ ∞

t

U p′

(t, z)v1−p′

(z) dz

) r
p′

dt < ∞

and

A2 :=

∫ ∞

0

(∫ t

0
w(x)Uq (x, t) dx

) r
p

w(t) sup
z∈[t,∞)

Uq (t, z)

(∫ ∞

z
v1−p′

(s) ds

) r
p′

dt < ∞

are satisfied.
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Moreover, if C is the least constant such that (11) holds for all functions f ∈ M+,

then

Cr ≈ D1 + D2 ≈ A1 + A2.

The variant of the previous theorem for p = 1 reads as follows.

Theorem 9 Let 0 < q < 1 = p and 0 < ϑ < ∞. Let v, w be weights. Let U be

a ϑ-regular kernel. Then the following assertions are equivalent:

(i) There exists a constant C ∈ (0,∞) such that the inequality (11) holds for all

functions f ∈ M+.

(ii) Both the conditions

D3 := sup
{tk }k∈I

covering
sequence

∑

k∈I0

(∫ tk

t(k−1)

w(t) dt

)1−q ′

ess sup
x∈(tk ,t(k+1))

U−q ′

(tk, x) vq ′

(x) dx < ∞

and

D4 := sup
{tk }k∈I

covering
sequence

∑

k∈I0

(∫ tk

t(k−1)

w(t)U q(t, tk) dt

)1−q ′

ess sup
x∈(tk ,t(k+1))

vq ′

(x) dx < ∞

are satisfied.

(iii) Both the conditions

A3 :=

∫ ∞

0

(∫ t

0

w(x) dx

)−q ′

w(t) ess sup
z∈(t,∞)

U−q ′

(t, z) vq ′

(z) dt < ∞

and

A4 :=

∫ ∞

0

(∫ t

0

w(x)U q(x, t) dx

)−q ′

w(t) ess sup
z∈(t,∞)

U q(t, z) vq ′

(z) dt < ∞

are satisfied.

Moreover, if C is the least constant such that (11) holds for all functions f ∈ M+,

then

C−q ′

≈ D3 + D4 ≈ A3 + A4.

By performing a simple change of variables t → 1
t
, one gets the two corollaries

below. They are formulated without the discrete conditions, those corresponding to

Corollary 10 were presented in Sect. 1. An interested reader may also derive all the

discrete conditions easily from their respective counterparts in Theorems 8 and 9.
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Corollary 10 Let 1 < p < ∞, 0 < q < p, r :=
pq

p−q
and 0 < ϑ < ∞. Let v, w be

weights. Let U be a ϑ-regular kernel. Then the following assertions are equivalent:

(i) There exists a constant C ∈ (0,∞) such that the inequality

(∫ ∞

0

(∫ t

0

f (x)U (x, t) dx

)q

w(t) dt

) 1
q

≤ C

(∫ ∞

0

f p(t)v(t) dt

) 1
p

(12)

holds for all functions f ∈ M+.

(ii) Both the conditions

A∗
1 :=

∫ ∞

0

(∫ ∞

t

w(x) dx

) r
p

w(t)

(∫ t

0

U p′

(z, t)v1−p′

(z) dz

) r
p′

dt < ∞

and

A∗
2 :=

∫ ∞

0

(∫ ∞

t

w(x)Uq (t, x) dx

) r
p

w(t) sup
z∈(0,t]

Uq (z, t)

(∫ z

0

v1−p′

(s) ds

) r
p′

dt < ∞

are satisfied.

Moreover, if C is the least constant such that (12) holds for all functions f ∈ M+,

then

Cr ≈ A∗
1 + A∗

2.

Corollary 11 Let 0 < q < 1 = p and 0 < ϑ < ∞. Let v, w be weights. Let U be

a ϑ-regular kernel. Then the following assertions are equivalent:

(i) There exists a constant C ∈ (0,∞) such that the inequality (12) holds for all

functions f ∈ M+.

(ii) Both the conditions

A∗
3 :=

∫ ∞

0

(∫ ∞

t

w(x) dx

)−q ′

w(t) ess sup
z∈(0,t)

U−q ′

(z, t) vq ′

(z) dt < ∞

and

A∗
4 :=

∫ ∞

0

(∫ ∞

t

w(x)U q(t, x) dx

)−q ′

w(t) ess sup
z∈(0,t)

U q(z, t) vq ′

(z) dt < ∞

are satisfied.

Moreover, if C is the least constant such that (12) holds for all functions f ∈ M+,

then

C−q ′

≈ A∗
3 + A∗

4.
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The next part contains the proofs. The core components of the discretization method

used in this article are summarized in Theorem 12 below. It is presented separately for

the purpose of possible future reference since this particular variant of discretization

may be used even in other problems (cf. [11]).

Throughout the text, parentheses are used in expressions that involve indices, pro-

ducing symbols such as t(k+1), tk(n+1)
, etc. The parentheses do not have a special

meaning, i.e. t(k+1) simply means t with the index k +1. They are used to make it eas-

ier to distinguish between objects as tk(n+1)
and t(kn+1), which, in general, are different

and both of them appear frequently in the formulas.

Theorem 12 Let 0 < q < ∞ and 1 ≤ ϑ < ∞. Define


 := 2q+1ϑq .

Let U be a ϑ-regular kernel. Let K ∈ Z and μ ∈ Z be such that μ ≤ K − 2. Define

the index set

Zμ := {k ∈ Z; μ ≤ k ≤ K − 1} . (13)

Let w be a weight such that
∫ ∞

0 w = 
K . Let {tk}
K
k=−∞ ⊂ (0,∞] be a sequence of

points such that ∫ tk

0

w(x) dx = 
k (14)

for all k ∈ Z such that k ≤ K and tK = ∞. For all k ∈ Z such that k ≤ K − 1,

denote

�k := [tk, t(k+1))

and

U (�k) := U
(
tk, t(k+1)

)
.

Then there exist a number N ∈ N and an index set {kn}N
n=0 ⊂ Zμ with the following

properties.

(i) It holds that k0 = μ and k(n+1) = K . Whenever n ∈ {0, . . . , N }, then kn + 1 ≤

k(n+1) and therefore also

t(kn+1) ≤ tk(n+1)
. (15)

If we define

A :=
{
n ∈ N; n ≤ N , kn + 1 < k(n+1)

}
, (16)

then

Zμ =
{
k(n+1) − 1; n ∈ N ∪ {0} , n ≤ N

}
∪

{
k; k ∈ Z, n ∈ A, kn ≤ k ≤ k(n+1) − 2

}
.

(17)
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(ii) For every n ∈ N such that n ≤ N − 1 it holds that

k(n+1)−1∑

k=kn


kU q(�k) ≥ 


kn−1∑

k=k(n−1)


kU q(�k) (18)

and
kn−1∑

k=μ


kU q(�k) ≤




 − 1

kn−1∑

k=k(n−1)


kU q(�k). (19)

(iii) For every n ∈ A it holds that

k(n+1)−2∑

k=kn


kU q(�k) < 


kn−1∑

k=k(n−1)


kU q(�k). (20)

(iv) For every n ∈ N, k ∈ Zμ and t ∈ (0,∞] such that n ≤ N, k ≤ k(n+1) − 1 and

t ∈ (tk, t(k+1)] it holds that

∫ t

tμ

w(x)U q(x, t) dx �

kn−1∑

j=k(n−1)


 jU q(� j ) + 
kU q(tk, t). (21)

If the same conditions hold and it is even satisfied that k ≤ k(n+1) − 2, then

∫ t

tμ

w(x)U q(x, t) dx �

kn−1∑

j=k(n−1)


 jU q(� j ). (22)

(v) Define k(−1) := μ − 1. Then for every n ∈ N such that n ≤ N it holds that

kn−1∑

j=k(n−1)


 jU q(� j ) �

∫ tkn

tk(n−2)

w(t)U q(t, tkn ) dt. (23)

Proof At first, observe that it is indeed possible to choose the sequence {tk} with the

required properties because the weight w is locally integrable. Since w may take zero

values, the sequence {tk} need not be unique. In that case, we choose one fixed {tk}

satisfying the requirements. From (14) we deduce that


k =

∫ tk

0

w(s) ds =
1


 − 1

∫

�k

w(s) ds =




 − 1

∫

�(k−1)

w(s) ds (24)

for all k ∈ Z such that k ≤ K − 1.

We proceed with the construction of the index subset {kn}. Define k0 := μ and

k1 := μ + 1 and continue inductively as follows.
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(∗) Let k0, . . . , kn be already defined. Then

(a) If kn = K , define N := n − 1 and stop the procedure.

(b) If kn < K and there exists an index j such that kn < j ≤ K and

j−1∑

k=kn


kU q(�k) ≥ 


kn−1∑

k=k(n−1)


kU q(�k), (25)

then define k(n+1) as the smallest index j for which (25) holds. Then proceed

again with step (∗) with n + 1 in place of n.

(c) If kn < K and and (25) holds for no index j such that kn < j ≤ K , then

define N := n, k(n+1) := K and stop the procedure.

In this manner, one obtains a finite sequence of indices {k0, . . . , kN } ⊆ Zμ and the

final index k(n+1) = K .

We will call each interval �k the k-th segment, and each interval [tkn , t(kn+1)) the

n-th block. If n ∈ N is such that n ≤ N , then the n-th block either consists of the

single kn-th segment, in which case it holds that

k(n+1) = kn + 1,

or the n-th segment contains more than one segment and then

k(n+1) > kn + 1,

If the n-th block is of the second type, then n ∈ A, according to the definition (16).

Hence, (17) is satisfied, even though the set A may be empty. The relation (17) in

plain words says that each segment is either the last one (i.e., with the highest index

k) in a block, or it belongs to a block consisting of more than one segment and the

investigated segment is not the last one of those. We have now proved (i).

The property (18) follows directly from the construction. If n ∈ N is such that

n ≤ N , then by iterating (18) one gets

kn−1∑

k=μ


kU q(�k) =

n−1∑

i=0

k(i+1)−1∑

k=ki


kU q(�k) ≤

n−1∑

i=0


i−n+1

kn−1∑

k=k(n−1)


kU q(�k)

≤




 − 1

kn−1∑

k=k(n−1)


kU q(�k).

Hence, (19) holds and (ii) is then proved.

Property (iii) is again a direct consequence of the way the blocks were constructed.

We proceed with proving (iv). Let n ∈ N, k ∈ Zμ and t ∈ (0,∞] be such that n ≤ N ,

k ≤ k(n+1) − 1 and t ∈ (tk, t(k+1)]. Then the following sequence of inequalities is

valid:
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∫ t

tμ

w(x)U q(x, t) dx =

∫ tk

tμ

w(x)U q(x, t) dx +

∫ t

tk

w(x)U q(x, t) dx

�

∫ tk

tμ

w(x)U q(x, tk) dx +

∫ tk

tμ

w(x) dx U q(tk, t)

+

∫ t

tk

w(x)U q(x, t) dx

≤

k−1∑

j=μ

∫

� j

w(x) dx U q(t j , tk) +

∫ t(k+1)

tμ

w(x) dx U q(tk, t)

�

k−1∑

j=μ


 jU q(t j , tk) + 
kU q(tk, t) (26)

�

k−1∑

j=μ


 jU q(� j ) + 
kU q(tk, t). (27)

In here, step (26) follows by (24), and step (27) by Proposition 5. If k ≤ kn , then

k−1∑

j=μ


 jU q(� j ) ≤

kn−1∑

j=μ


 jU q(� j ) �

kn−1∑

j=k(n−1)


 jU q(� j ).

The second inequality here follows by (19). If k > kn , then n ∈ A, kn + 1 ≤ k ≤

k(n+1) − 1 and it holds that

k−1∑

j=μ


 jU q(� j ) ≤

k(n+1)−2∑

j=μ


 jU q(� j ) =

kn−1∑

j=μ


 jU q(� j ) +

k(n+1)−2∑

j=kn


 jU q(� j )

�

kn−1∑

j=k(n−1)


 jU q(� j ).

The last inequality is granted by (19) and (20). We have proved that

k−1∑

j=μ


 jU q(� j ) �

kn−1∑

j=k(n−1)


 jU q(� j ).

Applying this in the inequality obtained at (27), we get the estimate (21). If we now

add the assumption k ≤ k(n+1) − 2, then (21) still holds and, in addition to that, we

get


kU q(tk, t) ≤ 
kU q(�k) ≤

k(n+1)−2∑

j=μ


 jU q(� j ) �

kn−1∑

j=k(n−1)


 jU q(� j ).
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In here, the last inequality follows from (19) and (20). Applying this result to (21), we

obtain (22) and (iv) is thus proved.

To prove (v), let n ∈ N be such that n ≤ N and observe the following:

kn−1∑

j=k(n−1)


 jU q(� j ) �

kn−1∑

j=k(n−1)

∫

� j−1

w(t) dt U q(� j )

≤

kn−1∑

j=k(n−1)

∫

� j−1

w(t)U q(t, tkn ) dt

=

∫ t(kn−1)

t(k(n−1)−1)

w(t)U q(t, tkn ) dt ≤

∫ tkn

tk(n−2)

w(t)U q(t, tkn ) dt.

In the first step, (24) was used. In the last one, we used the inequality tk(n−2)
≤ t(k(n−1)−1)

which follows from (15). ⊓⊔

Proof of Theorem 8 Without loss of generality, we may assume that ϑ ∈ [1,∞).

Indeed, if the kernel U is ϑ-regular with ϑ ∈ (0, 1), then U is obviously also 1-

regular.

“(ii) ⇒ (i)”. Assume that D1 < ∞ and D2 < ∞. Let us prove that (11) holds for

all f ∈ M+ with the least constant C satisfying Cr � D1 + D2.

At first, let us assume that there exists K ∈ Z such that
∫ ∞

0 w = 2K . Let μ ∈ Z be

such that μ ≤ K − 2 and define Zμ by (13). Let {tk}
K
k=−∞ ⊂ (0,∞] be a sequence

of points such that tK = ∞ and (24) holds for all k ∈ Z such that k ≤ K . Let

{kn}
N
n=0 ⊂ Zμ be the subsequence of indices granted by Theorem 12. Related notation

from Theorem 12 will be used in what follows as well. Suppose that f ∈ M+∩L p(v).

Then

∫ ∞

tμ

(∫ ∞

t
f (x)U (t, x) dx

)q

w(t) dt =
∑

k∈Zμ

∫

�k

(∫ ∞

t
f (x)U (t, x) dx

)q

w(t) dt

�
∑

k∈Zμ


k

(∫ ∞

tk

f (x)U (tk , x) dx

)q

(28)

=
∑

k∈Zμ


k

⎛
⎝

K−1∑

j=k

∫

� j

f (x)U (tk , x) dx

⎞
⎠

q

�
∑

k∈Zμ


k

⎛
⎝

K−1∑

j=k

∫

� j

f (x)U (t j , x) dx

⎞
⎠

q

+
∑

k∈Zμ\{K−1}


k

⎛
⎝

K−1∑

j=k+1

U (tk , t j )

∫

� j

f (x) dx

⎞
⎠

q

�
∑

k∈Zμ


k

(∫

�k

f (x)U (tk , x) dx

)q

(29)
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+
∑

k∈Zμ\{K−1}


kUq (�k )

(∫ ∞

t(k+1)

f (x) dx

)q

=: B1 + B2.

Inequality (28) follows from (24), and inequality (29) from Propositions 5 and 6. Next,

we get

B1 =
∑

k∈Zμ


k

(∫

�k

f (x)U (tk, x) dx

)q

≤
∑

k∈Zμ


k

(∫

�k

U p′

(tk, x)v1−p′

(x) dx

) q

p′
(∫

�k

f p(x)v(x) dx

) q
p

(30)

≤

⎛
⎝ ∑

k∈Zμ



kr
q

(∫

�k

U p′

(tk, x)v1−p′

(x) dx

) r
p′

⎞
⎠

q
r
⎛
⎝ ∑

k∈Zμ

∫

�k

f p(x)v(x) dx

⎞
⎠

q
p

(31)

�

⎛
⎝ ∑

k∈Zμ

(∫

�(k−1)

w(t) dt

) r
q (∫

�k

U p′

(tk, x)v1−p′

(x) dx

) r
p′

⎞
⎠

q
r

‖ f ‖
q

L p(v)

(32)

≤ D
q
r

1 ‖ f ‖
q

L p(v)
.

The Hölder inequality for functions was used in (30), and its discrete version (see

Proposition 2) was used in (31). Step (32) follows from (14). For formal reasons

define k−1 := 0. Then, for B2 we have

B2 =
∑

k∈Zμ\{K−1}


kUq (�k)

(∫ ∞

t(k+1)

f (x) dx

)q

=

N−1∑

n=0


k(n+1)−1Uq
(
�(k(n+1)−1)

) (∫ ∞

tk(n+1)

f (x) dx

)q

+
∑

n∈A

k(n+1)−2∑

k=kn


kUq (�k)

(∫ ∞

t(k+1)

f (x) dx

)q

≤

N−1∑

n=0


k(n+1)−1Uq
(
�(k(n+1)−1)

) (∫ ∞

tk(n+1)

f (x) dx

)q

+
∑

n∈A

k(n+1)−2∑

k=kn


kUq (�k)

(∫ ∞

tkn

f (x) dx

)q

�

N∑

n=1

kn−1∑

k=k(n−1)


kUq (�k)

(∫ ∞

tkn

f (x) dx

)q

(33)
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�

N∑

n=1

kn−1∑

k=k(n−1)


kUq (�k)

(∫ tk(n+1)

tkn

f (x) dx

)q

(34)

�

N∑

n=1

kn−1∑

k=k(n−1)


kUq (�k)

(∫ tk(n+1)

tkn

v1−p′
(x) dx

) q

p′
(∫ tk(n+1)

tkn

f p(x)v(x) dx

) q
p

(35)

�

⎛
⎜⎝

N∑

n=1

⎛
⎝

kn−1∑

k=k(n−1)


kUq (�k)

⎞
⎠

r
q (∫ tk(n+1)

tkn

v1−p′
(x) dx

) r
p′

⎞
⎟⎠

q
r

‖ f ‖
q
L p(v)

(36)

�

⎛
⎝

N∑

n=1

(∫ tkn

tk(n−2)

w(t)Uq (t, tkn
) dt

) r
q

(∫ tk(n+1)

tkn

v1−p′
(x) dx

) r
p′

⎞
⎠

q
r

‖ f ‖
q
L p(v)

(37)

=

1∑

i=0

⎛
⎜⎜⎝

∑

1≤n≤N
n mod 2=i

(∫ tkn

tk(n−2)

w(t)Uq (t, tkn
) dt

)r
q
(∫ tk(n+1)

tkn

v1−p′
(x) dx

) r
p′

⎞
⎟⎟⎠

q
r

‖ f ‖
q
L p(v)

� D
q
r
2

‖ f ‖
q
L p(v)

.

For the role of the symbol A, see (16). To get (33), we used (20). Inequality (34) follows

from Proposition (3) equipped with (18). In steps (35) and (36) we used the Hölder

inequality in its integral and discrete form, respectively. Finally, step (37) follows from

(23). We have proved

∫ ∞

tμ

(∫ ∞

t

f (x)U (t, x) dx

)q

w(t) dt � B1 + B2 � (D1 + D2)
q
r ‖ f ‖

q

L p(v)
.

Observe that the constant related to the symbol “�” in here does not depend on the

choice of μ. The reader may nevertheless notice that the construction of the n-blocks

in fact depends on μ. However, the constants in the “�”-estimates proved with help

of that construction are indeed independent of μ. Hence, we may perform the limit

pass μ → −∞. Since tμ → 0 as μ → −∞, the monotone convergence theorem (and

taking the q-th root) yields

(∫ ∞

0

(∫ ∞

t

f (x)U (t, x) dx

)q

w(t) dt

) 1
q

� (D1 + D2)
1
r ‖ f ‖L p(v)

for the fixed function f ∈ M+ ∩ L p(v). Since the function f was chosen arbitrarily

and the constant represented in “�” does not depend on f , the inequality (11) holds

with C = (D1 + D2)
1
r for all functions f ∈ M+. Clearly, if C is the least constant

such that (11) holds for all f ∈ M+, then

Cr � D1 + D2. (38)
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At this point, recall that so far we have assumed that
∫ ∞

0 w(x) dx = 
K for a K ∈ Z.

Let us complete the proof of this part for a general weight w.

At first, if
∫ ∞

0 w(x) dx is finite but not equal to any integer power of 
, the

result is simply obtained by multiplying w by a constant c ∈ (1, 2) such that∫ ∞

0 cw(x) dx = 
K for a K ∈ Z, and then using homogeneity of the expressions
∫ ∞

0

(∫ ∞

t
f (x)U (t, x) dx

)q
w(t) dt , D

q
r

1 and D
q
r

2 with respect to w.

Finally, let us suppose that
∫ ∞

0 w(x) dx = ∞. Choose an arbitrary function f ∈

M+∩L p(v). For each m ∈ N definewm := wχ[0,m] and denote by D1,m the expression

D1 with w replaced by wm . Similarly we define D2,m . Since the weight w is locally

integrable, for each m ∈ N it holds
∫ ∞

0 wm(x) dx < ∞. Hence, by the previous part

of the proof we get

(∫ ∞

0

(∫ ∞

t

f (x)U (t, x) dx

)q

wm(t) dt

) 1
q

� (D1,m + D2,m)
1
r ‖ f ‖L p(v).

Obviously, for all m ∈ N it holds that wm ≤ w pointwise, hence D1,m ≤ D1 and

D2,m ≤ D2. Thus, we get

(∫ ∞

0

(∫ ∞

t

f (x)U (t, x) dx

)q

wm(t) dt

) 1
q

� (D1 + D2)
1
r ‖ f ‖L p(v) .

The constant in “�” does not depend on m or f and the latter was arbitrarily chosen.

Since wm ↑ w pointwise as m → ∞, the monotone convergence theorem (for m →

∞) yields that (11) holds for all functions f ∈ M+ and the best constant C in (11)

satisfies (38). The proof of this part is now complete.

“(i) ⇒ (ii)”. Suppose that (11) holds for all f ∈ M+ and C ∈ (0,∞) is the least

constant such that this is true. We need to show that D1 + D2 � Cr .

Let {tk}k∈I be a covering sequence indexed by a set I = {kmin, . . . , kmax} ⊂ Z.

By Proposition 1, for each k ∈ I0 there exists a measurable function gk supported in

[tk, t(k+1)] and such that ‖gk‖L p(v) = 1 as well as

(∫ t(k+1)

tk

U p′

(tk, x)v1−p′

(x) dx

) 1
p′

=

∫ t(k+1)

tk

gk(x)U (tk, x) dx . (39)

By Proposition 2 we can find a nonnegative sequence {ck}k∈I0
such that

∑
k∈I0

c
p

k = 1

and

⎛
⎝∑

k∈I0

(∫ tk

t(k−1)

w(t) dt

) r
q (∫ t(k+1)

tk

U p′

(tk, x)v1−p′

(x) dx

) r
p′

⎞
⎠

1
r

=

⎛
⎝∑

k∈I0

c
q
k

∫ tk

t(k−1)

w(t) dt

(∫ t(k+1)

tk

U p′

(tk, x)v1−p′

(x) dx

) q

p′

⎞
⎠

1
q

. (40)
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Define a function g :=
∑

k∈I0
ck gk and recall that each gk is supported in [tk, t(k+1)].

Hence,

‖g‖L p(v) =

⎛
⎝∑

k∈I0

c
p

k ‖gk‖
p

L p(v)

⎞
⎠

1
p

=

⎛
⎝∑

k∈I0

c
p

k

⎞
⎠

1
p

= 1. (41)

Finally, we get the following estimate.

∑

k∈I0

(∫ tk

t(k−1)

w(t) dt

) r
q (∫ t(k+1)

tk

U p′

(tk, x)v1−p′

(x) dx

) r
p′

=

⎛
⎝∑

k∈I0

c
q
k

∫ tk

t(k−1)

w(t) dt

(∫ t(k+1)

tk

U p′

(tk, x)v1−p′

(x) dx

) q

p′

⎞
⎠

r
q

(42)

=

⎛
⎝∑

k∈I0

c
q
k

∫ tk

t(k−1)

w(t) dt

(∫ t(k+1)

tk

U (tk, x)gk(x) dx

)q
⎞
⎠

r
q

(43)

=

⎛
⎝∑

k∈I0

∫ tk

t(k−1)

w(t) dt

(∫ t(k+1)

tk

U (tk, x)g(x) dx

)q
⎞
⎠

r
q

≤

⎛
⎝∑

k∈I0

∫ tk

t(k−1)

w(t)

(∫ t(k+1)

t

U (t, x)g(x) dx

)q

dt

⎞
⎠

r
q

≤

(∫ ∞

0

w(t)

(∫ ∞

t

U (t, x)g(x) dx

)q

dt

) r
q

≤ Cr‖g‖r
L p(v) (44)

= Cr . (45)

In steps (42), (43), (44) and (45) we used (40), (39), (11) and (41), respectively. Since

the covering sequence {tk}k∈I was chosen arbitrarily, by taking supremum over all

covering sequences we obtain

D1 � Cr .

In what follows, we are going to prove a similar estimate for D2. Again, let {tk}k∈I be

a covering sequence indexed by a set I = {kmin, . . . , kmax} ⊂ Z. Proposition 1 yields

that for every k ∈ I0 we can find a function hk supported in [tk, t(k+1)] and such that∫ t(k+1)

tk
h

p

k (x)v(x) dx = 1 and

(∫ t(k+1)

tk

v1−p′

(x) dx

) r
p′

=

∫ t(k+1)

tk

hk(x) dx .
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By Proposition 2, we may find a nonnegative sequence {dk}k∈I0
such that

∑
k∈I0

d
p
k =

1 and

⎛
⎝∑

k∈I0

(∫ tk

t(k−1)

w(t)U q(t, tk) dt

) r
q (∫ t(k+1)

tk

v1−p′

(x) dx

) r
p′

⎞
⎠

1
r

=

⎛
⎝∑

k∈I0

d
q
k

∫ tk

t(k−1)

w(t)U q(t, tk) dt

(∫ t(k+1)

tk

v1−p′

(x) dx

) q

p′

⎞
⎠

1
q

.

Define the function h :=
∑

k∈I0
dkhk . Then it is easy to verify that ‖h‖L p(v) = 1.

Moreover, we get the following estimate.

∑

k∈I0

(∫ tk

t(k−1)

w(t)U q(t, tk) dt

) r
q (∫ t(k+1)

tk

v1−p′

(x) dx

) r
p′

=

⎛
⎝∑

k∈I0

d
q
k

∫ tk

t(k−1)

w(t)U q(t, tk) dt

(∫ t(k+1)

tk

v1−p′

(x) dx

) q

p′

⎞
⎠

r
q

=

⎛
⎝∑

k∈I0

d
q
k

∫ tk

t(k−1)

w(t)U q(t, tk) dt

(∫ t(k+1)

tk

hk(x) dx

)q
⎞
⎠

r
q

=

⎛
⎝∑

k∈I0

∫ tk

t(k−1)

w(t)U q(t, tk) dt

(∫ t(k+1)

tk

h(x) dx

)q
⎞
⎠

r
q

≤

⎛
⎝∑

k∈I0

∫ tk

t(k−1)

w(t)

(∫ t(k+1)

tk

h(x)U (t, x) dx

)q

dt

⎞
⎠

r
q

≤

⎛
⎝∑

k∈I0

∫ ∞

0

w(t)

(∫ ∞

t

h(x)U (t, x) dx

)q

dt

⎞
⎠

r
q

≤ Cr‖h‖L p(v) = Cr .

The covering sequence {tk}k∈I was arbitrarily chosen in the beginning, hence we may

take the supremum over all covering sequences, obtaining the relation

D2 � Cr .

The proof of the implication “(i) ⇒ (ii)” and of the related estimates is then finished.

“(iii) ⇒ (ii)”. Assume that A1 < ∞ and A2 < ∞. We will prove the inequality

D1 + D2 � A1 + A2. Let {tk}k∈I be an arbitrary covering sequence indexed by a set

I. Then it holds that
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∑

k∈I0

(∫ tk

t(k−1)

w(x) dx

) r
q (∫ t(k+1)

tk

U p′

(tk, t)v1−p′

(t) dt

) r
p′

≈
∑

k∈I0

∫ tk

t(k−1)

(∫ x

t(k−1)

w(s) ds

) r
p

w(x) dx

(∫ t(k+1)

tk

U p′

(tk, t)v1−p′

(t) dt

) r
p′

≤
∑

k∈I0

∫ tk

t(k−1)

(∫ x

0

w(s) ds

) r
p

w(x) dx

(∫ ∞

x

U p′

(x, t)v1−p′

(t) dt

) r
p′

= A1.

Taking the supremum over all covering sequences, we obtain D1 � A1. Similarly, for

any fixed covering sequence {tk}k∈I we get

∑

k∈I0

(∫ tk

t(k−1)

w(t)Uq(t, tk) dt

) r
q (∫ t(k+1)

tk

v1−p′

(s) ds

) r
p′

≈
∑

k∈I0

∫ tk

t(k−1)

(∫ t

t(k−1)

w(x)Uq(x, tk) dx

) r
p

w(t)Uq(t, tk) dt

(∫ t(k+1)

tk

v1−p′

(s) ds

) r
p′

�
∑

k∈I0

∫ tk

t(k−1)

(∫ t

t(k−1)

w(x)Uq(x, t) dx

) r
p

w(t)Uq(t, tk) dt

(∫ t(k+1)

tk

v1−p′

(s) ds

) r
p′

+
∑

k∈I0

∫ tk

t(k−1)

(∫ t

t(k−1)

w(x) dx

) r
p

w(t)U r (t, tk) dt

(∫ t(k+1)

tk

v1−p′

(s) ds

) r
p′

≤
∑

k∈I0

∫ tk

t(k−1)

(∫ t

0

w(x)Uq(x, t) dx

) r
p

w(t)Uq(t, tk) dt

(∫ ∞

tk

v1−p′

(s) ds

) r
p′

+
∑

k∈I0

∫ tk

t(k−1)

(∫ t

0

w(x) dx

) r
p

w(t)U r (t, tk) dt

(∫ ∞

tk

v1−p′

(s) ds

) r
p′

≤
∑

k∈I0

∫ tk

t(k−1)

(∫ t

0

w(x)Uq(x, t) dx

) r
p

w(t) sup
z∈[t,∞)

Uq (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt

+
∑

k∈I0

∫ tk

t(k−1)

(∫ t

0

w(x) dx

) r
p

w(t)

(∫ ∞

t

U p′

(t, s)v1−p′

(s) ds

) r
p′

dt

= A2 + A1.

Once again, taking the supremum over all covering sequences, we get D2 � A2 + A1.

Hence, we have shown that D1 + D2 � A1 + A2 and the implication “(iii) ⇒ (ii)” is

proved.

“(ii) ⇒ (iii)”. Suppose that D1 < ∞ and D2 < ∞ and let us show that A1 + A2 �

D1 + D2 then.
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Similarly as in the proof of “(ii) ⇒ (i)”, let us first assume that
∫ ∞

0 w = 2K for

some K ∈ Z . Let μ ∈ Z be such that μ ≤ K − 2 and define Zμ by (13). Let

{tk}
K
k=−∞ ⊂ (0,∞] be the sequence of points from Theorem 12 and {kn}

N
n=0 ⊂ Zμ

be the subsequence of indices granted by the same theorem. Then

∫ ∞

tμ

(∫ t

0

w(x) dx

) r
p

w(t)

(∫ ∞

t

U p′

(t, z)v1−p′

(z) dz

) r
p′

dt

=
∑

k∈Zμ

∫

�k

(∫ t

0

w(x) dx

) r
p

w(t)

(∫ ∞

t

U p′

(t, z)v1−p′

(z) dz

) r
p′

dt

≤
∑

k∈Zμ

∫ t(k+1)

0

(∫ t

0

w(x) dx

) r
p

w(t) dt

(∫ ∞

tk

U p′

(tk, z)v1−p′

(z) dz

) r
p′

�
∑

k∈Zμ



kr
q

(∫ ∞

tk

U p′

(tk, z)v1−p′

(z) dz

) r
p′

(46)

=
∑

k∈Zμ



kr
q

⎛
⎝

K−1∑

j=k

∫

� j

U p′

(tk, z)v1−p′

(z) dz

⎞
⎠

r
p′

�
∑

k∈Zμ



kr
q

⎛
⎝

K−1∑

j=k

∫

� j

U p′

(t j , z)v1−p′

(z) dz

⎞
⎠

r
p′

+
∑

k∈Zμ\{K−1}



kr
q

⎛
⎝

K−1∑

j=k+1

U (tk, t j )

∫

� j

v1−p′

(z) dz

⎞
⎠

r
p′

�
∑

k∈Zμ



kr
q

(∫

�k

U p′

(tk, z)v1−p′

(z) dz

) r
p′

(47)

+
∑

k∈Zμ\{K−1}



kr
q U r (�k)

(∫ ∞

t(k+1)

v1−p′

(z) dz

) r
p′

=: B3 + B4.

In step (46) we used (24), and inequality (47) follows from Proposition 6. We continue

by estimating each of the separate terms.

B3 =
∑

k∈Zμ



kr
q

(∫

�k

U p′

(tk, z)v1−p′

(z) dz

) r
p′

�
∑

k∈Zμ

(∫

�(k−1)

w(x) dx

) r
q (∫

�k

U p′

(tk, z)v1−p′

(z) dz

) r
p′

(48)

≤ D1.
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The term B4 is estimated as follows.

B4 =
∑

k∈Zμ\{K−1}



kr
q U r (�k)

(∫ ∞

t(k+1)

v1−p′

(z) dz

) r
p′

=

N−1∑

n=0


(k(n+1)−1) r
q U r

(
�(k(n+1)−1)

)
(∫ ∞

tk(n+1)

v1−p′

(z) dz

) r
p′

+
∑

n∈A

k(n+1)−2∑

k=kn



kr
q U r (�k)

(∫ ∞

t(k+1)

v1−p′

(z) dz

) r
p′

≤

N−1∑

n=0


(k(n+1)−1) r
q U r (�(k(n+1)−1))

(∫ ∞

tk(n+1)

v1−p′

(z) dz

) r
p′

+
∑

n∈A

k(n+1)−2∑

k=kn



kr
q U r (�k)

(∫ ∞

tkn

v1−p′

(z) dz

) r
p′

≤

N−1∑

n=0


(k(n+1)−1) r
q U r

(
�(k(n+1)−1)

)
(∫ ∞

tk(n+1)

v1−p′

(z) dz

) r
p′

(49)

+
∑

n∈A

⎛
⎝

k(n+1)−2∑

k=kn


kU q(�k)

⎞
⎠

r
q (∫ ∞

tkn

v1−p′

(z) dz

) r
p′

�

N∑

n=1

⎛
⎝

kn−1∑

k=k(n−1)


kU q(�k)

⎞
⎠

r
q (∫ ∞

tkn

v1−p′

(z) dz

) r
p′

(50)

�

N∑

n=1

⎛
⎝

kn−1∑

k=k(n−1)


kU q(�k)

⎞
⎠

r
q (∫ tk(n+1)

tkn

v1−p′

(z) dz

) r
p′

(51)

�

N∑

n=1

(∫ tkn

tk(n−2)

w(t)U q(t, tkn ) dt

) r
q

(∫ tk(n+1)

tkn

v1−p′

(x) dx

) r
p′

(52)

=

1∑

i=0

∑

1≤n≤N
n mod 2=i

(∫ tkn

tk(n−2)

w(t)U q(t, tkn ) dt

) r
q

(∫ tk(n+1)

tkn

v1−p′

(x) dx

) r
p′

� D2.

In (49) we used convexity of the r
q

-th power. Estimate (50) follows from (20), and

inequality (51) from Proposition (3) and (18). Finally, in step (52) one makes use of

(23). We have proved

∫ ∞

tμ

(∫ t

0

w(x) dx

) r
p

w(t)

(∫ ∞

t

U p′

(t, z)v1−p′

(z) dz

) r
p′

dt � D1 + D2. (53)
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In the following part, we are going to perform estimates related to the term A2. We

have

∫ ∞

tμ

(∫ t

tμ

w(x)Uq (x, t) dx

) r
p

w(t) sup
z∈[t,∞)

Uq (t, z)

(∫ ∞

z
v1−p′

(s) ds

) r
p′

dt

=

N∑

n=0

∫

�(k(n+1)−1)

(∫ t

tμ

w(x)Uq (x, t) dx

) r
p

w(t) sup
z∈[t,∞)

Uq (t, z)

(∫ ∞

z
v1−p′

(s) ds

) r
p′

dt

+
∑

n∈A

∫ t(k(n+1)−1)

tkn

(∫ t

tμ

w(x)Uq (x, t) dx

) r
p

w(t) sup
z∈[t,∞)

Uq (t, z)

(∫ ∞

z
v1−p′

(s) ds

) r
p′

dt

=: B5 + B6.

By (21), the term B5 is further estimated as follows.

B5 =

N∑

n=0

∫

�(k(n+1)−1)

(∫ t

tμ

w(x)U q (x, t) dx

) r
p

w(t) sup
z∈[t,∞)

U q (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt

�

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p ∫

�(k(n+1)−1)

w(t) sup
z∈[t,∞)

U q (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt

+

N∑

n=0

∫

�(k(n+1)−1)



r
p (k(n+1)−1)U

rq
p

(
t(k(n+1)−1), t

)
w(t) sup

z∈[t,∞)

U q (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt

=: B7 + B8.

Notice that, in B7, the term corresponding to n = 0 is indeed omitted, since for any

t ∈ �μ it holds that
∫ t

tμ
w(x)U q(x, t) dx � 
μU q(tμ, t) and the right-hand side is

thus already represented by the 0-th term in B8.

Let us note that in what follows, expressions such as supx∈(y,∞] ϕ(x) appear even

where the argument ϕ(x) is undefined for x = ∞. To fix this formal detail, suppose

that, in such cases, supx∈(y,∞] ϕ(x) is simply redefined as supx∈(y,∞) ϕ(x). This will

make expressions such as
∑N

n=1 supx∈[tkn ,tk(n+1)
] ϕ(x) formally correct without need

of treating the (N + 1)-st summand separately. Besides this, the standard notation �k

is used to denote the closure of �k , i.e. the interval [tk, t(k+1)].

We can estimate B7 in the following way.

B7 =

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p ∫

�(k(n+1)−1)

w(t) sup
z∈[t,∞)

U q (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt

�

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈[t(k(n+1)−1),∞)

U q (t(k(n+1)−1), z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

(54)

�

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈�(k(n+1)−1)

U q (t(k(n+1)−1), z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

(55)
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+

N−1∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈[tk(n+1)

,∞)

U q
(
tk(n+1)

, z
) (∫ ∞

z

v1−p′

(s) ds

) r
p′

�

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈�(k(n+1)−1)

U q
(

t(k(n+1)−1), z
) (∫ ∞

z

v1−p′

(s) ds

) r
p′

+

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈[tk(n+1)

,∞)

U q
(
tk(n+1)

, z
) (∫ ∞

z

v1−p′

(s) ds

) r
p′

=: B9 + B10. (56)

Inequality (54) holds by (24), and (55) is due to Proposition 7. In (56) we used (18).

Next, we have

B9 =

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈�(k(n+1)−1)

U q (t(k(n+1)−1), z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

�

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈�(k(n+1)−1)

U q
(
t(k(n+1)−1), z

) (∫ tk(n+1)

z

v1−p′

(s) ds

) r
p′

+

N−1∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1U q
(
�(k(n+1)−1)

)
(∫ ∞

tk(n+1)

v1−p′

(s) ds

) r
p′

�

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈�(k(n+1)−1)

U q
(
t(k(n+1)−1), z

) (∫ tk(n+1)

z

v1−p′

(s) ds

) r
p′

(57)

+

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
q (∫ ∞

tk(n+1)

v1−p′

(s) ds

) r
p′

=: B11 + B12.

Step (57) is based on (18). For each n ∈ {1, . . . , N } there exists a point z(n+1) ∈

�(k(n+1)−1) such that

sup
z∈�(k(n+1)−1)

U q(t(k(n+1)−1), z)

(∫ tk(n+1)

z

v1−p′

(s) ds

) r
p′

≤ 2U q(t(k(n+1)−1), z(n+1))

(∫ tk(n+1)

z(n+1)

v1−p′

(s) ds

) r
p′

. (58)

Define also z(−1) := 0 and z(N+2) := ∞. One then gets

B11 =

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈�(k(n+1)−1)

U q (t(k(n+1)−1), z)

(∫ tk(n+1)

z

v1−p′

(s) ds

) r
p′
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�
N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1U q (t(k(n+1)−1), z(n+1))

(∫ tk(n+1)

z(n+1)

v1−p′

(s) ds

) r
p′

(59)

�
N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p ∫

�(k(n+1)−2)

w(t) dt U q (t(k(n+1)−1), z(n+1))

(∫ tk(n+1)

z(n+1)

v1−p′

(s) ds

) r
p′

(60)

≤

N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p ∫ z(n+1)

t(k(n+1)−2)

w(t)U q (t, z(n+1)) dt

(∫ tk(n+1)

z(n+1)

v1−p′

(s) ds

) r
p′

≤

N∑

n=1

(∫ tkn

tk(n−2)

w(t)U q (t, tkn ) dt

) r
p ∫ z(n+1)

t(k(n+1)−2)

w(t)U q (t, z(n+1)) dt

(∫ tk(n+1)

z(n+1)

v1−p′

(s) ds

) r
p′

(61)

≤

N∑

n=1

(∫ z(n+1)

z(n−2)

w(t)U q (t, z(n+1)) dt

) r
q

(∫ z(n+2)

z(n+1)

v1−p′

(s) ds

) r
p′

(62)

=

3∑

i=0

∑

1≤n≤N
n mod 4=i

(∫ z(n+1)

z(n−2)

w(t)U q (t, z(n+1)) dt

) r
q

(∫ z(n+2)

z(n+1)

v1−p′

(s) ds

) r
p′

� D2.

We used (58) in (59), and (24) in (60). Estimate (61) follows from (23). To get (62),

we used the relation z(n−1) ≤ tk(n−1)
≤ t(k(n+1)−2) which holds for all relevant indices

n. The second inequality tk(n−1)
≤ t(k(n+1)−2) follows from (15).

Concerning B12, we obtain

B12 =

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 jU q(� j )

⎞
⎠

r
q (∫ ∞

tk(n+1)

v1−p′

(s) ds

) r
p′

=

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 jU q(� j )

⎞
⎠

r
q (

N−1∑

i=n+1

∫ tk(i+1)

tki

v1−p′

(s) ds

) r
p′

�

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 jU q(� j )

⎞
⎠

r
q (∫ tk(n+2)

tk(n+1)

v1−p′

(s) ds

) r
p′

(63)

�

N−1∑

n=1

(∫ tk(n+1)

tk(n−1)

w(t)U q(t, tkn ) dt

) r
q

(∫ tk(n+2)

tk(n+1)

v1−p′

(s) ds

) r
p′

(64)

=

2∑

i=0

∑

1≤n≤N−1
n mod 3=i

(∫ tk(n+1)

tk(n−1)

w(t)U q(t, tkn ) dt

) r
q

(∫ tk(n+2)

tk(n+1)

v1−p′

(s) ds

) r
p′

� D2.

Proposition 3 together with (18) yields (63). Estimate (64) follows from (23). We have

proved
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B9 � B11 + B12 � D2.

We proceed with the term B10.

B10 =

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup

z∈
[
tk(n+1)

,∞
) U q (tk(n+1)

, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

≤

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1) sup
i∈{n+1,...,N }

sup

z∈
[
tki

, tk(i+1)

] U q (tk(n+1)
, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

�

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1) sup
i∈{n+1,...,N }

sup

z∈
[
tki

, tk(i+1)

] U q (tki
, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

+

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1) sup
i∈{n+2,...,N }

U q
(
tk(n+1)

, tki

)
(∫ ∞

tki

v1−p′

(s) ds

) r
p′

=: B13 + B14.

For B13 we have

B13 =

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1) sup
i∈{n+1,...,N }

sup

z∈
[
tki

, tk(i+1)

] U q (tki
, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

�

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1) sup

z∈
[
tk(n+1)

,tk(n+2)

] U q
(
tk(n+1)

, z
) (∫ ∞

z

v1−p′

(s) ds

) r
p′

(65)

�

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1) sup

z∈
[
tk(n+1)

,tk(n+2)

) U q (tk(n+1)
, z)

(∫ tk(n+2)

z

v1−p′

(s) ds

) r
p′

+

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1)U q
(
tk(n+1)

, tk(n+2)

)
(∫ ∞

tk(n+2)

v1−p′

(s) ds

) r
p′

=: B15 + B16.

In step (65) we used Proposition 3, considering also (18). For each n ∈ {0, . . . , N −1}

there exists a point y(n+1) ∈ [tk(n+1)
, tk(n+2)

] such that

sup

z∈
[
tk(n+1)

,tk(n+2)

] U q
(
tk(n+1)

, z
) (∫ tk(n+2)

z

v1−p′

(s) ds

) r
p′

≤ 2U q
(
tk(n+1)

, y(n+1)

)
(∫ tk(n+2)

y(n+1)

v1−p′

(s) ds

) r
p′

. (66)
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Define also y(−1) := 0 and y(N+2) := ∞.

B15 =

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1) sup

z∈
[
tk(n+1)

,tk(n+2)

] U q (tk(n+1)
, z)

(∫ tk(n+2)

z

v1−p′

(s) ds

) r
p′

�

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1)U q (tk(n+1)
, y(n+1))

(∫ tk(n+2)

y(n+1)

v1−p′

(s) ds

) r
p′

(67)

�

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p ∫

�(k(n+1)−1)

w(t) dt U q
(
tk(n+1)

, y(n+1)

)
(∫ tk(n+2)

y(n+1)

v1−p′

(s) ds

) r
p′

(68)

≤

N−1∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p ∫ y(n+1)

y(n−2)

w(t)U q
(
t, y(n+1)

)
dt

(∫ tk(n+2)

y(n+1)

v1−p′

(s) ds

) r
p′

(69)

�

N−1∑

n=1

(∫ y(n+1)

y(n−2)

w(t)U q (t, y(n+1)) dt

) r
q

(∫ y(n+2)

y(n+1)

v1−p′

(s) ds

) r
p′

(70)

=

3∑

i=0

∑

1≤n≤N−1
n mod 4=i

(∫ y(n+1)

y(n−2)

w(t)U q
(
t, y(n+1)

)
dt

) r
q

(∫ y(n+2)

y(n+1)

v1−p′

(s) ds

) r
p′

� D2.

In (67) we used (66). Inequality (68) follows from (24). To get (69), we used the

inequality y(n−2) ≤ tk(n−1)
≤ t(k(n+1)−1) (cf. (15)) satisfied for all relevant indices n.

This inequality, together with (23), also yields (70).

Next, the term B16 is treated as follows.

B16 =

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1)U q
(
tk(n+1)

, tk(n+2)

)
(∫ ∞

tk(n+2)

v1−p′

(s) ds

) r
p′

�

N−2∑

n=1

⎛
⎝

k(n+2)−1∑

j=k(n+1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)U q
(
tk(n+1)

, tk(n+2)

)
(∫ ∞

tk(n+2)

v1−p′

(s) ds

) r
p′

(71)

≤

N−2∑

n=1

⎛
⎝

k(n+2)−1∑

j=k(n+1)


 j U q (� j )

⎞
⎠

r
p k(n+2)−1∑

j=k(n+1)


 j U q
(
t j , tk(n+2)

)
(∫ ∞

tk(n+2)

v1−p′

(s) ds

) r
p′

�

N−2∑

n=1

⎛
⎝

k(n+2)−1∑

j=k(n+1)


 j U q (� j )

⎞
⎠

r
q (∫ ∞

tk(n+2)

v1−p′

(s) ds

) r
p′

(72)

≤ B12

� D2.

Inequality (71) is obtained by using (18), and inequality (72) by Proposition 5. The

final estimate B12 � D2 was already proved before. We have obtained

B13 � B15 + B16 � D2.
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Let us return to the term B14. It holds that

B14 =

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1) sup
i∈{n+2,...,N }

U q
(
tk(n+1)

, tki

)
(∫ ∞

tki

v1−p′

(s) ds

) r
p′

≤

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p

sup
i∈{n+2,...,N }

ki −1∑

j=μ


 j U q
(
t j , tki

)
(∫ ∞

tki

v1−p′

(s) ds

) r
p′

�

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p

sup
i∈{n+2,...,N }

ki −1∑

j=μ


 j U q (� j )

(∫ ∞

tki

v1−p′

(s) ds

) r
p′

(73)

�

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p

sup
i∈{n+2,...,N }

ki −1∑

j=k(i−1)


 j U q (� j )

(∫ ∞

tki

v1−p′

(s) ds

) r
p′

(74)

=

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p

sup
i∈{n+2,...,N }

ki −1∑

j=k(i−1)


 j U q (� j )

(
N∑

m=i

∫ tk(m+1)

tkm

v1−p′

(s) ds

) r
p′

�

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p

sup
i∈{n+2,...,N }

ki −1∑

j=k(i−1)


 j U q (� j )

(∫ tk(i+1)

tki

v1−p′

(s) ds

) r
p′

(75)

�

N−2∑

n=1

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p k(n+2)−1∑

j=k(n+1)


 j U q (� j )

(∫ tk(n+3)

tk(n+2)

v1−p′

(s) ds

) r
p′

(76)

�

N−2∑

n=1

⎛
⎝

k(n+2)−1∑

j=k(n+1)


 j U q (� j )

⎞
⎠

r
q (∫ tk(n+3)

tk(n+2)

v1−p′

(s) ds

) r
p′

(77)

�

N−2∑

n=1

(∫ tk(n+2)

tkn

w(t)U q (t, tk(n+2)
) dt

) r
q

(∫ tk(n+3)

tk(n+2)

v1−p′

(s) ds

) r
p′

(78)

=

2∑

i=0

∑

1≤n≤N−2
n mod 3=i

(∫ tk(n+2)

tkn

w(t)U q
(
t, tk(n+2)

)
dt

) r
q

(∫ tk(n+3)

tk(n+2)

v1−p′

(s) ds

) r
p′

� D2.

Inequality (73) follows from Proposition 5, and inequality (74) from (19). To get (75),

one uses Proposition 4, considering also (18). Proposition 3, again with (18), yields

(76). Step (77) follows from (18). In (78) we applied (23). Having proved B14 � D2,

we may now complete several more estimates, namely

B10 � B13 + B14 � D2,

which, combined with the earlier results, gives

B7 � B9 + B10 � D2.
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The next untreated expression is B8. It is estimated in the following way.

B8 =

N∑

n=0

∫

�(k(n+1)−1)



r
p (k(n+1)−1)U

rq
p

(
t(k(n+1)−1), t

)
w(t) sup

z∈[t,∞)

U q (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt

�
N∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

U
rq
p

(
t(k(n+1)−1), t

)
w(t) sup

z∈
[
t,tk(n+1)

] U q (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt (79)

+

N−1∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

U
rq
p

(
t(k(n+1)−1), t

)
w(t) dt sup

z∈
[
tk(n+1)

,∞
) U q

(
tk(n+1)

, z
) (∫ ∞

z

v1−p′

(s) ds

) r
p′

�
N∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

U
rq
p

(
t(k(n+1)−1), t

)
w(t) sup

z∈
[
t,tk(n+1)

] U q (t, z)

(∫ tk(n+1)

z

v1−p′

(s) ds

) r
p′

dt

+

N∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

U
rq
p

(
t(k(n+1)−1), t

)
w(t)U q

(
t, tk(n+1)

)
(∫ ∞

tk(n+1)

v1−p′

(s) ds

) r
p′

dt

+

N−1∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

U
rq
p

(
t(k(n+1)−1), t

)
w(t) dt sup

z∈
[
tk(n+1)

,∞
) U q (tk(n+1)

, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

=: B17 + B18 + B19.

Inequality (79) follows from Proposition 7. Define t(k(N+2)−1) := ∞. Then we have

B17 =

N∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

U
rq
p

(
t(k(n+1)−1), t

)
w(t) sup

z∈
[
t,tk(n+1)

] U q (t, z)

(∫ tk(n+1)

z

v1−p′

(s) ds

) r
p′

dt

≤

N∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

w(t) dt sup
z∈�(k(n+1)−1)

U r
(

t(k(n+1)−1), z
) (∫ tk(n+1)

z

v1−p′

(s) ds

) r
p′

�
N∑

n=0



r
q (k(n+1)−1) sup

z∈�(k(n+1)−1)

U r
(

t(k(n+1)−1), z
) (∫ tk(n+1)

z

v1−p′

(s) ds

) r
p′

(80)

≤

N∑

n=0



r
q (k(n+1)−1)

⎛
⎝

∫

�(k(n+1)−1)

U p′
(

t(k(n+1)−1), s
)

v1−p′

(s) ds

⎞
⎠

r
p′

�
N∑

n=0

(∫ t(k(n+1)−1)

t(kn −1)

w(t) dt

) r
q

⎛
⎝

∫ t(k(n+2)−1)

t(k(n+1)−1)

U p′
(

t(k(n+1)−1), s
)

v1−p′

(s) ds

⎞
⎠

r
p′

(81)

≤ D1.

Step (80) follows from (24). In (81) we used (24) and the inequalities t(kn−1) ≤

t(k(n+1)−2) and tk(n+1)
≤ t(k(n+2)−1) which hold for all n ∈ {0, . . . , N } thanks to (15)

and the definition of t(k(N+2)−1).

We continue with the term B18, for which we get

B18 =

N∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

U
rq
p

(
t(k(n+1)−1), t

)
w(t)U q

(
t, tk(n+1)

)
(∫ ∞

tk(n+1)

v1−p′

(s) ds

) r
p′

dt

≤

N−1∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

w(t) dt U r
(
�(k(n+1)−1)

)(∫ ∞

tk(n+1)

v1−p′

(s) ds

) r
p′
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�

N−1∑

n=0



r
q (k(n+1)−1)U r

(
�(k(n+1)−1)

) (∫ ∞

tk(n+1)

v1−p′

(s) ds

) r
p′

(82)

≤

N−1∑

n=0

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
q (∫ ∞

tk(n+1)

v1−p′

(s) ds

) r
p′

=
(

μU q (�μ)

) r
q

(∫ ∞

tk1

v1−p′

(s) ds

) r
p′

+ B12 (83)

�

(∫ tμ

0

w(t) dt U q (�μ)

) r
q

(∫ ∞

tk1

v1−p′

(s) ds

) r
p′

+ B12 (84)

�

(∫ t(μ+1)

0

w(t)U q (t, t(μ+1)) dt

) r
q

(∫ ∞

tk1

v1−p′

(s) ds

) r
p′

+ B12

� D2. (85)

To get (82), we made use of (24). In (83) we used the fact

k1−1∑

j=k0


 jU q(� j ) = 
μU q(�μ) (86)

(recall that k0 = μ and k1 = μ + 1). Inequality (84) is a consequence of (24). The

final estimate (85) follows from the relation B12 � D2 which was proved earlier.

Concerning B19, we may write

B19 =

N−1∑

n=0



r
p (k(n+1)−1)

∫

�(k(n+1)−1)

U
rq
p

(
t(k(n+1)−1), t

)
w(t) dt sup

z∈
[
tk(n+1)

,∞
) U q (tk(n+1)

, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

�
N−1∑

n=0



r
p (k(n+1)−1)U

rq
p

(
�(k(n+1)−1)

)

k(n+1)−1 sup

z∈
[
tk(n+1)

,∞
) U q

(
tk(n+1)

, z
) (∫ ∞

z

v1−p′

(s) ds

) r
p′

(87)

≤

N−1∑

n=0

⎛
⎝

k(n+1)−1∑

j=kn


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup

z∈
[
tk(n+1)

,∞
) U q

(
tk(n+1)

, z
) (∫ ∞

z

v1−p′

(s) ds

) r
p′

= 

rμ
q U

rq
p (�μ) sup

z∈
[
tk1

,∞
) U q (tk1 , z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

+ B10 (88)

≤ 

rμ
q

(∫ ∞

tμ

U p′

(tμ, s)v1−p′

(s) ds

) r
p′

+ B10

�

(∫ tμ

0

w(t) dt

) r
q

(∫ ∞

tμ

U p′

(tμ, s)v1−p′

(s) ds

) r
p′

+ B10 (89)

� D1 + D2. (90)

Step (87) follows from (24), step (88) from (86), and step (89) from (24). To obtain

(90), we used the estimate B10 � D2 which was proved earlier. We have proved

B8 � B17 + B18 + B19 � D1 + D2.
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Together with the estimate of B7 we obtained earlier, this also yields

B5 � B7 + B8 � D2.

In the next part, we return to the expression B6. One has

B6 =
∑

n∈A

∫ t(k(n+1)−1)

tkn

(∫ t

tμ

w(x)U q (x, t) dx

) r
p

w(t) sup
z∈[t,∞)

U q (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt

�
∑

n∈A

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p ∫ t(k(n+1)−1)

tkn

w(t) sup
z∈[t,∞)

U q (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt (91)

�
∑

n∈A

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p ∫ t(k(n+1)−1)

tkn

w(t) sup

z∈
[
t,tk(n+1)

] U q (t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt (92)

+
∑

n∈A

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p ∫ t(k(n+1)−1)

tkn

w(t) dt sup

z∈
[
tk(n+1)

,∞
) U q (tk(n+1)

, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

�
∑

n∈A

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p ∫ t(k(n+1)−1)

tkn

w(t)U q
(

t, t(k(n+1)−1)

)
dt

(∫ ∞

tkn

v1−p′

(s) ds

) r
p′

(93)

+
∑

n∈A

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup

z∈
[
tk(n+1)

,∞
) U q (tk(n+1)

, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

�
N∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
q (∫ ∞

tkn

v1−p′

(s) ds

) r
p′

(94)

+

N−1∑

n=1

⎛
⎝

kn−1∑

j=k(n−1)


 j U q (� j )

⎞
⎠

r
p


k(n+1)−1 sup
z∈[tk(n+1)

,∞)

U q
(
tk(n+1)

, z
) (∫ ∞

z

v1−p′

(s) ds

) r
p′

=
(

μU q (�μ)

) r
q

(∫ ∞

tk1

v1−p′

(s) ds

) r
p′

+ B12 + B10 (95)

�

(∫ tμ

0

w(t) dt U q (�μ)

) r
q

(∫ ∞

tk1

v1−p′

(s) ds

) r
p′

+ B12 + B10 (96)

�

(∫ t(μ+1)

0

w(t)U q
(
t, t(μ+1)

)
dt

) r
q

(∫ ∞

tk1

v1−p′

(s) ds

) r
p′

+ B12 + B10

� D2. (97)

Estimate (91) is granted by (22), and estimate (92) by Proposition 7. Step (93) is based

on (24). In (94) we again applied (22). To get the relations (95) and (96), we used

(86) and (24), respectively. The final inequality (97) follows from the already known

relations B12 � D2 and B10 � D2. We have shown

B6 � D2,
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and thus also

∫ ∞

tμ

(∫ t

tμ

w(x)U q(x, t) dx

) r
p

w(t) sup
z∈[t,∞)

U q(t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt

� B5 + B6 � D1 + D2.

If we combine this inequality with (53), we reach

∫ ∞

tμ

(∫ t

0

w(x) dx

) r
p

w(t)

(∫ ∞

t

U p′

(t, z)v1−p′

(z) dz

) r
p′

dt

+

∫ ∞

tμ

(∫ t

tμ

w(x)U q(x, t) dx

) r
p

w(t) sup
z∈[t,∞)

U q(t, z)

(∫ ∞

z

v1−p′

(s) ds

) r
p′

dt

� D1 + D2.

The constant related to the symbol “�” in here does not depend on the choice of μ,

thus passing μ → −∞ (notice tμ → 0 as μ → −∞) and applying the monotone

convergence theorem yields

A1 + A2 � D1 + D2.

We have so far assumed that
∫ ∞

0 w(x) dx = 
K for a K ∈ Z. The result is extended

to general weights w by the same procedure as the one used at the end of the proof of

the implication “(ii) ⇒ (i)”. The proof of the whole theorem is now complete. ⊓⊔

Proof of Theorem 9 Theorem 9 is proved in almost exactly the same way as The-

orem 8. The difference is just in the use of appropriate “limit variants” of certain

expressions for p = 1. Namely,

(∫ z

y

U p′

(y, x)v1−p′

(x) dx

) 1
p′

is replaced by ess sup
x∈(y,z)

U (y, x)v−1(x)

and

(∫ z

y

v1−p′

(x) dx

) 1
p′

is replaced by ess sup
x∈(y,z)

v−1(x),

whenever these expressions appear with some 0 ≤ y < z ≤ ∞. To clarify the

correspondence between A2 and A4, let us note that

sup
z∈[t,∞)

U q(t, z) ess sup
s∈(z,∞)

vq ′

(s) = ess sup
s∈(t,∞)

vq ′

(s) sup
z∈[t,s)

U q(t, z) = ess sup
s∈(t,∞)

U q(t, s)vq ′

(s)
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is true for all t > 0. Naturally, the limit variant of Proposition 1 for p = 1 is used

in the proof as well. All the estimates are then analogous to their counterparts in the

proof of Theorem 8. Therefore, we do not repeat them in here. ⊓⊔

Remark 13 (i) Theorem 8, which relates to the inequality (11), i.e. to the operator H∗,

is the one proved here, while the result for H (i.e. for (12)) is presented as Corollary 10.

Of course, the opposite order could have been chosen, since the version with H instead

of H∗ can be proved in an exactly analogous way. As mentioned before, the variants

for H and H∗ are equivalent by a change of variables in the integrals. The reason why

the proof of the “dual” version is shown here is that the discretization-related notation

is then the same as in [11].

(ii) Discretization based on finite covering sequences is used here, although the

double-infinite (indexed by Z) variant is far more usual in the literature (cf. [5,12,19]).

The advantage of the finite version is that the proof works for L1-weights w and then

it is easily extrapolated for the non-L1 weights by the final approximation argument.

In order to work with infinite partitions, one needs to assume w /∈ L1. The pass to

the L1-weights then cannot be done in such an easy way as in the opposite order. The

authors usually omit the case w ∈ L1 (see e.g. [5]). Besides that, there is no essential

difference between in the techniques based on finite and infinite partitions.

(iii) In Theorems 8 and 9, the equivalence “(i) ⇔ (ii)” was known before [12] and

it is reproved here using another method than in [12]. The main achievement is the

equivalence “(i) ⇔ (iii)” which can also be proved directly, by the same technique

and without need for the discrete D-conditions (cf. [11]). Doing so would however

require constructing more different special functions (such as g and h in the “(i) ⇒

(ii)” part of Theorem 8) and therefore also introducing additional notation.

(iv) The kernel U is not assumed to be continuous. However, for every t >

0 the function U (t, ·) is nondecreasing, hence continuous almost everywhere on

(0,∞). Thus, so is the function U q(t, ·)
(∫ ∞

·
v1−p′

(s) ds
) r

p′

. Therefore, the value

of the expression A2 remains unchanged if “supz∈[t,∞)” in there is replaced by

“ess sup z∈[t,∞)”. Although the latter variant may seem to be the “proper” one, both

are correct in this case. Besides that, the range z ∈ [t,∞) in the supremum or essential

supremum may obviously be replaced by z ∈ (t,∞) without changing the value of

A2.

(v) There is no use of the assumption q < 1 in the proof of Theorem 8, hence its

result is indeed valid for all 1 < p < ∞, 0 < q < p. It implies that A∗
1+A∗

2 ≈ Er
3+Er

4

(notice that A∗
1 = Er

4) in the range 1 ≤ q < p < ∞. This equivalence is, of course,

not true for 0 < q < 1 < p < ∞ (recall that the condition E3 < ∞ is not necessary

in this setting, as shown in [20]).

4 Applications

The integral conditions for the boundedness H : L p(v) → Lq(w) with 0 < q < 1 ≤

p < ∞ may be used to complete [5, Theorem 5.1] with two missing cases. These

cases are in fact included in [5] but covered there only by discrete conditions. Another
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explicit characterization may be obtained using [3], the conditions produced in this

way would be more complicated compare to those below (cf. also [11]).

Denote by M ↓ the cone of all nonnegative nonincreasing functions on (0,∞). The

result then reads as follows.

Theorem 14 Let u, v, w be weights, 0 < q < p < ∞, q < 1 and r =
pq

p−q
.

(i) Let 0 < p ≤ 1. Then the inequality

(∫ ∞

0

(∫ ∞

t

f (s)u(s) ds

)q

w(t) dt

) 1
q

≤ C

(∫ ∞

0

f p(t)v(t) dt

) 1
p

(98)

holds for all f ∈ M ↓ if and only if

A5 :=

(∫ ∞

0

(∫ t

0

w(x) dx

) r
p

w(t) sup
z∈(t,∞)

(∫ z

t

u(s) ds

)r (∫ z

0

v(y) dy

)− r
p

dt

) 1
r

< ∞

and

A6 :=

(∫ ∞

0

(∫ t

0

w(x)

(∫ t

x

u(s) ds

)q

dx

) r
p

w(t) sup
z∈(t,∞)

(∫ z

t

u(s) ds

)q (∫ z

0

v(y) dy

)− r
p

dt

) 1
r

< ∞.

Moreover, the least constant C such that (98) holds for all f ∈ M ↓ satisfies

C ≈ A5 + A6.

(ii) Let p > 1. Then (98) holds for all f ∈ M ↓ if and only if A6 < ∞,

A7 :=

⎛
⎝

∫ ∞

0

(∫ t

0

w(x) dx

) r
p

w(t)

(∫ ∞

t

(∫ z

t

u(s) ds

)p′ (∫ z

0

v(y) dy

)−p′

v(z) dz

) r
p′

dt

⎞
⎠

1
r

< ∞

and A8 < ∞, where

A8 :=

⎧
⎪⎪⎨
⎪⎪⎩

(∫ ∞

0

w(t)

(∫ t

0

u(s) ds

)q

dt

) 1
q

(∫ ∞

0

v(y) dy

)− 1
p

< ∞ if

∫ ∞

0

v(y) dy < ∞,

0 if

∫ ∞

0

v(y) dy = ∞.

Moreover, the least constant C such that (98) holds for all f ∈ M ↓ satisfies

C ≈ A6 + A7 + A8.

Proof (i) By [5, Theorem 4.1], (98) holds for all f ∈ M ↓ if and only if

(∫ ∞

0

(∫ ∞

t

(∫ x

t

u(s) ds

)p

h(x) dx

) q
p

w(t) dt

) p
q

≤ C p

∫ ∞

0

h(s)

∫ s

0

v(y) dy ds

(99)
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holds for all h ∈ M+. In fact, [5, Theorem 4.1] is stated with the assumption∫ ∞

0 v(y) dy = ∞ which is, however, not used in the proof in [5]. Validity of (99)

for all h ∈ M+ is equivalent to the condition A5 + A6 < ∞ by Theorem 9, since

U (x, y) =
(∫ y

x
u(s) ds

)p
is a ϑ-regular kernel (with ϑ = 2p).

(ii) By [5, Theorem 2.1], (98) holds for all f ∈ M ↓ if and only if A8 ≤ ∞ and

(∫ ∞

0

(∫ ∞

t

∫ x

t
u(s) ds h(x) dx

)q

w(t) dt

) 1
q

≤ C

(∫ ∞

0
h p(s)

(∫ s

0
v(y) dy

)p

v1−p(s) ds

) 1
p

holds for all h ∈ M+. The latter is, by Theorem 8, equivalent to the condition A∗
6 +

A7 < ∞, where

A∗
6 :=

⎛
⎝
∫ ∞

0

(∫ t

0

w(x)

(∫ t

x

u(s) ds

)q

dx

) r
p

w(t) sup
z∈(t,∞)

(∫ z

t

u(s) ds

)q
(∫ ∞

z

(∫ x

0

v(y) dy

)−p′

v(x) dx

) r
p′

dt

⎞
⎠

1
r

.

Since

∫ ∞

z

(∫ s

0

v(y) dy

)−p′

v(s) ds +

(∫ ∞

0

v(y) dy

)1−p′

≈

(∫ z

0

v(y) dy

)1−p′

is satisfied for all z > 0, it is easy to verify that A∗
6 � A6 and A6 � A∗

6 + A8.

In both cases (i) and (ii), the estimates on the optimal constant C also follow from

[5, Theorem 2.1, Theorem 4.1] and Theorems 8 and 9. ⊓⊔

In the case 0 < q < p ≤ 1, in [5, Theorem 4.1] it was shown that (98) holds for

all f ∈ M ↓ if and only if

(∫ ∞

0

(
sup

x∈[t,∞)

f (x)

∫ x

t

u(s) ds

)q

w(t) dt

) 1
q

≤ C

(∫ ∞

0

f p(t)v(t) dt

) 1
p

holds for all f ∈ M ↓. Theorem 14 hence applies to this supremal operator inequality

as well. Even more equivalent inequalities, whose validity is therefore also character-

ized by Theorem 14, are listed in [6, Theorem 3.12].

Theorem 14 may be further applied to prove certain weighted Young-type convo-

lution inequalities (cf. [10]) in parameter settings which could not be reached so far.

For this particular application, it is important that the weight w is not involved in any

implicit conditions. For more details see [10].

As shown e.g. in [18, Theorem 4.4], certain weighted inequalities restricted to

convex functions are equivalently represented by weighted inequalities involving

a Hardy-type operator with the 1-regular Riemann–Liouville kernel U (x, y) = y − x .

Hence, the results of this paper also provide characterizations of validity of those

convex-function inequalities in the case 0 < q < 1 ≤ p < ∞.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/


Boundedness of Hardy-type operators with a kernel. . . 587

References

1. Bloom, S., Kerman, R.: Weighted norm inequalities for operators of Hardy type. Proc. Am. Math. Soc.

113, 135–141 (1991)
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